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Abstrat
We study the Hamiltonian dynamis for a system of two olliding point partilesoupled to (2 + 1)-dimensional gravity with a negative osmologial onstantby anhoring the dynamis of the system to its spatial in�nity. We reduethe Chern-Simons formulation of the gravitational ation, �nding the reduedHamiltonian for three speial ases of the partile masses, in a phase spaehart oordinatised by the geodesi distane between the two partiles and itsonjugate momentum. The dimension of the redued phase spae is two. Atthe threshold of blak hole formation, the blak hole mass depends linearly onthe momentum, in agreement with previous analysis in a holonomy-based phasespae hart. We use the redued ation to ompute the semilassial probabilityamplitude of two partiles to tunnel out of the blak hole, �nding that theimaginary part of the ation is equal to the Bekenstein-Hawking entropy of thehole. We also study the form that onformal �eld theory (CFT) orrelationfuntions take in oset spaes of SL (2,C). We realise the SL (2,C) twistorspae T in two distint but equivalent ways, deriving some important fatsabout this spae, and we also give one representation of another oset spae
B. We examine the form of CFT orrelation funtions in T, B and two otherrelated spaes using tehniques from representation theory and make a numberof omments on the twistor transform for T.
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Chapter 1
Introdution

Two of the most thought-provoking theories of modern physis to emerge fromthe twentieth entury are quantum mehanis (QM) and general relativity(GR). QM, whih is relevant on the atomi sale, aurately desribes threeof the four fundamental fores of nature, namely eletromagnetism, the stronginteration and the weak interation, but in its usual formulation does so on a�xed bakground spaetime. GR, whih applies itself to large-sale struturessuh as stars and galaxies, desribes gravitation, the fourth fundamental fore,but ruially does so with a dynamial bakground spaetime.Attempts to unify GR and QM into a so-alled theory of quantum gravity(QG) have a long and ompliated history of whih it is not our intention toover here; for an overview see [1℄. A muh more omplete introdution to thesubjet is given in [2℄ and a progress report is given in [3℄. It is the aim of thisthesis to disuss aspets of two approahes to QG, namely anonial quantumgravity and twistor theory.The thesis is split into two fairly unrelated parts � part I, onsisting ofChapters 2 through 6, investigates point partiles oupled to (2 + 1)-dimensionalgravity and the Hamiltonian formulation thereof. Part II, onsisting of Chapters7 and 8, addresses SL(2,C) twistor spae and some of its appliations withinonformal �eld theory. The results are summarised and disussed in hapter 9.1



In the rest of this hapter we brie�y introdue the spei� topis to beinvestigated in Parts I and II and give a hapter-by-hapter outline of the thesis.1.1 Canonial quantum gravity (CQG) and point par-tilesCanonial quantum gravity (CQG) is an attempt to quantise GR diretly bywriting GR in its anonial/Hamiltonian form and then quantising via a setof tehniques invented by Dira in 1950 [4℄. The basi notions of CQG wereestablished by DeWitt in 1967 [5℄; the theory is written in terms of a set of on-�guration variables and anonially onjugate momentum variables desribingthe state of the system at some point in time. One an then obtain the time-evolution of both sets of variables from the Hamiltonian form of the ation. Inthe �usual� way, the two sets of variables are then treated as operators obeyingertain ommutation relations in order to translate to the quantum theory.Attempts to anonially quantize (3 + 1)-dimensional GR have historiallyrun into many di�ulties. The (2 + 1)-dimensional theory, however, providesus with a tehnially simpli�ed setting while retaining many of the oneptualfeatures of the (3 + 1)-dimensional theory. n-dimensional GR has n (n− 3)physial degrees of freedom per spaetime point [6℄, motivating the statementthat (2 + 1)-dimensional GR is loally trivial, having zero (loal) degrees offreedom. However, due to the tehnial simpliity of the theory in 2 + 1 di-mensions it an be onsistently oupled to point partiles and topologiallynontrivial spaetimes an be onstruted with a �nite number of global degreesof freedom. Suh spaetimes an be onstruted in terms of holonomies aroundnon-trivial loops whih is niely explained in the ase of a zero and non-zeroosmologial onstant in [7℄ and [8℄ respetively. More reently [9℄ formulatesand analyses the Hamiltonian dynamis of a pair of massive spinless point parti-les in (2 + 1)-dimensional Einstein gravity for the ase where the osmologialonstant is zero. The approah of [9℄ is to �rstly work out the geometry of the2



spaetime at the spatial in�nity and then anhor the partile trajetories to thisgeometry. They then use the desription of two-partile spaetimes in termsof a piee of Minkowski geometry between the partile world lines [10℄, andtranslate this desription into one that relates the worldlines of the partiles tothe spatial in�nity. Finally they use the expliit form of the lassial solutionsanhored to the in�nity to redue the gravitational ation and �nd the reduedHamiltonian.The quantisation of the Hamiltonian formulation obtained in [9℄ is on-sidered in [11℄.1.2 Point partiles oupled to AdS3 gravityIn Chapters 2 through 6 we would like to emulate the work done in [9℄ by gen-eralising it to the ase where we inlude a negative osmologial onstant. Wewould like to obtain a Hamiltonian formulation for two massive point partilesoupled to AdS3 gravity. The main upshot of inluding a negative osmologialonstant is that there are blak hole solutions, meaning we an study the blakhole formation and analyse the ritial phenomena at the formation threshold.We will also be able to omment on the ation for tunelling from the blak hole.Chapter 2 desribes the geometrial details of the two-partile spaetimes.All the relevant oordinate onventions are established and the one-partilespaetimes are disussed. The two-partile spaetimes are then onstrutedwhere the spaetime has a non-zero spin parameter but assuming that thespaetime does not have a blak hole. The last setion in this hapter speialisesto the ase where the partiles ollide, being the setting for the rest of the work.In Chapter 3 we disuss the �rst order ation formalism of AdS3 gravity.The gauge transformations of the theory are identi�ed in order to make use ofthem in the Hamiltonian redution in Chapter 6. We then speify a (2 + 1)-deomposition of the ation and �nally disuss the ontributions to the ation3



from the partiles and from the boundary term at in�nity.Chapter 4 desribes the embedding of the partile surfae in relation tothe two-partile spaetimes disussed in Chapter 2. We embed the surfaeontaining the partiles in a way that is onsistent with the known lassialsolutions and the boundary onditions at the spatial in�nity. We then use thedetails of the embedding to �x a gauge for the �elds in a ertain tehnial wayin order to evaluate the redued ation in subsequent hapters.Chapter 5 deals with the ontribution to the ation from the Liouvilleterm using the details of the embedding and gauge hoie from Chapter 4. Weevaluate part of this ontribution diretly and onvert the remaining part intoa one-dimensional boundary integral using Stokes' theorem. The evaluation ofthe boundary integral is examined in some detail, and whilst we do not ompletethe analysis due to algebrai ompliations, we do establish the general formthat the Liouville term takes.In Chapter 6, the �nal hapter in this �rst part of the thesis, we �rst usethe general form of the Liouville term found in Chapter 5 and our knowledge ofthe equations of motion to �nd the fully redued ation and write this ationin Hamiltonian form. The phase spae has dimension two. We then perform aanonial transformation to a phase spae hart in whih the �position� oor-dinate is the geodesi distane between the two partiles. We use this ationto analyse the blak hole formation threshold and �nd the leading order rit-ial exponent to be one, oiniding with the result obtained in [12℄. Finallywe study the blak hole reation/annihilation as a quantum mehanial tun-nelling proess and �nd that the imaginary part of the ation is equal to theBekenstein-Hawking entropy of the blak hole.
4



1.3 Twistor theoryTwistor theory in its original form was invented by Roger Penrose in 1967.His vision was that fundamental physis should be reformulated in terms ofobjets alled twistors living in twistor spae. Twistors ould then be used toreonstrut spaetime in a presribed mathematial manner. Penrose's popularmonograph [13℄ desribes the main ideas of twistor theory and an aessibletehnial introdution to twistor theory is given in [14℄. Twistor theory waslargely ignored by the wider theoretial physis ommunity until 2003 whenEdward Witten wrote a paper relating string theory and twistor geometry [15℄.Twistor string theory was born and many papers followed, for example [16℄,bringing twistor theory one again into the limelight of mainstream researh.1.4 SL(2, C) twistor spae and onformal �eld theoryOne of the unique selling points of twistor theory is that solutions to the mass-less wave equation naturally arise using the methods of twistor geometry. ThePenrose/twistor transform, whose details were �rst established in [17℄, is anintegral transform from a ertain subset of funtions on twistor spae to thespae of solutions to the massless wave equation on ompati�ed Minkowskispae. The twistor transform is not, however, restrited to Penrose's twistorspae; [18℄ shows how to onstrut the twistor transform for SO (1, n) ratherthan SU (2, 2) twistors.The AdS/CFT orrespondene (or Maldaena duality) states there is anequivalene between a ertain string theory living on AdS ×K, where K is alosed manifold, and a onformal �eld theory (CFT) living on the boundary ofthe AdS spae. See [19℄, [20℄ and the review [21℄.In Chapters 7 and 8 we draw upon the ideas of AdS/CFT and attemptto determine the relationship between CFT orrelation funtions on two spaesthat have not been extensively studied in the literature. We eluidate properties5



of �SL(2,C) twistor spae�, T, and attempt to onstrut the twistor transformorresponding to this spae. We go on to explore the form of CFT orrelationfuntions within T and various related spaes.In Chapter 7 we desribe a �SL(2,C) twistor spae� that arises naturallyfrom the Lie group SL (2,C). In ontrast with Penrose's twistor spae, whihhas omplex dimension 4, SL(2,C) twistor spae has omplex dimension 2. Wealso onstrut a related spae and disuss its global properties. Chapter 7 es-sentially sets the mathematial sene for physial appliations within onformal�eld theory.In Chapter 8 we examine the form of onformal �eld theory n-point fun-tions in SL(2,C) twistor spae and two related spaes. We also make a numberof omments on the twistor transform for T.

6



Chapter 2
One and two-partile AdS3geometry

In this hapter we establish the basi notation and onventions for the three-dimensional anti de Sitter spae, AdS3. We start by disussing one realisation of
AdS3 and how the various isometries at in this realisation. We then establishour oordinate onventions for AdS3 and various related spaes in order toonstrut the one-partile spaetimes in the following setion. The two-partilespaetimes are then onstruted in all generality where the spaetime has a non-zero spin parameter, but assuming that the spaetime does not have a blakhole. Finally the speial ase where this spin parameter is zero is presented asthe setting for the work in the subsequent hapters.2.1 AdS3 hyperboloid and the isometry groupHere we initially follow the onventions used in [22℄ although our Killing vetorsare de�ned with a slightly di�erent orientation.

AdS3 an be realised as an embedded hyperboloid in R
2,2. The metri on

R
2,2 is

ds2 = −dU2 − dV 2 + dX2 + dY 2. (2.1.1)7



For x = (U, V,X, Y ) ∈ R
2,2 and l > 0 the equation of the hyperboloid is

〈x, x〉
R2,2 = −U2 − V 2 +X2 + Y 2 = −l2. (2.1.2)For simpliity we will only onsider �unit� AdS3 suh that l = 1 to avoid litteringthe formulae with a sale parameter.

AdS3 is a maximally symmetri spae in that it admits six linearly in-dependent Killing vetor �elds (KVF's). A (standard) set of suh KVF's are
U∂V − V ∂U , (2.1.3a)
X∂Y − Y ∂X , (2.1.3b)
U∂X +X∂U , (2.1.3)
U∂Y + Y ∂U , (2.1.3d)
V ∂X +X∂V , (2.1.3e)
V ∂Y + Y ∂V , (2.1.3f)and the isometry group generated by them is Oc(2, 2), where the subsript cstands for the onneted omponent. The six isometries generated by (2.1.3)(with a parameter θ) read expliitly as follows:

(U, V ) rotations:

 U

V


 7→


 cos θ − sin θ

sin θ cos θ




 U

V


 , (2.1.4)

(X,Y ) rotations:

 X

Y


 7→


 cos θ − sin θ

sin θ cos θ




 X

Y


 , (2.1.5)

(U,X) boosts:

 U

X


 7→


 cosh θ sinh θ

sinh θ cosh θ




 U

X


 , (2.1.6)8



(U, Y ) boosts: 
 U

Y


 7→


 cosh θ sinh θ

sinh θ cosh θ




 U

Y


 , (2.1.7)

(V,X) boosts:

 V

X


 7→


 cosh θ sinh θ

sinh θ cosh θ




 V

X


 , (2.1.8)

(V, Y ) boosts: 
 V

Y


 7→


 cosh θ sinh θ

sinh θ cosh θ




 V

Y


 , (2.1.9)For our purposes, it is onvenient to write the Oc(2, 2) ation on AdS3 byusing the group deomposition

Oc(2, 2) ∼= (SU(1, 1) × SU(1, 1)) /Z2, (2.1.10)and expressing a general element of AdS3 by a matrix, W ∈ SU(1, 1), suh that
W =


 U + iV X + iY

X − iY U − iV


 , (2.1.11)where

U2 + V 2 −X2 − Y 2 = 1. (2.1.12)We denote elements of the isometry group by pairs; (gL, gR) ∈ SU(1, 1) ×
SU(1, 1) and �nd that the ation Oc(2, 2) : AdS3 → AdS3 is equivalent to
SU(1, 1)× SU(1, 1) : SU(1, 1)→ SU(1, 1). Conretely, for (gL, gR) ∈ SU(1, 1)×
SU(1, 1), the ation is

W 7→W ′ = gLWg−1
R . (2.1.13)Note that the hyperboloid ondition (2.1.12) is implemented by det(W ) = 1and this ondition is invariant under the ation (2.1.13). The invariant metri(2.1.1) is given in this matrix representation by 1

2Tr
[(
W−1 dW

)2].We now list, for the reader's onveniene, the elements of SU(1, 1) ×
SU(1, 1) that give the six isometries (2.1.4) to (2.1.9) in the form (2.1.13).9



Most of the alulations of the two-partile spaetimes will use these matriesand various ompositions thereof.
(U, V ) rotations (2.1.4):

gL =


 exp

(
iθ
2

)
0

0 exp
(
− iθ

2

)


 , (2.1.14a)

gR =


 exp

(
− iθ

2

)
0

0 exp
(
iθ
2

)


 . (2.1.14b)

(X,Y ) rotations (2.1.5):
gL =


 exp

(
iθ
2

)
0

0 exp
(
− iθ

2

)


 , (2.1.15a)

gR =


 exp

(
iθ
2

)
0

0 exp
(
− iθ

2

)


 . (2.1.15b)

(U,X) boosts (2.1.6):
gL =


 cosh

(
θ
2

)
sinh

(
θ
2

)

sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.16a)

gR =


 cosh

(
θ
2

)
− sinh

(
θ
2

)

− sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.16b)

(U, Y ) boosts (2.1.7):
gL =


 cosh

(
θ
2

)
i sinh

(
θ
2

)

−i sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.17a)

gR =


 cosh

(
θ
2

)
−i sinh

(
θ
2

)

i sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.17b)

(V,X) boosts (2.1.8):
gL =


 cosh

(
θ
2

)
i sinh

(
θ
2

)

−i sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.18a)

gR =


 cosh

(
θ
2

)
i sinh

(
θ
2

)

−i sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.18b)10



(V, Y ) boosts (2.1.9):
gL =


 cosh

(
θ
2

)
− sinh

(
θ
2

)

− sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.19a)

gR =


 cosh

(
θ
2

)
− sinh

(
θ
2

)

− sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.19b)Finally, note that the isometries an be written in terms of real-valuedmatries if SU(1, 1) is replaed by the isomorphi group SL(2,R) (see, for ex-ample, [23℄). The use of SU(1, 1) has however ertain omputational advantagesfor our purposes.2.2 Coordinate de�nitionsA set of oordinates (T,R, φ) that overs all of AdS3 is de�ned by

U = (1 +R2)
1

2 cos T, (2.2.1a)
V = (1 +R2)

1

2 sinT, (2.2.1b)
X = R cosφ, (2.2.1)
Y = R sinφ. (2.2.1d)The metri reads

ds2 = −
(
1 +R2

)
dT 2 +

(
1 +R2

)−1
dR2 +R2dφ2. (2.2.2)Note that there is a oordinate singularity at R = 0 but this does not onernus here. As T is periodi with period 2π, we see that the spaetime has losedtimelike urves. If we unwrap T , we obtain the universal overing spae CAdS3.Let us now onsider this done and with an abuse of notation refer to thisovering spae as AdS3. The oordinate ranges for this spae are −∞ < T <∞,

R ≥ 0 and 0 ≤ φ < 2π.Coordinates whih will be used extensively in the sequel are the so-alled11



�sausage� oordinates (T, ρ, φ) de�ned by
R =

2ρ

1− ρ2
(2.2.3)with −∞ < T <∞, 0 ≤ ρ < 1 and 0 ≤ φ < 2π, yielding

ds2 = −
(

1 + ρ2

1− ρ2

)2

dT 2 +

(
2

1− ρ2

)2 (
dρ2 + ρ2dφ2

)
. (2.2.4)The oordinates (T, ρ, φ) yield a simply visualisable piture of AdS3 as an in�-nite stak of Poinaré disks of onstant T - see Figure 2.1.

Poincare Disk

}

Infinite stack of disks

Figure 2.1: AdS3 as an in�nite stak of Poinaré disks. Eah onstant Tslie of the ylinder has the metri (2.2.5).Eah onstant T slie has the Poinaré disk metri
ds2 =

(
2

1− ρ2

)2 (
dρ2 + ρ2dφ2

)
, (2.2.5)12



whih an be written in the more standard hyperboli polar oordinates via theoordinate transformation ρ = tanh
(
w
2

), yielding
ds2 = dw2 + sinh2 w dφ2. (2.2.6)As ρ → 1 the metri (2.2.5) diverges - geodesi distanes from points on theboundary of the disk to any other point on the disk are in�nite.Finally, we introdue the spinning BTZ oordinates (t, r, ψ), [22℄, via

T = αt+ Sψ, (2.2.7a)
φ = St+ αψ, (2.2.7b)
R2 =

r2 + S2

α2 − S2
, (2.2.7)where α and S are parameters satisfying α > 0 and −α < S < α. The metrireads

ds2 = −
(
r2 + S2 + α2

)
dt2 − 2Sαdtdψ +

r2dr2

(r2 + S2) (r2 + α2)
+ r2dψ2. (2.2.8)Setting M = −

(
S2 + α2

) and J = 2Sα, the metri beomes
ds2 = −

(
r2 −M +

J2

4r2

)
dt2 +

dr2(
r2 −M + J2

4r2

)+r2
(
dψ − J

2r2
dt

)2

. (2.2.9)The metri (2.2.9) omes to us with the restrition M < 0. We ould, however,start from (2.2.9) and ask what spaetime this metri desribes for arbitraryvalues of M and J . The (partial) answer is that the ontinuation of (2.2.9)into the region where M > 0 but |J | ≤ M , with the oordinates identi�ed as
(t, r, ψ) ∼ (t, r, ψ + 2π), desribes the BTZ blak hole analysed in [22℄. We donot wish to say any more about this here but will return to the blak hole inhapter 6.2.3 Single spinning point partile - �AdS onial ge-ometry�We onstrut the single spinning partile spaetimes by adapting the disussionof [9℄ from Minkowski spae to AdS3. This will allow us to disuss the two-13



partile spaetimes and their struture at spaelike in�nity.We de�ne AdS as the (2 + 1)-dimensional spaetime obtained by remov-ing the timelike geodesi R = 0 from AdS3 and ÃdS as the universal overingspae of AdS. We introdue on ÃdS a set of global oordinates akin to thesausage oordinates (2.2.4), with the φ oordinate unwound around the parti-le worldline so that T ∈ R, 0 < ρ < 1 and −∞ < φ < ∞. Due to the inho-mogeneity introdued into the original spae by removing a timelike geodesi,there are now only two independent isometries on ÃdS, namely rotations in
(U, V ), generated by ∂T = −V ∂U +U∂V , and rotations in (X,Y ), generated by
∂φ = −Y ∂X +X∂Y . In the sausage oordinates these isometries are given by

J := exp (2πS∂T + 2πα∂φ) , (2.3.1)with the ation
J : (T, ρ, φ) 7→ (T + 2πS, ρ, φ + 2πα) . (2.3.2)We now interpret ÃdS/Z, where the Z ation is generated by (2.3.1),as the spaetime generated by a single spinning point partile at ρ = 0 [7�9, 24℄. The mass of the partile equals π (1− α) and S gives the spin of thepartile. ÃdS/Z an be desribed in terms of a fundamental domain, D, andan identi�ation aross its boundaries, where the identi�ation takes the form(2.3.2). If α < 1, D an be embedded in AdS and the identi�ation is a spei�

Oc(2, 2) transformation of R
2,2, namely a 2πα rotation in (X,Y ) (about theremoved timelike geodesi) omposed with a 2πS rotation in (U, V ). We anthen hoose a wedge of the sausage for D - see Figure 2.2. The value α = 0 isthe threshold of blak hole formation whih we onsider in hapter 6.We introdue on ÃdS the oordinates (t, r, ψ) via (2.2.7) with the ψ o-ordinate unwound so that −∞ < t < ∞, r > 0 and −∞ < ψ < ∞. In theseoordinates, the isometry J (2.3.1) reads
J := exp (2π∂ψ) , (2.3.3)

J : (t, r, ψ) 7→ (t, r, ψ + 2π) , (2.3.4)14



T’=T+2    Sπ

δ

δ

T

Figure 2.2: Cylindrial sausage with a partile wedge ut out. The wedgewith angle δ := 2π (1− α) is ut out of the spaetime leavingthe fundamental domain for α < 1 to the right of the ut outwedge. The identi�ation of the timelike boundary is indiatedby the shaded segments of the diagram. The partile mass isgiven by δ

2
whereas the partile spin is given by S.
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and we refer to the oordinates (t, r, ψ) with the identi�ation (t, r, ψ) ∼ (t, r, ψ+

2π) as the AdS onial oordinates on ÃdS/Z.2.4 Spaetime of two spinless partilesNow that we have established the main onventions for spaetimes with mas-sive point partiles we turn our attention to the main fous of this hapter� desribing the geometry of two-partile AdS3 spaetimes. (Note that thismethod of onstruting spaetimes with partiles an be extended to n partilesfor n > 2 but we will not do so here.)We label the partiles with an index i ∈ {1, 2} and in a neighbourhoodof eah partile worldine the geometry is the spinless speial ase (S = 0) ofsetion 2.3. We denote the defet angles of the partiles by δi := 2π (1− αi) andwe de�ne ci := cos δi2 and si := sin δi
2 . The requirement that the partile massesare greater than zero give the inequalities δi > 0. We also require that eahpartile is nothing more exoti than a point partile and so also set δi < 2π. Wefurther require that the geometry near the spaelike in�nity is that of a singlespinning point partile as desribed in setion 2.3. This implies δ1 + δ2 < 2πand c1 + c2 > 0, as in the ase of a vanishing osmologial onstant [9℄, andalso a further ondition, spei� to a negative osmologial onstant, whih willemerge at the end of the setion as (2.4.11).What remains is to desribe the geometry of the two-partile spaetimein terms of a fundamental domain Ω̃0 - a piee of AdS3 spaetime betweenthe partiles. We will �rst do so, but we will then translate this piture intoan equivalent one in whih the properties of the spaelike in�nity are moreapparent.Without loss of generality we may assume the worldline of partile 1 to beat the entre of the sausage evolving straight up (as in Figure 2.2). We introduethe notation B (w1, w2) for a boost parameter pair (w1, w2) as the omposition16



of a (U,X) boost with parameter w1 and a (V, Y ) boost with parameter w2;
B (w1, w2) :




U

V

X

Y



7→




coshw1 U + sinhw1 X

coshw2 V + sinhw2 Y

sinhw1 U + coshw1 X

sinhw2 V + coshw2 Y



. (2.4.1)The worldline of partile 2 is obtained by taking a worldline at the entre of thesausage and transforming via the inverse of (2.4.1) with the pair (β, v), where

β 6= 0 and v 6= 0;
B−1 (β, v) :




U

V

X

Y



7→




cosh β U − sinhβ X

cosh v V − sinh v Y

− sinhβ U + cosh β X

− sinh v V + cosh v Y



. (2.4.2)The two defet angles ombined with their relevant boost parameter pair (β, v)at T = 0 give us the initial data of the system. See Figure 2.3 for a ross-setionof the sausage at T = 0 showing the beginning of the evolution. Note that wehave hosen β > 0 and v > 0 for Figure 2.3 and all subsequent �gures. Theanalysis in this setion holds for β 6= 0 and v 6= 0 but the �gures are drawn for

β > 0 and v > 0.From Figure 2.3 it is lear that we will want to de�ne Ω̃0 so that thepartile worldlines are timelike geodesis on the boundary of Ω̃0. We denotethe worldline of partile i by Pi with orresponding proper time λi, with thezeroes hosen so that λi = 0 at T = 0. The Pi are given by
P1 =




U1

V1

X1

Y1




=




cos λ1

2

sin λ1

2

0

0



, (2.4.3)
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� δ

1Ω
∼ 12

δ
2

∼
0

Figure 2.3: Initial data slie T = 0. The partiles are loated on this on-stant T slie as shown. The single and double stroked lines arethe restrition of the relative single and double stroked bound-aries of Ω̃0 to this onstant T slie. The single stroked bound-aries are identi�ed by an (X,Y ) rotation on onstant T slies.The double stroked boundaries are identi�ed by an (X,Y ) ro-tation onjugated by a boost (2.4.1) with boost-pair (β, v), ina way that, for v 6= 0, does not preserve the onstant T sliesand is disussed in more detail in setion 2.5. δ̃2 an be givenin terms of δ2 and the boost parameter pair (β, v) but is notpartiularly important for our subsequent analysis. The arrowattahed to partile 2 indiates its veloity at T = 0. Ω̃0 isshown on the �gure between the removed wedges. Note that
Ω̃0 reahes the in�nity in two disonneted parts and is there-fore not well adapted to desribing the spaelike in�nity.
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P2 =




U2

V2

X2

Y2




=




cosh β cos λ2

2

cosh v sin λ2

2

− sinhβ cos λ2

2

− sinh v sin λ2

2



. (2.4.4)The partiles evolve as shown in Figure 2.4. Elementary geometry shows that

2
1 πΤ=

2
3 πΤ=

T= 2 π

12 T= 0

Τ= π

Figure 2.4: Evolution of the partiles. Partile 2 orbits the worldline ofpartile 1 in a helix-like manner. The evolution is periodi withperiod T = 2π.
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the geodesi distane s between points with given λ1 and λ2 is given by
cosh s = cos

λ1

2
cos

λ2

2
cosh β + sin

λ1

2
sin

λ2

2
cosh v. (2.4.5)We now wish to translate this desription into one anhored to the AdSonial in�nity. We omit the alulations but give a presription by whih theinterested reader an reprodue them.

• Write the worldlines Pi in the SU(1, 1) matrix form Wi aording to(2.1.11). Write the identi�ation of the double-stroked boundaries in Fig-ure 2.3 as a pair of SU(1, 1) matries.
• Cut Ω̃0 into two along a timelike surfae onneting the partile worldlinesin a way whose details will be spei�ed in setion 2.5. Rotate the twohalves of Ω̃0, via a pair of SU(1, 1) matries, about the worldline of partile1 so that the wedge originally at partile 1 loses and a new one opens.Keep trak of the form of the Wi and the SU(1, 1) pair identifying thedouble-stroked boundaries. Figure 2.5 shows the new domain Ω̃′

0 afterthis �ut and rotate� proess - Partile 2 is now at two positions in thisnew piture, labelled by 2 and 2′.
• Perform a �nal isometry on the spaetime suh that the double-strokedboundaries are now identi�ed by a pair of matries implementing the om-position of an (X,Y ) rotation and a (U, V ) rotation. This identi�ationis now in the form (2.3.1), anhoring the system to the in�nity. This �nalisometry will be given by a transformation of the type (2.4.1) with a boostparameter pair (β1, v1). The Wi an now be expressed in terms of twonew boost parameter pairs (β1, v1) and (β2, v2) where both pairs an begiven in terms of the initial data. See Figure 2.6 for the initial data inthe new fundamental domain Ω̃.
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1
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’

Figure 2.5: T = 0 slie after �ut and rotate� proess. The single-strokedboundaries are still identi�ed by an (X,Y ) rotation whereasthe double-stroked boundaries are identi�ed as before but on-jugated by an additional (X,Y ) rotation. Again, the identi�-ation of the double stroked boundaries does not preserve theonstant T slies when v 6= 0.
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δ

Figure 2.6: The �entre of mass� frame. The single-stroked boundaries ofthe fundamental domain Ω̃ are identi�ed by an (X,Y ) rotationonjugated by a boost (2.4.1) with boost-pair (β1, v1) given by(2.4.8). The double-stroked lines are identi�ed by the ompo-sition of an (X,Y ) rotation and a (U, V ) rotation as shown bythe grey segments in Figure 2.2. Note that partile 1 is in the
T = 0 plane, but partiles 2 and 2' are in this plane only for
v = 0.
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In Ω̃, the worldlines of the partiles read
P1 =




U1

V1

X1

Y1




=




cos λ1

2 cosh β1

sin λ1

2 cosh v1

cos λ1

2 sinhβ1

sin λ1

2 sinh v1



, (2.4.6)

P2,2′ =




U2,2′

V2,2′

X2,2′

Y2,2′




=




cos λ2

2 cosh β2 cos τ2 ∓ sin λ2

2 cosh v2 sin τ
2

± cos λ2

2 cosh β2 sin τ
2 + sin λ2

2 cosh v2 cos τ2

− cos λ2

2 sinhβ2 cos δ2 ∓ sin λ2

2 sinh v2 sin δ
2

± cos λ2

2 sinhβ2 sin δ
2 − sin λ2

2 sinh v2 cos δ2



,(2.4.7)where the upper (lower) signs pertain to partiles 2 (2'), and the parameters

βi, vi, δ and τ are determined in terms of β, v and δi by
tanh (v1 ± β1) =

s2 sinh (v ± β)

s1c2 + s2c1 cosh (v ± β)
, (2.4.8)

tanh (v2 ± β2) =
s1 sinh (v ± β)

s2c1 + s1c2 cosh (v ± β)
, (2.4.9)

cos

(
δ ± τ

2

)
= c1c2 − s1s2 cosh (v ± β) . (2.4.10)Equation (2.4.10) shows that the manipulations to speify the new funda-mental domain Ω̃ are well de�ned provided

|c1c2 − s1s2 cosh (v ± β)| < 1, (2.4.11)ensuring that Figure 2.6 exists. We assume (2.4.11) for now, but will relax thisondition in Chapter 6 when we disuss the blak hole parameter range.2.5 Worldlines in other oordinatisations and the equa-tions of motionWhat is not portrayable in the spatial slies in Figures 2.3, 2.5 and 2.6 is thenon-planar nature of the identi�ed boundaries. For example, in Figure 2.6 the23



single-stroked boundary is identi�ed on a slie of varying T where, if we takethe line starting from partile 1 to be at T = 0, T inreases (dereases) aswe travel along the line from partile 1 to partile 2 (2'). The double-strokedboundary from 2 (2') to the edge of the disk is on a onstant T slie where
T > 0 (T < 0).With this in mind we introdue a new parameter σ de�ned along thepartile worldlines by

tanσ = tan

(
λ1

2

)
sinh v1
sinhβ1

= tan

(
λ2

2

)
sinh v2
sinhβ2

, (2.5.1)suh that
−π

2
< σ <

π

2
(2.5.2)and σ = 0 at T = 0. Note that σ is well-de�ned only when v 6= 0. We onsiderthe ase where v = 0 in setion 2.6.We now rewrite the worldlines of the partiles (2.4.6) and (2.4.7) in thesausage oordinates (2.2.4) in terms of σ, (abusing notation for the Pi some-what),

P1 =




T1

ρ1

φ1


 =




arctan

(
tanσ tanhβ1

tanh v1

)

ρ1 (σ)

σ



, (2.5.3)

P2,2′ =




T2,2′

ρ2,2′

φ2,2′


 =




arctan

(
tanσ tanhβ2

tanh v2

)
± τ

2

ρ2 (σ)

σ ± πα



, (2.5.4)where

ρi (σ) =



(
cosh2 βi sinh2 vi + tan2 σ cosh2 vi sinh2 βi

) 1

2 −
(
sinh2 vi + tan2 σ sinh2 βi

) 1

2

(
cosh2 βi sinh2 vi + tan2 σ cosh2 vi sinh2 βi

) 1

2 +
(
sinh2 vi + tan2 σ sinh2 βi

) 1

2




1

2

,(2.5.5)The equation for the geodesi distanes between the partiles (2.4.5), with the
24



same value of σ on eah worldline, beomes
cosh s =

cos2 σ cosh β sinh v1 sinh v2 + sin2 σ cosh v sinhβ1 sinhβ2
(
cos2 σ sinh2 v1 + sin2 σ sinh2 β1

) 1

2
(
cos2 σ sinh2 v2 + sin2 σ sinh2 β2

) 1

2

.(2.5.6)This spei�es how Ω̃0 was originally ut into two between the partiles: thesurfae is formed from spaelike geodesis onneting the partiles at the samevalue of σ at eah end.Finally we introdue the AdS onial oordinates (2.2.7a - 2.2.7) in aneighbourhood of the in�nity but replaing t by t − t0 and ψ by ψ − ψ0. Theworldlines beome
P1 =




t1

r1

ψ1


 =




t0 +

α arctan

(
tanσ tanhβ1

tanh v1

)
− Sσ

α2 − S2

r1 (σ)

ψ0 +

−S arctan

(
tan σ tanhβ1

tanh v1

)
+ ασ

α2 − S2




, (2.5.7)
P2,2′ =




t2,2′

r2,2′

ψ2,2′


 =




t0 +

α arctan

(
tan σ tanhβ2

tanh v2

)
− Sσ

α2 − S2

r2 (σ)

ψ0 +

−S arctan

(
tan σ tanhβ2

tanh v2

)
+ ασ

α2 − S2
± π




,

(2.5.8)where
ri (σ) =

(
α2 sinh2 vi sinh2 βi − S2

(
cos2 σ sinh2 vi + sin2 σ sinh2 βi + sinh2 vi sinh2 βi

)

cos2 σ sinh2 vi + sin2 σ sinh2 βi

) 1

2

,(2.5.9)
α = 1− δ

2π
, (2.5.10)

S = 1− τ

2π
. (2.5.11)Note also that

tanhβ1 tanh v2 = tanhβ2 tanh v1, (2.5.12)25



so that
t1 = t2,2′ (2.5.13)and

ψ1 = ψ2,2′ ∓ π. (2.5.14)The onstants {t0, ψ0} give the AdS onial time and onial angle respetivelywhen σ = 0. They enode the zero-point of time and the orientation of thetwo-partile system relative to the AdS onial oordinates.We an extend the formulae (2.5.3) to (2.5.14) de�ned for (2.5.2) to therange −∞ < σ < ∞ (to desribe the full evolution) by adding π (−π) to Twhenever σ inreases (dereases) through the divergent points of tanσ.2.6 The olliding aseWe now address the speial ase v = 0, in whih the partiles ollide and whihwas not overed by the disussion in setion 2.5.The initial data of the system is given by the two defet angles and theboost parameter β. See Figure 2.7 for this initial on�guration. The Pi aregiven by
P1 =




U1

V1

X1

Y1




=




cos λ1

2

sin λ1

2

0

0



, (2.6.1)

P2 =




U2

V2

X2

Y2




=




cosh β cos λ2

2

sin λ2

2

− sinhβ cos λ2

2

0



. (2.6.2)The proedure to translate the fundamental domain into the entre-of-mass frame is essentially the same as before. Ω̃0 is now initially ut along linesof onstant T . The �nal fundamental domain, Ω̃, is shown in Figure 2.8. The26



Ω
∼

�
�
�
�

�
�
�
� δ

1

12
δ
2

∼
0

Figure 2.7: Initial data slie T = 0 for v = 0. The partiles in the ini-tial on�guration are loated as shown. The single and doublestroked lines are geodesis identi�ed on the Poinaré disk. Thesingle stroked boundaries are identi�ed by an (X,Y ) rotation ononstant T slies. The double stroked boundaries are identi�edby a (X,Y ) rotation onjugated by the transformation (2.4.1)with w1 = β, w2 = v = 0 on onstant T slies. The veloity ofpartile 2 at T = 0 is orthogonal to the T = 0 surfae. Ω̃0 isshown on the �gure between the removed wedges.
27



∼
Ω�

�
�
�

�
�
�
�

�
�
�
�

1

2’

2

δ

Figure 2.8: T = 0 slie in the �entre of mass� frame for v = 0. Thesingle-stroked boundaries are identi�ed by an (X,Y ) rotationonjugated by a boost (2.4.1) with w1 = β1 and w2 = 0 ononstant T slies. The double stroked lines are identi�ed by asimple (X,Y ) rotation. At T = 0, the veloities of partile 1and the two opies of partile 2 are orthogonal to the T = 0surfae.
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worldlines of the partiles on the boundary of Ω̃ beome
P1 =




U1

V1

X1

Y1




=




cos λ1

2 cosh β1

sin λ1

2

cos λ1

2 sinhβ1

0



, (2.6.3)

P2,2′ =
(
U2,2′ , V2,2′ ,X2,2′ , Y2,2′

)
=




cos λ2

2 cosh β2

sin λ2

2

− cos λ2

2 sinhβ2 cos δ2

± cos λ2

2 sinhβ2 sin δ
2



, (2.6.4)where the upper (lower) signs pertain to partile 2 (2'). The relevant boostparameters and the total de�it angle are given by

tanhβ1 =
s2 sinhβ

s1c2 + s2c1 cosh β
, (2.6.5)

tanhβ2 =
s1 sinhβ

s2c1 + s1c2 cosh β
, (2.6.6)

cos
δ

2
= c1c2 − s1s2 cosh β. (2.6.7)Note that (2.6.7) shows that the partile geometry near the in�nity is the spin-less S = 0 speial ase of the one-partile geometry. The dynamis are onlyde�ned in the range −π

2 ≤ T ≤ π
2 , where ±π

2 are the values of T at whih thepartiles ollide respetively in the future and in the past.In the sausage oordinates the partile worldlines take the form
P1 = (T1, ρ1, φ1) =




T

ρ1 (T )

0


 , (2.6.8)

P2,2′ =
(
T2,2′ , ρ2,2′ , φ2,2′

)
=




T

ρ2 (T )

±πα


 , (2.6.9)
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where
ρi (T ) =


cosh βi −

(
cos2 T + sin2 T cosh2 βi

) 1

2

cosh βi +
(
cos2 T + sin2 T cosh2 βi

) 1

2




1

2

, (2.6.10)whih is well-de�ned for all |T | < π
2 . Finally, in the AdS onial oordinateswe replae t by t− t0 and the worldlines take the form

P1 = (t1, r1, ψ1) =




t0 +
T

α
α cos T sinhβ1

(
cos2 T + sin2 T cosh2 β1

) 1

2

0



, (2.6.11)

P2,2′ =
(
t2,2′ , r2,2′ , ψ2,2′

)
=




t0 +
T

α
α cos T sinhβ2

(
cos2 T + sin2 T cosh2 β2

) 1

2

±π



. (2.6.12)Clearly, t1 = t2,2′ and ψ1 = ψ2,2′ ∓ π. The geodesi distane rc between thepartiles in a onstant T slie is

cosh rc =
cos2 T cosh β + sin2 T cosh β1 cosh β2

(
cos2 T + sin2 T cosh2 β1

) 1

2
(
cos2 T + sin2 T cosh2 β2

) 1

2

. (2.6.13)Note that t0 is the AdS onial time when T = 0. The onial angle ψ0has been dropped as it will not be needed in the redution of the ation inChapter 6.Figures 2.9 and 2.10 show plots of the entre-of-mass fundamental domain
Ω̃ with spei� hoies for the parameters. The evolution begins at T = 0 atthe base of the plotted ylinder and evolves to ollision at T = π

2 at the top ofthe ylinder.
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Figure 2.9: Two dimensional surfae formed from drawing the boundaryof the fundamental domain Ω̃ ∀T ∈ [0, π

2
], for δ1 = δ2 = π

2
,

β = ln (2 +
√

3) and S = 0. T = 0 is at the base of the ylinderwhere the two partiles are indiated. The point of ollision isat T = π

2
at the top of the ylinder.31



Figure 2.10: Two dimensional surfae formed from drawing the boundaryof the fundamental domain Ω̃ ∀T ∈ [0, π

2
], for δ1 = δ2 = π

4
,

β = 2 and S = 0. T = 0 is at the base of the ylinder wherethe two partiles are indiated. The point of ollision is at
T = π

2
at the top of the ylinder.32



Chapter 3
Ation for (2 + 1)-dimensionalgravity with a negativeosmologial onstant

In this hapter we disuss the �rst order formulation of (2 + 1)-dimensionalEinstein gravity with a negative osmologial onstant in terms of two Chern-Simons onnetions. We identify the gauge transformations for the Chern-Simons onnetions, in order to make use of them in the Hamiltonian redutionin Chapters 4 and 5. Finally we disuss the ontributions to the ation fromthe point partiles and from the boundary term at in�nity.3.1 First order formalismWe onsider a three dimensional manifold M . The basi dynamial variables inthe �rst order formalism are the o-triad eIa and the O(2, 1) onnetion AIa on
M . The upper ase latin letters I, J,K, ... denote internal indies taking valuesin {0, 1, 2}, pertaining to a 3-dimensional �xed internal vetor spae V . Theinternal indies are raised and lowered with a �xed Minkowski metri ηIJ withsignature (−,+,+). The lower ase latin letters a, b, c, ... are spaetime indies.33



We assume from now on that the o-triad is non-degenerate, det
(
eIa
)
6= 0. Atany point p in M the o-triad provides then a linear isomorphism between thetangent spae of M and the internal spae V , and we an onstrut from theo-triad a spaetime metri of signature (−,+,+) by gab = ηIJe

I
ae
J
b . We use

gab to raise and lower the spaetime indies. For generalisations to a degenerateo-triad, see [25℄.We write the gravitational bulk ation as a funtion of the dynamialvariables (following the notation in [9℄) as
Sbulk =

1

2π

∫

M
d3x η̃abceaI

(
F Ibc +

1

3
ǫIJKe

J
b e
K
c

)
, (3.1.1)where our units are suh that the osmologial onstant Λ = − 1

l2
= −1 and

8G = 1 (following [22℄ with l = 1). η̃abc is the Levi-Civita density aording to
d3x η̃abc = dxa ∧ dxb ∧ dxc and F Ibc is the urvature of the onnetion,

F Ibc = 2∂[bA
I
c] + ǫIJKA

J
bA

K
c , (3.1.2)where

A[aBb] :=
1

2
(AaBb −AbBa) . (3.1.3)Here ǫIJK , with all lower indies, is the totally antisymmetri symbol with

ǫ012 = 1 and the indies are raised and lowered with the Minkowski metri ηIJ .The equations of motion obtained by varying the ation (3.1.1) with re-spet to AIa and eIa are the ondition that the onnetion is torsion free,
∂[be

I
c] + ǫIJKA

J
[be

K
c] = 0, (3.1.4)and the onstant negative urvature ondition,

F Ibc = −ǫIJKeJb eKc . (3.1.5)Taken together, [6℄, these equations are equivalent to Einstein's equation forthe metri gab with Λ = −1,
Rab −

1

2
Rgab − gab = 0. (3.1.6)34



As an example onsider the region in a neighbourhood of the spatial in�n-ity of the olliding geometry, setion 2.6. The o-triad one-forms and onnetionone-forms as given by eI = eIadx
a and AI = AIadx

a are
e0 =

(
r2 + α2

) 1

2 dt, A0 =
(
r2 + α2

) 1

2 dψ, (3.1.7a)
e1 =

(
r2 + α2

)− 1

2 dr, A1 = 0, (3.1.7b)
e2 = rdψ, A2 = rdt, (3.1.7)and as an easily be heked, these �elds satisfy the equations of motion.See the setion �2+1 Palatini theory oupled to a osmologial onstant�in [26℄ for a detailed overview of the bulk ation (3.1.1).3.2 Chern-Simons formulation of the ationFollowing [27℄ we split the bulk ation (3.1.1) into two Chern-Simons (C-S) typeations via the use of two O(2, 1) C-S onnetions,

±AIa = AIa ± eIa, (3.2.1)yielding
Sbulk = +Sbulk

(
+AIa
)
−−Sbulk

(−AIa
)
, (3.2.2)where

±Sbulk

(±AIa
)

=
1

8π

∫

M
d3x η̃abc±AaI

(
±FIbc −

1

3
ǫIJK

±AJb ±AKc
)
. (3.2.3)The ±FIbc are the urvatures of the two C-S onnetions and the equations ofmotion are simply the ondition that both onnetions are �at,

±FIbc = 2∂[b
±AIc] + ǫIJK

±AJb ±AKc = 0. (3.2.4)As an example, we an transform the o-triad and onnetion one-forms
35



(3.1.7) into their C-S ounterparts, with the result
+A0 =

(
r2 + α2

) 1

2 (dt+ dψ) , −A0 =
(
r2 + α2

) 1

2 (−dt+ dψ) , (3.2.5a)
+A1 =

(
r2 + α2

)− 1

2 dr, −A1 = −
(
r2 + α2

)− 1

2 dr, (3.2.5b)
+A2 = r (dt + dψ) , −A2 = r (dt− dψ) . (3.2.5)3.3 Gauge transformations in SU(1, 1) representation3.3.1 Finite gauge transformationsThree dimensional gravity with a negative osmologial onstant is related toa gauge theory with gauge group G = Oc(2, 2) ∼= (SU(1, 1) × SU(1, 1)) /Z2,[27℄. The (2 + 1)-dimensional gravitational �eld in the �rst order formalismis a onnetion form Aa in a G-bundle over M , taking values in o(2, 2) ∼=

su (1, 1) ⊕ su (1, 1). We make use of the group deomposition (2.1.10) to split
Aa into a linear sum of the C-S onnetions,

Aa = +AIa+aI + −AIa−aI , (3.3.1)where the ±aI are bases for the two distint opies of su(1, 1) where we havehosen
a0 =

1

2


 i 0

0 −i


 , (3.3.2)

a1 =
1

2


 0 1

1 0


 , (3.3.3)

a2 =
1

2


 0 i

−i 0


 , (3.3.4)with the ommutation relations

[±aI ,±aJ ] = ǫKIJ
±aK ,

[+aI ,
−aJ ] = 0.

(3.3.5)We take
g =

(
+g ,−g

)
∈ (SU(1, 1) × SU(1, 1)) (3.3.6)36



with the group omposition law
(
+g2 ,

−g2
)
◦
(
+g1 ,

−g1
)

=
(
+g2

+g1 ,
−g2

−g1
) (3.3.7)and the inverse

(
+g ,−g

)−1
=
(
+g−1 ,−g−1

)
. (3.3.8)Writing A = Aadx

a we �nd [28℄ that the gauge transformations leaving(3.2.3) invariant are
A 7→ g−1

Ag + g−1dg (3.3.9)and after some relatively simple algebra using (3.3.7) and (3.3.8) we �nd thatthe gauge transformations for the C-S onnetions are
±AIaaI 7→ ±g−1±AIaaI±g + ±g−1∂a

±g. (3.3.10)It is now a simple alulation to hek that (3.2.3) is invariant undertransformations of the type given by (3.3.10).3.3.2 In�nitesimal gauge transformationsWe de�ne the in�nitesimal gauge parameter u as
u := +τ I+aI + −τ I−aI . (3.3.11)Writing the element of the gauge group to �rst order,

±g = exp
(±τ I±aI

)
= 1 + ±τ I±aI , (3.3.12)we �nd the in�nitesimal form of the gauge transformation is

δ±AIa = ∂a
±τ I + ǫIJK

±AJa±τK . (3.3.13)We will use this result in Chapter 4.
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3.4 Splitting the ationWe start from the bulk ation in the form (3.2.2) and assume that the spaetimemanifold has the form M = Σ×R where Σ is a two-dimensional manifold. The
2 + 1 deomposition of eah C-S bulk ation (3.2.3) is

±Sbulk

(±AIa
)

=
1

4π

∫
dt

∫

Σ
d2x

(
±ÃjI∂t±AIj + ǫ̃ij±AtI±FIij

)
, (3.4.1)where i, j, ... are spatial indies orresponding to the two-dimensional surfae

Σ and t is the oordinate on R. ǫ̃ij is the Levi-Civita density on Σ given by
ǫ̃ij = η̃tij , ±AIj is the pull-bak of ±AIa to Σ and ±ÃjI is a onnetion density givenby ±ÃjI = ǫ̃ji±AiI . The urvature of the pulled-bak onnetion ±AIj is given by

±FIij = 2∂[i
±AIj] + ǫIJK

±AJi ±AKj (3.4.2)and the ±AtI at as Lagrange multipliers enforing the onstraints that thepulled-bak onnetions are �at,
±FIij = 0. (3.4.3)The total bulk ation an therefore be rewritten in terms of the two C-Sonnetions as

Sbulk =
1

4π

∫
dt

∫

Σ
d2x Lint, (3.4.4)where

Lint = +ÃjI∂t+AIj + ǫ̃ij+AtI+FIij − −ÃjI∂t−AIj − ǫ̃ij−AtI−FIij . (3.4.5)3.5 Partile ationsFor a summary of the partile ations see [9℄. In the Λ = −1 setting the analysisis exatly the same and the upshot is that after the Hamiltonian redution inChapter 6 the partile ation terms will not ontribute to the redued ation.38



3.6 Boundary term from the spatial in�nityWhen we vary the ation integrand (3.4.5) in a neighbourhood of the spatialin�nity suh that (3.2.5) holds we get the variation term
δLint = −2 ǫ̃rψ ∂r

(
δ
(
α2
))
. (3.6.1)Therefore, the variation of (3.4.4) aquires from the spatial in�nity the bound-ary term

−
∫
dt δ

(
α2
)
. (3.6.2)We an anel this boundary term by adding to Sbulk the boundary term S∞given by

S∞ =

∫
dt
(
α2 +C

)
, (3.6.3)where the onstant C an be hosen at will. We shall from now on take C = 0:this hoie has beome standard in the literature, and it has the property that

S∞ vanishes at the threshold of blak hole formation, α→ 0 [22, 23℄.
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Chapter 4
Redution of the ation I:Gauge hoie

In this hapter we redue the ation (3.4.4) by imposing the onstraints on theonnetion density pair ±ÃjI and also �xing the gauge. We let F denote a (forthe moment �titious) spaetime of the form disussed in setion 2.6 of Chapter2 and Σ denote a surfae within this spaetime ontaining the partiles. The
±ÃjI live on Σ and we impose the onstraints by embedding Σ into F in suh away that the embedding is smooth and remains onsistent with the identi�edboundaries of F . We then �x the gauge of ±ÃjI using the knowledge of theembedding. The δi are onsidered �xed and so F is spei�ed ompletely by αor β through (2.6.7).4.1 Embedding of the partile surfae ΣThe embedding of Σ in F is most easily understood by introduing a simply-onneted fundamental half-strip Ω on Σ oordinatised by (λ, ω) suh that
Ω := {(λ, ω) | λ > 0,−π < ω < π} - see Figure 4.1. The boundaries of Ω at
ω = ±π are identi�ed via (λ, ω) ∼ (λ, ω + 2π). Partile 1 is on the boundaryof Ω at λ = 0 whereas partile 2 (2') is on the boundary of Ω at (1,±π).40
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III II I

−π

π

Figure 4.1: The fundamental half strip Ω. Regions I, II and III and theline between partiles 2 and 2′ as indiated on the diagram areexplained in the text.We now speify the embedding so that near the in�nity (λ, ω) are thespatial AdS onial oordinates of F , (2.2.7b) and (2.2.7) with S = 0, whilenear the partiles (λ, ω) are suitably adapted to the partile motion.We introdue λc > 1 and where λ > λc (region I) we take the embeddingto be in the surfae of onstant AdS onial time t.Region II, where 1 < λ < λc is the region from partile two up to thespatial in�nity neighbourhood, whereas region III, where 0 < λ < 1 is theregion between partiles one and two.In order to speify the embedding of Σ in regions II and III we need toonsider the embedding of F into the fundamental domain Ω̃ disussed in setion2.6. In terms of this embedding the single and double-stroked boundaries of Ωlie at the orresponding single and double-stroked boundaries on the onstant
T spaelike setions of Ω̃ shown in Figure 2.8.41



4.1.1 Region I, λ > λcIn region I we embed Σ in a surfae of onstant AdS onial time in F by taking
λ = r, (4.1.1a)
ω = ψ, (4.1.1b)where r and ψ are the spatial onial oordinates (2.2.7b) and (2.2.7).4.1.2 Region II, 1 < λ ≤ λcEverywhere near and on the double-stroked boundary and near and on the lineat λ = λc in region II we set

∂t = Ṫ ∂T , (4.1.2a)
∂λ = f (λ) ∂ρ, (4.1.2b)
∂ω = α∂φ, (4.1.2)suh that f (λ) is a positive funtion with domain 1 < λ ≤ λc obeying theondition ∫ λc

1
f (λ) dλ = ρc − ρ2, (4.1.3)ensuring that ρ = ρ2 at λ = 1 and ρ = ρc at λ = λc. ρc is the value of ρ whereregions I and II meet.4.1.3 Region III, 0 < λ ≤ 1The single-stroked boundary segments on Ω̃ are geodesis on the Poinaré diskdependent on the initial data of the system (see [29℄ for the details onerningthe geodesis). Using the disk metri in the form (2.2.5) we obtain the geodesiLagrangian

L =

(
2

1− ρ2

)2
((

dρ

du

)2

+ ρ2

(
dφ

du

)2
)
. (4.1.4)42



Noting that φ is yli we hoose to parameterise the oordinates via the properdistane s. The Euler-Lagrange equation for φ then yields
dφ

ds
=
K
(
1− ρ2

)2

2ρ2
, (4.1.5)where we have hosen the onstant of integration to be 4K. Using this we annow solve the Euler-Lagrange equation for ρ (s) to �nd that

ρ (s,w0) =

(
es (1 + w0)− 2 (1−w0) + e−s (1 + w0)

es (1 + w0) + 2 (1−w0) + e−s (1 + w0)

) 1

2

, (4.1.6)where
K =

√
w0

1− w0
, (4.1.7)and geometrially √w0 is the point of losest approah of the geodesi to theentre of the disk. √w0 an be obtained from the intital data via

√
w0 =

A+ −A−

2ρ1ρ2 sinφ
, (4.1.8)where

A± =

(
(
1± ρ2

1

)2
ρ2
2 sin2

(
δ

2

)
+

(
ρ1

(
1 + ρ2

2

)
+ ρ2 cos

(
δ

2

)(
1 + ρ2

1

))2
) 1

2

,(4.1.9)
δ an be obtained from (2.6.7) and the ρi are given by (2.6.10).Solving (4.1.5) for φ we �nd

φ (s,w0) = ± arctan

((
f (w0) + e2s

)
(1 + w0)

2

4
√
w0 (1− w0)

)
+ C, (4.1.10)where

f (w0) =
−
(
1− 6w0 + w2

0

)

(1 + w0)
2 , (4.1.11)

C is the onstant of integration (hosen appropriately to produe the Figures2.9 and 2.10) and the upper (lower) sign in (4.1.10) pertain to the boundarysegments from 1 to 2 (2').Having found the form of ρ and φ in terms of the proper distane and theinitial data we an now speify the embedding of the single-stroked boundary43



in region III. Everywhere near and on the single-stroked boundary segments ofreqion III we set
∂λ = rcds = rc (∂sρ∂ρ ± ∂sφ∂φ) . (4.1.12)The fator rc is the geodesi distane between the partiles, (2.6.13), and isintrodued so that ‖ ∂λ ‖= rc. The oe�ients in (4.1.12) an be omputedfrom (4.1.5), (4.1.6) and (4.1.7).We require ∂ω to be orthogonal to ∂λ on the single-stroked boundary andontinuous on Σ aross the identi�ed boundaries of Ω. It an be veri�ed thatthis is ahieved by setting
∂ω = ±k1∂T ± k2∂ρ + k3∂φ, (4.1.13)where

k1 =
SV Y

(
(−SX + CU)2 + V 2 − 1

) 1

2

(U2 + V 2)

, (4.1.14a)
k2 =

−SUY
(
(−SX + CU)2 + V 2 − 1

) 1

2

(U2 + V 2)
1

2 (U2 + V 2 − 1)
1

2

(
(U2 + V 2)

1

2 + 1
) ,(4.1.14b)

k3 =
C
(
X2 + Y 2

)
− SUX

(
(−SX + CU)2 + V 2 − 1

) 1

2

(X2 + Y 2)

, (4.1.14)
S = sinhβ1, (4.1.15a)
C = cosh β1, (4.1.15b)and X, Y , U and V are given by the sausage oordinates (2.2.1) and (2.2.3)with ρ and φ given by (4.1.6) and (4.1.10).To summarise, everywhere near and on the single-stroked boundary inregion III the embedding is given by

∂t = Ṫ ∂T , (4.1.16a)
∂λ = rc (∂sρ∂ρ ± ∂sφ∂φ) , (4.1.16b)
∂ω = ±k1∂T ± k2∂ρ + k3∂φ, (4.1.16)44



where the upper (lower) sign in (4.1.16) indiates the boundary segments from1 to 2 (2').The embedding of Σ in F is now spei�ed at and near the boundaries ofregions I and II and everywhere in region III. As we will see in the followinghapter that is all that will be required for the omputation of the Liouvilleterm in the redued ation. As the embedding at and near the boundaries isbased on the form of Ω̃ it is ontinuous aross the identi�ed boundaries of Ω.We an hoose a smooth embedding of Σ everywhere exept at the partilesand we now onsider that done.4.2 Gauge hoieWe now hoose a gauge for the C-S �elds ±AI to oinide with the embeddinggiven in the previous setion.In a neighbourhood of the spatial in�nity the �elds take the form (3.2.5).To hoose a gauge in region I we transform the spatial projetion of these �eldsto (λ, ω) oordinates via (4.1.1). The resulting gauge is
+A0 =

(
λ2 + α2

) 1

2 dω, −A0 =
(
λ2 + α2

) 1

2 dω, (4.2.1a)
+A1 =

(
λ2 + α2

)− 1

2 dλ, −A1 = −
(
λ2 + α2

)− 1

2 dλ, (4.2.1b)
+A2 = λdω, −A2 = −λdω. (4.2.1)The hoie of gauge in regions II and III is substantially more ompli-ated. The task is to hoose a gauge in whih the �elds are smooth aross theidenti�ation of the boundaries of Ω. We shall do this by writing the �eldsas a β1-dependent gauge transformation of a referene on�guration that isindependent of β1.As a preliminary, we �rst introdue on the fundamental domain Ω̃ of F
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the �elds
e0 =

(
1 + ρ2

1− ρ2

)
dT, A0 =

(
1 + ρ2

1− ρ2

)
dφ, (4.2.2a)

e1 =

(
2

1− ρ2

)
dρ, A1 = 0, (4.2.2b)

e2 =

(
2ρ

1− ρ2

)
dφ, A2 =

(
2ρ

1− ρ2

)
dT, (4.2.2)where the eI reprodue the sausage metri (2.2.4) via ds2 = ηIJe

IeJ and the
AI are the onnetion omponents ompatible with the eI . Rewriting (4.2.2)in terms of R

2,2 oordinates, we �nd that the C-S ounterparts are
±
rA0 =

K

K2 − 1
(XdY − Y dX)± 1

K
(UdV − V dU) , (4.2.3a)

±
rA1 = ± 1

K (K2 − 1)
1

2

(UdU + V dV ) , (4.2.3b)
±
rA2 =

(
K2 − 1

) 1

2

K2
(UdV − V dU)± 1

(K2 − 1)
1

2

(XdY − Y dX) , (4.2.3)where
K =

(
U2 + V 2

) 1

2 . (4.2.4)The pre-subsript r refers to the invariane of ±
rAI under the (X,Y ) rotations.Note that ±

rAI are independent of β1. We also introdue a set of zero �elds,
±
0AI = 0 ∀I. (4.2.5)Finally, we set

±
bA0 =

Kn

K2
n − 1

[(CX − SU) dY − Y (CdX − SdU)]

± 1

Kn
[(CU − SX) dV − V (CdU − SdX)] , (4.2.6a)

±
bA1 =± 1

Kn (K2
n − 1)

1

2

[(CU − SX) (CdU − SdX) + V dV ] , (4.2.6b)
±
bA2 =

(
K2
n − 1

) 1

2

K2
n

[(CU − SX) dV − V (CdU − SdX)]

± 1

(K2
n − 1)

1

2

[(CX − SU) dY − Y (CdX − SdU)] , (4.2.6)46



where
Kn =

(
(CU − SX)2 + V 2

) 1

2

, (4.2.7)and C and S are given by (4.1.15). Note that ±
bAI is the pull-bak of ±rAI by theboost (2.4.1) with (w1, w2) = (β1, 0). ±

bAI is hene invariant under rotationsabout the worldline of partile 1 on the boundary of Ω̃.Next, we wish to write ±
bAI as a gauge transformation of ±rAI . For this, wetake a short interlude to review the relationship of di�eomorphisms and gaugetransformations in the Chern-Simons formulation.4.2.1 Relating the gauge transformations to di�eomorphismsIn [27℄ it is shown, by analysing the generators of the gauge transformationsin relation to the generators of di�eomorphisms, that the Chern-Simons gaugetransformations do oinide with the usual transformations of (2 + 1)-dimensionalgravity for Λ = 0. The key point is that the generator of the gauge transfor-mations, τ , is dependent on the vetor �eld generating the di�eomorphisms, v,and the �eld on�guration being transformed. Adapting the disussion in [27℄to the ase where Λ < 0 we �nd that a vetor �eld v generates the in�nitesimaltransformation

δ̃±AIa = vb∂[b
±AIa] + ∂a

(
vb±AIb

)
, (4.2.8)and this agrees with the gauge transformation (3.3.13) i�

±τ I = va±AIa. (4.2.9)Consider in partiular the one-parameter family ±AIa (t) of �eld on�gurationsobtained by ating on the on�guration ±AIa (0) by the one-parameter family ofdi�eomorphisms generated by the vetor �eld v. We wish to write ±AIa (t) asthe t-dependent gauge transformation of ±AIa (0). To do this, we observe from(4.2.9) that the generator of the gauge transformation is given by
±τ I (t) = va±AIa (t) . (4.2.10)47



The required gauge group element ±g (t) is thus obtained by integrating
±g−1 (t)±ġ (t) = ±τ I (t) aI , (4.2.11)where the dot indiates di�erentiation with respet to t, with the initial ondi-tion

±g (0) = 1. (4.2.12)A simple exampleAs an example let us onsider v = (0, 0, Y,−X), whih generates an (X,Y )rotation, and hoose the �eld on�guration to be given by (4.2.3), whih isinvariant under the (X,Y ) rotation. Denoting the parameter of the gaugetransformation by θ, from (4.2.10) we �nd
±τ0 (θ) = −K, (4.2.13a)
±τ1 (θ) = 0, (4.2.13b)
±τ2 (θ) = ∓

(
K2 − 1

) 1

2 , (4.2.13)whih are all independent of θ. The solution of (4.2.11) suh that (4.2.12) holdsis therefore simply
±g (θ) = exp

(
θ±τ IaI

)
, (4.2.14)and a small alulation yields

±g (θ) =


 cos θ2 − i sin θ

2K ∓i sin θ
2

(
K2 − 1

) 1

2

±i sin θ
2

(
K2 − 1

) 1

2 cos θ2 + i sin θ
2K


 . (4.2.15)As a hek, it is a straightforward (but long-winded) task to verify that thegauge transformation implemented by (3.3.10) with ±g given by (4.2.15) doesleave the �eld on�guration (4.2.3) invariant.4.2.2 Gauge transformation from ±

rAI to ±
bAITo �nd the gauge transformation from ±

rAI (4.2.3) to ±
bAI (4.2.6), we reall that

±
bAI is the pull-bak of ±

rAI by the boost (2.4.1) with (w1, w2) = (β1, 0), and48



this boost is generated by the vetor �eld v = (X, 0, U, 0). We may thereforeuse (4.2.10) with ±AI = ±
bAI (β1), v = (X, 0, U, 0) and t = β1. We �nd

±τ0 =
Kn

K2
n − 1

Y (CU − SX)± 1

Kn
V (CX − SU) , (4.2.16a)

±τ1 = ∓ 1

Kn (K2
n − 1)

1

2

(CX − SU) (CU − SX) , (4.2.16b)
±τ2 = ± 1

(K2
n − 1)

1

2

Y (CU − SX) +

(
K2
n − 1

) 1

2

K2
n

V (CX − SU) . (4.2.16)The τ I are now dependent on β1. To solve (4.2.10), we �rst observe from(4.2.16) that
±τ2 = ±

(
K2
n − 1

) 1

2

Kn

±τ0. (4.2.17)As |±τ0| > |±τ2|, we may �nd a pair of matries ±h ∈ SU (1, 1) suh that theinternal vetor ±σI de�ned by
±σIaI = ±h±τ IaI

±h−1, (4.2.18)satis�es ±σ2 = 0. Choosing ±h to be a pure boost in the internal (02) plane, we�nd
±h =

1√
2


 (Kn + 1)

1

2 ± (Kn − 1)
1

2

± (Kn − 1)
1

2 (Kn + 1)
1

2


 , (4.2.19)and

±σ0 =
1

K2
n − 1

Y (CU − SX)± 1

K2
n

V (CX − SU) , (4.2.20a)
±σ1 = ∓ 1

Kn (K2
n − 1)

1

2

(CX − SU) (CU − SX) , (4.2.20b)
±σ2 = 0. (4.2.20)Now, writing

±g = ±k±h (4.2.21)and substituting (4.2.21) into (4.2.11) we �nd that the equation for ±k is
±k−1±k̇ = ±σ − ±ḣ±h−1 = ±γIaI , (4.2.22)49



where
±γ0 =

1

K2
n − 1

Y (CU − SX)± 1

K2
n

V (CX − SU) , (4.2.23a)
±γ1 = 0, (4.2.23b)
±γ2 = 0. (4.2.23)The general solution to (4.2.22) is

±k = ±̃k




±f 0

0 ±f−1


 , (4.2.24)where ±̃k ∈ SU (1, 1) is independent of β1 and ±f satis�es

±ḟ − i

2
±f±γ0 = 0. (4.2.25)The solution to (4.2.25) is

±f = ±C exp

(
i

2

∫
±γ0dβ1

)
, (4.2.26)where ±C is a onstant of integration satisfying |±C| = 1. Evaluating this inte-gral, we �nd

±f =

{
[Y − i (CX − SU)] [V ∓ i (CU − SX)]

[Y + i (CX − SU)] [V ± i (CU − SX)]

} 1

4

, (4.2.27)where the prinipal branh of the frational power is understood and we haveset ±C = 1 without loss of generality. ±f has a branh point singularity atpartile one, where Y = 0 and CX = SU , but as we shall see in Chapter 5,this will not a�et us when omputing the Liouville term as we an hoose thebranh ut suh that the ontour of integration will never ross it.Finally the onstant matrix pair ±̃k is �xed by the initial ondition
±g (β1 = 0) = 1. (4.2.28)This gives the �nal gauge element in the form

±g = ±m±n, (4.2.29)50



where
±m = ±B−1

0
±R−1

0 , (4.2.30a)
±n = ±R±B, (4.2.30b)and

±B0 =
1√
2


 (K + 1)

1

2 ± (K − 1)
1

2

± (K − 1)
1

2 (K + 1)
1

2


 , (4.2.31a)

±R0 =




±f |β1=0 0

0 ±f−1|β1=0


 , (4.2.31b)

±R =




±f 0

0 ±f−1


 , (4.2.31)

±B =
1√
2


 (Kn + 1)

1

2 ± (Kn − 1)
1

2

± (Kn − 1)
1

2 (Kn + 1)
1

2


 . (4.2.31d)Again it is a straightforward task to verify that the gauge transformationimplemented by (3.3.10) with ±g given by (4.2.29) transforms ±

rAI (4.2.3) into
±
bAI (4.2.6).We further �nd by virtue of the forms of ±m and ±n that

±m−1 : ±
0A → ±

rA, (4.2.32)and
±n : ±

0A → ±
bA. (4.2.33)4.2.3 Gauge hoie in regions II and IIIAfter all the above preperation, we an now state the gauge hoie in regions IIand III. We hoose a gauge near and at the double-stroked boundaries and theline λ = λc of region II aording to ±m−1
(±
0A
). We also hoose a gauge nearand at the single-stroked boundaries and the line λ = 0 of region III aordingto ±n

(±
0A
). As will be seen in the following hapter, this partial spei�ationof the gauge (see Figure 4.2) will be enough to evaluate the Liouville term.51



m−1

ω

λ
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III II I

−π

π

n

Figure 4.2: The gauge is hosen via the gauge elements n and m−1 in thetwo regions indiated as explained in the text.4.3 Continuity of the gauge hoieThe gauge hoie for all three regions de�ned in the previous setion an beextended from Ω to Σ. In order to verify this we need to show that the �elds areontinuous aross the double-stroked (region II) and single-stroked (region III)boundaries. In region I the �elds are extendable to Σ by de�nition. In regionII on the double-stroked boundaries the non-vanishing omponents of ±AIj are
±A0

ω = α

(
1 + ρ2

1− ρ2

)
, (4.3.1a)

±A1
λ = ±f (λ)

(
2

1− ρ2

)
, (4.3.1b)

±A2
ω = ±α

(
2ρ

1− ρ2

)
, (4.3.1)whih are all ontinuous aross the identi�ation. A similar analysis revealsthat the non-vanishing omponents of ±AIj in region III are ontinuous arossthe identi�ation of the single-stroked boundaries.The gauge has therefore been spei�ed on and near the boundaries of thefundamental domain Ω. What remains is to evaluate the redued ation whih52



we shall address in Chapters 5 and 6.
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Chapter 5
Redution of the ation II:The Liouville term

In Chapter 4 we explained the gauge �xing proedure and with this hoie ofgauge we now evaluate the redued ation. The onstraint terms in (3.4.5)vanish by the gauge hoie, and so do the partile ontributions as disussed insetion 3.5. The boundary term at in�nity was found in setion 3.6 and reads
S∞ =

∫
dt α2. (5.0.1)What remains are the Liouville terms in (3.4.5), given by

L =
1

4π

∫

Σ
d2x

(
+ÃjI∂t+AIj − −ÃjI∂t−AIj

)
. (5.0.2)For onveniene we will rewrite (5.0.2) as the trae over Lie-algebra valued�elds,

L = +L− −L, (5.0.3)where
±L =

1

2π

∫

Σ
d2x ǫ̃ji Tr

(±Ai∂t±Aj
)
, (5.0.4)and

±Ai = ±AIi aI , (5.0.5)and we have used the identity ηIJ = 2 Tr (aIaJ). The purpose of this hapteris to analyse these Liouville terms (5.0.4).54



5.1 Diret evaluation in region IIn region I on Ω the �elds are given by (4.2.1) and the integrand in (5.0.4) isidentially zero. There is no ontribution to the ation from the Liouville termin this region.5.2 Integral onversionIn the other two regions of Ω we will show that due to the form of the gaugehoie desribed in Chapter 4 we an write the Liouville term as an integral of atotal derivative. By Stokes' theorem, we an then onvert the two-dimensionalintegral in (5.0.4) into a one-dimensional integral over the boundary of eahregion.We introdue ±
rAi and ±

bAi to denote the Lie-algebra valued spatial pro-jetion of (4.2.3) and (4.2.6) respetively. Using (4.2.29) we �nd that
±
xAi = ±l−1∂i

±l, (5.2.1)where x = r and ±l = ±m−1 for region II whereas x = b and ±l = ±n for regionIII. (5.0.4) now beomes
±L =

1

2π

∫

Σ
d2x ǫ̃ji Tr

[(±l−1∂i
±l
)
∂t
(±l−1∂j

±l
)] (5.2.2)

=
1

2π

∫

Σ
d2x ǫ̃ji Tr

[
∂j
(±l−1∂i∂t

±l
)
− ±l−1∂i

±l±l−1∂t
±l±l−1∂j

±l
]
. (5.2.3)In both regions ±l an be written as the produt of two SU(1, 1) matries. Forexample, in region III, (the analysis in region II is analogous)

±l = exp
(
a0

±φ
)
exp

(
a1

±χ
)
, (5.2.4)for some ±φ and ±χ. Therefore

±l−1∂a
±l = GIaaI , (5.2.5)55



where
G0
a = cosh±χ∂a

±φ, (5.2.6a)
G1
a = ∂a

±χ, (5.2.6b)
G2
a = sinh±χ∂a

±φ. (5.2.6)The seond term in (5.2.3) an therefore be written as
− 1

8π

∫

Σ
d2x ǫ̃jiǫIJKG

I
iG

J
t G

K
j , (5.2.7)where we have used the identity

Tr (aIaJaK) =
1

4
ǫIJK. (5.2.8)Evaluating the integrand in (5.2.7) using (5.2.6) reveals that it is zero, inde-pendently of the funtions ±φ and ±χ. We hene obtain

±L =
1

2π

∫

Σ
d2x ǫ̃ji∂j Tr

(±l−1∂i∂t
±l
)
, (5.2.9)where the integrand is now a total derivative as promised. The integral givenby (5.0.4) an therefore be onverted into a integral over the boundary of eahregion. The orientation of the boundary is aquired from the orientation of thethree-dimensional spaetime; the boundaries of regions II and III are orientedin an anti-lokwise diretion with respet to Figure 4.1. We now onsider therelevant parts of the boundary in eah region.In region II we have the line at λ = λc, the double-stroked lines at ω = ±π,two small quarter-irles about the singular points 2 and 2' and the line at

λ = 1. In region III we have the line at λ = 0, the single-stroked lines at
ω = ±π, two small quarter-irles about the singular points 2 and 2' and theline at λ = 1. The ontribution from the line at λ = 1 in region II will anelwith the ontribution from the line at λ = 1 in region III due to the orientationof the boundaries and the ontinuity of the gauge hoie. We are left with �vedistint parts of the boundary we need to onsider;1. The line at λ = λc on the boundary of region II ,56



2. The double-stroked lines at ω = ±π on the boundary of region II ,3. The single-stroked lines at ω = ±π on the boundary of region III ,4. The line at λ = 0 on the boundary of region III ,5. Two small half-irles about the singular points 2 and 2' .We will write Li where i ∈ {1, 2, 3, 4, 5} to denote the ontribution from theLiouville term for eah of the �ve parts and address all of these ontributionsin turn in the following setion.5.3 Evaluation of the ontributionsFor eah ontribution to the Lagrangian from evaluating (5.2.9) on the relevantboundaries we will write
±Wi = ±l−1∂i∂t

±l. (5.3.1)We also note that aording to our previously de�ned onventions we have
η̃tλω = ǫ̃λω = +1 (5.3.2)In order to evaluate the resulting one-dimensional integrals we need to use thedetails of the embedding and gauge elements eluidated in Chapter 4.5.3.1 λ = λc and the double-stroked boundariesThe embedding at the boundaries is given by (4.1.2) and the gauge element is

±l = ±m−1.On the line at λ = λc the ontribution is
±L1 =

1

2π

∫ π

−π
dω Tr ±Wω. (5.3.3)Upon evaluating ±Wω we �nd

±Wω = ∓1

4
I2αṪ , (5.3.4)57



where I2 is the identity matrix. Taking the trae and evaluating the integralwe obtain the �nite ontribution to the Lagrangian from this boundary being
L1 = −αṪ . (5.3.5)On the double-stroked boundaries the ontribution is

− 1

2π

∫ λc

1
dλ Tr ±Wλ, (5.3.6)along the boundary at ω = −π and

− 1

2π

∫ 1

λc

dλ Tr ±Wλ, (5.3.7)along the boundary at ω = π. Upon evaluating ±Wλ we �nd that it is pro-portional to a Lie-algebra valued matrix. Taking the trae yields zero for theintegrand. The ontribution to the Lagrangian from the double-stroked bound-aries is zero,
L2 = 0. (5.3.8)5.3.2 The single-stroked boundariesThe embedding at the boundaries is given by (4.1.16) and the gauge element is

±l = ±n.On the single-stroked boundaries the ontribution is
− 1

2π

∫ 1

0
dλ Tr ±Wλ, (5.3.9)along the boundary at ω = −π and

− 1

2π

∫ 0

1
dλ Tr ±Wλ, (5.3.10)along the boundary at ω = π. It is easiest to evaluate these integrals byparameterising in terms of the proper distane, s, as opposed to λ. We nowhave to evaluate ±Ws by onsidering the gauge element ±n in the form (4.2.30b)58



and by di�erentiating (4.2.31d) and (4.2.31) with respet to t and s we notethe intermediate results,
∂t

±B = ±d a1
±B, (5.3.11a)

∂t
±R = ±e a0

±R, (5.3.11b)
∂s

±B = ±b a1
±B, (5.3.11)

∂s
±R = ±r a0

±R, (5.3.11d)where
±d = ±

(CX − SU)
(
SV Ṫ − (CU − SX) β̇1

)

Kn (K2
n − 1)

1

2

, (5.3.12a)
±e = ±V (CX − SU) β̇1 +

(
C
(
U2 + V 2

)
− SUX

)
Ṫ

K2
n

+
Y
(
(CU − SX) β̇1 − SV Ṫ

)

K2
n − 1

,(5.3.12b)
±b = ±(CU − SX) (C∂sU − S∂sX) + V ∂sV

Kn (K2
n − 1)

1

2

, (5.3.12)
±r =

(CX − SU) ∂sY − Y (C∂sX − S∂sU)

K2
n − 1

± (CU − SX) ∂sV − V (C∂sU − S∂sX)

K2
n

.(5.3.12d)A further alulation reveals that
Tr
(
+Ws − −Ws

)
=

1

2

(−e−r − +e+r
)

= f (s) , (5.3.13)where
f (s) = − 1

K2
n (K2

n − 1)

{(
V (CX − SU) β̇1 +

(
C
(
U2 + V 2

)
− SUX

)
Ṫ
)
×

((CX − SU) ∂sY − Y (C∂sX − S∂sU))

+ Y
(
(CU − SX) β̇1 − SV Ṫ

)
×

((CU − SX) ∂sV − V (C∂sU − S∂sX))
}
. (5.3.14)Using the property that f (s) swithes sign aross the identi�ation of theboundary (Y → −Y ), we an ombine (5.3.9) and (5.3.10) into one simpleexpression evaluated on the boundary at ω = π,

L3 =
1

π

∫ sf

si

ds f (s) . (5.3.15)59



To evaluate this integral we must �rst parameterise the integrand expliitly interms of s and w0. The parameterisation for U , V , X and Y is
U =

(
1 + w0

1− w0

)
cosh s cos T, (5.3.16a)

V =

(
1 + w0

1− w0

)
cosh s sinT, (5.3.16b)

X =
(1 + w0)

2 (1− w0) (e2si + 2f + e−2si)
1

2

((
es+si + e−s−si

)
+ f

(
es−si + e−s+si

))
,(5.3.16)

Y =
2w

1

2

0

(1 +w0) (e2si + 2f + e−2si)
1

2

(
es−si − e−s+si

)
, (5.3.16d)where we have used (4.1.10) and also inverted (4.1.10) to obtain si and sf , theinitial and �nal proper distanes,

si = − log

(
(1− w0w1)

1

2 + (w1 − w0)
1

2

(1− w0w1)
1

2 − (w1 − w0)
1

2

)
, (5.3.17a)

sf = + log

(
(1− w0w2)

1

2 + (w2 − w0)
1

2

(1− w0w2)
1

2 − (w2 − w0)
1

2

)
, (5.3.17b)where wi is the square of the distane of partile i from the entre of the disk.

w0, w1 and w2 an be rewritten in a similar form in terms of the initial dataand T ,
w0 =

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 −
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 +
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

, (5.3.18a)
wi =

(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 −
(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 +
(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

.(5.3.18b)Using (5.3.17) and (5.3.18) we an now rewrite (5.3.16),
U = A cosh s, (5.3.19a)
V = B cosh s, (5.3.19b)
X = D cosh s+ E sinh s, (5.3.19)
Y = F cosh s+G sinh s, (5.3.19d)60



where.
A =

(
sin2 δ

2 + s21s
2
2 sinh2 β1

sin2 δ
2 + s21s

2
2 sinh2 β1 sin2 T

) 1

2

cos T, (5.3.20a)
B =

(
sin2 δ

2 + s21s
2
2 sinh2 β1

sin2 δ
2 + s21s

2
2 sinh2 β1 sin2 T

) 1

2

sinT, (5.3.20b)
D =

s1s2 sinhβ1 cosT
(
s21 sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

, (5.3.20)
E =

−c1 sin δ
2(

sin2 δ
2 + s21s

2
2 sinh2 β1

) 1

2

, (5.3.20d)
F =

c1s1s2 sin δ
2 sinhβ1 cos T

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

, (5.3.20e)
G =

(
s21 sin2 δ

2 + s21s
2
2 sinh2 β1

sin2 δ
2 + s21s

2
2 sinh2 β1

) 1

2

. (5.3.20f)We now reparameterise the integral via
p = tanh

s

2
, (5.3.21)so that

cosh s =
1 + p2

1− p2
, (5.3.22a)

sinh s =
2p

1− p2
, (5.3.22b)We now have

L3 = − 2

πφ

∫ pf

pi

dp
P (p)

(p2 − p2
a)
(
p2 − p2

b

)
(p2 − p2

c)
2 . (5.3.23)
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where
φ =

(
(CA− SD)2 +B2

)(
(CD − SA)2 + F 2

)
, (5.3.24a)

pf =

(
w2 − w0

1− w0w2

)1

2

, (5.3.24b)
pi = −

(
w1 − w0

1− w0w1

) 1

2

, (5.3.24)
p2
a =

2SE

CA− SD + iB
− 1, (5.3.24d)

p2
b =

2SE

CA− SD − iB − 1 = p̄2
a, (5.3.24e)

p2
c = −2 [CE (CD − SA) + FG]

(CD − SA)2 + F 2
− 1, (5.3.24f)

P (p) = K0 +K1p
(
1− p4

)
+K2p

2
(
1− p2

)
, (5.3.24g)

K0 = SEB
[
F (CA− SD) β̇1 − SBFṪ

]
, (5.3.24h)

K1 = 2SEB
[
(G (CA− SD)− SEF ) β̇1 − SBGṪ

]
, (5.3.24i)

K2 = SEB
[
(F (CA− SD)− 4SEG) β̇1 − SBFṪ

]
. (5.3.24j)The integral (5.3.23) an be evaluated in terms of elementary funtions. Theresult is

L3 = − 2

πφ

[
A+Log (p+ pa) +A−Log (p− pa)

+B+Log (p+ pb) +B−Log (p− pb)

+ C+Log (p+ pc) + C−Log (p− pc)

− K+

p+ pc
− K−

p− pc

]∣∣∣∣
pf

pi

. (5.3.25)where
A± =

∓P (∓pa)
2pa

(
p2
a − p2

b

)
(p2
a − p2

c)
2 , (5.3.26a)

B± =
∓P (∓pb)

2pb
(
p2
b − p2

a

) (
p2
b − p2

c

)2 , (5.3.26b)
C± =

P± (p2
a, p

2
b , p

2
c

)

4p3
c (p2

c − p2
a)

2 (p2
c − p2

b

)2 , (5.3.26)
K± =

P (∓pc)
4p2
c (p2

c − p2
a)
(
p2
c − p2

b

) , (5.3.26d)62



and
P± (p2

a, p
2
b , p

2
c

)
=±K0

(
−3p2

c

(
p2
a + p2

b

)
+ p2

ap
2
b + 5p4

c

)

− 2p3
cK1

(
2p2
ap

2
bp

2
c − p2

a − p2
b − p2

bp
4
c − p2

ap
4
c + 2p2

c

)

± p2
cK2

(
−p2

ap
2
b + 3p4

c − p2
ap

2
c − p2

bp
4
c − p2

ap
4
c − p6

c − p2
bp

2
c + 3p2

ap
2
bp

2
c

)
.(5.3.27)We will leave the solution in the form (5.3.25) for now.5.3.3 The line at λ = 0On the line at λ = 0 we need to perform the integration for the ontour shownin Figure 5.1.

r

Boundary orientation

θ
1

Figure 5.1: Contour of integration about partile 1.The parameterisation for the R
2,2 oordinates is

U =

(
1 + (ρ1 + r cos θ)2 + r2 sin2 θ

1− (ρ1 + r cos θ)2 − r2 sin2 θ

)
cos T, (5.3.28a)

V =

(
1 + (ρ1 + r cos θ)2 + r2 sin2 θ

1− (ρ1 + r cos θ)2 − r2 sin2 θ

)
sinT, (5.3.28b)

X =
2 (ρ1 + r cos θ)

1− (ρ1 + r cos θ)2 − r2 sin2 θ
, (5.3.28)

Y =
2r sin θ

1− (ρ1 + r cos θ)2 − r2 sin2 θ
, (5.3.28d)where r and θ are shown in Figure 5.1. After the integration we will take thelimit r → 0. The funtion we integrate is similar to (5.3.14) with s replaed63



by θ. After performing a similar analysis to the previous setion we �nd thatthe ontribution to the Lagrangian from this ontour is
L4 =

1

π

[
cosh β1√

χ
(
√
χδ1 − θi) Ṫ −

cot T√
χ sinhβ1

(√
χ
δ1
2
− θi

)
β̇1

]
, (5.3.29)where

θi = arctan

(√
χ tan

δ1
2

)
, (5.3.30)and

χ = cos2 T + sin2 T cosh2 β1. (5.3.31)5.3.4 The two small half-irles about the singular points 2and 2'The �nal ontribution to the Lagrangian is from the two small half-irles aboutthe singular points 2 and 2'. The gauge hoie in this region is determined by�rst speifying a group-valued funtion in the interval ρ ∈ (ρ2 − τ, ρ2 + ǫ) where
τ and ǫ are small, suh that it takes the value ±n at ρ = ρ2 − τ and ±m−1 at
ρ = ρ2 + ǫ. A prospetive hoie for this funtion is provided by the formula

±p =




±f̃ 0

0 ±f̃−1


 1√

2




(
K̃ + 1

) 1

2 ±
(
K̃ − 1

) 1

2

±
(
K̃ − 1

) 1

2
(
K̃ + 1

) 1

2


 , (5.3.32)
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where
f̃ =

(
Ỹ − i

(
C̃X̃ − S̃Ũ

)) 1

4
(
Ṽ ∓ i

(
C̃Ũ − S̃X̃

)) 1

4

(
Ỹ + i

(
C̃X̃ − S̃Ũ

)) 1

4
(
Ṽ ± i

(
C̃Ũ − S̃X̃

)) 1

4

, (5.3.33a)
C̃ = cosh (β1 (1− p)) , (5.3.33b)
S̃ = sinh (β1 (1− p)) , (5.3.33)
K̃ =

(
C̃Ũ − S̃X̃

)2
+ Ṽ 2, (5.3.33d)

Ũ =

(
1 + ρ̃2

1− ρ̃2

)
cos T, (5.3.33e)

Ṽ =

(
1 + ρ̃2

1− ρ̃2

)
sinT, (5.3.33f)

X̃ =

(
2ρ̃

1− ρ̃2

)
cos φ, (5.3.33g)

Ỹ =

(
2ρ̃

1− ρ̃2

)
sinφ, (5.3.33h)

ρ̃ = ρ2 + ǫp− τ (1− p) . (5.3.33i)We have introdued the parameter p ∈ [0, 1] to interpolate between the two val-ues in the interim region. p = 0 at ρ = ρ2−τ and p = 1 at ρ = ρ2 +ǫ. However,formula (5.3.32) ould oneivably fail if it beomes singular somewhere in thedomain bounded by the two small semiirles and the lines p = 0 and p = 1.As we will only be needing the gauge hoie on the two small semiirles it ispossible to resolve this issue by an indiret argument as follows.Consider the gauge hoie ±p (5.3.32) on the two small semiirles andon the lines p = 0 and p = 1. When traing over the losed urve formed bythese four lines the gauge funtion ±p traes, by onstrution, a losed urve in
SU (1, 1) ∼= R2 × S1. If this losed urve in SU (1, 1) is homotopially trivial,that is, does not wind around the S1 fator, then there exists an extension of thegauge funtion into the domain bounded by the four lines and we may use ±pon the small semiirles. If this losed urve in SU (1, 1) is not homotopiallytrivial, we modify ±p by inluding on one or both of the small semiirles afator that does the requisite unwinding to make the new urve homotopiallytrivial. We then use this modi�ed hoie for ±p on the small semiirles.65



The author has not been able to omplete this analysis and the ontri-bution L5 remains undetermined. However, as the idea behind all of this is toobtain a �nie� form for the redued ation we are not overly worried about
L5 mainly due to the intratable nature of L3. A �nie� form for the reduedation will be obtained in a di�erent way in Chapter 6.
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Chapter 6
The redued ation

In this hapter we �rst obtain the redued Hamiltonian ation in a phase spaehart in whih the �position� oordinate is the geodesi distane between the twopartiles. We then use this ation to analyse the blak hole formation thresholdin the language of ritial phenomena, and in partiular we ompute the ritialexponent of the blak hole mass at this threshold. We also use the Hamiltonianation to analyse the blak hole reation/annihilation as a quantum mehanialtunnelling proess, �nding that the imaginary part of the ation is equal to theBekenstein-Hawking entropy.6.1 The equations of motionAlthough algebrai ompliations prevented us from omputing the Liouvilleterms in the redued Hamiltonian ation in Chapter 5, the analysis of Chapter5 did show that the phase spae is two-dimensional and an be oordinatisedby the (a priori non-anonial) hart (α, T ) as an be seen from the form of
L1 (5.3.5), L3 (5.3.25) and the equations relating α to β1 (2.6.7) and (2.6.5).
α refers to a two-partile spaetime, T refers to a partiular spaelike sliewithin the spaetime, and both parameters are here understood as funtionsof the BTZ oordinate time t. The analysis also showed that the value of theHamiltonian is −α2 by virtue of the form of S∞ (5.0.1). Further, it follows67



from the de�nition of T , α and the BTZ time t that the equations of motion inthis hart take the simple form
α̇ = 0, (6.1.1a)
Ṫ = α, (6.1.1b)where the dot indiates di�erentiation with respet to t. We shall now use thesefats to indiretly determine the Liouville terms in the ation.6.1.1 Reproduing the E.O.MWe wish to �nd an ation, S, that reprodues (6.1.1), with the Hamiltonian

H = −α2 and with Liouville terms of the form obtained in Chapter 5. Theation must take the form
S =

∫
dt
[
Ṫ F (α, T ) + α̇G (α, T ) + α2

] (6.1.2)where the funtions F (α, T ) and G (α, T ) are to be determined.We an simplify (6.1.2) somewhat by noting that there exists a funtion
h (α, T ) suh that

G (α, T ) =
∂h (α, T )

∂α
. (6.1.3)The seond term in the integrand in (6.1.2) an thus be rewritten as

α̇G (α, T ) =
d

dt
h (α, T )− Ṫ ∂h

∂T
. (6.1.4)As a total derivative in the integrand in (6.1.2) will not a�et the E.O.M, itsu�es to onsider the ation

S =

∫
dt
[
Ṫ f (α, T ) + α2

]
, (6.1.5)where the funtion f (α, T ) is to be determined.The Euler-Lagrange equation for α ombined with (6.1.1b) yields a di�er-ential equation for f ,

∂f

∂α
= −2, (6.1.6)68



whih is easily solved,
f = −2α+ φ (T ) . (6.1.7)The Euler-Lagrange equation for T ombined with (6.1.1a) shows that φ (T ) isa onstant, and we may assume without loss of generality that φ (T ) = 0. ALagrangian reproduing (6.1.1) is therefore
L = −2αṪ + α2. (6.1.8)Rewriting α in terms of the new variable
pT := −2α, (6.1.9)the ation takes the Hamiltonian form

S =

∫
dt
[
pT Ṫ −H

]
, (6.1.10)where

H = −p
2
T

4
. (6.1.11)The phase spae has thus dimension two, and the pair (T, pT ) provides a anon-ial hart, with −π

2 < T < π
2 and −2 < pT < 0.6.2 Massless partilesAs seen above, the theory has a two-dimensional phase spae and (T, pT ) isa anonial hart. The task now is to undertake a anonial transformation

(T, pT ) → (rc, prc) where rc is the geodesi distane between the partiles and
prc is its onjugate momentum. In this setion we shall do this in the limitwhere the partiles are massless, δ1 → 0 and δ2 → 0. As we have until nowassumed both δ1 and δ2 to be stritly positive, we �rst need to take this limitin the formulas of Chapter 2.To analyse the limit we write δ1 = ǫm1 and δ2 = ǫm2 where mi areregarded as positive onstants and ǫ is a positive parameter that will eventually69



be taken to zero. We antiipate that in the limit ǫ→ 0, β should go to in�nity.An ansatz whih turns out to give the orret saling is to write
cosh β =

4µ

ǫ2m1m2
, (6.2.1)where µ is independent of ǫ. We then �nd, after taking ǫ→ 0, that

ci = 1, (6.2.2a)
si = 0, (6.2.2b)

cos
δ

2
= 1− µ. (6.2.2)We an rearrange (6.2.2) to express α as

α =
1

π
arccos (µ− 1) . (6.2.3)Note that pure AdS3 ours when µ = 0 and the threshold of blak hole for-mation ours at µ = 2.For the geodesi distane between the partiles, taking the ǫ→ 0 limit of(2.6.13) gives

cosh rc = 1 +
(2− µ)

tan2 T
. (6.2.4)6.2.1 The anonial transformationFor brevity of notation, we now drop the subsript c and let r stand for thegeodesi distane between the partiles and pr for its onjugate momentum. Asa �rst step towards the anonial transformation we �nd, from (6.1.9), (6.2.3)and (6.2.4)

sinh
r

2
= −sin

(πpT

4

)

tanT
, (6.2.5)We have hosen a minus sign in (6.2.5) as −2 < pT < 0 and we're assumingthat we are in the olliding partile regime where 0 < T < π

2 . Rearranging(6.2.5) gives
pT = − 4

π
arcsin

(
tanT sinh

r

2

)
. (6.2.6)70



The riterion for the transformation from (T, pT )→ (r, pr) to be anonialan be written as [30℄
prdr − pTdT = df, (6.2.7)where pr and pT are regarded as funtions of T and r, and f is an arbitraryfuntion of T and r. To �nd a pr (T, r) that satis�es (6.2.7), we note that (6.2.7)is equivalent to the ondition
∂pr
∂T

= −∂pT
∂r

. (6.2.8)After a fairly lengthy straightforward alulation using (6.2.6) we �nd that
∂pr
∂T

= − 2

π

∂

∂T
arccosh

(
cos T

tanh r
2

)
. (6.2.9)The general solution is

pr = − 2

π
arccosh

(
cosT

tanh r
2

)
+ g (r) , (6.2.10)where the funtion g (r) is arbitrary. We hoose g (r) = 0 for reasons that willbeome apparent shortly.The new phase spae oordinates (r, pr) are then de�ned impliitly by

− sin
(πpT

4

)
= sinh

(r
2

)
tan T, (6.2.11a)

cos T = cosh
(πpr

2

)
tanh

(r
2

)
. (6.2.11b)Eliminating T from (6.2.11) we �nd

pT =
4

π
arccos

(
− cosh

(r
2

)
tanh

(πpr
2

))
. (6.2.12)In the new hart the Hamiltonian takes therefore the form

H = − 4

π2

[
arccos

(
− cosh

(r
2

)
tanh

(πpr
2

))]2
. (6.2.13)Note that in the limit pr → 0, we have H → −1, and the spaetimebeomes pure AdS3. This was the reason to hoose g (r) = 0 in (6.2.10).In deriving (6.2.13) we have used the information that we are in the ol-liding partile regime where pr < 0 and 0 < T < π

2 . We an generalise (6.2.13)71



to over both the olliding (pr < 0, 0 < T < π
2 ) and the expanding (pr > 0,

−π
2 < T < 0) partile regime by writing

H = − 4

π2

[
arccos

(
cosh

(r
2

)
tanh

(
π|pr|

2

))]2

. (6.2.14)When cosh
(
r
2

)
tanh

(
π|pr|

2

)
> 1, the Hamiltonian (6.2.14) ontinues ana-lytially to

H =
4

π2

[
arccosh

(
cosh

(r
2

)
tanh

(
π|pr|

2

))]2

, (6.2.15)whih takes positive values. The geometry near the in�nity is then the BTZgeometry (2.2.9) with M = H > 0, S = 0 and ψ periodi with period 2π. Thisis the spinless BTZ blak hole with mass M = H [22, 23℄.We note that our Hamiltonian (6.2.15) di�ers from that obtained in [31℄,even though both use the geodesi distane as the on�guration variable. Thereason is that the time oordinate used in [31℄ (see equation (3.21) therein) isrelated to the BTZ time oordinate by a resaling that depends on M .6.2.2 Threshold of blak hole formationThe threshold of blak hole formation is where H = 0. We wish to examinehow the mass of the blak hole depends on pr near this threshold.From (6.2.14) we an see that H = 0 ours when
cosh

(r
2

)
tanh

(
π|pr|

2

)
= 1. (6.2.16)We set

cosh
(r

2

)
tanh

(
π|pr|

2

)
= 1 + ǫ, (6.2.17)for small ǫ > 0. The behaviour of H in terms of ǫ is

H =
8

π2
ǫ+O

(
ǫ2
)
. (6.2.18)For �xed r, ǫ behaves as

ǫ = K (pr − p0) , (6.2.19)72



where p0 is the value of pr at whih H = 0 and K is onstant. We hene �nd
H =

8K

π2
(pr − p0) +O (pr − p0)

2 , (6.2.20)Near the blak hole formation threshold, the mass therefore depends linearly onthe momentum of the partiles. In the language of ritial exponents, we ansay that the mass behaves linearly as a funtion of the initial data, or has theritial exponent 1. This agrees with what was found in [12℄ in a formulationthat parameterises the phase spae in terms of the time-independent Oc (2, 2)holonomies of the two-partile spaetime.6.2.3 Ation for tunnelling from the blak holeIn [32℄ the authors evaluate the lassial ation S of the positive de�nite setionof the Shwarzshild geometry. They postulate that Z ≈ exp (−S) is the orretpartition funtion to use, and show that this partition funtion indeed repro-dues the Bekenstein-Hawking entropy by the usual formulae of the anonialensemble. See also [33℄ and the review in [34℄.Motivated by this and subsequent work, in [35℄ the authors perform atunnelling alulation for ripping a pair of magnetially harged blak holes outof the vauum. Some larifying omments are in [36℄.As we have formulated a lassial ation for our point partile system, weare motivated to onsider a quantum mehanial proess analogous to the oneonsidered in [35℄ in whih the partiles semilassially tunnel out of the blakhole. To begin, suppose we are in the blak hole regime, H > 0, and onsiderthe ation in the new hart,
S =

∫
dt (pr ṙ −H) , (6.2.21)where H is given by (6.2.15). Assume further r to be so large that the partilesare outside the horizon, and onsider the expanding ase pr > 0. One E.O.M73



is simply that H is onstant. The other E.O.M is that
ṙ =

∂H

∂pr
, (6.2.22)whih after some algebra yields

ṙ =
2
√
H

sinh
(
π
√
H

2

)
cosh

(
r
2

)

[
sinh2

(r
2

)
− sinh2

(
π
√
H

2

)]
. (6.2.23)The expression in square brakets is zero when

r = rhorizon = π
√
H, (6.2.24)whih is the value of r at whih both partiles are at the horizon of the blakhole. It would take an in�nite amount of oordinate time t to reah rhorizon asone would expet by the form of the BTZ metri (2.2.9) with positive mass.The solution to (6.2.23) is found by �rst making the substitutions

A = sinh

(
π
√
H

2

)
, (6.2.25a)

S = sinh
(r

2

)
, (6.2.25b)so that after some manipulation

2
√
Hdt = d ln

(
S −A
S +A

)
. (6.2.26)Choosing a suitable zero for t, we end up with

sinh
(r

2

)
= − coth

(√
Ht
)

sinh

(
π
√
H

2

)
, (6.2.27)where t < 0. Note that r →∞ as t→ 0− and r → rhorizon as t→ −∞.We now wish to examine the tunnelling proess from r = 0 to r > rhorizon.The trajetory will have to be omplex but it should have a well-de�ned ation.We wish to evaluate this ation and see whether its imaginary part is relatedto the Bekenstein-Hawking entropy.We an express (6.2.21) in terms of an integral over r;

S =

∫
dr

(
pr −

H

ṙ

)
. (6.2.28)74



The �rst term in the integrand is
pr =

2

π
arctanh




cosh
(
π
√
H

2

)

cosh
(
r
2

)


 . (6.2.29)The integral we are interested in is

∫ ∞

0
prdr = − 1

π

∫ ∞

0
dr ln




cosh
(
r
2

)
− cosh

(
π
√
H

2

)

cosh
(
r
2

)
+ cosh

(
π
√
H

2

)


 , (6.2.30)and evaluating this gives the imaginary ontribution

−iηπ
√
H, (6.2.31)where η = +1, (η = −1) if r has a small positive (negative) part around thesingularity at r = rhorizon.The seond term in the integrand is

H

ṙ
=
A
√
H

2

cosh
(
r
2

)

sinh2
(
r
2

)
−A2

, (6.2.32)so that the integral beomes
−
∫ ∞

0

H

ṙ
dr = −

√
H

2

[
ln

(
S −A
S +A

)]r=∞

r=0

. (6.2.33)Evaluating this gives an imaginary ontribution of
iηπ

√
H

2
. (6.2.34)Colleting both imaginary terms together we get the imaginary ontribution tothe total ation of

−iη2π
√
H

4
= −iηA

4
, (6.2.35)where A is the horizon irumferene,

A = 2π
√
H, (6.2.36)The imaginary part of the ation is hene equal to the Bekenstein-Hawkingentropy of the blak hole [22℄. 75



6.3 Massive partilesIn this setion we keep the masses of the two partiles stritly positive. Westart with generi values of the masses but speialise early on to equal masses.6.3.1 The anonial transformationFor two massive partiles the algebra in �nding a anonial transformation issubstantially more di�ult. The geodesi distane between the partiles is givenby (2.6.13),
cosh r =

cos2 T cosh β + sin2 T cosh β1 cosh β2
(
cos2 T + sin2 T cosh2 β1

) 1

2
(
cos2 T + sin2 T cosh2 β2

) 1

2

, (6.3.1)where βi are given by (2.6.5) and (2.6.6) and β is related to α through (2.6.7).The �rst task is to invert (6.3.1) to �nd an expression for T in terms of rand pT . To do this we write
v = cos

(πpT
2

)
= − cos

(
δ

2

)
, (6.3.2)where −1 < v < 1, and

σ = sin2 T, (6.3.3)and �nd (after a lengthy alulation) that
tan2 T =

2g
(
R2 − v2

)

R2 (m+ n)− 2vh −R (1− v2)
[
R2
(
c21 − c22

)2
+ 4c1c2

√
m
√
n
] 1

2

− 1,(6.3.4)where
R = cosh r, (6.3.5a)
g = c21 + c22 − 1 + 2vc1c2 + v2, (6.3.5b)
h = v

(
c21 + c22

)
+ c1c2

(
1 + v2

)
, (6.3.5)

m = (c1 + c2v)
2 , (6.3.5d)

n = (c2 + c1v)
2 . (6.3.5e)We shall only onsider the speial ase of equal masses, δ1 = δ2.76



6.3.2 Equal massesSpeialising to equal masses, c1 = c2 := c, where 0 < c < 1, (6.3.4) simpli�es to
tan2 T =

(
u2

S2
+ 1

)(
c2 − u2

c2 (1− u2)

)
− 1, (6.3.6)where we have written

u = −
√

1− v
2

, (6.3.7a)
S = sinh

r

2
=

√
R− 1

2
. (6.3.7b)The range of u is suh that −c < u < 0. Note that when we take the masslesslimit c→ 1 we reover (6.2.11a).We now onsider pr and T as funtions of pT and r. The ondition for thetransformation from (T, pT ) to (r, pr) to be anonial is then

prdr + TdpT = df̃ , (6.3.8)where f̃ is a funtion of r and pT . An equivalent form is
∂pr
∂pT

=
∂T

∂r
. (6.3.9)The R.H.S is easily omputed and we �nd

∂pr
∂pT

= − u2C

2S3
(
1 + u2

S2

) [(
1 + u2

S2

)(
c2−u2

c2(1−u2)

)
− 1
] 1

2

, (6.3.10)where
C = cosh

(r
2

)
, (6.3.11)and we have assumed we are in the range 0 < T < π

2 . Changing the di�eren-tiation variable to u and simplifying the expression in the square brakets we�nd
∂pr
∂u

=
2Ccu

π (u2 + S2) [1− s2C2 − u2]
1

2

, (6.3.12)where
s =

√
1− c2. (6.3.13)77



We an integrate this diretly by hanging variables. The answer is
pr =

1

π
ln


Cc−

(
1− s2C2 − u2

) 1

2

Cc+ (1− s2C2 − u2)
1

2


 , (6.3.14)where we have set the arbitrary funtion of r obtained when integrating to zeroin order that pr = 0 at T = 0. We now rearrange this expression to �nd

(
1− u2

) 1

2 = C
(
s2 + c2 tanh2

(πpr
2

)) 1

2

. (6.3.15)Colleting everything together we an now express the Hamiltonian in the newhart as
H = − 4

π2

{
arccos

[
C
(
s2 + c2 tanh2

(πpr
2

)) 1

2

]}2

. (6.3.16)The analyti ontinuation of (6.3.16) to the blak hole regime, H > 0, is
H =

4

π2

{
arccosh

[
C
(
s2 + c2 tanh2

(πpr
2

)) 1

2

]}2

, (6.3.17)where C (s2 + c2 tanh2
(πpr

2

)) 1

2 > 1. To ompute (6.3.16) we have assumedthat 0 < T < π
2 and pr < 0. A similar analysis shows that (6.3.16) holds alsowhen −π

2 < T < 0 and pr > 0. The result thus holds for −π
2 < T < π

2 .6.3.3 Threshold of blak hole formationThe threshold of blak hole formation is where H = 0. As in the massless asethe analysis yields the same formula for the Hamiltonian (6.2.20) showing thatthe ritial exponent is 1, again in agreement with [12℄.6.3.4 Ation for tunnelling from the blak holeThe analysis in this setion is qualitatively similar to the ation analysis for themassless ase. Again, one E.O.M is simply that H is onstant. After a lengthyalulation the other E.O.M yields
sinh2

(
r
2

)

sinh2
(
π
√
H

2

) =

s2

c2
tanh2

(
π
√
H

2

)
+ 1

s2

c2
tanh2

(
π
√
H

2

)
+ tanh2

(√
Ht
) . (6.3.18)78



The partiles again reah the blak hole horizon when rhorizon = π
√
H. It wouldtake an in�nite amount of oordinate time t to reah rhorizon.After evaluating the imaginary ontribution of the ation we �nd it to beagain given by formulas (6.2.35) and (6.2.36), and hene equal to the Bekenstein-Hawking entropy of the blak hole.6.4 One massive and one massless partileTo end this hapter, we onsider brie�y the speial ase when we have onemassive and one massless partile. We will just state the result, the analysisbeing entirely analogous with the previous setions in this hapter.Taking partile 2 to be massless, we have s2 = 0 and c2 = 1. The Hamil-tonian in the blak hole regime is

H =
4

π2

{
arccosh

[
− c1

(
1− tanh2

(πpr
2

))

+ cosh (r) tanh

(
π|pr|

2

)(
s21 + c21 tanh2

(πpr
2

)) ]}2
. (6.4.1)We did not omplete the analysis for the ritial exponent and the tun-nelling ation but have no reason to expet the results would be any di�erentto those obtained in the massless and equal massive ases.Aording to the AdS/CFT orrespondene, [20℄, proesses happeninginside AdS spae should be desribable by a onformal �eld theory on theboundary of AdS. In partiular, the proesses involving point partiles we haveonsidered in the �rst part of the thesis should be able to be desribed in termsof a CFT, see [37℄ and [38℄. Although we do not follow up on this here, wenow draw motivation from the AdS/CFT orrespondene to disuss CFT in adi�erent setting in the seond part of the thesis.
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Chapter 7
SL(2, C) twistor spae

This hapter is onerned with homogeneous spaes onstruted from the Liegroup G = SL(2,C) via oset spae tehniques. We realise �SL(2,C) twistorspae�, showing that it has omplex dimension two, a metri with signature
(+,+,−,−) and an interesting omplex struture. We also onsider a seondoset spae of G and disuss its global properties. Essentially we would liketo set the mathematial sene for physial appliations within onformal �eldtheory.7.1 The twistor oset, T - matrix representationWe onsider the Lie group G = SL(2,C). We de�ne the twistor oset T as ahomogeneous spae via a quotient spae onstrution,

T := G/A = {gA | g ∈ G} , (7.1.1)where A is the diagonal subgroup,
A =






 δ−1 0

0 δ


 | δ ∈ C \ {0}



 . (7.1.2)Elements of G/A are equivalene lasses on G where the equivalene relation is

g ∼ g′ if ∃ a ∈ A | g′ = ga, and so [g] = [ga] ∀a ∈ A. The relationship between80



elements g ∈ G and elements [g] ∈ T is, for
g =


 a b

c d


 , (7.1.3)

[g] =




 a b

c d




 =






 aδ−1 bδ

cδ−1 dδ


 | δ ∈ C \ {0}



 . (7.1.4)When d 6= 0, we may hoose omplex oordinates (x1, x2) on T by setting

δ = d−1, x1 = b
d and x2 = c

a in (7.1.4), so that a unique representative of alass in T is given by
t(x1, x2) =




1

1− x1x2
x1

x2

1− x1x2
1


 , (7.1.5)where xi ∈ C, and

x1x2 6= 1. (7.1.6)An alternative parameterisation is
t̄(ξ1, ξ2) =




ξ2
ξ2 − ξ1

ξ1

1

ξ2 − ξ1
1


 , (7.1.7)where ξi ∈ C, and

ξ1 6= ξ2. (7.1.8)The equivalene lasses where d = 0 form a subset of T of omplex dimension
1 and an be understood as singular limits in the parameterisations (7.1.5) or(7.1.7).Among the in�nitely many parameterisations of T available these par-tiular two give �nie� transformations of the oordinates when the ation ofthe overing group on the spae is onsidered as will be done in the followingsubsetion.
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7.2 G-ation on TWe show here that the natural left ation of G on T is by distint frationallinear transformations on the two omplex oordinates. In deriving this resultwe use the fat that the ation of G on elements of G/A is the same as the lassof the ation of G on any representative of G/A, namely (for g ∈ G)
g[t] = [gt]. (7.2.1)We denote an element of A by

ã (δ) =


 δ−1 0

0 δ


 , (7.2.2)and use a generi representative h of G/A by leaving δ freely spei�able for themoment,

h(x1, x2, δ) = t(x1, x2) ◦ ã (δ)

=




δ−1

1− x1x2
δx1

δ−1x2

1− x1x2
δ


 . (7.2.3)The ation is

g[t(x1, x2)] = g[h(x1, x2, δ)] =


 a b

c d










δ−1

1− x1x2
δx1

δ−1x2

1− x1x2
δ







=





 a b

c d







δ−1

1− x1x2
δx1

δ−1x2

1− x1x2
δ







=







(a+ bx2)(cx1 + d)

1− x1x2

ax1 + b

cx1 + d

(c+ dx2)(cx1 + d)

1− x1x2
1







=[t(x′1, x
′
2)], (7.2.4)82



where in the last step we have hosen δ = (cx1 + d)−1. The expliit oordinatetransformation is given by
(x1, x2) 7→

(
x′1, x

′
2

)
=

(
ax1 + b

cx1 + d
,
dx2 + c

bx2 + a

)
. (7.2.5)In the alternative oordinatisation the transformation is

(ξ1, ξ2) 7→
(
ξ′1, ξ

′
2

)
=

(
aξ1 + b

cξ1 + d
,
aξ2 + b

cξ2 + d

)
. (7.2.6)We now study the one-parameter subgroups of G and alulate the orre-sponding left invariant vetor �elds on G.We use the generi representative (7.2.3), denoted by h = t ◦ ã. Thenatural left ation of G is via h 7→ h′ = g ◦ h where g ∈ G. If we parameterisethe element g in the same way as (7.2.3) with oordinates (z1, z2, β) the expliittransformation of the oordinates is

x′1 =
β2z1 (1− z1z2) + x1

β2 (1− z1z2) + z2x1
, (7.2.7a)

x′2 =
β2x2 (1− z1z2) + z2
β2x2z1 (1− z1z2) + 1

, (7.2.7b)
δ′ =

δ
(
β2 (1− z1z2) + z2x1

)

β (1− z1z2)
, (7.2.7)with orresponding inverse transformations

x1 =
β2 (1− z1z2) (x′1 − z1)

(1− z2x′1)
, (7.2.8a)

x2 =
x′2 − z2

β2 (1− z1z2) (1− z1x′2)
, (7.2.8b)

δ =
δ′ (1− z2x′1)
β (1− z1z2)

. (7.2.8)The transformation of basis vetors is
∂x′

1
=

(
β2 (1− z1z2) + z2x1

)2

β2 (1− z1z2)2
∂x1
− z2δ

(
β2 (1− z1z2) + z2x1

)

β2 (1− z1z2)2
∂δ, (7.2.9a)

∂x′
2

=

(
β2x2z1 (1− z1z2) + 1

)2

β2 (1− z1z2)2
∂x2

, (7.2.9b)
∂δ′ =

β (1− z1z2)
β2 (1− z1z2) + z2x1

∂δ, (7.2.9)83



with similar inverse transformations.We now take the anonial basis for the omplex Lie algebra sl(2,C)

σ+ =


 0 1

0 0


 , σ− =


 0 0

1 0


 , σ3 =


 1 0

0 −1


 , (7.2.10)with the ommutation relations

[σ+, σ−] = σ3, [σ3, σ+] = 2σ+, [σ3, σ−] = −2σ−. (7.2.11)The real one-parameter subgroups of SL(2,C) orresponding to these basis el-ements are
g+(t) = etσ+ =


 1 t

0 1


 , g̃+(t) = eitσ+ =


 1 it

0 1


 , (7.2.12a)

g−(t) = etσ− =


 1 0

t 1


 , g̃−(t) = eitσ− =


 1 0

it 1


 , (7.2.12b)

g3(t) = etσ3 =


 et 0

0 e−t


 , g̃3(t) = eitσ3 =


 eit 0

0 e−it


 , (7.2.12)where t ∈ R. The orresponding omplex vetor �elds invariant under the left

SL(2,C) ation are
X1 =

x2

δ(1 − x1x2)
∂δ +

1

δ2
∂x1

, (7.2.13a)
X2 = δ2(1− x1x2)

2∂x2
, (7.2.13b)

X3 = −δ∂δ , (7.2.13)
X4 =

ix2

δ(1 − x1x2)
∂δ +

i

δ2
∂x1

, (7.2.13d)
X5 = iδ2(1− x1x2)

2∂x2
, (7.2.13e)

X6 = −iδ∂δ , (7.2.13f)
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with the orrespondene
X1 ←→


 0 1

0 0


 = σ+, (7.2.14a)

X2 ←→


 0 0

1 0


 = σ−, (7.2.14b)

X3 ←→


 1 0

0 −1


 = σ3, (7.2.14)

X4 ←→


 0 i

0 0


 = iσ+, (7.2.14d)

X5 ←→


 0 0

i 0


 = iσ−, (7.2.14e)

X6 ←→


 i 0

0 −i


 = iσ3. (7.2.14f)We form real left-invariant vetor �elds from the Xi via

Yi = Xi + X̄i, (7.2.15)and de�ne a set of dual, left-invariant one-forms {ωi} by 〈ωi | Yj〉 = δij . Theyread
ω1 =

1

2

(
δ2dx1 + δ̄2dx̄1

)
, (7.2.16a)

ω2 =
1

2

(
dx2

δ2(1− x1x2)2
+

dx̄2

δ̄2(1− x̄1x̄2)2

)
, (7.2.16b)

ω3 =
1

2

(
x2dx1

1− x1x2
+

x̄2dx̄1

1− x̄1x̄2
− dδ

δ
− dδ̄

δ̄

)
, (7.2.16)

ω4 =
i

2

(
−δ2dx1 + δ̄2dx̄1

)
, (7.2.16d)

ω5 =
i

2

(
− dx2

δ2(1− x1x2)2
+

dx̄2

δ̄2(1− x̄1x̄2)2

)
, (7.2.16e)

ω6 =
i

2

(
− x2dx1

1− x1x2
+

x̄2dx̄1

1− x̄1x̄2
+
dδ

δ
− dδ̄

δ̄

)
. (7.2.16f)
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7.3 Map to Oc(1, 3)There is a well known two-to-one group homomorphismH : SL(2,C)→ Oc(1, 3),where the subsript c stands for the onneted omponent. The expliit formof the homomorphism is
{H(g)}jk =

1

2
Tr(σjgσkg

†), (7.3.1)where the hoie of Pauli matries is
σ0 =


 1 0

0 1


 , σ1 =


 0 1

1 0


 , (7.3.2a)

σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 . (7.3.2b)The kernel of H is the subgroup {±I2} ⊂ A, and the image of A under H isthe diret produt Oc(1, 1) × Oc(2). It follows that T has a realisation as thehomogeneous spae

T = Oc(1, 3)/ [Oc(1, 1) ×Oc(2)] . (7.3.3)The ation of H on our representative element (7.1.5) of T is given by
H : t(x1, x2) 7→ T (x1, x2) = (V0, V1, V2, V3), (7.3.4)where [T (x1, x2)] ∈ Oc(1, 3)/ [Oc(1, 1) ×Oc(2)] and the V0, V1, V2, V3 are olumns
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given by
V0 =

1

2|1 − x1x2|2




1 + |x2|2 + |1− x1x2|2(1 + |x1|2)
x2 + x̄2 + |1− x1x2|2(x1 + x̄1)

i
[
x̄2 − x2 + |1− x1x2|2(x1 − x̄1)

]

1− |x2|2 + |1− x1x2|2(−1 + |x1|2)



, (7.3.5a)

V1 =
1

2|1 − x1x2|2




(1− x̄1x̄2)(x̄1 + x2) + (1− x1x2)(x1 + x̄2)

(1− x̄1x̄2)(1 + x̄1x2) + (1− x1x2)(1 + x1x̄2)

i [(1− x̄1x̄2)(1− x̄1x2) + (1− x1x2)(−1 + x1x̄2)]

(1− x̄1x̄2)(x̄1 − x2) + (1− x1x2)(x1 − x̄2)



,(7.3.5b)

V2 =
1

2|1 − x1x2|2




i [(1− x̄1x̄2)(−x̄1 − x2) + (1− x1x2)(x1 + x̄2)]

i [(1− x̄1x̄2)(−1− x̄1x2) + (1− x1x2)(1 + x1x̄2)]

(1− x̄1x̄2)(1− x̄1x2) + (1− x1x2)(1− x1x̄2)

i [(1− x̄1x̄2)(x2 − x̄1) + (1− x1x2)(x1 − x̄2)]



,(7.3.5)

V3 =
1

2|1 − x1x2|2




1 + |x2|2 + |1− x1x2|2(−1− |x1|2)
x2 + x̄2 + |1− x1x2|2(−x1 − x̄1)

i
[
x̄2 − x2 + |1− x1x2|2(x̄1 − x1)

]

1− |x2|2 + |1− x1x2|2(1− |x1|2)



. (7.3.5d)

7.3.1 Lorentz-orthonormal basis in R1,3If we denote the Minkowski inner produt in R
1,3 by brakets;

(X,Y )R1,3 = −X0Y0 +X1Y1 +X2Y2 +X3Y3, (7.3.6)then
(V0, V0)R1,3 = −1, (V0, Vi)R1,3 = 0, (Vi, Vj)R1,3 = δij , (7.3.7)so that the vetors obtained from the olumns of T form a Lorentz-orthonormalbasis in the Minkowski spae R

1,3. In partiular, at x1 = x2 = 0 these vetors87



form the standard frame
V0 =




1

0

0

0



, V1 =




0

1

0

0



, V2 =




0

0

1

0



, V3 =




0

0

0

1



.(7.3.8)7.3.2 A speial vetorWe now form the omplexi�ation of R

1,3, namely R
1,3C ∼= C

1,3, and reall thatelements of this spae are formed from omplex linear ombinations of the realsubspae, namely for X ∈ R
1,3 and Y ∈ R

1,3 we have
Z = (X + iY ) ∈ C

1,3. (7.3.9)We an also extend the domain of the Minkowski inner produt ( , )R1,3 tothe omplexi�ed spae (for Z = X + iY, W = U + iV ) via
(Z,W )C1,3 = (X,U)R1,3 − (Y, V )R1,3 + i [(Y,U)R1,3 + (X,V )R1,3 ] , (7.3.10)where the omplexi�ed Minkowski inner produt is the omplex bilinear formde�ned, for Z,W ∈ C

1,3, by
(Z,W )C1,3 = −Z0W0 + Z1W1 + Z2W2 + Z3W3. (7.3.11)We now introdue a ertain omplex linear ombination of the vetors V1 and

V2 by
Z(x1, x2) :=

1√
2
(V1 − iV2) =

1√
2(1− x̄1x̄2)




x1 + x̄2

1 + x1x̄2

i(1− x1x̄2)

x1 − x̄2



. (7.3.12)

Z has the properties
(Z,Z)C1,3 = 0, (Z, Z̄)C1,3 = 1. (7.3.13)88



The reason why preisely this linear ombination is onsidered is that thegroup H(A) = Oc(1, 1)×Oc(2) when ating on Z̃ = Z(0, 0) only hanges Z̃ bya phase, and so H(A) ◦ Z̃ still satis�es the onditions (7.3.13). We will use theresult (7.3.12) when disussing a di�erent realisation of T in setion 7.7.7.4 Tangent spae in Oc(1, 3) representationUnder the group homomorphism (7.3.1) the six one-parameter subgroups (7.2.12a)to (7.2.12) of SL(2,C) are mapped to their orresponding subgroups inOc(1, 3).The resulting Lie algebra elements in Oc(1, 3) representation are given by thematries
a+ =




0 1 0 0

1 0 0 −1

0 0 0 0

0 1 0 0



, a− =




0 1 0 0

1 0 0 1

0 0 0 0

0 −1 0 0



, (7.4.1)

ã+ =




0 0 −1 0

0 0 0 0

−1 0 0 1

0 0 −1 0



, ã− =




0 0 1 0

0 0 0 0

1 0 0 1

0 0 −1 0



, (7.4.2)

a3 = 2




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



, ã3 = 2




0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0



, (7.4.3)where ai is the algebra element orresponding to the 1-parameter subgroup

H ◦ gi(t).
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We form linear ombinations of the algebra elements suh that
e1 =

1

2
(a+ + a−) =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



, (7.4.4)

e2 =
1

2
(ã− − ã+) =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0



, (7.4.5)

f1 =
1

2
(a− − a+) =




0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0



, (7.4.6)

f2 =
1

2
(ã+ + ã−) =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0



. (7.4.7)These algebra elements in Oc(1, 3) representation provide us with a basis forvetors in the tangent spae at the origin e of T where x1 = x2 = 0. Note that

a3 and ã3 are not required sine δ is not a bona-�de oordinate on T. If werepresent an element V of the tangent spae TeT via the ombination V = m+nwhere n = niei , m = mifi and i ∈ {1, 2} we have
V =




0 n1 n2 0

n1 0 0 m1

n2 0 0 m2

0 −m1 −m2 0



. (7.4.8)

We now parameterise the isotropy group in the SL(2,C) representation as
δ = e

t
2 e

iθ
2 where t ∈ R and θ ∈ (−2π, 2π]. The orresponding isotropy group90



in Oc(1, 3) representation is given by
H(A) =




cosh t 0 0 sinh t

0 cos θ sin θ 0

0 − sin θ cos θ 0

sinh t 0 0 cosh t



. (7.4.9)The adjoint ation of H(A) (7.4.9) on V is V 7→ V ′ = H(A) ◦ V ◦H−1(A), sothat

V ′ =




0 n′1 n′2 0

n′1 0 0 m′1

n′2 0 0 m′2

0 −m′1 −m′2 0



, (7.4.10)where

n′1 = cosh t(n1 cos θ + n2 sin θ)− sinh t(m1 cos θ +m2 sin θ), (7.4.11)
n′2 = cosh t(n2 cos θ − n1 sin θ) + sinh t(m1 sin θ −m2 cos θ), (7.4.12)
m′1 = − sinh t(n1 cos θ + n2 sin θ) + cosh t(m1 cos θ +m2 sin θ), (7.4.13)
m′2 = − sinh t(n2 cos θ − n1 sin θ)− cosh t(m1 sin θ −m2 cos θ). (7.4.14)We now hoose to represent the omponents of our vetor �eld V ∈ TeTas a 2× 2 matrix

Vc =


 n1 n2

m1 m2


 . (7.4.15)Thus, the ation of the isotropy group A on Vc in this representation splitsaording to

V ′
c = B(t) ◦ Vc ◦R(θ), (7.4.16)where
V ′
c =


 n′1 n′2

m′1 m′2


 , (7.4.17)

B(t) =


 cosh t − sinh t

− sinh t cosh t


 , (7.4.18)91



and
R(θ) =


 cos θ − sin θ

sin θ cos θ


 . (7.4.19)If we introdue a 2-dimensional Minkowski metri η suh that

η =


 −1 0

0 1


 , (7.4.20)we �nd, by virtue of the pseudo-orthogonality ondition BT ηB = η, that abilinear form invariant under the ation of the isotropy group is given by

Tr
(
V ′T

c ηṼ
′
c

)
= Tr

(
RTV T

c B
T ηBṼcR

)
= Tr

(
V T
c ηṼc

)
. (7.4.21)7.5 Metri on TFrom the previous onstrution, we �nd that a bilinear form in the tangentspae at the origin, invariant under the ation of A, is given by

g(V, Ṽ ) = (n, ñ)− (m, m̃), (7.5.1)where (m, m̃) = m1m̃1 +m2m̃2 is the usual inner produt on R
2.If we reall the relation between basis vetors in the tangent spae at the
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origin and left invariant vetor �elds, we have the orrespondene
e1 =

1

2
(a+ + a−) =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



←→ 1

2
(X1 +X2) =: U1, (7.5.2)

e2 =
1

2
(ã− − ã+) =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0



←→ 1

2
(X5 −X4) =: U2, (7.5.3)

f1 =
1

2
(a− − a+) =




0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0



←→ 1

2
(X2 −X1) =: U3, (7.5.4)

f2 =
1

2
(ã+ + ã−) =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0



←→ 1

2
(X4 +X5) =: U4. (7.5.5)The duality relations between vetors and o-vetors in this new basis is 〈ρi | Uj〉 =

δij , where the dual o-vetors are
ρ1 = ω1 + ω2, (7.5.6)
ρ2 = ω5 − ω4, (7.5.7)
ρ3 = ω2 − ω1, (7.5.8)
ρ4 = ω4 + ω5. (7.5.9)The invariant bilinear form (7.5.1) thus allows us to introdue on T, withthe possible exeption of the points in T not overed by the parameterisation
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(7.1.5), a metri by
gT = ρ1 ⊗ ρ1 + ρ2 ⊗ ρ2 − ρ3 ⊗ ρ3 − ρ4 ⊗ ρ4

=
dx1 ⊗ dx2 + dx2 ⊗ dx1

(1− x1x2)2
+
dx̄1 ⊗ dx̄2 + dx̄2 ⊗ dx̄1

(1− x̄1x̄2)2
. (7.5.10)The metri has signature (+,+,−,−) and is, by onstrution, invariant underthe SL(2,C) ation on T.7.6 Complex struture of TThe almost omplex struture on a manifold is ompletely determined by theation of a linear map Jp : TpM → TpM satisfying J2

p = −id. For reasonswhih will beome apparent we onsider the simple ase of a 4-dimensionalEulidean spae R
4 =

{(
x1, y1, x2, y2

)
| xµ ∈ R, yµ ∈ R

} ∼= C
2 and speify analmost omplex struture via Jp(∂xµ) = ∂yµ , Jp(∂yµ) = −∂xµ , orresponding toa π

2 anti-lokwise rotation in the planes {(x1, y1
)} and {(x2, y2

)}. Note thatthe Jp operator satis�es J2
p = −id and that Jp is ompatible with the Eulideanmetri, g, on R

4; g(JpV, JpṼ ) = g(V, Ṽ ). Writing ∂zµ = 1
2 (∂xµ − i∂yµ) and

∂z̄µ = 1
2 (∂xµ + i∂yµ) we �nd the ation of Jp on omplex basis vetor �elds is

Jp(∂zµ) = i∂zµ , Jp(∂z̄µ) = −i∂z̄µ , that is, multipliation by±i. Note �nally thatthis hoie of an almost omplex struture orresponds to the usual onjugationoperation on the omplex oordinates zµ = xµ + iyµ, z̄µ = xµ − iyµ. If we hadde�ned the almost omplex struture to orrespond to a π
2 lokwise rotation,the eigenvalues of Jp would be interhanged.Bearing all of this in mind we seek an almost omplex struture on Twhih is invariant under the ation of the isotropy group and also ompatiblewith the metri (7.5.10).
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7.6.1 Invariane under the ation of AA ats on omponents of vetor �elds via
A : Vc 7→ V ′

c ; V ′
c = BVcR. (7.6.1)where B and R are de�ned by (7.4.18) and (7.4.19). We speify the vetor �eldon T via

V = Tr(VcUb), (7.6.2)where Ub is the matrix of basis vetor �elds, (7.5.2) to (7.5.5), given by
Ub =


 U1 U3

U2 U4


 . (7.6.3)The ation of A on the vetor �eld is then

A : V 7→ V ′ = Tr(BVcRUb), (7.6.4)so the ation of A is equivalently spei�ed on Ub via
A : Ub 7→ U ′

b = RUbB. (7.6.5)The almost omplex struture operator ats on basis vetor �elds. Themost general ation of Jp is spei�ed via
Jp : Ub 7→ U ′

b = JLUbJR, (7.6.6)where
JL =


 a b

c d


 , (7.6.7)and

JR =


 e f

g h


 , (7.6.8)are 2× 2 matries with omplex-valued entries.Invariane of the almost omplex struture under the ation of A meansthat A ◦ Jp ◦ Ub = Jp ◦A ◦ Ub, orresponding to

RJLUbJRB = JLRUbBJR, (7.6.9)95



whih is neessary and su�ient for
[R, JL] = 0, [B, JR] = 0, (7.6.10)or equivalently

JL =


 a b

−b a


 , JR =


 e f

f e


 . (7.6.11)Further restritions on the entries of JL and JR follow from the idempotenyondition of Jp. In terms of our matries we onsider two ases:(I) J2

L = 1, J2
R = −1;(II) J2

L = −1, J2
R = 1.

(7.6.12)Case (I) gives the possibilities
E1 : a = ±1, b = 0;

F1 : a = 0, b = ±i;
G1 : e = ±i, f = 0;

H1 : e = 0, f = ±i;

(7.6.13)whilst ase (II) gives the possibilities
E2 : a = ±i, b = 0;

F2 : a = 0, b = ±1;

G2 : e = ±1, f = 0;

H2 : e = 0, f = ±1.

(7.6.14)and the eight possible permutations are
Ei ∩Gi, Ei ∩Hi, Fi ∩Gi, Fi ∩Hi. i ∈ {1, 2}. (7.6.15)Although the entries of JL and JR an be omplex valued we require the totaltransformation to be real whih rules out the four ases

Ei ∩Gi, Ei ∩Hi. i ∈ {1, 2}. (7.6.16)96



We also note that the hoie of i ∈ {1, 2} merely hanges the ation by anoverall minus sign so it su�es to onsider the two ases F1 ∩G1 and F1 ∩H1.
F1 ∩G1 yields the equation


 Jp(U1) Jp(U3)

Jp(U2) Jp(U4)


 = ±


 −U2 −U4

U1 U3


 , (7.6.17)whereas F1 ∩H1 yields


 Jp(U1) Jp(U3)

Jp(U2) Jp(U4)


 = ±


 −U4 −U2

U3 U1


 . (7.6.18)Writing

α =
1

δ2
∂x1

, (7.6.19a)
β = δ2 (1− x1x2)

2 ∂x2
, (7.6.19b)

ᾱ =
1

δ̄2
∂x̄1

, (7.6.19)
β̄ = δ̄2 (1− x̄1x̄2)

2 ∂x̄2
, (7.6.19d)we �nd

U1 = α+ ᾱ+ β + β̄, (7.6.20a)
U2 = i

(
−α+ ᾱ+ β − β̄

)
, (7.6.20b)

U3 = −α− ᾱ+ β + β̄, (7.6.20)
U4 = i

(
α− ᾱ+ β − β̄

)
. (7.6.20d)For the ase F1 ∩G1 we �nd

Jp
(
α+ ᾱ+ β + β̄

)
= ∓i

(
−α+ ᾱ+ β − β̄

)
, (7.6.21a)

Jp
(
−α− ᾱ+ β + β̄

)
= ∓i

(
α− ᾱ+ β − β̄

)
, (7.6.21b)

Jp
(
−α+ ᾱ+ β − β̄

)
= ∓i

(
α+ ᾱ+ β + β̄

)
, (7.6.21)

Jp
(
α− ᾱ+ β − β̄

)
= ∓i

(
−α− ᾱ+ β + β̄

)
. (7.6.21d)Forming appropriate linear ombinations of these and using the linearity of Jp,97



we an write this omplex struture as
Jp (∂x1

) = ±i∂x1
, (7.6.22a)

Jp (∂x2
) = ∓i∂x2

, (7.6.22b)
Jp (∂x̄1

) = ∓i∂x̄1
, (7.6.22)

Jp (∂x̄2
) = ±i∂x̄2

. (7.6.22d)For the ase F1 ∩ H1 similar reasoning shows that we an write the omplexstruture as
Jp (∂x1

) = ±i∂x1
, (7.6.23a)

Jp (∂x2
) = ±i∂x2

, (7.6.23b)
Jp (∂x̄1

) = ∓i∂x̄1
, (7.6.23)

Jp (∂x̄2
) = ∓i∂x̄2

. (7.6.23d)The almost omplex struture spei�ed by (7.6.22) is ompatible with the metri(7.5.10) as g (Jp(V ), Jp(Ṽ )
)

= g
(
V, Ṽ

) whereas the almost omplex struturespei�ed by (7.6.23) satis�es g (Jp(V ), Jp(Ṽ )
)

= −g
(
V, Ṽ

) and hene is notompatible with the metri. The unique almost omplex struture on T (up toan overall minus sign) is given by (7.6.22). Furthermore, the Nijenhuis tensor
NJp de�ned by its ation on vetor �elds X and Y , [39℄,

NJp (X,Y ) = [X,Y ] + Jp [JpX,Y ] + Jp [X,JpY ]− [JpX,JpY ] , (7.6.24)vanishes for Jp de�ned by (7.6.22). Therefore the almost omplex struture isin fat a omplex struture.We make a hoie of sign for this omplex-struture and ompare thestruture with the omplex manifold C
2 onsidered at the start of this setion.For the C

2 ase the anonial omplex struture was equivalent to the usualomplex onjugation on oordinates. In the T ase, however, mathing theeigenvalues of Jp leads us to introdue a ∗ operation on oordinates, distintfrom omplex onjugation, given by
∗ : (x1, x2, x̄1, x̄2) 7→ (x2, x1, x̄2, x̄1) . (7.6.25)98



7.7 T as a omplex quadriWe wish to show how T an be realised as a quadri embedded in CP 3. Todo this we make a short digression into the realms of projetive geometry. The
3-dimensional omplex projetive spae CP 3 is de�ned as CP 3 = (C4 \{0})/ ∼where the equivalene relation on C

4 is Z ∼ Z ′ if ∃p ∈ C | Z ′ = pZ and p 6= 0.Geometrially this orresponds to the spae of omplex lines through the originin C
4. We denote the projetion C

4 \ {0} → CP
3 by π. The homogeneousoordinates (z0, z1, z2, z3) on C

4 no longer provide us with an independent setof oordinates on the quotient spae as the quotient kills one omplex dimension.However, we an de�ne a set of independent oordinates by �rstly speifyinga set of harts Uµ, where µ ∈ {0, 1, 2, 3}, suh that Uµ is the set of lines in
C

4 where zµ 6= 0. Note that CP 3 =
⋃3
µ=0 Uµ. In a hart Uµ we de�ne theinhomogeneous oordinates by

ξ(µ)
ν =





zν

zµ
if ν ≤ µ− 1

zν+1

zµ
if ν ≥ µ (7.7.1)where µ labels the spei� hart and ν ∈ {0, 1, 2} labels the inhomogeneousoordinate. In Uµ ∩Uν the transition funtions Ψµν : CP 3 → CP 3 are given by

ξ
(ν)
λ 7→ ξ

(µ)
λ =

zµ

zν
ξ
(ν)
λ and are neessarily holomorphi.We now de�ne the subset Q2(C) ⊂ CP 3 as the projetion of the quadri

(Z,Z)
C1,3 = 0:

Q2(C) =
{
π(Z) | Z ∈ C

4 \ {0} , (Z,Z)
C1,3 = 0

}
. (7.7.2)As the omplex vetor Z (x1, x2) (7.3.12) is on this quadri, we obtain an em-bedding of T in Q2(C) by

q(x1, x2) := π(Z(x1, x2)) ∈ Q2(C), (7.7.3)with the possible exeption of the points in T not overed by the parameteri-sation (7.1.5).
Q2(C) inherits a omplex struture from its embedding in CP 3. Param-eterising the oordinates on CP 3 in terms of the oordinates (x1, x2) we an99



alulate the pushforward, to Q2(C), of the basis vetors spanning CP 3. Theanonial omplex struture on CP 3 then reveals that the omplex strutureon Q2(C) is ompatible with the omplex struture given by (7.6.22).7.8 The oset spae BWe now de�ne another 2-dimensional subspae of G, whih we denote by B,disussing its global struture and the ation of G on B.We de�ne B in a similar way to T via a quotient spae onstrution
B := N+\G, (7.8.1)where N+ is the 1-parameter subgroup of upper triangular matries,

N+ =






 1 n+

0 1


 | n+ ∈ C



 . (7.8.2)and the \ in (7.8.1) is understood as denoting a set of right osets of N+ w.r.t

G.7.8.1 Global struture of BA general element of B is a lass
[N+g] =




 a+ n+c b+ n+d

c d




 , (7.8.3)where n+ ∈ C. In the equivalene lasses (7.8.3), c and d annot both bezero. When c 6= 0, we an hoose a unique representative by setting n+ = −a

c :writing c = z1 ∈ C \ {0} and d = z2 ∈ C, this representative reads
b1(z1, z2) =




0 − 1

z1

z1 z2


 . (7.8.4)
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Similarly, when d 6= 0, we an hoose a unique representative by setting n+ =

− b
d : writing d = z2 ∈ C \ {0} and c = z1 ∈ C, this representative reads

b2(z1, z2) =




1

z2
0

z1 z2


 . (7.8.5)These two parameterisations show that B an be overed by the two harts U1and U2, where

U1 =
{
(z1, z2) ∈ C

2 | z1 6= 0
}
, (7.8.6a)

U2 =
{
(z1, z2) ∈ C

2 | z2 6= 0
}
, (7.8.6b)suh that the transition funtion on U1 ∩ U2 is the identity. We hene have

B ∼= U1 ∪ U2 = C
2 \ {(0, 0)}.7.8.2 G-ation on BThe anonial ation of G on itself from the right indues an ation of G on B.In the parameterisation B ∼= C

2\{(0, 0)}, this ation is the linear transformation

 a b

c d


 : (z1, z2) 7→ (z′1, z

′
2) = (az1 + cz2, bz1 + dz2). (7.8.7)We have realised two distint oset spaes of SL(2,C) , T and B, andestablished various properties of these spaes. We will now go on to disussonformal �eld theory n-point funtions with referene to T and B.
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Chapter 8
Conformal �eld theory (CFT)

This hapter desribes relevant aspets of onformal �eld theory (CFT) in var-ious funtion spaes and the relationships between said spaes using tehniquesfrom representation theory.8.1 CFT n-point funtionsA CFT on the sphere (whih we onsider as the boundary of hyperboli three-spae) is de�ned by the set of all its n-point orrelation funtions. We sum-marise here, for onveniene, the 2, 3 and 4 point funtions of �elds as given in[40℄. On the sphere we are interested in the 2-point funtion of �elds whihare orrelated only if they have the same saling dimension ∆, [40℄, namelyfuntions of the form
KC∗

∆ (z, y) =
C12

|z − y|2∆ , (8.1.1)where the supersript C
∗ denotes the one-point ompati�ation of C into theRiemann sphere, z, y ∈ C

∗ are the two points on the sphere and C12 is amultipliative onstant orresponding to the normalisation of the �eld. Thisfuntion is also known as the boundary-to-boundary propagator [41℄.The 3-point funtion of �elds (with di�ering saling dimensions ∆1, ∆2102



and ∆3), an be given in the form
CC∗

∆1∆2∆2
(z, u, v) =

C123

|z − u|∆1+∆2−∆3 |z − v|∆1+∆3−∆2|u− v|∆2+∆3−∆1
.(8.1.2)The 4-point funtion in two dimensions is unique only up to a multiplia-tive funtion dependent on one anharmoni/ross ratio. The funtion thereforehas the form

SC∗

∆1∆2∆3∆4
= φ

( |z − y||u− v|
|z − u||y − v|

)
×

|z − y|α3 |z − u|
β
3 |z − v|

γ
3 |y − u| δ3 |y − v| ǫ3 |u− v|

ζ
3 , (8.1.3)where φ is a multipliative funtion of the ross ratio, and

α = ∆3 + ∆4 − 2∆1 − 2∆2, (8.1.4a)
β = ∆2 + ∆4 − 2∆1 − 2∆3, (8.1.4b)
γ = ∆2 + ∆3 − 2∆1 − 2∆4, (8.1.4)
δ = ∆1 + ∆4 − 2∆2 − 2∆3, (8.1.4d)
ǫ = ∆1 + ∆3 − 2∆2 − 2∆4, (8.1.4e)
ζ = ∆1 + ∆2 − 2∆3 − 2∆4. (8.1.4f)Aording to the �onformal bootstrap� idea, [40℄, the n-point funtion of�elds for n > 4 an be onstruted out of these three simpler funtions.8.2 Spaes of funtionsWe are interested in mapping spei� funtions between spei� mathematialspaes. We denote the olletion of all funtions on a manifold M by F(M)and we wish to explore the following diagram
F(C∗)

OO

��

oo // F(H3)
OO

��

F(B) oo // F(T)

. (8.2.1)
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More spei�ally, there will be various onstraints plaed on the possible fun-tions in a spae and we will onsider funtions on n opies of a manifold (or
n-point funtions). Also, we shall understand �funtions� to inlude also densi-ties of spei�ed (omplex) weights.To begin to explore this diagram we need to turn to representation theoryof SL(2,C) whih has been extensively studied in the literature and of whihwe only use the details here whih are of interest to us.8.3 Representation theory of SL(2, C)We follow [42℄ for the majority of this setion taking advantage of the isomor-phism B ∼= C

2 \{(0, 0)} obtained in the previous hapter. We derive some fatsabout representation theory of SL(2,C) where the representations at in spaesof importane to us. We take the de�ning equation of a representation to be
T (g1)T (g2) = T (g1g2), (8.3.1)where the T (g) are understood to at on a spei�ed linear spae, g is an elementof the group, and the representation of the identity element orresponds to theidentity transformation on the linear spae. Various realisations of the T (g) areavailable, the most trivial being where g is represented by itself and ats on C

2.We wish to explore more interesting examples. In what follows, for simpliitywe shall denote funtions of d omplex variables by
f(z1, . . . , zd) := f(z1, . . . , zd; z̄1, . . . , z̄d). (8.3.2)8.3.1 The in�nite-dimensional linear spae HF (B)We �rst take a subspae of F(B), namely the spae of homogeneous funtionsof bidegree (λ, µ) whih we denote HF(B) where we have supressed the (λ, µ)dependene for notational onveniene. Elements of this in�nite dimensional104



linear spae are haraterised by the ondition
f(pz1, pz2) = pλp̄µf(z1, z2), (8.3.3)where p ∈ C \ {0} and (λ− µ) ∈ Z in order that the above equation is single-valued.8.3.2 Representation of SL(2, C) ating on HF(B)

SL(2,C) ats on B from the right via (z1, z2) 7→ (az1 + cz2, bz1 + dz2) (7.8.7)and an be onsidered to indue a transformation on HF(B) whih we speifyin terms of a representation ation via
(T (g)f) (z1, z2) = f g(z1, z2) = f(az1 + cz2, bz1 + dz2). (8.3.4)It is immediate that f ∈ HF(B) =⇒ f g ∈ HF(B) and also
(T (g1g2)f) (z1, z2) = f

[
(a1a2 + b1c2) z1 + (c1a2 + d1c2) z2,

(a1b2 + b1d2) z1 + (c1b2 + d1d2) z2
]

= (T (g1)T (g2)f) (z1, z2), (8.3.5)showing that the T (g) satisfy the funtional equation (8.3.1). Also the rep-resentation of the identity element is the identity transformation on HF(B),and the equation de�ning the representation (8.3.4) depends ontinuously on
g ∈ G. In all generality we have the pairing (T (g),HF(B)) whih (abusingterminology) we all the representation and we understand this representationin terms of (8.3.3) and (8.3.4).8.3.3 F(C∗) and its relation to HF(B)We now wish to relate funtions de�ned on the Riemann sphere F(C∗) to
HF(B).Firstly we note [42℄ that elements of HF(B) are uniquely determined bytheir values on a ontour in B that rosses one eah omplex line of the form

a1z1 + a2z2 = 0, (8.3.6)105



where
(a1, a2) 6= (0, 0) . (8.3.7)The omplex ontour z2 = 1 rosses eah omplex line of the form (8.3.6) one,with a1 6= 0, and so elements of HF(B) are determined uniquely by their valueson this ontour, exept for the values on the lines with a1 = 0. To this e�etwe de�ne
ψ(z) := f(z, 1). (8.3.8)Note that ψ(z) is well-de�ned on the omplex plane C. Similarly we an onsiderthe ontour z1 = 1 and de�ne
ψ̂(m) = f(1,m), (8.3.9)whih is also well-de�ned on C. Using the homogeneity of f it is then simpleto speify elements of HF(B) in terms of ψ(z) and ψ̂(m), in the harts U1 and

U2 we de�ned in Chapter 7, by
U1 : f(z1, z2) = zλ1 z̄

µ
1 ψ̂

(
z2
z1

)
, (8.3.10a)

U2 : f(z1, z2) = zλ2 z̄
µ
2ψ

(
z1
z2

)
. (8.3.10b)On the intersetion of the harts, the two funtions (8.3.8) and (8.3.9) arerelated by

ψ(z) = zλz̄µψ̂

(
1

z

)
, (8.3.11a)

ψ̂(m) = mλm̄µψ

(
1

m

)
. (8.3.11b)Equation (8.3.11) shows that we are really dealing with funtions on the Rie-mann sphere C∗, not just on C; further, these funtions are not salar-valuedbut must be understood as densities whose holomorphi and antiholomorphiweights are spei�ed by λ and µ. Through (8.3.10) we an transform thedensity-valued funtions on C

∗ into the orresponding homogeneous funtionson B. Conversely, any homogeneous funtion on B an be transformed into adensity-valued funtion on C
∗. For brevity, we shall refer to the elements of

F(C∗) simply as funtions. 106



In order to make these details a little more lear we onsider the simplease of a spei� homogeneous polynomial f of degree (2, 2) on B where
f(z1, z2) = z2

1(z̄2
1 + z̄2

2). (8.3.12)The orresponding funtion on the sphere (again depending on the hart in B)is
U1 : ψ̂(m) = 1 + m̄2, (8.3.13a)
U2 : ψ(z) = z2(z̄2 + 1), (8.3.13b)

U1 ∩ U2 : ψ(z) = z2z̄2ψ̂

(
1

z

)
. (8.3.13)We have thus established an isomorphi mapping of the two funtionspaes

HF(B) ∼= F(C∗), (8.3.14)where the isomorphism is given expliitly by (8.3.10).The representation (8.3.4) is realised in this isomorphi vetor spae viathe equations
(
T (g)ψ̂

)
(m) = (a+ cm)λ(ā+ c̄m̄)µψ̂

(
b+ dm

a+ cm

)
, (8.3.15a)

(
T (g)ψ

)
(z) = (bz + d)λ(b̄z̄ + d̄)µψ

(
az + c

bz + d

)
, (8.3.15b)where use has been made of the linear property of the T (g). Again, it is asimple task to verify that the T (g) satisfy the funtional equation (8.3.1) andthe representation of the identity element is the identity transformation on

F(C∗). One again, the pairing (T (g),F(C∗)) is alled the representation andis understood via (8.3.15).8.4 CFT orrelation funtions as funtions in BAll of the previous representation theory has been onerned with only one opyof the underlying manifold. To map n-point funtions we need the generalised107



representation theory in the ontext of n opies of the relevant manifold. Wean, however, immediately generalise the previous theory to n-point funtionson (n opies of) the two spaes of interest to us, B and C
∗. We denote n opiesof B by

B
n = B×, . . . ,×B︸ ︷︷ ︸n opies , (8.4.1)and similarly for n opies of C
∗. We further denote the funtion spaes by

HF⊗n
i=1

(λi,µi)(B
n) (for eah opy of B we speify the appropriate degree ofhomogeneity) and F(C∗n) and note they are both linear spaes.8.4.1 The linear spae HF⊗n

i=1
(λi,µi)(B

n)In an analogous way to the 1-point funtions de�ned previously we denoteelements of HF⊗n
i=1

(λi,µi)(B
n) by

f


(w1, w2) , (x1, x2) , . . . , (z1, z2)︸ ︷︷ ︸n pairs 

 , (8.4.2)with
f
(
(p1w1, p1w2) , . . . , (pnz1, pnz2)

)
= pλ1

1 p̄µ1

1 · · · pλn
n p̄µn

n ×

f
(
(w1, w2) , . . . , (z1, z2)

)
. (8.4.3)The natural representation of G on this spae is

(T (g)f)
(
(w1, w2) , . . . , (z1, z2)

)
= f

(
(aw1 + cw2, bw1 + dw2) , . . .

. . . , (az1 + cz2, bz1 + dz2)
)
. (8.4.4)
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8.4.2 F(C∗n) and its relation to HF⊗n
i=1

(λi,µi)(B
n)The relation between the n-point funtion spaes is

Un1 : ψ̂ (p, . . . ,m) = w−λ1

1 w̄1
−µ1 · · · z−λn

1 z̄1
−µn×

f
(
(w1, w2) , . . . , (z1, z2)

)
, (8.4.5a)

Un2 : ψ (w, . . . , z) = w−λ1

2 w̄2
−µ1 · · · z−λn

2 z̄2
−µn×

f ((w1, w2) , . . . , (z1, z2)) , (8.4.5b)where w = w1

w2
, . . . , z = z1

z2
and p = w2

w1
, . . . , n = z2

z1
. Note that the n-pointfuntions are restrited to n opies of a spei� hart. On the intersetion ofthe harts the n-point transition funtions are given by the analagous versionof (8.3.11). The representation ating on this spae is given by

(
T (g)ψ̂

)
(p, . . . ,m) = (a+ cp)λ1 (ā+ c̄p̄)µ1 · · · (a+ cm)λn (ā+ c̄m̄)µn ×

ψ

(
b+ dp

a+ cp
, . . . ,

b+ dm

a+ cm

)
, (8.4.6a)

(
T (g)ψ

)
(w, . . . , z) = (bw + d)λ1

(
b̄w̄ + d̄

)µ1 · · · (bz + d)λn
(
b̄z̄ + d̄

)µn ×

ψ

(
aw + c

bw + d
, . . . ,

az + c

bz + d

)
. (8.4.6b)In the following ontext of CFT orrelation funtions we will only use thesubset of HF⊗n

i=1
(λi,µi)(B

n) where λi = µi so that without loss of generality wean denote HF⊗n
i=1

(λi,λi)(B
n) by HF(Bn). We will also use the fat that theonformal saling dimension is equal to �minus the degree of homogeneity� [41℄,

∆i = −λi.8.4.3 2,3 and 4-point funtionsWe map the 2-point funtion on C
∗ (8.1.1), using (8.4.5b) with n = 2, into theorresponding 2-point funtion on U2 whereby

KU2

λ (z1, z2; y1, y2) = C12| (z1y2 − z2y1) |2λ. (8.4.7)109



We map the 3-point funtion (8.1.2), using (8.4.5b) with n = 3, into theorresponding funtion on U2 whereby
CU2

λ1λ2λ3
= C123| (z1u2 − z2u1) |λ3−λ1−λ2×

| (z1v2 − z2v1) |λ2−λ1−λ3| (u1v2 − u2v1) |λ1−λ2−λ3 . (8.4.8)We map the 4-point funtion (8.1.3), using (8.4.5b) with n = 4, and �ndthe funtion takes the following form
SU2

λ1λ2λ3λ4
= φ

( |z1y2 − y1z2||u1v2 − v1u2|
|z1u2 − u1z2||y1v2 − v1y2|

)
×

|z1y2 − y1z2|
α
3 |z1u2 − u1z2|

β
3 |z1v2 − v1z2|

γ
3×

|y1u2 − u1y2|
δ
3 |y1v2 − v1y2|

ǫ
3 |u1v2 − v1u2|

ζ
3 , (8.4.9)where

α = −λ3 − λ4 + 2λ1 + 2λ2, (8.4.10a)
β = −λ2 − λ4 + 2λ1 + 2λ3, (8.4.10b)
γ = −λ2 − λ3 + 2λ1 + 2λ4, (8.4.10)
δ = −λ1 − λ4 + 2λ2 + 2λ3, (8.4.10d)
ǫ = −λ1 − λ3 + 2λ2 + 2λ4, (8.4.10e)
ζ = −λ1 − λ2 + 2λ3 + 2λ4. (8.4.10f)8.5 Integral transform from B to TWe have determined the left hand arrow of the diagram (8.2.1) (with suitableonstraints plaed on the funtions on B) and mapped the funtions of interestto us into B. We wish to do the same thing for the bottom arrow of the diagram,namely transform n-point funtions into T

n. As an attempt at doing this, anintegral transform �nding fT
p (z0

1 , z
0
2) (i.e. a funtion at a spei� point in T)
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when fB(z1, z2) is known, is given in [42℄ as
fT
p (z0

1 , z
0
2) =

i

2

∫

C

|a1a2|χ− 1

2

(
a1

a2
,
a2

a1

)
×

∂µµ̄

{
|µ|2fB(µ(a1a2)

1

2 z, µ(a1a2)
1

2 )
}
µ=1

dzdz̄, (8.5.1)where
µ ∈ C, (8.5.2a)
aj =

z0
j

z0
j − z

, (8.5.2b)
χ(z1, z2) = zn1

1 z̄n2

1 zm1

2 z̄m2

2 . (8.5.2)We generalise this to generate n-point funtions on T,
fTn

p (w0
1, w

0
2 ; . . . ; z

0
1 , z

0
2) =

(
i

2

)n ∫
. . .

∫

︸ ︷︷ ︸
n

| a1a2 . . . d1d2︸ ︷︷ ︸n pairs ×

|χ− 1

2

(
a1

a2
,
a2

a1

)
. . . χ− 1

2

(
d1

d2
,
d2

d1

)
×

∂µ1µ̄1···µnµ̄n

{
|µ1|2 . . . |µn|2×

fBn

(µ1(a1a2)
1

2 z, . . . , µn(d1d2)
1

2 )
}
µi=1
×

dzdz̄ . . . dwdw̄, (8.5.3)where
µn ∈ C ∀n ∈ Z, (8.5.4a)
aj =

z0
j

z0
j − z

, . . . , dj =
w0
j

w0
j − w

, (8.5.4b)
χ(z1, z2) = zn1

1 z̄n2

1 zm1

2 z̄m2

2 . (8.5.4)To make the formula (8.5.3) a little more lear we onsider the transfor-
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mation of the 2-point funtion and �nd that the integral takes the form
fT2

p (y0
1 , y

0
2 ; z

0
1 , z

0
2) = −1

4
(1−∆)4C12

∫ ∫ (
z0
1y

0
1(

z0
1 − z

) (
y0
1 − y

)
) 1

2
(1−∆+m1−n1)

×

(
z̄0
1 ȳ

0
1(

z̄0
1 − z̄

) (
ȳ0
1 − ȳ

)
) 1

2
(1−∆+m2−n2)

×

(
z0
2y

0
2(

z0
2 − z

) (
y0
2 − y

)
) 1

2
(1−∆−m1+n1)

×

(
z̄0
2 ȳ

0
2(

z̄0
2 − z̄

) (
ȳ0
2 − ȳ

)
) 1

2
(1−∆−m2+n2)

×

(z − y)−∆ (z̄ − ȳ)−∆ dydȳdzdz̄. (8.5.5)We wish to �nd the values of ∆ for whih the integral (8.5.5) onverges. Possiblepoints of divergene are where z = z0
1 , z = z0

2 , z = y and z →∞, and similarlyfor y.For an integral suh as
I =

i

2

∫

C

dz ∧ dz̄
(z − x)a (z̄ − x̄)ā

, (8.5.6)where x is a �xed omplex number, we reparameterise via oordinates adaptedto the possible point of divergene z = x+ reiφ and �nd that
I =

∫ 2π

0

∫ ∞

0
r1−a−āeiφ(ā−a)dr ∧ dφ. (8.5.7)The φ integral will onverge for all a. The r integral will onverge at r = 0if and only if 1− a− ā > −1, i.e. a+ ā < 2.Returning to the form of the 2-point funtion (8.5.5) on T

2 we �nd that forthe ases z = z0
1 and z = z0

2 , ∆ has to obey ∆ > −1 for the integral to onverge.However, the z → ∞ limiting ase yields an even bigger problem as ∆ dropsout of the dominating term and we �nd the integral diverges logarithmially.In onlusion, the 2-point funtion on T
2 derived in this way diverges ∀∆ andwe onlude that the formula given in [42℄ yields divergent funtions on T.112



8.6 The bulk-to-bulk propagator in H3We now turn our attention to the top-most arrow of the diagram (8.2.1). In [43℄the authors alulate the bulk-to-bulk propagator in Hd+1. For our purposes
d = 2, so that Hd+1 = H3. In the upper half-spae model of H3 individualpoints (with subsript i) an be denoted by ξi =

(
ξ0i , ξi

)
=
(
ξ0i , ξ

1
i , ξ

2
i

) where
ξ0i > 0. Viewing H3 in the unit ball model it is simple to see the topologialboundary is the Riemann sphere whih we oordinatise by (x1, x2

). We nowintrodue a bulk-to-boundary propagator [43℄ whih is a funtion (of a givenonformal dimension ∆) dependent on a point in the bulk and a point on theboundary
K∆ (ξ, x) =

(ξ0)∆

((ξ0)2 + |ξ − x|2)∆
. (8.6.1)Note that |ξ − x|2 = (ξ1 − x1)2 + (ξ2 − x2)2 denoting the Eulidean distanebetween the projetion of bulk points onto the boundary and the boundarypoint itself.The 2-point funtion, or bulk-to-bulk propagator is then found by inte-grating over the boundary two bulk-to-boundary propagators (of representationweight ∆ and ∆̄) onneted on the boundary at the same point, namely

KH3

∆ (ξ1, ξ2) =

∫

S2

d2xK∆ (ξ1, x)K∆̄ (ξ2, x) , (8.6.2)whih onverges ∀∆ ∈ C. Following [43℄ we will restrit ourselves to Type Irepresentations where
∆ = 1 + iρ. (8.6.3)After a lengthy alulation (see [43℄ for the details) we obtain the �nalresult for the 2-point funtion on H3,

KH3

ρ (ξ1, ξ2) =
π

ρ

sin ρl

sinh l
, (8.6.4)where

l = log

(
ξ01
ξ02

)
. (8.6.5)113



We do not ompute the 3 and 4-point funtions on H3 using these teh-niques expliitly as they are quite omplex objets.8.7 Integral transform from H3 to T - the �twistortransform�Having eluidated the details of two of the arrows on the diagram (8.2.1) (andattempted one of the others unsuesfully) we now turn our attention to theright-most arrow. This transformation (like the B to T transform) is also anintegral transform. The fasinating thing about the transform is that when weintegrate a funtion over a ertain spae of hyperplane setions in T we aresupposed to obtain a funtion on HC
3 that automatially satis�es the masslesswave equation.Referene [18℄ develops twistor onstrutions for SO(1;n) and spei�allygives the details of the Penrose transform. Here we present some original workon this transformation using the formulae from [18℄ but unfortunately onludethat the transformation in this parameterisation is still ill-understood.We wish �rst to explain the types of dual spaes we are interested in.8.7.1 First-kind and seond-kind oupled spaesWe de�ne a �rst-kind oupled spae to T very simply as the omplex hyperboloid

HC
3 ,

HC
3 =

{
ξ ∈ C

1,3 | 〈ξ, ξ〉 = 1
}
. (8.7.1)Seond-kind oupled spaes are a little more triky to visualise, so we makea brief aside here in order to alert the reader to how the onstrutions work.We onsider, for visualisable simpliity, the �eld of real numbers although theonstrution works equally well for K ∈ {R,C}. The appliation we have inmind is for 3-dimensional omplex projetive spae.114



The simplest ase to onsider is the Eulidean plane R
2 and elements xthereof. We �rstly note that the 1-dimensional real projetive spae RP 1 isde�ned as RP 1 = (R2 \ {0})/ ∼ where the equivalene relation on R

2 is x ∼ x′if ∃p ∈ R | x′ = px and p 6= 0. Geometrially this orresponds to the spae ofreal lines through the origin in R
2. We denote elements of RP 1 by [x].We take the usual inner produt on R

2 and speify elements of a subset(in this ase a linear subspae) of R
2 by

L[x] =
{
y ∈ R

2 | 〈x, y〉 = 0
}
. (8.7.2)Geometrially, L[x] is the real line orthogonal to x, but note that L[x] is onlyde�ned up to projetive resalings of x so that L[x] is orthogonal to [x] explainingthe notation. Due to this fat we have the following duality

[x]↔ L[x]. (8.7.3)In words, points in RP 1 are dual to origin interseting lines in R
2, i.e pointsin RP 1. In this 2-dimensional ase the duality is geometrially very trivial.However, when we onsider R

3 and elements x and y thereof we immediatelysee through the ondition
〈x, y〉 = 0, (8.7.4)that points in RP 2 are dual to origin-interseting 2-dimensional planes in R

3whih are ompletely spei�ed by the original point in RP 2. Although theplanes are no longer elements of R
3 or RP 2 we an onsider the manifold formedfrom these hyperplane setions to be isomorphi to RP 2. The duality in 3dimensions takes the same form as (8.7.3) where now [x] ∈ RP 2 and L[x] is anelement of the spae of hyperplane setions.8.7.2 GeneralisationsWe an immediately generalise to an (n+ 1)-dimensional overing spae withthe orresponding n-dimensional projetive geometry. We obtain the result115



that the manifold formed from hyperplane setions aording to (8.7.4) is iso-morphi to the n-dimensional projetive spae with the duality of the elementsgiven by (8.7.3). With the partiular quadri ondition (8.7.4) the hyperplanesetions are �at and all interset the origin. It is important to note, however,that the underlying geometrial dimension of an element of the �hyperplane se-tion� manifold is n in omparison with the usual �point� manifolds where thegeometrial dimension of a single element is zero. We an also generalise to an
(n+ 1)-dimensional overing Minkowski spae with the same quadri ondition(8.7.4) but now with respet to the Minkowski inner produt with (−,+, ...,+)signature. All the previous analysis holds (inluding the origin intersetingondition) but, of ourse, the notion of perpendiularity hanges.We now generalise to the omplex ase by merely replaing R by C in theprevious paragraphs! A speialisation whih will be of partiular importaneto us will be the omplex ase where n = 3.8.7.3 The transformWe �rst de�ne a omplex form of bidegree (r, s), or an (r, s)-form, on M as [39℄

ω =
1

r!s!
ωµ1...µr ν̄1...ν̄sdz

µ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs , (8.7.5)so that ω ∈ Ωr,s (M). The ation of the exterior derivative d on elements of
Ωr,s (M) splits aording to its destinations by

d = ∂ + ∂̄, (8.7.6)where
∂ : Ωr,s (M)→ Ωr+1,s (M) , (8.7.7a)
∂̄ : Ωr,s (M)→ Ωr,s+1 (M) . (8.7.7b)By ∂-losed we mean forms ω suh that ∂ω = 0 and similarly, ∂̄-losed meansforms ω suh that ∂̄ω = 0. We further de�ne a homogeneous form of bidegree

(λ, µ) to be a form ω whose omponent funtions obey (8.3.3).116



We work in the omplex quadri representation of T, (7.7.2). The integraltransform as given in [18℄ is
ψ̂(ξ) =

∫

S
ψ ∧ ωξ, (8.7.8)where ψ is a ∂̄-losed (0, 1) form on T homogeneous of bidegree (0,−1). This isthe funtion on T we wish to integrate with some additional form dependene.

ωξ is a ∂-losed (1, 0) form on the hyperplane setion S of T that we integrateover. S is found by onsidering the intersetion of T with a seond kind dualobjet orresponding to a point in the �rst kind dual objet. For this omplexvariable ase, the point in the �rst kind dual objet is an element ξ of HC
3 ,whih via the duality ondition

〈z, ξ〉 = 0, (8.7.9)has a 3-dimensional omplex hyperplane assoiated with it L[ξ] ∈ CP 3
ξ . Theintersetion of this hyperplane with T gives us a 1-dimensional omplex hyper-plane setion S = T ∩ L[ξ] whih we integrate over.Referene [18℄ gives the formula for the invariant one-form as

ωξ =
[u, v, z, dz]

〈u, z〉 〈ξ, v〉 . (8.7.10)The notation [a, b, c, d] denotes the determinant of a 4 × 4 matrix with the 4-omponent objets a, b, c, d as the olumns. u, v, z, ξ are all C
1,3 vetors obeyingthe onditions

〈z, z〉 = 0, (8.7.11)speifying the quadri and
〈z, ξ〉 = 0, (8.7.12)speifying the duality ondition. 〈u, z〉 6= 0 and 〈ξ, v〉 6= 0 ensure that the formis well-de�ned.Note that this form is indeed invariant under the ation of the group

Oc(1, 3) as was heked via Maple. Cruially this form is dependent on a pointin the �rst kind dual spae ξ ∈ HC
3 so that the result ψ̂ is a funtion on HC

3 .117



However, ontrary to the laim in [18℄, the measure is dependent on u and v.We do not want to have a transformation de�ned only up to some dependeneon two C
1,3 vetors so we rede�ne the one-form via

ωξ =
[u, v, z, dz]

〈u, z〉 〈ξ, v〉 − 〈u, ξ〉 〈z, v〉 , (8.7.13)whih is again Oc(1, 3) invariant but now is independent of u and v. It is thisseond form (8.7.13) whih we use in the omputations.8.7.4 Real twistor transformAs a �rst step on the path to the full omplex twistor transform we �rst onsiderthe simpler ase of real variables. (In this ontext we hange the nomenlatureof the variables; z → x, ξ → y). The spei� advantage of onsidering thissimpler ase is that all the geometry is visualisable. The omplex quadripresription of T takes on a well known form when we restrit our attention toreal variables. Consider the equation de�ning the quadri
〈x, x〉 = 0, (8.7.14)where x ∈ R

1,3. This equation de�nes the 3-dimensional light one (where weonsider only the part with x0 > 0) so that
L+ =

{
x ∈ R

1,3 | 〈x, x〉 = 0, x0 > 0
}
, (8.7.15)and when we remember that we are working in projetive spae we obtain theprojetive light one,

PL+ = L+/ ∼, (8.7.16)where ∼ is the equivalene relation x ∼ x′ ⇔ x = λx′ for some λ ∈ R
+. Wehave obtained the result that the �real� twistor spae is simply the projetivelight one, whih is isomorphi to the 2-sphere,

T
R = PL+

∼= S2. (8.7.17)118



The �rst-kind dual spae in the ontext of real twistor spae is simply de Sitter
3-spae dS3, spei�ed by elements y ∈ R

1,3 s.t 〈y, y〉 = 1. The duality ondition(8.7.3) gives us (for y ∈ dS3) timelike 3-planes orthogonal to y,
L[y] = {x | 〈x, y〉 = 0} . (8.7.18)The hyperplane setion of T

R we integrate over is the intersetion of this timelike
3-plane with the 2-sphere whih gives us a irle on the sphere. For example ifwe hoose y = (0, 0, 0, 1) ∈ dS3 then the ondition (8.7.4) plaes no restritionon x0, x1, x2 but sets x3 = 0 to give us a timelike 3-plane L[y]. Taking advantageof the equivalene relation in (8.7.16) we an parameterise PL+ by x0 = 1 and�nd that the intersetion of L[x] and PL+ is

Lx ∩ PL+ =
{
x ∈ L+ | x0 = 1, x2

1 + x2
2 = 1, x3 = 0

}
, (8.7.19)being a spei� irle S1 ⊂ S2. Other points in dS3 give rise to other irles onthe sphere. Finally we note that y and −y in dS3 speify the same irle on the

2-sphere. De�ning an equivalene relation ∼ by y ∼ y′ ⇔ y = −y′ we obtainthe result that dS3/ ∼ is isomorphi through (8.7.4) to the spae of irles onthe sphere. The real version of the one-form (8.7.13) now gives us an invariantmeasure on this spae of irles. We wish to parameterise this one-form on ageneral irle.To parameterise the one-form we onsider inverse stereographi projetionfrom the 2-plane to the 2-sphere σ−1 : R
2 → S2 so that

σ−1 (X1,X2) =

(
1,

2X1

1 +X2
,

2X2

1 +X2
,
X2 − 1

1 +X2

)

∼
(

1 +X2

2
,X1,X2,

X2 − 1

2

)
= x ∈ R

1,3. (8.7.20)as x is de�ned only up to projetive resalings. Here X = (X1,X2) ∈ R
2 and

X2 = X2
1 +X2

2 = 〈X,X〉
R2 . We also hoose a oordinate system for dS3 with

y ∈ dS3 suh that
y = (sinh t, cosh t Y ) , (8.7.21)119



where Y = (y1, y2, y3) ∈ R
3 and Σiy

2
i = 1 so that 〈y, y〉 = 1 is automatiallysatis�ed. For a �xed y the duality ondition (8.7.4) gives us the equation of airle on R

2,
(
X1 −

y1

p− y3

)2

+

(
X2 −

y2

p− y3

)2

=
1− p2

(p− y3)
2 , (8.7.22)with entre

(y1, y2)

p− y3
, (8.7.23)and radius (

1− p2
)1/2

p− y3
, (8.7.24)where

p = tanh t. (8.7.25)We introdue a polar angle χ along this irle by
(X1,X2) =

1

p− y3

(
y1 +

(
1− p2

)1/2
cosχ, y2 +

(
1− p2

)1/2
sinχ

)
, (8.7.26)whih parameterises the irle for y ∈ dS3.We now ompute the real version of the one-form (8.7.13) and �nd

ωy =
dχ

sinh t− cosh t
(
1− y2

1 − y2
2

)1/2 , (8.7.27)whih is independent of u and v in (8.7.13) and gives us the orret measureto use when integrating funtions over this irle on S2. One point to note isthat using this form of the sterographi projetion, ωy is ill-de�ned for irlesinterseting the north pole as the stereographi projetion will send this pointto in�nity.Using ωy we now wish to integrate funtions of an appropriate degree ofhomogeneity on the sphere, over this irle, with the desire that the resultingfuntion automatially satis�es the wave equation in dS3.
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8.8 Solutions to the wave equation on dS3We now onsider solutions to the wave equation in general and give a resultonerning the solution in dS3.The Laplaian ∆ is de�ned using the exterior derivative and its adjoint asa linear map ∆ : Ωr (M)→ Ωr (M), where ∆ =
(
d+ d†

)2 [39℄. For the spei�ase where r = 0 the Laplaian is a linear map between funtions given by theexpression,
∆ =

1√
|g|
∂ν

(√
|g|gνµ∂µ

)
, (8.8.1)where g is the metri on the manifold.In the ontext of the real twistor transform we wish to obtain funtionsautomatially satisfying the wave equation on dS3 whih has the metri

ds2 = −dt2 + cosh2 t dΩ2, (8.8.2)where dΩ2 is the metri on the 2-sphere. This metri is indued from the metrion R
1,3 and has indued signature (−,+,+). On dS3 the Laplaian takes theform

∆dS3 =
1

cosh2 t

(
−∂t

(
cosh2 t ∂t

)
+ ∆S2

)
, (8.8.3)where ∆S2 is the Laplaian on the 2-sphere.We searh for separable solutions to the massless wave equation of theform f = T (t)Y (θ, φ) and see that the Y part of the solution takes the usualform of a spherial harmoni on the 2-sphere

∆S2Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ), (8.8.4)
Y m
l (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (8.8.5)where the Pml (cos θ) are the assoiated Legendre polynomials. We are thus leftwith the T part of the solution satisfying the di�erential equation

(
∂t(cosh

2 t∂t) + l(l + 1)
)
T (t) = 0. (8.8.6)121



Via the hange of variables σ = −e2t we transform to
σ (1− σ)T ′′ − 2σT ′ − l(l + 1)

1− σ T = 0, (8.8.7)where di�erentiation is indiated w.r.t σ.We now make the substitution T = coshl t e(l+2)tF so that F satis�es thehypergeometri equation
σ (1− σ)F ′′ + (c− (1 + a+ b)σ)F ′ − abF = 0, (8.8.8)with a = l + 1, b = l + 2, c = 2. One solution to this equation is given bythe hypergeometri series, [44℄, Fl+1,l+2 = F

(
l + 1, l + 2, 2,−e2t

), whih anbe simpli�ed to give
Fl+1,l+2 =





(
1 + e2t

)−1
l = 0,

(l + 1)
(
1 + e2t

)−2l−1∑l−1
c=0

(l+1
c+1

)(l−1
c

) (
−e2t

)c
l ≥ 1.

(8.8.9)In [45℄ the two linearly independent solutions to the massive, m 6= 0, waveequation on dS3 are given. The result (8.8.9) is the massless speial ase ofthe result obtained in [45℄, with the hypergeometri part written expliitly asa polynomial. We obtain the �nal result that one solution to the masslesswave equation on dS3 is given (for an integer value of l and orrespondinginteger values of m) by the produt of the hypergeometri funtion (8.8.9),
coshl t e(l+2)t and spherial harmonis Y m

l . We expet the result of the realtwistor transform to give (at least) a subset of these funtions and possiblyinterset with the whole set.Returning to the twistor transform we now use (8.8.3) in the form
∆dS3

= −∂2
t − 2 tanh t∂t +

1

cosh2 t

(
∂2
θ + cot θ∂θ +

1

sin2 θ
∂2
φ

)
, (8.8.10)where we have hosen Y = (cosφ sin θ, sinφ sin θ, cos θ). Unfortunately, weould not make funtions ψ̂ transformed using the real version of (8.7.8) withthe form ωy (8.7.27) satisfy ∆dS3

ψ̂ = 0.122



8.9 Complex twistor transformOf ourse, it is the omplex version whih we are really interested in to un-derstand the right-most arrow of the diagram (8.2.1). It is a relatively simpleextension where we now use inverse omplex sterographi projetion σ−1
C

: C
2 →

PLC
+, φ, t and y are now omplex parameters and we speify the �rst kind dualmanifold as 〈ξ, ξ〉 = 1. The invariant form on the spae of hyperplane setionsis

ωξ =
dφ

cosh t− sinh t
(
1− y2

1 − y2
2

)1/2 , (8.9.1)whih is a ∂-losed (1, 0)-form.The problems a�iting the real twistor transform are present in the om-plex ase as well - the transformation does not give us a set of funtions satisfy-ing the massless wave equation on HC
3 . One possible problem is that the form(8.7.13) is an ansatz whih turned out to be expliitly u, v independent. If wewere to return to this problem we would ompute the measure as given in [18℄from �rst priniples as the residue of a losed form with a simple pole.
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Chapter 9
Conlusions

The thesis was split into two parts; hapters 2 through 6 disussed the Hamilto-nian formulation of two massive point partiles oupled to AdS3 gravity whereashapters 7 and 8 disussed SL(2,C) twistor spae and onformal �eld theory
n-point funtions.9.1 Point partiles oupled to AdS3 gravityIn one sense GR in 2 + 1 dimensions is trivial when ompared with its (3 + 1)-dimensional ounterpart; the triviality abounding from the fat that a (2 + 1)-dimensional spaetime has no loal degrees of freedom, physially meaningthere are no gravitational waves. However, in 2 + 1 dimensions the theoryan be onsistently oupled to point partiles, providing us with one method ofonstruting topologially nontrivial spaetimes whih have a �nite number ofglobal degrees of freedom. There are a number of (lassially equivalent) waysto analyse (2 + 1)-dimensional gravitational theories being that of geometristrutures, the Chern-Simons formulation and the ADM formalism [46℄. Thereare also many ways in whih to formulate the dynamis of suh a system withpoint partiles present, partiularly with respet to the boundary onditions ofthe theory, see referenes in [9℄. 124



In the �rst part of the thesis we formulated and analysed the Hamiltonianfor a pair of massive point-partiles oupled to AdS3 gravity.We began by disussing the geometry of two partiles oupled to AdS3.We hose, following [9℄, to anhor the dynamis to the asymptotially AdSonial in�nity, and in doing so desribed the geometry of the system in therelativisti analogue to the Newtonian entre-of-mass frame. We did this by�rstly desribing the geometry of the two-partile spaetimes in terms of a pieeof AdS3 spaetime between the partiles and then translating this desriptioninto one in whih we ould relate the spaetime dynamis to the in�nity. Thisanhoring proedure also led us to use the BTZ time as the time oordinate inour disussion of the Hamiltonian formulation. We made a substantial tehnialsimpli�ation at this point by speialising to the ase of zero angular momentumyielding a spaetime ontaining olliding partiles.We hose further to use the Chern-Simons formulation of gravity in orderto disuss the bulk ation and how it naturally splits into two Chern-Simons(C-S) type ations. We then went on to disuss the gauge transformations ofthe theory whih we used when disussing how to �x the gauge. We then splitthe spaetime manifold aording to M = Σ × R and alulated the 2 + 1deomposition of the bulk ation in order to disover what form the Liouvilleterm took. We also brie�y disussed the partile ations and hose the ationon the boundary at the spatial in�nity.In order to redue the ation we imposed the onstraints and �xed thegauge of the theory by embedding Σ into a �titious spaetime of the form al-ready disussed. We then used the details of the embedding and gauge �xing toevaluate the Liouville term. We evaluated the term through a ombination ofdiret evaluation and onversion of the term into a one-dimensional boundaryintegral by Stokes' theorem. The evaluation of this boundary integral presentedthe largest problem within the whole body of work and although we did notomplete the redution using these tehniques, we did arry it out to a stagewhere it was possible to sidestep the remaining tehnialities and use onsis-125



teny with the known equations of motion to omplete the analysis.We thus evaluated the redued ation of the theory, for three speial asesof the masses of the two partiles, and obtained a two dimensional reduedphase spae. The dimensionality of the phase spae was due to the fat thatwe were in the olliding partile regime and thus needed only one position andone momentum oordinate to desribe the system fully. We would expet toobtain a four dimensional redued phase spae if the analysis were ompletedfor the spinning partile regime as is the ase in [9℄. We performed a anonialtransformation to a phase spae hart oordinatised by the geodesi distanebetween the partiles, being analagous to the redued position vetor of a New-tonian two-body system in the entre-of-mass frame, and its relative onjugatemomentum, and wrote the Hamiltonian in terms of these variables.In ontrast to [9℄ our theory inluded a negative osmologial onstantmeaning we had a ertain regime in whih the spaetime ontained a blakhole. We ontinued the Hamiltonian analytially to the blak hole regime andalso analysed the threshold of blak hole formation H = 0. We found that nearthis threshold the mass of the blak hole depended linearly on the momentumof the partiles. In the language of ritial phenomena, this equates to the masssaling with ritial exponent 1 in agreement with what was found in [12℄ by amethod that uses the onstants of motion as oordinates on the phase spae.We also used the ation to ompute the semilassial tunnelling probabilityamplitude of two partiles out of the blak hole. We found that the imaginarypart of the ation was equal to the Bekenstein-Hawking entropy of the blakhole. In a similar analysis for a spherial shell in four dimensions [47℄, theimaginary part of the ation was found to be half of the Bekenstein-Hawkingentropy SBH, leading to the fator exp (−SBH) on taking the modulus squared ofthe semilassial probablility amplitude. The reason for the fator of 2 di�erenebetween our result and that of [47℄ appears to be in the di�erent hoies of thetime oordinate [48℄. 126



In summary, we have formulated and analysed a Hamiltonian for threespei� ases for two-partile AdS3 spaetimes. We have desribed the geom-etry of suh spaetimes and used the Chern-Simons formulation of gravity indisussing the ation. We �xed the gauge and evaluated the redued ation ofthe theory. Finally we performed a anonial transformation to �nd a Hamil-tonian for eah of the three ases.For two of the ases (two massless partiles and two partiles with equalpositive masses) the ritial exponent for the threshold of blak hole forma-tion was shown to oinide with the results in [12℄. Also for these two asesthe equations of motion have been analysed and used to alulate the imag-inary ontribution to the ation whih has been shown to oinide with theBekenstein-Hawking entropy. The author has no reason to expet that theresults for arbitrary vlues of the masses would be di�erent.We ould extend the researh in a variety of ways. One thing to onsiderwould be when the spaetime ontained n > 2 partiles. In theory we ouldproeed with the analysis of the spaetime geometry in the same way althoughin pratie the alulations would get inreasingly more di�ult. We ould alsoonsider evaluating the redued ation for the spinning partiles ase although itmay be worthwhile to re�ne the tehniques used to arry out the redution �rst.One other area worthy of further study would be to onsider the quantisationof the various Hamiltonians obtained. The quantisation of the Hamiltonian forthe zero osmologial onstant ase has been onsidered in [11℄ and it would beworthwhile to onsider the quantisation of the negative osmologial onstantase along similar lines. We leave this question open for further studies.9.2 SL(2, C) twistor spae and onformal �eld theoryIn the seond part of the thesis we analysed the properties of SL(2,C) twistorspae, T, and explored the form that onformal �eld theory takes within T andvarious related spaes. We gave some details on the twistor transform for T.127



We were �rst onerned with oset spaes onstruted from SL(2,C). Werealised �SL(2,C) twistor spae�, showing that it has omplex dimension two,a metri with signature (+,+,−,−) and an interesting omplex struture. Wealso realised one representation of the oset spae B. We went on to examinethe form of onformal �eld theory n-point funtions in S2, H3, T and B. Inorder to translate the n-point funtions to the various spaes we needed tomake use of two separate integral transforms, one being the twistor transformfor T. We gave the details of the 2, 3 and 4-point orrelation funtions de�nedon the Riemann sphere and used some tehniques from representation theoryto transform the funtions of interest into B. We then analysed the integraltransform from B to T as given in [42℄ but unfortunately onluded that theformula given in [42℄ yields divergent funtions on T.In the attempt to understand the twistor transform from T to H3 our workenabled us to write the hypergeometri part of the solution to the massless waveequation on dS3 expliitly as a polynomial. Unfortunately the omputation ofthe twistor transform did not yield funtions automatially satisfying the waveequation (being the main motivation for this work). If we were to return to thisproblem we would ompute the measure as given in [18℄ from �rst priniples asthe residue of a losed form with a simple pole. However, we unfortunately hadto onlude that the twistor transform in this ontext is still ill understood.
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