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Abstract

We study the Hamiltonian dynamics for a system of two colliding point particles
coupled to (2 + 1)-dimensional gravity with a negative cosmological constant
by anchoring the dynamics of the system to its spatial infinity. We reduce
the Chern-Simons formulation of the gravitational action, finding the reduced
Hamiltonian for three special cases of the particle masses, in a phase space
chart coordinatised by the geodesic distance between the two particles and its
conjugate momentum. The dimension of the reduced phase space is two. At
the threshold of black hole formation, the black hole mass depends linearly on
the momentum, in agreement with previous analysis in a holonomy-based phase
space chart. We use the reduced action to compute the semiclassical probability
amplitude of two particles to tunnel out of the black hole, finding that the
imaginary part of the action is equal to the Bekenstein-Hawking entropy of the

hole.

We also study the form that conformal field theory (CFT) correlation
functions take in coset spaces of SL(2,C). We realise the SL(2,C) twistor
space T in two distinct but equivalent ways, deriving some important facts
about this space, and we also give one representation of another coset space
B. We examine the form of CFT correlation functions in T, B and two other
related spaces using techniques from representation theory and make a number

of comments on the twistor transform for T.
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CHAPTER 1

Introduction

Two of the most thought-provoking theories of modern physics to emerge from
the twentieth century are quantum mechanics (QM) and general relativity
(GR). QM, which is relevant on the atomic scale, accurately describes three
of the four fundamental forces of nature, namely electromagnetism, the strong
interaction and the weak interaction, but in its usual formulation does so on a
fixed background spacetime. GR, which applies itself to large-scale structures
such as stars and galaxies, describes gravitation, the fourth fundamental force,

but crucially does so with a dynamical background spacetime.

Attempts to unify GR and QM into a so-called theory of quantum gravity
(QG) have a long and complicated history of which it is not our intention to
cover here; for an overview see [1]. A much more complete introduction to the
subject is given in |2| and a progress report is given in |3]. It is the aim of this
thesis to discuss aspects of two approaches to QG, namely canonical quantum

gravity and twistor theory.

The thesis is split into two fairly unrelated parts part I, consisting of
Chapters 2 through 6, investigates point particles coupled to (2 + 1)-dimensional
gravity and the Hamiltonian formulation thereof. Part I, consisting of Chapters
7 and 8, addresses SL(2,C) twistor space and some of its applications within

conformal field theory. The results are summarised and discussed in chapter 9.



In the rest of this chapter we briefly introduce the specific topics to be

investigated in Parts I and II and give a chapter-by-chapter outline of the thesis.

1.1 Canonical quantum gravity (CQG) and point par-

ticles

Canonical quantum gravity (CQG) is an attempt to quantise GR directly by
writing GR in its canonical/Hamiltonian form and then quantising via a set
of techniques invented by Dirac in 1950 [4]. The basic notions of CQG were
established by DeWitt in 1967 [5]; the theory is written in terms of a set of con-
figuration variables and canonically conjugate momentum variables describing
the state of the system at some point in time. One can then obtain the time-
evolution of both sets of variables from the Hamiltonian form of the action. In
the “usual” way, the two sets of variables are then treated as operators obeying

certain commutation relations in order to translate to the quantum theory.

Attempts to canonically quantize (3 + 1)-dimensional GR have historically
run into many difficulties. The (2 + 1)-dimensional theory, however, provides
us with a technically simplified setting while retaining many of the conceptual
features of the (3 + 1)-dimensional theory. n-dimensional GR has n(n — 3)
physical degrees of freedom per spacetime point [6], motivating the statement
that (2 + 1)-dimensional GR is locally trivial, having zero (local) degrees of
freedom. However, due to the technical simplicity of the theory in 2 4+ 1 di-
mensions it can be consistently coupled to point particles and topologically
nontrivial spacetimes can be constructed with a finite number of global degrees
of freedom. Such spacetimes can be constructed in terms of holonomies around
non-trivial loops which is nicely explained in the case of a zero and non-zero
cosmological constant in [7| and [8] respectively. More recently [9] formulates
and analyses the Hamiltonian dynamics of a pair of massive spinless point parti-
cles in (2 + 1)-dimensional Einstein gravity for the case where the cosmological

constant is zero. The approach of [9] is to firstly work out the geometry of the



spacetime at the spatial infinity and then anchor the particle trajectories to this
geometry. They then use the description of two-particle spacetimes in terms
of a piece of Minkowski geometry between the particle world lines [10], and
translate this description into one that relates the worldlines of the particles to
the spatial infinity. Finally they use the explicit form of the classical solutions
anchored to the infinity to reduce the gravitational action and find the reduced

Hamiltonian.

The quantisation of the Hamiltonian formulation obtained in [9] is con-

sidered in [11].

1.2 Point particles coupled to AdS; gravity

In Chapters 2 through 6 we would like to emulate the work done in [9] by gen-
eralising it to the case where we include a negative cosmological constant. We
would like to obtain a Hamiltonian formulation for two massive point particles
coupled to AdSs gravity. The main upshot of including a negative cosmological
constant is that there are black hole solutions, meaning we can study the black
hole formation and analyse the critical phenomena at the formation threshold.

We will also be able to comment on the action for tunelling from the black hole.

Chapter 2 describes the geometrical details of the two-particle spacetimes.
All the relevant coordinate conventions are established and the one-particle
spacetimes are discussed. The two-particle spacetimes are then constructed
where the spacetime has a non-zero spin parameter but assuming that the
spacetime does not have a black hole. The last section in this chapter specialises

to the case where the particles collide, being the setting for the rest of the work.

In Chapter 3 we discuss the first order action formalism of AdSs gravity.
The gauge transformations of the theory are identified in order to make use of
them in the Hamiltonian reduction in Chapter 6. We then specify a (2 + 1)-

decomposition of the action and finally discuss the contributions to the action



from the particles and from the boundary term at infinity.

Chapter 4 describes the embedding of the particle surface in relation to
the two-particle spacetimes discussed in Chapter 2. We embed the surface
containing the particles in a way that is consistent with the known classical
solutions and the boundary conditions at the spatial infinity. We then use the
details of the embedding to fix a gauge for the fields in a certain technical way

in order to evaluate the reduced action in subsequent chapters.

Chapter 5 deals with the contribution to the action from the Liouville
term using the details of the embedding and gauge choice from Chapter 4. We
evaluate part of this contribution directly and convert the remaining part into
a one-dimensional boundary integral using Stokes’ theorem. The evaluation of
the boundary integral is examined in some detail, and whilst we do not complete
the analysis due to algebraic complications, we do establish the general form

that the Liouville term takes.

In Chapter 6, the final chapter in this first part of the thesis, we first use
the general form of the Liouville term found in Chapter 5 and our knowledge of
the equations of motion to find the fully reduced action and write this action
in Hamiltonian form. The phase space has dimension two. We then perform a
canonical transformation to a phase space chart in which the “position” coor-
dinate is the geodesic distance between the two particles. We use this action
to analyse the black hole formation threshold and find the leading order crit-
ical exponent to be one, coinciding with the result obtained in |12]. Finally
we study the black hole creation/annihilation as a quantum mechanical tun-
nelling process and find that the imaginary part of the action is equal to the

Bekenstein-Hawking entropy of the black hole.



1.3 Twistor theory

Twistor theory in its original form was invented by Roger Penrose in 1967.
His vision was that fundamental physics should be reformulated in terms of
objects called twistors living in twistor space. Twistors could then be used to
reconstruct spacetime in a prescribed mathematical manner. Penrose’s popular
monograph [13| describes the main ideas of twistor theory and an accessible
technical introduction to twistor theory is given in [14]. Twistor theory was
largely ignored by the wider theoretical physics community until 2003 when
Edward Witten wrote a paper relating string theory and twistor geometry [15].
Twistor string theory was born and many papers followed, for example [16],

bringing twistor theory once again into the limelight of mainstream research.

1.4 SL(2,C) twistor space and conformal field theory

One of the unique selling points of twistor theory is that solutions to the mass-
less wave equation naturally arise using the methods of twistor geometry. The
Penrose/twistor transform, whose details were first established in [17], is an
integral transform from a certain subset of functions on twistor space to the
space of solutions to the massless wave equation on compactified Minkowski
space. The twistor transform is not, however, restricted to Penrose’s twistor
space; |18] shows how to construct the twistor transform for SO (1,n) rather

than SU (2,2) twistors.

The AdS/CFT correspondence (or Maldacena duality) states there is an
equivalence between a certain string theory living on AdS x K, where K is a
closed manifold, and a conformal field theory (CFT) living on the boundary of
the AdS space. See [19], [20] and the review [21].

In Chapters 7 and 8 we draw upon the ideas of AdS/CFT and attempt
to determine the relationship between CF'T correlation functions on two spaces

that have not been extensively studied in the literature. We elucidate properties



of “SL(2,C) twistor space”, T, and attempt to construct the twistor transform
corresponding to this space. We go on to explore the form of CFT correlation

functions within T and various related spaces.

In Chapter 7 we describe a “SL(2,C) twistor space” that arises naturally
from the Lie group SL(2,C). In contrast with Penrose’s twistor space, which
has complex dimension 4, SL(2, C) twistor space has complex dimension 2. We
also construct a related space and discuss its global properties. Chapter 7 es-
sentially sets the mathematical scene for physical applications within conformal

field theory.

In Chapter 8 we examine the form of conformal field theory n-point func-
tions in SL(2, C) twistor space and two related spaces. We also make a number

of comments on the twistor transform for T.



CHAPTER 2

One and two-particle AdSy

geometry

In this chapter we establish the basic notation and conventions for the three-
dimensional anti de Sitter space, AdS3. We start by discussing one realisation of
AdS3 and how the various isometries act in this realisation. We then establish
our coordinate conventions for AdS3 and various related spaces in order to
construct the one-particle spacetimes in the following section. The two-particle
spacetimes are then constructed in all generality where the spacetime has a non-
zero spin parameter, but assuming that the spacetime does not have a black
hole. Finally the special case where this spin parameter is zero is presented as

the setting for the work in the subsequent chapters.

2.1 AdS;3 hyperboloid and the isometry group

Here we initially follow the conventions used in [22] although our Killing vectors

are defined with a slightly different orientation.
AdS3 can be realised as an embedded hyperboloid in R*2. The metric on
R?2 is

ds? = —dU? — dV? +dX? + dY™. (2.1.1)



For z = (U,V,X,Y) € R>2 and | > 0 the equation of the hyperboloid is
(2, 2)gee = —U? = V24 X2+ V2= —12 (2.1.2)

For simplicity we will only consider “unit” AdSs such that [ = 1 to avoid littering

the formulae with a scale parameter.

AdSs is a maximally symmetric space in that it admits six linearly in-

dependent Killing vector fields (KVEF’s). A (standard) set of such KVF’s are

Udy —Vy, (2.1.3a)
X0y — Yoy, (2.1.3b)
Udx + Xy, (2.1.3¢)
Udy + Yy, (2.1.3d)
Vox + Xov, (2.1.3¢)
Voy + Yoy, (2.1.3f)

and the isometry group generated by them is O.(2,2), where the subscript ¢
stands for the connected component. The six isometries generated by (2.1.3)
(with a parameter 6) read explicitly as follows:

(U, V) rotations:

cosf —sind U
— , (2.1.4)

sin 6 cos 0 %4

< Q

(X,Y) rotations:

>

cosf —sinf X

— , (2.1.5)
Y sin @ cos 0 Y

(U, X)) boosts:

U coshf sinh6
— , (2.1.6)

X sinh® cosh6 X

-



(U,Y) boosts:

U coshf sinhd U
— , (2.1.7)
Y sinh @ cosh@ Y
(V, X) boosts:
Vv coshf sinh6 Vv
— , (2.1.8)
X sinh @ cosh@ X
(V,Y) boosts:
v coshf sinh6 V
— , (2.1.9)
Y sinhf coshf Y
For our purposes, it is convenient to write the O.(2,2) action on AdSs3 by

using the group decomposition
0.(2,2) = (SU(1,1) x SU(1,1)) /Zs, (2.1.10)
and expressing a general element of AdS3 by a matrix, W € SU(1,1), such that

UiV X 4iY
W = , (2.1.11)

X -3y U-—-iV
where

U2+ Vv2-X2-y?2=1. (2.1.12)

We denote elements of the isometry group by pairs; (gz,9r) € SU(1,1) x
SU(1,1) and find that the action O.(2,2) : AdS3 — AdSs is equivalent to
SU(1,1) x SU(1,1) : SU(1,1) — SU(1,1). Concretely, for (gz.,9r) € SU(1,1) x
SU(1,1), the action is

W W =g, Wggp'. (2.1.13)

Note that the hyperboloid condition (2.1.12) is implemented by det(W) = 1
and this condition is invariant under the action (2.1.13). The invariant metric

(2.1.1) is given in this matrix representation by 7r [(W‘l dW)ﬂ.

We now list, for the reader’s convenience, the elements of SU(1,1) x

SU(1,1) that give the six isometries (2.1.4) to (2.1.9) in the form (2.1.13).



Most of the calculations of the two-particle spacetimes will use these matrices

and various compositions thereof.

(U, V) rotations (2.1.4):

) , (2.1.14a)
ep(-3) 0 . (2.1.14b)
0 exp (%)

, (2.1.15a)

(2.1.15D)

(U, X) boosts (2.1.6):

cosh (g) sinh (g) )
gL = R (2.1.16a)
( sinh (g) cosh (g)
cosh (g) —sinh (g) )
9R = (2.1.16b)
( —sinh (g) cosh (g)
(U,Y) boosts (2.1.7):
cosh (g) 7 sinh (g) )
gL = , (2.1.17a)
( —isinh (g) cosh (g)
cosh (g) —7sinh (g) )
9r = : (2.1.17b)
( 7 sinh (g) cosh (g)
(V, X) boosts (2.1.8):
9 isinh (¢
gL = ( Cos_h(2z) h(;) ) (2.1.18a)
—isinh (5) cosh (5)
cosh (g) 4 sinh (g) )
9R = (2.1.18b)
( —isinh (g) cosh (g)



(V,Y) boosts (2.1.9):

h(%) —sinh(¢

a= (2) sinh (3) , (2.1.19a)
—sinh (g) cosh (g)
h(%) —sinh(¢

gm={ (2)  —sinh(3) (2.1.19b)
—sinh (g) cosh (g)

Finally, note that the isometries can be written in terms of real-valued
matrices if SU(1,1) is replaced by the isomorphic group SL(2,R) (see, for ex-
ample, [23]). The use of SU(1, 1) has however certain computational advantages

for our purposes.

2.2 Coordinate definitions

A set of coordinates (T, R, ¢) that covers all of AdSs is defined by

U= (1+ R%2cosT, (2.2.1a)
V =(1+R)2sinT, (2.2.1b)
X = Rcos ¢, (2.2.1c)
Y = Rsin¢. (2.2.1d)
The metric reads
ds® = — (14 R?) dT? + (1 + R?) "' dR? + R%d¢”. (2.2.2)

Note that there is a coordinate singularity at R = 0 but this does not concern
us here. As T is periodic with period 27, we see that the spacetime has closed
timelike curves. If we unwrap T', we obtain the universal covering space CAdSs.
Let us now consider this done and with an abuse of notation refer to this
covering space as AdSs. The coordinate ranges for this space are —oo < T < o0,

R>0and 0 < ¢ < 27.

Coordinates which will be used extensively in the sequel are the so-called

11



“sausage” coordinates (T, p, ) defined by

2p

=— 2.2.
R =2 (2.2.3)
with —co < T <00, 0 < p<1and 0 < ¢ < 2m, yielding
2 2
1+ p? 2
2 _ 2 2 27,2
ds _—<1_p2> dr +<1_p2> (dp* + p°d¢?) . (2.2.4)

The coordinates (7', p, ¢) yield a simply visualisable picture of AdS3 as an infi-

nite stack of Poincaré disks of constant 1" - see Figure 2.1.

Poincare Disk

Infinite stack of disks

|

Figure 2.1: AdSs3 as an infinite stack of Poincaré disks. Each constant T'
slice of the cylinder has the metric (2.2.5).

Each constant T slice has the Poincaré disk metric
9 2
2 2 2 1.2
ds?® = (—1 _p2> (dp® + p°de?), (2.2.5)

12



which can be written in the more standard hyperbolic polar coordinates via the

coordinate transformation p = tanh (%) yielding
ds® = dw? + sinh?® w d¢?. (2.2.6)

As p — 1 the metric (2.2.5) diverges - geodesic distances from points on the

boundary of the disk to any other point on the disk are infinite.

Finally, we introduce the spinning BTZ coordinates (t,7,1), [22], via

T = at + Sy, (2.2.72)

¢ = St+ ay, (2.2.7b)
2 2

s T+ S

where « and S are parameters satisfying o > 0 and —a < S < a. The metric
reads

r2dr?
T+ S (2 + o)
Setting M = — (52 + a2) and J = 2S5q, the metric becomes

ds® = — (r2 4+ S2 + o) dt* — 2Sadtdy + +ridy?. (2.2.8)

2 2 2
ds®> = — (7‘2 - M + J—2> dt> + dr 2 +r? (Cw - %dt> . (2.2.9)
4r <7‘2 — M + 4]7) 2r

The metric (2.2.9) comes to us with the restriction M < 0. We could, however,
start from (2.2.9) and ask what spacetime this metric describes for arbitrary
values of M and J. The (partial) answer is that the continuation of (2.2.9)
into the region where M > 0 but |J| < M, with the coordinates identified as
(t,r, ) ~ (t,r,¢ 4 2m), describes the BTZ black hole analysed in [22]. We do
not wish to say any more about this here but will return to the black hole in

chapter 6.

2.3 Single spinning point particle - “AdS conical ge-
ometry”’
We construct the single spinning particle spacetimes by adapting the discussion

of |9] from Minkowski space to AdS3. This will allow us to discuss the two-

13



particle spacetimes and their structure at spacelike infinity.

We define AdS as the (2 4 1)-dimensional spacetime obtained by remov-
ing the timelike geodesic R = 0 from AdS3 and AdS as the universal covering
space of AdS. We introduce on AdS a set of global coordinates akin to the
sausage coordinates (2.2.4), with the ¢ coordinate unwound around the parti-
cle worldline so that T e R, 0 < p < 1 and —o0 < ¢ < co. Due to the inho-
mogeneity introduced into the original space by removing a timelike geodesic,
there are now only two independent isometries on IZEE, namely rotations in
(U, V), generated by 0r = —V 9y + Udy, and rotations in (X,Y"), generated by

0y = =Y Ox + X0y. In the sausage coordinates these isometries are given by
J :=exp (2nS0r + 2mady) , (2.3.1)

with the action

J: (T, p,¢) — (T +27S, p, ¢ + 2mcr) . (2.3.2)

We now interpret XEZTS‘/Z, where the Z action is generated by (2.3.1),
as the spacetime generated by a single spinning point particle at p = 0 |7
9, 24]. The mass of the particle equals 7 (1 — «) and S gives the spin of the
particle. AES'/Z can be described in terms of a fundamental domain, D, and
an identification across its boundaries, where the identification takes the form
(2.3.2). If @« < 1, D can be embedded in AdS and the identification is a specific
O.(2,2) transformation of R?2, namely a 2wa rotation in (X,Y) (about the
removed timelike geodesic) composed with a 275 rotation in (U, V). We can
then choose a wedge of the sausage for D - see Figure 2.2. The value a = 0 is

the threshold of black hole formation which we consider in chapter 6.

We introduce on AdS the coordinates (t,r,7) via (2.2.7) with the ¢ co-
ordinate unwound so that —oco < t < oo, 7 > 0 and —oo < 1 < oco. In these

coordinates, the isometry J (2.3.1) reads
J = exp (2m0y), (2.3.3)
J 2 (t,rab) = (t, 1+ 27), (2.3.4)
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Figure 2.2: Cylindrical sausage with a particle wedge cut out. The wedge

with angle § := 27 (1 — «) is cut out of the spacetime leaving
the fundamental domain for o < 1 to the right of the cut out
wedge. The identification of the timelike boundary is indicated
by the shaded segments of the diagram. The particle mass is

given by g whereas the particle spin is given by S.
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and we refer to the coordinates (t, r, 1) with the identification (¢,r,) ~ (t,r, ¥+
27) as the AdS conical coordinates on AETS’/Z

2.4 Spacetime of two spinless particles

Now that we have established the main conventions for spacetimes with mas-
sive point particles we turn our attention to the main focus of this chapter

describing the geometry of two-particle AdSs spacetimes. (Note that this
method of constructing spacetimes with particles can be extended to n particles

for n > 2 but we will not do so here.)

We label the particles with an index ¢ € {1,2} and in a neighbourhood
of each particle worldine the geometry is the spinless special case (S = 0) of
section 2.3. We denote the defect angles of the particles by ¢; := 27 (1 — «;) and

we define ¢; := cos % and s; := sin %. The requirement that the particle masses
are greater than zero give the inequalities §; > 0. We also require that each
particle is nothing more exotic than a point particle and so also set §; < 2w. We
further require that the geometry near the spacelike infinity is that of a single
spinning point particle as described in section 2.3. This implies d; 4+ o < 27
and ¢; + ¢ > 0, as in the case of a vanishing cosmological constant [9], and

also a further condition, specific to a negative cosmological constant, which will

emerge at the end of the section as (2.4.11).

What remains is to describe the geometry of the two-particle spacetime
in terms of a fundamental domain &720 - a piece of AdSs3 spacetime between
the particles. We will first do so, but we will then translate this picture into
an equivalent one in which the properties of the spacelike infinity are more

apparent.

Without loss of generality we may assume the worldline of particle 1 to be
at the centre of the sausage evolving straight up (as in Figure 2.2). We introduce

the notation B (wy,ws) for a boost parameter pair (wy,wsy) as the composition

16



of a (U, X) boost with parameter w; and a (V,Y") boost with parameter wy;

U coshwy U + sinhwy X
\%4 coshwsy V + sinhwsy Y

B (wl,wg) : — . (2.4.1)
X sinhwy U + coshwy; X

Y sinhwy V 4+ coshwsy Y

The worldline of particle 2 is obtained by taking a worldline at the centre of the

sausage and transforming via the inverse of (2.4.1) with the pair (3,v), where

8 # 0 and v # 0;

cosh B U —sinh § X

coshv V —sinhv Y
— . (2.4.2)

—sinh 8 U + cosh § X

B~ (B,v) :

< e <O

—sinhv V 4+ coshv Y

The two defect angles combined with their relevant boost parameter pair (3, v)
at T' = 0 give us the initial data of the system. See Figure 2.3 for a cross-section
of the sausage at T" = 0 showing the beginning of the evolution. Note that we
have chosen # > 0 and v > 0 for Figure 2.3 and all subsequent figures. The
analysis in this section holds for 5 # 0 and v # 0 but the figures are drawn for
6> 0and v > 0.

From Figure 2.3 it is clear that we will want to define f)o so that the
particle worldlines are timelike geodesics on the boundary of ﬁo. We denote
the worldline of particle ¢ by P; with corresponding proper time )\;, with the

zeroes chosen so that \; = 0 at T'= 0. The P; are given by

U, cos %
Vi sin %
P = = , (2.4.3)
X 0
Yi 0

17



Figure 2.3: Initial data slice T = 0. The particles are located on this con-
stant T slice as shown. The single and double stroked lines are
the restriction of the relative single and double stroked bound-
aries of (NZO to this constant T slice. The single stroked bound-
aries are identified by an (X,Y") rotation on constant 7' slices.
The double stroked boundaries are identified by an (X,Y) ro-
tation conjugated by a boost (2.4.1) with boost-pair (5, v), in
a way that, for v # 0, does not preserve the constant 7T slices
and is discussed in more detail in section 2.5. g; can be given
in terms of 02 and the boost parameter pair (3,v) but is not
particularly important for our subsequent analysis. The arrow
attached to particle 2 indicates its velocity at T" = 0. ?20 is
shown on the figure between the removed wedges. Note that
50 reaches the infinity in two disconnected parts and is there-

fore not well adapted to describing the spacelike infinity.
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A2
U, cosh 3 cos 5

Vo cosh v sin %

Py = = NEE (2.4.4)
X5 —sinh 3 cos 47
Y, — sinh v sin %

The particles evolve as shown in Figure 2.4. Elementary geometry shows that

Figure 2.4: Evolution of the particles. Particle 2 orbits the worldline of
particle 1 in a helix-like manner. The evolution is periodic with

period T = 2m.
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the geodesic distance s between points with given \; and Ay is given by

A A A
cosh s = cosécosgcoshﬁ+sin§sin§coshv. (2.4.5)

We now wish to translate this description into one anchored to the AdS
conical infinity. We omit the calculations but give a prescription by which the

interested reader can reproduce them.

e Write the worldlines P; in the SU(1,1) matrix form W; according to
(2.1.11). Write the identification of the double-stroked boundaries in Fig-

ure 2.3 as a pair of SU(1,1) matrices.

e Cut S~)0 into two along a timelike surface connecting the particle worldlines
in a way whose details will be specified in section 2.5. Rotate the two
halves of ﬁo, via a pair of SU(1, 1) matrices, about the worldline of particle
1 so that the wedge originally at particle 1 closes and a new one opens.
Keep track of the form of the W; and the SU(1,1) pair identifying the
double-stroked boundaries. Figure 2.5 shows the new domain 56 after
this “cut and rotate” process - Particle 2 is now at two positions in this

new picture, labelled by 2 and 2'.

e Perform a final isometry on the spacetime such that the double-stroked
boundaries are now identified by a pair of matrices implementing the com-
position of an (X,Y’) rotation and a (U, V') rotation. This identification
is now in the form (2.3.1), anchoring the system to the infinity. This final
isometry will be given by a transformation of the type (2.4.1) with a boost
parameter pair ((1,v1). The W; can now be expressed in terms of two
new boost parameter pairs (1, v1) and (f2,v2) where both pairs can be
given in terms of the initial data. See Figure 2.6 for the initial data in

the new fundamental domain Q.
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Figure 2.5: T = 0 slice after “cut and rotate” process. The single-stroked
boundaries are still identified by an (X,Y’) rotation whereas
the double-stroked boundaries are identified as before but con-
jugated by an additional (X,Y’) rotation. Again, the identifi-
cation of the double stroked boundaries does not preserve the

constant T slices when v # 0.
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Figure 2.6: The “centre of mass” frame. The single-stroked boundaries of
the fundamental domain € are identified by an (X,Y’) rotation
conjugated by a boost (2.4.1) with boost-pair (31,v1) given by
(2.4.8). The double-stroked lines are identified by the compo-
sition of an (X,Y) rotation and a (U, V) rotation as shown by
the grey segments in Figure 2.2. Note that particle 1 is in the
T = 0 plane, but particles 2 and 2’ are in this plane only for
v=0.
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In §~2, the worldlines of the particles read

Uy cos % cosh (31
P Vi sin % cosh vy (2.4.6)
b X B cos % sinh (31 7 h
Y sin % sinh vy
Us o cos % cosh 33 cos § F sin % cosh vy sin 5
P Voo =+ cos % cosh 3 sin § + sin % cosh vg cos §
)= =
»2 Xo o — Cos % sinh (35 cos % F sin % sinh vg sin % ’
Yo o =+ cos % sinh (35 sin % — sin % sinh vy cos %

(2.4.7)
where the upper (lower) signs pertain to particles 2 (2), and the parameters

Bi, v;, 0 and 7T are determined in terms of §, v and §; by

sgsinh (v + )

- . _ 2.4.8
anh (vy £ 31) s1¢g + sgc1 cosh (v £ 3)’ | |
s1sinh (v + )
- . _ 2.4.9
anh (v & () $a¢1 + s1ez cosh (v £ ()’ | |
+
cos <5 2 T) = cicy — 5182 cosh (v £ ). (2410)

Equation (2.4.10) shows that the manipulations to specify the new funda-

mental domain € are well defined provided
lcicg — s1sgcosh (v + B)] < 1, (2.4.11)

ensuring that Figure 2.6 exists. We assume (2.4.11) for now, but will relax this

condition in Chapter 6 when we discuss the black hole parameter range.

2.5 Worldlines in other coordinatisations and the equa-

tions of motion

What is not portrayable in the spatial slices in Figures 2.3, 2.5 and 2.6 is the

non-planar nature of the identified boundaries. For example, in Figure 2.6 the
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single-stroked boundary is identified on a slice of varying 7" where, if we take
the line starting from particle 1 to be at 7" = 0, T increases (decreases) as
we travel along the line from particle 1 to particle 2 (2’). The double-stroked
boundary from 2 (2’) to the edge of the disk is on a constant T slice where

T>0(T<0).

With this in mind we introduce a new parameter o defined along the

particle worldlines by

A inh A inh
tano = tan - s.m il — tan [ 22 s.m v27 (2.5.1)
2 ) sinh 4 2 ) sinh 3
such that
T T
—— — 2.5.2
5 <o< 5 ( )

and o = 0 at T'= 0. Note that o is well-defined only when v # 0. We consider

the case where v = 0 in section 2.6.

We now rewrite the worldlines of the particles (2.4.6) and (2.4.7) in the
sausage coordinates (2.2.4) in terms of o, (abusing notation for the P, some-
what),

tan o tanh 34 >

arctan
h < tanh vy

Pi=| p |= (2.5.3)

p1 (o) ’
o1 o

I

t tanh

tanh vy
P2,2/ = P29/ = P2 (0) s (2.5.4)

¢ .2/ o+ T

where

[NIES

(cosh2 B; sinh? v; 4 tan? o cosh? v; sinh? ﬂi) - (sinh2 v; + tan? o sinh? ﬂi)

[N
[T

pi(0) =

[NIES

(cosh2 B; sinh? v; 4 tan? o cosh? v; sinh? ﬂi) + (sinh2 v; + tan? o sinh? ﬂi)

(2.5.5)

The equation for the geodesic distances between the particles (2.4.5), with the
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same value of ¢ on each worldline, becomes

cos? o cosh 3 sinh v1 sinh vy + sin? o cosh v sinh 3; sinh 2

cosh s =

I -
(C082 o sinh? vy + sin? o sinh? ﬂl) 2 (cos2 o sinh? vy + sin? o sinh? 62) 2
(2.5.6)

This specifies how ﬁo was originally cut into two between the particles: the
surface is formed from spacelike geodesics connecting the particles at the same

value of o at each end.

Finally we introduce the AdS conical coordinates (2.2.7a - 2.2.7¢) in a
neighbourhood of the infinity but replacing ¢ by ¢t — ty and ¥ by @ — ¥y. The

worldlines become

tan o tanh (q
aarctan [ ——— | — So
tanh vq
to +
tl 042 — 52
P=| o |= " (o) @5
V1 —Sarctan M + oo
tanh vy
Yo + R
tan o tanh Gy
aarctan | ——— | — So
to 4+ tanh vy
t2’2/ 0 Oé2 — S2
P2,2’ = T2,/ = T2 (0) )
V2,2 —Sarctan M + ao
tanh vy
o + 5 +7
(2.5.8)

(o) <a2 sinh? v; sinh? §; — S2 (cos2 o sinh? v; + sin? o sinh? §; + sinh? v; sinh? ﬂ,-)
T, \0) =

cos? o sinh? v; + sin® o sinh? j;

(2.5.9)
o0 (2.5.10)
a=1—— 5.

21’
S=1-—. (2.5.11)

2w

Note also that

tanh 1 tanh vy = tanh B tanh vy, (2.5.12)
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so that
t1 = t272/ (2513)

and
Y1 = by F . (2.5.14)

The constants {tg, 1o} give the AdS conical time and conical angle respectively
when ¢ = 0. They encode the zero-point of time and the orientation of the

two-particle system relative to the AdS conical coordinates.

We can extend the formulae (2.5.3) to (2.5.14) defined for (2.5.2) to the
range —oo < o < oo (to describe the full evolution) by adding 7 (—7) to T

whenever o increases (decreases) through the divergent points of tano.

2.6 The colliding case

We now address the special case v = 0, in which the particles collide and which

was not covered by the discussion in section 2.5.

The initial data of the system is given by the two defect angles and the

boost parameter 3. See Figure 2.7 for this initial configuration. The P; are

given by
Uy cos %
\% sin 2L
= "= 2, (2.6.1)
X4 0
Y 0
U, cosh 3 cos %
V sin 22
=] 7 |= 2 . (2.6.2)
X5 — sinh ( cos %
Y, 0

The procedure to translate the fundamental domain into the centre-of-

mass frame is essentially the same as before. () is now initially cut along lines

of constant 7. The final fundamental domain, S~), is shown in Figure 2.8. The
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Figure 2.7: Initial data slice T = 0 for v = 0. The particles in the ini-
tial configuration are located as shown. The single and double
stroked lines are geodesics identified on the Poincaré disk. The
single stroked boundaries are identified by an (X, Y") rotation on
constant T slices. The double stroked boundaries are identified
by a (X,Y) rotation conjugated by the transformation (2.4.1)
with w; = 3, we = v = 0 on constant T slices. The velocity of
particle 2 at T' = 0 is orthogonal to the T" = 0 surface. 50 is

shown on the figure between the removed wedges.
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Figure 2.8: T = 0 slice in the “centre of mass” frame for v = 0. The
single-stroked boundaries are identified by an (X,Y) rotation
conjugated by a boost (2.4.1) with w; = 7 and ws = 0 on
constant 7T slices. The double stroked lines are identified by a
simple (X,Y) rotation. At T = 0, the velocities of particle 1
and the two copies of particle 2 are orthogonal to the 7' = 0

surface.
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worldlines of the particles on the boundary of Q become

U cos % cosh (31
\% sin AL
= "= 2 , (2.6.3)
X cos % sinh (1
Yi 0

A2
cos % cosh (3
in A2
sin 5

Pyor = (Uggr, Voo, Xo,90, Yo, ) = , (2.6.4)

A2 o: )
— cos 47 sinh 3 cos 5

=+ cos )‘—22 sinh s sin g
where the upper (lower) signs pertain to particle 2 (2’). The relevant boost

parameters and the total deficit angle are given by

sg sinh 3

tanh 51 = 2.6.5
anh fi s1¢2 + sacq cosh 3’ ( )
s1sinh 3
tanh Gy = 2.6.6
anh f s9c1 + s1c9 cosh 37 ( )
)
coS 5= c1c9 — 8189 cosh (3. (2.6.7)

Note that (2.6.7) shows that the particle geometry near the infinity is the spin-
less S = 0 special case of the one-particle geometry. The dynamics are only
defined in the range —5 < T < 7, where &3 are the values of T" at which the

particles collide respectively in the future and in the past.

In the sausage coordinates the particle worldlines take the form

T
Pr=(Ti,p1.01) = | ;i (T) |- (2.6.8)
0
T
Pyo = (To, paad22) = | pa(T) | (2.6.9)
+ra
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where

N

1

cosh 3; — (cos® T + sin? T cosh? 3;) 2

pi (T) = fi—( Bz)l , (2.6.10)
cosh 3; + (cos? T + sin® T cosh? Bi)?

which is well-defined for all |T'| < Z. Finally, in the AdS conical coordinates
we replace t by t — tg and the worldlines take the form

T
to + —
(6%

« cos T sinh 3;
T
(cos? T + sin® T cosh? Br)?
0

Py = (t1,r1,91) = ; (2.6.11)

T
to + —
(6%

a cos T'sinh (o
(cos? T + sin® T cosh? 32)
+7

Pr o = (b, o0, 0) = (2.6.12)

[NIES

Clearly, t; = too and 1 = 19 o» F . The geodesic distance 7. between the

particles in a constant T slice is

2T cosh in? T cosh h
cosh 7, = cos® T cosh B + sin“ T cosh 31 cosh (s . (2613)

I I
(cos?T +sin® T cosh? B;)2 (cos?T +sin® T cosh? Bs)?

Note that tg is the AdS conical time when T" = 0. The conical angle v
has been dropped as it will not be needed in the reduction of the action in

Chapter 6.

Figures 2.9 and 2.10 show plots of the centre-of-mass fundamental domain

Q with specific choices for the parameters. The evolution begins at T = 0 at

the base of the plotted cylinder and evolves to collision at 7' = 7 at the top of

the cylinder.
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surface formed from drawing the boundary

Figure 2.9: Two dimensional

3

jus
ok

], for 51 = 52

'3
B=In(2++/3)and S =0. T =0 is at the base of the cylinder

of the fundamental domain Q VT € [0

where the two particles are indicated. The point of collision is

at T

at the top of the cylinder.

s
2
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Figure 2.10: Two dimensional surface formed from drawing the boundary
of the fundamental domain Q VT € [0,%], for 61 = 6 = T,
B =2and S=0. T =0is at the base of the cylinder where
the two particles are indicated. The point of collision is at

T = 7 at the top of the cylinder.

32



CHAPTER 3

Action for (2 + 1)-dimensional
gravity with a negative

cosmological constant

In this chapter we discuss the first order formulation of (2 4 1)-dimensional
Einstein gravity with a negative cosmological constant in terms of two Chern-
Simons connections. We identify the gauge transformations for the Chern-
Simons connections, in order to make use of them in the Hamiltonian reduction
in Chapters 4 and 5. Finally we discuss the contributions to the action from

the point particles and from the boundary term at infinity.

3.1 First order formalism

We consider a three dimensional manifold M. The basic dynamical variables in
the first order formalism are the co-triad e and the O(2,1) connection AL on
M. The upper case latin letters I, J, K, ... denote internal indices taking values
in {0,1,2}, pertaining to a 3-dimensional fixed internal vector space V. The
internal indices are raised and lowered with a fixed Minkowski metric 77y with

signature (—,+, +). The lower case latin letters a, b, ¢, ... are spacetime indices.

33



We assume from now on that the co-triad is non-degenerate, det (ec{) #£0. At
any point p in M the co-triad provides then a linear isomorphism between the
tangent space of M and the internal space V', and we can construct from the
co-triad a spacetime metric of signature (—,+,+) by ga = T]IJC(IICI;]. We use

Jap to raise and lower the spacetime indices. For generalisations to a degenerate

co-triad, see [25].

We write the gravitational bulk action as a function of the dynamical

variables (following the notation in [9]) as

1 N 1
Shulk = 2—/ Px " eqr (Fbjc + _EIJK62>16£<> ; (3.1.1)
™ )M 3

where our units are such that the cosmological constant A = —l% = —1 and

8G = 1 (following [22] with [ = 1). 7%°¢ is the Levi-Civita density according to

3z 7% = dz® A dab A dz© and FbIC is the curvature of the connection,
Fy, = 23[1)A£} +eAJAL, (3.1.2)

where

1
A By = 5 (AuBy — AyBy). (3.1.3)

Here erjr, with all lower indices, is the totally antisymmetric symbol with

€012 = 1 and the indices are raised and lowered with the Minkowski metric 7y .

The equations of motion obtained by varying the action (3.1.1) with re-

spect to Al and el are the condition that the connection is torsion free,
el + € s Apel =0, (3.1.4)
and the constant negative curvature condition,
FL = —€l e k. (3.1.5)

Taken together, [6], these equations are equivalent to Einstein’s equation for

the metric gq with A = —1,

Rab - _Rgab — YGab = 0. (316)



As an example consider the region in a neighbourhood of the spatial infin-
ity of the colliding geometry, section 2.6. The co-triad one-forms and connection

one-forms as given by el = eldr® and A? = Aldz® are

1 1
e’ = (r? +a?)2 dt, AY = (1 +a?)2 dy, (3.1.7a)
1
el = (r2+a?) % dr, Al =0, (3.1.7b)
e = rdy, A% = rdt, (3.1.7¢)

and as can easily be checked, these fields satisfy the equations of motion.

See the section “2+1 Palatini theory coupled to a cosmological constant”

in [26] for a detailed overview of the bulk action (3.1.1).

3.2 Chern-Simons formulation of the action

Following [27] we split the bulk action (3.1.1) into two Chern-Simons (C-S) type

actions via the use of two O(2,1) C-S connections,

AL = AL el (3.2.1)
yielding
Sbutk = "Shunc (YAL) = Spunc (FAL) (3.2.2)
where
:I:Sbulk :I:AI / d3 abc:I:A <:I:f-l;fc _ %EIJK:I:A;)]:I:A£(> ) (323)

The j57-"blc are the curvatures of the two C-S connections and the equations of

motion are simply the condition that both connections are flat,
Fye = 25[bj54£] + el ATAE = 0. (3.2.4)

As an example, we can transform the co-triad and connection one-forms
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(3.1.7) into their C-S counterparts, with the result

= (r? +a)%(dt+d¢) A= (4 02)? (—dt +dy),  (3.2.5a)

= (r*+a?) % dr, Al =—(r* + ozz)_§ dr, (3.2.5b)

A2 = (dt + dyp), A% = (dt — dy). (3.2.5¢)

3.3 Gauge transformations in SU(1, 1) representation

3.3.1 Finite gauge transformations

Three dimensional gravity with a negative cosmological constant is related to
a gauge theory with gauge group G = O.(2,2) = (SU(1,1) x SU(1,1)) /Zs,
[27]. The (2 + 1)-dimensional gravitational field in the first order formalism
is a connection form A, in a G-bundle over M, taking values in 0(2,2) =

su(1,1) @ su(l,1). We make use of the group decomposition (2.1.10) to split

A, into a linear sum of the C-S connections,
Ay = tAar + Al ay, (3.3.1)

where the Ta; are bases for the two distinct copies of su(1,1) where we have

chosen
1 1 0
ap = — , (3.3.2)
2 0 .
(3.3.3)
(3.3.4)

with the commutation relations

[Far,*a)) = €)%, (3.3.5)
[+a1, _CZJ] = 0.
We take
9= (Tg,79) € (SU(1,1) x SU(1,1)) (3.3.6)
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with the group composition law

(Tg2,792) o ("o - 1) = (T2™01, 927 91) (3.3.7)

and the inverse

(tg.79) ' =(Tg7 g, (3.3.8)

Writing A = A,dz® we find [28] that the gauge transformations leaving
(3.2.3) invariant are

A— g lAg+ g tdg (3.3.9)

and after some relatively simple algebra using (3.3.7) and (3.3.8) we find that

the gauge transformations for the C-S connections are

Alar — g AL g + Fg710, 5. (3.3.10)

It is now a simple calculation to check that (3.2.3) is invariant under

transformations of the type given by (3.3.10).

3.3.2 Infinitesimal gauge transformations
We define the infinitesimal gauge parameter u as
w:=Trlta; + 1y, (3.3.11)
Writing the element of the gauge group to first order,
g =exp (:tTI:ta]) =14 51%,, (3.3.12)
we find the infinitesimal form of the gauge transformation is
AL = 0, % + lIEA 5,5 (3.3.13)

We will use this result in Chapter 4.
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3.4 Splitting the action

We start from the bulk action in the form (3.2.2) and assume that the spacetime
manifold has the form M = 3 x R where ¥ is a two-dimensional manifold. The

2 4 1 decomposition of each C-S bulk action (3.2.3) is
ESbuic (FAL) = yp /dt/ d*x (iA]If)tiAJI» + ?’iAtIiﬂIj> , (3.4.1)
a b

where i, j, ... are spatial indices corresponding to the two-dimensional surface
¥ and t is the coordinate on R. &7 is the Levi-Civita density on ¥ given by
§ = [t iA}’» is the pull-back of iAé to X and ijjl is a connection density given

by %IJ, = &7iE4,; ;. The curvature of the pulled-back connection i.A]I- is given by

and the *4,; act as Lagrange multipliers enforcing the constraints that the

pulled-back connections are flat,

7 nd S
7l = 0. (3.4.3)

The total bulk action can therefore be rewritten in terms of the two C-S

connections as

_ 1 2 p
Shulk = E/dt/zd x Lint, (3.4.4)
where
Lint, = +-/Z3;8t+-/4]1‘ + éJL'j+AtI%‘§‘ - _-/Ijl'at_AJI' - ~L'j_u‘lt[_.7'—ilj. (3.4.5)

3.5 Particle actions

For a summary of the particle actions see [9]. In the A = —1 setting the analysis
is exactly the same and the upshot is that after the Hamiltonian reduction in

Chapter 6 the particle action terms will not contribute to the reduced action.
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3.6 Boundary term from the spatial infinity

When we vary the action integrand (3.4.5) in a neighbourhood of the spatial

infinity such that (3.2.5) holds we get the variation term
OLing = —2 & 0, (6 (%)) (3.6.1)

Therefore, the variation of (3.4.4) acquires from the spatial infinity the bound-

ary term
—/dt § (a?). (3.6.2)

We can cancel this boundary term by adding to Spyk the boundary term S

given by
Seo = /dt (a*>+0), (3.6.3)

where the constant C' can be chosen at will. We shall from now on take C' = 0:
this choice has become standard in the literature, and it has the property that

Soo vanishes at the threshold of black hole formation, a — 0 |22, 23].
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CHAPTER 4

Reduction of the action I:

(Gauge choice

In this chapter we reduce the action (3.4.4) by imposing the constraints on the
connection density pair i,ZJ, and also fixing the gauge. We let F' denote a (for
the moment fictitious) spacetime of the form discussed in section 2.6 of Chapter
2 and X denote a surface within this spacetime containing the particles. The
i.ZJI live on X and we impose the constraints by embedding 3 into F' in such a
way that the embedding is smooth and remains consistent with the identified
boundaries of F. We then fix the gauge of %ZJI using the knowledge of the
embedding. The §; are considered fixed and so F' is specified completely by «
or (# through (2.6.7).

4.1 Embedding of the particle surface X

The embedding of 3 in F' is most easily understood by introducing a simply-
connected fundamental half-strip © on ¥ coordinatised by (A,w) such that
Q:={(\w) | A>0,—7 <w < 7} - see Figure 4.1. The boundaries of Q at
w = % are identified via (\,w) ~ (A,w + 27). Particle 1 is on the boundary
of Q at A = 0 whereas particle 2 (2’) is on the boundary of € at (1, ).
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. Particlel Particle2
U /
U B B [oeeeee = A
| 1 A,
- / Y
Particle2’

Figure 4.1: The fundamental half strip Q. Regions I, IT and IIT and the
line between particles 2 and 2’ as indicated on the diagram are

explained in the text.

We now specify the embedding so that near the infinity (\,w) are the
spatial AdS conical coordinates of F', (2.2.7b) and (2.2.7¢) with S = 0, while

near the particles (A,w) are suitably adapted to the particle motion.

We introduce A. > 1 and where A > \. (region I) we take the embedding

to be in the surface of constant AdS conical time ¢.

Region II, where 1 < A < A, is the region from particle two up to the
spatial infinity neighbourhood, whereas region III, where 0 < A < 1 is the

region between particles one and two.

In order to specify the embedding of X in regions II and III we need to
consider the embedding of F'into the fundamental domain Q discussed in section
2.6. In terms of this embedding the single and double-stroked boundaries of
lie at the corresponding single and double-stroked boundaries on the constant

T spacelike sections of Q shown in Figure 2.8.
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4.1.1 Region I, A > A\,

In region I we embed X in a surface of constant AdS conical time in F' by taking

A=r, (4.1.1a)

w =1p, (4.1.1b)

where r and v are the spatial conical coordinates (2.2.7b) and (2.2.7¢).

4.1.2 Region II, 1 <X < A,

Everywhere near and on the double-stroked boundary and near and on the line

at A = A in region II we set

0y = Tor, (4.1.2a)
= f(\) 0, (4.1.2b)
0w = ady, (4.1.2¢)

such that f(\) is a positive function with domain 1 < A < A, obeying the

condition

Ao
1 F ) dX = pe = pa, (4.1.3)

ensuring that p = pg at A =1 and p = p. at A = A.. p. is the value of p where

regions I and IT meet.

4.1.3 Region ITI, 0 < A <1

The single-stroked boundary segments on O are geodesics on the Poincaré disk
dependent on the initial data of the system (see [29] for the details concerning

the geodesics). Using the disk metric in the form (2.2.5) we obtain the geodesic

L= (1%)2)2 ((%)sz <%>2>, (4.1.4)
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Noting that ¢ is cyclic we choose to parameterise the coordinates via the proper
distance s. The Euler-Lagrange equation for ¢ then yields

do _K(1-p)°

o T (4.1.5)

where we have chosen the constant of integration to be 4K . Using this we can

now solve the Euler-Lagrange equation for p(s) to find that

(€ (Ut wn) —2(1—wp) + e (1 +up)\ 2
p(S,MO) o <es (1+w0)+2(1—w0)+e—8 (1+w0)> 5 (416)
where
K= (4.1.7)

- 1-— ’wo7
and geometrically /wg is the point of closest approach of the geodesic to the

centre of the disk. /wg can be obtained from the intital data via

At — A
= — 4.1.8
Vi 2p1p2sing’ s
where
1
+ N2 2 . 9 5 2 5 2 %\’
A+ = (1ip1) P35 sin 3 + p1(1+p2)+pgcos 3 (1+p1) )
(4.1.9)
d can be obtained from (2.6.7) and the p; are given by (2.6.10).
Solving (4.1.5) for ¢ we find
(f (wo) + €**) (1+ wp)?
= tarct C 4.1.10
¢ (s, wo) arc an( Iy/wg (1= wo) +C, ( )
where
—(1-6 2
£ (wo) = (1~ 6wy +uf) (4.1.11)

(1 + w0)2

C' is the constant of integration (chosen appropriately to produce the Figures
2.9 and 2.10) and the upper (lower) sign in (4.1.10) pertain to the boundary

segments from 1 to 2 (27).

Having found the form of p and ¢ in terms of the proper distance and the

initial data we can now specify the embedding of the single-stroked boundary
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in region III. Everywhere near and on the single-stroked boundary segments of

reqion IIT we set

O\ = 1eds =10 (0sp0y + 05004) - (4.1.12)

The factor r. is the geodesic distance between the particles, (2.6.13), and is

introduced so that || dy ||= 7.. The coefficients in (4.1.12) can be computed
from (4.1.5), (4.1.6) and (4.1.7).

We require d,, to be orthogonal to dy on the single-stroked boundary and
continuous on X across the identified boundaries of €. It can be verified that

this is achieved by setting

B = £k10r + kad, + k3O, (4.1.13)
where
ki = EL S , (4.1.14a)
((=sx+cuy+v2-1)* W2+Vv2)
. —SUY |

1
((=SX +CU) +v2=1)" U2+ V22 (U2 + V> = 1)} (U2 + V)7 +1)
(4.1.14b)
C(X?2+Y?%) -SUX
ks = (X +77) a , (4.1.14¢)
<(—SX +CU +V2 - 1) ? (X2 4Y2)

S = sinh 3y, (4.1.15a)

C' = cosh /31, (4.1.15Db)

and X, Y, U and V are given by the sausage coordinates (2.2.1) and (2.2.3)
with p and ¢ given by (4.1.6) and (4.1.10).

To summarise, everywhere near and on the single-stroked boundary in

region IIT the embedding is given by

oy = Tor, (4.1.16a)
O\ = 1¢ (0sp0, £ 05005) (4.1.16b)
Oy = k101 & l<:28p + k‘38¢, (4.1.16C)
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where the upper (lower) sign in (4.1.16) indicates the boundary segments from

1to 2 (2.

The embedding of ¥ in F' is now specified at and near the boundaries of
regions I and II and everywhere in region III. As we will see in the following
chapter that is all that will be required for the computation of the Liouville
term in the reduced action. As the embedding at and near the boundaries is
based on the form of it is continuous across the identified boundaries of €.
We can choose a smooth embedding of ¥ everywhere except at the particles

and we now consider that done.

4.2 Gauge choice

We now choose a gauge for the C-S fields TA! to coincide with the embedding

given in the previous section.

In a neighbourhood of the spatial infinity the fields take the form (3.2.5).
To choose a gauge in region I we transform the spatial projection of these fields

to (A, w) coordinates via (4.1.1). The resulting gauge is

1 1
A = (A2 + 0?2 dw, A = (A +a?)? dw, (4.2.1a)
_1 _1
U = (A2 1 a?) 2 d), Al =— (A +a?) 2 a), (4.2.1b)
A% = \dw, A? = —\dw. (4.2.1c)

The choice of gauge in regions II and III is substantially more compli-
cated. The task is to choose a gauge in which the fields are smooth across the
identification of the boundaries of €. We shall do this by writing the fields
as a (1-dependent gauge transformation of a reference configuration that is

independent of ;.

As a preliminary, we first introduce on the fundamental domain Qof F
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the fields

60:<1+P
I—p
elz< 2
I—p
2 _ 2p
1— p?

1+p2>
A0:< do,
1— p?

)dp, Al =0,

2p
A2=< )dT,
1— p?

(4.2.2a)

(4.2.2b)

(4.2.2¢)

where the el reproduce the sausage metric (2.2.4) via ds> = nrse’e’ and the

AT are the connection components compatible with the /. Rewriting (4.2.2)

in terms of R%? coordinates, we find that the C-S counterparts are

K 1
+ 40 __ _ _ _
A’ = o (XdY = YdX) £ — (UdV = VdU),
A=+ ! (UdU +Vav),
K (K2 —
1
K?-1)2 1
A% = % (UdV —VdU) + —(XdY —YdX),
K (K2 —1)2
where

K= (U?+V?)?.

(4.2.3a)

(4.2.3b)

(4.2.3¢)

(4.2.4)

The pre-subscript  refers to the invariance of ZA’ under the (X,Y") rotations.

Note that FA! are independent of 3;. We also introduce a set of zero fields,

Finally, we set

Al =0 VI

K,
FAY = KT [(CX — SU)dY — Y (CdX — SdU)]
4 Ki (CU - SX)dV — V (CdU — SdX)),
Al =4+ —[(CU = $X) (CdU — SdX) + VdV],
K (K3 —1)°
(K2 1)
FA? :"KT [(CU - SX)dV —V (CdU — SdX)]
w1 ex—suydy - v (cdx - sdv))
(K7 —1
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where

1
2

K, = ((CU ~SX)? 4 v2) , (4.2.7)

and C and S are given by (4.1.15). Note that ,:)tAI is the pull-back of FA! by the
boost (2.4.1) with (wq,ws) = (51,0). 254[ is hence invariant under rotations

about the worldline of particle 1 on the boundary of Q.

Next, we wish to write 254[ as a gauge transformation of FA!. For this, we
take a short interlude to review the relationship of diffeomorphisms and gauge

transformations in the Chern-Simons formulation.

4.2.1 Relating the gauge transformations to diffeomorphisms

In |27] it is shown, by analysing the generators of the gauge transformations
in relation to the generators of diffeomorphisms, that the Chern-Simons gauge
transformations do coincide with the usual transformations of (2 + 1)-dimensional
gravity for A = 0. The key point is that the generator of the gauge transfor-
mations, 7, is dependent on the vector field generating the diffeomorphisms, v,
and the field configuration being transformed. Adapting the discussion in [27]
to the case where A < 0 we find that a vector field v generates the infinitesimal

transformation
FAL = "o AL + 0 (VAT (4.2.8)
and this agrees with the gauge transformation (3.3.13) iff

Al = poEAl (4.2.9)

Consider in particular the one-parameter family £AI () of field configurations
obtained by acting on the configuration A4 (0) by the one-parameter family of
diffeomorphisms generated by the vector field v. We wish to write ZAZ (¢) as
the t-dependent gauge transformation of TAL (0). To do this, we observe from

(4.2.9) that the generator of the gauge transformation is given by

() = v AL (1) (4.2.10)
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The required gauge group element *g (¢) is thus obtained by integrating
T Mg =4 (1) ar, (4.2.11)
where the dot indicates differentiation with respect to ¢, with the initial condi-

tion

£9(0) = 1. (4.2.12)

A simple example

As an example let us consider v = (0,0,Y, —X), which generates an (X,Y)
rotation, and choose the field configuration to be given by (4.2.3), which is
invariant under the (X,Y’) rotation. Denoting the parameter of the gauge

transformation by 6, from (4.2.10) we find

+0 (0) = —K, (4.2.13a)
£2(9) = 5 (K2~ 1)? (4.2.13¢)

which are all independent of . The solution of (4.2.11) such that (4.2.12) holds
is therefore simply

g (0) = exp (077" ar) (4.2.14)

and a small calculation yields

1
0 _ ;oo 6 Ca 0 (102 2
cos 3 — isin 5 K $zsm—(K —1)2
t9(0) = 20 o 92 , : (4.2.15)
+ising (K? —1)7  cos§ +isingK
As a check, it is a straightforward (but long-winded) task to verify that the
gauge transformation implemented by (3.3.10) with g given by (4.2.15) does

leave the field configuration (4.2.3) invariant.

4.2.2 Gauge transformation from *A! to ;A!

To find the gauge transformation from FA! (4.2.3) to 254[ (4.2.6), we recall that

Y

FAL is the pull-back of FA! by the boost (2.4.1) with (wy,ws) = (61,0), and
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this boost is generated by the vector field v = (X,0,U,0). We may therefore
use (4.2.10) with AT = FAT (8y), v = (X,0,U,0) and t = ;. We find

K 1
+ 0 __ n . L _
T = K7 - 1Y(CU SX)+ KnV(CX SU), (4.2.16a)
gloe L (cx-su)(cu-sx), (42.16)
Ko (K2 — 1))

K2-1)?
2oy 1y (CU - SX) + %v (CX —SU). (4.2.16¢c)
(K2 —1) K

n

N|=

The 7! are now dependent on ;. To solve (4.2.10), we first observe from
(4.2.16) that

1

K2-1)2

g2y U= 1) ot L) (4.2.17)
n

As |79 > |#72|, we may find a pair of matrices Th € SU (1,1) such that the

internal vector *o! defined by
olay = *h*rla*ht, (4.2.18)

satisfies o2 = 0. Choosing *h to be a pure boost in the internal (02) plane, we

find

1 1
K,+1)? =+ (K,-1)2
= L ( ) ) ( 3 : (4.2.19)
VE\ £ DE (K1)
and
1 1
1
ol=F———— (CX - SU) (CU - 5X), (4.2.20D)
Kn (K} —1)2
+:2 _ . (4.2.20c¢)
Now, writing
g = FFh (4.2.21)

and substituting (4.2.21) into (4.2.11) we find that the equation for %k is

1 = Fo — T = 2y, (4.2.22)
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where

50 = oY (U — SX) & 215V (CX — SU), (4.2.234)
1, (4.2.23b)
2 0, (4.2.23¢)

The general solution to (4.2.22) is

+
- 0
h=H ! , (4.2.24)
0 :I:f—l

where %k € SU (1,1) is independent of 3; and *f satisfies

f _ %ifi’yo = 0. (4.2.25)
The solution to (4.2.25) is
= exp (%/ivod&) , (4.2.26)

where *C is a constant of integration satisfying |*C| = 1. Evaluating this inte-

gral, we find

if:{[Y—z'(CX—SU)] [chi(CU—SX)]}%’ 227

[Y+i(CX—SU)|[V+i(CU - SX)]
where the principal branch of the fractional power is understood and we have
set € = 1 without loss of generality. Tf has a branch point singularity at
particle one, where Y = 0 and CX = SU, but as we shall see in Chapter 5,
this will not affect us when computing the Liouville term as we can choose the

branch cut such that the contour of integration will never cross it.

Finally the constant matrix pair  is fixed by the initial condition
(6 =0) =1 (4.2.28)
This gives the final gauge element in the form

*g = fmn, (4.2.29)
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where

*m = *B, R, (4.2.30a)
*n =*R*B, (4.2.30b)
and
1
K+1)2 +(K-1)2
spy o L[ KD EESLE (4.2.31a)
V2 2k 17 (K+1)?
+
_ 0
Ry = flsi=o0 (4.2.31D)
0 *fg=o
+
0
*R = f : (4.2.31c)
0 :I:f—l
1 1
Ko4+1)2  +(K,—1)2
g L ( ) . ( 2 (4.2.31d)
V2 £(K, - 1) (K, +1)

Again it is a straightforward task to verify that the gauge transformation
implemented by (3.3.10) with g given by (4.2.29) transforms FA! (4.2.3) into
FAT (4.2.6).

We further find by virtue of the forms of *m and *n that
Tl A - FA, (4.2.32)

and

s gA - FA (4.2.33)

4.2.3 Gauge choice in regions II and III

After all the above preperation, we can now state the gauge choice in regions I1
and III. We choose a gauge near and at the double-stroked boundaries and the
line A = ). of region II according to *m™! (S—LA). We also choose a gauge near
and at the single-stroked boundaries and the line A = 0 of region III according
to (354). As will be seen in the following chapter, this partial specification

of the gauge (see Figure 4.2) will be enough to evaluate the Liouville term.
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Figure 4.2: The gauge is chosen via the gauge elements n and m~! in the

two regions indicated as explained in the text.

4.3 Continuity of the gauge choice

The gauge choice for all three regions defined in the previous section can be
extended from €2 to X. In order to verify this we need to show that the fields are
continuous across the double-stroked (region II) and single-stroked (region III)
boundaries. In region I the fields are extendable to X by definition. In region

IT on the double-stroked boundaries the non-vanishing components of iA]I- are

14 p?
0 = o (1 — p2> : (4.3.1a)
2
L =41 (N (1 = p2> : (4.3.1b)
42 2p
42 = +a <1 - p2> , (4.3.1¢)

which are all continuous across the identification. A similar analysis reveals
that the non-vanishing components of i.A]I- in region III are continuous across

the identification of the single-stroked boundaries.

The gauge has therefore been specified on and near the boundaries of the

fundamental domain 2. What remains is to evaluate the reduced action which

02



we shall address in Chapters 5 and 6.

93



CHAPTER 5

Reduction of the action II:

The Liouville term

In Chapter 4 we explained the gauge fixing procedure and with this choice of
gauge we now evaluate the reduced action. The constraint terms in (3.4.5)
vanish by the gauge choice, and so do the particle contributions as discussed in

section 3.5. The boundary term at infinity was found in section 3.6 and reads
Seo = /dt o?. (5.0.1)

What remains are the Liouville terms in (3.4.5), given by
L= % /Z a2 (Ajo AL — A0 AT (5.0.2)

For convenience we will rewrite (5.0.2) as the trace over Lie-algebra valued

fields,

L="L-"L, (5.0.3)
where
= 2i / d*x & Tr (FA074;) | (5.0.4)
T J%
and
A; = Alay, (5.0.5)

and we have used the identity 777 = 2 Tr (aray). The purpose of this chapter

is to analyse these Liouville terms (5.0.4).
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5.1 Direct evaluation in region I

In region I on Q the fields are given by (4.2.1) and the integrand in (5.0.4) is
identically zero. There is no contribution to the action from the Liouville term

in this region.

5.2 Integral conversion

In the other two regions of  we will show that due to the form of the gauge
choice described in Chapter 4 we can write the Liouville term as an integral of a
total derivative. By Stokes’ theorem, we can then convert the two-dimensional
integral in (5.0.4) into a one-dimensional integral over the boundary of each

region.

We introduce FA; and ;EAi to denote the Lie-algebra valued spatial pro-

jection of (4.2.3) and (4.2.6) respectively. Using (4.2.29) we find that
A =105, (5.2.1)

where z = 7 and *1 = Fm ! for region II whereas x = b and 1 = *n for region

II1. (5.0.4) now becomes

1 Y _ -
L :%/Ed% & Tr [(F171051) 0, (F17 1051 (5.2.2)

1 g
=5 d*z &' Tr [0; (F171'0;0,.51) — Tt o 1R o, 1L o) L (5.2.3)
TJs

In both regions *1 can be written as the product of two SU(1,1) matrices. For

example, in region ITI, (the analysis in region II is analogous)

*] = exp (aoiqﬁ) exp (alix) , (5.2.4)

for some ¢ and *y. Therefore

710,51 = Glay, (5.2.5)
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where

GO = cosh Ty, %o, (5.2.6a)
Gl =9, %x, (5.2.6b)
G? = sinh Tx0,% ¢. (5.2.6¢)

The second term in (5.2.3) can therefore be written as

1

- / &’z @'ery kGl Gl GY, (5.2.7)
87T »

where we have used the identity

1

Tr (aIaJaK) = ZE]L]K. (5.2.8)

Evaluating the integrand in (5.2.7) using (5.2.6) reveals that it is zero, inde-
pendently of the functions *¢ and *y. We hence obtain

1 i,
L=— [ &2 &09; Tr (F1710,071), (5.2.9)
2 »

where the integrand is now a total derivative as promised. The integral given
by (5.0.4) can therefore be converted into a integral over the boundary of each
region. The orientation of the boundary is acquired from the orientation of the
three-dimensional spacetime; the boundaries of regions II and III are oriented
in an anti-clockwise direction with respect to Figure 4.1. We now consider the

relevant parts of the boundary in each region.

In region IT we have the line at A = A, the double-stroked lines at w = 4,
two small quarter-circles about the singular points 2 and 2’ and the line at
A = 1. In region III we have the line at A = 0, the single-stroked lines at
w = &7, two small quarter-circles about the singular points 2 and 2’ and the
line at A = 1. The contribution from the line at A = 1 in region II will cancel
with the contribution from the line at A = 1 in region I1I due to the orientation
of the boundaries and the continuity of the gauge choice. We are left with five

distinct parts of the boundary we need to consider;

1. The line at A = A, on the boundary of region II |
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2. The double-stroked lines at w = +m on the boundary of region II ,
3. The single-stroked lines at w = 7 on the boundary of region III |
4. The line at A = 0 on the boundary of region III ,

5. Two small half-circles about the singular points 2 and 2" .

We will write L; where ¢ € {1,2,3,4,5} to denote the contribution from the
Liouville term for each of the five parts and address all of these contributions

in turn in the following section.

5.3 Evaluation of the contributions

For each contribution to the Lagrangian from evaluating (5.2.9) on the relevant

boundaries we will write

W = F1710047. (5.3.1)

We also note that according to our previously defined conventions we have
A = = 41 (5.3.2)

In order to evaluate the resulting one-dimensional integrals we need to use the

details of the embedding and gauge elements elucidated in Chapter 4.

5.3.1 )\ = ). and the double-stroked boundaries

The embedding at the boundaries is given by (4.1.2) and the gauge element is

d) -1

On the line at A = A\, the contribution is

1 ™
Li=— [ dwTr W, (5.3.3)
2w

—Tr

Upon evaluating TW,, we find

1 .
W, = Fleal, (5.3.4)
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where Iy is the identity matrix. Taking the trace and evaluating the integral

we obtain the finite contribution to the Lagrangian from this boundary being

Li=—oT. (5.3.5)

On the double-stroked boundaries the contribution is

I
—— [ AT W 5.3.6
o . r As ( )
along the boundary at w = —7 and
1 st
__/ d\ Tr T, (5.3.7)
2w e

along the boundary at w = 7. Upon evaluating *Wy we find that it is pro-
portional to a Lie-algebra valued matrix. Taking the trace yields zero for the
integrand. The contribution to the Lagrangian from the double-stroked bound-

aries is zero,

Lo =0. (5.3.8)

5.3.2 The single-stroked boundaries

The embedding at the boundaries is given by (4.1.16) and the gauge element is

] =*n.

On the single-stroked boundaries the contribution is

1 st
_%/0 d\ Tr TW), (5.3.9)
along the boundary at w = —7 and
1 0
—%/ d\ Tr TWy, (5.3.10)
1

along the boundary at w = m. It is easiest to evaluate these integrals by
parameterising in terms of the proper distance, s, as opposed to A. We now

have to evaluate T, by considering the gauge element *n in the form (4.2.30b)
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and by differentiating (4.2.31d) and (4.2.31c) with respect to ¢ and s we note

the intermediate results,

OB =*d a1 "B, (5.3.11a)
O*R =*e ap™R, (5.3.11b)
s B = *b a, B, (5.3.11c)
0sTR = *r ap*R, (5.3.11d)

where

(CX — SU) (svT —(CU - SX) 5‘1)
:I:d — + 5 , (5312&)
K, (K2 —1)2
N V(X —-SU) B+ (C(U+ V) —sux)T Y ((CU —~SX) B — SVT>
€= K2 * KZ—1 ’
(5.3.12b)

CU — SX) (COU — 88,X) + Vo,V
K, (K2 —1)?

s _ (OX - SU)OY Y (COX - SU)

(CU — 8X) 0,V — V (COU — S8, X)

K2 -1 K?
(5.3.12d)
A further calculation reveals that
1
T (TW, — "W,) = 3 (Cetr—"Tetr)=f(s), (5.3.13)
where
£s) = —;{ (V(OX ~ 50) 31 + (C (U +V?) — SUX) T) x
K2 (K2 -1) '

(CX — SU)OY — Y (CO,X — SO,U))
+Y <(CU — 8X) - SVT> x
((CU — SX) 8,V — V (COU — $9,X)) } (5.3.14)

Using the property that f(s) switches sign across the identification of the

boundary (Y — —Y), we can combine (5.3.9) and (5.3.10) into one simple

Y

expression evaluated on the boundary at w = 7,

Ly — %/f ds £ (s). (5.3.15)
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To evaluate this integral we must first parameterise the integrand explicitly in

terms of s and wg. The parameterisation for U, V, X and Y is

1
U= ( +w0> cosh scosT, (5.3.16a)
1-— wo
1
V= ( i w0> cosh ssinT, (5.3.16h)
1-— wo
1
X — ( +'w0) . (es—}—si + e—s—si) + f (es—si + e—5+5i))7
2(1 —wp) (e +2f 4+ e725:)2
(5.3.16¢)
3
2
Y = ady (575 — 75T, (5.3.16d)

(1+wp) (€25 +2f + e=24)3
where we have used (4.1.10) and also inverted (4.1.10) to obtain s; and sy, the

initial and final proper distances,

1 1

- 1 Y

55— —log | L wown)® & (wn = wo)? ) (5.3.17a)
(1 —wow1)? — (w1 — wp)?
1 1
- 1 R

s; = +log (1= wowp)? + (wp — wo)® ) (5.3.17b)
(1 — ’u)()QUQ)§ — (’wg — w0)§

where w; is the square of the distance of particle ¢ from the centre of the disk.

wp, wy and wy can be rewritten in a similar form in terms of the initial data

and T,
wy = (sin? g + 5252 sinh? 51)% - (sm ¢ + s3s3sinh? B; sin T)%  (53.18a)
(51 g + 5252 2 sinh? 51) (sin 5+ s3s3 2sinh? 3 sin? T) 2
o (s?sin? 2 + 5252 sinh? 51)% —( 25in? g ¢ + s3s3sinh? By sin T)%
o (sl2 sin? 3 g 4 s2s3 2 5inh? 51)% (322 sin? 5 + 5252 sinh? 3, sin? T)% ‘
(5.3.18hb)
Using (5.3.17) and (5.3.18) we can now rewrite (5.3.16),
U = Acoshs, (5.3.19a)
V = Bcoshs, (5.3.19b)
X = Dcoshs + Esinhs, (5.3.19¢)
Y = Fcoshs 4+ Gsinh s, (5.3.19d)
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where.

sin? +s s2 sinh?
A= ( 172 b ) cosT),

=

=238
sin“ 5 + s2s3 sinh? 3; sin® T

1
2 3
sin? & 4 s2s2sinh? B .
B = 2 172 3 sinT',
sin? 5 + 8182 sinh” (1 sin T
1
D $182sinh By cos T (81 sin? 2 + 8182 2 ginh? ﬁl)
pr— 1 l 5
(Sin 5+ s2s3 sinh? ﬁl) (sin 5+ s2s3 sinh? 3 sin? T) 2
D)
—c18in §
FE = 2 -
226 S 12 0\3
(SlIl 5+ s2s2 sinh ﬁl) 2
P €18189 sin % sinh (1 cosT'

9

1 T
(sin2 % + 5252 sinh? 61) 2 (sin2 % + 5252 sinh? 3; sin? T) 2

1
2
G 52 sin? 2 S + s3s2sinh? 3y
- 2
sin? 5 + s2s2sinh? 3

We now reparameterise the integral via

S
= tanh —,
P 2
so that
+ 2
cosh s = p2 ,
-p
2
sinh s = P 5
-p

We now have

2 [Pr P (p)
Ly=—— 1| 4 .
T we /p Yo (- 5) - )
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(5.3.20a)

(5.3.20b)

(5.3.20¢)

(5.3.20d)

(5.3.20e)

(5.3.20f)

(5.3.21)

(5.3.22a)

(5.3.22b)

(5.3.23)



where

6= <(CA —SD)* + 32) <(CD — 84+ F2) : (5.3.24a)
1
o w2 — Wy 2
pr= (*1 - w0w2> : (5.3.24b)
o w1 — Wy %
pi = <71 = w0w1> : (5.3.24c)
- 2SE
Pa= GA_SD+iB (5.3.24d)
2SE
2 _ 12
Py = G A_Sp_iB 1=p;, (5.3.24e)
g:_Z[C’E(CD—SzA)—I—FG] L (5.3.240)
(CD — SA)® + F2
P(p) = Ko+ Kip (1 —p') + Kap® (1 - p?), (5.3.24g)
Ko = SEB [F (CA—SD) g — SBFT'} , (5.3.24h)
K, = 2SEB [(G (CA—SD) - SEF) §; — SBGT’} , (5.3.24i)
K, = SEB [(F (CA—SD) - 4SEG) 1 — SBFT} . (5.3.24j)

The integral (5.3.23) can be evaluated in terms of elementary functions. The

result is
2 . -
Ly=-—5 [ATLog (p + pa) + A”Log (p — pa)
+ BT Log (p + py) + B~ Log (p — py)
+C"Log (p +pc) + C~Log (p — pe)
+ = 7|Pf
Kt K } (5.3.25)
P + Pe P — De Di
where
P (Fpq
. F (jp ) . (5.3.26a)
2pa (P2 — 13) (P2 — P?)
P
Bt ;F (ﬂpr; . (5.3.26b)
2py (P — p2) (P} — P?)
P:I: 2 2 2
ot (pa,fbﬁpc) N (5.3.26c¢)
4p3 (p2 — p2)* (02 — p2)
P (Fpe
. (Fpc) (5.3.26d)

CApZ (p2 —p2) (p2—p})’
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and
P (p2,p8,p?) = £ Ko (=3p% (p2 + p}) + p2p} + 5p2)
— 2p2 Ky (2p2pip? — P2 — ph — Pipe — Paps + 207)

+ p2 Ko (—piapy + 3pe — Paps — Pipe — Dabe — Do — Pipe + 3DaDipl) -
(5.3.27)

We will leave the solution in the form (5.3.25) for now.

5.3.3 The line at A =0

On the line at A = 0 we need to perform the integration for the contour shown

in Figure 5.1.

Boundary orientatior

Figure 5.1: Contour of integration about particle 1.

The parameterisation for the R>? coordinates is

1 2 2 qin2
oo (Lt (p1 + 7 cos 9)2 +r Sm2 0 cosT, (5.3.28a)
1—(p1+rcosf)” —r2sin®6
v (1 (o1t rcos )2 tr | sinT (5.3.28b)
1—(p1+rcosf)” —r2sin®6
2
. (p1 + rc;)S 0) 7 (5.3.28¢)
1 — (p1 +rcos)” —r2sin? 6
2rsind
. rsin (5.3.28d)

11— (p1+rcosh)? —r2sin?0’
where r and 6 are shown in Figure 5.1. After the integration we will take the

limit 7 — 0. The function we integrate is similar to (5.3.14) with s replaced

63



by 6. After performing a similar analysis to the previous section we find that

the contribution to the Lagrangian from this contour is

1 [cosh 3y . cotT 01
Ly=—|——— 0 —60;) T — —— - —
Tl (VX0 = 6:) JXsinh B, <\/§2
where
0; = arctan <\/§tan 5—21> ,
and

x = cos? T 4 sin? T cosh? ;.

> 5'1] . (5.3.29)
(5.3.30)

(5.3.31)

5.3.4 The two small half-circles about the singular points 2

and 2’

The final contribution to the Lagrangian is from the two small half-circles about

the singular points 2 and 2’. The gauge choice in this region is determined by

first specifying a group-valued function in the interval p € (pa — 7, p2 + €) where

7 and € are small, such that it takes the value *n at p = po — 7 and Tm ™! at

p = p2 + €. A prospective choice for this function is provided by the formula

t

D=

0 FH1 V2 i(f(—l)
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where

(v -i(Ex-30)) (V5i(cT-§X))*
po Poi(0X-80) (Pri(@S0)
(V+i (C’X—SU))4 (Viz’ (C’U—SX))4
C = cosh (1 (1 —p)), (5.3.33b)
S =sinh (8, (1 —p)), (5.3.33¢)
K= (00-5%) + 72 (5.3.33d)
U= <%> cos T, (5.3.33e)
V= <%> sin T, (5.3.33f)
X = <%> Ccos ¢, (5.3.33g)
Y = <1i—pﬁg> sin ¢, (5.3.33h)
p=pr+ep—1(1l—p). (5.3.33i)

We have introduced the parameter p € [0, 1] to interpolate between the two val-
ues in the interim region. p=0at p=py—7and p =1 at p = ps +¢. However,
formula (5.3.32) could conceivably fail if it becomes singular somewhere in the
domain bounded by the two small semicircles and the lines p = 0 and p = 1.
As we will only be needing the gauge choice on the two small semicircles it is

possible to resolve this issue by an indirect argument as follows.

Consider the gauge choice *p (5.3.32) on the two small semicircles and
on the lines p = 0 and p = 1. When tracing over the closed curve formed by
these four lines the gauge function *p traces, by construction, a closed curve in
SU(1,1) = R? x S'. If this closed curve in SU(1,1) is homotopically trivial,
that is, does not wind around the S* factor, then there exists an extension of the
gauge function into the domain bounded by the four lines and we may use *p
on the small semicircles. If this closed curve in SU (1, 1) is not homotopically
trivial, we modify *p by including on one or both of the small semicircles a
factor that does the requisite unwinding to make the new curve homotopically

trivial. We then use this modified choice for *p on the small semicircles.
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The author has not been able to complete this analysis and the contri-
bution L5 remains undetermined. However, as the idea behind all of this is to
obtain a “nice” form for the reduced action we are not overly worried about
L5 mainly due to the intractable nature of L3. A “nice” form for the reduced

action will be obtained in a different way in Chapter 6.
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CHAPTER 6

The reduced action

In this chapter we first obtain the reduced Hamiltonian action in a phase space
chart in which the “position” coordinate is the geodesic distance between the two
particles. We then use this action to analyse the black hole formation threshold
in the language of critical phenomena, and in particular we compute the critical
exponent of the black hole mass at this threshold. We also use the Hamiltonian
action to analyse the black hole creation/annihilation as a quantum mechanical
tunnelling process, finding that the imaginary part of the action is equal to the

Bekenstein-Hawking entropy.

6.1 The equations of motion

Although algebraic complications prevented us from computing the Liouville
terms in the reduced Hamiltonian action in Chapter 5, the analysis of Chapter
5 did show that the phase space is two-dimensional and can be coordinatised
by the (a priori non-canonical) chart (o, T) as can be seen from the form of
L; (5.3.5), L3 (5.3.25) and the equations relating « to ; (2.6.7) and (2.6.5).
a refers to a two-particle spacetime, T refers to a particular spacelike slice
within the spacetime, and both parameters are here understood as functions
of the BTZ coordinate time t. The analysis also showed that the value of the

Hamiltonian is —a? by virtue of the form of Sy, (5.0.1). Further, it follows
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from the definition of T', a and the BTZ time ¢ that the equations of motion in

this chart take the simple form
a =0, (6.1.1a)

T = a, (6.1.1b)

where the dot indicates differentiation with respect to t. We shall now use these

facts to indirectly determine the Liouville terms in the action.

6.1.1 Reproducing the E.O.M

We wish to find an action, S, that reproduces (6.1.1), with the Hamiltonian
H = —a? and with Liouville terms of the form obtained in Chapter 5. The

action must take the form
S:/dt [TF (0,7) + 4G (a,T) +o? (6.1.2)

where the functions F' (o, T') and G (o, T") are to be determined.

We can simplify (6.1.2) somewhat by noting that there exists a function
h(c,T) such that

Oh (a,T)
G(a,T)= ——F—=. 6.1.3
(0,7) = =0 (613)
The second term in the integrand in (6.1.2) can thus be rewritten as
d - Oh
) T)=—h(a,T) =T —=. 6.1.4
66 (a,T) = L (0, T) = T57 (61.4)

As a total derivative in the integrand in (6.1.2) will not affect the E.O.M, it

suffices to consider the action
S = /dt [Tf (a,T) + a?|, (6.1.5)

where the function f («,T) is to be determined.

The Euler-Lagrange equation for « combined with (6.1.1b) yields a differ-

ential equation for f,
of
— =-2 6.1.6
da ’ ( )
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which is easily solved,

f=—"2a+¢(T). (6.1.7)

The Euler-Lagrange equation for 7' combined with (6.1.1a) shows that ¢ (T) is
a constant, and we may assume without loss of generality that ¢ (T') = 0. A

Lagrangian reproducing (6.1.1) is therefore
L= —2aT + o?. (6.1.8)
Rewriting « in terms of the new variable
pr = —2a, (6.1.9)

the action takes the Hamiltonian form

S = /dt [pTT—H} , (6.1.10)
where
p2
H= _TT‘ (6.1.11)

The phase space has thus dimension two, and the pair (T, pr) provides a canon-

ical chart, with —5 <T < § and -2 < pr < 0.

6.2 Massless particles

As seen above, the theory has a two-dimensional phase space and (T, pr) is
a canonical chart. The task now is to undertake a canonical transformation
(T,pr) — (re,pr.) where r. is the geodesic distance between the particles and
Dr. 18 its conjugate momentum. In this section we shall do this in the limit
where the particles are massless, 1 — 0 and d5 — 0. As we have until now
assumed both §; and Jo to be strictly positive, we first need to take this limit

in the formulas of Chapter 2.

To analyse the limit we write 61 = em; and d9 = emo where m; are

regarded as positive constants and ¢ is a positive parameter that will eventually
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be taken to zero. We anticipate that in the limit ¢ — 0, § should go to infinity.

An ansatz which turns out to give the correct scaling is to write

4
cosh 8 = 27,u’ (6.2.1)
€“Mm1mse
where p is independent of e. We then find, after taking € — 0, that
¢ =1, (6.2.2a)
]
cos 5 = 1—p. (6.2.2¢)
We can rearrange (6.2.2¢) to express « as
1
a = —arccos (u—1). (6.2.3)
T

Note that pure AdSs occurs when g = 0 and the threshold of black hole for-

mation occurs at pu = 2.

For the geodesic distance between the particles, taking the ¢ — 0 limit of

(2.6.13) gives
2—p

hr.=1 .
coshr, + o T

(6.2.4)

6.2.1 The canonical transformation

For brevity of notation, we now drop the subscript ¢ and let r stand for the
geodesic distance between the particles and p, for its conjugate momentum. As
a first step towards the canonical transformation we find, from (6.1.9), (6.2.3)

and (6.2.4)

i TPT
sinhg - —% (6.2.5)

We have chosen a minus sign in (6.2.5) as —2 < pr < 0 and we’re assuming

that we are in the colliding particle regime where 0 < T' < §. Rearranging

(6.2.5) gives
4 ) LT
pr = ——arcsin <tanTsmh 5) . (6.2.6)
T
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The criterion for the transformation from (7', pr) — (r, p,) to be canonical
can be written as |30]

prdr — ppdT = df, (6.2.7)

where p, and pr are regarded as functions of 7" and r, and f is an arbitrary
function of T and 7. To find a p, (T, 7) that satisfies (6.2.7), we note that (6.2.7)

is equivalent to the condition

Opr _ _Opr
or  or’

(6.2.8)

After a fairly lengthy straightforward calculation using (6.2.6) we find that

Opr 2 0 cosT
=—— — . 2.
T —aT arccosh <tanh %> (6.2.9)

The general solution is

2 cosT
pr=—- arccosh <tanh§> +g(r), (6.2.10)

where the function g (r) is arbitrary. We choose g (r) = 0 for reasons that will

become apparent shortly.

The new phase space coordinates (r,p,) are then defined implicitly by

—sin (%) = sinh <g> tan 7T, (6.2.11a)
cos T = cosh (ﬁ) tanh (C) . (6.2.11b)
2 2

Eliminating 7" from (6.2.11) we find

pr = %arccos <— cosh (g) tanh (F;)T)) . (6.2.12)

In the new chart the Hamiltonian takes therefore the form

H = —% [arccos (— cosh (g) tanh (Fgr))]z. (6.2.13)

Note that in the limit p, — 0, we have H — —1, and the spacetime

becomes pure AdSs. This was the reason to choose ¢ (r) = 0 in (6.2.10).

In deriving (6.2.13) we have used the information that we are in the col-

liding particle regime where p, < 0 and 0 < T < §. We can generalise (6.2.13)
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to cover both the colliding (p, < 0, 0 < T < §) and the expanding (p, > 0,

—% < T < 0) particle regime by writing

H= —% [arccos <cosh (g) tanh <”|§T|>>r. (6.2.14)

When cosh (%) tanh (”'g’"') > 1, the Hamiltonian (6.2.14) continues ana-

4 r | pr| 2
H= p [arccosh <cosh (5) tanh <T>>] , (6.2.15)

which takes positive values. The geometry near the infinity is then the BTZ

lytically to

geometry (2.2.9) with M = H > 0, S = 0 and ¢ periodic with period 27. This
is the spinless BTZ black hole with mass M = H [22, 23].

We note that our Hamiltonian (6.2.15) differs from that obtained in |31],
even though both use the geodesic distance as the configuration variable. The
reason is that the time coordinate used in [31] (see equation (3.21) therein) is

related to the BTZ time coordinate by a rescaling that depends on M.

6.2.2 Threshold of black hole formation

The threshold of black hole formation is where H = 0. We wish to examine

how the mass of the black hole depends on p, near this threshold.

From (6.2.14) we can see that H = 0 occurs when

cosh (f) tanh mlpr| =1 (6.2.16)
2 2
We set
cosh (%) tanh (@) =1+e¢, (6.2.17)

for small € > 0. The behaviour of H in terms of € is
8 2
H=—5e+0 (7). (6.2.18)

For fixed r, € behaves as

e=K (pr _p0)7 (6219)
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where pg is the value of p, at which H = 0 and K is constant. We hence find

8K

H = — (pr — po) + O (pr — po)*, (6.2.20)

2
Near the black hole formation threshold, the mass therefore depends linearly on
the momentum of the particles. In the language of critical exponents, we can
say that the mass behaves linearly as a function of the initial data, or has the
critical exponent 1. This agrees with what was found in [12]| in a formulation
that parameterises the phase space in terms of the time-independent O, (2,2)

holonomies of the two-particle spacetime.

6.2.3 Action for tunnelling from the black hole

In [32] the authors evaluate the classical action S of the positive definite section
of the Schwarzschild geometry. They postulate that Z ~ exp (—.S5) is the correct
partition function to use, and show that this partition function indeed repro-
duces the Bekenstein-Hawking entropy by the usual formulae of the canonical

ensemble. See also [33] and the review in [34].

Motivated by this and subsequent work, in [35] the authors perform a
tunnelling calculation for ripping a pair of magnetically charged black holes out

of the vacuum. Some clarifying comments are in [36].

As we have formulated a classical action for our point particle system, we
are motivated to consider a quantum mechanical process analogous to the one
considered in [35] in which the particles semiclassically tunnel out of the black

hole.

To begin, suppose we are in the black hole regime, H > 0, and consider

the action in the new chart,

S— /dt (o — H), (6.2.21)

where H is given by (6.2.15). Assume further r to be so large that the particles

are outside the horizon, and consider the expanding case p, > 0. One E.O.M
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is simply that H is constant. The other E.O.M is that

L_oH
~ op,’

(6.2.22)

which after some algebra yields

’ vH : r . T
T sinh (&;{wsh (%) [smh2 <§) — sinh® ( 2H>] ‘ (6.2.23)

The expression in square brackets is zero when
T = Thorizon = TV H, (6224)

which is the value of r at which both particles are at the horizon of the black
hole. It would take an infinite amount of coordinate time t to reach rhorizon @S

one would expect by the form of the BTZ metric (2.2.9) with positive mass.

The solution to (6.2.23) is found by first making the substitutions
H
A = sinh (”f) , (6.2.25a)

S = sinh (g) , (6.2.25b)

so that after some manipulation

S—A
2VHdt = dIn <S+—A> . (6.2.26)

Choosing a suitable zero for ¢, we end up with
H
sinh (%) — _coth (x/ﬁt) sinh (#) , (6.2.27)
where ¢t < 0. Note that r — o0 as t — 0_ and r — Topigon a8 t — —00.

We now wish to examine the tunnelling process from r = 0 to 7 > Thorizon-
The trajectory will have to be complex but it should have a well-defined action.
We wish to evaluate this action and see whether its imaginary part is related

to the Bekenstein-Hawking entropy.

We can express (6.2.21) in terms of an integral over r;

g /dr <p,« B g) , (6.2.28)
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The first term in the integrand is

9 cosh <7r 2H)
= —arctanh | ————~ 6.2.29
br=x cosh (%) ( )
The integral we are interested in is
00 1 [ cosh (%) — cosh (”@)
/ prdr = ——/ drln , (6.2.30)
0 ™ Jo cosh (%) + cosh (”\éﬁ)
and evaluating this gives the imaginary contribution
—inmVH, (6.2.31)

where n = +1, (n = —1) if r has a small positive (negative) part around the

singularity at r = Torizon-

The second term in the integrand is

E B AVH  cosh (%)
P 2 sinh? (%) — A%’

(6.2.32)

so that the integral becomes

e

Evaluating this gives an imaginary contribution of

H
img- (6.2.34)

Collecting both imaginary terms together we get the imaginary contribution to

the total action of

onVH A
—in 7721/_ = i, (6.2.35)

where A is the horizon circumference,
A=2rVH, (6.2.36)

The imaginary part of the action is hence equal to the Bekenstein-Hawking

entropy of the black hole [22].
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6.3 Massive particles

In this section we keep the masses of the two particles strictly positive. We

start with generic values of the masses but specialise early on to equal masses.

6.3.1 The canonical transformation

For two massive particles the algebra in finding a canonical transformation is
substantially more difficult. The geodesic distance between the particles is given
by (2.6.13),

cos? T cosh 3 + sin? T cosh (3; cosh 2 (6.3.1)
((3082 T + sin® T cosh? 51) : (cos2 T + sin® T cosh? 62) 2
where (3; are given by (2.6.5) and (2.6.6) and [ is related to a through (2.6.7).

coshr =

The first task is to invert (6.3.1) to find an expression for 7" in terms of r

and pr. To do this we write

v = cos (”%) — — cos <g> , (6.3.2)

o =sin®T, (6.3.3)

where —1 < v < 1, and

and find (after a lengthy calculation) that

tan® T = 29 (R —v7) - — 1,
R2(m +n) —2vh — R(1 —v?) [R2 (2 — c%)2 + 40102\/ﬁ\/ﬁ] :
(6.3.4)
where
R = coshr, (6.3.5a)
g=0c +c2—1+2vcicn + 07, (6.3.5Db)
h=wv(ci+c3)+ciea (1+07), (6.3.5¢)
m = (1 + cov)?, (6.3.5d)
n=(cy+ c1v)?. (6.3.5¢)

We shall only consider the special case of equal masses, d; = ds.
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6.3.2 Equal masses

Specialising to equal masses, ¢; = ¢z := ¢, where 0 < ¢ < 1, (6.3.4) simplifies to

2 2 2
o (U c“—u B
tan® T = <52 + 1) <7C2 - u2)> 1, (6.3.6)

where we have written

(6.3.7a)

U= — 5

T R—-1
=sinh - =4/ ——. 6.3.7b
S =sin 5 5 ( )

The range of u is such that —c < u < 0. Note that when we take the massless

limit ¢ — 1 we recover (6.2.11a).

We now consider p, and T as functions of pr and r. The condition for the

transformation from (7, pr) to (r,p,) to be canonical is then
pedr + Tdpr = df, (6.3.8)

where fis a function of r and pr. An equivalent form is

op, 0T

=, 6.3.9
opr  Or ( )
The R.H.S is easily computed and we find
2
gp’“ S we - (6.3.10)
T () [0 8) () -
where
r
C = cosh (5) , (6.3.11)

and we have assumed we are in the range 0 < T' < 5. Changing the differen-

tiation variable to u and simplifying the expression in the square brackets we

find
opr 2Ccu

ou (u?2 + 52)[1 —s2C? — u2]%

, (6.3.12)

where

s=1v1-c2 (6.3.13)
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We can integrate this directly by changing variables. The answer is

1

1 C’c—(1—8202—u2)5
p?”:_ln 1
g Ce+ (1 —52C? —u?)?

, (6.3.14)

where we have set the arbitrary function of r obtained when integrating to zero

in order that p, =0 at T'= 0. We now rearrange this expression to find

(1- u2)% =C <32 + ¢? tanh? (%pr))% . (6.3.15)

Collecting everything together we can now express the Hamiltonian in the new

chart as
4 r\\ 3]
H=—— {arccos [C <32 + ¢ tanh? (%)) 2} } : (6.3.16)
™
The analytic continuation of (6.3.16) to the black hole regime, H > 0, is
4 7T NG
H=— {arccosh [C (32 + ¢ tanh? (%)) 2} } , (6.3.17)
T

1
where C (s* + ¢ tanh? (*4£))? > 1. To compute (6.3.16) we have assumed
that 0 < T < § and p, < 0. A similar analysis shows that (6.3.16) holds also

when —5 <T' < 0 and p, > 0. The result thus holds for —5 < T < 3.

6.3.3 Threshold of black hole formation

The threshold of black hole formation is where H = 0. As in the massless case
the analysis yields the same formula for the Hamiltonian (6.2.20) showing that

the critical exponent is 1, again in agreement with [12].

6.3.4 Action for tunnelling from the black hole

The analysis in this section is qualitatively similar to the action analysis for the
massless case. Again, one E.O.M is simply that H is constant. After a lengthy
calculation the other E.O.M yields
2 2 (nvH
sinh? (%) *z tanh (’TT) +1

sint? (=47) e (24Z) + tann? (VL) (6.3.18)
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The particles again reach the black hole horizon when 7,4izon = 7V H. It would

take an infinite amount of coordinate time ¢ to reach orizon-

After evaluating the imaginary contribution of the action we find it to be
again given by formulas (6.2.35) and (6.2.36), and hence equal to the Bekenstein-
Hawking entropy of the black hole.

6.4 One massive and one massless particle

To end this chapter, we consider briefly the special case when we have one
massive and one massless particle. We will just state the result, the analysis

being entirely analogous with the previous sections in this chapter.

Taking particle 2 to be massless, we have so = 0 and ¢3 = 1. The Hamil-
tonian in the black hole regime is

H :%{ arccosh [— c1 <1 — tanh? (%))

+ cosh (r) tanh (W‘?') <S% + ¢} tanh? <F§r)) } }2. (6.4.1)

We did not complete the analysis for the critical exponent and the tun-
nelling action but have no reason to expect the results would be any different

to those obtained in the massless and equal massive cases.

According to the AdS/CFT correspondence, |20], processes happening
inside AdS space should be describable by a conformal field theory on the
boundary of AdS. In particular, the processes involving point particles we have
considered in the first part of the thesis should be able to be described in terms
of a CFT, see [37] and [38]. Although we do not follow up on this here, we
now draw motivation from the AdS/CFT correspondence to discuss CFT in a

different setting in the second part of the thesis.
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CHAPTER 7
SL(2,C) twistor space

This chapter is concerned with homogeneous spaces constructed from the Lie
group G = SL(2,C) via coset space techniques. We realise “SL(2,C) twistor
space”, showing that it has complex dimension two, a metric with signature
(+,4+,—,—) and an interesting complex structure. We also consider a second
coset space of G and discuss its global properties. Essentially we would like
to set the mathematical scene for physical applications within conformal field

theory.

7.1 The twistor coset, T - matrix representation

We consider the Lie group G = SL(2,C). We define the twistor coset T as a

homogeneous space via a quotient space construction,
T:=G/A={g9A|geG}, (7.1.1)

where A is the diagonal subgroup,

-1 0
A= |5eC\{0}}. (7.1.2)
0 6

Elements of G/A are equivalence classes on G where the equivalence relation is

g~¢g ifdae A|g =ga, and so [g] = [ga] Va € A. The relationship between
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elements g € G and elements [g] € T is, for

a b

g= , (7.1.3)
c d
a b ad~t b
lg] = = |6 € C\{0} ;. (7.1.4)
c d 6t ds

When d # 0, we may choose complex coordinates (zj,z2) on T by setting

S=d', 1 = % and o = ¢ in (7.1.4), so that a unique representative of a

class in T is given by

1
1 —z2 o
t(z1,22) = e ) (7.1.5)
Z2
— 1
1-— 1T
where x; € C, and
L1 75 1. (7.1.6)
An alternative parameterisation is
- &2 5—2 &1 t
t(&1,62) = ) : (7.1.7)
1
&2—&
where &; € C, and
&1 # o (7.1.8)

The equivalence classes where d = 0 form a subset of T of complex dimension
1 and can be understood as singular limits in the parameterisations (7.1.5) or

(7.1.7).

Among the infinitely many parameterisations of T available these par-
ticular two give “nice” transformations of the coordinates when the action of
the covering group on the space is considered as will be done in the following

subsection.
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7.2 (G-action on T

We show here that the natural left action of G on T is by distinct fractional
linear transformations on the two complex coordinates. In deriving this result
we use the fact that the action of G on elements of G/A is the same as the class

of the action of G on any representative of G/A, namely (for g € G)

glt] = [gt]. (7.2.1)

We denote an element of A by

B ()
a(0) = , (7.2.2)
0 o
and use a generic representative h of G/A by leaving J freely specifiable for the

moment,

h(z1,z2,0) = t(x1,22) 0@ (0)
5—1

— oz
_ T2 . (7.2.3)
(5‘1332
1-— T1X9
The action is
51 T
a b 1— 2z o
glt(x1,22)] = glh(1,32,6)] = L
C d 6 HO) 6
1-— 11X -
- 5_1 -
)
. a b 1— 2129 "
o -1
c d 0" xg 5
L 1-— 11X -
(a+bxg)(cxyr +d) azxy+0b
B 1— 2129 cxy1+d
(¢ + dzo)(cxy + d) )
L 1-— T1T2
=[t(2}, 25)], (7.2.4)
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where in the last step we have chosen § = (czq + d)_l. The explicit coordinate

transformation is given by

;. ary +b drs+c
= . 7.2.5
(a1,22) = (o, a3) = (22150 A2 (7.25)
In the alternative coordinatisation the transformation is
Il af1+b aéy + b)
, , = , . 7.2.6
(51 52) = (61 52) <C£1 i d CEQ i d ( )

We now study the one-parameter subgroups of G and calculate the corre-

sponding left invariant vector fields on G.

We use the generic representative (7.2.3), denoted by h = t o a. The
natural left action of G is via h +— h/ = g o h where g € G. If we parameterise
the element ¢ in the same way as (7.2.3) with coordinates (21, 22, 3) the explicit

transformation of the coordinates is

’ _522’1 (1 — 212’2) + 1

— 727
1 52 (1 — 2122) + ngl’ ( a)
2
, Bfro (1 — 2129) + 29
= 7.2.7b
2 2921 (1 — 2129) + 17 ( )
5 (% (1 —
g 07— zz) + szl), (7.2.7¢)
B (1 —z122)
with corresponding inverse transformations
21 r
1 :ﬁ (1 - z12) (";tl Zl), (7.2.8a)
(1 — z92)
xh — 29
= 7.2.8b
TR (1= 212) (1 — 212 ( )
8 (1 — z92))
f=——— -7, 7.2.8¢c
B (1= 2129) ( )
The transformation of basis vectors is
2(1- + ? §(B*(1— +
0, = (82 (1 — z120) Z22$1) Oy, — 20 (6 (1 — z122) - 271) d5.  (7.2.99)
ﬁ2 (1 — Z122) ﬁz (1 — 21Z2)
2 1- 1)
o, :(ﬁ x221 ( Z1Z2)2+ ) D, (7.2.9b)
B2 (1 — z122)
1
oy = Sl=n2) 4 (7.2.9¢)

ﬁ2 (1 — Z1Z2) + 291
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with similar inverse transformations.

We now take the canonical basis for the complex Lie algebra sl(2,C)

0 1 0 0 10
oy = , o_ = , o3 = ,  (7.2.10)
0 0 1 0 0 —1

with the commutation relations
[o4,0_] =03, [03,04] = 20, [o3,0_] = —20_. (7.2.11)

The real one-parameter subgroups of SL(2,C) corresponding to these basis el-

ements are

1t . 1 it
g+(t) = €7t = ; gi(t) =7t = ) ; (7.2.12a)
0 1 0 1
10 . 10
g_(t) = el = , g_(t) = €' = ) , (7.2.12b)
t 1 it 1
t it
= etos — | € 0 Ga(t) = elo3 = 0 7.2.12
93()_6 - 0 4 ) 93()_6 - 0 it ) ( el C)
e e

where t € R. The corresponding complex vector fields invariant under the left

SL(2,C) action are

X, = ﬁ&; + 5%8%, (7.2.13a)
Xy = 6*(1 — 2122)? 0y, (7.2.13b)
X3 = —00;, (7.2.13c)
X, = ﬁ&; + (;—26%1, (7.2.13d)
X5 = i0%(1 — 2122)% 0y, (7.2.13€)
X6 = —i60s, (7.2.13f)
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with the correspondence

0
Xi

0

0
Xo

1

1
X3

0

0
Xy

0

0
X5

)

7
Xg «——

0

1
=0+,
0
0
=o0_,
0
0
=03,
—1
1
= iO’+,
0
0 .
=10,
0
0 .
= 103.

—1

We form real left-invariant vector fields from the X; via

(7.2.14a)

(7.2.14D)

(7.2.14c)

(7.2.14d)

(7.2.14e)

(7.2.14f)

(7.2.15)

and define a set of dual, left-invariant one-forms {w;} by (w; | ¥;) = d;;. They

read
1 _
w1 = 3 ((52d£1 + 52dj1) ,
w 1 ( dxg dZo
2T 2 52(1 — $1l‘2)2 52(1 — 131152)2
o — 1 Todry TodZ1 B d_<5 B d_g
3_2 1— 2129 1— 2129 1) 5 )’
wi = 5 (~0%dzy + 3da1)
w 3 B diL'g 4 dl‘Q
> 2 52(1 — l‘1$2)2 52(1 — i1f2)2
w 3 B Todry TodZ n @ B d_g
6= 2 1— 2129 1 —Z129 ) 5 )
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(7.2.16b)

(7.2.16¢)

(7.2.16d)

(7.2.16¢)
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7.3 Map to O.(1,3)

There is a well known two-to-one group homomorphism H : SL(2,C) — O.(1, 3),
where the subscript ¢ stands for the connected component. The explicit form

of the homomorphism is

{H(9)}tjr = %TT(UjQngT), (7.3.1)

where the choice of Pauli matrices is

1 0 0 1

op = , o1 = , (7.3.2a)
0 1 10
0 —i 1 0

o9 = , o3 = . (7.3.2b)
i 0 0 —1

The kernel of H is the subgroup {£l2} C A, and the image of A under H is
the direct product O.(1,1) x O.(2). It follows that T has a realisation as the

homogeneous space

T = 0.(1,3)/ [0c(1,1) x O.(2)]. (7.3.3)

The action of H on our representative element (7.1.5) of T is given by
H : t(xq1,22) — T(x1,22) = (Vo, V1, V2, V3), (7.3.4)

where [T'(x1,22)] € O:(1,3)/[0Oc(1,1) x O.(2)] and the Vy, V1, Va, V3 are columns
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given by

1+ ‘1’2’2 + ’1 — 1’1%2’2(1 + ‘1’1’2)

1 o+ To + |1 — 1292 (21 + &
oo L 2+ Ty + | 172 (71 + 1) (7.3.53)
21 — 219 i [y — mp + 1 — wrao|* (21 — 71)]
1 — |@o]? + |1 — z122(—1 + |21|?)
(1 = 2122)(Z1 + 22) + (1 — z1x2) (21 + T2)
v 1 (1—3?1532)(1—1-3?13;2)—1-(1 —xlxg)(1+x1j2)
1= 57 13 ;
20 =a1mal® | G1(1 = 3122) (1 — F1w2) + (1 — z122)(—1 + 21759)]
(1 — 5152)(51 — :Eg) + (1 — l‘1$2)($1 — i‘Q)
(7.3.5b)
7 [(1 — i‘li‘Q)(—i‘l — ZEQ) + (1 — $1l‘2)(l‘1 + :ﬁg)]
v 1 7 [(1 — 131152)(—1 — i‘liltg) + (1 — :Ell‘Q)(l + :Eli‘Q)]
2 = 2
2‘1 - x1x2’ (1 — flfg)(l — flxg) + (1 — xlxg)(l — xli'g)
Z[(l — i‘lfg)($2 — i‘1) + (1 — l‘libg)(l‘l — i‘Q)]
(7.3.5¢)
1 + ’$2‘2 + ’1 — x1x2\2(—1 — ]331\2)
1 To+ To+ |1 — zya9|?(—21 — T
v 2 o+ T2+ |1 — m1@2)*(—a1 — 71) (73.5d)
2|1_$1$2| i[i’g—l’g—i-‘l—xlxg’z(fl—xl)]
1= |za|* 4+ |1 — 2y (1 — |1 )
7.3.1 Lorentz-orthonormal basis in R'3
If we denote the Minkowski inner product in R"3 by brackets;
(X,Y)gis = =XoYo + X1Y1 + XoYo + X3Y3, (7.3.6)
then
(‘/07 %)Rlv?’ = _17 (‘/07 V;)Rl’s = 07 (‘/27 ‘/j)Rl,S = 5@)7 (737)

so that the vectors obtained from the columns of T form a Lorentz-orthonormal

basis in the Minkowski space R3. In particular, at £ = x5 = 0 these vectors
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form the standard frame

1 0 0 0

0 1 0 0
Vo= NS NCES N CES

0 0 1 0

0 0 0 1

(7.3.8)

7.3.2 A special vector

We now form the complexification of R13, namely R1L3C C'3, and recall that
elements of this space are formed from complex linear combinations of the real

subspace, namely for X € R'3 and Y € R"3 we have
Z = (X +iY) e Ch3. (7.3.9)

We can also extend the domain of the Minkowski inner product ( , )13 to

the complexified space (for Z = X +iY, W =U +iV) via
(Z,W)ers = (X, U)gis — (Y, V)gis + 0 [(Y,U)gis + (X, V)gis],  (7.3.10)

where the complexified Minkowski inner product is the complex bilinear form

defined, for Z, W € C!3, by
(Z,W)crs = —ZoWo + Z1W1 + ZoWy + Z3Ws. (7.3.11)

We now introduce a certain complex linear combination of the vectors V; and

Vs by

X1 + T2
1 1 1+x12
Z(x1,20) = —=(Vi —iVa) = ——— 2 (7.3.12)
2 \/5(1 - $1$2) i(l — xli'g)
€r1 — T2
Z has the properties
(Z,Z)c13 =0, (Z, Z)(Cl,S =1. (7.3.13)
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The reason why precisely this linear combination is considered is that the
group H(A) = O,(1,1) x Oc(2) when acting on Z = Z(0,0) only changes Z by
a phase, and so H(A) o Z still satisfies the conditions (7.3.13). We will use the

result (7.3.12) when discussing a different realisation of T in section 7.7.

7.4 Tangent space in O.(1,3) representation

Under the group homomorphism (7.3.1) the six one-parameter subgroups (7.2.12a)
to (7.2.12¢) of SL(2, C) are mapped to their corresponding subgroups in O.(1, 3).

The resulting Lie algebra elements in O.(1,3) representation are given by the

matrices
01 0 O 0 1 0 0
1 0 0 -1 1 0 01
ay = , a_ = , (7.4.1)
00 0 O 0O 0 00
01 0 O 0 -1 0 O
0O 0 —1 0 00 1 0
0O 0 0 O 00 O
ay = , a_ = , (7.4.2)
-1 0 0 1 1 0 0 1
0O 0 —1 0 00 -1 0
00 0 1 0O 0 00
00 0 0 _ 0O 0 1 0
az =2 , az = 2 , (7.4.3)
00 0 O 0O -1 0 O
1 0 0 O 0O 0 0 0

where a; is the algebra element corresponding to the 1-parameter subgroup

H o g;(t).
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We form linear combinations of the algebra elements such that

0100
1 100 0
e1 = §(a+ +a_)= , (7.4.4)
0 0 0O
0000
0010
1 00 0
er = —(a_ —ay) = , (7.4.5)
2 000
0 0 0O
0 0 00
1 0 0 01
fi= §(a_ —ay) = , (7.4.6)
0 0 00
0 -1 0 0
00 0 O
1 00 0 0
fo= §(a+ +a_)= (7.4.7)
00 0 1
00 -1 0

These algebra elements in O.(1,3) representation provide us with a basis for
vectors in the tangent space at the origin e of T where x; = x5 = 0. Note that
a3 and ag are not required since § is not a bona-fide coordinate on T. If we
represent an element V' of the tangent space T, T via the combination V = m+n

where n = n'e; , m = m'f; and i € {1,2} we have

(7.4.8)

We now parameterise the isotropy group in the SL(2, C) representation as

§ = ese? where t € R and 0 € (—2m,27]. The corresponding isotropy group
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in O.(1,3) representation is given by

cosht 0 0 sinh ¢
0 cosf sind 0
H(A) = . (7.4.9)
0 —sinf@ cos6 0
sinh ¢ 0 0 cosht

The adjoint action of H(A) (7.4.9) on Vis V = V' = H(A) oV o H-1(A), so
that

o 2t a2 0
nt 0 0 mt
V' = , (7.4.10)
n? 0 0 m?
0 —-mt —m? 0
where
n't = cosh t(n' cos 6 4 n?sin §) — sinh t(m" cos @ + m?sin ), (7.4.11)
n'? = cosh t(n? cos § — n'sin ) + sinh t(m' sin @ — m? cos ), (7.4.12)
m't = —sinht(n' cos 6 + n?sin6) + cosht(m' cos @ + m?sin@),  (7.4.13)
m'? = —sinht(n? cos § — n'sinf) — cosht(m'sin@ — m?cos ).  (7.4.14)

We now choose to represent the components of our vector field V € T,T

as a 2 X 2 matrix

V, = : (7.4.15)
m m

Thus, the action of the isotropy group A on V. in this representation splits

according to

V! = B(t) o V.o R(0), (7.4.16)
where
o2
V= , (7.4.17)
m'l m”?

cosht —sinht
B(t) = , (7.4.18)
—sinht¢ cosht
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and

cosf —sinf
R(0) = . (7.4.19)
sinf cosf

If we introduce a 2-dimensional Minkowski metric n such that

-1 0
n= , (7.4.20)
0 1

we find, by virtue of the pseudo-orthogonality condition BTnB = 7, that a

bilinear form invariant under the action of the isotropy group is given by

Tr (V’an/c’) =Ty (RTVCTBTUBXN/CR) =Ty (VCTmN/C) . (7.4.21)

7.5 Metric on T

From the previous construction, we find that a bilinear form in the tangent

space at the origin, invariant under the action of A, is given by
g(V, V) = (n,7) — (m,m), (7.5.1)

where (m,m) = m'm! + m?m? is the usual inner product on R.

If we recall the relation between basis vectors in the tangent space at the
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origin and left invariant vector fields, we have the correspondence

0100
1 1000 1
€1 = §(a+ +a-)= - §(X1 + X3) =: Un, (7.5.2)
0000
0000
0010
1 000 1
€y = g(a_ —a4) = — §(X5 — Xy) =: Uy, (7.5.3)
0 00
0000
0 0 0 O
1 0 0 01 1
fi= 5(@_ — a+) = — §(X2 — Xl) =: Us, (754)
0 0 0 O
0 -1 0 0
00 O
1 00 0 1
00 0 1
0 0 -1 0

The duality relations between vectors and co-vectors in this new basis is (p; | U;) =

0i;, where the dual co-vectors are

p1 = wy + wa, (7.5.6)
P2 = ws — Wy, (7.5.7)
p3 = wy — wi, (7.5.8)
P4 = Wy + ws. (7.5.9)

The invariant bilinear form (7.5.1) thus allows us to introduce on T, with

the possible exception of the points in T not covered by the parameterisation
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(7.1.5), a metric by

gr = p1 @ p1+p2@p2 — p3 @ p3 — P4 Py
_ dr1 @ dre +dro ® dry  dT1 ® dZo + dTo ® dT
N (1 — xla:g)z (1 — flfg)Q ’

(7.5.10)

The metric has signature (+,+,—, —) and is, by construction, invariant under

the SL(2,C) action on T.

7.6 Complex structure of T

The almost complex structure on a manifold is completely determined by the
action of a linear map J, : T,M — T,M satisfying Jg = —id. For reasons
which will become apparent we consider the simple case of a 4-dimensional
Euclidean space R* = {(xl,yl,xz,yz) | 2t € R,yM € R} = C? and specify an
almost complex structure via Jy,(Opn) = Oyn, Jp(Oyn) = —0qu, corresponding to
a 5 anti-clockwise rotation in the planes {(:El,yl)} and {($2,y2)}. Note that
the J, operator satisfies Jg = —id and that .J,, is compatible with the Euclidean
metric, g, on R g(J,V, JpV) = g(V,V). Writing d,u = %((%Eu — i0yn) and
Osn = %(@Eu + i0yn) we find the action of J, on complex basis vector fields is
Jp(Osu) = i0zm, Jp(Ozn) = —idzu, that is, multiplication by £4. Note finally that
this choice of an almost complex structure corresponds to the usual conjugation
operation on the complex coordinates z# = x# 4 iyt zH = x# — qy*. If we had
T

defined the almost complex structure to correspond to a 3 clockwise rotation,

the eigenvalues of J, would be interchanged.

Bearing all of this in mind we seek an almost complex structure on T
which is invariant under the action of the isotropy group and also compatible

with the metric (7.5.10).
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7.6.1 Invariance under the action of A

A acts on components of vector fields via
A: Vo=V V! = BV,R. (7.6.1)

where B and R are defined by (7.4.18) and (7.4.19). We specify the vector field
on T via

V =Tr(V.Uy), (7.6.2)
where Uy, is the matrix of basis vector fields, (7.5.2) to (7.5.5), given by

U, U
u=| " 7. (7.6.3)
Us Uy

The action of A on the vector field is then
A:V — V' =Tr(BV.RU,), (7.6.4)
so the action of A is equivalently specified on Uy via

A:Uy,— Ul = RU,B. (7.6.5)

The almost complex structure operator acts on basis vector fields. The

most general action of J), is specified via

Jp 1 Up — Ué = JUpJR, (7.6.6)
where
a b
Jr, = , (7.6.7)
c d
and
e
Jr = / , (7.6.8)
g h

are 2 X 2 matrices with complex-valued entries.

Invariance of the almost complex structure under the action of A means

that Ao J, o U, = J, 0 Ao Uy, corresponding to
RJLUyJrB = J, RU,BJR, (7.6.9)
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which is necessary and sufficient for

[R,Jr] =0, [B,Jg]=0, (7.6.10)
or equivalently
a b e f
Jrp = , Jr = . (7.6.11)
—b a f e

Further restrictions on the entries of J, and Jg follow from the idempotency

condition of J,. In terms of our matrices we consider two cases:

0 Ji=1, Ji=-1L

(7.6.12)
I J;=-1, Ji=1
Case (I) gives the possibilities
FEi: a=41, b=0;
Fi: a=0, b = +i;
(7.6.13)
Gi: e==i, [f=0;
Hy: e=0, ==t
whilst case (II) gives the possibilities
FEy: a=4i, b=0;
Fr: a=0, b==+l;
(7.6.14)
Gy: e==1, f=0;
Hy: e=0, f==l1.
and the eight possible permutations are
EiNG;, EnNH, FNG;, FnH. ie{l2} (7.6.15)

Although the entries of Jr, and Jg can be complex valued we require the total

transformation to be real which rules out the four cases

E,NG;, E;NH;. 1€ {1,2}. (7.6.16)
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We also note that the choice of ¢ € {1,2} merely changes the action by an

overall minus sign so it suffices to consider the two cases F; NGy and Fy N Hy.

Iy NGy yields the equation

JP(Ul) Jp(U3) —U2 —U4
Jp(U2)  Jp(Us) Ur U

whereas F1 N Hy yields

JP(Ul) Jp(U3) 4 —U4 —U2
Jp(Ua)  Jp(Us) Us Ui
Writing
1
o = ﬁaxl,
B =061 —z122) Oy,
_ 1
o = ﬁafl,
3=06%(1—21%2)% Os,,
we find

Uy=a+a+6+0,
ngi(—oz—i-d-i-ﬂ—ﬁ),
UgZ—Oz—d—i-ﬂ-i-B,

U=ila—a+8-0).

For the case F} NG we find

Jp(a+a+B+7
Jp(—a—a+p+p
Jp(—a+a+p-5

Jp(a—a+p-p

)
)
)
)

Fi(—a+a+p-0),

T4 a—éz—kﬂ—ﬁ),

(

(
:Fz(a+6z+ﬁ+5),

(

T4 —a—d—i—ﬂ—kﬁ).

(7.6.17)

(7.6.18)

(7.6.192)
(7.6.19D)
(7.6.19¢)

(7.6.19d)

(7.6.20a)
(7.6.20b)
(7.6.20¢)

(7.6.20d)

(7.6.21a)
(7.6.21D)
(7.6.21c)

(7.6.21d)

Forming appropriate linear combinations of these and using the linearity of .Jp,

97



we can write this complex structure as

Jp (Oz,) = £i0y,, (7.6.22a)
Ip (Ozy) = FiO,, (7.6.22b)
Jp (0z,) = Fi0z,, (7.6.22¢)
Jp (0z,) = +i0s,. (7.6.22d)

For the case F} N H; similar reasoning shows that we can write the complex

structure as

Ip (Op,) = £i0y,, (7.6.23a)
Ip (Opy) = £i0s,, (7.6.23b)
Jp (0z,) = Fi0s,, (7.6.23¢)
Ip (0z,) = Fi0sz,. (7.6.23d)

The almost complex structure specified by (7.6.22) is compatible with the metric
(7.5.10) as g <Jp(V), Jp(TN/)> =g <V, T~/> whereas the almost complex structure
specified by (7.6.23) satisfies ¢ (Jp(V), Jp(TN/)) = —g (V, XN/) and hence is not
compatible with the metric. The unique almost complex structure on T (up to
an overall minus sign) is given by (7.6.22). Furthermore, the Nijenhuis tensor

N, defined by its action on vector fields X and Y, [39],
Ny, (X)Y) = [X,Y]+ J, [, X, Y]+ J, [X, [,Y] = [, X, J,Y], (7.6.24)

vanishes for J,, defined by (7.6.22). Therefore the almost complex structure is

in fact a complex structure.

We make a choice of sign for this complex-structure and compare the
structure with the complex manifold C? considered at the start of this section.
For the C? case the canonical complex structure was equivalent to the usual
complex conjugation on coordinates. In the T case, however, matching the
eigenvalues of J, leads us to introduce a * operation on coordinates, distinct

from complex conjugation, given by

* (ZE1,$2,£I_31,£I_32) — (l‘Q,ZIJl,fg,fl) . (7.6.25)
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7.7 T as a complex quadric

We wish to show how T can be realised as a quadric embedded in CP3. To
do this we make a short digression into the realms of projective geometry. The
3-dimensional complex projective space CP? is defined as CP3 = (C*\ {0})/ ~
where the equivalence relation on C*is Z ~ Z'if 3p € C | Z' = pZ and p # 0.
Geometrically this corresponds to the space of complex lines through the origin
in C*. We denote the projection C*\ {0} — CP3 by 7. The homogeneous
coordinates (zq, 21, 22, 23) on C* no longer provide us with an independent set
of coordinates on the quotient space as the quotient kills one complex dimension.
However, we can define a set of independent coordinates by firstly specifying
a set of charts U,, where p € {0,1,2,3}, such that U, is the set of lines in
C* where z, # 0. Note that CP3 = Ui:o Uu. In a chart U, we define the

inhomogeneous coordinates by
Zv fr<pu-—1
gW = ¢ 2 = (7.7.1)
2 ifr>p
where p labels the specific chart and v € {0, 1,2} labels the inhomogeneous
coordinate. In U, NU, the transition functions ¥, : CP3> — CP3 are given by

f()'\/) — 5(5) = 2_55(;\/) and are necessarily holomorphic.

We now define the subset Q2(C) C CP? as the projection of the quadric
(Z, Z)(CLB - 0:

Q2(C) ={n(2)| Z € C*\{0},(Z,Z)c1s = 0} . (7.7.2)

As the complex vector Z (x1,x9) (7.3.12) is on this quadric, we obtain an em-

bedding of T in Q2(C) by

q(z1, 22) = w(Z(z1,22)) € Q2(C), (7.7.3)

with the possible exception of the points in T not covered by the parameteri-

sation (7.1.5).

Q2(C) inherits a complex structure from its embedding in CP3. Param-

eterising the coordinates on CP? in terms of the coordinates (x1,79) we can
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calculate the pushforward, to Qo(C), of the basis vectors spanning CP3. The
canonical complex structure on CP? then reveals that the complex structure

on Q2(C) is compatible with the complex structure given by (7.6.22).

7.8 The coset space B

We now define another 2-dimensional subspace of G, which we denote by B,

discussing its global structure and the action of G on B.

We define B in a similar way to T via a quotient space construction
where Ny is the 1-parameter subgroup of upper triangular matrices,

1 n4
N+ = | ny € C ;. (782)
0 1
and the \ in (7.8.1) is understood as denoting a set of right cosets of Ny w.r.t

G.

7.8.1 Global structure of B

A general element of B is a class

a+nyc b+nyd
[Nyg] = ; , (7.8.3)
c

where ny € C. In the equivalence classes (7.8.3), ¢ and d cannot both be

zero. When ¢ # 0, we can choose a unique representative by setting n, = —%:

writing ¢ = z; € C\ {0} and d = 2 € C, this representative reads

1
0 ——
bl(zl,ZQ) = Z1 . (7.8.4)
z21 22
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Similarly, when d # 0, we can choose a unique representative by setting n, =

—%: writing d = zo € C\ {0} and ¢ = z; € C, this representative reads

1
— 0

b2(21,22) = Z2 . (7.8.5)
A )

These two parameterisations show that B can be covered by the two charts Uy

and Uy, where

U = {(21,22) € C* | z1 #0}, (7.8.6a)
Uy = {(21,22) € C* | 20 # 0}, (7.8.6b)
such that the transition function on U; N Us is the identity. We hence have

B=U,UU; = C? \ {(0,0)}.

7.8.2 (-action on B

The canonical action of G on itself from the right induces an action of G on B.

In the parameterisation B = C2\{(0,0)}, this action is the linear transformation

a b
c d

s (21, 22) = (21, 25) = (az1 + cz2, b2y + dzs). (7.8.7)

We have realised two distinct coset spaces of SL(2,C) , T and B, and
established various properties of these spaces. We will now go on to discuss

conformal field theory n-point functions with reference to T and B.
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CHAPTER 8

Conformal field theory (CFT)

This chapter describes relevant aspects of conformal field theory (CFT) in var-
ious function spaces and the relationships between said spaces using techniques

from representation theory.

8.1 CFT n-point functions

A CFT on the sphere (which we consider as the boundary of hyperbolic three-
space) is defined by the set of all its n-point correlation functions. We sum-
marise here, for convenience, the 2, 3 and 4 point functions of fields as given in

140).

On the sphere we are interested in the 2-point function of fields which
are correlated only if they have the same scaling dimension A, [40], namely

functions of the form
Ci2
2 —y[?2

where the superscript C* denotes the one-point compactification of C into the

KS (z,y) = (8.1.1)

Riemann sphere, z,y € C* are the two points on the sphere and Ci5 is a
multiplicative constant corresponding to the normalisation of the field. This

function is also known as the boundary-to-boundary propagator [41].

The 3-point function of fields (with differing scaling dimensions Ay, Ay
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and Ag), can be given in the form

o (z,u,v) = Chas
A1 A Ay \ %5 @ - |Z _ u|A1+A2—A3|Z _ U|A1+A3—A2|u _ ,U|A2+A3—A1 '

(8.1.2)

The 4-point function in two dimensions is unique only up to a multiplica-
tive function dependent on one anharmonic/cross ratio. The function therefore

has the form

c* |z —yllu — v
SR AsAsA, = @ <— X

|2 = ully — vl

«a 8 € ¢
2 —yl5 |z —ul5 |z — o3y —ulsly—v|5lu—v]5,  (8.13)

where ¢ is a multiplicative function of the cross ratio, and

a=As+ Ay —2A; — 2As, (8.1.4a)
B=202y+ Ay —2A1 — 2A3, (8.1.4b)
v =202+ Az —2A; — 24y, (8.1.4¢)
d=A1+ Ay — 209 — 2A3, (8.1.4d)
€= A1+ Az —2A9 — 2Ay, (8.1.4e)
C=A1+ Ay —2A35 —2A4. (8.1.4f)

According to the “conformal bootstrap” idea, [40], the n-point function of

fields for n > 4 can be constructed out of these three simpler functions.

8.2 Spaces of functions

We are interested in mapping specific functions between specific mathematical
spaces. We denote the collection of all functions on a manifold M by F(M)

and we wish to explore the following diagram

F(C*) s F(Hs) . (8.2.1)



More specifically, there will be various constraints placed on the possible func-
tions in a space and we will consider functions on n copies of a manifold (or
n-point functions). Also, we shall understand “functions” to include also densi-

ties of specified (complex) weights.

To begin to explore this diagram we need to turn to representation theory
of SL(2,C) which has been extensively studied in the literature and of which

we only use the details here which are of interest to us.

8.3 Representation theory of SL(2,C)

We follow [42] for the majority of this section taking advantage of the isomor-
phism B 22 C2\ {(0,0)} obtained in the previous chapter. We derive some facts
about representation theory of SL(2,C) where the representations act in spaces

of importance to us. We take the defining equation of a representation to be

T(91)T(92) = T(9192), (8.3.1)

where the T'(g) are understood to act on a specified linear space, g is an element
of the group, and the representation of the identity element corresponds to the
identity transformation on the linear space. Various realisations of the T'(g) are
available, the most trivial being where g is represented by itself and acts on C2.
We wish to explore more interesting examples. In what follows, for simplicity

we shall denote functions of d complex variables by

fz,ooyzq) = f(z1y ooy 205 210 -+ 5 2d)- (8.3.2)

8.3.1 The infinite-dimensional linear space HF (B)

We first take a subspace of F(B), namely the space of homogeneous functions
of bidegree (A, 1) which we denote HF(B) where we have supressed the (A, p)

dependence for notational convenience. Elements of this infinite dimensional
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linear space are characterised by the condition

f(le,pZQ) = p)\ﬁuf('zl?Z?)v (833)

where p € C\ {0} and (A — p) € Z in order that the above equation is single-

valued.

8.3.2 Representation of SL(2,C) acting on HF(B)

SL(2,C) acts on B from the right via (21, 22) — (az1 + c2a,bz1 + dzg) (7.8.7)
and can be considered to induce a transformation on HF(B) which we specify

in terms of a representation action via

(T(9)f) (z1,22) = f9(21,22) = f(az1 + cza,bz1 + dz2). (8.3.4)
It is immediate that f € HF(B) = f9 € HF(B) and also
(T(g192)f) (21, 22) = f[(a1a2 + bicz) z1 + (cra2 + dic2) 22,
(a1bg + bida) 21 + (c1be + dida) 2]
= (T'(91)T(g2) f) (21, 22), (8.3.5)

showing that the T'(g) satisfy the functional equation (8.3.1). Also the rep-
resentation of the identity element is the identity transformation on HF(B),
and the equation defining the representation (8.3.4) depends continuously on
g € G. In all generality we have the pairing (T(g), HF(B)) which (abusing
terminology) we call the representation and we understand this representation

in terms of (8.3.3) and (8.3.4).

8.3.3 F(C*) and its relation to HF(B)

We now wish to relate functions defined on the Riemann sphere F(C*) to

HF(B).

Firstly we note [42] that elements of HF(B) are uniquely determined by

their values on a contour in B that crosses once each complex line of the form

a1z1 + aszo = 0, (8.3.6)
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where
(a1,a2) # (0,0). (8.3.7)

The complex contour zy = 1 crosses each complex line of the form (8.3.6) once,
with a; # 0, and so elements of HF(B) are determined uniquely by their values
on this contour, except for the values on the lines with a; = 0. To this effect

we define
P(z) = f(z,1). (8.3.8)
Note that 1(z) is well-defined on the complex plane C. Similarly we can consider

the contour z; = 1 and define

A~

Y(m) = f(1,m), (8.3.9)

which is also well-defined on C. Using the homogeneity of f it is then simple
to specify elements of HF(B) in terms of ¢(z) and 1 (m), in the charts U; and
U, we defined in Chapter 7, by

Ur: f(z1,2) = 2020 <?> , (8.3.10a)
1
Up: f(z1,22) = 27 <ﬂ> (8.3.10D)
22
On the intersection of the charts, the two functions (8.3.8) and (8.3.9) are
related by
N
U(z) =22 (-, (8.3.11a)
z
. N 1
Pp(m) =m mhy | — ). (8.3.11b)
m

Equation (8.3.11) shows that we are really dealing with functions on the Rie-
mann sphere C*) not just on C; further, these functions are not scalar-valued
but must be understood as densities whose holomorphic and antiholomorphic
weights are specified by A and u. Through (8.3.10) we can transform the
density-valued functions on C* into the corresponding homogeneous functions
on B. Conversely, any homogeneous function on B can be transformed into a
density-valued function on C*. For brevity, we shall refer to the elements of

F(C*) simply as functions.
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In order to make these details a little more clear we consider the simple

case of a specific homogeneous polynomial f of degree (2,2) on B where
f(z1,20) = 22(Z2 + 22). (8.3.12)

The corresponding function on the sphere (again depending on the chart in B)

18

Up: P(m) =14 m?, (8.3.13a)
Uy : Y(2) = 22(Z2 4+ 1), (8.3.13b)
UyNUy: ¢(z) = 22229 (%) : (8.3.13¢)

We have thus established an isomorphic mapping of the two function
spaces

HF(B) = F(CY), (8.3.14)
where the isomorphism is given explicitly by (8.3.10).

The representation (8.3.4) is realised in this isomorphic vector space via

the equations

(T(Q)iﬁ)(m) = (a + em)Ma + em)p ((iiig) , (8.3.15a)
(T(9)¥) (2) = (bz + d)*(bz + )"y <Z§i;> : (8.3.15h)

where use has been made of the linear property of the T'(g). Again, it is a
simple task to verify that the T'(g) satisfy the functional equation (8.3.1) and
the representation of the identity element is the identity transformation on
F(C*). Once again, the pairing (7'(g), F(C*)) is called the representation and
is understood via (8.3.15).

8.4 CFT correlation functions as functions in B

All of the previous representation theory has been concerned with only one copy

of the underlying manifold. To map n-point functions we need the generalised
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representation theory in the context of n copies of the relevant manifold. We
can, however, immediately generalise the previous theory to n-point functions
on (n copies of) the two spaces of interest to us, B and C*. We denote n copies
of B by

B" = Bx,..., xB, (8.4.1)
| —

n copies
and similarly for n copies of C*. We further denote the function spaces by
H.7:®?:1(>\i7m)(183”) (for each copy of B we specify the appropriate degree of

homogeneity) and F(C*") and note they are both linear spaces.

8.4.1 The linear space HFgr (5 . (B")

In an analogous way to the 1-point functions defined previously we denote

elements of HFgn (5, .,)(B") by

f (’wl,’wQ),(iL‘l,l‘Q),...,(Zl,ZQ) s (8.4.2)
n pairs
with
F((prwr,prws) ..., (Pnz1,pnz2) ) = PYBLY - - A ph»
f((wl,wg),...,(zl,zg)). (8.4.3)

The natural representation of G on this space is

(T'(9)f) ((w17w2)7---7(21722)) = f((aw1 + cwy, bwy + dws) , ...

.. (az1 + ez, bz + dz) ). (8.4.4)
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8.4.2 F(C*") and its relation to HFgn () (B")

The relation between the n-point function spaces is

U " (py...,m) = wl_’\lwl_’“ . "zl_)‘”z’l_“”x
f((wl,wg),...,(zl,zg)), (8.4.5&)

UP s (w,...,2) = wy iy M 2y g e x
f(wy,wa), ... (21,22)), (8.4.5b)
where w = g—;,...,z = i—; and p = g—f,...,n = j—f Note that the n-point

functions are restricted to n copies of a specific chart. On the intersection of
the charts the n-point transition functions are given by the analagous version

of (8.3.11). The representation acting on this space is given by

(T(g)zﬁ) (p,...,m) = (a+cp)™ (@+cp)" - (a+cm)™ (a+ em)' x

w<b+dp iy b+dm>, (8.4.6a)

a+cp’ Ta+em

(T(@)) (w,.....2) = (bw+ ) (D +d)" - (b= +d)™ (b2 + )" x

aw + ¢ az +c
. 4.
v (bw+d’ ’bz+d> (8.4.6b)

In the following context of CFT correlation functions we will only use the
subset of H.7:®?:1()\i,w)(18%”) where A\; = p; so that without loss of generality we
can denote HFgn (x,2,)(B") by HF(B"). We will also use the fact that the
conformal scaling dimension is equal to “minus the degree of homogeneity” [41],

Ai = —)\2‘.

8.4.3 2,3 and 4-point functions

We map the 2-point function on C* (8.1.1), using (8.4.5b) with n = 2, into the

corresponding 2-point function on Us whereby

K2 (21, 20591, 92) = Cra| (2192 — 2am1) |2 (8.4.7)
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We map the 3-point function (8.1.2), using (8.4.5b) with n = 3, into the

corresponding function on Us whereby

C)(\]lz)\z)\:g = Cla3| (z1u2 — z0uq) ‘/\3—/\1—>\2 %

[P (

| (21U2 - 22211) U1V — U2U1) |>\1_)\2_)\3. (8.4.8)

We map the 4-point function (8.1.3), using (8.4.5b) with n = 4, and find

the function takes the following form

gUa _ |z192 — y122||u1ve — viug|
ArAas s |z1u2 — u122|[y1ve — V1Yo

a B ol
\Zly2 - y122\ 3 !21u2 - u122\ 3 \2'1712 - ’012'2! 3 X

) € <
ly1ug — u1ye|3[y1ve — viye|3|uivs — viug|3, (8.4.9)
where
a=—A3 — g+ 2)\1 + 29, (8.4.10&)
G =—Xo— Mg+ 2\ + 23, (8.4.10b)
v = —Ag — Az + 2A1 + 24, (8.4.10(?)
0= =X — A+ 2Xg + 23, (8.4.10d)
€= —MA — A3+ 2Xg + 2y, (8.4.106)
(==X — Ao+ 23+ 2. (8.4.10f)

8.5 Integral transform from B to T

We have determined the left hand arrow of the diagram (8.2.1) (with suitable
constraints placed on the functions on B) and mapped the functions of interest
to us into B. We wish to do the same thing for the bottom arrow of the diagram,
namely transform n-point functions into T™. As an attempt at doing this, an

integral transform finding fE(z?,zg) (i.e. a function at a specific point in T)
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when fB(z1, 29) is known, is given in [42] as

Lfar a2
fp z17z2 /|a1a2|x 2 <— —> X

1
Ou {21 (n(araz) 2, plara) )} dzdz, (8.5.1)
M:
where
pec, (8.5.2a)
29
aj = 51—, (8.5.2b)
2] —z
X(21,22) = 271 21225 1 25", (8.5.2¢)

We generalise this to generate n-point functions on T,

st = (5) / [laea.
n pairs
|_% ap a -1 dy do "
X as’ ay X dy’ dy

8#1ﬁ1"'#nﬁn{|'u1|2 e |,un|2><

n 1 1
F° (ul(alaz)éz,.-.,un(d1d2)2)}w:1><

dzdz ... dwdw, (8.5.3)
where
pun € C VneZ, (8.5.4a)
29 w?
aj = 0] ,...,dj: 0 J 5 (854b)
Z —z w; —w
X(21,22) = 211 2% 25 1 25 2. (8.5.4¢)

To make the formula (8.5.3) a little more clear we consider the transfor-
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mation of the 2-point function and find that the integral takes the form

%(I—A—i-ml—nl)
2D y
fT (v, y9; 20, 28) = (1-A 012// 1 L X
zl yl - y)

> E(l—A-l—mg —nz)

X

L(1—-A—mi+n
zgyg 5(1-A—m1+n1) )
(25 —2) (v3 —v)

gggg %(l—A—mz-{-nz)
(25 —2) (33— 9)

(z—y) ™ (2 — §) 2 dydydzdz. (8.5.5)

X

We wish to find the values of A for which the integral (8.5.5) converges. Possible
points of divergence are where z = 29,2 = 29, 2 = y and z — oo, and similarly

for y.

For an integral such as

) dz Ndz
[:_/ _ 8.5.6
A (55.6)

z—x)"(z—1x)

where z is a fixed complex number, we reparameterise via coordinates adapted

to the possible point of divergence z = = + e’ and find that
2w 0o o
I :/ / plma=agio@=a) g A g, (8.5.7)
0o Jo

The ¢ integral will converge for all a. The r integral will converge at r =0

ifandonlyifl—a—a>—1,ie. a+a < 2.

Returning to the form of the 2-point function (8.5.5) on T? we find that for
the cases z = 29 and z = 20, A has to obey A > —1 for the integral to converge.
However, the z — oo limiting case yields an even bigger problem as A drops
out of the dominating term and we find the integral diverges logarithmically.
In conclusion, the 2-point function on T? derived in this way diverges VA and

we conclude that the formula given in [42] yields divergent functions on T.
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8.6 The bulk-to-bulk propagator in Hj

We now turn our attention to the top-most arrow of the diagram (8.2.1). In [43]
the authors calculate the bulk-to-bulk propagator in Hg, ;. For our purposes
d = 2, so that Hyy 1 = Hs. In the upper half-space model of Hj3 individual
points (with subscript i) can be denoted by & = (5?,&-) = ( 9, Zl,ﬁf) where
§? > (. Viewing Hj in the unit ball model it is simple to see the topological
boundary is the Riemann sphere which we coordinatise by (:1:1,3:2). We now
introduce a bulk-to-boundary propagator [43| which is a function (of a given
conformal dimension A) dependent on a point in the bulk and a point on the

boundary

(Y
(€2 + |6 — )
Note that [¢ — z|?> = (¢! — 21)? + (€2 — 22)? denoting the Euclidean distance

Ka () = (8.6.1)

between the projection of bulk points onto the boundary and the boundary

point itself.

The 2-point function, or bulk-to-bulk propagator is then found by inte-
grating over the boundary two bulk-to-boundary propagators (of representation

weight A and A) connected on the boundary at the same point, namely

K 6.6) = [ Prka (6.9) Ky (€.1). (562

which converges VA € C. Following [43] we will restrict ourselves to Type I
representations where

A=1+ip. (8.6.3)

After a lengthy calculation (see [43| for the details) we obtain the final

result for the 2-point function on Hs,

Hs _ msin pl 4
where
(8
l=log (=5 )- (8.6.5)
3
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We do not compute the 3 and 4-point functions on Hs using these tech-

niques explicitly as they are quite complex objects.

8.7 Integral transform from H; to T - the “twistor

transform”

Having elucidated the details of two of the arrows on the diagram (8.2.1) (and
attempted one of the others unsuccesfully) we now turn our attention to the
right-most arrow. This transformation (like the B to T transform) is also an
integral transform. The fascinating thing about the transform is that when we
integrate a function over a certain space of hyperplane sections in T we are
supposed to obtain a function on ng that automatically satisfies the massless

wave equation.

Reference [18] develops twistor constructions for SO(1;n) and specifically
gives the details of the Penrose transform. Here we present some original work
on this transformation using the formulae from [18] but unfortunately conclude

that the transformation in this parameterisation is still ill-understood.

We wish first to explain the types of dual spaces we are interested in.

8.7.1 First-kind and second-kind coupled spaces

We define a first-kind coupled space to T very simply as the complex hyperboloid
Hy

HS = {¢eCh®| (¢ =1}. (8.7.1)
Second-kind coupled spaces are a little more tricky to visualise, so we make
a brief aside here in order to alert the reader to how the constructions work.
We consider, for visualisable simplicity, the field of real numbers although the
construction works equally well for K € {R,C}. The application we have in

mind is for 3-dimensional complex projective space.
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The simplest case to consider is the Euclidean plane R? and elements x
thereof. We firstly note that the 1-dimensional real projective space RP! is
defined as RP! = (R?\ {0})/ ~ where the equivalence relation on R? is z ~ 2/
if 3p € R | 2/ = px and p # 0. Geometrically this corresponds to the space of

real lines through the origin in R?2. We denote elements of RP! by [x].

We take the usual inner product on R? and specify elements of a subset

(in this case a linear subspace) of R? by
L ={y eR*|(x,y) =0}. (8.7.2)

Geometrically, L, is the real line orthogonal to z, but note that L, is only
defined up to projective rescalings of x so that Ly, is orthogonal to [z] explaining

the notation. Due to this fact we have the following duality
(2] & L) (8.7.3)

In words, points in RP! are dual to origin intersecting lines in R?, i.e points
in RP'. In this 2-dimensional case the duality is geometrically very trivial.
However, when we consider R? and elements = and y thereof we immediately
see through the condition

(,y) =0, (8.7.4)

that points in RP? are dual to origin-intersecting 2-dimensional planes in R3
which are completely specified by the original point in RP2. Although the
planes are no longer elements of R? or RP? we can consider the manifold formed
from these hyperplane sections to be isomorphic to RP?. The duality in 3
dimensions takes the same form as (8.7.3) where now [z] € RP? and L[, is an

element of the space of hyperplane sections.

8.7.2 Generalisations

We can immediately generalise to an (n + 1)-dimensional covering space with

the corresponding n-dimensional projective geometry. We obtain the result
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that the manifold formed from hyperplane sections according to (8.7.4) is iso-
morphic to the n-dimensional projective space with the duality of the elements
given by (8.7.3). With the particular quadric condition (8.7.4) the hyperplane
sections are flat and all intersect the origin. It is important to note, however,
that the underlying geometrical dimension of an element of the “hyperplane sec-
tion” manifold is n in comparison with the usual “point” manifolds where the
geometrical dimension of a single element is zero. We can also generalise to an
(n + 1)-dimensional covering Minkowski space with the same quadric condition
(8.7.4) but now with respect to the Minkowski inner product with (—, 4+, ..., +)
signature. All the previous analysis holds (including the origin intersecting

condition) but, of course, the notion of perpendicularity changes.

We now generalise to the complex case by merely replacing R by C in the
previous paragraphs! A specialisation which will be of particular importance

to us will be the complex case where n = 3.

8.7.3 The transform

We first define a complex form of bidegree (r, s), or an (r, s)-form, on M as [39]

1

= @wmmur,ylm,;sdzm Ao AdZ?T NdZTE AN A dzl/s’ (875)

so that w € Q™% (M). The action of the exterior derivative d on elements of

Q™% (M) splits according to its destinations by

d=0+0, (8.7.6)
where
d: Q" (M) — Qs (M), (8.7.7a)
d: Q" (M) — QW+ (M) (8.7.7b)

By 0-closed we mean forms w such that dw = 0 and similarly, 0-closed means
forms w such that dw = 0. We further define a homogeneous form of bidegree

(A, ) to be a form w whose component functions obey (8.3.3).
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We work in the complex quadric representation of T, (7.7.2). The integral

transform as given in [18] is

$(€) = /Swwg, (8.7.8)

where v is a O-closed (0,1) form on T homogeneous of bidegree (0, —1). This is
the function on T we wish to integrate with some additional form dependence.
we is a 0-closed (1,0) form on the hyperplane section S of T that we integrate
over. S is found by considering the intersection of T with a second kind dual
object corresponding to a point in the first kind dual object. For this complex
variable case, the point in the first kind dual object is an element & of HY,

which via the duality condition
(2,6) =0, (8.7.9)

has a 3-dimensional complex hyperplane associated with it Ly € (CPg’. The
intersection of this hyperplane with T gives us a 1-dimensional complex hyper-

plane section S =T N Lg which we integrate over.

Reference [18] gives the formula for the invariant one-form as

e [u, v, z,dz]
ERCEIG0)

The notation [a, b, ¢,d] denotes the determinant of a 4 x 4 matrix with the 4-

(8.7.10)

component objects a, b, ¢, d as the columns. u,v, z, £ are all C'3 vectors obeying
the conditions

(2,2) =0, (8.7.11)

specifying the quadric and
(2,€) =0, (8.7.12)

specifying the duality condition. (u,z) # 0 and (£, v) # 0 ensure that the form
is well-defined.

Note that this form is indeed invariant under the action of the group
O.(1,3) as was checked via Maple. Crucially this form is dependent on a point

in the first kind dual space ¢ € HS so that the result ¢ is a function on HS.
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However, contrary to the claim in [18], the measure is dependent on u and v.
We do not want to have a transformation defined only up to some dependence

on two C53 vectors so we redefine the one-form via

[u, v, z, dz]

(u,2) (€, 0) = (u, &) (z,0)"

which is again O.(1,3) invariant but now is independent of u and v. It is this

(8.7.13)

LU£:

second form (8.7.13) which we use in the computations.

8.7.4 Real twistor transform

As a first step on the path to the full complex twistor transform we first consider
the simpler case of real variables. (In this context we change the nomenclature
of the variables; z — x, £ — y). The specific advantage of considering this
simpler case is that all the geometry is visualisable. The complex quadric
prescription of T takes on a well known form when we restrict our attention to

real variables. Consider the equation defining the quadric
(z,2) =0, (8.7.14)

where # € RY3. This equation defines the 3-dimensional light cone (where we

consider only the part with zg > 0) so that
Ly ={zeR" | (z,2) =0, 29 >0}, (8.7.15)

and when we remember that we are working in projective space we obtain the

projective light cone,

PLy =L,/ ~, (8.7.16)

where ~ is the equivalence relation x ~ 2’ < x = Az’ for some A\ € RT. We
have obtained the result that the “real” twistor space is simply the projective

light cone, which is isomorphic to the 2-sphere,

™ =PL, = 52 (8.7.17)
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The first-kind dual space in the context of real twistor space is simply de Sitter
3-space d.S3, specified by elements y € RY3 s.t (y,y) = 1. The duality condition
(8.7.3) gives us (for y € dS3) timelike 3-planes orthogonal to y,

Ly = {z | (z,y) = 0}. (8.7.18)

The hyperplane section of TR we integrate over is the intersection of this timelike
3-plane with the 2-sphere which gives us a circle on the sphere. For example if
we choose y = (0,0,0,1) € dS3 then the condition (8.7.4) places no restriction
on xg, 1, T2 but sets 3 = 0 to give us a timelike 3-plane L[,). Taking advantage
of the equivalence relation in (8.7.16) we can parameterise PLy by xg = 1 and

find that the intersection of Lp;) and PLy is
.CxﬂPL+:{x€L+\xozl,az%—i—x%:l,xg:O}, (8.7.19)

being a specific circle S' € S2. Other points in dS3 give rise to other circles on
the sphere. Finally we note that y and —y in dS3 specify the same circle on the
2-sphere. Defining an equivalence relation ~ by y ~ ¢ < y = —y’ we obtain
the result that dS3/ ~ is isomorphic through (8.7.4) to the space of circles on
the sphere. The real version of the one-form (8.7.13) now gives us an invariant
measure on this space of circles. We wish to parameterise this one-form on a

general circle.

To parameterise the one-form we consider inverse stereographic projection

from the 2-plane to the 2-sphere o~ : R? — §2 so that

1
T+ X2T14+ X214 X2

1+ X2 X2 -1
~ <+T,X1,Xz, 5 > =z e RY. (8.7.20)

_ 2X 2X, X?-1
o 1(X1,X2):< . 2 >

as z is defined only up to projective rescalings. Here X = (X1, X3) € R? and
X2 =X} + X2 = (X, X)g2. We also choose a coordinate system for dSs with
y € dS3 such that

y = (sinht, cosht Y), (8.7.21)
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where Y = (y1,y2,y3) € R3 and ;47 = 1 so that (y,y) = 1 is automatically
satisfied. For a fixed y the duality condition (8.7.4) gives us the equation of a

circle on R2,

v\’ R
<X1_ 1 > +<X2_ 2 > - (8.7.22)
P—Y3 P— Y3 (p—y3)

with centre

(y1,y2) (8.7.23)
pP—Yys
and radius
(1 2)1/2
(8.7.24)
pP—Ys3
where
p = tanht. (8.7.25)

We introduce a polar angle y along this circle by

1 .

(X1,Xo) = ﬁ <y1 + (1 —p2)1/2 COoS X, Y2 + (1 —p2)1/2 sin X) , (8.7.26)
— Y3

which parameterises the circle for y € dSs.

We now compute the real version of the one-form (8.7.13) and find

d
oy = X L (8.7.27)
sinh ¢ — cosh ¢ (1 —yi - y%)

which is independent of u and v in (8.7.13) and gives us the correct measure
to use when integrating functions over this circle on S2. One point to note is
that using this form of the sterographic projection, w, is ill-defined for circles
intersecting the north pole as the stereographic projection will send this point

to infinity.

Using w, we now wish to integrate functions of an appropriate degree of
homogeneity on the sphere, over this circle, with the desire that the resulting

function automatically satisfies the wave equation in dSj3.
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8.8 Solutions to the wave equation on dS;

We now consider solutions to the wave equation in general and give a result

concerning the solution in dSjs.

The Laplacian A is defined using the exterior derivative and its adjoint as
a linear map A : Q" (M) — Q" (M), where A = (d + dT)2 [39]. For the specific
case where r = 0 the Laplacian is a linear map between functions given by the

expression,

A= L&/ ( !g\g”"au) ; (8.8.1)

Vgl

where ¢ is the metric on the manifold.

In the context of the real twistor transform we wish to obtain functions

automatically satisfying the wave equation on dSs which has the metric
ds® = —dt* + cosh® t dQ?, (8.8.2)

where d©? is the metric on the 2-sphere. This metric is induced from the metric
on RY3 and has induced signature (—,+,+). On dSs the Laplacian takes the

form
1

m (—8t (COSh2 t 8t) + ASZ) s (883)

Ad5’3 -
where Ag2 is the Laplacian on the 2-sphere.

We search for separable solutions to the massless wave equation of the
form f = T(t)Y (0, ) and see that the Y part of the solution takes the usual

form of a spherical harmonic on the 2-sphere

AY7M(6,0) = 11+ )Y (6,0), (88.4)
Y0, 6) — \/(%4; Y Eﬁ ;Z;iplm(cose)eimﬂ (8.8.5)

where the P/"(cos ) are the associated Legendre polynomials. We are thus left

with the T part of the solution satisfying the differential equation

(9¢(cosh? t0y) + 1(1+ 1)) T(t) = 0. (8.8.6)
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Via the change of variables o = —e? we transform to
(l+1
o(1—0)T" — 2T — #T —0, (8.8.7)
-0

where differentiation is indicated w.r.t o.

We now make the substitution 7' = cosh! t e+ F 5o that F satisfies the

hypergeometric equation
c(l—0)F" +(c—(1+a+b)o)F' —abF =0, (8.8.8)

with a = 14+ 1,b = [ 4+ 2,¢ = 2. One solution to this equation is given by
the hypergeometric series, [44|, Fiy1 42 = F (l + 1,1+ 2,2,—€2t), which can
be simplified to give

(1+ th)_l =0,

(1+1) (1 + e2t)—2l—1 Zl—l (l+1) (1—1) (—e2t)c . (8.8.9)
c=0 \c+1 c -~ 1.

Fiiq42 =

In [45] the two linearly independent solutions to the massive, m # 0, wave
equation on dSs are given. The result (8.8.9) is the massless special case of
the result obtained in [45], with the hypergeometric part written explicitly as
a polynomial. We obtain the final result that one solution to the massless
wave equation on dSs is given (for an integer value of [ and corresponding
integer values of m) by the product of the hypergeometric function (8.8.9),
cosh! t e*2)t and spherical harmonics Y™ We expect the result of the real
twistor transform to give (at least) a subset of these functions and possibly

intersect with the whole set.

Returning to the twistor transform we now use (8.8.3) in the form

L

1
Agsy, = —0; — 2tanh td; + cosh? ¢ (89 ottt sin” 0

a§,> . (8.8.10)

where we have chosen Y = (cos¢sinf,sin¢sin,cosf). Unfortunately, we
could not make functions ¢ transformed using the real version of (8.7.8) with

the form w, (8.7.27) satisfy Agg,¢) = 0.
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8.9 Complex twistor transform

Of course, it is the complex version which we are really interested in to un-
derstand the right-most arrow of the diagram (8.2.1). It is a relatively simple
extension where we now use inverse complex sterographic projection 0(51 :C%2—
PLS, ¢, t and y are now complex parameters and we specify the first kind dual
manifold as (£,£) = 1. The invariant form on the space of hyperplane sections
is

we = d¢ (8.9.1)

cosht — sinht (1 —y? - y%)l/z’
which is a 0-closed (1,0)-form.

The problems afflicting the real twistor transform are present in the com-
plex case as well - the transformation does not give us a set of functions satisfy-
ing the massless wave equation on ng One possible problem is that the form
(8.7.13) is an ansatz which turned out to be explicitly u, v independent. If we
were to return to this problem we would compute the measure as given in [18]

from first principles as the residue of a closed form with a simple pole.
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CHAPTER 9

Conclusions

The thesis was split into two parts; chapters 2 through 6 discussed the Hamilto-
nian formulation of two massive point particles coupled to AdSs gravity whereas
chapters 7 and 8 discussed SL(2,C) twistor space and conformal field theory

n-point functions.

9.1 Point particles coupled to AdS; gravity

In one sense GR in 2+ 1 dimensions is trivial when compared with its (3 + 1)-
dimensional counterpart; the triviality abounding from the fact that a (2 + 1)-
dimensional spacetime has no local degrees of freedom, physically meaning
there are no gravitational waves. However, in 2 + 1 dimensions the theory
can be consistently coupled to point particles, providing us with one method of
constructing topologically nontrivial spacetimes which have a finite number of
global degrees of freedom. There are a number of (classically equivalent) ways
to analyse (2 + 1)-dimensional gravitational theories being that of geometric
structures, the Chern-Simons formulation and the ADM formalism [46]. There
are also many ways in which to formulate the dynamics of such a system with
point particles present, particularly with respect to the boundary conditions of

the theory, see references in [9].

124



In the first part of the thesis we formulated and analysed the Hamiltonian

for a pair of massive point-particles coupled to AdS3 gravity.

We began by discussing the geometry of two particles coupled to AdSs.
We chose, following [9], to anchor the dynamics to the asymptotically AdS
conical infinity, and in doing so described the geometry of the system in the
relativistic analogue to the Newtonian centre-of-mass frame. We did this by
firstly describing the geometry of the two-particle spacetimes in terms of a piece
of AdS3 spacetime between the particles and then translating this description
into one in which we could relate the spacetime dynamics to the infinity. This
anchoring procedure also led us to use the BTZ time as the time coordinate in
our discussion of the Hamiltonian formulation. We made a substantial technical
simplification at this point by specialising to the case of zero angular momentum

yielding a spacetime containing colliding particles.

We chose further to use the Chern-Simons formulation of gravity in order
to discuss the bulk action and how it naturally splits into two Chern-Simons
(C-S) type actions. We then went on to discuss the gauge transformations of
the theory which we used when discussing how to fix the gauge. We then split
the spacetime manifold according to M = ¥ x R and calculated the 2 4 1
decomposition of the bulk action in order to discover what form the Liouville
term took. We also briefly discussed the particle actions and chose the action

on the boundary at the spatial infinity.

In order to reduce the action we imposed the constraints and fixed the
gauge of the theory by embedding . into a fictitious spacetime of the form al-
ready discussed. We then used the details of the embedding and gauge fixing to
evaluate the Liouville term. We evaluated the term through a combination of
direct evaluation and conversion of the term into a one-dimensional boundary
integral by Stokes’ theorem. The evaluation of this boundary integral presented
the largest problem within the whole body of work and although we did not
complete the reduction using these techniques, we did carry it out to a stage

where it was possible to sidestep the remaining technicalities and use consis-
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tency with the known equations of motion to complete the analysis.

We thus evaluated the reduced action of the theory, for three special cases
of the masses of the two particles, and obtained a two dimensional reduced
phase space. The dimensionality of the phase space was due to the fact that
we were in the colliding particle regime and thus needed only one position and
one momentum coordinate to describe the system fully. We would expect to
obtain a four dimensional reduced phase space if the analysis were completed
for the spinning particle regime as is the case in [9]. We performed a canonical
transformation to a phase space chart coordinatised by the geodesic distance
between the particles, being analagous to the reduced position vector of a New-
tonian two-body system in the centre-of-mass frame, and its relative conjugate

momentum, and wrote the Hamiltonian in terms of these variables.

In contrast to [9] our theory included a negative cosmological constant
meaning we had a certain regime in which the spacetime contained a black
hole. We continued the Hamiltonian analytically to the black hole regime and
also analysed the threshold of black hole formation H = 0. We found that near
this threshold the mass of the black hole depended linearly on the momentum
of the particles. In the language of critical phenomena, this equates to the mass
scaling with critical exponent 1 in agreement with what was found in [12] by a

method that uses the constants of motion as coordinates on the phase space.

We also used the action to compute the semiclassical tunnelling probability
amplitude of two particles out of the black hole. We found that the imaginary
part of the action was equal to the Bekenstein-Hawking entropy of the black
hole. In a similar analysis for a spherical shell in four dimensions [47|, the
imaginary part of the action was found to be half of the Bekenstein-Hawking
entropy Spp, leading to the factor exp (—Spp) on taking the modulus squared of
the semiclassical probablility amplitude. The reason for the factor of 2 difference
between our result and that of [47] appears to be in the different choices of the

time coordinate [48].
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In summary, we have formulated and analysed a Hamiltonian for three
specific cases for two-particle AdSs spacetimes. We have described the geom-
etry of such spacetimes and used the Chern-Simons formulation of gravity in
discussing the action. We fixed the gauge and evaluated the reduced action of
the theory. Finally we performed a canonical transformation to find a Hamil-

tonian for each of the three cases.

For two of the cases (two massless particles and two particles with equal
positive masses) the critical exponent for the threshold of black hole forma-
tion was shown to coincide with the results in [12]. Also for these two cases
the equations of motion have been analysed and used to calculate the imag-
inary contribution to the action which has been shown to coincide with the
Bekenstein-Hawking entropy. The author has no reason to expect that the

results for arbitrary vlues of the masses would be different.

We could extend the research in a variety of ways. One thing to consider
would be when the spacetime contained n > 2 particles. In theory we could
proceed with the analysis of the spacetime geometry in the same way although
in practice the calculations would get increasingly more difficult. We could also
consider evaluating the reduced action for the spinning particles case although it
may be worthwhile to refine the techniques used to carry out the reduction first.
One other area worthy of further study would be to consider the quantisation
of the various Hamiltonians obtained. The quantisation of the Hamiltonian for
the zero cosmological constant case has been considered in [11] and it would be
worthwhile to consider the quantisation of the negative cosmological constant

case along similar lines. We leave this question open for further studies.

9.2 SL(2,C) twistor space and conformal field theory

In the second part of the thesis we analysed the properties of SL(2,C) twistor
space, T, and explored the form that conformal field theory takes within T and

various related spaces. We gave some details on the twistor transform for T.
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We were first concerned with coset spaces constructed from SL(2,C). We
realised “SL(2,C) twistor space”, showing that it has complex dimension two,
a metric with signature (+,4, —, —) and an interesting complex structure. We
also realised one representation of the coset space B. We went on to examine
the form of conformal field theory n-point functions in Sy, Hz, T and B. In
order to translate the n-point functions to the various spaces we needed to
make use of two separate integral transforms, one being the twistor transform
for T. We gave the details of the 2, 3 and 4-point correlation functions defined
on the Riemann sphere and used some techniques from representation theory
to transform the functions of interest into B. We then analysed the integral
transform from B to T as given in [42| but unfortunately concluded that the

formula given in [42] yields divergent functions on T.

In the attempt to understand the twistor transform from T to H3 our work
enabled us to write the hypergeometric part of the solution to the massless wave
equation on dS3 explicitly as a polynomial. Unfortunately the computation of
the twistor transform did not yield functions automatically satisfying the wave
equation (being the main motivation for this work). If we were to return to this
problem we would compute the measure as given in [18] from first principles as
the residue of a closed form with a simple pole. However, we unfortunately had

to conclude that the twistor transform in this context is still ill understood.
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