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Abstract

Colorectal cancer is thought to originate in the epithelial cells that line the colorectal crypt and, in

most cases, is associated with a mutation in Wnt-signalling pathway. These mutations cause cells to

alter their proliferative behaviour, make their cytoskeleton less deformable and increase their levels

of cell-cell and cell-substrate adhesion.

In this thesis we develop three different types of models for the proliferation and movement of

epithelial cells in a colorectal crypt. We use these models to investigate how changing the cell

adhesion, cytoskeleton and proliferation properties of mutant cells affects their ability to establish a

mutant population within the crypt.

First we develop a continuum model of two cell populations, normal and mutant, using a spatially-

varying source term to model Wnt-dependent proliferation and using Darcy’s law to describe cell

movement down pressure gradients. We distinguish between mutant cells and normal cells by assum-

ing the former have a spatially independent source term, representing proliferation, and a different

viscosity to normal cells, to model changes in their cytoskeleton and levels of adhesion. The model is

solved analytically by an asymptotic expansion of the variables and numerically using a collocation

method. The results show that the ability of mutant cells to remain in the crypt depends on the

position of the initial mutation and their viscosity: the further up the crypt a cell suffers a mutation

the more rigid and adhesive the cell must be for a mutation to persist.

We then consider a discrete cell-centre model based on the work of Meineke et al. [109]. Cell-cell

interaction forces are modelled by springs and are balanced by a viscous drag term. Adaptations to

[109] include unpinning of stem cells from the bottom of the crypt, dependence of cell-drag on cell

size, dependence of cell-cell interaction forces on their area of contact and the inclusion of mutant

cells. Using agile software engineering techniques, the software environment, CHASTE, is developed

and used to solve the model numerically and to reproduce experimental findings such as crypt

homoeostasis and monoclonality. The results again reveal that increasing the drag on the mutant

cells increases the likelihood of a mutant population establishing itself within the crypt.

The third approach is a discrete cell-vertex model. The model decouples cell-cell adhesion forces

from cell deformation forces and movement is determined by a free-energy gradient balanced by

a viscous drag term. Numerical simulations show that the model can generate similar results to

the cell-centre model, and reveal that increased cell-cell adhesion of the mutant cells increases the

likelihood of the mutant population invading the crypt.

Finally the three models are compared in terms of their suitability for modelling epithelial tissue.
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Chapter1
Literature review

1.1 Introduction and motivation

C
olorectal cancer [45, 168] is the third most common cancer in terms of incidence and the

second most common cause of cancer-related death in the UK. In 2005, in the UK alone,

36,766 patients were diagnosed with colorectal cancer [168] and in 2006, 15,957 patients

died from colorectal cancer [168].

Mathematical modelling has played an important role in the understanding of cancer, dating back

to Armitage and Doll [10], who, in 1954, predicted the number of mutations needed for cancer to

develop. In this thesis, we aim to increase the understanding of the early stages of colorectal cancer

by using a variety of theoretical approaches to model the proliferation and movement of epithelial

cells that line the colorectal crypt. We compare the insight that each approach provides and discuss

its strengths and weaknesses. In the remainder of this chapter, we introduce the relevant biological

information on the physiology of the colon and early stages of colorectal cancer (§1.2) and review

some mathematical modelling approaches that could be (or have been) used to model the colorectal

crypt (§1.3).

1.2 Biological background

Like many cancers, colorectal cancer is generally a disease of old age [2]. It requires several genetic

mutations [51] (around six) within the colonic cells to develop a carcinoma. These mutations lead to

changes in the behaviour of the cells which result in major structural changes including buckling of

the colorectal crypts. To understand how these mutations lead to colorectal cancer, in this section
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Figure 1.1: Section of normal human colon. A = intestinal lumen; B = lamina propria; C= lamina

muscularis mucosae; D = blood vessel; E = surface epithelium; F = Goblet cell; G = stem cells; H =

crypt lumen; I = submucosa. Image taken from the School of Medicine (University of Leeds)[119].

we first describe the function of normal gut tissue (§1.2.1). We then describe how mutations can

lead to morphological changes and later to colorectal cancer (§1.2.2).

1.2.1 Normal tissue

Gut function

The large intestine (large bowel) is the penultimate stage in the digestive tract and is approximately

1.5m long and 7.5cm wide [140]. It is comprised of the cecum, the colon and the rectum [104] and its

main function is to first absorb and then to pass into the bloodsteam primarily water and nutrients

from the material that passes through it. Absorption takes place through a layer of epithelial cells

that line the inside of the large intestine. Throughout the large intestine the internal surface has a

number of folds, which increase the surface area available for absorption of nutrients [140].

The structure of the inner surface of the colon is shown in figure 1.1. The outer layer of the colon

is a smooth muscle layer, the muscularis externa (below the tissue shown in figure 1.1). The main

function of the muscularis externa is to move matter along the large intestine through peristaltic

2



contractions. Inside the muscularis externa is the submucosa (marked I in figure 1.1), which contains

vessels that provide the main blood supply to the large intestine. Inside the submucosa another layer

of muscle (the muscularis mucosae, C in figure 1.1) separates the submucosa from the inner-most

part of the large intestine, the mucosa. Embedded in the mucosa are many intestinal glands or

crypts.

Crypts

When the colon is viewed internally, it appears as a pitted surface. These pits are the test-tube-

shaped colorectal crypts that supply the epithelial cells covering the internal surface of the colon.

It is estimated that there are approximately 107 crypts in an adult human colon [118], each crypt

containing 1000 − 4000 epithelial cells [118]. The crypts are embedded in the surrounding stroma

and are about 300µm (40-60 cells) [7, 137] in length and approximately 50µm [7] in diameter.

The epithelial cells toward the bottom of a crypt proliferate. All cells, except the stem cells at

the bottom of the crypt, are believed to migrate up the crypt in response to the mitotic pressure

[65] generated by proliferating cells beneath them (although it has also been suggested that active

migration may play a role [116]). As these epithelial cells migrate up the crypt they proliferate less

and differentiate (adapt to their final absorptive functional form, see figure 1.2). Once the cells reach

the top of the crypt they migrate onto the luminal surface, perform their absorptive function and

are shed into the lumen. The time taken for a cell at the base of the crypt to migrate up the crypt

and be shed into the lumen is estimated to be 2-3 days in mouse [121] and 5-6 days in man [171].

Crypts can undergo fission, a process in which a crypt divides in two. This process happens regularly

during postnatal growth [37] but is less prominent in later stages of life. Crypts lined with normal

cells typically undergo symmetric crypt fission, whereas crypts with lined with mutated epithelial

cells have been found to undergo asymmetric fission [131].

Cell types

We now introduce the different cell types found in the colorectal crypt.

It is widely accepted that cell replacement and production is accomplished by stem cells found at

the base of the crypt [103]. The stem cells are a small population of relatively undifferentiated, cells

that typically maintain their population size when they divide [128]. When a stem cell proliferates

its offspring are usually a stem cell and a transit cell, although they can on occasion produce two

stem cells. The progeny of stem cells have the ability to develop into any of the epithelial cells found

3
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Figure 1.2: Schematic of a colorectal crypt. Stem cells (cyan) at the crypt base, proliferate to

produce transit cells (yellow), which migrate up the crypt and differentiate into differentiated cells

(pink). Cells are shed into the lumen at the top of the crypt.

in the colorectal crypt [128]. The stem cells retain their own strand of DNA in each chromosome

and pass on the copied strands to their progeny [130] (although some dispute this hypothesis [87]).

This reduces the risk of mutations in the DNA [93]. Stem cells are difficult to define and characterise

either morphologically or using labelling techniques [92]. Consequently it is hard to determine their

number [129]. However, it is estimated that there are 4-6 stem cells in each crypt [128], although

some authors have put this figure as high as 64 [188]. It is thought the number of stem cells may

fluctuate when the crypt undergoes fission and also in different regions of the gut [98]. It is also

thought that stem cells do not proliferate as frequently as their progeny, with stem cells having an

estimated cell-cycle time longer than 24 hours [2].

Situated directly above the stem cells (further up the crypt) are their progeny, the transit cells (see

figure 1.2). It is thought that transit cells undergo 4-6 cell divisions as they move up the crypt [129]

with a cell-cycle time slightly less than that of stem cells [13]. As the transit cells move upwards they

proliferate less [103] and differentiate. Differentiation is defined as the change in a cell phenotype and

is brought about by changes in gene expression [129]. One mechanism that is believed to regulate

differentiation is extracellular signalling, i.e. the Wnt signalling pathway (see below).

Towards the top of the crypt and on the internal surface of the colon are fully differentiated cells,

which do not proliferate (see figure 1.2). They migrate up the crypt onto the internal surface of the

colon where they perform their absorptive function, passing water and nutrients from the lumen into

the stroma and back into the bloodstream. Thereafter the fully differentiated cells are shed into the

lumen [60]. It is thought that about 1010 epithelial cells are shed into the gut-lumen every day [132].

4



The Wnt signalling pathway

The structure of the epithelial cells in the crypt is maintained in part by the expression of the extra-

cellular protein Wnt [126]. Wnt is a small, lipid-modified protein that plays many roles in mature

tissues and in embryonic development [74]. For example, Wnt is implicated in tissue patterning

through the control of cell proliferation [74]. In the crypt, extracellular Wnt is thought to be ex-

pressed by stromal cells with high levels of expression at the bottom of the crypt and at low levels

at the top [60].

Wnt proteins bind to Frizzled receptors on the epithelial cell membrane and can activate one of three

signalling pathways [74]; the canonical Wnt pathway, the noncanonical planar cell polarity (PCP)

pathway, and the Wnt/Ca2+ pathway [41]. Our main concern is the canonical Wnt signalling

pathway (see figure 1.3), in this pathway cells can be either in an “off” or “on” state, as described

below.

“Off” state

In the absence of Wnt, the proteins Axin and GSk3β form a destruction complex with the protein

APC (adenomatous polyposis coli) in the cell cytoplasm [74]. This complex binds to free cytoplasmic

β-catenin, phosphorylates it and thereby marks it for degradation [19]. This stabilises β-catenin and

prevents it entering the nucleus [19]. If β-catenin is located in the nucleus it forms a complex with the

protein TCF that promotes the transcription of genes such as c-myc [111] and cyclinD1 [154, 162].

These proteins promote cell growth and the transcription of genes associated with DNA synthesis

[58] and thereby contribute to cell proliferation [126]. In summary, in the absence of Wnt, β-catenin

is degraded and does not enter the nucleus. As a result the cell does not transcribe the proteins

needed for proliferation.

“On” state

By contrast, when Wnt is present, it binds to Frizzled receptors and the proteins Axin and GSk3β

are drawn toward the cell membrane [19]. This inhibits the formation of the destruction complex and

leads to an abundance of cytoplasmic β-catenin, some of which enters the nucleus, binds with TCF,

leading to cell proliferation. In summary, the presence of Wnt increases the amount of β-catenin

which can enter the nucleus to transcribe cMyc, cyclin-D and other target genes. In doing so Wnt

signalling promotes proliferation.

In view of the above we deduce that the extracellular gradient of Wnt along the crypt axis results

in higher rates of proliferation by cells at the bottom of the crypt (the stem cells and the transit

cells) and low rates at the top of the crypt (the differentiated cells).
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Figure 1.3: Schematic of the Wnt signalling pathway, taken from Logan and Nusse [96]. (Left) Wnt

signalling pathway off. A destruction complex of APC, Axin and GSK3 is fromed and degrades

β-catenin. (Right) Wnt signalling pathway on. Axin and GSK3 are drawn to the cell-membrane, so

no destruction complex is formed. β-catenin becomes abundant and can enter the nucleus, where it

binds with TCF, leading to the onset of proliferation.

The Wnt signalling pathway is thought to affect many other phenomena, not just cell proliferation

[171]. Indeed β-catenin was initially identified for its role in cell adhesion [18]. As well as stimulating

expression of proteins associated with proliferation, nuclear β-catenin is thought to activate the

transcription of proteins associated with apoptosis (survivin) [23] and adhesion (Ephrin-B) [40].

Hinck et al. [66] found that high levels of β-catenin lead to stronger cell-cell adhesion [66]. This

process occurs when β-catenin [117] binds with E-cadherin to form a complex near the cell surface

[2]. Cadherins (such as E-cadherin) are transmembrane proteins that have a large extracellular

polypeptide chain. These extracellular chains bind to extracellular cadherin chains from adjacent

cells. For these bound cadherin chains to have an adhesive effect, they must be anchored inside the

cell membrane. This is done by a complex comprising, amongst other proteins, β-catenin. It has been

shown that increasing the number of anchored cadherins (which happens in the presence of increased

β-catenin) increases cell-cell adhesion [40]. In summary, increased Wnt increases cytoplasmic β-
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catenin levels which increases adhesion.

It has also been shown that migration and sorting of cells is affected by the level of β-catenin

in a cell, through the expression of Ephrin ligands and EphB receptors [169]. Nuclear β-catenin

leads to the transcription of proteins for EphB receptors and the down-regulation of proteins for

the ligand Ephrin. EphB receptors control cell shape and migration through the remodelling of a

cell’s cytoskeleton and are also thought to regulate cell-to-substrate binding [15]. The expression of

β-catenin in proliferating cells and low levels of β-catenin in differentiated cells leads to high levels

of EphB receptors in proliferating cells and high levels of Ephrin ligands in differentiated cells [15].

On contact, EphB receptors and Ephrin ligands have a repulsive effect [83]. It is thought that this

receptor-ligand interaction enables cells to sort themselves, with proliferating cells at the bottom of

the crypt and differentiated cells at the top [15].

It is thought that APC, like β-catenin, may also be a multi-functional protein that affects cell

proliferation and adhesion [18]. This is due to the high concentration of APC close to adherens

junctions (adhesion proteins) on the cell membrane which are involved in the development of cadherin

bonds [20]. However it is noted that the effects of APC could just be an indirect consequence of the

Wnt signalling pathway [20].

Thus the Wnt signalling pathway is important in regulating cell proliferation, migration, sorting

and differentiation in the colorectal crypt. It controls the distribution of epithelial cells in the crypt,

with stem and transit cells at the bottom of the crypt and differentiated cells at the top.

1.2.2 Mutations and progression to cancer

Cancer is a multi-stage process that requires the accumulation of several genetic mutations, each

of which successively alter the tissue’s normal behaviour. These events are well documented in the

adenoma-carcinoma sequence [75], originally defined by Fearon and Vogelstein [53], which describes

the stepwise progression from normal to dysplastic epithelium with the accumulation of clonally

selected genetic alterations [90].

One of the earliest mutations in colorectal cancer is often in APC or β-catenin [126]. This leads to a

breakdown in the Wnt-signalling pathway and overproliferation of epithelial cells. The affected crypts

become distorted (via crypt buckling) and can lead to an outgrowing “early adenoma” or polyp.

Such an adenoma remains small until it suffers a mutation in the K-ras oncogene. K-ras proteins are

signalling proteins that act as molecular switches, transducing signals from the cell surface to the cell

membrane [141]. Mutations in K-ras are thought to cause the cell to proliferate continuously [25],
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enable the adenoma to grow larger in size and to become an “intermediate adenoma”[6]. Further

mutations in proteins such as Smad4 and Smad2, enable the tumour to grow further, often occur

later in the development of an adenoma. At a yet later stage the gene p53 is often mutated and the

adenoma becomes a carcinoma. p53 is an oncogene that is found mutated in over 50% of human

tumours [54]. It is known as the “gatekeeper of the genome” [90] and its main function is to ensure

that if DNA is damaged then the cell will not undergo mitosis [54]. When p53 is mutated, cells with

damaged DNA may proliferate, allowing progeny to be produced with more mutations. Following

loss of p53 the carcinoma accumulates successive mutations more rapidly, some allowing the cancer

to spread or metastasise to other parts of the body.

Early mutations

Some 80% of all colorectal tumours show loss of APC function. Amongst those colorectal tumours

that retain wild-type APC, around half show signs of mutations in β-catenin [60]. This finding

lead to the discovery that unstabilised β-catenin, when β-catenin cannot be degraded by the APC

complex, is an early event in colorectal cancer [19]. An APC mutation may render APC unable

to bind to Axin [74] and prevent formation of the β-catenin destruction complex, leaving β-catenin

unphosphorylated. Similarly a mutation in β-catenin can lead to a transcriptionally active β-catenin

protein that cannot be degraded by the APC-based destruction complex [74]. Both of these muta-

tions result in the cell behaving as if it is being continuously stimulated by Wnt, regardless of the

Wnt level [74]. Cells with these mutations are termed adenomatous. These two types of mutations,

loss of APC function and mutation in β-catenin, are found to be mutually exclusive [60], which is

consistent with them having a similar effect on β-catenin stability.

It has been noted that for APC fully to lose its function, both alleles of the gene must be mutant [60],

whereas destabilisation of β-catenin requires only a single mutation. However loss of APC function

is far more common (80%) in colorectal cancer than β-catenin mutations (10%). One explanation for

this phenomenon is that APC may have other tumour suppressor functions beside the degradation

of β-catenin [139].

A disease commonly studied in colorectal cancer is Familial Adenomatous Polyposis (FAP) [81, 131].

FAP is a hereditary condition in which one of the two copies of APC has a germ-line mutation [84].

As a result its sufferers need only develop a single mutation in APC to lose APC function. This leads

to the development of numerous polyps and consequently early onset of colorectal cancer. Many

studies of the early stages of colorectal cancer are carried out on patients with FAP.

Loss of control of the Wnt signalling pathway leads to many effects, as APC and β-catenin interact

8



with many proteins, including cyclinD1 [154, 162], c-myc [111], survivin [23], EphB [40] and Ephrin-

B [40]. Some of the most widely reported changes in behaviour are increased rates of proliferation

and the crypt losing its proliferative hierarchy, so that cells proliferate throughout the entire crypt,

rather than just at its base. As a result, the number of proliferating cells in the crypt increases and

they are distributed widely throughout it (rather than just in the lower part of the crypt).

In addition to proliferation being affected when a cell becomes adenomatous, the cell experiences

many other changes, as β-catenin and APC control many other proteins (as mentioned in above).

Sansom et al. [141] note that loss of APC function also affects cell differentiation and migration.

In [141], experimental evidence shows that adenomatous cells undergo cellular changes including

increased cell packing and failure to migrate and differentiate.

Nathke [115] also noted decreased migration in cells lacking APC function and proposed that the

lack of APC function affects the ability of the cytoskeleton to change shape, leading to decreased

migration. Nathke also proposed that the number of Ephrins (which are involved in cell-cell adhesion)

could change with a mutation in APC or β-catenin, which would also affect cell migration.

It is interesting to note that adenomas with β-catenin mutations tend to be less aggressive than

those with APC mutations [116]. This may be related to the different levels of adhesion that the

mutations cause. It has also been found that Ephrin, a protein associated with β-catenin and APC

that plays a role in cell sorting, may suppress colorectal cancer in its later stages [14, 42].

Top-down or bottom-up morphogenesis?

When cells become adenomatous, they proliferate at an increased rate. However it is a matter of

great debate how adenomatous cells form polyps [187]. Two mechanisms have been suggested (see

figure 1.4): top-down and bottom-up morphogenesis. In top-down morphogenesis, an adenomatous

epithelium is initiated by a mutation in a cell at the top of a crypt, that expands laterally and

downwards and invades (adjacent) crypts containing normal epithelium. In bottom-up morphogen-

esis, the first adenomatous cell occurs at the base of the crypt; they increase in number through

proliferation, until they eventually populate the entire crypt.

Different experimental results support each hypothesis. For example, it has been noted [105] that

in adenomatous polyps, cells towards the top of the crypt proliferate more than cells toward the

bottom. There is also evidence showing that adenomatous cells reside only at the top of crypts in

adenomatous polyps [153]. These two pieces of evidence support top-down morphogenesis. How-

ever other evidence, such as the identification of fully adenomatous crypts, supports bottom-up
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A B Mutation

Figure 1.4: Schematic diagrams showing (A) bottom-up morphogenesis and (B) top-down morpho-

genesis. In (A) the initial mutant cell is at the base of the crypt and the mutant cells move upward

to colonise the crypt (cell migration is indicated by the arrows). In (B) the initial mutation is in a

cell near the top of the crypt and mutant cells invade downwards into the crypt.

morphogenesis [185].

To gain insight into this debate, firstly we have to ask where the initial adenomatous cell occurs.

Komarova and Wang [80] developed a mathematical model that challenged the conventional thinking

that differentiated cells could not be targets for APC mutations due to their short life span. It

is widely accepted that the first APC mutation occurs in a stem cell [186], as any transit cells

undergoing a mutation would not stay in the crypt long enough to establish a population of mutant

cells [34]. Komarova and Wang predicted that it is unlikely that both APC mutations occur in the

stem cell; they predict at least one APC mutation occurs in a differentiated cell. In their model,

differentiated cells are defined as “not stem cells”, so they include transit cells amongst their number.

(It is unlikely that differentiated cells in the normal sense would suffer a genomic mutation as they

do not proliferate [2].)

Shih et al. [153] presented strong experimental evidence supporting top-down morphogenesis. They
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studied 35 small adenomas from patients with FAP, staining cells for β-catenin and genetically

altered APC. They found that APC mutations were uniformly present in cells toward the top of the

crypt, whereas cells at the bottom of the crypt were identical to those in the bases of normal crypts.

Furthermore in none of the adenomas studied were any fully adenomatous crypts found. With this

evidence the authors concluded that the adenomatous epithelium proceeded from the top of the

crypt downwards, rather than from the bottom. Two theories were put forward to explain how this

may happen: (i) the initial adenomatous cells reside at the top of the crypts; (ii) that the initial

adenomatous cells originate in stem cells, migrate up the crypt and form the adenomatous mucosae

in the intercryptal zones. A third explanation due to Lamprecht and Lipkin [85], and consistent

with work by Komarova and Wang [80], proposed that a transit daughter cell is the primary target

for a mutation.

Many authors have suggested that the initial mutation is at the crypt base, whose offspring populate

all of the crypt, bottom-up morphogenesis, rather than top-down invasion of crypts [178, 185]. These

fully mutant crypts then expand through crypt fission to form polyps. Preston et al. [131] presented

strong evidence supporting bottom-up morphogenesis. They studied 40 small adenomas from non-

FAP patients and 4 sections from FAP patients, staining for proliferative activity and β-catenin in

both cases. They found cases of fully adenomatous crypts, where all the cells within the crypt, from

top to bottom, showed signs of proliferation and nuclear β-catenin. They also observed a sharp

cut-off between the adenomatous cells and the normal epithelia present in the inter-cryptal zones.

They concluded that this fully adenomatous crypt must have emerged from a mutant cell at the

bottom of the crypt proliferating to fill the entire crypt. They also found fully adenomatous crypts

that showed signs of budding or asymmetric crypt fission. They concluded that the main mode

of expansion in early adenomas is through crypt fission. However they conceded that top-down

morphogenesis does occur, but as a later event since the only cases in which it was found involved

larger adenomas.

It could be the case that both top-down and bottom-up morphogenesis can occur [46]. It may be

that the experimental evidence in each case is found only evidence of one type of morphogenesis

occurring. We believe that by mathematically modelling the colorectal crypt, we may be able to

identify conditions under which each of these mechanisms may occur. This investigation forms the

basis for the models presented in Chapters 2-4 of this thesis.

11



1.3 Review of relevant mathematical models

In this section we identify different mathematical techniques for modelling tissue growth and assess

their merits. First, we note the behaviour that will be important for us to model.

As the colorectal crypt is regularly repeated many times within the colon, we take the crypt as the

unit of interest. It is widely thought that the initial stage in colorectal cancer, in most cases, is a

mutation in an epithelial cell within the crypt and we therefore model the epithelium.

We intend to capture behaviour seen in the crypt seen experimentally (detailed below). We will

use these features to judge the advantages and disadvantages of different mathematical modelling

techniques. One of the most important features is the differential proliferation of cells in a crypt

arising due to changes in the levels of the protein Wnt or through mutations [74]. We also wish to

incorporate cell migration into our model. Cells migrate from the base of the crypt onto the luminal

surface, but mutations can change this behaviour, by changing the level of cell-substrate adhesion

and increased rigidity of the cytoskeleton [116]. Another important feature is cell-cell adhesion

which is known to vary with cell type and may be affected by mutations [141]. A further feature to

be included is the changing cell size throughout its lifespan, particularly over a small time period

around proliferation [2].

In summary the important features against which we judge the relative merits of the different models

are proliferation, cell migration, cell-cell adhesion, cell-substrate adhesion and cell growth.

We discuss different types of mathematical modelling as follows. First we cover continuum models

(§1.3.1) and discrete cell-level models (§1.3.2), attempts to combine the two (§1.3.3) and finally other

types of models (§1.3.4).

Continuum models, in general, require fewer parameters to be estimated and have been used to

study many types of tissue growth. Cell-level models can include a greater level of detail and have

been used to describe the behaviour of various epithelia, including the epithelium of a colorectal

crypt.

1.3.1 Continuum models

Continuum models have been widely used to describe cell growth and movement. The tissue is

often modelled as a homogeneous medium and may be used to describe large tissues such as tumour

spheroids. Continuum models can describe large scale features easily and can be adapted to many

different geometric configurations.
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Continuum models typically contain a mass balance which is often supplemented this with a con-

stitutive law. An illustrative example, describing the changes in amounts of two phases of material,

taken from King and Franks [79], is given below:

∂̺1

∂t
+ ∇ · (̺1v1) = ∇ · (D1∇̺1) + K1̺1, (1.1a)

∂̺2

∂t
+ ∇ · (̺2v2) = ∇ · (D2∇̺2) + K2̺2, (1.1b)

̺1 + ̺2 = 1. (1.1c)

̺1, ̺2 are densities of two phases (for example, cells and water), v1, v2 are their velocities, D1, D2

their diffusion coefficients, K1, K2 their source terms and t represents time. Cell proliferation and

death are modelled by source terms, with positive values representing cell proliferation and negative

values representing cell death.

For 1D geometries (or geometries symmetric in all but one dimension) it is possible to solve (1.1)

without introducing a constitutive law (see Ward and King [177], Araujo and McElwain [8] and

Bertuzzi and Gandolfi [17]), as all changes in the unidirectional velocity field are caused by changes

in volume associated with cell proliferation and death.

For models in two or more space dimensions, a constitutive law is needed. We now introduce different

constitutive laws that have been used along with mass balance equations to describe the proliferation

and movement of cells.

Darcy’s Law

One of the simplest constitutive laws is Darcy’s Law. Originally used to describe the flow of a viscous

fluid through a porous medium. Darcy’s law is defined as

v = −κ

µ
∇p (1.2)

where v is the velocity of the cells, p is the pressure, µ the viscosity of the cells and κ the effective

permeability of the scaffold through which the cells are moving.

One of the earliest models to use Darcy’s law as a constitutive assumption for tissue growth was de-

veloped by Greenspan [64] to describe tumour growth. With this constitutive assumption, Greenspan

was able to describe nutrient dependent tumour growth. The model was used to predict conditions

under which an avascular spherically-symmetric tumour could remain in a steady state.
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A common implementation of Darcy’s law is to assume that two phases, whether they be cells and

water or normal cells and tumour cells, do not diffuse and are distinct, being separated by a moving

boundary [44, 56, 100]. With this assumption and applying (1.2), (1.1) becomes

− κ

µ1

∇2p1 = K1, for ̺1 = 1, ̺2 = 0, (1.3a)

− κ

µ2

∇2p2 = K2, for ̺1 = 0, ̺2 = 1. (1.3b)

This implementation has led to models that are able to follow the movement of the boundary

between the two phases. Various techniques have been used to solve this problem including finite

difference methods [56] and boundary integral techniques [44, 100]. This may be an appropriate way

of describing behaviour of two populations of cells, such as normal and mutant cells in a colorectal

crypt.

Darcy’s law has also been derived by using balance of momentum and making further assumptions

about the cells in other models such as assuming the cells to be a viscous fluid and the tissue being

spherically symmetric, as done by Breward et al. [26], Landman and Please [86] and Chen et al. [39].

Attempts have also been made to develop multiscale models, such as by Ribba et al. [135], while

assuming a Darcy-constitutive law.

One of the advantages of using Darcy’s law is that large movements of tissues can be modelled. In

other models, including those that use linear elasticity, it is strictly possible only to model small

displacements: this would be inappropriate for the crypt as there are large movements of cells.

Another advantage of using Darcy’s law is that it is simple. It is easy to implement analytically

and numerically and it introduces few parameters. However the simplicity of Darcy’s law can be a

disadvantage as it is hard to directly model many of the properties mentioned at the beginning of

§1.3, such as cell-cell and cell-stroma adhesion and cytoskeleton rigidity.

Stokes’ Law

An alternative to Darcy’s law is to model the movement of the cells with Stokes flow [79], which

describes fluid flow where inertial forces are small compared to viscous forces. Stokes’ Law models

the cells as a Newtonian fluid and has been used to describe tissue growth in tumours [26, 32, 33],

the growth of a freely suspended tissue [79] and in multiphase models of tissue growth focussing on

the interaction between nutrient, cells and water [89, 97].

An advantage that models using Stokes flow share with those using Darcy’s law is the ability to
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model large deformations. The model is also reasonably simple to implement and contains few

parameters. However, these models suffer from the same problems as Darcy models: they may be

too simple to model the features that we require, such as cell adhesion and cytoskeleton rigidity, and

have not been derived in a consistent way from cell-scale models.

Brinkman models

A combination of Stokes’ Law and Darcy’s Law has been used to describe tissue growth on a

1D domain has been described by Fozard et al. [55]. Here, a Brinkman-continuum model is used

to approximate a cell-level model of a growing epithelium. Terms from Darcy’s law represent the

breaking and reforming of cell-substrate bonds and the terms from Stokes’ law represent the internal

cell viscosity. The model showed good agreement with cell-level models when internal cell viscosity

was assumed to be minimal and the cells were assumed to be homogeneous.

Solid mechanics

In addition to modelling tissue as a fluid, other approaches model the tissue using the principles of

solid mechanics including linear elasticity, non-linear elasticity and viscoelasticity.

Linear elasticity

Authors such as Jones et al. [77] and Roose et al. [138] used principles in thermal mechanics to

develop linear elastic models for tissue growth. These models used parameters such as Young’s

modulus, the bulk modulus and a time-derivative of a linear stress-strain relationship to characterise

mechanical properties of the tissue.

An advantage of these linear elasticity models is that they use parameters that could be measured by

tensile testing of the tissue. However linear elasticity is not appropriate for modelling the epithelium

in the crypt, which undergoes large displacements and the cells rearrange to a plastic deformation,

rather than an elastic deformation. A further problem is that these models can lead to stress build-up

since viscous stress relaxation is neglected.

Nonlinear elasticity

Some of the questions raised when using linear elasticity, such as the assumption that large defor-

mations can be modelled by a derivative of a linear elasticity relationship, have been addressed by

nonlinear elastic models of tissue growth [3, 4, 5, 136, 156]. The models, based on work by Rodriguez

et al., assume a non-linear strain-energy function and use a Lagrangian approach to model problems
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where there are large deformations of tissues.

The advantage here is that large deformations can considered, although this does come at a cost

as the models are more complex to solve and require greater estimation of parameters for which

there is little experimental data [5]. These models also neglect plastic deformation, even for large

deformations applied for long times. As with the linear elasticity models, this would be a problem

when modelling the colorectal crypt epithelium. This weakness has been addressed by viscoelastic

models of tissue growth such as that developed by MacArthur and Please [99], who assumed the

tissue could be modelled as a Maxwell fluid.

Cell-cell adhesion models

An approach to modelling the interaction of two cell populations, paying particular attention to the

role of cell-cell adhesion in a deterministic continuum framework, was developed by Armstrong et al.

[11]. They considered two populations of cells with different levels of cell-cell adhesion and allowed

cells to interact with near neighbours. The model developed in [11] shows the sorting and mixing

of different cells types depends on the parameter regime used. Cells could sort from one another,

engulf one another or freely mix with one another.

While this approach could include effects such as different levels of cell-cell adhesion; cell-substrate

adhesion or the effect of changing cytoskeleton rigidity are not considered.

Summary of continuum models

Overall there are many advantages to using continuum models to model a colorectal crypt. First,

they are generally fairly simple, and contain few parameters. It is relatively straightforward to

include cell proliferation and death and to allow them to depend on a spatially-varying nutrient or

protein. These effects can be incorporated by introducing a source term into the appropriate mass

balance equations. This could be used to describe the Wnt-dependent proliferation hierarchy found

in the colorectal crypt. Continuum models can, by assuming a constitutive law and using the balance

of momentum to define cell velocity, model the migration of cells. It is also possible to incorporate

heuristic mechanisms for cell-cell adhesion and cell-membrane adhesion by changing parameters in

the constitutive law. In light of these benefits, we develop a continuum model, assuming Darcy’s

law, of the crypt in Chapter 2.

However there are several disadvantages to using this approach. Cells are not treated as distinct

entities. As a result any measurements related to cells (such as cell size) are not explicitly defined.
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Figure 1.5: Figure showing three different cell-level models. (left) Cell-centre model where the

movement of cell i is determined by interactions with neighbouring cells. (centre) Cell-vertex model,

where the cell shape defined is by the cell’s vertices. Vertex i moves in response to size and the

shapes of the surrounding cells (1,2,3) which have areas, A1, A2, A3. Lengths L1, L2, L3 represent

the distances from vertex i to vertices 1, 2, 3 respectively. (right) Potts model, where cells comprise

a set of lattice points, for example, cell i (shaded).

This causes difficulties when one attempts to incorporate sub-cellular features such as signalling

pathways and protein-level models of cell-cell and cell-membrane adhesion. Another issue is whether

there are enough cells within the crypt (∼ 2000 cells) to justify modelling it as a continuum or

whether each cell should be modelled as a discrete entity. With this in mind, in the next section we

review several cell level models.

1.3.2 Cell-level models

Cell-level models treat each cell as a discrete entity that can interact with other cells. As such, it

is possible to model in detail features such as proliferation and cell-cell adhesion. However cell-level

models are computationally expensive to implement for large numbers of cells.

We separate our review of cell-based models into three main groups: models using centre-based

dynamics, models using vertex-based dynamics and extended Potts models.

Cell-centre models

In these models, each cell is represented by the position and movement its centre (see figure 1.5 (left)).

These models have been used for many biological problems, including modelling a colorectal crypt
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i

Figure 1.6: A Voronoi diagram to construct the polygonal shape of cell, i, shaded grey. From each

point a circular wave is propagated at constant speed. Where the wavefronts collide a perpendicular

bisector is drawn. These bisectors meet at the vertices of the polygonal cell(s).

[109]. Cell movement is often determined by a balance of forces acting on it. Various approaches

have been developed for calculating the forces acting on a cell. These include modelling cell-cell

connections with springs [109], and modelling the cells as deformable elastic spheres [147]. Inertial

effects are assumed to be negligible and the cells’ velocity is determined by balancing the cell-cell

forces with a viscous drag term which models cell-substrate adhesion.

To represent the shapes of the cells, a Voronoi diagram may be used. A Voronoi diagram produces

polygonal shapes for the cells by propagating a circular wave from each cell centre [181] (see figure

1.6). Where the wavefronts intersect, a chord is drawn between the two intersection points and

extended past the inter-section. Points at which these lines intersect define the vertices of the

polygonal cells.

The assumption that inertial effects are negligible and the forces from cell-cell interactions are

balanced by a viscous drag term leads to the following equations of motion

γi
dri

dt
=
∑

j

Fij , (1.4)

where ri is the position of the centre of cell i, Fij is the cell-cell interaction force between cell i and
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Figure 1.7: Schematic of cell birth in a cell-centre model, with (left) before cell birth and (right)

after cell birth. New cell centre placed next to parent cell and two new daughter cells defined by a

Voronoi diagram.

neighbouring cell j,
∑

j is a sum over all neighbouring cells, γi is the drag coefficient on cell i and t

is time.

A centre-based model for cell proliferation and movement of cells in an intestinal mouse crypt was

developed by Meineke et al. [109]. The authors viewed the crypt as the 2D surface of a cylinder.

The forces between the cells were modelled by linear springs connecting cells that share a common

interface.

Cell movement within the crypt was driven by the proliferation of cells closer to the base of the

crypt. To model proliferation, new-born cells were given a stochastically varying cell-cycle time and

mitosis was modelled by placing a new cell centre in a random direction close to the dividing cell.

The new cell shape was then defined by a Voronoi diagram (see figure 1.7). The spring connecting

the new cell and its parent had a natural spring length that grew linearly over the first hour after

mitosis.

The model considered three different cell types: stem cells (at the bottom of the crypt), transit cells

(in the lower part of the crypt) and differentiated cells (toward the top of the crypt). Stem cells

were fixed in position and had no restriction on the number of divisions they could undergo. They

produced a new transit cell of generation 1 when undergoing mitosis. Transit cells proliferated three

times; a transit cell of generation n produced two new transit cells of generation n + 1, unless n = 3

in which case the cell produced two differentiated cells. Differentiated cells could not proliferate.

At each time step the total force on each cell due to the springs was calculated and the movement
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of the cells updated using (1.4). The new cell shapes were then defined by Voronoi tessellation.

Meineke et al. [109] found that this model gave results that agreed qualitatively with experimental

evidence, with cells at the bottom of the crypt more densly packed than those at the top and the

crypt retaining its proliferative structure, with cells proliferating toward the crypt base. However

there are questions that need to be raised about this model. The main problem is the validity of

modelling cell-cell interactions with springs. This does not take into account cell-cell adhesion being

dependent on contact area between cells, as such cells with a small contact area can have a high

attractive force if they are further than the natural spring length apart. The drag on the cells models

the breaking and reforming of cell-stroma bonds and is assumed to be constant regardless of cell

size. However, it is thought that the number of bonds formed is dependent on the area of contact

between the cell and the substrate on which it moves, which Meineke et al.’s model does not reflect.

We aim to address these weaknesses in Chapter 3.

A different type of centre-based model was developed by Schaller and Meyer Hermann [147] to

simulate the growth of a tumour spheroid. This model does not suffer many of the same problems

as Meineke et al.’s as a more complex mechanics system is used. In [147], the cells were modelled as

3D elastic deformable spheres. This assumption was made as the natural shape of a cell in solution

is usually a sphere. The forces on each cell were composed of two parts from each neighbouring

cell, a force due to deformation and a force due to adhesion. The decrease in size due to the

neighbouring cells was calculated and the force due to deformation was calculated as a function of

Young’s modulus and Poisson ratio. The adhesive force was proportional to the contact surface area

with each neighbouring cell. The cell shapes were calculated by a 3D Voronoi tessellation.

A cell-cycle model was applied in each cell where a cell could only pass into DNA-synthesis phase

if the level of stress on the cell was low enough. When a cell underwent mitosis, at the end of its

cell cycle, the natural volume of the cell was conserved in the two daughter cells with a reduction in

natural radius. The natural size of the cell then increased, to simulate growth until the cell finished

its growth phase.

Again, at each time step the forces on each cell were calculated and the movement of the cells

determined according to (1.4). The cell shapes were defined by Voronoi tessellation. A similar

model was also developed by Galle et al. [57] who modelled the growth dynamics of epithelial cell

populations in vitro.

These models [57, 147] have many strengths as both cell-cell adhesion and cell deformation are

included, although they do have added complexity compared to models such as Meineke et al.’s

[109].
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Drasdo and Loeffler [48, 49] also developed a cell-centre based model primarily concerned with the

buckling of a colorectal crypt. The authors developed a model for a 1D chain of cells in 2D space.

The cells were treated as deformable elastic circles. The force on each cell was composed of four

parts: (i) the elastic deformation force between the cells; (ii) a shear force holding the crypt in shape;

(iii) a force from the stroma and (iv) a force restricting any bending of the epithelium. The model

included proliferation and allowed for variation in the size of the cells through the cell cycle. Whilst

this model does simulate the buckling of a colorectal crypt well, it is probably not an ideal model

for the proliferation and growth of cells in a colorectal crypt as it is only 1D. As such it could not

model azimuthal movement of cells around the crypt as seen experimentally by Taylor et al. [161].

However this could be addressed by an extension of the model to 3D.

Other approaches to modelling the epithelium include work by Walker et al. [175]. They used

agent-based modelling to replicate patterns of in vitro cell-growth and movement under different

calcium concentrations. In [175] cells could migrate freely on the substrate if not bonded to other

cells otherwise they moved in response to cell-deformation forces. The likelihood of cell-cell bonds

forming was dependent on the levels of calcium available for cadherin-mediated bonding. The model

also incorporated the social behaviour of cells by including the effects of contact-inhibited growth.

The model replicated in vitro patterns of cells well and was also applied to wound-healing of tissue

[174].

Others have also developed multiscale models based on cell-centre dynamics, including Ramis-Conde

et al. [133], who used a modified Hertz model, where cells are assumed to be deformable elastic

spheres, to model cell-cell interactions. The forces between the cells were defined by the gradient of a

free energy which comprised terms conserving cell size and representing cell-cell adhesion interaction.

The level of cell-cell adhesion was proportional to the number of adhesion molecules in contact. This

was calculated by incorporating a protein-signalling model into each cell and assuming the adhesion

proteins were spread evenly over the cell’s surface.

The model was for a population of cells in 3D and had two viscous drag terms; one for the friction

generated by the movement of a cell and one for the friction generated by cells moving past one

another,

γi
dri

dt
︸ ︷︷ ︸

friction

+
∑

j

Γij

(
dri

dt
− drj

dt

)

︸ ︷︷ ︸

cell-cell friction

=
∑

j

Fij

︸ ︷︷ ︸

forces

+ fi
︸︷︷︸

noise

+ χ∇Q(t)
︸ ︷︷ ︸

chemotaxis

. (1.5)

Using this model, Ramis-Conde et al. [133] were able to study how intra-cellular effects can influence
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the aggregation of a population of cells. This model has many strong points in that it is multiscale

and includes many features such as cell-cell adhesion and cell deformation. With such a multiscale

approach insight could be gained into how subcellular behaviour affects the behaviour the population

of cells.

In summary, the cell-centre models can simulate cell proliferation and migration well. Some mul-

tiscale approaches include cell-cycle models, so it would be straight-forward to incorporate a Wnt-

dependent (or any other nutrient/protein dependent) proliferation term into them. It is also easy

to include different cell-cell adhesion levels in the models as some of the models already simulate

cell-cell adhesion (for example [57, 133, 147, 175]). Another advantage of the centre-based cell mod-

els is that it is possible to vary cell-substrate adhesion by varying the drag coefficient in (1.4). Cell

growth has also been incorporated into the models.

A disadvantage of the centre-dynamics models is their reliance on Voronoi tessellation. This means

that the number of vertices and the shapes of the cells do not change smoothly [29]. Another

disadvantage of these models is that they can be computationally expensive, with a new Voronoi

diagram needing to be constructed at each time step.

Cell-vertex models

Cell-vertex models are a type of cell-level model that view the cells as polygons [70]. The dynamics

of each cell is defined by the movement of its vertices (see figure 1.5 (centre)). These models are

very good for modelling differential cell-cell adhesion. This is be an important feature to model in a

crypt, as common mutations in colorectal epithelial cells are thought to affect cell-cell adhesion. Cell

patterns described by vertex models can change flexibly and the cell shapes are thought to mimic

cells closely [70]. In these models the movement of each vertex is determined either by the explicit

forces on each vertex or a free energy function and the gradient of free energy is assumed to exert a

force. Once again inertial effects are neglected in comparison to friction forces.

Vertex models were originally used to describe the behaviour of foams on a two-dimensional surface

[114]. More recently, Weliky and Oster [181] developed a 2D cell-vertex model to describe the

movement of epithelial cells in the Fundulus epiboly. The Fundulus epiboly, like the crypt epithelium,

is a growing and moving epithelium, which grows to cover the embryo of a Fundulus, a fish.

In [181], to model the movement of cells, at each time step the force on each vertex was calculated.

This comprised a membrane tension force and an expansive force representing the pressure the cell

experienced. The force representing pressure ensured that each cell tended to a particular size and
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the membrane tension force ensured cells tended to a particular surface area. As this was a 2D

model membrane length corresponded to surface area and area corresponded to cell volume. In this

model the cells did not proliferate and moved deterministically according to

dri

dt
=

1

µi

∑

j

Fij (1.6)

where ri is the position of the ith cell vertex, Fij is the force from surrounding cell j,
∑

j is a sum

over all cells that surround vertex i, µ the viscous drag coefficient on vertex i and t is time. In the

model vertices to slide and, in certain circumstances, to merge. Using this model Weliky and Oster

were able to reproduce the essential features of the Fundulus epiboly, where an epithelium of cells

grew to cover a spherical embryo.

A different approach to modelling cell movement of a monolayer of epithelial cells was taken by

Nagai and Honda [112]. In contrast to Weliky and Oster [181], the vertices move not in response to

explicitly calculated forces but down gradients of a free energy function,

dri

dt
= − 1

µi
∇U = − 1

µi
∇(UL + UD) (1.7)

where the free energy, U , comprised two parts; a cell-cell adhesion energy, UL, and a cell-deformation

energy, UD. The cell-cell adhesion energy is proportional to the contact area between cells,

UL =
∑

〈ij〉
αij |ri − rj |, (1.8)

where 〈ij〉 is the number of cell edges in the population and αij is a constant dependent on the two

cell types that lie along the edge connecting vertices i and j.

The deformation energy, UD, generates a force such that cells tend toward a natural area A0,

UD =

N∑

k=1

βh2 (Aj − A0k
)2 (1.9)

where N is the total number of cells, h is the cell height and β is a constant. The authors used this

model to show that, independent of initial conditions, the cells would adopt a uniform pattern. An

advantage of this model compared to the Weliky and Oster model [181] is that it permits contact-

area-dependent cell-cell adhesion as well as cell-volume control. This model was applied to wound
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healing in [113] and has also been extended to 3D by Honda et al. [70] by using polyhedra to represent

the cells.

Brodland and Chen [27] used a cell-vertex model to describe the sorting of different cell types due to

the cells’ different adhesive properties. As mentioned before, this would be an important feature to

include in a model of crypt epithelial cell movement, as cell-cell adhesion changes with cell mutations

and cell position. The forces on each vertex comprised three forces that acted tangentially along

the cell edges. Each of these forces were comprised of a contractile force from the membranes and

microfilaments and an opposing adhesion force. The strength of the adhesion forces varied depending

on the two cell types involved. The movement of each vertex was again defined by (1.6).

The main advantages of cell-vertex models is that they can describe the movement of a cell accu-

rately, with the cells having meaningful shapes [29]. This would be useful when modelling the crypt

epithelium, as cells only change in size in the early stages of their cell cycle. Another advantage of

vertex based models is that it is easy to incorporate differential cell-cell adhesion terms (see [27]),

which is thought to occur in the crypt epithelium. A further advantage of cell-vertex models is they

have no need for a Delaunay triangulation or Voronoi diagram to be produced at each timestep. In

light of these benefits, we develop a cell-vertex model for the proliferation and movement of cells in

a crypt epithelium in Chapter 4.

One of the main disadvantages of vertex-based models is that it is not easy to include differential

cell-substrate adhesion terms for different cells, as any change in drag terms on vertex movement

would depend on all cells surrounding the vertex. Finally as vertex-based methods contain more

information than centre-based methods they can be more computationally expensive.

Potts models

A third type of cell-level model used to describe the proliferation and movement of epithelial cells is

the Potts model. Here, cells are defined as a set of lattice points (see figure 1.5 (right)). Changes in

cell shape are controlled by a stochastic Monte-Carlo method based on free energy. These methods

differ greatly from cell-centre and cell-vertex-based models that are lattice-free and usually deter-

ministic, as Potts models are lattice-based and stochastic.

Potts models are based on ideas used to describe patterns in metals and soap froths. Potts models

were originally used to describe epithelial cell movement by Graner and Glazier [62]. In [62], a

epithelium of cells is initially discretised onto a lattice. In this model strong bonds exist between

like cells and weak bonds between cells that are not alike. Also it is assumed that the volume of a cell
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(represented by its surface area) had a target value it would tend to if unstressed. A Hamiltonian

(energy function), H, is constructed to account for these two assumptions.

The model works in the following way. A lattice point is picked at random and a neighbour of that

lattice point is also picked at random. The probability swapping of these two points is calculated. If

the change leads to a decrease in free energy the change happens with probability 1; otherwise the

change happens with probability e−∆H/T , where T is the temperature and ∆H the change in free

energy, determined by the deformation of the cells and the contact energy.

Using this model the sorting of a random distribution of cells into two distinct populations was

achieved. This approach is relatively simple and computationally inexpensive and may be useful for

studying mutant and normal populations. However there is no clear realisation of time, as time is

measured by the number of Monte-Carlo timesteps.

The model described by Graner and Glazier [62] was extended in [61] to include tension in the

membrane around the cells. This ensured that the length of the cell membrane of individual cells

tended toward a set value, a useful property for keeping cells in realistic shapes. Using this model the

authors were able to describe many different cell patterns that arise in biology by varying the cell-

cell adhesion energies. Other extensions include that of Ouchi et al. [122] who introduced negative

surface energies into the Hamiltonian, so that cells reduce their surface energy through binding.

Even though Potts models have no physical measurement of time, some authors [59, 144, 157, 166]

have adapted Potts models to include time-dependent features such as proliferation. Stott et al.

[157] developed a Potts model to describe the growth of an avascular tumour spheroid. They

incorporated a nutrient-dependent growth term along with cellular automata to describe the growth

and proliferation of the cells. The authors found that the Potts model produced similar results to

those found in continuum models, e.g. [39]. A similar approach was used by Ghaemi and Shahrokhi

[59].

Further applications of the Potts model have been carried out by Turner and Sherratt [165] who

used it to study cancer invasion by cells with low adhesiveness. Also Chaturvedi et al. [38] developed

a 3D Potts model along with a reaction-diffusion equation for nutrient and a cellular automaton for

limb growth of chickens.

The main advantage of the Potts model is that it is simple to program and computationally inex-

pensive to run. It also does not require any constitutive laws to be supplied, so fewer parameters

need to be estimated. Another advantage is that differential cell-cell adhesion and cell death can be

easily incorporated.
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The main disadvantage is there is no sense of time associated with the model. This means that

it is hard to incorporate time-dependent proliferation, a feature that is important when modelling

a colorectal crypt, as there is a large amount of cell growth. Even though some authors have cell

cycles in their models [59, 166] it is unclear how they relate time to the number of Monte-Carlo

steps. Also the lack of modelling dissipative effects means that cell-substrate adhesion is ignored in

these models. This would also be important in the crypt, as we would want to include mutant cells

with increased levels of cell-substrate adhesion. Another disadvantage of the Potts model is that it

is lattice-based, requiring high spatial resolution for realistic cell shapes.

1.3.3 Homogenisation models

As continuum models have advantages of efficiency over cell-level models, but have disadvantages

such as difficulties in parameter estimation, attempts have been made to derive continuum models

from cell-level models. Bodnar and Velazquez [21, 22] developed an integro-differential equation

for the movement of a 1D line of cells using a cell-centre approach, where the forces on each cell

depended on distance from neighbouring cells. The model showed good correlation to the cell-level

model for particular energy potentials.

Fozard et al. [55] have developed a continuum Brinkman-model by homogenising a 1D cell-vertex

model. They found good agreement with the cell-vertex model when cells were homogeneous. There

were difficulties associated with incorporating cell-birth and the model has yet to be extended to

2D.

Alber et al. [1] derived a continuous approximation (a Fokker-Planck equation for cell densities)

from a 1D cellular Potts model. Good agreement with the cellular-Potts model was observed for

cases when the grid spacing was small and the two models yielded similar results for cell distribution

when chemotaxis was included. We note that the approaches detailed in this subsection would be

useful in comparing cell-level and continuum models.

1.3.4 Other approaches to colorectal crypt modelling

As well as cell-based and continuum models, we also introduce other models that could be applied

to the modelling of an epithelium in a colorectal crypt.

A modelling approach taken by Tomlinson and Bodmer [163], (in work extended by by D’Onofrio

and Tomlinson [47] and Johnston et al. [76]) developed a spatially-averaged population model that
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decomposed the crypt into three different cell types (stem, transit and differentiated) and predicted

how the number of cells of each type changed over time. Whilst this model may give interesting

results on the numbers of different cell types, it is not for our purposes as we are also interested in

cell movement.

A comprehensive review of many of the approaches that have been used to model the colorectal

crypt is given by van Leeuwen et al. [171] and a review of cell-based models is given by Brodland

[29].

1.3.5 Conclusions

There are many different approaches to modelling cell proliferation and movement. Using the crite-

ria outlined in §1.3, we conclude that continuum models have many strengths. They can model cell

proliferation, death and migration and, to some extent, cell-substrate adhesion and are relatively

simple. As a result they are often computationally inexpensive to implement and include few pa-

rameters, reducing the effort associated with parameter estimation. However it is unclear whether

the number of cells within a colorectal crypt is too small for their implementation.

Cell-based models are particularly good for implementing cell-cell adhesion and cell migration and

have the ability to track individual cells. Of the cell-level models, cell-centre-based models are better

at modelling cell-substrate adhesion but less well suited to modelling cell growth, while cell-vertex

models are particularly well suited to modelling cell-cell adhesion. Potts models are fast and well

suited to modelling cell-cell adhesion but less well suited to modelling time-dependent features such

as proliferation. Cell-based methods are better suited for small numbers of cells but they become

computationally expensive for large numbers of cells. It may be questioned whether the number of

cells in a crypt (∼ 2000 cells) is too large for these methods.

1.3.6 Thesis objectives and structure

The aim of this thesis is to aid the understanding of the early stages of colorectal cancer by identifying

the factors that determine whether a mutant population can establish itself within a crypt. To do

this we consider three different approaches for modelling the proliferation and movement of epithelial

cells in the colorectal crypt, as described in Chapters 2-4.

In Chapter 2, we develop a continuum model. We use a spatially-varying source term to model

Wnt-dependent proliferation and a Darcy constitutive law to describe cell movement. The model is
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solved using linear stability analysis to find approximate analytic solutions, and numerically using

a collocation method.

In Chapter 3, we adapt the cell-centre model of the crypt described by [109]. We use agile computa-

tional methods and develop a framework for a multiscale model of colorectal cancer. We model cell-

cell interactions by springs connecting neighbouring cells and include subcellular protein signalling

models.

In Chapter 4, we develop a cell-vertex model. We model the movement of the vertices by using

a free energy function comprised of a cell-deformation term and a contact-area dependent cell-cell

adhesion term.

We conclude in Chapter 5 with a comparison of the three models and a discussion of their merits.

A summary of the main results of the thesis is presented along with ideas for further work.

28



Chapter2
Continuum model of the colorectal crypt

T
he aim of this chapter is to develop a continuum model that describes the proliferation and

movement of epithelial cells in a colorectal crypt. The model can be used to investigate

how interactions between spatially-varying cell proliferation, cell movement down pressure

gradients and cell-cell adhesion affect the structure of the crypt.

2.1 Introduction

One of the major debates in the study of colorectal cancer [98, 186] concerns how a mutant cell

and its progeny can colonise an entire crypt. Two hypotheses have been proposed. Shih et al. [153]

argue that the first mutant cells occur at the top of the crypt and proceed downwards to fill the

crypt, via “top-down morphogenesis”. This view is supported by other authors including Lamprecht

and Lipkin [85]. However other authors including Preston et al. [131] and Wong et al. [185], present

experimental evidence to argue that the stem cells at the base of the crypt are the first to acquire

a mutation. The crypt is then filled by mutant cells originating from the bottom of the crypt. This

is “bottom-up morphogenesis”.

In this chapter we develop and analyse a mathematical model in order to identify the conditions

under which top-down and bottom-up morphogenesis of a mutant population (see §1.2.2 for further

details) could occur in a colorectal crypt. Our model simulates the proliferation and migration of

epithelial cells within a colorectal crypt.

We distinguish between two types of epithelial cells, so that we can see the effects of introducing a

mutant cell population (cells with mutations in APC or β-catenin) into a normal cell population.

The two cell populations are separated by a clearly defined interface, with no gaps or other ma-

terial between the cells. The model is developed by combining the principle of mass balance with
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Darcy’s law for cell movement. This approach has been used by several other authors to model

cell movement, notably Greenspan [64]. The model is similar to that described by Franks [56] but

with cell populations having different viscosities. In our model viscosity embodies resistance to cell

movement. It is a lumped parameter that accounts for the breaking and reforming of bonds to the

stroma and neighbouring cells, as well as the reshaping of the cell’s cytoskeleton. Cells with a larger

number of bonds per surface area and having a cytoskeleton that is hard to reshape are assumed to

have a higher viscosity than those with fewer bonds and a softer cytoskeleton.

The mass balance equation includes a spatially-varying source term to mimic the effects of the

signalling protein Wnt on cell proliferation. Proliferation rates in normal colorectal crypts (where

no mutant cells are present) are higher at the base of the crypt [103] where Wnt levels are high

[19]. Towards the top of the crypt, where Wnt levels are low, normal cells do not proliferate but

differentiate into different types of cells, such as goblet cells. We model this behaviour by assuming

that the proliferation rate of normal cells is a linear function of distance from the crypt base, the

proliferation rate being maximal at the base (where Wnt levels are high) and minimal at the top

of the crypt (where Wnt levels are low). When cells suffer a mutation in APC or β-catenin the

dependence on Wnt is often lost [74]. We model this by assuming that mutant cells proliferate at a

constant rate throughout the crypt.

We use our model to study two different situations. First, we model a situation where initially

one cell population is placed above another in a crypt (§2.2). Model solutions are obtained using

analytical techniques (§2.3) and numerical collocation (§2.4). Second, we model a distribution where

initially the mutant cells are localised in a patch within the normal crypt epithelium (§2.5). This

chapter concludes with a discussion of the key results (§2.6).

2.2 Model development

To begin, we consider the mass conservation equations for a mixture of two cell populations. We

model cell proliferation with a spatially-varying source term and assume that diffusion is negligible.

Following King and Franks [79], our mass conservation equations are given by

∂̺1

∂T
+ ∇ ·

(

̺1V̂1

)

= K1(X)̺1, (2.1a)

∂̺2

∂T
+ ∇ ·

(

̺2V̂2

)

= K2(X)̺2, (2.1b)

̺1 + ̺2 = 1, (2.1c)

where ̺1, ̺2 are the respective volume fractions of populations 1 (normal cells) and 2 (mutant cells),
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X = 0 X = 2πβL

Y = 0

Y = L

Crypt Base

Crypt Lumen

X

Y

N (X, T )

Y = C (X, T )

̺1 = 0

̺2 = 1

̺1 = 1

̺2 = 0

Figure 2.1: Sketch of the two-dimensional model for two epithelial cell populations, 1 (bottom) and

2 (top), growing on the surface of a cylindrical crypt, height L and radius βL. The volume fractions

of each population are ̺1 and ̺2 respectively and they are separated by the boundary Y = C (X, T ),

with normal N (X, T ). Y represents the distance from the base of the crypt and X measures the

distance around the crypt.

V̂1, V̂2 the cell velocities and K1(X), K2(X) their net proliferation rates. Spatial position is

denoted by X = (X, Y ) and T represents time.

We can now specialise the mass balance equations to a colorectal crypt. We view the crypt as being

the 2D surface of a cylinder of length L (∼ 300µm) [7] and radius βL (∼ 25µm) [7], as shown in

figure 2.1. We set X to be the azimuthal distance around the crypt and Y to be the distance from

the base of the crypt. To capture the Wnt-dependent proliferation rate of cells in a colorectal crypt,

we suppose that the source terms decrease with distance from the base of the crypt as follows:

Ki(X) = ki

(

1 − λi
Y

L

)

, i = 1, 2. (2.2)

Here the positive constant ki is the maximum rate at which the cells of type i proliferate and the

positive constant λi describes how the proliferation rate reduces with distance from the crypt base.

We now assume that the two cell types are distinct such that (̺1, ̺2) = (1, 0) where cells of type
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1 are present and (̺1, ̺2) = (0, 1) where cells of type 2 occur. Using this assumption along with

(2.2), our mass balance equations (2.1a) and (2.1b), then reduce to

∇ · V̂ = k1

(

1 − λ1

Y

L

)

if ̺1 = 1, ̺2 = 0, (2.3a)

∇ · V̂ = k2

(

1 − λ2

Y

L

)

if ̺1 = 0, ̺2 = 1. (2.3b)

It is necessary only to define one cell velocity, V̂ (= V̂1 = V̂2), as there is only one cell type present

in each region.

The first scenario we consider is where the type-2 cells are placed higher up the crypt than the type-1

cells. The interface between the two cell populations is defined by Y = C (X, T ). We assume, in all

cases, no part of the interface has reached the top or the bottom of the crypt, i.e. 0 < min {C(X, T )}
and max {C(X, T )} < L.

As we have a two-dimensional problem it is necessary to supplement the mass balance law (2.3b)

with a constitutive law. In our model, we use Darcy’s law to describe how the cells move in response

to a pressure gradient as follows,

V̂ =







−D1∇P̂ if Y < C(X, T ),

−D2∇P̂ if Y > C(X, T ),
(2.4)

where V̂ is the velocity of the cells, P̂ is the pressure of the cell layer and D1, D2 are Darcy constants

describing the sensitivity of the cells’ response to pressure gradients. Decreasing the Darcy constants

is equivalent to increasing the viscosities of the cells as Di = ǫ/µi, where ǫ represents the effective

permeability of the medium and µi is the effective viscosity of the cell layer, for i = 1, 2.

Combining (2.4) and (2.3b), the model becomes

∇2P̂ =







− k1

D1

(

1 − λ1

Y

L

)

if Y < C(X, T ),

− k2

D2

(

1 − λ2

Y

L

)

if Y > C(X, T ).

(2.5)

2.2.1 Boundary and continuity conditions

To close the model, the following boundary conditions are imposed:

∂P̂

∂Y
(X, 0, T ) = 0, (2.6)

P̂ (X, L, T ) = 0, (2.7)

P̂X (0, Y, T ) = P̂X (πβL, Y, T ) = 0. (2.8)
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Condition (2.6) guarantees no flux of cells at the base of the crypt. We do not have any restrictions

on the number of cells that are removed at the top of the crypt; instead we ensure that the cells

there are at fixed pressure (taken as P̂ = 0) (2.7). We assume there are two lines of symmetry in

the problem at x = 0, πβ. This gives the boundary condition (2.8).

On Y = C (X, T ), the pressure and normal velocity are assumed to be continuous, so that

D1

∂P̂

∂N







−

= D2

∂P̂

∂N







+

,
[

P̂
]+

−
= 0, (2.9)

where
∂

∂N
is the derivative in the direction of the normal to C (shown as N (X, T ) in figure 2.1). |−

represents approaching the boundary from Y < C(X, T ), |+ represents approaching the boundary

from Y > C(X, T ) and [.]+− is the difference in the values from each approach. The interface is

assumed to move at the same speed as the normal component of cell velocity on the boundary such

that
CT

(1 + C2
X)

1
2

= V̂.N



Y =C
. (2.10)

Finally, we prescribe the initial position of the moving boundary so that

C (X, 0) = C̄ (X) . (2.11)

The model is now complete and is defined by equations (2.4) - (2.11).

2.2.2 Nondimensional model

To reduce the number of parameters in the model, we nondimensionalise the governing equations

using

Y = Ly, X = Lx, C = Lχ, (2.12)

P̂ =
k1L

2

D1

p̂, V̂ = k1Lv̂, T =
1

k1

t.

This scaling leads us to introduce the following non-dimensional constants

k =
k2

k1

, D =
D2

D1

. (2.13)

The parameter k is a ratio of the proliferation rates. For k < 1 the cells of type 1 proliferate more

rapidly than those of type 2. The parameter D is a ratio of the Darcy constants of the cells. For

D < 1 the cells of type 1 move faster in response to a given pressure gradient than those of type 2.

This may arise if the cells of type 2 are more viscous than those of type 1.
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x = 0 x = 2πβ

y = 0

y = 1

Crypt Base

Crypt Lumen

x

y

n (x, t)

y = χ (x, t)

Population 2

Population 1

Figure 2.2: Sketch of the non-dimensional 2D model in which two epithelial cell populations [pop-

ulation 1 (bottom) and 2 (top)] grow on the surface of a cylinder. The two cell populations are

separated by the boundary y = χ (x, t), with normal n (x, t). In Cartesian geometry, y represents

the distance from the base of the crypt and x measures the distance around the crypt.

The structure of the nondimensional model is presented in figure 2.2. For y < χ (x, t) we have

∇2p̂ = − (1 − λ1y) , (2.14)

v̂ = −∇p̂, (2.15)

and for y > χ (x, t)

∇2p̂ = − k

D
(1 − λ2y) , (2.16)

v̂ = −D∇p̂, (2.17)

with boundary conditions

p̂y (x, 0, t) = 0, (2.18)

p̂ (x, 1, t) = 0, (2.19)

p̂x (0, y, t) = p̂x (πβ, y, t) = 0. (2.20)
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The conditions for continuity of the normal velocity and pressure are now

∂p̂

∂n







−

= D
∂p̂

∂n







+

, [p̂]+− = 0, (2.21)

where
∂

∂n
represents the derivative in the direction of the unit normal n(x, t) to the interface,

y = χ(x, t) (see figure 2.2). The interface between the cell populations, y = χ (x, t), moves according

to
χt

(1 + χ2
x)

1
2

= v̂ · n



y=χ
(2.22)

and is initially given by

χ (x, 0) = χ̄(x). (2.23)

The non-dimensional model is defined by (2.14) - (2.23). We develop solutions using asymptotic

techniques in §2.3 and numerical methods in §2.4.

2.3 Planar interface: linear stability analysis

Our aim is to see how the two cell populations evolve as we vary the model parameters. We start

by considering the case of a near-planar interface, for which it is possible to construct approximate

analytical solutions. We assume that at leading order the solution depends only on the distance

along the crypt axis, y. By contrast the correction terms depend on both x and y. We construct

analytical solutions for the leading-order problem in §2.3.1 and then investigate the stability of the

planar interface to small perturbations in §2.3.2.

We seek regular power series expansions for the dependent variables in terms of a small parameter,

ε ≪ 1, such that the moving boundary, pressure and velocity are given by

χ (x, t) = χ0 (t) + εχ1 (x, t) + O
(
ε2
)
, (2.24)

p̂ (x, y, t) = p0 (y, t) + εp1 (x, y, t) + O
(
ε2
)
, (2.25)

v̂ (x, y, t) = v0 (y, t) + εv1 (x, y, t) + O
(
ε2
)
. (2.26)

We assume that the initial location of the interface between the two populations to be of the form

χ̄ (x) = χ0(0) + εχ1 (x, 0) , (2.27)
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where χ0(0) = χ̄0 is a constant and χ1(x, 0) is an O(1) sinusoidal function of x. The amplitude of

the initial perturbation 2.27 is ε.

Substituting (2.24) – (2.26), into (2.14) – (2.17) we find

∇2p̂ =
∂2p0

∂y2
+ ε

(
∂2p1

∂x2
+

∂2p1

∂y2

)

+ O
(
ε2
)

=







− (1 − λ1y) if y < χ,

− k

D
(1 − λ2y) if y > χ,

(2.28)

v̂ =







−




0

p0y



− ε




p1x

p1y



+ O
(
ε2
)

if y < χ,

−D




0

p0y



− εD




p1x

p1y



+ O
(
ε2
)

if y > χ.

(2.29)

To determine the continuity conditions we note that the unit normal to the boundary is given by

n =
1

(1 + ε2χ2
1x)

1
2




−εχ1x

1



 . (2.30)

On the interface, y = χ (x, t),

p̂



y=χ
= p0




y=χ0+εχ1
+ εp1




y=χ0+εχ1
+ · · · = p0




y=χ0
+ εχ1p0y




y=χ0
+ εp1




y=χ0
+ O

(
ε2
)

(2.31)

p̂y




y=χ
= p0y




y=χ0
+ εχ1p0yy




y=χ0
+ εp1y




y=χ0
+ O (ε) (2.32)

Using (2.29) - (2.32) the continuity conditions (2.21) become

p−0y(χ0, t) + ε
(
χ1p

−
0yy(χ0, t) + p−1y(x, χ0, t)

)
= Dp+

0y(χ0, t) (2.33)

+εD
(
χ1p

+
0yy(χ0, t) + p+

1y(x, χ0, t)
)

+ O
(
ε2
)
,

p−0 (χ0, t) + ε
(
χ1p

−
0y(χ0, t) + p−1 (x, χ0, t)

)
= p+

0 (χ0, t) (2.34)

+ε
(
χ1p

+
0y(χ0, t) + p+

1 (x, χ0, t)
)

+ O
(
ε2
)
.

Equating coefficients of O(1) we have

p−0y(χ0, t) = Dp+
0y(χ0, t), (2.35)

p−0 (χ0, t) = p+
0 (χ0, t), (2.36)

while at O(ǫ)

χ1p
−
0yy(χ0, t) + p−1y(x, χ0, t) = D

(
χ1p

+
0yy(χ0, t) + p+

1y(x, χ0, t)
)
, (2.37)

χ1p
−
0y(χ0, t) + p−1 (x, χ0, t) = χ1p

+
0y(χ0, t) + p+

1 (x, χ0, t). (2.38)
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Combining (2.22), (2.29), (2.30) and (2.32) we deduce that the interface evolves as follows

χt = χ0t + εχ1t + · · · =







−p−0y (χ0, t) − ε
(

χ1p
−
0yy (χ0, t) + p−1y




y=χ0

)

+ O
(
ε2
)

if y = χ−,

−Dp+
0y (χ0, t) − εD

(

χ1p
+
0yy (χ0, t) + p+

1y




y=χ0

)

+ O
(
ε2
)

if y = χ+.

(2.39)

so that, consistent with (2.35),

χ0t = −p−0y (χ0, t) = −Dp+
0y (χ0, t) , (2.40)

and, consistent with (2.37),

χ1t = −
(

χ1p
−
0yy (χ0, t) + p−1y




y=χ0

)

= −D
(

χ1p
+
0yy (χ0, t) + p+

1y




y=χ0

)

. (2.41)

2.3.1 Planar solution

From (2.28) - (2.39) we deduce that, at leading order,

∂2p0

∂y2
=







− (1 − λ1y) if 0 < y < χ0

− k

D
(1 − λ2y) if χ0 < y < 1

, (2.42)

with

p0y (0, t) = 0, (2.43)

p0 (1, t) = 0, (2.44)

and continuity conditions

p0y



−
y=χ0

= D
∂p0

∂y




+

y=χ0
, [p0]

+

− = 0, (2.45)

where
dχ0

dt
= −p0y



−
y=χ0

, (2.46)

χ0 (0) = χ̄0. (2.47)
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The solution to (2.42) - (2.47) is

p0 =







1

2

(

(χ0 + y) − λ1

6

(
χ2

0 + χ0y + y2
)
)

(χ0 − y) +
k

2D

(

1 − χ2
0 −

λ2

3

(
1 − χ3

0

)
)

− (1 − χ0)χ0

D

(

k − 1 +
χ0

2
(λ2 − λ1)

)

if y < χ0,

k

2D

(

1 + y − λ2

3

(
1 + y + y2

)
)

(1 − y)

− (1 − y)χ0

D

(

k − 1 +
χ0

2
(λ2 − λ1)

)

if y > χ0,

(2.48)

where

χ0 (t) =
2χ̄0e

t

2 + χ̄0λ1 (et − 1)
. (2.49)

At leading order, height of the interface, y = χ0 (t), is independent of the k and D. This is because

the cell proliferation rate has no dependence on pressure. Further, as there is no flux of cells at the

bottom of the crypt (y = 0) new cells of type 1 simply push the interface y = χ0 (t), towards the

top of the crypt. This is shown by substituting (2.42) into (2.47),

dχ0

dt
= −∂p0

∂y







−

y=χ0

=

∫ χ0

0

(1 − λ1y)dy = χ0(1 − λ1

2
χ0). (2.50)

From equation (2.49) (or (2.50)), the position of the interface tends to a steady state value, χ0 (t) →
2

λ1
as t → ∞, and we deduce that if λ1 > 2 the cells of type 1 will never reach the top of the crypt.

Figure 2.3(a) confirms that increasing λ1 from 0 to 2.5 changes the behaviour of χ0 from pre-

dominantly exponential growth to a situation in which χ0 → 2/λ1 at long times. The biological

interpretation of these results is that as λ1 increases and the rate of cell death increases eventually

there is net cell death for y > 1/λ1, (∇ · v < 0). This gives three cases: λ1 < 1, where there is

net cell birth throughout the crypt (∇ · v > 0 everywhere) where the boundary always increases in

speed as it moves up the crypt; 1 < λ1 < 2, where for, 1 > y > 1/λ1, there is net cell death and the

boundary moves up the crypt, but not always increasing in speed; and λ1 > 2 where in over half

the crypt there is net cell death and the cells from population 1 never reach the top of the crypt.

Figure 2.3(b) shows that the effect of increasing the initial position of the interface, χ̄0, is similar to

moving the starting point further along the χ0 (t) vs t graph.

2.3.2 O(ε) solution

To investigate the stability of the planar interface, we seek the O(ε) correction terms. From (2.14),

(2.16), (2.24) and (2.48) we find that the correction to the cell pressure above and below the interface
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Figure 2.3: Series of plots showing how the time evolution of the leading order part of the boundary

y = χ0(t) changes as λ1 varies from 0 to 2.5 (panel (a), χ̄0 = 0.1) and χ̄0 = χ0(t = 0) varies from

0.1 to 1.5 (panel (b), λ1 = 1.5).

satisfies
∂2p1

∂x2
+

∂2p1

∂y2
= 0 (2.51)

with

p1y (x, 0, t) = 0, (2.52)

p1 (x, 1, t) = 0, (2.53)

p1x (0, y, t) = p1x (2πβ, y, t) = 0. (2.54)

The continuity equations, (2.21), give

[p1]
+

− = χ1 [p0y]
+

− =
χ0χ1

D

(

1 − λ1

2
χ0

)

(1 − D) (2.55)

and

Dp1y




+

y=χ0
− p1y



−
y=χ0

= χ1

(
p−0yy (χ0, t) − Dp+

0yy (χ0, t)
)

= −χ1 (1 − λ1χ0 − k (1 − λ2χ0)) .
(2.56)

In all equations in the section, all variables with superscript − represent the value of the variable

evaluated at y = χ0(x, t) approaching the boundary from y < χ(x, t), and with superscript +

represents approaching the boundary from y > χ(x, t)
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Using (2.22), we find the evolution of y = χ1 (x, t) is given by

χ1t = χ1 (1 − λ1χ0) − p−1y




y=χ0
. (2.57)

Using separation of variables, we express the solutions of (2.51) which satisfy the boundary conditions

in the form

p1 =







∑∞
n=1

An(t) cos(ωnx) cosh(ωny) if y < χ(t),
∑∞

n=1
Bn(t) cos(ωnx) sinh(ωn (1 − y)) if y > χ(t),

(2.58)

χ1(x, t) =

∞∑

n=1

Υn(t) cos(ωnx), (2.59)

where the coefficients An(t), Bn(t) are found by imposing (2.55) and (2.56). To guarantee periodicity

on x = 0, 2πβ, we require ωn = n/β, where n is an integer.

Imposing continuity conditions (2.55) and (2.56), we find

Bn =
1

sinh(ωn (1 − χ0))

[

An cosh(ωnχ0) + Υnχ0

(

1 − 1

D

)(

1 − λ1

2
χ0

)]

, (2.60)

An =
Υn

[
((1 − λ1χ0) − k (1 − λ2χ0)) tanh(ωn(1 − χ0)) − ωn (1 − D)

(
χ0 − λ1

2
χ2

0

)]

ωn [D cosh(ωnχ0) + tanh(ωn(1 − χ0)) sinh(ωnχ0)]
. (2.61)

Finally, substitution of An into (2.57), yields the following ODE for Υn:

1

Υn

dΥn

dt
= (1 − λ1χ0)−

((1 − λ1χ0) − k (1 − λ2χ0)) tanh(ωn(1 − χ0)) − ωn (1 − D)
(
χ0 − λ1

2
χ2

0

)

D + tanh(ωn(1 − χ0)) tanh(ωnχ0)
tanh(ωnχ0),

(2.62)

where χ0(t) is as defined in (2.49).

As β ≪ 1, we would expect ωn to be large. For large ωn, tanh(ωnχ0) ≈ 1 and tanh(ωn(1−χ0)) ≈ 1

apart from when χ0 ≈ 0 and χ0 ≈ 1. So for ωn ≫ 1, provided that ǫ < χ0 < 1 − ǫ, for some ǫ

satisfying 0 < ǫ ≪ 1, (2.62) simplifies to give

1

Υn

dΥn

dt
= − ωn

D − 1

D + 1
χ0

(

1 − λ1

2
χ0

)

. (2.63)

As ωn ≫ 1, and assuming that λ1 < 2, so that there is no O(1) steady state solution within the

crypt, χ0

(

1 − λ1

2
χ0

)

> 0, and the main determinant for whether Υn will increase or decrease in

(2.63) is the value of D relative to unity. When D > 1 (cells of type 1 are less viscous than cells

of type 2) any short wavelength (ωn ≫ 1) disturbances remain small: the shorter the wavelength
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Figure 2.4: Series of plots showing the time evolution of Υn, the O(ε) corrections to the moving

boundary for mode number, n. The amplitude remains small when D = 2 (the cells of population

1 are twice as viscous as cells from population 2) but still exhibits transient growth for n = 1, 2.

Parameter values: k = 2, λ1 = 1.5, λ2 = 0, β = 0.083 with Υn(0) = 1 and χ0(0) = 0.1.

the faster the disturbances decrease. However if the cells of type 2 (in the upper region) are more

viscous (i.e. D < 1) then short wavelength disturbances become large very quickly: the shorter the

wavelength, the faster the disturbances increase.

To illustrate this behaviour, we solve (2.62) numerically and use the solution for Υn together with

(2.59), (2.23) and (2.49) to see how the boundary y = χ(x, t) evolves with time (see figures 2.4 -

2.7). In simulations, the cells at the bottom of the crypt (population 1) are normal cells with a

depth-dependent proliferation rate with λ1 = 1.5. The cells toward the top of the crypt, population

2, are mutant, with a proliferation rate independent of the Wnt gradient (λ2 = 0, k = 2). The

initial conditions are set to be χ0(0) = 0.1, Υn(0) = 1 for each value of n, n = 1, 2, ..6, with β = 1/12

[7]. These initial conditions are chosen so that the behaviour can be studied before any part of the

boundary passes over the top of the crypt. The behaviour is investigated for different values of D

and n, and the results are presented in figure 2.4.

Our analytical results for large ωn, (2.63), are consistent with the plots presented in figures 2.4 - 2.7.

Figures 2.4 and 2.6 show that when cells of type 1 than cells of type 2 (towards the bottom of the

crypt) are more viscous (i.e. D = 2) the amplitude of the disturbances remains small (and decays as
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Figure 2.5: Series of plots showing how the time evolution of the amplitude, Υn, varies with mode

number, n. The plots show that the amplitude increases rapidly when the type 2 cells are more

viscous than those of type 1 (D = 0.5). Parameter values: D = 0.5, k = 2, λ1 = 1.5, λ2 = 0,

β = 0.083 with initial conditions of Υn(0) = 1 and χ0(0) = 0.1.

t → ∞). As the mode number, n, increases, the perturbations decay more rapidly, although there is

transient growth for small wavenumbers (figure 2.4). By contrast, when the cells of type 2 (toward

the top of the crypt) are more viscous than cells of type 1 (i.e. D = 0.5) the O(ε) disturbances

(see figures 2.5 and 2.7) increase in amplitude and the expansion rapidly breaks down (as the O(ε)

disturbances can no longer be assumed to be small). Figures 2.5 and 2.7 also show that the growth

rate of the modes is an increasing function of n, the mode number.

2.4 Planar interface: collocation

We have shown that the analytical approximation may cease to be valid at long times. In order

to determine the system dynamics for this case we must construct numerical solutions. We use a

collocation method to do this. Collocation methods for solving a PDE involve decomposing the

solution into a sum of basis functions which, by construction, satisfy all but one of the boundary

conditions [184]. At each timestep, the coefficients of the basis functions are determined such that

the remaining boundary condition is met.
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Figure 2.6: Series of plots showing how the boundary between the two populations evolves over time

when the population 2 cells are less viscous than the population 1 cells (D = 2). As time increases,

the interface y = χ(x, t) moves up the crypt and the amplitude of the O(ǫ) perturbations to the

O(1) planar solution decay. Parameter values: k = 2, λ1 = 1.5, λ2 = 0, β = 0.083 and an initial

conditions of χ̄0 = 0.1, Υn(0) = 1 for the relevant value of n and Υn(0) = 0 for all other values of n.

2.4.1 Numerical method

In this section, we describe the collocation method used to solve equations (2.15) - (2.23). First, it

is convenient to decompose the pressure in each region in the following way

p̂(x, y, t) = p̄ (y, t) + p (x, y, t) (2.64)

where

p̄ =







1 − y2

2
− λ1

6

(
1 − y3

)
if 0 < y < χ(t),

k

2D

(

1 − y2 − λ2

3

(
1 − y3

)
)

if χ(t) < y < 1.

(2.65)

In contrast to §2.3, the x-dependent part of the pressure, p (x, y, t) is no longer assumed to be small.

The new problem for p(x, y, t) is

∇2p = 0, (2.66)

px(0, y, t) = px(πβ, y, t) = py(x, 0, t) = p(x, 1, t) = 0. (2.67)

The appropriate continuity conditions at y = χ(x, t) are found by substituting (2.64) and (2.65) into
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Figure 2.7: Series of plots showing how the boundary between the two populations evolves over

time when the population 2 cells are more viscous than the population 1 cells (D = 0.5). As time

increases, the interface y = χ(x, t) moves up the crypt and the amplitude of the O(ǫ) perturbations

to the O(1) planar solution increase in size. Parameter values: k = 2, λ1 = 1.5, λ2 = 0, β = 0.083

and an initial conditions of χ̄0 = 0.1, Υn(0) = 1 for the relevant value of n and Υn(0) = 0 for all

other values of n.

(2.21):

0 = p+



y=χ+ − p−



y=χ−

=

(

1 − k

D

) (
1 − χ2

)

2
−
(

λ1 −
k

D
λ2

)(
1 − χ3

6

)

, (2.68)

0 = D
∂p+

∂n






y=χ+

− ∂p−

∂n






y=χ−

=
1

(1 + χ2
x)

1
2

[

(k − 1)χ − (kλ2 − λ1)
χ2

2

]

. (2.69)

The problem for p is defined by equations (2.66) - (2.69) and is valid while 0 < min {χ} ≤ max {χ} <

1.

To implement the collocation method, basis functions are needed that satisfy the boundary condi-

tions, (2.67). For cells in population 1, in the lower part of the crypt, we demand that the boundary

conditions (2.67) on x = 0, x = 2πβ and y = 0 are satisfied. For cells in population 2, in the upper

part of the crypt, we require the boundary conditions on x = 0, x = 2πβ and y = 1 to be met. The

separable solutions for p that satisfy these boundary conditions are of the form

p =







A0(t) +
∑∞

n=1
An(t)cosh (ωny) cos (ωnx) if y < χ,

B0(t) (y − 1) +
∑∞

n=1
Bn(t) sinh (ωn (1 − y)) cos (ωnx) if y > χ,

(2.70)

where ωn =
n

β
, n = 1, 2, · · · . To determine the coefficients Ai(t), Bi(t) (i = 0, 1, 2, · · · ) at each

time step, we implement (2.68) and (2.69) at collocation points located along the moving interface

y = χ(x, t). The collocation points are spaced evenly in the x-direction between x = 0 and x = βπ

(taking advantage of the symmetry). At each collocation point, j, with coordinates (xj , χj), where

χj = χ(xj , t), we demand
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B0(t) (χj − 1) +

N∑

n=1

Bn(t)sinh (ωn (1 − χj)) cos (ωnxj)

− A0(t) −
N∑

n=1

An(t)cosh (ωnχj) cos (ωnxj) =

(

1 − k

D

) (
1 − χ2

j

)

2
−
(

λ1 −
k

D
λ2

)(

1 − χ3
j

6

)

(2.71)

and

DB0(t) + D

N∑

n=1

Bn(t)ωn

[
∂χj

∂x
sinh (ωn (1 − χj)) sin (ωnxj)

−cosh (ωn (1 − χj)) cos (ωnxj)

]

−
N∑

n=1

An(t)

(
∂χj

∂x
cosh (ωnχj) sin (ωnxj) + sinh (ωnχj)cos (ωnxj)

)

= (k − 1)χj − (kλ2 − λ1)
χ2

j

2
,

(2.72)

where
∂χj

∂x
is evaluated by a central finite difference method.

For a well-defined problem, the total number of collocation points, J , must be such that J ≥ N +1,

where N is the number of modes.

Equations (2.71) and (2.72), constitute a linear problem of the form QA = b, where A is a vector

of length (2N + 2) containing the unknowns A0(t), A1(t), · · ·AN (t), B0(t), B1(t), · · ·BN (t), Q is a

matrix of size 2J×(2N +2) containing the coefficients for the unknowns at the respective collocation

points from the left-hand sides of (2.71) and (2.72) and b is a vector of length 2J containing the

right-hand sides of (2.71) and (2.72) evaluated at the collocation points. In our simulations we set

J = N + 1, as this allows us to solve for A with A = Q−1b [106], provided that Q−1 can be

determined (i.e. Q is non-singular).

To ensure that the coefficients are similar in magnitude, for ease of computation, we scale them as

follows:

An(t) =
¯An(t)

cosh(ωnα(t))
, Bn(t) =

¯Bn(t)

sinh (ωn (1 − α(t)))
, (2.73)

where α(t) = (χmax(t) + χmin(t))/2.
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Figure 2.8: Series of plots comparing the collocation method (lines) and the analytic method (2.62)(*

symbols) for the midpoint of the moving boundary between the populations of the cells, (χmax +

χmin)/2. χmax, χmin represent the maximum and minimum values at any x of χ(x, t) for each

time value. The plots show how the behaviour varies for different mode numbers, n, of the initial

conditions, χ0 = 0.1 + 0.005 cos(nx/β). Parameter values: k = 2, λ1 = 1.5, λ2 = 0 and β = 1. In

(a) D = 2 and in (b) D = 0.5.

2.4.2 Validation

When the collocation method was implemented, it soon became apparent that it is unsuitable when

a realistic crypt geometry is used. In particular when β = 1/12, there are very large (order-of-

magnitude) disparities in the entries in the matrix, Q, making it computationally difficult to invert

accurately.

Although our collocation method was not very accurate for β = 1/12, it was possible to generate

results for wider crypts, with β = 1. Our results for this case agree well with the analytical results

calculated in §2.3 (see figures 2.8 and 2.9).

We also verified that our collocation method was stable, by varying the number of collocation points

used and checking there was no change in the results, see figure 2.10.
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Figure 2.9: Further plots validating the collocation method, showing the evolution of the am-

plitude of the moving boundary that separates the two cell populations. For the collocation

method (χmax − χmin)/2 is plotted (solid lines) and for the asymptotic approximations, the O(ε)

part of the boundary, Υ(t), (as calculated analytically in §2.3.2) is plotted (dashed lines). The

plots show how the behaviour varies for different mode numbers, n, of the initial conditions,

χ0 = 0.1 + 0.005 cos(nx/β). Parameter values: k = 2, λ1 = 1.5, λ2 = 0 and β = 1. In (a)

D = 2 and in (b) D = 0.5.

2.4.3 Results

Even though the crypt width, β = 1, is unphysiological, the 2D nonlinear collocation method yields

useful insight into the dynamics of the interface separating the two populations of cells. Figure 2.11

shows that when the cells in the lower region are twice as viscous as cells in the upper region (D = 2)

the results are qualitatively similar to the analytic results for a physiological crypt (β = 1/12) with

the boundary between the two types of cells having little variation with azimuthal position. When

D = 0.5, so that the cells in the upper region are twice as viscous as cells in the lower region,

the interface loses its smooth sinusoidal form as it moves up the crypt (figure 2.12). The peaks of

the boundary become much sharper than the troughs and the boundary appears to be U-shaped,

showing signs of Hele-Shaw fingering [72, 78, 101, 150].

We also observe that if the viscosity of the cells in the upper region is sufficiently large, some of the

type-2 cells move downward toward the base of the crypt (see figure 2.13). This could explain how

top-down invasion may occur.
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Figure 2.10: Plot of the amplitude of the moving boundary between the populations of the cells,

(χmax − χmin)/2, as the boundary moves up the crypt with time, t. The plots show how doubling

the number of collocation points, J , from J = 20 to J = 40 produces the same results. Initial

conditions, χ0 = 0.1 + 0.005 cos(x/β). Parameter values: k = 2, D = 0.5, λ1 = 1.5, λ2 = 0 and

β = 1. The collocation method is resolved up to the 10th mode in (2.67).

Using figure 2.14 we can explain the behaviour of the cells. When D > 1 (and the cells of type 2

are less viscous than those of type 1), cell movement is predominantly in the y-direction and the

boundary y = χ(x, t) remains almost planar. However, when the cells in region 2 are more viscous

than the normal cells, D < 1, the velocity is not always predominantly in the y-direction. At the base

of the crypt (near x = πβ), the pressure builds up due to the mutant cells offering more resistance

to movement than when D > 1, see figure 2.15. This causes the normal cells to move azimuthally

to places where there is less resistance to movement, i.e. regions where there are fewer mutant cells,

x = 0, 2πβ (the peaks of y = χ(x, t)). The boundary y = χ(x, t) develops large peaks or fingers at

regions which offer less resistance to movement, i.e. where χ(x, t) is maximumal.

2.5 Patch of cells

To replicate the early stages of carcinogenesis, we now consider a mutant population initially in a

circular patch on a wall, as shown in figure 2.16. This allows us to investigate how the behaviour of
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Figure 2.11: Series of plots showing how the evolution of the interface y = χ(x, t) depends on which

spatially-periodic modes are excited. Each plot shows the perturbed interface between the normal

cells (bottom) and the less viscous mutant cells (top) moving up the crypt in time, t, with the

perturbations remaining small. Initial conditions, χ0 = 0.1 + 0.005 cos(nx/β). Parameter values:

D = 2, k = 2, λ1 = 1.5, λ2 = 0 and β = 1.

a mutant cell population can be affected by changing the initial position of the mutant cells.

2.5.1 Method

The model is constructed in the following way. The normal cells initially occupy most of the

crypt surface, whereas the mutant cells are localised within the patch which occupies the region

x2 + (y − a0)
2 ≤ b2

0, where a0, b0 are constants.

There are two lines of symmetry in the model, at x = ±πβ and at x = 0. We ensure that solutions

retain these symmetries by imposing the following boundary conditions

p̂x (0, y, t) = p̂x (πβ, y, t) = 0, (2.74)
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Figure 2.12: Series of plots showing how the evolution of the interface y = χ(x, t) changes depending

on which spatially-periodic modes are excited. Each plot shows the perturbed interface between

the normal cells (bottom) and the more viscous mutant cells (top) moving up the crypt in time, t,

where the perturbations increase rapidly. Initial conditions, χ0 = 0.1 + 0.005 cos(nx/β). Parameter

values: D = 0.5, k = 2, λ1 = 1.5, λ2 = 0 and β = 1.

and solve only in half the domain, 0 ≤ x ≤ πβ.

We apply a transformation of coordinates to the type 2 cells based on a moving point in the centre

of the patch, y = a(t). The new coordinate system (r, θ) is given by

r(t) = (x2 + (y − a(t))2)1/2, (2.75)

θ(t) = tan−1

(
x

y − a(t)

)

, 0 ≥ θ < 2π. (2.76)

We define the moving interface separating the two cell populations to be

Γ (r, θ, t) = γ (θ, t) − r (t) = 0 (2.77)
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Figure 2.13: Series of plots showing showing how the boundary y = χ(x, t) changes over time and

how this evolution depends on which spatial modes are being excited. The simulations suggest that

if the type 2 cells are 10 times more viscous than the type 1 cells then at long times they may migrate

downwards, towards the crypt base. The plots have initial conditions of χ0 = 0.1+0.005 cos(nx/β),

where n = 1 (left) and n = 2 (right). Parameter values: D = 0.1, k = 3, λ1 = 1.5, λ2 = 0 and β = 1.

where initially

γ (θ, 0) = b. (2.78)

The point, y = a (t), moves up the crypt such that

γ (0, t) = γ (π, t) . (2.79)

Equivalently, the speed with which y = a(t) moves vertically up the crypt is given by the average of

the speeds of the points at the top and bottom of the patch,

da

dt
=

1

2
(v(γ(0, t), 0, t) + v(γ(π, t), π, t)) · ŷ (2.80)

On the interface between the two cell populations (2.77) must hold for all time, so

DΓ

Dt
= 0. (2.81)
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Figure 2.14: Quiver plots showing how the local velocity varies with position and for two different

values of the relative viscosity, D. The results on the left correspond to a case for which D = 3.0,

i.e. the cells of population 1 (bottom) are three times more viscous than cells of population 2 (top),

allowing for predominantly vertical cell movement. The results on the right correspond to a case for

which D = 0.1, i.e. the cells of population 2 (top) are ten times more viscous as cells of population

1 (bottom) leading to lateral and vertical movement of cells. The directions of the arrows represent

the local movement of the cells and the size of the arrows represents their local speed. Parameter

values: k = 2.0, χ(x, 0) = 0.1 + 0.01cos(x/2), λ1 = 1.5, λ2 = 0, β = 1/2.

Using (2.81) the boundary moves according to

(
∂

∂t
+ u · ∇

)

(r (t) − γ (θ(t), t)) = 0 (2.82)

∂r

∂t
+ u · r̂ =

∂γ

∂t
+

∂γ

∂θ

∂θ

∂t
+

1

γ

∂γ

∂θ
u · θ̂, (2.83)

where

∂r

∂t
=

y − a(t)

r

da

dt
= cosθ

da

dt
, (2.84)

∂θ

∂t
= − x

r2

da

dt
= −1

r
sinθ

da

dt
. (2.85)

As the reference point for the coordinate system, y = a(t), is time-dependent, the boundary r(t) =

γ(θ(t), t) evolves in the following way:

∂γ

∂t
= u · r̂ − 1

γ

∂γ

∂θ
u · θ̂ − ∂a

∂t

(

cosθ − 1

γ

∂γ

∂θ
sinθ

)

. (2.86)

The new model consists of (2.14) and (2.15) for Γ < 0 and (2.16) and (2.17) for Γ > 0, boundary

conditions (2.18), (2.19), and (2.74), initial condition (2.78) and continuity conditions (2.21) which
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Figure 2.15: Plots showing contours of the pressure throughout the crypt, with high pressure at the

crypt base and zero pressure at the top of the crypt for the same cases as the quiver plots in figure

2.14. The thick line represents y = χ(x, t), the boundary between the two cell populations. When

cells of population 2 are less viscous than cells of population 1, (D = 3.0), pressure shows little

variation with x. However, when cells of population 2 are more viscous than cells of population 1,

(D = 0.1), pressure builds up where the viscous cells are furthest down the crypt, y = π/2, leading

to cells in population 1 moving azimuthally (see figure 2.14). Parameter values as per figure 2.14.

The contours are placed every 0.05 (left) and 0.20 (right) units of pressure, with p̂ = 0 at y = 1

and and reaching a maximum of p̂ = 0.25 at (x, y) = (π/2, 0) in (left) and a maximum of p̂ = 5.8 at

(x, y) = (π/2, 0.25) in (right).

hold on Γ(r, θ, t) = 0. We complete the model with equation (2.86) which describes the movement

of the interface separating the two types of cells.

The unit normal, n, that is used in the continuity conditions, (2.21), is given (in polar coordinates)

by

n =

(

1 +
γ2

θ

γ2

)−1/2(

r̂ − γθ

γ
θ̂

)

. (2.87)

For simplicity we reduce (2.14) and (2.16) to homogeneous equations. We decompose the pressure

into two parts: a solution that does not change with time, p̄; and a solution to the homogeneous

problem that changes with time, p. For cells in region 1, Γ < 0 (marked normal cells in figure 2.16),

p̂ (x, y, t) = p̄ (y) + p (x, y, t) , (2.88)

p̄ (y) =
1 − y2

2
− λ1

6

(
1 − y3

)
. (2.89)
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Figure 2.16: Sketch of the two dimensional model for two cell populations, population 1 - normal

cells (initially covering the majority of the crypt), population 2 - mutant cells(initially in the circle

x2 + (y − a0)
2 ≤ b2) growing on the surface of a crypt modelled as a cylinder.

For cells in region 2, Γ > 0 (marked mutant cells in figure 2.16),

p̂ (r, θ, t) = p̄ (r, θ) + p (r, θ, t) , (2.90)

p̄ (r, θ) = − k

2D
(a + rcosθ)

2

(

1 − λ2

3
(a + rcosθ)

)

. (2.91)

Equations (2.14) and (2.16) can now be rewritten, for both Γ < 0 and Γ > 0, as

∇2p = 0. (2.92)

In order to solve (2.92) we again use a collocation method. For cells in region 1, boundary conditions

(2.18), (2.19) and (2.74) require that

py (x, 0, t) = p (x, 1, t) = px (πβ, y, t) = 0. (2.93)
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Hence, for population 1, we choose basis functions of the form

p(x, y, t) =

N∑

n=1

Ancos (ωny) (cosh (ωnx) − tanh (ωnπβ) sinh (ωnx)) , (2.94)

where ωn =
(
n − 1

2

)
π. For population 2, boundary conditions (2.74) demand

pθ (r, 0, t) = pθ (r, π, t) = 0. (2.95)

We also assume that the pressure is continuous, so

p (r, 0, t) = p (r, π, t) , as r → 0. (2.96)

Hence, for population 2, we assume the following decomposition for p(r, θ, t):

p(r, θ, t) = B0 +

N−1∑

m=1

Bm(Bf )mrmcos (mθ) , (2.97)

where Bf = 1/max {γ (θ, t)}. To find the coefficients, A1, A2, · · ·AN , B0, B1, · · ·BN−1, collocation

points are distributed along the boundary in the following way: for Γ ≤ 0 to satisfy the boundary

condition px(0, y, t) = 0 we distribute points along x = 0; and to satisfy the continuity conditions,

(2.21), we distribute points along Γ = 0. The boundary condition along x = 0 (points marked by

(O) and (
a

) in figure 2.17) is implemented in the following way,

N∑

n=1

Anωncos (ωny) tanh (ωnπβ) = 0. (2.98)

On the interface Γ = 0 (points marked by (×) in figure 2.17), continuity of pressure demands that

N∑

n=1

Ancos (ωn (a + γcosθ))
(

cosh (ωnγsinθ)−tanh (ωnπβ) sinh (ωnγsinθ)
)

−
(

B0 +
N−1∑

m=1

BmBm
f γmcos (mθ)

)

= −
(

1 − (a + γcosθ)2

2
− λ1

6

(

1 − (a + γcosθ)3
)
)

− k

2D
(a + γcosθ)2

(

1 − λ2

3
(a + γcosθ)

)

(2.99)
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wall. (X) marks collocation points where (2.99) and (2.100) need to be satisfied and at (O) and (
a
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(2.98) needs to be satisfied.

and continuity of normal velocity leads to

N∑

n=1

Anωn

[(

sinθ − γθ

γ
cosθ

)

cos (ωn (a + γcosθ))
(

sinh (ωnγsinθ) − tanh (ωnπβ) cosh (ωnγsinθ)
)

−
(

cosθ +
γθ

γ
sinθ

)

sin (ωn (a + γcosθ))
(

cosh (ωnγsinθ) − tanh (ωnπβ) sinh (ωnγsinθ)
)
]

−D
N−1∑

m=1

BmmBm
f γm−1

(

cos (mθ) +
γθ

γ
sin (mθ)

)

=

(

(a + γcosθ)

(

1 − k − λ1 − kλ2

2
(a + γcosθ)

))(

cosθ +
γθ

γ
sinθ

)

.

(2.100)

Equations (2.98), (2.99) and (2.100) define a system of JAll simultaneous equations which can be

written in the form

QA = b, where A = (A1, A2, · · ·AN , B0, B1, · · ·BN−1)
T (2.101)
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where b is a vector of length JAll = JTop + 2JMI + JBottom containing the right-hand sides of

equations (2.98), (2.99) and (2.100), for the corresponding collocation points, and Q is a matrix of

size JAll × 2N containing the coefficients of the unknowns at the respective collocation points found

through the left-hand sides of equations (2.98), (2.99) and (2.100).

JTop is the number of collocation points on x = 0 where y ≥ a(t) + γ(0, t) (points marked by (O) in

figure 2.17), JBottom is the number of collocation points on x = 0 where y ≤ a(t) + γ(π, t) (points

marked by (
a

) in figure 2.17) and JMI is the number of collocation points on the moving interface

defined by Γ = 0 (points marked by (X) in figure 2.17).

If Q is a square matrix then the coefficients, A, can be found by inverting Q: A = Q−1b. However,

for a square matrix, if we have a large number of collocation points, it is necessary to solve for

very short wavelengths, as ωn → 0 when n ≫ 1. However small wavelengths give rise to very small

entries in the matrix Q making it computationally difficult to invert. To overcome this problem, we

introduce additional collocation points, so our system, (2.101), is overspecified, JAll > 2N .

In order to solve (2.101), we initially used the method of least squares, minimising the sum of the

squares of the residuals, ‖ R ‖2=
∑JAll

1
(b − QA)

2
, in the L2 norm. We found the optimum solution

to be [106]

Aoptimum =
(
QT Q

)−1
QT b. (2.103)

Although easy to implement, the method of least squares is not an accurate method of interpolation

as it is sensitive to wild points or outliers [179]. Instead we used the L1 norm and minimised the

absolute total of the residuals, ‖ R ‖1=
∑JAll

1
| b − QA |, by implementing a minimum searcher

[180]. At each time step we found Q and b and used (2.103) to calculate a starting value of A,

we then use MatLab’s “norm” and “fminsearch” to minimise the L1 norm. We used the resulting

coefficients to advect the collocation points. If the distance from y = 0 to the moving interface,
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Figure 2.18: Series of plots showing how an initially circular patch of mutant cells spreads within

a crypt and how the pattern of invasion varies as their relative viscosity changes. Lines plotted at

times t = 0 (solid line), t = 0.25 (dashed line), t = 0.50 (dotted line), t = 0.75 (dot-dash line).

Parameter values: k = 1.0, a0 = 0.5, b = 0.1, λ1 = 1.5, λ2 = 0, β = 0.083.

the total length of the moving interface or the distance from the top of the mutant patch to y = 1

increased (or decreased) by more than certain tolerances we increased (or decreased) the number of

collocation points in that region.

2.5.2 Validation

We checked the validity of our numerical method by simulating a simple test case for which the

growth rates of both cell types is equal and independent of position with parameters k = 1, λ1 =

λ2 = 0. For this case the growth is purely in the y-direction and is exponential. This means that

the interface between the two sets of cells will be




x

y



 =




b0sinθ

(a0 + b0cosθ)et



 . (2.104)

We also checked that the mass (proportional to area covered) of the cells in region 2 increased at

the correct rate and that the maximum residual (max {b − QA}) was always less than 0.001.

2.5.3 Results

We treat the cells in region 2 as being mutant, so they proliferate at a constant rate throughout the

crypt (λ2 = 0). Figure 2.18 shows that when the relative viscosity of the mutant cells is increased (so

that D is reduced), the cells move up the crypt more slowly. This is because the viscous cells are more
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Figure 2.19: Plots showing how the local velocity varies with position for two different values of D.

The directions of the arrows represent the local movement of the cells and the size of the arrows

represents their local speed. For the plot on the left hand side, the cells in the patch are less

viscous than the surrounding (normal) cells. The normal cells move towards the patch forcing it

up the crypt. For the plot on the right hand side, the cells in the patch are more viscous than the

surrounding (normal) cells. The normal cells move around the patch. Parameter values: k = 1.0,

a0 = 0.5, b = 0.1, λ1 = 1.5, λ2 = 0, β = 0.083, t = 0.05.

resistant to movement and less sensitive to the pressure gradient generated by cell proliferation. We

illustrate this in more detail in figures 2.19 and 2.20, where the local velocities and pressure gradients

are presented.

When the normal cells are more viscous than the mutant cells (D = 5.0), the latter move more rapidly

than the surrounding normal cells (see figure 2.19(a)). As the mutant cells move down the pressure

gradient, they relieve the pressure at the base of the mutant patch and cause pressure to build up

in the cells above (see figure 2.20(a)). This has two effects: normal cells migrate preferentially to

the lower pressure area below the patch and away from the area of higher pressure above the patch.

When the normal cells are much less viscous than the mutant cells (D = 0.2), the mutant cells move

more slowly than the surrounding normal cells. In this case, the mutant patch can be viewed as

an obstacle to the flow of normal cells (see figure 2.19(b)). The normal cells find it more difficult

to displace the mutant cells, causing pressure to build at the base of the patch (see figure 2.20(b)).

The pressure is lower at the top of the patch because the mutant cells move more slowly than the

normal cells (similar to a slipstream effect behind a large object). As a result, the normal cells move

around the patch.
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Figure 2.20: Plots showing contours of the pressure throughout the crypt, with high pressure at the

crypt base and zero pressure at the top of the crypt for the same cases as the quiver plots in figure

2.19. With less viscous cells in the patch, (left), forces transfer more readily through the patch than

through the other cells in the crypt leading to a lower pressure just below the patch. With more

viscous cells in the patch, (right), forces transfer less easily through the patch than through the

other cells in the crypt, leading to a higher pressure just below the patch. Parameter values as per

figure 2.19. The contours are placed every 0.01 units of pressure, with p̂ = 0 at y = 1 and p̂ in (left)

and p̂ = 0.3 in (right) at y = 0.

If the relative viscosity of the mutant cells is sufficiently large, then cells at the bottom of the patch

may move towards the crypt base (see figure 2.21). As the viscosity of the mutant cells in the patch

is increased, their pressure also increases (as in figure 2.20). Mutant cells near the boundary of the

patch require a larger pressure gradient to move away from the centre and make space for the new

cells created due to proliferation. When the pressure exceeds that of the normal cells just below

them, the mutant cells start to move towards the base of the crypt. An example of this is shown

in figure 2.21. The simulation in figure 2.21 was terminated before the mutant cells could take over

the crypt, as once the boundary separating the two populations reaches one of the boundaries, our

numerical method breaks down.

Figure 2.22 shows how the starting position of the mutant patch affects its ability to spread down-

wards for a range of value of a0, the initial centre of the patch in the vertical direction. We calculate

the largest value of the relative viscosity (D∗) for which the mutant cells move downwards towards

the base of the crypt. This is done by running the simulation until t = 0.5 for several values of D

(D = 1.1 in steps of 0.001 until 0.001). The simulations were then checked to find the maximum
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Figure 2.21: Plot showing how mutant cells, if sufficiently viscous, can invade downwards toward the

crypt base. The arrows reveal how the boundary separating mutant cells (initially within a circle)

and normal cells moves with time, with lines representing time increasing from t = 0 to t = 1.0 in

steps of t = 0.2. Parameter values: D = 0.1, k = 1.0, a0 = 0.3, b = 0.1, λ1 = 1.5, λ2 = 0, β = 0.083.

value of D, for which the bottom of the patch moved downwards. It was verified that for all D < D∗,

the base of the mutant patch also moved downwards.

If the centre of the mutant patch is initially close to the bottom of the crypt (a = 0.15), then

the mutant cells need only be four times more viscous than the normal cells (D∗ = 0.25) to move

downwards. However, when the patch is initially further up the crypt (a = 0.6), the mutant cells

need to be at least ten times more viscous than the normal cells (D∗ < 0.10) to move downwards.

Figure 2.22 shows that, more generally, the maximum value of D∗ for which the mutant population

could move downwards decreases as the starting height of the mutant patch increases. However once

the bottom of the mutant patch passes the point where there is net cell death, y = 1/λ1, the value

of D necessary for downward movement increases with distance from the base of the crypt because

the normal cells move more slowly (see figure 2.19). If λ1 < 1, we find that the necessary value of

D∗ decreases monotically with a0.
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Figure 2.22: Plot of how D∗ the minimum necessary value of D, the relative viscosities, needed for

downwards movement of the cells at the base of the mutant patch varies with starting position of

the centre of the mutant patch, a0. It is shown if the patch is initially further up the crypt, the

cells in the patch must be much more viscous to move downwards, than cells near the bottom of the

crypt. Parameter values: k = 1.0, b = 0.1, λ1 = 1.5, λ2 = 0, β = 0.083.

2.6 Discussion

We have developed a continuum model that describes the proliferation and movement of cells in a

crypt. We considered two cell populations which differ in their proliferation rates and viscosities.

The model includes a spatially varying source term to account for Wnt-dependent growth; following

Greenspan [64] and Franks [56], Darcy’s law is used to model cell motion. Model solutions were

constructed using a combination of asymptotic and numerical collocation methods. First, we studied

cases for which the mutant cells were initially located toward the top of the crypt (and the normal

cells at the bottom). Second, we studied cases for which a small circular mass of mutant cells was

introduced into a healthy crypt. In both cases, mutant cells proliferated at a rate independent of

the Wnt stimulus and had a different viscosity to normal cells.

Asymptotic solutions showed that when normal cells were placed below less viscous mutant cells,

small disturbances to the interface between the cell populations remained small as the interface

moved up the crypt. As a result of this, the mutant cells were flushed out of the crypt. However

if the normal cells were less viscous than the mutant cells, as biological evidence suggests [141],
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perturbations to the interface rapidly increased in magnitude as the interface moved up the crypt. In

this case the asymptotic expansion broke down after a short period of time, due to the perturbations

becoming large very rapidly.

It was not possible to simulate the case when the mutant cells were placed above the normal cells

for crypts with a realistic geometry; the small aspect ratio makes it difficult to solve the model

computationally. However when our method was implemented for a crypt with a larger aspect ratio,

we found that some of the mutant cells invaded downwards toward the base of the crypt if their

relative viscosity was sufficiently large. We must treat these results with caution as changing the

crypt radius changed other variables, such as the coefficients in the collocation method.

Other results reveal that, when the mutant cells were less viscous than the normal cells, they moved

out of the crypt faster than the normal cells (and conversely).

When used to simulate the dynamics of a circular patch of mutant cells introduced into a healthy

crypt, the model predicted that mutant cells in a patch initially near the bottom of the crypt did

not need to be as viscous to establish themselves within the crypt as cells initially further up the

crypt.

Experimental results in [15, 115, 141] indicate that mutant cells, by losing their Wnt dependency,

also have increased levels of cell adhesion [15] and a more rigid cytoskeleton [115]. They may also

have lower levels of migration than normal cells due to a more rigid cytoskeleton and higher levels

of adhesion [141]. Our model is consistent with these findings if the mutant cells have increased

relative viscosity. Indeed, guided by our model simulations we predict that mutant cells that have

increased levels of adhesion and a more rigid cytoskeleton, modelled by increased viscosity, could

undergo top-down invasion and move more slowly than their normal counterparts.

We note that the above results are not incompatible with bottom-up morphogenesis. If a cell at the

bottom of the crypt undergoes a mutation that renders it and its progeny insensitive to Wnt, then

our model simulations suggest that the mutated cells would persist in the crypt and become the

dominant population unless they had a lower viscosity (or lower levels of cell adhesion and a much

more less rigid cytoskeleton) than normal cells.

One of the main strengths of our model is that we are able to describe biological phenomena with

relatively few parameters. However there are some weaknesses. Our model makes no distinction

between the rigidity of the cytoskeleton, cell-cell bonds (cadherins) and the cell-substrate bonds

(integrins): these phenomena are combined in a single lumped parameter. It would be interesting

to see, by modelling the effects separately, which of these has the greatest effect on whether mutant
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cells can undergo top-down invasion. This could be addressed by developing a new continuum

model (such as that by Armstrong et al. [11]) or by developing a cell-level model where each effect

is modelled separately. Another weakness is that the proliferation rate term may not be accurate.

We do not know whether there is net cell death at the top of the crypt or whether there is a sharp

transition between where the cells proliferate and where they do not. This could be addressed by

developing a cell-level model and embedding a protein-dependent cell-cycle model within each cell.

This could then be compared to the continuum model to derive the correct source term. Also we

have assumed that the crypt is symmetric about the crypt wall: this does not allow for a mutant

patch to move as a whole azimuthally. Another weakness may be that there are not enough cells

within the colorectal crypt for a continuum model to be a valid approximation. We could check

this by comparing the model to a cell-level model. We aim to address some of the weaknesses in

Chapters 3 and 4, where two cell-level models are developed.

In spite of its weaknesses, it may be of interest to extend our model to investigate the effects of other

biological phenomena. Examples include: having a surface tension force around the mutant patch to

model higher bonding between mutant cells; using a different constitutive law (for example Stokes’

Law); and modelling the effects of cell removal at the top of the crypt more accurately. Including

surface tension effects at the normal/ mutant interface would be straightforward to implement and

has been done in similar models [44]. Using a different constitutive law has been done in similar

continuum models before [79]. Implementing a more complex boundary condition for cell removal

at the top of the crypt could greatly increase the complexity of the model and would not be simple

to determine for a continuum model. It may also be interesting to model a crypt with flexible walls.

The model could be combined with work done by Edwards and Chapman [52], who investigated

buckling of the colorectal crypt, in order to investigate investigate crypt fission.

In summary, the main conclusions of this chapter are that for cells to perform top-down invasion

they would need a more rigid cytoskeleton and higher levels of cell-cell and cell-substrate adhesion.

The further up the crypt a cell suffers a mutation, the more rigid the cytoskeleton and the stronger

the levels of cell adhesion the cell would need to be for top-down invasion to occur.
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Chapter3
Cell-centre model of the colorectal crypt

3.1 Introduction

I
n the previous chapter we described how a continuum model may be used to study the prolifera-

tion and migration of cells within a colorectal crypt. The model is useful for describing certain

aspects of the physiology of the crypt but there are weaknesses that need to be addressed.

One of the main problems with the continuum model is that we cannot easily include information

about how individual cells behave [123], such as details of the cell-cycle. In our continuum model

all normal cells were of the same type, even though it is known that cells change type as they move

up the crypt, from transit to differentiated cells [103]. It is also unclear whether there are enough

cells within the crypt to justify modelling it as a continuum. Further, the suitability of applying a

Darcy constitutive law to epithelial cells has not been established.

Possible resolutions of these problems include using a model with a different constitutive law, such as

Stokes Law [79, 97], using a multi-phase model framework [89] or developing a solid-mechanics model

using linear [77, 138] or non-linear elasticity [136]. While such approaches may address problems

associated with using Darcy’s law, they do not address the other difficulties.

As an alternative to developing another continuum model, in this chapter we use a cell-based model,

and in particular, a cell-centre model, based on the work of Meineke et al. [109]. Cell-centre models

are dynamic lattice-free models in which each cell is represented by a point at its centre and a

Voronoi tessellation is used to define the cell’s shape [29]. By distinguishing between individual cells

we can ascribe specific properties to each cell (eg. proliferation rates and adhesion properties) and

incorporate sub-cellular features, such as cell-cycle models. This allows us to study colorectal cancer

on several scales, for example protein-level and cell-level, and forms the basis of a multiscale model

of colorectal cancer. Another advantage of the cell-centre model is that cell birth can be modelled in
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greater detail than in continuum models, as we can track individual cells and their lineages. Being

able to view individual cells, we hope, will be more informative to biologists, since with a cell-centre

model, one is able to track a specific cell and its progeny.

A benefit of using a lattice-free cell-centre model is that, unlike lattice-based models of the crypt

such as that presented in [94], cells can be represented as realistic polygonal shapes that change

smoothly rather than remaining as rectangles [29]. Also cell division only affects local connections.

By contrast, in [94], a lattice-based model, the cells are represented by rectangles that move in

vertical columns, no lateral movement, such that proliferation results in numerous bonds being

broken and reformed to accommodate new daughter cells.

3.1.1 Outline

In this chapter we adapt a cell-centre model which describes the proliferation and movement of

epithelial cells within a colorectal crypt. This forms the basis of our multiscale model of colorectal

cancer. The chapter is structured in the following way. In §3.2, Meineke’s original cell-centre model

is introduced. In §3.3, the changes we have made to the model are described. In §3.4 we discuss the

programming styles used to solve the governing equations numerically. Results from the simulations

are presented in §3.5 and their implications are discussed in §3.6 together with suggestions for further

work.

3.2 The cell-centre model

In this section we introduce Meineke et al.’s cell-centre model [109]. Each cell is characterised by

the position and velocity of its centre (see figure 3.1). A Delaunay triangulation [176] is performed

to determine each cell’s neighbours. Connections between neighbouring cells are modelled by linear

springs, which simulate cell-cell adhesion forces (by pulling cells together) and intracellular forces

designed to preserve a cell’s shape (by forcing tightly-packed cells apart). The forces from the springs

are assumed to be balanced by a viscous drag term, proportional to the cell’s velocity, representing

cell-stroma adhesion and the reforming of a cell’s cytoskeleton.

3.2.1 Delaunay triangulation and Voronoi tessellation

To find the nearest neighbours of a given cell a Delaunay triangulation is performed (figure 3.1

(top-right)). A Delaunay triangulation, for a set of points in a plane, connects all the points in
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Figure 3.1: Series of schematic diagrams showing the Delaunay triangulation and Voronoi diagram

used to model the epithelial cells. The vertical axis (y) represents the distance from the base of the

crypt. The horizontal axis (x) represents the azimuthal distance, with periodic boundary conditions

imposed on x = 0, x = WC (in this case WC = 6). (Top left) Positions of the cell centres, different

colours represent different cell types: green - stem cells, yellow - transit cells, red - differentiated

cells. (Top right) Plot of cell centres and corresponding Delaunay triangulation that is used to

determine spring connections. Lines between cells represent neighbouring cells connected by springs

(note cells on the periodic boundaries are connected but, for clarity, this is not shown). (Bottom left)

Cell centres and associated Voronoi diagram, used to calculate actual cell shapes. Colours represent

different cell types: turquoise - stem cells, yellow - transit cells, pink - differentiated cells. (Bottom

right) Cell centres along with Delaunay triangulation and Voronoi diagram [12].

triangles (elements) such that for each triangle, no other point is inside its circumcircle [120]. The

points in this case are the cell centres and the triangulation is such that nearest neighbouring cells

are connected and no connections between the cells cross over each other.

To find the cell shapes, a Voronoi tessellation is performed (figure 3.1 (bottom-left)). For each

cell, the circumcentres of each triangle for which the cell is apart of are connected to produce a

polygonal shape [120]. This polygon represents the cell. The Voronoi tessellation is not necessary
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to calculate the cell movement and, hence, is not normally performed at each time step, but is used

for visualisation purposes.

3.2.2 Forces due to cell-cell interactions

Cell-cell interactions are modelled by linear springs that lie along the edges of the triangles con-

necting neighbouring cells (see figure 3.1 (top-right)). Each spring connecting cells i and j has a

natural length, sij(t), and spring constant, kij . The natural spring length, sij(t), is the same for all

connections, apart from those between cells that have just given birth (see below). The force, Fij ,

exerted on cell i by a neighbouring cell j is calculated through Hooke’s Law, giving

Fij = kij (|ri − rj | − sij(t))
(rj − ri)

|rj − ri|
(3.1)

where ri and rj are the positions of cells i and j respectively. In Meineke’s implementation, kij is

independent of the length of the interface between cells i and j: we relax this assumption later (see

§3.3.4).

The natural spring length, sij(t), of a mature cell is used as the non-dimensional unit of length for

all calculations within our model. Further details are provided in Appendix A.1.

The total spring force acting on cell i is obtained by summing over its neighbours j,

Fi =

j=Ni∑

j=1

Fij (3.2)

where Ni is the number of cells that are adjacent to cell i.

3.2.3 Cell drag

The cell-cell forces (3.2) are balanced by a drag force which is assumed to be proportional to the

velocity of the cell, dri/dt. The drag force represents the breaking and reforming of bonds, such as

integrins and the reforming of the cell’s cytoskeleton. Balancing the drag and spring forces that act

on cell i we set

ηi
dri

dt
= Fi (3.3)

where ηi is the drag coefficient of cell i. We have assumed in (3.3) that inertial effects can be

ignored. In Meineke’s implementation, ηi is independent of cell size: we relax this assumption below

(see §3.3.5).
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3.2.4 Cell birth

In [109], cells are given either a fixed cell-cycle time or a stochastically varying one (see §A.1). Stem

cells are fixed in position at the base of the crypt and can divide indefinitely. When they proliferate

they divide into a stem cell and transit cell. Transit cells undergo three divisions; they divide into

two transit cells on the first two occasions and two differentiated cells on the third cell division.

Differentiated cells cannot proliferate.

When a cell is about to proliferate an angle is chosen at random in the range (0, 2π] and a new cell

centre is placed a distance 0.1 mature natural spring lengths away from the centre of the parent

cell. The spring connecting these cells is given an initial natural spring length of 0.1 mature natural

spring lengths that increases at a constant rate to a fully mature spring length over the first hour

following proliferation.

3.2.5 Boundary conditions

In order to simulate cell shedding into the lumen, any cells that migrate beyond the top of the crypt,

y = HC , are removed from the simulation. Stem cells are fixed in place at the base of the crypt,

y = 0, and no cells can move below the stem cells. Periodic boundary conditions are imposed by

placing a copy of the cell centres (ghost cells) on the opposing side of the crypt before performing

the Delaunay triangulation (see figure 3.2). The algorithm used for the Delaunay triangulation,

Triangle [151], needs to have a convex hull. To ensure no cells are connected over large, unrealistic

distances, we place ghost cells at the top and bottom of the crypt (see figure 3.3).

3.2.6 Algorithm for constructing numerical simulations

The model described above is solved numerically in the following way.

• Initially, a population of cells is placed on a hexagonal mesh. Each cell is given a cell-cycle time

randomly chosen from a normal distribution and birth time randomly chosen from a uniform

distribution.

• On each time step:

– any cells that have moved further than the top of the crypt (a designated distance from

the base of the crypt) are removed;

– the remaining cells are checked to see if any are ready to proliferate; the relevant cell
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Figure 3.2: Implementation of ghost nodes. Plots showing the how Delaunay triangulation and

Voronoi diagram are performed on a cylindrical crypt. (Top left) Copies of the cell centres near

the crypt boundaries are placed on the opposite side of the crypt. Further ghost cells are placed

on the top and bottom of the crypt to ensure a convex hull (needed for Delaunay triangulation).

(Top right) Delaunay triangulation performed on cell centres and ghost cells. (Bottom left) Now a

Voronoi diagram can be made on the cells to find each cell’s shape. (Bottom right) Finally ghost

cells are removed.

divisions then take place;

– a Delaunay triangulation is performed to determine the connections between the cells;

– using these connections, the spring forces Fij connecting neighbouring cells are calculated

(see equation (3.1));

– the total force on each cell is calculated from equation (3.2);

– cell positions are updated by using a forward Euler method to integrate (3.3) with time.

• This process is repeated until the simulation time ends.
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Figure 3.3: Plots showing why ghost nodes are needed at the top and bottom of the crypt. (Left)

When there are no ghost cells, the Delaunay triangulation connects cells large distances away from

each other, to achieve a convex hull. (Right) When there are ghost cells, large unrealistic connections

are avoided.

3.3 Adaptations to the Meineke et al. model [109]

Even though Meineke et al.’s model [109] produced some useful results, such as being able to follow

cell lineages in the crypt, we wish to extend it to incorporate additional biological information.

These changes include unpinning the stem cells (§3.5.1), more detailed cell-cycle models (§3.3.1),

different models of the effects of the protein Wnt (§3.3.2), new cell dynamics models (§3.3.4 and

§3.3.5) and inclusion of mutant cells (3.3.6).

3.3.1 Cell cycle

The cell-cycle is a series of events through which a cell passes before undergoing mitosis [2]. It

consists of four phases: G1-phase, where the cell grows and produces certain proteins; S-phase, the

DNA synthesis phase, G2-phase, a growth phase where further proteins are produced so that the

cell can undergo mitosis in M -phase. At the end of M -phase two daughter cells are produced. They

start again at the beginning of the cell cycle. If, before the cell enters S-phase, there are insufficient

transcription proteins within the cell, it exits the cell cycle [102] (and is placed in G0-phase) and

does not resume cycling unless further transcription proteins are produced.

To reflect the dependence of proliferative behaviour on protein levels within our model, we embed

a cell-cycle model within each cell. We use several types of models ranging from ODE models due

to Tyson and Novak [167] and Swat et al. [159] to simpler models in which each phase of the cell

cycle is given a fixed duration. At each time step, the cell-cycle model in each cell is checked to see
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if it has reached the end of its current phase. This can be defined by the levels of proteins within

the cell (for ODE models) or by the cell’s age (simpler models). If the cell has reached the end of

M -phase it produces two new daughter cells, as discussed in §3.2.4.

Differentiated cells are assumed to remain indefinitely in G0-phase and do not proliferate.

3.3.2 Wnt dependence

It is believed that the proliferation rate of epithelial cells within the crypt depends on the extracellular

protein Wnt [126, 134, 171], with cells able to proliferate in high levels of Wnt (found at the base of

the crypt) and unable to do so in low levels of Wnt (found at the top of the crypt). To mimic this

dependence, a fixed linear Wnt gradient, with the highest value at the base of the crypt, is imposed

along the crypt axis and the ability of a cell to proliferate is assumed to depend on the local levels

of Wnt.

When simple (non-ODE-based) cell-cycle models are used, if the Wnt stimulation is lower than a

threshold value, the cells are termed differentiated and cannot proliferate. Cells with more detailed,

ODE-based cell-cycle models are combined with Wnt-signalling models, such as [172] and [88]. For

these cell-cycle models, the levels of proteins such as APC and β-catenin depend on the Wnt stimulus

which, in turn, the level of β-catenin is used to determine the length of different phases of the cell

cycle. An illustrative example showing how van Leewen et al.’s Wnt-signalling model [172] can be

implemented in the cell-centre model is given in Appendix A.2. Details of how other models are

implemented are presented in [110] and [170].

3.3.3 Unpinned stem cells

In [109], the stem cells are pinned at the bottom of the crypt. Consequently no cell lineage can ever

populate the entire crypt as the other stem cells always remain at the base of the crypt. However

there is experimental data which suggests that a single lineage may populate the crypt [63, 108, 161].

For these reasons we decided to unpin the stem cells at the bottom of the crypt. The modification

we make is to no longer term cells on the crypt base stem cells. We define all proliferating cells

transit cells, where the restriction of a fixed number of cell-divisions is removed, and assume that

they move according to (3.3).

At the base of the crypt we impose a no-flux condition such that any net spring force that would

cause a cell to move below the crypt base (y = 0) is balanced by an opposing force that keeps the
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Cell i c ij Cell j

Figure 3.4: Schematic showing the edge-length cij between cells i and j used in (3.4), below. The

lines between the cell-centres represent the spring connections.

cell on y = 0. The cells can move laterally along the crypt base and off the crypt base. The effects

of unpinning the stem cells are shown in §3.5.1.

3.3.4 Edge-dependent springs

When two cells come into contact they form bonds mediated by cadherins and other molecules. The

number of bonds formed is thought to depend on the contact area, the adhesion strength depending

on the number of bonds formed [24, 67]. In order to incorporate these phenomena in our model, we

relax the assumption that the spring constant kij connecting cells i and j is constant. Instead we

assume that kij is linearly proportional to the edge-length cij (the two dimensional representation

of contact area, see figure 3.4), so that in (3.1) we have

kij = k̄ij
cij

cN
, (3.4)

where k̄ij is a constant determining the spring strength and cN is the edge-length between cells in

the equilibrium packing state. In all cases we set, cN = 1√
3

natural cell-length (see §A.1). This

corresponds to the edge-length when cells are packed hexagonally 1 cell-length apart.

Implementation of (3.4) in (3.1) causes cells that are very close to each other (with a large contact

area) to be more quickly forced away from each other (provided other surrounding cells are not very

close) than if the cells did not have edge-dependent springs. The effects of implementing (3.4) are

presented in §3.5.1, below.
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3.3.5 Area-dependent drag

As with to cell-cell adhesion, the strength of the integrin bonds between the epithelial cells and the

underlying stroma is believed to depend on the area of contact. The integrin bonds [2, 24, 67] work

in a similar way to the cadherin bonds, with the total adhesion force dependent on the number of

bonds formed, which is assumed to be dependent on the area of contact with the underlying stroma.

To take account for this effect, we assume that the drag term (which represents the breaking and

reforming of integrin bonds) depends on Ai, the area of contact between cell i and the underlying

stroma. More specifically the drag term, ηi, in (3.3) is now assumed to be

ηi = η̄i

(

0.1 + 0.9
Ai

AN

)

, (3.5)

where η̄i is a constant depending on the cell type of cell i and AN is the area of a cell at its equilibrium

packing size, (=
√

3

2
for hexagonally-packed cells, see §A.1). This modification causes smaller cells

to move faster than larger ones.

Adjusting the spring length (§3.3.4) and making the drag area-dependent require us to monitor cell

shapes, not just their positions and hence we must produce a Voronoi diagram and a Delaunay

triangulation at every time step (see figure 3.1). The Voronoi diagram is not required in Meineke

et al.’s model (unless for visualisation purposes) and can be time-consuming to compute. The effects

of making the drag coefficients area-dependent are presented in §3.5.1, below.

3.3.6 Mutant cells

In the crypt, two common mutations found in the early stages of colorectal cancer are in the proteins

APC and β-catenin. These proteins are involved in the Wnt signalling pathway and when mutated

can lead to cell proliferation no longer being dependent on the presence of Wnt [19, 74]. We will

investigate how such mutant cells develop within a crypt by introducing them as a separate cell type

which proliferate at a constant rate regardless of the local level of Wnt.

APC and β-catenin are both multi-functional proteins and, in addition to affecting proliferation,

mutations in these proteins can affect the cell’s cytoskeleton [115], cell-stroma adhesion [141] and

cell-cell adhesion [18]. To model changes to the cytoskeleton we allow the drag on a cell, ηi or η̄i

(depending on whether the drag is area-dependent) to depend on a cell’s mutation state. For clarity,

the drag on a normal cell is denoted by ηn or η̄n and the drag on a mutant cell by ηm or η̄m. As

74



mutant cells are found to move slower, we assume ηm ≥ ηn, η̄m ≥ η̄n.

Regarding cell-cell adhesion, the spring strength between two cells, kij or k̄ij (depending on whether

the cells have edge-length-dependent springs), depends on whether the two cells in contact are

mutant or not. The spring strength between two normal cells is denoted by knn or k̄nn, between

two mutant cells, kmm or k̄mm and between a normal and a mutant cell (or a mutant and a normal

cell) knm or k̄nm. The behaviour of mutant cells within the crypt is presented in §3.5.2, below.

3.4 Programming style

The programming environment of CHASTE (Cancer, Heart And Soft Tissue Environment) was

developed and used to run numerical simulations of the model. CHASTE is a large group project

whose objective is to establish a new and long-lasting programming framework for cancer and heart

modelling, since, as we now explain, traditional methods are not well suited to simulating large-scale

biomedical models [125].

When using traditional methods of programming, code is often reproduced each time a new model

is created, even though much of the code could have been reused from a previous model [125].

Additionally, code written by a single developer is often poorly commented and uses the developer’s

idiosyncratic naming conventions and programming style. As a result the code can be hard for other

users to follow and is therefore often abandoned [125]. A further problem is that code is often poorly

tested, leading to problems of unreliability that may not be discovered until much later on, when

adaptations are made to the model [125].

To overcome these problems we use an agile method known as eXtreme programming. This involves

working in iterations (see §3.4.1), programming in pairs (see §3.4.2), having collective code ownership

(see §3.4.3), using object-orientated code (see §3.4.4) and test-driven development (see §3.4.5).

3.4.1 Iterations

With CHASTE being a group project involving several members, each with their own particular

aims, it was necessary to keep the project focused. To do this the code development was split into

periods, or iterations, of around a month. In each iteration, short term goals were defined that

would be completed within the iteration. This kept the code development well-directed and helped

ensure tasks were completed more quickly [16].
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Using iterations with well-defined goals can lead to developers working on parts of the code in which

they have no direct interest, but this leads to a better understanding of the code as a whole.

3.4.2 Pair programming

At the start of each iteration the group met for three to four days and worked on the code in pairs.

Pair programming involves two developers working on a task together on one computer [16]. The

pairs usually consist of a “guru”, an experienced programmer, and a “layman” or less experienced

programmer who may be from a mathematical background. One person types or “is in the driving

seat” whilst the other gives advice or “directs”. After half an hour the “driver” and “director” swap

places. After four hours of working together a pair rotation occurs, where one member of the pair

moves onto another task and is replaced by someone from a pair who has been working on a different

task. No member of a pair remains on a task for more than two pair rotations.

Although this may seem extravagant in its use of resources, it is effective, as the “director” can spot

mistakes made by the “driver” that would not be spotted as quickly by one person working alone

[43]. Also when planning a task it is often better to have two people working together as they are

less likely to implement a bad idea [43]. The rapid pair rotation means that each member of the

team gets to see many different areas of the code, leading to a greater understanding of the code as

a whole [173].

3.4.3 Collective code ownership

Another feature of eXtreme programming is that no one user is wholly responsible for any part of

the code: the group is responsible for the code. This means that any developer can change the code

or add functionality and prevents any particular developer becoming a bottleneck for the project

[173].

3.4.4 Object orientated programming

The CHASTE project is written primarily in C++, an object-orientated programming (OOP) lan-

guage. The advantage of using OOP is that parts of the code can be easily decomposed into simpler

tasks, allowing several pairs to work simultaneously on similar areas of the code. Another advantage

is that the code can be easily adapted and new functionality added, without disrupting existing

functionality [35].
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3.4.5 Test-driven development

One of the most important aspects of agile programming is the implementation of test-driven devel-

opment. As CHASTE is a large project involving many people, it is impossible for any one person

to know all of the code. This means that it is possible inadvertently to break a piece of code that

another user relies upon. Test-driven development aims to minimise this in the following way. Be-

fore any new piece of code is written, a test is created for it and, before being committed to the

main repository, any new code must not only pass the new test but also not cause any other tests

to fail [173]. This ensures that no committed code breaks any previous functionality. An exam-

ple of a simple test may be, for an ODE solver: define an ODE where the solution is known (eg

y′(t) = y(t), y(0) = 1) and solve up to a point (t = 1) and check the solution is correct to within a

given tolerance.

To ensure that no untested code is incorporated, a daily coverage test is run to check every line of the

code is checked at least once by one of the tests. This should ensure that if any code is incorrectly

changed the problem will be flagged in another test.

Test-driven development is useful in several ways; not only does it encourage developers to think

carefully about the aim of a piece of code but also it checks that progress does not break the code

[16].

Other features of the eXtreme programming method, including the more offbeat concepts such as

stand-up meetings and project velocity, are detailed on the eXtreme programming website1. Further

details of how eXtreme programming was used in CHASTE can be found in [125].

3.4.6 Validation of the model

The model was validated in three ways: by writing tests and by checking against previous models

and experimental results. As mentioned in §3.4.5, each individual part of the code is checked to

ensure that it works in the correct way. We reproduced the results of the Meineke model (see figure

3.5 and 3.6, discussed below) and checked that the results compared to biological experiments, such

as Sunter et al.’s study of cells movement in the crypt [158] (see §3.5.1).

1http://www.extremeprogramming.org/index.htm
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Figure 3.5: Three snapshots of a simulation of the Meineke crypt, all at time t = 500: (left) a

simulation with no lineages marked within the crypt; (middle) the same crypt with one stem cell

lineage marked (in blue); (right) a crypt with the lineages from 4 stem cells marked (in blue). Stem

cells (turquoise) are pinned in position and proliferate to produce transit cells (yellow), which can

undergo 3 cell divisions until they become differentiated cells (pink). The proliferation by cells

toward the bottom of the crypt forces cells up the crypt. When the cells reach the top of the crypt

they are removed. See §A.1 for parameter values.

3.4.7 Personal contribution

The CHASTE project was a group collaboration involving many researchers. Everyone worked on

the code, but could specialise and devote extra time to parts of the code of particular interest to

them. My own work focused on adjusting the mechanical properties of the cells such as cell-cell

adhesion and cell drag. I also focused on incorporating mutant cells and adjusting their properties.

Most of the associated code was written by me, although others could adapt it.

The core members of the CHASTE development team were Jonathan Cooper, Alex Fletcher, Lee

Momtahan, Gary Mirams, Phillip Murray, James Osborne, Joe Pitt-Francis, Pras Pathmanathan

and myself. Others who contributed to the code development in the CHASTE project included:

Miguel Bernabeu, Sarah Young, Susheel Varma, Ingeborg van Leeuwen, Jonathan Whiteley, David

Gavaghan, Helen Byrne, Sarah Waters, Eleanor Boston, Carina Edwards and Matthew Johnston.
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Figure 3.6: Results taken from Meineke et al. [109] for comparison with figure 3.5. Left: a quasi-

steady-state crypt, where stem cells are marked dark grey, transit cells light grey, and differentiated

cells white. Middle: a quasi-steady-state crypt with the lineage from a single stem cell marked in

grey, all other cells in white. Right: the lineage from four stem cells at the base of the crypt.

3.5 Results

Simulations of Meineke et al.’s basic model to provide a a comparison for the results of §3.5.1, where

the effects of the various modifications are discussed, and §3.5.2, where the effect of introducing

mutant cells is studied.

3.5.1 The normal crypt

Meineke et al.’s model [109]

Initially, we use the same parameter values as Meineke et al. to reproduce the results in [109]. In

figure 3.5 (left) we reproduce qualitatively a quasi-steady-state crypt and the labelling of lineages

from stem cells as in [109] (shown in figure 3.6). A quasi-steady-state crypt is one for which the

number of cells born balances the number removed at the top of the crypt. In figure 3.5 (left), the

stem cells at the base of the crypt (marked turquoise) give birth to transit cells (marked yellow)

which move up the crypt (whilst proliferating) and differentiate after they have proliferated three

times. The differentiated cells carry on moving up the crypt and are eventually removed when they

pass over the top of the crypt.
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In figure 3.5 (middle), we labelled a single stem cell and track it and its progeny. The cells move up

the crypt with small levels of lateral movement. The cells descended from the stem cell mix with

other transit and differentiated cells and do not form a continuous trail up the crypt. This is in

good qualitative agreement with the findings of Meineke et al. [109] (see figure 3.6 (middle)).

The lineage from four neighbouring stem cells that are next to each other is shown in figure 3.5

(right). The progeny form a continuous band stretching from the base of the crypt to the top.

Again these results are qualitatively similar to findings in [109] (see figure 3.6 (right)).

Unpinned stem cells

The first modification to Meineke et al.’s model that we considered was to unpin the stem cells at

the base of the crypt. To investigate this behaviour, the crypt was simulated with the parameters

described in §A.1, with kij = knn and ηi = ηn. The only mechanical difference between the two

simulations presented in figure 3.7 is that the stem cells in the Meineke model (top) are fixed in

place.

In addition to unpinning the stem cells, we also changed the proliferation rates of the cells. In

Meineke et al.’s model, Wnt-dependent proliferation is not modelled directly. Instead, transit cells

undergo three cell divisions and stem cells can divide an unlimited number of times. In our model, no

stem cells were defined and Wnt-dependend proliferation was modelled directly. Cells were termed

transit if they had position y < HW and could proliferate, otherwise they were termed differentiated

and could not (for further details, see §A.1).

Unpinning the stem cells had a major effect on the simulations. With the Meineke et al. model

[109] (figure 3.7 top) even after six thousand hours (262 days), the crypt still comprises lineages

from all the stem cells, whereas in the adapted Meineke model (figure 3.7 bottom), after the same

length of time, the crypt is monoclonal (all cells are generated from the same progenitor cell).

These new results are consistent with independent experimental results which suggest that crypts

are monoclonal [63, 108, 161].

Further details on the unpinning of the stem cells can be found in [170].

Mechanical properties

In §3.3 we described how we adapted the Meineke model such that the springs connecting neigh-

bouring cells could be edge-length dependent (§3.3.4) and that cells could have area-dependent drag
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Figure 3.7: Snapshots showing how unpinning the stem cells (bottom three plots) can lead to a

monoclonal crypt; this is not possible in Meineke et al.’s original model (top three plots). In the left

two snapshots, initially all the cells are marked with a different colour. When a cell divides, both

daughter cells retain the same colour as the parent cell. When the stem cells are pinned (top), no

one lineage dominates the crypt, and the crypt’s composition is similar after two thousand hours

(middle top) and six thousand hours (right top), with 23 lineages in each. When the stem cells

are unpinned (bottom), eventually one lineage dominates the crypt (middle bottom) and after six

thousand hours the crypt becomes monoclonal (right bottom). See §A.1 for parameter values.

(§3.3.5). We now discuss how these changes affected the crypt dynamics.

In figure 3.8, we compare the cell distributions at t = 500 for different choices of kij and ηi. We

allowed the spring strength, kij , in (3.1) to depend on edge-length, kij = kij(cij), as in (3.4) (figure

3.8 B & D) or to be constant, kij = knn (figure 3.8 A & C). Similarly we allowed the drag, ηi, in

(3.3) to depend on cell area, ηi = ηi(Ai), (figure 3.8 C & D) or remain a constant, ηi = ηn (figure

3.8 A & B).

The results presented in figure 3.8 show that when the cells have area-dependent drag (figure 3.8 C

& D), there are fewer cells in the lower part of the crypt, in particular at its base (∼ 30 when drag

is area-dependent compared to ∼ 50 otherwise). This is because tightly-packed cells at the base of

the crypt experience less drag (due to having a smaller area) and can move away from areas of high
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Figure 3.8: The effect of making the spring constant depend on length of contact-edge between cells,

(kij = kij(cij)) (B and D, cells packed more hexagonally) and having drag dependent on cell area,

(ηi = ηi(Ai)) (C and D, fewer cells at the bottom of the crypt) for cells in the crypt. Series of

simulation snapshots for cells in the colorectal crypt after 500 hours with (A) (ηn, knn) constant

drag and linear springs, (B) (ηn, kij(cij)) constant drag and edge-length dependent springs, (C)

(ηi(Ai), knn) area-dependent drag and linear springs and (D) (ηi(Ai), kij(cij)) area-dependent drag

and edge-length dependent springs. Transit cells are marked yellow and differentiated cells marked

pink. See §A.1 for parameter values.

packing (where the springs will be highly compressed) more easily.

When the spring constant depends on the length of the contact-edge between cells, the cells organise

into a regular hexagonal structure (figure 3.8 B & D). This effect is less pronounced when the spring

constants are fixed (figure 3.8 A & C).

When the spring constant is contact-edge-length dependent but the drag coefficient is constant (figure
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Figure 3.9: Plot of how the number cells within in the crypt varies over time and with the mechanical

properties. All crypts initially in a quasi-steady-state at t = 0. For three mechanical cases (ηn, knn,

ηi(Ai), knn and ηi(Ai), kij(cij)) the number of cells crypt remains approximately constant (with

small changes due to cell proliferation), however for ηn, kij(cij), the number of cells in the crypt

increases. Each line represents different mechanical scenarios for the cells with (ηn, knn) constant

drag and linear springs, (ηn, kij(cij)) constant drag and edge-length dependent springs, (ηi(Ai), knn)

area-dependent drag and linear springs and (ηi(Ai), kij(cij)) area-dependent drag and edge-length

dependent springs. See §A.1 for parameter values.

3.8B), cells accumulate in the lower half of the crypt (see figure 3.9). The accumulation happens

to such an extent that the code breaks down. This is because when there is a slight increase in

cell number, the cells become more closely packed with smaller contact edges on all sides. If the

spring constant is fixed then the force due to the springs is high and the cells are quickly forced

away from one another. However when the spring constant is dependent on edge-length, the force

is smaller. As a result, the force pushing the cells apart is weaker, increasing cell packing, creating

smaller cell edges and weaker springs. This causes an increase in cell number and destabilises the

quasi-steady-state crypt dynamics: the number of cells born outnumbers the number being removed

at the top of the crypt, causing the number of cells within the crypt to reach biologically unrealistic

large numbers.

No such problem arises if the spring coefficient is edge-length-dependent and the drag coefficient is

area-dependent (see figure 3.8D). In this case, cells can easily move away from the region of high
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packing as they will be smaller in size and, hence, have a lower drag. As a result, the crypt attains

a quasi-steady state.

Cell position and movement

To understand how the cells move, a series of virtual labelling experiments were performed. At a

fixed time point, all cells in S-phase (defined by their time until mitosis) were labelled. These cells

and their offspring were labelled. After forty minutes the crypt was sectioned into horizontal bands

of unit width and the percentage of labelled cells in each band calculated. A similar calculation

was made nine hours after the simulation started. To reduce the dependence on the simulation’s

stochasticity, the process was repeated for one hundred simulations and the average results plotted

(see figure 3.10).

We notice from figure 3.10 that the average percentage of marked cells is similar for each case

(with/without contact area-dependent springs and with/without area-dependent drag). The per-

centage of marked cells after forty minutes (red) is about 35% in the Wnt stimulated region and 0%

in the unstimulated region. After nine hours (blue), all marked cells have undergone cell division

and so there are more marked cells, some of which have migrated up the crypt.

Virtual dissection

For comparison with experimental results, virtual dissections were performed. Here, the cells are

labelled as in figure 3.10 and readings of the cell locations are taken after forty minutes and nine

hours. However unlike in figure 3.10 where averages were taken across the crypt, here virtual cuts

are made in the crypt by connecting two points, randomly placed on the top of the crypt and the

bottom of the crypt. The cells are then numbered along the cut (with cell 1 at the bottom, see figure

3.11) and it is noted whether each cell is labelled or not. This process is repeated for one hundred

simulations and the average results, showing the percentage of marked cells in each position, are

plotted in figure 3.12.

Figure 3.12 shows that all cases produce similar results except when the spring constant is dependent

on edge-length and drag is constant. In the other three scenarios (figure 3.12 A, C & D) we observe

that after forty minutes, marked cells appear up to position 20 and after nine hours cells they appear

up to position 30. These results compare well with the experimental results presented in [109]. By

contrast, for cells that have contact area-dependent spring coefficients and constant drag coefficients

(figure 3.12B), the results are quite different: after forty minutes, marked cells appear up to position
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Figure 3.10: Series of plots showing how the number of labelled cells varies with distance up the

crypt. At t = 0, cells in S-phase are labelled. These cells and their progeny retain the label. At

t = 40min (red) and t = 9hrs (blue) the crypt is split into horizontal bands of unit width and

calculate the proportion of labelled cells in each band, averaging these results over 100 simulations.

The four plots are for cells with (A) constant drag and linear springs, (B) constant drag and edge-

length dependent springs, (C) area-dependent drag and linear springs and (D) area-dependent drag

and edge-length dependent springs. See §A.1 for parameter values.

30 and after nine hours, they appear up to position 40. This does not compare favourably with

experimental results in [109] and is due to the build-up of cells in the lower part of the crypt (figure

3.8 B). From this we conclude that assuming the cells have edge-dependent springs and constant

drag is unrealistic.
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Figure 3.11: Schematic of a virtual dissection. Two points are randomly placed at the top and the

bottom of the crypt (black circles) and connected by a virtual dissection line. Any cells the line

passes through are numbered, starting at the bottom, and it is noted whether they are marked or

not.

Average cell area and shape

Even though our results compare well with experiments (see figure 3.12), we do not yet know which

of the alternative models describes the crypt most accurately. We now present results that help us

to discriminate between the different cases.

The three measurements taken are average cell size, a measure of cell deformation (area difference)

and a measure of cell shape. The crypt is split into horizontal sections of unit width and the average

measurements for the cells in each band are calculated. This process is repeated for one hundred

simulation readings at different times and the averages are plotted for each case (with/without edge-

length-dependent springs, knn/kij(cij), with/without area-dependent drag, ηi(Ai)/ηn) in figures

3.13, 3.14 and 3.15 respectively.

Cell Area

Figure 3.13 shows clearly that in all cases, cell area increases approximately linearly with distance

from the base of the crypt. There are, however, noticeable differences. Throughout the crypt, cells

that have spring constants which depend on edge length and constant drag (ηn, kij(cij)) are on

average much smaller than in any of the other cases (when ηi(Ai), kij(cij) or when knn). This is

consistent with our findings in figure 3.8B, where cells build up within the crypt.
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Figure 3.12: Virtual dissection of the crypt. Cells are marked as in figure 3.10 at time t = 0 and

readings are taken after t = 40 min (red ·) and t = 9hrs (blue ×). 100 simulations were run and

for each reading, the crypt was sliced at a random angle and the cells are numbered going up the

crypt, as in figure 3.11. Whether the cell in each position is a marked was noted. The percentage of

marked cells for all readings in each position is plotted. The four plots are for cells with (A) constant

drag and linear springs, (B) constant drag and edge-length dependent springs, (C) area-dependent

drag and linear springs and (D) area-dependent drag and edge-length dependent springs. See §A.1

for parameter values.

Area difference

The results presented in figure 3.14 provides a simple measure of how compressed the cells are within

the crypt. We plot Pi = AN − Ai the difference between a cell’s natural area, AN , and its actual

area, Ai. The average value of Pi is calculated in a similar way to the cell area (figure 3.13) by

averaging in bands across the crypt and over time. We observe that all cells are compressed, Pi > 0,

with the most compressed cells at the bottom of the crypt.
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Figure 3.13: Plot showing how average cell area, (Ai), varies with distance from the base of the

crypt and the mechanical properties of the cell. Each line represents different mechanical scenarios

for the cells with (ηn, knn) constant drag and linear springs, (ηn, kij(cij)) constant drag and edge-

length dependent springs, (ηi(Ai), knn) area-dependent drag and linear springs and (ηi(Ai), kij(cij))

area-dependent drag and edge-length dependent springs. Also plotted is the natural area for cells,

in all cases, when the system is at rest (EQ). See §A.1 for parameter values.

Cell Shape

To understand how cell shape varies with position in the crypt, following [182] each cell is assigned a

dimensionless shape measurement, Si (= perimeter2 / area). The values are then averaged as before

and the results plotted in figure 3.15. Low values of Si correspond to rounder cells (Si = 8
√

3 for

hexagonal cells and Si = 4π for circular cells) and high values to elongated cells.

The plots in figure 3.15 reinforce the results presented in figure 3.8, that cells with edge-length

dependent spring constants (kij(cij)) are more hexagonal than cells with constant spring constants

(knn). We notice two distinct plateaux in figure 3.15 for the cells with edge-length-dependent spring

strength: cells in the non-proliferating zone (the top part of the crypt) are on average rounder (with

lower values of Si) than cells in the proliferating zone (the bottom part of the crypt). This can be

explained by the geometrical rearrangement that occurs when a cell divides. For example, a cell that

is a regular hexagon will divide into two irregular pentagons (see figure 3.16), each with a higher

value of Si. Consequently where there are proliferating cells (as in the lower part of the crypt) the

88



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
xc

es
s 

A
re

a

Distance from crypt base, y

 

 

η
i
(A

i
), k

ij
(c

ij
)

η
i
(A

i
), k

nn

η
n
, k

ij
(c

ij
)

η
n
, k

nn

Figure 3.14: Series of plots showing how a simple measure of the compression experienced by the cells

Pi (= AN−Ai, the difference between actual area and target area), varies within the crypt and how it

depends on the mechanical properties of the cells. Each line represents different mechanical scenarios

for the cells with (ηn, knn) constant drag and linear springs, (ηn, kij(cij)) constant drag and edge-

length dependent springs, (ηi(Ai), knn) area-dependent drag and linear springs and (ηi(Ai), kij(cij))

area-dependent drag and edge-length dependent springs. In all cases, the compression decreases

with distance up the crypt. See §A.1 for parameter values.

average value of Si will be larger.

The plots for Si for cells with area-dependent drag and fixed spring constants (ηi(Ai), knn) also

show two plateaux, one associated with the proliferating region and one with the non-proliferating

region. However, on average, the cells are more elongated (higher values of Si) than those with edge-

dependent springs. Cells with fixed drag and spring constants (ηn, knn) do not seem to generate

the same obvious plateaux but the cells are on average rounder at the top of the crypt than toward

the bottom of the crypt.

3.5.2 Mutant cells

A weakness of Meineke et al.’s model [109] is that as stem cells are pinned, a mutant cell could never

populate the entire crypt (see figure 3.7). This is biologically unrealistic as crypts populated only by

mutant cells have been found [131]. Unless all the stem cells suffer a mutation, the stem cells need
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Figure 3.15: Plot of how cell shape varies with distance from the base of the crypt and the mechanical

properties of the cell. The dimensionless shape parameter Si is calculated by squaring the perimeter

of the cell, Ci, and dividing by the cell area, Si = C2
i /Ai. Large values of Si represent highly

elongated cells, low values represent rounder cells. Each line represents different mechanical scenarios

for the cells with (ηn, knn) constant drag and linear springs, (ηn, kij(cij)) constant drag and edge-

length dependent springs, (ηi(Ai), knn) area-dependent drag and linear springs and (ηi(Ai), kij(cij))

area-dependent drag and edge-length dependent springs. Also plotted are lines representing values

for regular hexagonal cells (HEX) and regular pentagonal cells (PEN). See §A.1 for parameter values.

to be unpinned to allow other cells to take their position at the bottom of the crypt (see monoclonal

crypt in figure 3.7).

Using the adapted Meineke model (with unpinned stem cells), we now introduce a mutation into

a transit cell and see how the mutant cell population varies as its properties are changed. The

properties of interest include the drag on the mutant cells, the spring strength between mutant cells

and the distance from the crypt base at which the mutation initially occurs.

Throughout this section all cells have fixed spring constants (not edge-dependent) and a constant

drag, regardless of their size. Cells without mutations proliferate in the lower part of the crypt where

there is sufficient Wnt stimulation. Further details of the parameter values used are presented in

§A.1.

We assume that mutant cells proliferate at a constant rate thoughout the crypt, even where there
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Figure 3.16: Schematic of how cell birth leads to two new cells having elongated shapes. Regu-

lar hexagonal cell (left) undergoes cell division, leading to two elongated pentagonal cells and the

reshaping of the surrounding cells (right).

are low levels of Wnt and ‘normal’ cells would not proliferate. We also allow the drag coefficient

and spring constant of the mutant cells to differ from those of ‘normal’ cells. In the rest of this

section, we present results which can be used to predict conditions under which such a mutant cell

can colonise a crypt.

No Wnt-dependence

We start by supposing that a single mutant cell appears at the crypt base. The mutant cells are

identical to the normal ones except that they proliferate at a constant rate throughout he crypt.

Figure 3.17 shows how for a typical simulation. The mutant cell proliferates and moves off the base

of the crypt (top, right). Its progeny continue to proliferate where normal cells would not be able

to (bottom, left) but are eventually flushed out of the crypt (bottom, right).

Results from repeated simulations (not shown) reveal that mutations that simply render cell pro-

liferation independent of Wnt will not usually dominate the crypt. As with the earlier simulations

showing the eventual monoclonal conversion of a crypt (see figure 3.7) there is a (small) probability

that the mutant cells may become the dominant population within the crypt. However running

several other simulations, where the cell with the initial mutation was changed, showed the mutant

cell population was flushed out of the crypt in each case. We conclude from these simulations that a

mutation in a cell that does not change its mechanical properties is unlikely to result in the mutant

population taking over the crypt.
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Figure 3.17: Results from a simulation showing how a mutant cell and its offspring are flushed out

of a crypt. Mutant cells are marked as grey, transit cells as yellow and differentiated cells as pink.

The snapshots show (top, left) the crypt when a mutation is initiated (t = 0), progression of the

simulation after (top, right) 25 hours, (bottom, left) 50 hours and (bottom, right) 75 hours. The

only difference between mutant cells and normal cells is that mutant cells have less dependence on

Wnt; all mechanical properties are the same (ηm = ηn, kmm = knm = knn). See §A.1 for parameter

values.

No Wnt-dependence and stronger drag

As mentioned in §3.3.6, mutations in APC and β-catenin can affect cell movement by altering cell-

adhesion and the stiffness of a cell’s cytoskeleton in addition to changing a cell’s proliferation rate.

We model this this effect by increasing the drag on a mutant cell, and show below how this changes

the mutant cells’ behaviour.

Figure 3.18 shows that by doubling the drag on mutant cells, ηm = 2ηn, a mutant population is able

to become the dominant population with in the crypt. The initial mutant cell is the same one chosen

as in figure 3.17. This increase in drag means the mutant population is not forced off the base of

the crypt. The mutant population persists and eventually becomes dominant within the crypt.
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Figure 3.18: Results from a simulation showing how a mutant cell and its offspring become the

dominant population within a crypt. Mutant cells are marked as grey, transit cells as yellow and

differentiated cells as pink. The snapshots show (top, left) the crypt when a mutation is initiated

(t = 0), progression of the simulation after (top, right) 100 hours, (bottom, left) 300 hours and

(bottom, right) 400 hours. The mutant cells proliferate at a constant rate independent of Wnt, their

drag coefficients are twice that of normal cells (ηm = 2ηn), but their spring constants are the same

as for normal cells ( kmm = knm = knn). See §A.1 for parameter values.

Unfortunately increasing the drag coefficient leads to a large build-up of cells in the crypt, causing

the simulation to break down. When there is a large number of mutant cells with high drag in the

crypt, the net proliferation rate is higher, as mutant cells can proliferate throughout the crypt and

they move slowly. When these two effects combine we find that more cells are born than are removed

from the crypt, meaning the crypt is no longer in a quasi-steady-state. Eventually the simulation

breaks down when number of cells in the crypt is about 10 times that in a normal crypt. Even

though aberrant crypts may contain more cells than normal ones (as evidence in [141] reports), in

practice it is unlikely that there would be the same build-up shown in the bottom-right snapshot

in figure 3.18. If cells became too small (smaller than a threshold value) then it is likely that cells

would arrest, undergo apoptosis or the crypt wall would buckle [131]. None of these phenomena are

considered in our model; their implementation is the subject of future work.
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Mutation further up the crypt

We now investigate how the position at which the mutant cells appear affects their ability to es-

tablish themselves within the crypt. This is of interest as there is great debate as to whether the

initial mutation occurs in a cell at the bottom and its offspring move up the crypt (“bottom-up

morphogenesis” as suggested by Preston et al. [131]) or whether the mutation occurs further up the

crypt and move downwards (“top-down morphogenesis” as suggested by Shih et al. [153]).

In this case, the proliferating cells beneath the mutant cells exert a stronger mitotic force on the

mutant cells, pushing them up and out of the crypt. As a result the mutant cells require a much

stronger drag force to prevent them from being eliminated from the crypt. Figure 3.19 shows that,

even when the drag coefficient of the mutant cells is ten times that of the normal cells, the mutant

cells are flushed out of the crypt. However, when the drag is greatly increased (to thirty times that

of normal cells) the mutant population is able to establish in the crypt, (see figure 3.20).

Figure 3.20 shows that the mutant population is initially pushed up the crypt (top, right). However

as the mutant cells have a stronger drag than in those in figure 3.19, they move more slowly and

establish a larger patch (figure 3.20, bottom, left). The force required to move the large patch is

much greater than that needed to displace a single cell. This means that it is easier for mutant cells

at the bottom of the patch to displace and compress the normal cells below them than to force the

mutant patch upwards. This allows the mutant patch to expand downwards in the crypt.

The time sequence presented in figure 3.20 illustrates the potential for misinterpretting experimental

data. In particular given only the data at late times t = 150 and t = 300 hours, it would appear as

though a mutation had occurred at the top of the crypt (even though it actually occurred in a cell

near the base of the crypt).

Change in mutant spring strength

As well as varying the drag coefficient, we also vary the spring constant for mutant-mutant and

mutant-normal interactions. We consider these changes as experimental evidence suggests that

mutations in APC and β-catenin change the cells’ adhesion properties [18]. In figure 3.21, we present

results for a case in which the spring constants between normal and mutant cells and between mutant

cells are larger than those between normal cells (knm = 1.5knn, kmm = 2.0knn). In this case, the

mutant cells eventually colonise the crypt. This happens because when kmm > knn, the mutant cells

are less deformable than their normal counterparts. This prevents regions of high cell density from

building up (contrast this with figures 3.18 and 3.20) and enables the mutant cells to eliminate the
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Figure 3.19: Results from a simulation showing how a mutant cell and its offspring are flushed

out of a crypt. Mutant cells are marked as grey, transit cells as yellow and differentiated cells as

pink. The snapshots show (top, left) the crypt when a mutation is initiated (t = 0), progression of

the simulation after (top, right) 50 hours, (bottom, left) 100 hours and (bottom, right) 125 hours.

The mutant cells proliferate at a constant rate independent of Wnt, their drag coefficients are ten

times that of normal cells (ηm = 10ηn), but their spring constants are the same as for normal cells

( kmm = knm = knn). See §A.1 for parameter values.

normal ones from the crypt.

We remark that the fully mutant crypt is in quasi-steady-state with a cell density that is higher

than that of a normal crypt. This is agreement with experimental evidence by Sansom et al. [141],

who report higher levels of cell packing in mutant crypts.

When a crypt contains a homogeneous population of cells, the equations of motion can be charac-

terised by a single parameter, ξT =
kTT

ηT
, where T = M, N depending on cell type. We show this by

combining (3.1), (3.2) and (3.3):

dri

dt
=

kTT

ηT

j=Ni∑

j=1

(|ri − rj | − sij(t))
(rj − ri)

|rj − ri|
, (3.6)
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Figure 3.20: Results from a simulation showing how a mutant cell and its offspring establish them-

selves within a crypt. Mutant cells are marked as grey, transit cells as yellow and differentiated cells

as pink. The snapshots show (top, left) the crypt when a mutation is initiated (t = 0), progression

of the simulation after (top, right) 50 hours, (bottom, left) 100 hours and (bottom, right) 150 hours.

The mutant cells proliferate at a constant rate independent of Wnt, their drag coefficients are thirty

times that of normal cells (ηm = 30ηn), but their spring constants are the same as for normal cells

( kmm = knm = knn). See §A.1 for parameter values.

where ri is the position of cell i, rj the position of cell j and Ni the number of cells adjacent to cell

i.

If we consider a crypt containing only mutant cells for which ηm = 2ηn and kmm = 2knn (see figure

3.21 bottom, right) then the equations of motion are the identical to a crypt containing only normal

cells. This explains how it is possible that the quasi-steady-state mutant crypt in figure 3.21(bottom,

right) arises. In contrast to figure 3.18, in figure 3.21 the number of mutant cells does not build

up as the increased drag on the mutant cells in balanced by the increased spring strength between

mutant cells.

In addition to considering the effect of increasing the spring constant between mutant cells, we also

investigate what happens if we decrease the spring constants between mutant cells (see figure 3.22).
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Figure 3.21: Results from a simulation showing how a mutant cell and its offspring populate a crypt.

Mutant cells are marked as grey, transit cells as yellow and differentiated cells as pink. The snapshots

show (top, left) the crypt when a mutation is initiated (t = 0), progression of the simulation after

(top, right) 100 hours, (bottom, left) 200 hours and (bottom, right) 275 hours. The mutant cells

proliferate at a constant rate independent of Wnt, their drag coefficients are twice that of normal

cells (ηm = 2ηn). The spring constants between two mutant cells is kmm = 2knn and between

mutant and normal cells is knm = 1.5knn. See §A.1 for parameter values.

In this case kmm = knn/4 and knm = knn/2 (all other parameters are as in figure 3.18). These

changes cause the mutant cells to be flushed out of the crypt. The mutant cells are forced together

and offer less resistance to the mitotic pressure exerted by the normal cells, which have stronger

springs.

3.6 Discussion

In this chapter we have adapted a cell-centre model [109] that describes the proliferation, migration

and differentiation of cells within a colorectal crypt. The model includes cell-level mechanics and the

ability to include details of subcellular signalling that influence the cell cycle (see Appendix A.2).
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Figure 3.22: Results from a simulation showing how a mutant cell and its offspring are flushed out

of a crypt. Mutant cells are marked as grey, transit cells as yellow and differentiated cells as pink.

The snapshots show (top, left) the crypt when a mutation is initiated (t = 0), progression of the

simulation after (top, right) 40 hours, (bottom, left) 80 hours and (bottom, right) 120 hours. The

mutant cells proliferate at a constant rate independent of Wnt, their drag coefficients are twice that

of normal cells (ηm = 2ηn). The spring constants between two mutant cells is kmm = 0.25knn and

between mutant and normal cells is knm = 0.5knn. See §A.1 for parameter values.

By using agile computational methods to include these features, we have developed a framework

for a multiscale model of colorectal cancer. The adaptations made to the model take into account

biological features such as Wnt-dependent proliferation, free movement of cells at the base of the

crypt, drag coefficients proportional to cell size, cell-cell adhesion coefficients proportional to the

area of contact between the cells, and the inclusion of mutant cells.

We showed that unpinning the stem cells at the base of the crypt, enabled it to become monoclonal.

When the drag-coefficients depended on cell area, we found that fewer cells built up on the base of

the crypt. Having the cell-cell interaction forces between cells dependent on the amount of contact

between them resulted in the cells having a more hexagonal shape.

When mutant cells were introduced into the crypt, the ability of those with a higher drag, ηm > ηn
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(representing a more rigid cytoskeleton and stronger bonds to the underlying stroma), to colonise

the crypt was higher than those of mutant cells for which ηm = ηn. This effect became more

pronounced as the position at which the initial mutation occurred was further up the crypt. In

this case, the mutant cells required a much stronger drag coefficient than normal cells in order to

establish themselves within the crypt. This is consistent with the finding in our continuum model,

detailed in §2, that the drag on the mutant cells needed to be higher if the initial mutant cell was

further up the crypt.

We uncovered a case that showed how experimental results could potentially be misinterpreted. In

some cases mutant cells need to establish a large population before they start to invade downwards

into a crypt. Before the larger population is established, the mutant cell may have been moved up

the crypt. If this was viewed at a late stage, it may appear that the first mutant cell occurred near

the top of the crypt, when in fact it occurred near the bottom.

Further results showed that it was possible to get a crypt filled entirely with mutant cells when both

the cell-cell interaction fores and drag of mutant cells was increased.

There is biological evidence to suggest that the most common mutations in colorectal cancer are

in APC and β-catenin. Further evidence suggests these mutations lead to cells no longer having

Wnt-dependent proliferation [19, 74], having increased levels of cell adhesion [15], a more rigid

cytoskeleton [115] and lower levels of cell migration [141]. When mutant cells have these properties,

we were able produce a crypt filled only by mutant cells, descended from a single mutant cell. This

“fully adenomatous crypt” has been reported as being one of the earliest stages of colorectal cancer

[131]. Further, the “fully adenomatous crypt” had a higher level of cell packing as reported in [141].

The models developed show good correlation to experiments for the staining and dissection of the

crypt. However we were unable to distinguish which of the mechanical models (constant or edge-

length-dependent springs, constant or area-dependent drag) best reflect the biology, as several of the

models produced qualitatively similar results. We have produced some readings from our simulations

of measureable quantities, such as how cell size and cell shape vary with position in the crypt. We

hope biologists will find these measurements useful and will be able to help us distinguish which

models best reflect the crypt physiology.

When modelling the crypt, we have assumed that the combined effect of cell-cell adhesion (attractive)

and forces conserving cell size (repulsive) could be modelled by linear springs. This assumption was

not ideal as it is difficult to implement stronger or weaker adhesion bonds between cells. For example,

if the spring strength is increased to model stronger bonds between cells, it will pull cells together

faster if they are further than the natural spring length apart. However, when cells are closer than
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the natural spring length apart, it will force them apart faster. This problem could be solved by

using a different constitutive law for cell movement that models cell-cell adhesion and forces restoring

cell size separately. Examples of how this could be done include assuming cells to be deformable

spheres as in other cell-cell centre models such as [48, 145]. However the cost to modelling in this

way is that it requires estimation of more parameters. Having a separate term for cell-cell adhesion

would also allow the inclusion of adhesion dependent on the level of membrane-bound β-catenin.

This has been achieved by authors such as Conde-Ramis et al. [133] for a model of tumour invasion,

and would allow us to have more coupling in our model between protein levels and the mechanical

properties of the cells within our multiscale model of the colorectal crypt.

Another modelling assumption is that the crypt can be viewed as a cylinder. This causes too many

cells to accumulate at the base of the crypt. This has been addressed, in part, by other developers in

the CHASTE project (Alex Fletcher, see [125]) with the development of a “crypt-projection” model.

This model projects a three-dimensional, test-tube shaped crypt onto a two dimensional sheet. This

addresses the problem of cell build-up at the base as cells can transfer forces under the crypt base.

Ideally a full three dimensional model should be developed, but this is beyond the scope of this

thesis.

If a fully three dimensional model of the crypt were to be developed it would be interesting to

incorporate the work of Drasdo et al. [48] to study how crypt buckling can occur due to the build

up of mutated cells. We could then use the model to study how protein-level mutations can lead to

changes in crypt morphology.

Further numerical simulations are needed to confirm the findings in §3.5.2. Here we found that

mutant cells initially near the base of the crypt with a higher drag were more likely to become

the dominant population within the crypt. However, to ascertain how the probability of a mutant

population becoming dominant change as its properties vary, many more simulations are needed -

approximately 100 simulations (each one taking approximately eight hours) for each set of parameter

values. Unfortunately due to time restrictions we were unable to perform the required number of

simulations and therefore leave this as further work.

In summary in this chapter we have developed a multiscale cell-centre model of the crypt. Numerical

simulations reveal that mutant cells which do not have Wnt-dependent proliferation can establish

themselves within the crypt if they have higher levels of cell-substrate adhesion and a more rigid

cytoskeleton. The level cell-substrate adhesion and cytoskeleton rigidity required depends on the

position of the initial mutant cell.

100



Chapter4
Cell-vertex model of the colorectal crypt

4.1 Introduction

I
n the previous chapter we explained how we adapted a cell-centre model [109] of the colorectal

crypt to reproduce several biological phenomena, such as crypt monoclonality. However the

model has several weaknesses. The main weakness arises because the forces related to cell-cell

adhesion are indistinguishable from those designed to conserve cell size. This is because all cell-

cell interactions are modelled by springs connecting neighbouring cells. As a result it is difficult

to model increased (or decreased) cell-cell adhesion. For example, if you were to model increased

cell-cell adhesion by increasing the spring constant, then cells further than the natural spring length

apart would be pulled together faster, but cells closer than the natural spring length would be pushed

away from each other faster.

To address this issue we could adapt the cell-centred model and follow the approach of Schaller

and Meyer-Hermann [145, 146, 147, 148] or Drasdo et al. [48, 49, 57, 68]. These authors treat cells

as deformable spheres and and include terms for volume conservation and contact-area-dependent

cell-cell adhesion. However the shapes the cells can take are limited [29] and often require the time-

consuming Delaunay tessellation to be performed and a Voronoi diagram must be constructed at

each time step [145].

As an alternative to adapting the cell-centre model we use a cell-vertex model. Cell vertex models are

similar to cell-centre models in that both are dynamic lattice-free cell-level models [112]. However

they differ in how the cells are defined. In cell-centre models, cells are defined by a point at their

centre, whereas in cell-vertex models, the polygonal cells are characterised by the location of their

vertices [181] (see figure 4.1).
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Figure 4.1: Schematic showing three prism-shaped cells (1,2,3) that form part of an epithelium.

Each of the cells are of the same height, h, such that the cells can be described by a 2D sheet,

with vertices such as vertex i defined where three cell edges meet. The movement of the vertex i is

dependent on the properties of the surrounding cells such as their size, h×A, perimeter, C, and the

cell-cell contact area, h × L.

The main advantage of cell-vertex models is that they lend themselves to the study of cell-cell

adhesion [27]. This is because connecting vertices define the contact area between two cells and,

in contrast to cell-centre models, no time-consuming Delaunay tessellation or Voronoi diagram is

needed [29]. Cell-vertex models have also been shown to accurately model patterns of cell shapes

found in monolayers [69, 71], whereas cell-centre models are restricted to shapes permitted by Voronoi

tessellation [27].

4.1.1 Outline

In this chapter we develop a cell-vertex model to describe the proliferation and movement of epithelial

cells in a colorectal crypt, paying particular attention to the role of cell-cell adhesion. The chapter

is structured in the following way. In §4.2 we describe the features of the cell-vertex model in more

detail, the results from simulations of the model are presented in §4.3 and finally our findings and

the relative merits of using such a model are discussed in §4.4.
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4.2 The cell-vertex model

In this section we introduce and develop a cell vertex model for a colorectal crypt. In §4.2.1 we

introduce the basic features of a cell-vertex model. In §4.2.2 we explain how the basic model has

been refined to describe a colonic crypt. The boundary conditions and initial conditions required to

complete the model are presented in §4.2.3.

4.2.1 Basic model

The model described in this sub-section is similar to that used by Nagai and Honda [112] to inves-

tigate the formation of epithelial tissues. The basis of the model is that each cell has a free energy

associated with it and vertices move in order to reduce the total free energy of the population of

cells. The model is described below in stages. We start by stating the underlying assumptions. We

then describe how the vertices move, present the equations of motion and finish by describing the

other processes needed for a cell-vertex model.

Assumptions

In order to model the epithelial cells within a 2D cylindrical crypt, we must first make some as-

sumptions:

• Cells are all of the same height. This allows us to treat the cells as a two dimensional monolayer

and thereby greatly reduces the complexity of the problem. This assumption has often been

made in cell-vertex models of epithelium [71, 112, 181, 182, 183] and has often been used when

modelling a colorectal crypt [109, 155].

• Cells can be of only a limited number of types: transit (T ), differentiated (D) or mutant (M).

Specific types of differentiated cells, such as Goblet cells, are ignored.

• All mature cells have the same target size. This may be overly simplistic as some mutant cells

are found to be smaller than normal cells [9, 91]. However this assumption is made by most

other models of the colorectal crypt [57, 109].

• When cells undergo mitosis they split into two equal areas, again a common assumption in

many cell-level models [31, 48, 147].

• Cells are assumed to move in response to passive mechanical effects, such as cell-cell adhesion

and volume conservation; active effects such as chemotaxis are ignored. The main driver of
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Figure 4.2: Figure showing the three cells (1,2,3) which are affected by movement of vertex i. The

surrounding cells have areas, A1, A2, A3 and perimeters C1, C2, C3. Lengths L1, L2, L3 represent the

distances from vertex i to vertices a, b, c respectively.

cell movement in the colorectal crypt is thought to be mitotic pressure [171], although there

is some evidence of active migration especially in the mouse intestinal villi [116]. However the

significance of these phenomena are in the colorectal crypt is unclear [65].

Equations of motion

We consider a population of n epithelial cells each of height h, where each of the polygonal cells is

defined as an ordered list of vertices. Associated with each cell is a free energy and the total free

energy, U , of the population of cells is determined by a summation over all the cells. For each vertex,

the gradient of free energy evaluated at the vertex is assumed to exert a force on the vertex. This

force is balanced by a viscous drag term proportional to the vertex’s velocity. As with the cell-centre

model in Chapter 3, the viscous force represents the breaking and reforming of integrin bonds with

the substrate and rearrangement of the cytoskeleton in the cells surrounding the vertex. It is that

assumed inertial effects are negligible and by balancing the forces on the vertex, we find each vertex

i, at position ri, moves according to the following equation of motion,

ηi
dri

dt
= −∇iU, (4.1)

where t is time, ηi is the drag on vertex i and ∇i is the gradient with respect to vertex i.
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Free energy

The free energy, U , is comprised of three parts, a deformation energy, UD, a membrane surface

tension energy, US , and a cell-cell adhesion energy, UA, as follows:

U = UD + US + UA =
n∑

j=1

(

U j
D + U j

S + U j
A

)

. (4.2)

The terms U j
D, U j

S , U j
A represent, respectively, the deformation energy, membrane surface tension

energy and cell-cell adhesion energy for each cell j and n is the total number of cells.

The volume deformation term aims to ensure that cells attain a target volume [71, 112, 183]. The

deformation energy, U j
D, for cell j, is given by

U j
D = κ(Vj − VN,j)

2 = κh2(Aj − AN,j)
2, (4.3)

where the volume of cell j is Vj = hAj , with Aj the two-dimensional area and h the cell height.

Similarly the natural volume is VN,j = hAN,j , where AN,j is a target area. κ is a positive constant

analogous to an elastic constant per unit volume [71].

The membrane surface tension term is included to conserve membrane length and acts to drive cells

to a circular shape. This concept is often used in cellular Potts models [122] and other vertex models

[142]. The membrane surface energy, U j
S , for cell j, is given by

U j
S = τh2 (Cj − CN,j)

2
, (4.4)

where Cj is the cell’s perimeter (in two dimensions), CN,j is the natural perimeter and τ is a

positive constant. The natural perimeter is the circumference of a circular cell of area AN,j , CN,j =

2(AN,jπ)
1
2 . This functional form is chosen as cells in free suspension generally will tend to a circular

shape [147].

The cell-cell adhesion energy term represents the free energy associated with cadherin and other

bonds on the cell’s membrane. It is proportional to the contact area between the two cells involved

and dependends on the cell types involved. Different cell types can have selective cell-cell adhesion

due to the different types of cadherin junctions in contact [160]. This concept features in most

cell-vertex models [27, 71, 112, 181, 182, 183]. The cell-cell adhesion energy, U j
A, for cell j is given

by

U j
A =

Mj∑

m=1

α (Tj , Tm)hLj,m, (4.5)
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Figure 4.3: Figure showing the lengths used when calculating cell-cell adhesion energy, U j
A, for a

cell j.

where Mj is the total number of vertices in cell j, Lj,m is the length of the edge m, the line

connecting the mth vertex and vertex m + 1, the next vertex in an anticlockwise direction in cell j

(see figure 4.3), Tm is the cell type of the other cell containing edge m, Tj is the type of cell j and

α (Tj , Tm) ≡ α (Tm, Tj) is a positive constant dependent on the cell types in contact. The cell-cell

adhesion energy associated with cells j and m is proportional to the contact area hLj,m between the

two cells involved.

High values of α represent cells which do not want to be in contact, low values of α correspond to

cells that prefer to be in contact. The length Lj,m is counted twice, once by cell j and once by cell

m. The only lengths that are not counted twice are those on an external boundary.

Combining (4.1) - (4.5), the equation of motion for vertex i can be written as

ηi
dri

dt
= −∇iU = −∇i

n∑

j=1



λ(Aj − AN,j)
2 + β (Cj − CN,j)

2 +

Mj∑

m=1

γ (Tj , Tm)Lj,m



 , (4.6)

where λ = κh2, β = τh2, γ (Tj , Tm) = α (Tj , Tm)h and ηi is the average of the drag of the three

surrounding cells.

As the movement of vertex i affects only the free energy of the three surrounding cells [112], the

gradient of free energy, ∇iU , can be written explicitly in terms of these cells as

∇iU =

3∑

k=1

[

2λ(Ak − AN,k)∇iAk + 2β (Ck − CN,k) (∇iLk−1 + ∇iLk+1)

+ γ (Tk, Tk−1)∇iLk+1 + γ (Tk, Tk+1)∇iLk−1

]

(4.7)

where k represents the corresponding cell around the vertex, and Ak, Ck are the cell’s area and
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Figure 4.4: Topological rearrangement of cells via a T1 swap. Before the rearrangement (left), cells

1 and 2 are in contact. Following the rearrangement (right), cells 3 and 4 are in contact. Cells are

represented by numbers 1 − 4 and vertices are represented by letters A–B

perimeter, respectively, (see figure 4.2). Lk represents the length of the connection from vertex i to

the vertex it is connected to that is not part of cell k. For example L1 in figure 4.2 represents the

distance from vertex i to vertex a.

By combining (4.6) and (4.7) and by using the identities in Appendix B.1, the equations of motion

for the vertices can be simplified to a non-linear expression in terms of vertex positions (not shown).

T1 swap

Along with equations of motion we must also allow cells to come into contact and to lose contact

with one another. This is achieved by a topological change known as the T1 swap [50]. It is widely

used in cell-vertex models [50, 71, 112, 181, 182, 183] and can be described with the aid of figure

4.4.

The T1 swap happens in the following way: when the connecting length between cells 1 and 2 (AB

in figure 4.4) is sufficiently small (0.05 natural cell-lengths in our simulations), we move the vertices

(A & B) to positions the same distance away from each other but perpendicular to where they

previously were. The vertices of each cell are updated so cells 1 and 2 lose a vertex and cells 3 and

4 gain a vertex. The edges between vertices are also updated (so A is now connected to B, C, E; B

is now connected to A, D, F; D is now connected to B instead of A; and E is now connected to A
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Figure 4.5: Plot showing how a cell (left) giving birth splits into two (right) along its shortest axis

that passes through the centroid.

instead of B). The result of the T1 swap is that cells 3 and 4 are now in contact with each other as

opposed to cells 1 and 2.

4.2.2 Specialisation for the crypt

As well as the features described in §4.2.1, modifications are made so that the model reflects the

biology of the colorectal crypt. These specialisations are the inclusion of cell birth, cell-cycle models,

the effect of Wnt and accounting for the behaviour of mutant cells.

Cell birth

When a cell reaches the end of the cell cycle, its moments are calculated (Appendix B.2) in order

to determine how to it divides [31]. The cell is split into two equal parts along the shortest axis

(perpendicular to its long axis) through the centroid (see figure 4.5) (If the cell is perfectly symmetric,

for example a hexagon, the cell chooses, at random, an axis to split along). Two new vertices are

placed at the intersection between the dividing line that passes through the centroid and the cell

perimeter, thereby creating two daughter cells from a single parent cell.

It has been suggested that the cleavage plane of a cell during mitosis can be defined by its long axis

or by a tissue-orientated system [143]. As we are unsure of whether mitosis in the colorectal crypt

is tissue-oriented, unless stated, we assume it is based on long-axis orientation.
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Figure 4.6: The cell-cycle model for epithelial cells within a colorectal crypt. Cells are born (top ||),
grow in size through G1 phase, by changing their target area AN , and either become quiescent and

enter G0 phase or carry on through the cell cycle passing through S, G2 and M phase.

Cell-cycle model

As detailed in the previous chapter (see §3.3), the cell cycle is a series of phases (regulated by

protein levels) through which a cell passes before proliferation [2]. To reflect this within our model,

we embed a cell-cycle model within each cell in the simulation. When a cell is born, its age, ta, is

set to zero and it starts at the beginning of G1-phase with target area half that of a mature cell,

AN = A0 (see figure 4.6). The cell is assigned a G1-phase time, tG1
, and hence a cell-cycle time of

tCC = tG1
+tS +tG2

+tM . The duration of the G1 is chosen randomly to ensure that a cell’s offspring

are not synchronised. The values of tS , tG2
and tM are fixed for all cells. Throughout G1-phase,
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Age of cell Phase Cell Target Area

0 < ta ≤ tG1
G1 A0

(

1 +
ta

tG1

)

tG1
< ta ≤ tG1

+ tS S 2A0

tG1
+ tS < ta ≤ tG1

+ tS + tG2
G2 2A0

tG1
+ tS + tG2

< ta ≤ tCC M 2A0

ta ≥ tG1
G0 2A0

Table 4.1: How a cell’s phase and area depend on its age, ta.

0 < ta ≤ tG1
, the target area of the cell grows linearly until it reaches the natural size it will maintain

throughout the rest of the cell cycle, AN = 2A0. If the cell is terminally differentiated it exits the

cell cycle and enters G0-phase, with AN = 2A0, and remains in that phase for the rest of its life,

tCC → ∞. If the cell is a transit cell it passes through the following phases: for tG1
< ta ≤ tG1

+ tS ,

the cell enters S-phase; it enters G2-phase for tG1
+ tS < ta ≤ tG1

+ tS + tG2
; and finally it enters

M -phase for tG1
+ tS + tG2

< ta ≤ tCC . At the end of M -phase the cell splits in two giving birth to

another cell and the cell cycle is restarted for each cell. The details are summarised in Table 4.1.

Wnt-dependent proliferation

To mimic the proliferative architecture of a crypt within our model, cells that are within a threshold

distance of the bottom of the crypt, y = HW , are deemed to be stimulated by Wnt and are termed

transit cells (Type T ); cells above the threshold distance from the base of the crypt are deemed to

have insufficient levels of Wnt and are termed differentiated cells (Type D). Transit cells progress

through the cell cycle and can proliferate, whereas differentiated cells always move from G1 to G0.

Mutations

To account for mutations in APC and β-catenin, we define a new cell type, mutant cells (Type

M), in our model. Mutant cells never enter G0 phase or become differentiated, regardless of their

position; as such these cells can proliferate throughout the crypt.

Since APC and β-catenin are multi-functional proteins, when mutated they alter (i) the behaviour of

a cell’s cytoskeleton [115], (ii) cell-stroma adhesion [141] and (iii) cell-cell adhesion [18]. To account

for (i) and (ii), we assign normal (both transit and differentiated) and mutant cells different drag

terms, ηN and ηM , respectively, and assume that the drag on a vertex, ηi, is the average of the drags

of the three cells that surround it. Consequently for a vertex surrounded by mutant cells the drag
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is ηi = ηM , a vertex surrounded by two mutant cells and one normal cell has ηi = 2ηM/3 + ηN/3,

while a vertex with one mutant cell and two normal cells has ηi = ηM/3 + 2ηN/3 and one involving

three normal cells has ηi = ηN .

To account for (iii), we allow mutant cells to have different surface contact energies. So, for exam-

ple, mutant cells can be made more adhesive to each other than to transit or differentiated cells,

(γ (M, M) < γ (T, M) , γ (M, M) < γ (D, M)), or more adhesive to transit cells than differentiated

cells, (γ (M, T ) < γ (M, D)).

4.2.3 Boundary and initial conditions

The geometry of the crypt is simplified to a two dimensional cylindrical sheet of height, HC , and

circumference, WC . At no point can cells pass into the stroma (surrounding material); cells can only

be removed by being shed into the lumen at the top of the crypt.

At the top of the crypt, if the mean position of a cell’s vertices is more than a distance of HC from

the base, the cell is deemed to be dead and vertices that are not part of any living cell are removed.

This simplification neglects the behaviour of cells on the luminal surface.

If any vertices on the base of the cylinder attempt to move below y = 0, as for the modified cell-

centre model in Chapter 3, they experience a reaction force perpendicular to the base of the crypt

such that they remain on y = 0. Vertices on y = 0 can only move off y = 0 through a T1 swap,

(§4.2.1), with one of the vertices being placed on y = 0 and the other being placed directly above

it. This rule ensures that there is no flux of cells through the base of the crypt and that there are

no gaps in the epithelium.

To account for the periodicity of the cylindrical crypt, any vertices with an azimuthal distance

x > WC have their azimuthal position changed to x 7→ x − WC , where WC is the crypt width.

Similarly any vertices that have an azimuthal distance of x < 0 have their azimuthal position changed

to x 7→ x + WC . Any cells with edges that lie across the x = 0, WC boundary, have the positions of

their vertices temporarily moved when calculating cell areas, edge-lengths and perimeters.

Initially all cells are assumed to be regular hexagons, (apart from those at the top and bottom,

defined to be pentagons) of area
√

3/2. There are no gaps between the cells, which are packed in

rows up the crypt. Cells with a mean vertex position further than HW from the base of the crypt

are assumed to be differentiated, while those closer than HW from the base of the crypt are assumed

to be transit cells. Each transit cell is assigned a stochastically varying cell-cycle time, chosen from

a normal distribution, and the time since the transit cells are born is set to be the cell-cycle time
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multiplied by random number chosen from the uniform distribution (0, 1).

4.2.4 Numerical method and validation

The model is solved numerically in the following way: at the beginning of each time loop, the area,

equation (B.1), and perimeter of each cell is calculated and used to calculate the gradient of free

energy, (4.7), for each vertex. The displacement of each vertex, (4.1), is then calculated using a

forward-Euler method. All vertices are checked to see if any neighbouring vertices are close enough

for a T1 swap; if necessary these swaps are performed. The age of each cell, j, is checked to see

if ta(j) > tCC(j); if so, the cell divides into two daughter cells. The coordinates of all transit cells

are checked: if any transit cells have moved out of the Wnt stimulated zone, y = HW , their type is

changed to be differentiated. Finally, if the mean position of the vertices of any cell has passed the

top of the crypt, y = HC , the cell is removed.

Other explicit solvers such as second-order Runge-Kutta and fourth-order Runge-Kutta were used

to calculate the movement of the vertices. However they did not increase stability of the model

significantly and made the code two or four times slower, respectively, than an Euler solver.

To validate our model we reproduced results from a cell-sorting model [28]. A mixed population

of two types of cells was considered and by varying the cell-cell adhesion constants, γ(I, J), I, J =

1, 2, E, different types of behaviour were observed (the indices 1, 2, E refer to the two cell types and

the region exterior to the cells). The behaviour included: the sorting of one population from the

other, mixing of the two populations to produce a checkerboard pattern and the engulfment of one

population by another.

4.2.5 Notation

The cell-cell adhesion energy is the same for cells of the same type but may depend on the types

of cells in contact. For ease of notation we represent the parameters relating to cell-cell contact as

follows

γ(I, J) = γIJ , where I, J ∈ {T, D, M, E} (4.8)

where T, D, M represent transit, differentiated and mutant cells and E represents the external

boundary.

The drag parameter for transit and differentiated (normal) cells is represented by ηN and for mutant
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cells by ηM . The values of these parameters are discussed in Appendix B.3.

4.3 Numerical results

4.3.1 Normal crypt

The model described in §4.2 was solved for a crypt containing only transit and differentiated cells.

We were able to replicate behaviour that has been observed experimentally, including the movement

of cells from the base to the top of the crypt. We are also able to follow the offspring of a cell within

the crypt.

In all the simulations in this sub-section, the mechanical parameters of all the cells are assumed

identical (unless stated otherwise): the drag parameter (ηi) and parameters relating to cell size (λ)

and shape (β), are given in §B.3. The cell-cell adhesion energy is identical for all cells (γTT = γTD =

γDD = γTE/2 = γDE/2). The values of γTE and γDE are twice that of γTT , as external edges (at

the top and bottom of the crypt) are only counted once (all other edges are counted twice).

Cell lineages and monoclonality

To investigate how a cell and its offspring evolve within a crypt, we label a single transit cell on the

base of the crypt at time t = 0. The marker is retained by the cell and all its offspring as they move

through the crypt. The positions of the marked cells at times t = 0, 50 and 100 hours are shown in

figure 4.7. As well as cell movement up the crypt due to mitotic pressure, there is also some lateral

movement, due to local changes in forces. These local changes are due to stochastically variation in

the cell-cycle durations. This leads to cells dividing at different times and growing at different rates,

which in turn, creates local areas where gradients of free energy are high. We also note, over long

times, that the number of cells born is the almost same as the number of cells removed at the top

of the crypt. This quasi-steady-state is thought to occur in vivo [126].

In figure 4.8, each cell initially on the base of the crypt is individually marked and their offspring

retain that label. The offspring of the progenitor cells form approximately linear columns parallel

to the crypt axis. The fragmentations in the columns and lateral movement are due to stochastic

variation in the cell-cycle times. Figure 4.8 also reveals that some lineages produce more progeny

than others. This can not be due to the cells having different mechanical properties, as all cells are

mechanically identical. The effects are due to the stochastic variations in birth times and cell-cycle
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Figure 4.7: Figure showing how a progenitor cell and its offspring move within a crypt with (left)

t = 0 hours, (centre) t = 50 hours, (right) t = 100 hours. The blue cells arise from the same lineage,

the red cells are transit cells and green cells are differentiated cells not from that lineage. Blue

cells marked with a (∗) are also transit cells; those without a (∗) are differentiated. The vertical

lines at x = 0 and x = WC represent the periodic boundary conditions and the horizontal line at

y = HW represents the Wnt-stimulated region. The units for x and y are given in cell-lengths. The

parameters are as listed in §B.3 except HW = 11.

times.

Eventually, however, one lineage dominates the crypt. This is demonstrated in figure 4.10 where the

lineages of three cells initially on the base of the crypt (figure 4.9) and their progeny are followed.

Figure 4.10 shows the positions of the cells in each lineage after 100 hours (column 1), 1000 hours

(column 2), 1600 hours (column 3) and 2700 hours (column 4).

Initially each lineage contains only one cell (see figure 4.9). However, at t = 100 hours (column 1

in figure 4.7) that cells from the lineage in the third row greatly outnumber those from in the first

two rows. This pattern persists until t = 1000 hours (column 2), at which time the lineage in the

first row no longer has any progeny on the base of the crypt. The lineage represented in the second

row of plots has a similar number of cells to the case when t = 100, whereas the number of cells in

the lineage represented in the third row of plots has greatly increased. At t = 1600 hours (column

3), the lineage in the first row of plots has been washed out of the crypt, and it is dominated by

cells from the lineage represented in the third row. At t = 2700 hours (column 4), the lineage in the

third row accounts for all the cells from the crypt, i.e. the crypt is monoclonal. The time it takes

for the crypt to become monoclonal in this model is comparable to that found for the simulations
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Figure 4.8: Figure showing how the offspring of each progenitor cell, initially on the base of the

crypt, move within a crypt with (left) t = 0 hours, (centre) t = 50 hours, (right) t = 100 hours. The

cells coloured the same are all generated from the same progenitor cell, apart from the red (transit)

and green (differentiated) cells, which are not form any lineage initially on the base of the crypt.

The cells marked with a ∗ are transit cells, all other cells are differentiated cells. The parameters

are the same as figure 4.7.

for the cell-centre model (more details are provided in Chapter 3 and in [110]).

Figure 4.10 also reveals the degree of lateral movement of cells at the base of the crypt. The lineages

in rows 1 and 2 move leftwards whilst those from the lineage in the third row expand leftwards.

From figure 4.11 we can see how the number of cells within each lineage varies with time. The rapid

fluctuations are due to the proliferation of cells. The plot also shows the times at which a lineage is

washed out of the crypt. The time that each lineage remains in the crypt can vary greatly. Some

lineages remain for only a short period of time, whereas others can persist with a relatively low

number of cells in the crypt such as those that are sloughed out of the crypt after 2700 hours. As

mentioned previously, there are no intrinsic differences in the cell lineages that survive, apart from

stochastic variation in the cell-cycle times.

Average cell deformation, velocity and shape

Our numerical simulations reveal that the size and shape of the cells, and the speed with which they

move, depend on their distance from the base of the crypt. Figure 4.12 shows how the average cell

deformation, p, and average velocity up the crypt, vy, vary with distance from the base of the crypt,

115



0 5 10

0

5

10

15

20

x

y
Figure 4.9: Figure showing the initial positions of the progenitor cells later shown with their lineages

in figure 4.10. The left-most marked cell on the bottom row (cyan) is the cell whose lineage represents

the top row of plots in figure 4.10, the yellow cell leads to the second row of plots in figure 4.10 and

the dark-blue cell leads to the third row of plots in figure 4.10.

y. The deformation of a cell, p, is related to the natural area of a cell, AN and its actual area, A,

via p = AN −A. The velocity of a cell is calculated by finding the mean positions of the vertices of

the cell and comparing them to the mean positions of the vertices of the cell one hundred timesteps

(12min) before. We cannot simply measure the velocity of a cell by calculating the movement of

its vertices, as cells can lose and gain vertices from T1 swaps and birth of surrounding cells. To

construct the plots in figures 4.12 and 4.13, the crypt is split into horizontal bands of unit width

(figure 4.12, right) and the averages cell velocity and deformation within each band are calculated.

This process is repeated for 1000 different time readings and the cell deformation and velocity are

averaged over all time readings for each band.

Figure 4.12 (left) shows how the average vertical velocity, vy, varies with y, the distance from the

crypt base. Two distinct regions are apparent: one in which cells are proliferating and one in which

they are not. Where cells are proliferating, y ≤ HW , there is a sharp linear increase in vy. Where

cells are not proliferating, y > HW , there is a linear increase in vy but the increase is less pronounced

than in the proliferating region.

As there are no gaps within the epithelium, cells can only grow during G1 phase if they displace

surrounding cells. Since no cells can escape through the bottom of the crypt, cells are forced up the

crypt, leading to a positive value for vy. Cells further up the crypt within the proliferative region

have a higher upward speed as there are, on average, more cells proliferating below them. Cells in

the non-proliferating region also have a high vy value due to the large number of cells proliferating
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Figure 4.10: Figure shows the progression to a monoclonal crypt. All plots are from the same

simulation and each column represents a different time in the simulation, column 1 - 100 hours,

column 2 - 1000 hours, column 3 - 1600 hours, column 4 - 2700 hours. Each row corresponds to

a different cell lineage within the same crypt, with the initial cell shown in figure 4.9 (top - cyan,

middle - yellow, bottom - blue). All cells in the crypt after 2700 hours have the same progenitor

cell; the cell marked blue in 4.9. All other lineages (for example the lineages marked in rows 1 & 2)

are washed out of the crypt. The progenitor cell that ends up populating the crypt has properties

which are identical to all the other progenitor cells. The parameters are the same as figure 4.7.
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Figure 4.11: Plots showing the cell lineages making up the crypt over time. These plots are for the

same data as shown in figure 4.10. The plot on the left shows how the number of cells of each lineage

within the crypt varies with time, with one lineage of cells (in pink) coming to dominate the crypt.

The plot on the right shows how the number of cell lineage surviving with in the crypt varies with

time. Initially there are 11 cell lineages marked, however over time the crypt is filled by cells of only

one lineage.

below them. The increase in vy is smaller as there are no additional cells proliferating. However

there is a small amount of relaxation of the cells, as shown in the cell deformation plot (figure 4.12

(centre)), causing a small increase in cell velocity.

The cell deformation, p, in figure 4.12 (centre), which primarily measure cell compression, does

not exhibit the same change in behaviour in the proliferating and non-proliferating regions; there

appears to be a linear decrease in cell deformation along the length of the crypt, with the exception

of a boundary layer at its bottom. The decrease in cell deformation with distance up the crypt is

due to the free boundary at the top of the crypt. Cells near the top of the crypt can relax to their

natural area more easily, needing to displace a few cells which would be forced out of the crypt, in

order to create extra space. However cells near the bottom of the crypt would need to force many

cells (encountering a large drag force) to force a cell out of a crypt.

In figure 4.13 (left), we plot the average velocity of the cells in the azimuthal direction, vx, calculating

it in a similar way to the average for vy. The resulting values of vx are negligible (O(10−3)) compared

to those of vy (O(10−1)) and vary more in the proliferating region than in the non-proliferating region.

The variation in the proliferating region is due to cells pushing each other apart when they divide

to produce two daughter cells.

A measure of the shape of the cells is plotted in figure 4.13 (right). For each cell, j, a dimensionless
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Figure 4.12: Plot (left) showing how velocity in the direction of up the crypt, vy = (y(t) − y(t −
100dt))/(100 ∗ dt), and (middle) cell deformation, p (= AN − A) varies with distance from the base

of the crypt, y. To calculate the values of p and vy, average values are calculated for cells in each

band across the crypt (right), these values are then averaged for 1000 different readings of t. The

vertical line at y = HW represents the point at which Wnt is “turned off” and transit cells become

differentiated cells. The parameters are the same as figure 4.7.
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Figure 4.13: Plots showing how (left) azimuthal velocity, vx, and (right) cell shape, S = C2/A, vary

with distance along the crypt axis, y. High values of S represent elongated cells and low values

such as marked by HEX (for regular hexagons) and PEN (for regular pentagons) represent more

symmetric cells. The vertical line at y = HW represents the point at which Wnt is “turned off” and

transit cells become differentiated cells. The values of vx and S are averaged in a similar manner to

figure 4.12. Parameter values are the same as in figure 4.7.

shape parameter Sj = C2
j /Aj is calculated, where Cj is cell j’s perimeter, and Aj is its area. The

lower the value of Sj , the rounder the cell is, high values indicate highly elongated cells [182].

Perfectly circular cells would have Sj = 4π and regular hexagons Sj = 8
√

3. The values are then
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averaged across each horizontal band of unit width and over 1000 time readings.

Figure 4.13 (right) shows that the cells at the top of the crypt are the least elongated and cells at

the base are the most elongated. This is because when cells proliferate, the two daughter cells will

typically be more elongated than the parent cell. For example, a regular hexagon would split into

two elongated pentagons. These more elongated cells will become less elongated over time. Cells

at the very base of the crypt are much more elongated than all other cells in the crypt due to the

forcing boundary condition on y = 0. This condition only allows vertices to move off y = 0 through

T1 swaps.

The shape of the cells is not on average the ideal packing of regular hexagons. Even cells at the top

of the crypt only have the average value of Sj for regular pentagons. This is because viscous drag

acting on the cells means that the cells do not have time to relax to their preferred shape before

they are removed from the top of the crypt.

Tracking of a single cell

To understand how a cell’s properties vary throughout its lifetime we investigated how the area,

shape and position of a single cell vary with time (see figures 4.14 and 4.15). The cell of interest

is initially on the base of the crypt in a quasi-steady-state crypt. It then proliferates at t ≈ 1.

One daughter cell remains on the bottom of the crypt and the other cell (the one that is followed)

moves away. The cell then grows (figure 4.15(a)) and becomes less elongated (figure 4.15(b)). The

cell proliferates twice more, becoming much more elongated each time (figure 4.15(b)). As the cell

moves through the proliferative region, the number of cells forcing it up the crypt increases. Once

the cell moves out of the proliferative region (t ∼ 50), it no longer proliferates but continues to move

up the crypt. As the cell approaches the top of the crypt, it becomes less elongated and closer to its

target area. When the cell reaches the top of the crypt at t ∼ 90 it is sloughed off into the lumen.

The vertical velocity of the cell increases as it moves up the crypt, with the cell taking 45 hours to

move from y = 0.5 to y = 5 and a further 45 to move a much greater distance, y = 5 to y = 21. This

is due to more cells forcing the cell up the crypt as it moves up through the proliferating region.

The cell does not move up the crypt with a constant velocity; the cell moves in surges (see figure

4.15(d)). These surges are due to a number of cells proliferating below the cell at a similar time.

Lateral movement of the cells is much less than vertical movement. This is because the component

of the energy gradient is much smaller than that in the vertical direction. In turn this is due to

there being a large change in average cell deformation from the base to the top of the crypt (see
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Figure 4.14: Series of plots showing a single cell (marked in blue) move throughout the crypt. Plotted

for (left to right) initial position (t = 0), shortly before a cell division (t = 34), shortly after a cell

division (t = 35), shortly after the cell has moved out of the proliferative region (t = 50), shortly

before the cell is to be removed from the top of the crypt (t = 88). Transit cells are coloured red

or blue marked with a ∗, differentiated cells are coloured green or blue without a ∗. The parameter

values are as stated in §B.3.

figure 4.12), but little change azimuthally. From figure 4.15(c), we that note the largest change in

azimuthal distance occurs just after mitosis. This is due to the two daughter cells being forced apart

from each other as they grow.

The small sharp changes in area in figure 4.15(a) are due to T1 swaps. These occur more often in

the proliferative zone, y < HW , where there is a large amount of vertex rearrangement due to the

cell proliferation and growth occurring. This effect also explains the sharp changes in cell shape seen

in figure 4.15(b).
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Figure 4.15: Series of plots showing how (a) the area, Ai (and natural area, ANi
- dashed line), (b)

shape, (c) mean azimuthal position of the vertices, (d) mean distance from the base of the vertices

evolve over time. We also show (e) how the area of the individual cell varies with distance from the

base of the crypt and (f) the path taken by the cell as it moves up the crypt. The circles show when

the cell divides and the vertical dotted lines (t = 49.1, y = 7.2) represent when the cell passes into

the non-proliferating region. In (b) shape values for regular pentagons (PEN) and regular hexagons

(HEX) are shown. The parameter values are as stated in §B.3.

122



Effects of differential cell-cell adhesion

Experimental evidence suggests that variation in levels of membrane-bound β-catenin within a cell

can lead to cell sorting [169]. By implementing a Wnt signalling model in the cell-centre model

described in the previous chapter (see Appendix A.2), we found that the level of membrane-bound

β-catenin changed with distance from the base of the crypt.

Guided by other authors who have studied cell sorting [27, 30], we assumed that the cell-cell contact

energy depended on the cell types in contact. The contact energy between cells of different types

(γTD, T - transit, D - differentiated) was not equal to that of like cells (γTT , γDD).

Figure 4.16 reveals that changing γTD does not strongly influence the behaviour of the cells. In all

cases (when cells of a different type have a preference to be next to each other, figure 4.16 (a), or

cells of a different type do not wish to be next to each other, figure 4.16 (c, d)) the cells behave in

a similar way: they move primarily parallel to the crypt axis with minimal lateral movement.

However, there are noticeable differences at the boundary between transit cells and differentiated

cells. When γTD > γTT = γDD (figure 4.16 (c, d)), the boundary is noticeably smoother than when

γTD ≤ γTT = γDD (figure 4.16 (a, b)), as shown in the lower plots in figure 4.16.

To investigate this behaviour further, we plot the average cell deformation, velocity (azimuthal and

up the crypt) and cell shape versus distance from the crypt base (see figure 4.17). The components

of average velocities of the cells vy and vx, are similar irrespective of the bonding energies between

cells of a different type. The vertical velocity increases sharply in an approximately linear fashion

in the proliferating zone and less rapidly in the non-proliferative zone. In all cases |vx| ≪ |vy| and

vx has less variation in the non-proliferating zone than in the proliferating zone.

The plots of cell deformation and cell shape, however, change significantly when the cell-adhesion

energy between cells of different type, γTD, is varied. When there is a high penalty for cells of

different types being in contact (γTD = 5γTT = 5γDD = 0.05, see figures 4.16(d) & 4.17(d)), the

cell deformation increases on the boundary between transit and differentiated cells and the cells are

highly elongated. This is to be expected as the cells are continuously moving in order to shorten

the length of the interface between the transit and differentiated cells.

Also of interest is the average shape and size of the cells in the non-proliferating region of the

crypt. When γTD 6= γTT , (γTD 6= γDD), the cells are less elongated and less deformed than when

γTD = γTT = γDD. A possible explanation for this behaviour is that if the cells do not sort at the

interface, the differentiated cells adopt a distribution in which they are at a local energy minimum.

However, when there is a large amount of sorting at the interface, the differentiated cells move away
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Figure 4.16: Series of plots (t = 400) showing how changes in cell-cell adhesion influence the move-

ments of stem cell lineages (top) within a crypt. (a) (γTD = 0.5γTT = 0.5γDD = 0.005) (b) (γTD =

γTT = γDD = 0.01) (c) (γTD = 2γTT = 2γDD = 0.02) and (d) (γTD = 5γTT = 5γDD = 0.05). The

lower plots show how the shape of the interface between the transit (red) and differentiated cells

(green) changes as γTD varies. Unless otherwise stated, parameters are as in §B.3.

from the local minimum and organise themselves into a pattern with a lower energy state.

Tissue-oriented mitosis

A different rule for cell mitosis was investigated by Brodland and Veldhuis [31]. In this case of

tissue-oriented birth, the plane of cleavage when a cell divides is parallel to the base of the crypt,

whereas previously we have assume cell-oriented birth, where the cell splits along its short axis.

The effect implementing tissue-oriented birth is shown in figure 4.18. As before, the cells move

primarily up the crypt, however there are noticeable differences. With tissue-oriented mitosis, there

are fewer cells on the base of the crypt: 11 cells in figure 4.18(b) as opposed to 15 cells in 4.18(a).
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Figure 4.17: Series of plots showing how the average cell deformation (top-left), cell shape (=

Perimeter × Perimeter / area) (top-right), vertical velocity (bottom-left), and azimuthal velocity

(bottom-right) vary with distance from the crypt base for the different cell adhesion cases (a, b,

c, d) described in figure 4.16. The crypt is split into unit bands from crypt base, and averages

taken from all the cells within a given band. This is repeated for 100 different time readings. For

comparison, lines are also plotted for regular hexagons (HEX) and pentagons (PEN) in the shape

cell plot (top-left). The parameter values are as stated in figure 4.16.

With tissue-oriented birth transit cells in the crypt appear to be squashed vertically whereas in

cell-oriented birth they are more regular with no obvious direction of deformation.

This behaviour is investigated further by calculating the average cell deformation, shape parameter

and velocity (see figure 4.19). In tissue-oriented birth, the cells in the non-proliferative region are

less deformed and less elongated than the cells with cell-oriented mitosis. The average values of vx

and vy both are less affected, with vy increasing rapidly in the proliferating region and increasing

slowly in the non-proliferating region and |vx| ≪ |vy|.
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Figure 4.18: Plots (t = 400) showing how changing the plane of mitosis from cell-oriented (a) to

tissue-oriented (b) affects the behaviour of the cells. When cells have tissue-oriented birth, lineages

from the same cell form clear unbroken lines and there are fewer cells at the base of the crypt.

Parameter values for (a) and (b) are as stated for (a) in figure 4.16.

4.3.2 Numerical results for crypts containing mutant cells

In order to investigate the early stages of colorectal cancer we now introduce mutant cells into the

crypt. Mutant cells never enter G0 phase and can proliferate throughout the crypt (§4.2.2).

When following the evolution of a mutant cell and its progeny, we simulate a normal crypt (where

the cell adhesion parameters are all equal, γTT = γTD = γDD) until t = 100 hrs and use the resulting

quasi-steady-state as our starting point for all other simulations. We transform a single transit cell

to mutant. This cell and its progeny are labelled and remain mutant throughout their lifespan.

The drag on vertices that are part of mutant cells is changed by varying ηM and the cell-cell

adhesion for mutant cells varied by changing γMM (adhesion between mutant cells), γMT (adhesion

between mutant and transit cells) and γMD (adhesion between mutant and differentiated cells). The

parameter values we use are summarised in Table 4.2.

In this section, we follow a similar procedure to Chapter 3, by initially investigating cells where there

is only a change in proliferation, followed by investigating changing the mutant cells’ drag, initial

position and cell-cell adhesion.
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Figure 4.19: Series of plots showing how the average cell deformation (top-left), cell shape (=

Perimeter × Perimeter / area) (top-right), azimuthal velocity (bottom-left), and velocity up the

crypt (bottom-right) vary with distance from the crypt base for cells with cell-oriented, (a), and

tissue-oriented mitosis, (b). For comparison, results for regular hexagons (HEX) and pentagons

(PEN) are included in the shape cell plot (top-left). Parameter values for (a) and (b) are as stated

for figure 4.16(a).

Mutants with only a change in proliferation

Initially we assume that the only difference between the mutant and normal cells is that mutant

cells can proliferate throughout the crypt. All parameters relating to cell drag and cell-cell adhesion

are the same as normal cells (case 1 in table 4.2). The results presented in the top row in figure

4.20 show the mutant cells increasing in number as they move up the crypt, as they can proliferate

throughout all the crypt.

In this case, the mutant cells do not dominate the crypt, although, due to the monoclonal nature

of crypt (see figure 4.10), there is a (small) probability that such cells may become the dominant
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Case Figure ηM γMM γTM γDM

1 4.20 (top row) ηN γTT γTT γTT

2 4.20 (bottom row) 10ηN γTT γTT γTT

3 4.21 (top row) 20ηN γTT γTT γTT

4 4.21 (bottom row) 30ηN γTT γTT γTT

5 4.22 (top row) 4ηN 2γTT 0.5γTT γTT

6 4.22 (bottom row) 4ηN 0.5γTT 2γTT γTT

Table 4.2: Summary of mutant parameters for each figure in §4.3.2. Values of ηN and γTT are given

in Appendix B.3

population within the crypt. Several other simulations (not shown) in which a different cell at

the base of the crypt was labelled mutant but the cell properties were the same as in figure 4.20

(top) were performed. The mutant population remained small and did not become the dominant

population. We conclude that a mutation in a cell that does not change its mechanical properties is

unlikely to result in the mutant population taking over the crypt. However to check this properly,

many more simulations would need to be run for long times (until t = 2700hrs as in figure 4.10),

varying the initial mutant cell and also the random seed input in the random number generator.

Unfortunately time constraints did not allow us to do this.

Mutants with a larger drag and a change in proliferation

We now investigate the behaviour of mutant cells which not only proliferate throughout the crypt

but also have an increased drag (case 2 in table 4.2). When the mutant cells have a higher drag

than the normal cells, ηM = 10ηN , they typically dominate the crypt (see figure 4.20(bottom)). We

choose the same initial mutant cell as in figure 4.20 (top): the only difference between figure 4.20

(top) and (bottom), is that the drag of the mutant cells is higher in figure 4.20 (bottom).

Higher drag means the mutant cells offer more resistance to movement and a larger force is required

to move them up the crypt. As such, it is easier for mutant cells to move around the crypt, displacing

normal cells laterally, than to move up the crypt (and displace other mutant cells). Eventually the

mutant cells force the normal cells out of the crypt and become the dominant population. We notice

that the cells are more tightly packed when the mutant population dominates the crypt. This is

consistent with experimental results by Sansom et al. [141]: they report higher levels of cell packing

in mutant crypts. Unfortunately the simulation breaks down at t = 200 hours because the cells

become too small, the movement of the vertices becomes unstable and vertices pass through the
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Figure 4.20: Series of plots show how changing the drag on the mutant cells (blue) from being the

same as normal cells, ηM = ηN , (top) to being ten times that of normal cells, ηM = 10ηN , (bottom)

affects whether the mutant population establishes within the crypt. Plots are shown (from left to

right) the initial crypt and the crypt after 50, 100, 150, 200 hours. Transit cells are coloured red

and differentiated cells coloured green. The parameters unless otherwise stated are as in §B.3.

edges of other cells.

Our simulations suggest that increasing the drag on mutant cells increases the likelihood of a mutant

population establishing itself within the crypt. However we must treat any such inferences with

caution, since it is possible for a single normal cell lineage to dominate the crypt (see figure 4.10).

In order to validate our findings, many more simulations should be performed, and the position of

the initial mutant cell varied. Due to limited resources (it took 18 hours to simulate a crypt for 200

hours), we were unable to perform the necessary simulations.
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Cell mutations occurring further up the crypt

We now investigate how the position at which the first mutation appears in the crypt affects its

ability to establish itself within the crypt. This is of interest as there is great debate as to whether

the initial mutation occurs in a cell at the bottom and its offspring move up the crypt (“bottom-up

morphogenesis” as suggested by Preston et al. [131]) or whether the mutation occurs further up the

crypt and move downwards (“top-down morphogenesis” as suggested by Shih et al. [153]).

In figure 4.21, we introduce a mutation into a cell above the base of the crypt. The top row of

plots in figure 4.21, show that when the mutant cells have a drag twenty times that of the normal

cells, ηM = 20ηN (case 4 in table 4.2), the mutant cells are washed out of the crypt: the drag is

not strong enough to balance the mitotic pressure from cells further down the crypt. We also notice

that the normal cells just below the mutant patch are the most deformed (for example in figure 4.21,

after 150 hours). This is due to the normal cells moving around the mutant patch and reflects the

pressure distributions and cell movement described in the continuum model (§2.5.3, figures 2.19 and

2.20).

The lower plots in figure 4.21, show that if the drag on the mutant cells is thirty times that of normal

cells, ηM = 30ηN (case 4 in table 4.2), then it is possible for the mutant population to establish

themselves within the crypt. In this case the drag forces are strong enough to resist the mitotic

force from cells further down the crypt. This allows the mutant cells to form a patch in the crypt.

Similarly to our findings in Chapters 2 and 3, these simulations suggest that mutant cells which

originate away from the base of the crypt must have a much higher drag coefficient if they are

to establish themselves within the crypt. The results in figure 4.21 also show that it would be

possible for top-down morphogenesis to occur, although it is much more difficult for it to occur than

bottom-up morphogenesis (as was shown in figure 4.20).

Mutant cells with differing cell-cell adhesion

In addition to varying the drag coefficient of the mutant cells, we also investigated the effect of varying

the cell-cell adhesion constants. Figure 4.22 shows that changing the adhesion energy between

mutant and transit cells, γMT , and between mutant cells, γMM , greatly changes the behaviour of

the mutant cells.

Firstly, we simulate the case where γMT = 0.5γTT and γMM = 2γTT , so that mutant cells in contact

with each other have a higher free energy than mutant cells in contact with transit cells (case 5 in
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Figure 4.21: Series of plots show how changing the drag on the mutant cells (blue) from being twenty

times that of normal cells, ηM = 20ηN , (top) to being thirty times that of normal cells, ηM = 30ηN ,

(bottom) affects whether the mutant population establishes within the crypt. Plots are shown (from

left to right) the initial crypt and the crypt after 50, 100, 150, 180 hours. Transit cells are coloured

red and differentiated cells coloured green. The parameters unless otherwise stated are as in §B.3.

table 4.2). In this case, the mutant cells move away from each other when moving up the crypt and

there is a large amount of mixing between the mutant and transit cells (see figure 4.22(top)). The

mutant cells remain mixed with the normal cells when the transit cells differentiate. The mutant

cells then move up the crypt more quickly and are flushed out of the crypt with the normal cells.

By contrast, when γMT = 2γTT and γMM = 0.5γTT , so that mutant cells in contact with each other

have a lower free energy than mutant cells in contact with transit cells (case 6 in table 4.2), the

mutant cells remain together in a patch (see figure 4.22 (bottom)). When the mutant cells form a

patch, they move more slowly up the crypt and can produce more offspring while they remain in

the crypt. As a result the mutant cells quickly become the dominant population.
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Figure 4.22: Series of plots show how changing the cell-cell adhesion parameters changes the be-

haviour of mutant cells (blue). The top row of plots show the case when mutant cells are penalised

for being in contact with other mutant cells but have an affinity to be in contact with transit cells,

γMM = 2γTT = 4γMT . The bottom row of plots shows the case when mutant cells have an affinity

to be in contact with other mutant cells and are penalised for being in contact with transit cells,

4γMM = 2γTT = γMT . The drag on the mutant cells is four times that of normal cells ηM = 4ηN

and all other parameters are as mentioned in B.3. Plots are shown (from left to right) the initial

crypt and the crypt after 100, 200, 250, 280 hours. Transit cells are coloured red and differentiated

cells coloured green.

4.4 Discussion

In this chapter we have developed a cell-vertex model to describe the proliferation and migration

of cells in a colorectal crypt. Using a cell-vertex model we could easily distinguish between cell-

cell adhesion forces and cell deformation forces, unlike in our cell-centre model where both effects

are coupled together. The cell-vertex model also lends itself to modelling cell-cell adhesion, as the

contact area can easily be found by calculating the length between neighbouring vertices, dispensing
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with the need to calculate a Voronoi tessellation as for many cell-centre models. The cell-vertex

model also allows us to model cell growth more easily, with the cells’ target area increasing linearly

over the G1 phase.

Similarly to Chapter 3, to model Wnt-dependent proliferation, in the lower part of the crypt, where

Wnt levels are assumed to be high, cells were termed transit cells and could proliferate. Cells in the

upper part of the crypt, where Wnt levels are assumed to be low, were termed differentiated and

could not proliferate.

Using the cell-vertex model, we were able to reproduce results found in the cell-centre model in the

previous chapter. Cells proliferate in the lower part of the crypt and move in response to mitotic

forces parallel to the crypt axis, but with some azimuthal movement. When tracking cells generated

from the same progenitor cell, we were able to see that the crypt became monoclonal.

We also investigated how cell properties varied with distance from the base of the crypt, by averaging

cell behaviour in horizontal bands across the crypt and over time. Analysis of the simulations revealed

that if cell-cell adhesion was the same for all cells, there was an approximately linear decrease in cell

deformation from the bottom to the top of the crypt. The vertical component of average velocity up

the crypt, vy, exhibited a clear pattern of behaviour. In the proliferating region (the bottom part of

the crypt), there was a steep linear increase in vy with distance from the base of the crypt. In the

upper part of the crypt, where cells do not proliferate, the increase in vy is less marked. Although

cells move around the crypt, we found that on average |vx| ≪ |vy|. Additionally, cells became less

elongated as they moved further away from the crypt base.

When the cell-cell adhesion parameters were such that it was less (or more) favourable for cells of a

different type to be in contact than cells of the same type, the cells were more elongated and more

deformed at the interface between transit and differentiated cells. However when the cells moved

into the non-proliferating zone, cells with unequal adhesion parameters were less deformed (and less

elongated) than cells in crypts where the cell adhesion energy was identical for all cells. A possible

explanation for this behaviour could be that if cell-cell adhesion is identical for all cells, then they

adopt a local-minimum-packing formation. However, when there is a large amount of cell movement

to increase (or decrease) the contact between transit and differentiated cells, the cells reorganise

themselves into a lower minimum of free energy as they move up the crypt.

When mutant cells were introduced into the crypt, increasing their drag (representing higher cell-

stroma adhesion and a more rigid cytoskeleton) enabled dominate the crypt. However when the

mutant cells had the same drag as the normal cells, they remained in the crypt but did not become

the dominant population. As the distance from the crypt base at which the initial mutation occurred

133



was increased, our simulations revealed that the drag on the mutant cells needed to be increased

markedly in order for the mutant cells to establish themselves in the crypt.

When the cell-cell adhesion parameters were changed such that the mutant cells bonded preferentially

to transit cells, the mutant cells mixed with the normal cells but did not greatly increase in number.

However when the mutant cells bonded preferentially to themselves, they remained in a patch and

typically became the dominant population in the crypt.

These results imply that drag (modelling cell-stroma adhesion and cytoskeleton rigidity), cell-cell

adhesion and the position of the initial mutant cell are important factors in whether a mutant

population of cells can colonise a crypt. These findings concur with experimental results that suggest

that the most common mutations found in the early stages of colorectal cancer are in β-catenin and

APC [60]. Due to their role in Wnt-signalling, mutations in these proteins not only influence cell

proliferation but also affect cell-cell adhesion [15], lead to a more rigid cytoskeleton [115] and reduce

cell migration [141].

Even though we have obtained some interesting results with the cell-vertex model, it has some

limitations. To verify our findings, many more simulations are needed. At present, the computational

code is written in MatLab and runs relatively slowly, it taking 18 CPU hours for 200 hours of

cellular crypt dynamics. An obvious improvement would be to re-write the code in a faster compiled

programming language, such as C++; this could be done by embedding the model within CHASTE

(see Chapter 3).

Currently the model only has a simple cell-cycle model embedded within it. However we do know

how changes in proteins, such as Wnt, affect the behaviour of cells within the colorectal crypt and

several mathematical models have been developed to describe these phenomena. By embedding the

model in CHASTE, we could include these more-detailed cell-cycle models within our cell-vertex

model. We would then be able to relate the cell-cell adhesion coefficients to the level of membrane-

bound protein β-catenin (which is involved in cell-cell adhesion, as shown in §A.2), and develop a

multiscale cell-vertex model of the colorectal crypt.

In this chapter we have modelled the crypt as the two-dimensional surface of a solid cylinder. This

is reasonable approximation for the main part of a crypt, however it does not model its bowl-shaped

base or the cell migration onto the luminal surface. This problem could be addressed by either

projecting the three dimensional surface of the crypt and lumen onto a two-dimensional sheet or by

extending the model into three dimensions. A longer-term aim is to account for the biomechanical

properties of the underlying stroma which is currently treated as a rigid solid although in practice

it is deformable. Such modifications would enable us to model biological phenomena such as crypt
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buckling and crypt fission due to the over-proliferation of mutant cells.

In summary, in this chapter we have developed a simple cell-vertex model for the colorectal crypt.

As far as we are aware, this approach has not previously been used to model a colorectal crypt. It

has the benefit of enabling us to study differential cell-cell adhesion without producing a Voronoi

diagram at each time step. In addition to modelling the dynamics of normal cells, we also studied the

behaviour of mutant cells. These simulations revealed that cell-substrate adhesion, cell-cell adhesion

and the position of the initial mutant cell play important roles in dictating whether mutant cells

spread within the crypt. We hope that the approach described in this chapter will serve as the

foundation for further models of the colorectal crypt.
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Chapter5
Comparison of the continuum, cell-centre

and cell-vertex models

5.1 Introduction

I
n this thesis we have used three different approaches to model the cellular dynamics within

a colorectal crypt: a continuum model (Chapter 2), a cell-centre model (Chapter 3) and a

cell-vertex model (Chapter 4). In this chapter we assess the relative merits of each modelling

framework and discuss their suitability for the colorectal crypt. To do this, we consider a crypt of

fixed size and run a test problem using each approach. We also discuss the insight gained from each

model and consider how well they agree with experimental findings.

The chapter is structured in the following way: summaries of each model is presented in §5.2; the

models are adapted to facilitate their comparison in §5.3; the behaviour of cells in a normal crypt

is assessed in §5.4; each model is then used to simulate a test problem, where a circular patch of

mutant cells is introduced into a normal crypt in §5.5; a general discussion is presented in §5.6;

before further work and our conclusions are discussed in §5.7.

5.2 Summary of the models

Each model exhibits features that are observed in the crypt. These include its proliferative structure

and how mutations cause changes in cell behaviour. Experimental results [126] suggest that normal

crypts have a proliferative structure, determined by a spatial gradient in Wnt [126], such that cells

toward the bottom of the crypt proliferate but cells toward the top do not [134]. Further experimental

evidence suggests that the most common early mutations in colorectal cancer are in APC and β-
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catenin [60], key proteins in the Wnt-signalling pathway. Mutations in these proteins enable cells to

proliferate independently of Wnt [74]. Such mutant cells have also been shown to have (i) a more

rigid cytoskeleton [115], (ii) higher levels of cell-stroma [141] and (iii) stronger cell-cell adhesion [18].

5.2.1 Continuum model

In Chapter 2, we developed a continuum model to describe the proliferation and movement of cells

in a colorectal crypt. Cell proliferation was modelled by a source term that decreases linearly

with distance along the crypt axis (to reflect its dependence on Wnt). Following Greenspan [64]

and Franks [56], we used Darcy’s law to model cell motion. Two distinct cell populations were

considered: normal and mutant cells. The mutant cells were assumed to proliferate at a constant rate

throughout the crypt and to have a higher viscosity to capture, within a single parameter, effects (i)-

(iii) mentioned above. Model solutions were constructed using a combination of asymptotic analysis

and numerical collocation methods.

Our main findings of the model was that the ability of the mutant cells to remain in the crypt

depended on their viscosity relative to normal cells and the position at which they first appeared. In

general, the mutant cells needed to have a higher viscosity than the normal cells in order to remain

in the crypt. Mutant cells that first appeared near the top of the crypt required a much higher

viscosity to remain in the crypt (or to invade downwards) than those that were initiated near the

base.

5.2.2 Cell-centre model

The continuum model did not allow us to follow lineages generated from a single cell or to have

mutations in single cells. Thus, in Chapter 3 we focussed on an existing cell-centre model [109]

for the proliferation, migration and differentiation of cells within a colorectal crypt. We used agile

computational methods to develop a computational framework, CHASTE, for a multiscale model of

colorectal cancer. This allowed us to include subcellular models of cell behaviour.

In the model, the cells are treated as discrete entities and the mechanical effects are accounted

for by connecting neighbouring cells with linear springs. The neighbouring cells are determined by

a Delaunay tessellation and the cell shapes determined by a Voronoi diagram. Inertial effects are

neglected and cell-cell interaction forces associated with the compression and extension of the springs

are balanced by viscous drag terms to determine cell velocities. The drag on the cells represents

the combined effects of cell-stroma adhesion and cytoskeleton rigidity and is independent of cell-
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cell adhesion. Running simulations of the model, yielded a quasi-steady-state crypt for which the

number of cells born balances the number of cells removed from the top of the crypt, as is the case

in vivo.

The modifications made to the original cell-centre model by Meineke et al. [109] account for biological

features such as Wnt-dependent proliferation, unpinning of cells at the base of the crypt, dependence

of drag on cell size, dependence of cell-cell adhesion on the area of contact between the cells and the

inclusion of mutant cells. Mutant cells proliferate at rates which are independent of Wnt and may

have different cell-cell interaction forces and drag properties to normal cells.

Model simulations yielded behaviour similar to that seen in the continuum model. Cells proliferated

in the lower part of the crypt and were forced upwards by mitotic pressure. The ability of mutant

cells to remain in the crypt depended on their initial position and the magnitude of their drag.

The cell-centre model generates results not evident in the continuum model. For example, the size

of the cells in a fully mutant crypt: when both the cell-cell interaction forces and the cell drag

of mutant cells were increased, a fully mutant crypt, in a quasi-steady state, could be achieved.

This fully mutant crypt had more (smaller) cells than a normal quasi-steady-state crypt, in good

qualitative agreement with experimental findings of Sansom et al. [141]. This could not be seen in

the continuum model, which assumed uniform cell-density in both the normal and the mutant cell

regions.

We investigated the effects of several other changes to Meineke’s original model [109]. By unpinning

the stem cells at the base of the crypt, our simulations revealed that, over long times, the crypt

would be occupied by cells all descended from the same transit cell, i.e. the crypt was monoclonal.

When cell drag was assumed to depend on cell area, we found that fewer cells accumulated on the

base of the crypt. Having the force between cells dependent on the area of contact resulted in the

cells having a rounder shape.

5.2.3 Cell-vertex model

The cell-centre model, from Chapter 3, has some problems in how cell-cell adhesion is modelled:

adhesion is indistinguishable from other cell-cell interaction forces, such as forces concerned with

retaining cell size. The cell-centre model also requires time-consuming Delaunay tessellations and

Voronoi diagrams to be produced at each time step. In order to overcome these problems, in Chapter

4 we developed a cell-vertex model to describe cell proliferation and migration in a colorectal crypt.

The model defines the shape and movement of polygonal cells by their vertices. The cells are
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assumed to have a free energy that comprises terms for cell-cell adhesion and cell deformation. The

gradient of the free energy is assumed to exert a force on the cell vertices, which is balanced by a

drag term proportional to the velocity of the vertices. The vertex model lends itself to modelling

cell-cell adhesion as the contact area between cells can easily be found by calculating the length

between neighbouring vertices (and assuming cells to be of the same height). This dispenses with

the need to create a time-consuming Delaunay tessellation and Voronoi diagram at every timestep

(as is required by many cell-centre models). The cell-vertex model also provides greater control over

cell growth, with cells having a target area which increases linearly over their G1 phase.

Wnt-dependent proliferation is modelled as for the cell-centre model, with cells in the lower part of

the crypt (termed transit cells) able to proliferate and cells in the upper part of the crypt (termed dif-

ferentiated cells) not able to proliferate. As before, mutant cells are assumed to proliferate through-

out the crypt due to the breakdown in the Wnt-signalling pathway.

Using the cell-vertex model, we were able to generate results similar to those found using the cell-

centre model. This included crypt monoclonality for long times and the ability of mutant cells

to remain in the crypt depending on their initial position and their drag (representing cell-stroma

adhesion and cytoskeleton rigidity).

We also used the model to monitor the speed and size of the cells as they moved up the crypt. We

found that cells moved slowly when they were close to the crypt base. However as they moved through

the proliferative region, their speed increased due to the increase in the number of proliferating cells

below them. When the cells moved into the non-proliferating region, they increased in size, tended

to their natural area and became more hexagonal in shape.

The cell-vertex model allowed us to easily change the cell-cell adhesion properties of mutant cells.

This enabled us to demonstrate that cell-cell adhesion has an effect that is independent of cell-stroma

adhesion and cytoskeleton rigidity. If mutant cells have an affinity to bond with other mutant cells,

their chances of dominating the crypt increased.

5.3 Parameter values

In §5.4 and §5.5, we present a qualitative comparison of the three models. Before doing this we must

ensure that the models are as similar as possible. As the basis for comparison, we use the cell-vertex

model as it is the most detailed and involves the largest number of parameters. The changes made

to the cell-centre and continuum models are discussed in §5.3.1 and §5.3.2 and a summary of the
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parameters is given in Table 5.1.

The standard model we use represents a cylindrical crypt of height 21.5 cell lengths and circumference

11 cell lengths (where a cell length is taken as 8µm, the mean of the range of cell diameters (6−10µm)

suggested in [49]). To mimic the Wnt-stimulus, normal cells are assumed proliferate in the lower

third of the crypt while mutant cells proliferate throughout the crypt. The cell-cycle time of the

proliferating cells varies stochastically from cell to cell with mean 16 hours and standard deviation

0.5 hours. We assume that the mechanical parameters associated with the normal cells are the same

throughout the crypt, with all normal cells having the same drag and the same values in the free

energy function. Detailed explanations of how the parameter values were chosen are presented in

Appendix B.

5.3.1 Adaptations to the cell-centre model

To adjust the cell-centre model so that it is comparable with the cell-vertex model, we fix the same

crypt size and cell-cycle times. However the drag coefficient and the spring constant used in the cell-

centre model are not directly comparable to the cell-vertex model. To estimate these parameters,

we compare simulations for the cell-centre and cell-vertex models.

In the cell-centre model, when a crypt contains only normal cells, the combined drag, µi = µn, and

the strength of the springs between neighbouring cells, kij = knn, can appear as a single lumped

parameter, ξ = knn/µn. This parameter was estimated by comparing the average vertical component

of the cell velocity along the crypt axis from the cell-centre and cell-vertex model.

Firstly we take a crypt, of the size and with cell-cycle times of that described above. We simulate the

cell-centre model until it reaches a quasi-steady-state and then for a further 100 hours to determine

how the average cell velocity in the direction of up the crypt, vy varies with distance up the crypt.

This process was repeated for several values of ξ. and then compared with the values of vy for the

cell-vertex model described in Chapter 4 (not shown). The value of ξ that generated velocities vy

that compare best with those from the cell-vertex model is ξ = 85hours−1, as illustrated in figure

5.2, below.

As ξ represents two parameters, knn and µn, we set without loss of generality µn = 1.0 Kg hours−1

and knn = 85 Kg hours−2.

Ideally we would create many more tests to estimate ξ, for example, placing a population of cells

under compression and tension for both the cell-vertex and cell-centre models. Unfortunately time-

constraints prevented us from carrying out these tests.
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Figure 5.1: Sketch of the continuum model of the crypt, when no mutant cells are present. Cells

proliferate in the lower part of the crypt, ȳ ≤ ȳW , where they are subject to the Wnt stimulus.

5.3.2 Adaptations to the continuum model

To ensure consistency of the three models, we needed to change the functional form used to describe

cell proliferation rate for normal cells. In the original continuum model (Chapter 2), it decreased

linearly with (non-dimensional) distance up the crypt, ȳ. However, in the cell-level models, cells

only proliferate in the lower third of the crypt. To facilitate comparison, the source term in the

continuum model was changed to a step function. We allowed proliferation for ȳ ≤ ȳW , where cells

are Wnt-stimulated, and assume there was no proliferation for ȳ > ȳW , where cells are unstimulated

(see figure 5.1). The value of ȳW is set to be ȳW = 1/3, for consistency with the cell-level models.

The balance of mass for the normal cells gives

∇ · v̄ = H(ȳW − ȳ) (5.1)

where v̄ is the cell velocity and H is the Heaviside step function. For the cell velocity, a Darcy

constitutive law is used, so for normal cells, v̄ = −∇p̄, where p̄ is the pressure of the cells.
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Parameter Model Value Units Description

HC All models 21.5 cell lengths Crypt height

WC All models 11 cell lengths Crypt width

HW All models 7.17 cell lengths Proliferative region

tcc Cell-level N (16.0, 0.5) hours Cell-cycle time

k1 Continuum 1/16.0 hours−1 Proliferation rate

ϕ1 Continuum 1.0 Kg−1hours [cell lengths]3 Darcy parameter

kij Cell-centre 85 Kg hours−2 Spring strength

µN Cell-centre 1.0 Kg hours−1 Cell drag (normal cells)

γij Cell-vertex 0.01 Kg hours−2 [cell lengths] Cell-cell adhesion

γiE Cell-vertex 0.02 Kg hours−2 [cell lengths] Cell-boundary adhesion

λ Cell-vertex 1.0 Kg hours−2 [cell lengths]−2 Cell-size constraint

β Cell-vertex 0.1 Kg hours−2 Cell-perimeter constraint

ηN Cell-vertex 100 Kg hours−1 Cell drag (normal cells)

Table 5.1: Table summarising the parameters used in Chapter 5.

Using mass balance and Darcy’s law, discussed in Chapter 2, and new proliferation terms, we change

the terms in the collocation method accordingly. The ratio, β, of crypt radius to crypt height is

calculated from the cell-vertex model as β =
11

21.5 × 2π
.

For comparison with the cell-level models we transform the non-dimensional results from the model

described in §5.3.2 and cast them into dimensional form using the scalings from Chapter 2,

y = HC ȳ, x = HC x̄, p =
k1H

2
C

ϕ1

p̄, v = k1HC v̄, t =
1

k1

t̄. (5.2)

In (5.2) HC is the length of the crypt, which we take to be 21.5 cell lengths (= 21.5 × 8µm). The

proliferation rate of normal cells, k1, is taken as the reciprocal of the average cell-cycle time in the

cell-vertex model, so that k1 = 1/16 hours−1. In the absence of any data to estimate ϕ1, the Darcy

constant for the normal cells, we set D1 = 1.0 Kg hours−1 [cell lengths]3.

5.4 Normal crypts

In this section we use the three models to study the dynamics of a healthy crypt containing only

normal cells and compare the results obtained for each approach.
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Figure 5.2: Plots showing how the averaged vertical component of the cell velocity varies with

distance from the base of the crypt for the continuum, the cell-centre and the cell-vertex models.

The dotted vertical line, y = HW , delineates the upper boundary of the Wnt-stimulated region:

cells proliferate for y ≤ HW and for y > HW they do not.

5.4.1 Velocity

In Chapter 4, we showed vy, the averaged vertical component of the cell velocity, varied with distance

along the crypt axis for the cell-vertex model. The average was computed by splitting the crypt

into horizontal bands of unit width and computing the average velocity for cells in each band. To

compare the cell velocities predicted for each model, we calculate the average cell velocity for the

cell-level models and the cell velocity for the continuum model. The results are summarised in figure

5.2.

In each case, there is a marked change in the velocity profile as we pass from the proliferating region

(0 < y < HW ) to the differentiated region. In the proliferating region all three models exhibit a

linear increase in vy, from zero at the crypt base. There are however differences in the value of vy

on HW , the boundary between the proliferative and non-proliferative region. The value of vy(HW )

is larger for the continuum model than for the cell-level models. This is not due to the choice of

parameter values but to differences in the models. In the continuum model, cells move parallel to

the y-axis so at y = HW , vy = k1HW . Both HW and k1(= 1/tCC) are fixed across all models. The

difference in values of vy(HW ) is due to cellular signals prematurely halting the cell-cycles in the
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cell-level models. In the cell-level models, if a cell moves past y = HW , it is termed differentiated

and can no longer proliferate, even if it is near the end of its cell cycle. This results in many transit

cells failing to proliferate and means that the overall proliferation rate is lower than the constant

rate assumed in the continuum model. In addition, the continuum model assumes fixed cell density,

so that individual cells are incompressible, whereas the cell-level models allow for some degree of

cell compression. Proliferative expansion in the continuum model is entirely accommodated by cell

displacement, whereas in the cell-level models, it is accommodated to some extent by cell compression

leading to lower cell velocities.

There are also differences in the profiles of y > HW . In the cell-level models, vy increases slightly

with y, whereas in the continuum model it remains constant. Again, in the continuum model, the

cells are incompressible, whereas in the cell-level models they can be compressed below their natural

size. In the non-proliferating region, cells in the cell-level models relax, forcing those above them to

move faster. However in the continuum model, the cells are incompressible and there is no relaxation

and the cells reach their maximum velocity at y = HW .

5.4.2 Cell compression

In Chapters 3 and 4 we found that the cells are more compressed toward the bottom of the crypt

than near the top of the crypt. In order to see whether this behaviour is common to all models,

in figure 5.3 we consider how cell compression varies with distance from the crypt base. For the

cell-level models, we plot an average of AN − A, the difference between the cell’s natural area and

its actual area. The average is calculated in a similar way to vy in §5.4.1. For the continuum model,

since the cells are incompressible, we show how pressure varies with distance from the crypt base.

In all three models, cell compression is highest at the base of the crypt and decreases with increasing

distance. For both cell-level models, the decrease in area difference is approximately linear in the

non-proliferative zone, which compares well with the linear decrease in the continuum model.

However there are differences between the models. In the continuum model, we have assumed the

pressure decreases to zero at the top of the crypt. This does not happen in the cell-level models, as

the cells still have not fully relaxed to their natural size by the time they reach the top of the crypt.

This is due, in part, to the cells having insufficient time to relax to their natural area before they

are removed from the crypt. It is also due to the restoring forces being small when the cells are very

close to their natural size.
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Figure 5.3: Plots showing how the compression of the cells varies with distance from the base of

the crypt for (left) the continuum model, (right) the cell-centre model and the cell-vertex model.

For the continuum model, the pressure, p, is plotted; for the cell-centre and cell-vertex models the

difference between actual cell area, A, and natural cell area AN , is plotted. The dotted horizontal

line, y = HW , shows the edge of the Wnt-stimulated region, where for y ≤ HW cells can proliferate

and for y > HW cells cannot.

5.5 Test problem

For further comparison, we ran another test problem on all three models. This involved inserting

a circular patch of mutant cells into a normal crypt (see figure 5.4). We investigated the effect of

varying the drag on the mutant cells and their initial position on the behaviour of the mutant cells

and, in particular, their ability to colonise the crypt.

Results presented earlier (see Chapters 2-4) suggest that relative changes in the drag coefficient of

the mutant cells and their initial position can influence their ability to establish within the crypt.

By choosing this test problem, which is straightforward to implement in all three models, we can

see how the behaviour of the mutant cells changes between the different models. In Chapters 3 and

4, we introduced a single mutant cell at t = 0. Here, by considering a larger group of mutant cells,

we reduce the dependence of our results on the intrinsic stochasticity of the cell-level models.

When simulating the test problem, normal cells proliferate for y ≤ HW , whereas mutant cells

proliferate throughout the crypt. To model changes in drag, we vary the model parameters in the

following way: in the cell-level models, the mutant cells have drag coefficients µM (for the cell-
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Figure 5.4: Sketch of the model for two cell populations, normal cells (initially covering the majority

of the crypt), and mutant cells (initially in the circle x2 + (y − A0)
2 ≤ (MD(0)/2)2) growing on

the surface of a cylindrical crypt. A(t) is the centre of the patch in the vertical direction, initially

A(0) = A0, B(t) is the position of the mutant cell closest to the crypt base and MD(t) is the span

of the mutant patch in the y-direction, where MD(0) = 4 cell-lengths.

centre model) and ηM (for the cell-vertex model) which we vary in the ranges µN ≤ µM ≤ 20µN ,

ηN ≤ ηM ≤ 20ηN , where µN and ηN are the drag coefficients of the normal cells for the cell-

centre and cell-vertex models respectively. In the cell-centre model, the drag acts at the cell centre,

whereas in the cell-vertex model, it acts at each vertex and is the average of the drag on the cells

that surround the vertex. In the continuum model we alter the drag on the mutant cells by changing

D = ϕN/ϕM (the ratio of ϕN , the viscosity of normal cells, ϕM to mutant cells) so that 1

20
< D < 1.

We recognise however, there is limited direct equivalence between the three drag coefficients.

For each model, a patch of mutant cells of diameter MD(0) = 4 cell lengths, centred at (x, y) =

(0, A0), is introduced at t = 0 and simulations performed for different values of the (relevant) drag

coefficient and at different values of A0 (A0 = 3, 7, 11, 15 cell lengths). The position, B(t), of the

lowest point of the patch is recorded every 10 hours (see figures 5.5, 5.6 and 5.7).
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Figure 5.5: Series of plots showing how B(t), the base of the mutant patch, in the continuum model

varies with the drag ratio, D, with position plotted after t = 0, 10, 20, 30 hours. Plots are for

different initial positions of the circular mutant patch of initial radius 2 and azimuthal position x = 0

and y = A0, with (a) A0 = 3, (b) A0 = 7, (c) A0 = 11, (d) A0 = 15.

5.5.1 Test problem results

A common feature of all three models, for all starting positions of the mutant cells, is that the

higher the drag coefficient on the mutant cells, the slower they move and the more likely they are

to invade downwards. This can be explained by the greater resistance offerred by the mutant cells

to the mitotic force exerted on them by the normal cells beneath them (see figures 5.5, 5.6 and 5.7

for the continuum, cell-centre and cell-vertex models respectively).

Another common feature that of all three models is that the cells’ behaviour is dictated by the initial

position of the mutant cells and, in particular, the velocity of normal cells at y = B(0). This is

exemplified by the fact that cases for which A0 = 15, B(0) = 13 (see figures 5.5(d), 5.6(d), 5.7(d))
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Figure 5.6: Series of plots showing how B(t), the position of the lowest cell in the mutant patch in the

cell-centre model varies with the drag ratio, µM/µN , with position plotted after t = 0, 10, 20, 30, 40

hours. Plots are for different initial positions of the circular mutant patch of initial radius 2 and

azimuthal position x = 0 and y = A0, with (a) A0 = 3, (b) A0 = 7, (c) A0 = 11, (d) A0 = 15.

exhibit similar behaviour to that when A0 = 11, B(0) = 9 (see figures 5.5(c), 5.6(c), 5.7(c)). This is

is because the velocity of the normal cells is very similar for both y = 9 and y = 13 (see figure 5.2).

This finding (the dependence on vy(B(0))) is further supported, by the fact that there are more cases

of top-down invasion when the mutant cells are initially near the base of the crypt, A0 = 3, B(0) = 1

(see figures 5.5(a), 5.6(a), 5.7(a)), where the velocity is lower (see figure 5.2).

Some behaviour is model specific. Consider, for example, cases for which the mutant cells initially

move up the crypt (B(t1) > B(0), t1 > 0) but move back down the crypt at later times, B(t2) <

B(t1), t2 > t1. This occurs in the cell-vertex model (when µM = 15µN in figure 5.7(a)) but not

in the continuum or cell-centre models (although it can occur for certain parameter regimes for

the cell-centre model, see figure 3.20). An explanation for this phenomenon is that mutant cells
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Figure 5.7: Series of plots showing how B(t), the position of the lowest cell in the mutant patch in the

cell-vertex model varies with the drag ratio, ηM/ηN , with position plotted after t = 0, 10, 20, 30, 40

hours. Plots are for different initial positions of the circular mutant patch of initial radius 2 and

azimuthal position x = 0 and y = A0, with (a) A0 = 3, (b) A0 = 7, (c) A0 = 11, (d) A0 = 15.

need time to establish a critical mass in the cell level models. Once this mass has been established,

the mutant cells displace the normal cells beneath them in preference to displacing the normal and

mutant cells above.

Other differences between the models concern the ratios of the drag coefficients (of mutant cells to

normal cells) needed for the mutant cells to invade downwards. For example, when A0 = 3, B(0) = 1,

the continuum model predicts downward invasion when 1/D = 4 for downward invasion, whereas a

ratio of ηM/ηN = 10 is needed to achieve the same effect in the cell-vertex model. This discrepancy

can be explained by the fact that drag in the continuum model represents more effects (cell-cell

adhesion in addition to cell-stroma adhesion and cytoskeleton rigidity) than in the cell-level models

(where it does not represent cell-cell adhesion). Hence changing the drag ratio in the continuum
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model has more effect than in the cell-level models.

5.6 Discussion

In the following section we review the three models and discuss their relative merits. We assess the

computational speed of the models in §5.6.1, their biological realism and the insight they give in

§5.6.2 and explain how they could be extended in §5.6.3.

5.6.1 Computation

Since speed of computation is often a limiting factor, we now compare the time it takes to compute

solutions for the three models.

The continuum model is the simplest and fastest. The maximum timestep (60 seconds) needed

to ensure stability (such that it passes the validation tests in §2.5.2) is the largest of the three

models (comparing with values of 10 seconds and 7 seconds for the cell-centre and cell-vertex models

respectively) and fewer calculations are needed at each timestep. The main bearing on the model

run-time is the length of time required to determine the coefficients (∼ 60 for a test problem such

as that in §5.5) that minimise the residual in a system of equations (size ∼ 120). This may be done

quickly by inverting a matrix and finding the least squares error, or more accurately and less rapidly,

by using an iterative minimum finder to minimise the L1. It takes 90 minutes to produce one of the

graphs in figure 5.5 on a desktop machine (Intel Pentium 4, 2.80 GHz, 1GB memory, 512KB Cache)

using Matlab to solve the continuum model.

An additional advantage of the continuum model over the cell-level models is that the computation

time does not depend on the domain size. The model is solved in dimensionless form so that

computation time is independent of the number of cells in the domain (see figure 5.8).

While the cell-centre model requires many more calculations than the continuum model, it still runs

relatively quickly. This is because the associated code was written efficiently in C++, with large

amounts of re-factoring to reduce run-time. It takes 8 hours on a desktop machine to produce a

graph in figure 5.6. Another benefit of using C++ is that it is possible to exploit multi-processor

facilities to run simulations twice as fast as a desktop machine, with up to 8 simulations running

concurrently.

A disadvantage of the cell-centre model is that the computation time greatly increases with the
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Figure 5.8: Plot showing how the runtime changes with the number of cells in the simulation.

Runtime and number of cells normalised for each model for the results mentioned in §5.6.1. Plots

show runtime is constant with cell number for the continuum model, linear for the cell-vertex model

and increases at a greater than linear rate for the cell-centre model. Runtime was calculated by

running, for 200 hours of simulation time, a simulation for a crypt where the width, WC , was varied

and all other parameters are as in table 5.1.

number of cells (see figure 5.8). The model requires a Delaunay triangulation to be performed at

each time-step. The time for the Delaunay triangulation scales like ∼ nlog(n), where n is the number

of cells [152]. This means the model may be unsuitable for very large numbers of cells, as would be

the case if more than one crypt were modelled.

The cell-vertex model is the slowest of the three but this may be because the code is written in

Matlab which is much slower than a compiled language such as C++. However the algorithm for

solving the model may be as fast (or faster) than the cell-centre model. Although the cell-vertex

model has more objects to loop over than the cell-centre model (number of vertices ∼ 2× number

of cells), the cell-vertex model does not require a Delaunay triangulation to be performed at each

timestep (this takes approximately half of the runtime of the cell-centre model). On the other hand,

the timestep needed for stability in the cell-vertex model is smaller than that needed in the cell-centre

model. To compare the computational speeds of the two models rather than the code, the cell-vertex

model should be written in the CHASTE framework; a longer term aim of ours. Currently, when

the model is run in Matlab on a desktop machine, it is three times slower than the cell-centre model
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(it takes 24 hours to produce a graph in figure 5.7).

The runtime of the cell-vertex model scales linearly with the number of cells (as shown in figure

5.8). This means that despite being more detailed than the cell-centre model, the cell-vertex model

would outperform the cell-centre model for large number of cells.

5.6.2 Biological realism and insight

Major tests of a mathematical model are how well it reproduces experimental observations and

whether it generates any new insight. In this section, we assess how well each of the models performs

in these regards.

Comparison with experiments

All three models reproduce the basic features of a normal colorectal crypt. Cells proliferate in the

lower region of the crypt and move up the crypt. However the cell-level models could reproduce more

detailed experimental features, such as crypt monoclonality and realistic snapshots of cell lineages.

Taylor et al. [161] used mitochondrial-DNA staining methods to label lineages generated from a

single cell within a crypt. The lineages resembled wave-like ribbons extending from the base to the

top of the crypt. The cell-level models are able to reproduce similar results (see figure 5.9), however

the continuum model can not. In the continuum model, for a normal crypt, all movement is parallel

to the crypt axis and cells from the same lineage form a vertical band parallel to the crypt axis.

Other data from McDonald et al. [108] reveal that over long times crypts become monoclonal, with

all epithelial cells generated from the same progenitor cell. The cell-level models reproduce this

phenomenon (as shown in §3.5.1 and §4.3.1), whereas the continuum model does not as there is no

azimuthal movement of cells (for a normal crypt).

Sansom et al. [141] reported high levels of cell packing in fully mutant crypts. The cell-level models

were able to reproduce this phenomena but the continuum model could not, as individual cells are

not distinguished in the continuum model. However the cells were under higher pressure in a fully

mutant crypt than in a normal crypt.
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Figure 5.9: Snapshots of a cell lineage from (left) the continuum model, (centre-left) the cell-centre

model, (centre-right) the cell-vertex model and from experiment (right) taken from [73] and [161].

For the continuum, model all movement is parallel to the crypt axis. The dotted horizontal line,

y = HW , shows the edge of the Wnt-stimulated region, where for y ≤ HW cells can proliferate and

for y > HW cells cannot. The two cell-level models show marked cells moving as a waved ribbon

as in the experiments. For the cell-centre model, cells from the lineage are blue, transit cells are

marked yellow and differentiated cells marked pink. For the cell-vertex model, cells from the lineage

are blue, transit cells are marked red (or blue with a white ∗) and differentiated cells marked green.

For the experiment cells from the lineage are marked in blue, other cells are in black.

New Insight

All models showed that mutant cells introduced closer to the base were more likely they were to

remain in the crypt (see §5.5). We also observed that the likelihood of a mutant population remaining

in the crypt depended on how the mutant population was modelled. For example, experimental

evidence suggests that loss in Wnt-dependence leads not only to changes in proliferation but also

to (i) a more rigid cytoskeleton [115], (ii) higher levels of cell-stroma adhesion [141] and (iii) higher

levels of cell-cell adhesion [18]. How easily these three effects can be discriminated depends on the

choice of the model.

In the continuum model we showed that the combined effects of (i)-(iii) influenced whether the

mutant cells remained in the crypt. However we were unable to discriminate between changes in

each process as all three effects were modelled with a single lumped parameter.

In the cell-centre model effects (i) and (ii) were modelled separately from (iii). This enabled us to

show that increased cell-stroma adhesion and a more rigid cytoskeleton can increase the likelihood
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of mutant cells persisting in the crypt.

The cell-vertex model generated results which were similar to those of the cell-centre model for

changes in (i) and (ii). Additionally, the model also gave insight into how changes in cell-cell

adhesion affected the mutant cells. For example, we found that if mutant cells had an affinity to

bind to other mutant cells, their chances of fixating in the crypt was increased (see §4.3.2).

5.6.3 Extensions

Although we have generated some interesting results, there are many model extensions we could

consider. These include simulating the models in a more realistic geometry, applying the model to

multiple crypts, including more subcellular effects and incorporating cell death. In this section, we

discuss the challenges that introducing these features represent.

Geometry

An obvious limitation of all the models we have described is that the crypts are assumed to be

cylindrical, whereas in practice they are test-tube-shaped. By simplifying the bottom of crypt, we

neglect effects such as cells to passing from one side of the crypt to the other via the base of the

crypt. By ignoring the flat surface at the top of the crypt, we neglect features such as cell movement

onto the luminal surface.

Each of the models could be adapted with relative ease by projecting the test-tube shaped crypt

onto a two-dimensional surface. We have previously developed a crypt-projection model for the

continuum model when the crypt is filled entirely of normal cells (not shown) and this could be

fairly easily adapted to include mutant cells. The cell-centre model has been adapted by another

member of the CHASTE group (Alex Fletcher) [125] to project a test-tube-shaped crypt onto a

surface and the cell-vertex method could be similarly adapted.

It would also be interesting to create a fully three-dimensional model for the crypt with cells modelled

as three-dimensional shapes. With a three-dimensional model, we would be able to model cell-cell

adhesion more accurately as we could calculate the contact-area between cells, rather than assuming

all the cells are of the same height. We could also include deformation of the underlying stroma

and model phenomenon such as crypt buckling due to overproliferation of mutant cells. The results

could be compared with those from a continuum model of crypt buckling such as that presented in

[52].
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However there are practical limitations to 3D modelling of crypts. The extra spatial dimension

means, the models would require more memory and hence would run more slowly. For example in

a 2D cell-vertex model, a cell is represented by a single polygonal shape. However in a 3D model,

each cell would have several polygonal faces, increasing the number of vertices. There would also be

difficulties extending the cell-centre model to 3D, particularly when using the Delaunay triangulation

to find neighbouring cells. Attention would need to be paid to placing ‘ghost cells’ (non-existent

cells used when creating a Delaunay triangulation) to prevent cells connecting to cells on the other

side of the crypt.

Multiple crypts

It would also be interesting to investigate further stages of colorectal cancer, such as invasion of

mutant cells into neighbouring crypts and polyp formation. To do this multiple crypts (and large

numbers of cells) would need to be simulated. As mentioned in §5.6.1, this would cause the cell-

centre model to run much more slowly. However the reduction computational speed would be less

pronounced in the cell-vertex and continuum model.

Extensions to include subcellular models

Other model extensions could include further development of the subcellular models within the

cells. For example, β-catenin levels could be coupled to model cell adhesion in greater detail in

a similar way to Ramis-Conde et al. [133]. They assumed that β-catenin membrane proteins were

spread equally over all surfaces and made cell-cell adhesion proportional to the number of proteins

in contact. To do this we could use the membrane-bound β-catenin levels found by incorporating

Van Leeuwen et al.’s Wnt-signalling model [172], as detailed in Appendix A.2. It would also be

interesting to include additional signalling pathways, rather than just canonical-Wnt signalling, to

see how different mutations affect the cells’ behaviour. These may reveal why mutations in either

APC and β-catenin are commonly found in the early stages of colorectal cancer, but very rarely

together. These subcellular effects would be simple to include in the cell-centre and cell-vertex

models but difficult to include in the continuum model.

Cell death

Another factor we have not considered in any great detail is the death of cells when they reach the

top of the crypt. Experimental evidence shows that mutations in APC and β-catenin can alter the

155



levels of proteins related to apoptosis [171]. These changes may affect how mutant cells are shed

into the lumen, possibly causing the cells to undergo apoptosis further down in the crypt.

In the continuum model, this can be addressed by modifying the source term so that it is negative

at the top of the crypt. However, in the cell-level models we have to model how the space left by

a dead cell is filled by surrounding cells. In the cell-vertex model we can shrink the size of the cell

smoothly by decreasing the size of the boundary surrounding the empty space. Then, by using T1

and T2 swaps [50, 113], the empty space can be deleted. In the cell-centre model, cell-death is less

easy to include. When the Voronoi diagram is drawn at the next timestep after a cell is deleted, any

empty space is immediately taken up by the surrounding cells, rather than in the cell-vertex model,

where the empty space shrinks over several time-steps. This means cell-death is easiest to include

in the cell-vertex and continuum model, but less easy to include in the cell-centre model.

5.7 Further work and conclusions

Although we have been able to compare some of the features of the models, further work is needed

to gain a fuller understanding. One such aim would be to investigate the relationship between the

cell-level models. To understand the relationship between the two models, mechanical loading tests

such as those described in [124] could be performed on the models to determine the sensitivity of

the response to the choice of parameters values assessed.

To quantify how cell-cell and cell-stroma adhesion affect the chances of mutant cells remaining in

the crypt, more cell-level model simulations are needed. This could be achieved, by running many

simulations where different initial mutant cells are chosen and the seed in our random number

generator is changed. This would remove the dependence of any results on stochastic effects.

Continuum models are faster to simulate and easier to apply to large scale systems (see §5.6.1) than

discrete cell-level models. As such, one of the further aims of the research would be to develop an

appropriate continuum-model of the crypt that could used to model large sections of the colon. In

the opening chapter of this thesis (§1.3), we introduced several constitutive laws that have be used

to model the epithelium. These include using Darcy’s Law [64] and Stokes’ Law [79], linear elasticity

[77], non-linear elasticity [136] and viscoelasticity [99]. Deciding which constitutive law to use could

be achieved by mechanical testing of the cell-level models, as in [124], and by using homogenisation

techniques [21, 22, 55, 82], to derive a constitutive law from the cell-level models.

Other future aims include developing a 3D version of the model and modelling cell death (see §5.6.3).
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Mathematical models play an increasingly important role in the life sciences [107]. They serve

two main purposes: to simulate experiments and to test hypotheses [149]. When used to simulate

experiments, a model can reveal behaviour that is difficult to view experimentally. For example, when

viewing the epithelial cells in the colorectal crypt, a common approach taken by experimentalists

[131, 153] is to remove sections of the colon from the body. These sections are then fixed using

formalin and paraffin. This means there is no movement of epithelial cells, as happens in the body.

With a mathematical model, we can create in silico experiments where cell movement is shown.

One of the main difficulties in mathematical modelling is choosing how much detail to include in the

model [107, 149]. This has a bearing on the choice of model framework. By developing a model on

a larger scale, the model may provide answers to biological questions but may omit crucial details.

Conversely, a highly detailed model may include details that are irrelevant to the main biological

questions.

Within this thesis, we have demonstrated the benefits of different theoretical frameworks for studying

the proliferation and movement of epithelial cells within a colorectal crypt. We have shown how

cell-level and continuum models can replicate experimental findings and give new insight into the

study of the colorectal crypt.
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AppendixA

Cell-centre model appendices

T
he following appendix contains additional material for the cell-centre model described in

chapter 3. It includes the parameter values used (§A.1) and also an example of how a

Wnt-signalling model could be implemented within the cell-centre model (§A.2).

A.1 Cell-centre model parameters

To simplify the model we scale cell lengths on the natural spring length of a mature cell (∼ 6−10µm)

[49]. The natural spring length of a fully mature cell sij(t) = 1 for t > 1 hour.

If all of the cells in the crypt are mature and not proliferating, there is a stable steady state where

there are no spring forces between the cells. This is when they are packed hexagonally, separated

by a distance of 1 cell length. In this case, all the cells are at rest and the springs between them

are unstretched. We use this state to determine the natural cell area, AN , and edge-length, cN .

Accordingly, AN =
√

3/2 cell lengths2 and cN =
√

3/3 cell lengths.

In the model simulations, unless otherwise stated, the cell-cycle time parameters used were taken

from experimental results reported by Sunter et al. for the large bowel of mice [158]. We used the

data for the crypts found in descending colon marked (i) in [158]. The times given for each phase

of the cell cycle were: M -phase, tM = 0.5 hours; S-phase, tS = 6.2 hours; G2-phase, tG2
= 1.8

hours. To allow for some stochasticity, such that cell-cycle times were not in phase, we assumed

that the duration of the G1-phase time was normally distributed (tG1
∼ N (7.0, 1.0) hours), with the

mean value taken from [158]. The simulations were given a random seed such that the stochastically

varying results could be reproduced.

The size of the crypt was also taken from [158] and given to be 20 cell lengths in circumference and
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26 cell lengths in height.

In Meineke et al.’s original model [109] (on which the model described in Chapter 3 is based), the cell

drag and spring strength are homogeneous for all cells. The movement of the cells is then described

by a single parameter representing the ratio between the spring strength between cells and the drag

on the cell. In our model, the forces between cells and the drag on the cells depend on factors such

as cell type, cell area and contact area between cells. This means cell drag ηi (on cell i), and spring

strength kij (between cells i and j), need to be treated separately. Initially to estimate a parameter

for the spring strength, we run a crypt where all cells are normal (Type n) and the parameters are

homogeneous. As such, the cell movement depends on the ratio knn/ηn. Without loss of generality,

we set ηn = 1.0 kg hours−1.

To estimate a value for knn, the spring constant between normal cells, we use the experimental

evidence that, when filled with normal cells, the crypt is in a quasi-steady state (homoeostasis) [127]

with the number of cells born is equal to the number of cells pushed out of the top of the crypt.

To model this a crypt is filled with normal cells and then simulated with the parameters mentioned

previously. By trial and error, a value for the spring strength is found such that the crypt is in a quasi-

steady state and the movement of the cells was sufficiently damped that the cells move smoothly. A

spring constant between normal cells that fits the required criteria is knn = 30 kg hours−2 and this

is used in all simulations unless otherwise stated.

For cells with edge-dependent spring strength, kij in (3.1) is represented by kij = k̄ij
cij

cN
, where cij

is the contact length between cells i and j. The parameter k̄ij for two normal cells is set to be

k̄ij = k̄nn = 30 Kghours−2 and the natural edge-length set to be cN =
√

3/3 cell lengths (discussed

above). Similarly when the drag is set to be dependent on cell area, the drag is represented by

ηi = η̄i
Ai

AN
, where Ai is the area of cell i, the natural area set to be AN =

√
3/2 cell lengths2

(discussed above). For normal cells, η̄i = η̄n = 1.0 kg hours−1. Parameter values for mutant cells

are as mentioned for the relevant figures in §3.5.2.

To model the dependency of a cell’s proliferation on the level of the protein Wnt, a Wnt gradient

is implemented within the crypt. The Wnt concentration decreases linearly from 1.0 Wnt units (an

arbitrary scale) at the base of the crypt to zero at the top of the crypt. Any normal cells, for which

the Wnt level is above 0.65 units are marked as transit cells and can proliferate; the remainder are

marked as differentiated cells. As the Wnt gradient and the crypt height do not vary with time, the

effect is that any cell less than HW = 9.1 cell lengths from the crypt base can proliferate. Mutant

cells do not have this restriction and can proliferate throughout the crypt. The value of the Wnt

threshold (0.65) was chosen such that the overall proliferation rate in the crypt was the same as for
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Parameter Value units Description

tM 0.5 hours Mitosis-phase

tS 6.2 hours Synthesis-phase

tG2
1.8 hours G2-phase

tG1
∼ N (7.0, 1.0) hours G1-phase

Table A.1: Cell cycle parameters

Parameter Value units Description

ηn 1.0 kg hours−1 Drag on normal cells

knn 30 kg hours−2 Spring strength between normal cells

Table A.2: Parameters for a standard crypt

Meineke et al.’s model [109] (where transit cells divide three times).

For any simulation, the starting point is a quasi-steady state crypt. To create a quasi-steady state

crypt, initially a population of cells are placed in the crypt arranged hexagonally. Each cell is then

given a cell cycle time, tCC and an initial birth time, tB = −UtCC , where U is a uniform random

number. The simulation is then run until t = 300 hours, to a quasi-steady state and this is then taken

as the starting point for any simulation. This is to reflect the starting point of any experiments.

All parameters are summarised in tables A.1-A.5.
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Parameter Value units Description

HC 26 cell lengths Crypt height

HW 9.1 cell lengths Crypt proliferation region height

WC 20 cell lengths Crypt width

Table A.3: Crypt size parameters

Parameter Value units Description

cN

√

3

3
cell lengths Natural edge-length

k̄nn 30 kg hours−2 Spring strength between normal cells

Table A.4: Parameters for a crypt with edge-dependent springs used in §3.5.1

Parameter Value units Description

AN

√

3

2
cell lengths2 Natural Area

η̄n 1.0 kg hours−1 Drag on normal cells

Table A.5: Parameters for a crypt with area-dependent drag used in §3.5.1
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A.2 Incorporation of a Wnt-signalling model

In this section we show how a Wnt-signalling model [172] can be incorporated into the cell-centre

model and how the protein levels can be visualised. A common experimental technique for viewing

the subcellular protein levels is to use GFP (Green Fluorescent Protein) staining [164]. Here, GFPs

attach to the protein of interest and localise where levels of the protein are high. When viewed

under a UV light, the GFPs emit high levels of light [36] from areas where levels of the protein of

interest are high. Using the model developed in Chapter 3, we are able to run in silico GFP staining

experiments and produce results for different mathematical models.

In figure A.1, an in silico GFP staining experiment for the protein β-catenin is performed for two

different hypotheses suggested in Van Leeuwen et al.’s Wnt-signalling model [172]. As mentioned

in Chapter 1, β-catenin is a multi-functional protein and plays a role in proliferation [19], cell-cell

adhesion [40] and cell migration [15]. To perform these functions, the proteins are required to be in

different regions of the cell. For example, to perform cell-cell adhesion tasks the β-catenin proteins

need to be near the membrane; to perform proliferation duties, the β-catenin proteins need to be

in the nucleus. The model by Van Leeuwen et al. uses a system of ODEs to predict the levels of

β-catenin proteins in three different parts of the cell: bound to the membrane, in the nucleus and in

the cytoplasm. The level of β-catenin is determined in part by the level of the protein Wnt within

the cell.

Two hypotheses are modelled by Van Leeuwen et al.: hypothesis 1, where there is a purely competi-

tive scenario in how β-catenin is apportioned between membrane, nucleus and cytoplasm; hypothesis

2, where in the presence of Wnt, β-catenin has a morphological change such that it is less likely to

be membrane-bound. For further details on the model, see [172].

Using the cell-centre model described in Chapter 3, we run simulations where each cell has an

associated Wnt-signalling model, as described in [172]. The Wnt-signalling model is used to describe

the level of β-catenin in each part of the cell (membrane, nucleus and cytoplasm). The level of nuclear

β-catenin is used as an input into a cell-cycle model for each cell, that described by Swat et al. [159].

This cell-cycle model uses a system of ODEs to calculate levels of proteins used to determine when

the cell proliferates.

In figure A.1, we show how the levels of β-catenin (in the membrane, the nucleus and the cytoplasm)

change with the position of the cell. The snapshots are for two different simulations; (left) where

hypothesis 1 was assumed and (right) where hypothesis 2 was assumed in Van Leeuwen et al.’s

Wnt-signalling model [172].
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Figure A.1: Snapshots (t = 500) showing how the levels of β-catenin change with position within

the crypt for when two different hypotheses are assumed in the Wnt signalling model in [172]. (Left)

Hypothesis 1, a purely competitive scenario in how β-catenin is distributed between the membrane,

the nucleus and the cytoplasm; (Right) Hypothesis 2, where in the presence of Wnt, β-catenin

changes such that it is less likely to be membrane bound. Light colours (white on the membrane,

light green for the cytoplasm and nucleus) represent high levels of β-catenin and dark colours (black

on the membrane, dark green for the cytoplasm and nucleus) represent low levels of β-catenin. Plots

show in both cases that cytoplasmic and nuclear β-catenin are high at the base of the crypt and

low at the top. However membrane-bound β-catenin varies much more under Hypothesis 1 (higher

levels at the base, low levels at the top of the crypt), than under hypothesis 2, (levels vary little

within the crypt).

Figure A.1 shows that, for both hypotheses, nuclear levels of β-catenin (involved in proliferation) is

high toward the bottom of the crypt (where Wnt levels are high) and low at the top of the crypt

(where Wnt levels are low). Our results are consistent with experimental evidence that shows cells

proliferating only in the lower half of the crypt [103].

There is a difference in the levels of membrane-bound β-catenin for the two hypotheses, with levels

varying greatly with position in hypothesis 2 and less so in hypothesis 1 (see figure A.2). For

hypothesis 1, the level of membrane-bound β-catenin is high in the presence of Wnt (in the lower

part of the crypt) (around 100 units of β-catenin) and low toward the top of the crypt (around

20 units of β-catenin), where Wnt levels are low. Under hypothesis 2, the cells at the top of the

crypt have similar levels of membrane-bound β-catenin as under hypothesis 1 (around 20 units of

β-catenin). However when the cells are stimulated by Wnt, in the lower part of the crypt, the

β-catenin changes morphologically such that it does not bind as easily to the membrane. The result

is that the level of membrane-bound β-catenin is much lower in cells stimulated by Wnt near the
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Figure A.2: Plots showing how the average β-catenin values within each cell vary with position in

the crypt. The two lines in each plot represent crypts filled with cells where different hypotheses

(hypothesis 1 (Hyp1) and hypothesis 2 (Hyp2))in Van Leeuwen et al.’s Wnt-signalling model [172].

Plots show the average levels of nuclear (top-left), cytoplasmic (top-right) and membrane-bound

(bottom) β-catenin in each cell. To calculate the values in the plots above, the crypt was split into

horizontal bands of width 1, and the average value for cells with centres in that band was calculated.

This process was repeated for 100 different time readings over 500 simulation hours and the average

was taken and is plotted above.

base of the crypt (around 6 units for hypothesis 2 compared to around 100 units in hypothesis 1).

In summary, under both hypothesis, cytoplasmic and nuclear β-catenin levels range from high at the

bottom of the crypt to low at the top of the crypt. Under hypothesis 1, levels of membrane-bound

β-catenin range from high at the bottom to low at the top of the crypt and under hypothesis 2 the

levels of membrane-bound β-catenin remain low throughout the crypt. It would be of interest to

compare these results with experimental GFP staining experiments to see which hypothesis best fits

the data.
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AppendixB

Cell-vertex model appendix

T
he following appendix contains additional material for the cell-vertex model described in

chapter 4. It includes formulae used for calculating the area and lengths of the polygonal

cells (§B.1) and their moments (§B.2). We also include the parameter values and how

they are derived in (§B.3).

B.1 Area and length formulae

By ordering the vertices of each cell in an anti-clockwise manner, we can use a special case of Green’s

theorem [112] to calculate the area of a cell, j, which has M vertices

Aj =
1

2

M∑

m=1

(

xj
myj

m+1 − xj
m+1y

j
m

)

. (B.1)

In (B.1) (xj
m, yj

m) are the x and y coordinates of the mth vertex of cell j. Note that cell j is a fully

enclosed polygon so when m = M , xj
m+1 = xj

1 and yj
m+1 = yj

1.

Movement of a vertex m will affect two terms in the summation (B.1), the (m − 1)th and the mth

terms. Using this information we can calculate ∇mAj , the gradient of Aj associated with moving

the mth vertex:

∇mAj =
1

2




yj

m+1 − yj
m−1

xj
m−1 − xj

m+1



 . (B.2)

For example in figure B.1, the gradient of area for cell 1 associated with the movement of vertex i

would be
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Vertex i

Figure B.1: Figure showing the three cells (1,2,3) which are affected by movement of vertex i. The

surrounding cells have areas, A1, A2, A3 and perimeters C1, C2, C3. Lengths L1, L2, L3 represent the

distances from vertex i to vertices a, b, c respectively.

∇iA1 =
1

2




yb − yc

xc − xb



 , (B.3)

where (xb, yb) and (xc, yc) are the coordinates of vertices b and c, respectively.

For the energy constraints on cell-cell adhesion, U j
C , and membrane shape, U j

S , in (4.2), it is necessary

to calculate ∇iL, the gradient of length L associated with moving vertex i:

∇iL =
1

L




xi − X

yi − Y



 , (B.4)

where L is the length of the connection of interest, (xi, yi) and (X, Y ) are the coordinates at the

endpoints. For example, in figure B.1, for the line segment L1 connecting vertices i and a, the

gradient is found to be

∇iL1 =
1

L1




xi − xa

yi − ya



 . (B.5)

B.2 Moments

As mentioned in §4.2.2, when a cell undergoes mitosis it is split in two along its shortest axis through

the centroid. To calculate the shortest axis, the moments of the cell are calculated. This is done in
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the following way [189]:

Ixx = − 1

12

m=M∑

m=1

(xm+1 − xm)
(
y3

m + y2
mym+1 + ymy2

m+1 + y3
m+1

)
, (B.6)

Iyy =
1

12

m=M∑

m=1

(ym+1 − ym)
(
x3

m + x2
mxm+1 + xmx2

m+1 + x3
m+1

)
, (B.7)

Ixy =
1

24

m=M∑

m=1

(
x2

mym+1 (2ym + ym+1) − x2
m+1ym (ym + 2ym+1) (B.8)

+ 2xmxm+1

(
−y2

m + y2
m+1

))
,

where M is the total number of vertices a cell has, (xm, ym) are the coordinates of the mth vertex in

the cell and (xm+1, ym+1) are the coordinates of the vertex one position further anti-clockwise than

the mth vertex of the cell.

The angle of the shortest axis is determined by calculating the eigenvector corresponding to the

smaller eigenvalue of the 2 × 2 matrix




Ixx Ixy

Ixy Iyy



 [189].

B.3 Parameter values

In this section, we list the parameter values of the cell-vertex model described in §4 and, where

possible, explain how they were obtained.

For simplicity, all lengthscales are scaled by the width of a fully mature cell, taken as ∼ 6 − 10µm

[49]. We assumed, as in Chapter 3, that the cells will be in a stable steady-state if arranged in a

regular hexagonal pattern of distance 1 cell length apart. Thus the natural area of a fully mature cell

is AN,j =
√

3/2 cell lengths2 and the natural size of a newly born cell is A0 =
√

3/4 cell lengths2.

For the natural perimeter length, we set the natural cell area to be that of a circle, CN,j =

2(AN,jπ)0.5 cell lengths.

We take the crypt size to be similar to that Meineke et al. [109] used for mouse intestinal crypt, so

that the crypt is 21.5 cell lengths long and 11 cell lengths in circumference. Unfortunately due to

the time the simulation took to run we could not run the simulation for a human colorectal crypt

(typical length 40−60 cell lengths and ∼ 25 cell lengths in circumference [7, 137]). This would have

required simulations for a larger crypt with many more cells, and hence taken much longer to run

the simulations.
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We took the proliferating region, where the cells are stimulated by Wnt, to be the same size as in

the previous chapter for the cell-centre model, HW = HC/3.

The duration of each of the different phases of the cell cycle were taken from [95] and are detailed

in table B.1, with stochasticity added to ensure that not all cells are synchronised.

The parameters related to free energy, λ, β and γTT , and the drag coefficient were estimated such

that the cell movement fitted two criteria: the crypt was in a quasi-steady state (the number of

cells born is equal to the number removed at the top of the crypt) and the movement of the vertices

was stable, such that they moved smoothly and no vertices passed through edges of other cells. If

the drag is too high, the cells build up in the crypt, making it no longer in a quasi-steady state.

If the cell deformation parameter, λ, is too low, cells are too easily deformed and vertices can pass

through other cell edges. If the cell perimeter constraint is too low, the cells end up too elongated.

A parameter regime that fitted these constraints was ηN = 100, λ = 1.0, γTT = γTD = γDD =

0.01, γTE = γDE = 0.02, β = 0.1. Note that γTE and γDE are twice the value of all other cell-

adhesion parameters as external edges are counted once when all other edges are counted twice.

When mutant cells were introduced into the crypt, the parameters were set to be the same as that

for normal cells unless otherwise stated, ηM = ηN = 100, γMM = γMT = γMD = 0.01, γME = 0.02.

The values of the parameters are summarised in the tables B.1-B.4.

Parameter Value units Description

tM 2.0 hours Mitosis-phase

tS 8.0 hours Synthesis-phase

tG2
2.0 hours G2-phase

tG1
∼ N (4.0, 0.5) hours G1-phase

Table B.1: Cell cycle parameters for the cell-vertex model
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Parameter Value units Description

γTT 0.01 kg cell lengths hours−2 Transit and Transit

γTD 0.01 kg cell lengths hours−2 Transit and Differentiated

γDD 0.01 kg cell lengths hours−2 Differentiated and Differentiated

γTE 0.02 kg cell lengths hours−2 Transit and External Boundary

γDE 0.02 kg cell lengths hours−2 Differentiated and External Boundary

γTM 0.01 kg cell lengths hours−2 Transit and Mutant

γDM 0.01 kg cell lengths hours−2 Differentiated and Mutant

γMM 0.01 kg cell lengths hours−2 Mutant and Mutant

γME 0.02 kg cell lengths hours−2 Mutant and External Boundary

Table B.2: Cell-cell adhesion parameters for the cell-vertex model

Parameter Value units Description

λ 1.0 kg cell lengths−2hours−2 Cell-size constraint

β 0.1 kg hours−2 Cell-perimeter constraint

Table B.3: Cell deformation parameters for the cell-vertex model

Parameter Value units Description

ηN 100 kg hours−1 Drag on normal cells

ηM 100 kg hours−1 Drag on mutant cells

Table B.4: Drag parameters for the cell-vertex model

169



References

[1] M. Alber, N. Chen, T. Glimm, and P.M. Lushnikov. Multiscale dynamics of biological cells with

chemotactic interactions: From a discrete stochastic model to a continuous description. Phys. Rev. E,

73(5):51901, 2006.

[2] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. The Molecular Biology of the Cell

(ed.). New York: Garland Science, 2002.

[3] D. Ambrosi and F. Guana. Stress–modulated growth. Math. Mech. Solids, 12(3):319–342, 2005.

[4] D. Ambrosi and F. Mollica. On the mechanics of a growing tumor. Int. J. Eng. Sci., 40(12):1297–1316,

2002.

[5] D. Ambrosi and F. Mollica. The role of stress in the growth of a multicell spheroid. J. Math. Biol.,

48(5):477–499, 2004.

[6] S. Anwar, I.M. Frayling, N.A. Scott, and G.L. Carlson. Systematic review of genetic influences on the

prognosis of colorectal cancer. Brit. J. Surg., 91(10):1275–1291, 2004.

[7] K. Araki, T. Ogata, M. Kobayashi, and R. Yatani. A morphological study on the histogenesis of

human colorectal hyperplastic polyps. Gastroenterology, 109(5):1468–74, 1995.

[8] R.P. Araujo and D.L. McElwain. New insights into vascular collapse and growth dynamics in solid

tumors. J. Theor. Biol., 228(3):335–46, 2004.

[9] N. Arber, H. Hibshoosh, S.F. Moss, T. Sutter, Y. Zhang, M. Begg, S. Wang, I.B. Weinstein, and

P.R. Holt. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis.

Gastroenterology, 110(3):669–674, 1996.

[10] P. Armitage and R. Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis.

Br J Cancer, 8(1):1–12, 1954.

[11] N.J. Armstrong, K.J. Painter, and J.A. Sherratt. A continuum approach to modelling cell–cell adhe-

sion. J. Theor. Biol., 243(1):98–113, 2006.

[12] F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data structure. ACM

Comput. Surv., 23(3):345–405, 1991.

170



[13] S.P. Bach, A.G. Renehan, and C.S. Potten. Stem cells: the intestinal stem cell as a paradigm.

Carcinogenesis, 21(3):469–476, 2000.

[14] E. Batlle, J. Bacani, H. Begthel, S. Jonkeer, A. Gregorieff, M. van de Born, N. Malats, E. Sancho,

E. Boon, T. Pawson, S. Gallinger, S. Pals, and H. Clevers. EphB receptor activity suppresses colorectal

cancer progression. Nature, 435(7045):1126–1130, 2005.

[15] E. Batlle, J.T. Henderson, H. Beghtel, M.M.W. van den Born, E. Sancho, G. Huls, J. Meeldijk,

J. Robertson, M. van de Wetering, T. Pawson, and H. Clevers. β-Catenin and TCF Mediate Cell Posi-

tioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB. Cell, 111(2):251–

263, 2002.

[16] K. Beck. Extreme programming explained: embrace change, Second Edition. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA, 2004.

[17] A. Bertuzzi and A. Gandolfi. Cell kinetics in a tumour cord. J. Theor. Biol., 204(4):587–99, 2000.

[18] M. Bienz. β-Catenin: A Pivot between Cell Adhesion and Wnt Signalling. Curr. Biol., 15(2):64–67,

2005.

[19] M. Bienz and H. Clevers. Linking Colorectal Cancer to Wnt Signaling. Cell, 103(2):311–320, 2000.

[20] M. Bienz and F. Hamada. Adenomatous polyposis coli proteins and cell adhesion. Curr. Opin. Cell.

Biol., 16(5):528–35, 2004.

[21] M. Bodnar and JJL Velazquez. Derivation of macroscopic equations for individual cell-based models:

a formal approach. Math. Methods Appl. Sci., 28(15):1757, 2005.

[22] M. Bodnar and JJL Velazquez. An integro-differential equation arising as a limit of individual cell-

based models. J. Differ. Equations, 222(2):341–380, 2006.

[23] B.M. Boman, R. Walters, J.Z. Fields, A.J. Kovatich, T. Zhang, G.A. Isenberg, S.D. Goldstein, and J.P.

Palazzo. Colonic Crypt Changes during Adenoma Development in Familial Adenomatous Polyposis

Immunohistochemical Evidence for Expansion of the Crypt Base Cell Population. American Journal

of Pathology, 165(5):1489–1498, 2004.

[24] P. Bongrand. Ligand-receptor interactions. Rep. Prog. Phys, 62:921–968, 1999.

[25] J.L. Bos. ras Oncogenes in Human Cancer: A Review. Cancer Res, 49(17):4682–9, 1989.

[26] C.J.W. Breward, H.M. Byrne, and C.E. Lewis. The role of cell-cell interactions in a two-phase model

for avascular tumour growth. J. Math. Biol., 45(2):125–152, 2002.

[27] G. W. Brodland and H. H. Chen. The mechanics of cell sorting and envelopment. J. Biomech.,

33(7):845–51, 2000.

[28] G.W. Brodland. The Differential Interfacial Tension Hypothesis (DITH): A Comprehensive Theory

for the Self-Rearrangement of Embryonic Cells and Tissues. J. Biomech. Eng., 124:188, 2002.

[29] G.W. Brodland. Computational modeling of cell sorting, tissue engulfment, and related phenomena:

A review. Applied Mechanics Reviews, 57:47, 2004.

171



[30] G.W. Brodland and H.H. Chen. The Mechanics of Heterotypic Cell Aggregates: Insights From Com-

puter Simulations. J. Biomech. Eng., 122:402, 2000.

[31] G.W. Brodland and J.H. Veldhuis. Computer simulations of mitosis and interdependencies between

mitosis orientation, cell shape and epithelia reshaping. J. Biomech., 35(5):673–681, 2002.

[32] H. Byrne and L. Preziosi. Modelling solid tumour growth using the theory of mixtures. Math. Med.

Biol., 20(4):341, 2003.

[33] H.M. Byrne, J. King, D. McElwain, and L. Preziosi. A two-phase model of tumour growth. Appl.

Math. Lett, 16:567–573, 2003.

[34] J. Cairns. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Nat. Acad.

Sci. U.S.A., 99(16):10567–10570, 2002.

[35] J.R. Cary, S.G. Shasharina, J.C. Cummings, J.V.W. Reynders, and P.J. Hinker. Comparison of

C++ and Fortran 90 for object-oriented scientific programming. Computer Physics Communications,

105(1):20–36, 1997.

[36] M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher. Green fluorescent protein as a

marker for gene expression. Science, 263(5148):802–805, 1994.

[37] W. W. Chang and C. J. Whitener. Histogenesis of tubular adenomas in hereditary colonic adenomatous

polyposis. Arch. Pathol. Lab. Med., 113(9):1042–9, 1989.

[38] R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J.A. Izaguirre, T. Glimm, H.G.E. Hentschel,

J.A. Glazier, S.A. Newman, and M.S. Alber. On multiscale approaches to three-dimensional modelling

of morphogenesis. J. R. Soc. Interface, 2(3):237–253, 2005.

[39] C.Y. Chen, H.M. Byrne, and J.R. King. The influence of growth-induced stress from the surrounding

medium on the development of multicell spheroids. J. Math. Biol., 43(3):191–220, 2001.

[40] H. Chen, N.E Paradies, M. Fedor-Chaiken, and R. Brackenbury. E-cadherin mediates adhesion and

suppresses cell motility via distinct mechanisms. J. Cell Sci., 110(3):345–356, 1997.

[41] H. Clevers. Wnt/β-Catenin Signaling in Development and Disease. Cell, 127(3):469–480, 2006.

[42] H. Clevers and E. Batlle. EphB/EphrinB Receptors and Wnt Signaling in Colorectal Cancer. Cancer

Res., 66(1):2–5, 2006.

[43] A. Cockburn and L. Williams. The Costs and Benefits of Pair Programming. Extreme Programming

Examined, pages 223–248, 2001.

[44] V. Cristini, J. Lowengrub, and Q. Nie. Nonlinear simulation of tumor growth. J. Math. Biol.,

46(3):191–224, 2003.

[45] J. J. Decosse. Large Bowel Cancer. Churchill Livingstone, 1981.

[46] M. Deheragoda and N. Wright. An update on the pathophysiology of the intestinal crypt. Current

Diagnostic Pathology, 12(4):268–278, 2006.

172



[47] A. d’Onofrio and IP Tomlinson. A nonlinear mathematical model of cell turnover, differentiation and

tumorigenesis in the intestinal crypt. J. Theor. Biol., 2006.

[48] D. Drasdo. Buckling Instabilities of One-Layered Growing Tissues. Phys. Rev. Lett., 84(18):4244–4247,

2000.

[49] D. Drasdo and M. Loeffler. Individual-based models to growth and folding in one-layered tissues:

intestinal crypts and early development. Nonlinear Anal., 47(1):245–256, 2001.

[50] B. Dubertret and N. Rivier. The renewal of the epidermis: a topological mechanism. Biophys. J.,

73(1):38–44, 1997.

[51] P. S. Edelstein. Colon and Rectal Cancer. Wiley-Liss, 2000.

[52] C.M. Edwards and S.J. Chapman. Biomechanical Modelling of Colorectal Crypt Budding and Fission.

B. Math. Biol., 69(6):1927–1942, 2007.

[53] E. R. Fearon and B. Vogelstein. A genetic model for colorectal tumorigenesis. Cell, 61(5):759–67,

1990.

[54] S. File. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Brit. J. Cancer,

92:434–444, 2005.

[55] J.A. Fozard, O. E. Jensen, H. M. Byrne, and J. R. King. Continuum approximations of individual-

based models for multicellular systems. Math. Med. Biol., 2008. Submitted.

[56] S. J. Franks. Mathematical Modelling Of Tumour Growth and Stability. PhD thesis, University of

Nottingham, 2001.

[57] J. Galle, M. Loeffler, and D. Drasdo. Modeling the Effect of Deregulated Prolif.eration and Apoptosis

on the Growth Dynamics of Epithelial Cell Populations In Vitro. Biophys. J., 88(1):62–75, 2005.

[58] A.L. Gartel and K. Shchors. Mechanisms of c-myc-mediated transcriptional repression of growth arrest

genes. Exp. Cell Res., 283(1):17–21, 2003.

[59] M. Ghaemi and A. Shahrokhi. Combination of the Cellular Potts Model and Lattice Gas Cellular

Automata for Simulating the Avascular Cancer Growth. Lect. Notes Comput. Sci., 4173:297, 2006.

[60] R.H. Giles, J.H. van Es, and H. Clevers. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim.

Biophys. Acta, 1653(1):1–24, 2003.

[61] J. A. Glazier and F. Graner. Simulation of the differential adhesion driven rearrangement of biological

cells. Phys. Rev. E, 47(3):2128–2154, Mar 1993.

[62] F. Graner and J. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended

potts model. Phys. Rev. Lett., 69(13):2013–2016, Sep 1992.

[63] L. C. Greaves, S. L. Preston, P. J. Tadrous, R. W. Taylor, M. J. Barron, D. Oukrif, S. J. Leedham,

M. Deheragoda, P. Sasieni, M. R. Novelli, J. A. Z. Jankowski, D. M. Turnbull, N. A. Wright, and

S. A. C. McDonald. Mitochondrial DNA mutations are established in human colonic stem cells, and

mutated clones expand by crypt fission. Proc. Nat. Acad. Sci. U.S.A., 103(3):714–719, 2006.

173



[64] H. P. Greenspan. On the growth and stability of cell cultures and solid tumors. J. Theor. Biol,

56(229):2, 1976.

[65] J.P. Heath. Epithelial Cell Migration in the Intestine. Cell Biol. Int., 20(2):139–146, 1996.

[66] L. Hinck, W.J. Nelson, and J. PapKoff. Wnt-1 modulates cell-cell adhesion in mammalian cells by

stabilizing beta-catenin binding to the cell adhesion protein cadherin. J. Cell Biol., 124(5):729–741,

1994.

[67] S. Hirohashi and Y. Kanai. Cell adhesion system and human cancer morphogenesis. Cancer Sci.,

94(7):575–581, 2003.
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