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Abstra
t
We study the Hamiltonian dynami
s for a system of two 
olliding point parti
les
oupled to (2 + 1)-dimensional gravity with a negative 
osmologi
al 
onstantby an
horing the dynami
s of the system to its spatial in�nity. We redu
ethe Chern-Simons formulation of the gravitational a
tion, �nding the redu
edHamiltonian for three spe
ial 
ases of the parti
le masses, in a phase spa
e
hart 
oordinatised by the geodesi
 distan
e between the two parti
les and its
onjugate momentum. The dimension of the redu
ed phase spa
e is two. Atthe threshold of bla
k hole formation, the bla
k hole mass depends linearly onthe momentum, in agreement with previous analysis in a holonomy-based phasespa
e 
hart. We use the redu
ed a
tion to 
ompute the semi
lassi
al probabilityamplitude of two parti
les to tunnel out of the bla
k hole, �nding that theimaginary part of the a
tion is equal to the Bekenstein-Hawking entropy of thehole. We also study the form that 
onformal �eld theory (CFT) 
orrelationfun
tions take in 
oset spa
es of SL (2,C). We realise the SL (2,C) twistorspa
e T in two distin
t but equivalent ways, deriving some important fa
tsabout this spa
e, and we also give one representation of another 
oset spa
e
B. We examine the form of CFT 
orrelation fun
tions in T, B and two otherrelated spa
es using te
hniques from representation theory and make a numberof 
omments on the twistor transform for T.
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Chapter 1
Introdu
tion

Two of the most thought-provoking theories of modern physi
s to emerge fromthe twentieth 
entury are quantum me
hani
s (QM) and general relativity(GR). QM, whi
h is relevant on the atomi
 s
ale, a

urately des
ribes threeof the four fundamental for
es of nature, namely ele
tromagnetism, the strongintera
tion and the weak intera
tion, but in its usual formulation does so on a�xed ba
kground spa
etime. GR, whi
h applies itself to large-s
ale stru
turessu
h as stars and galaxies, des
ribes gravitation, the fourth fundamental for
e,but 
ru
ially does so with a dynami
al ba
kground spa
etime.Attempts to unify GR and QM into a so-
alled theory of quantum gravity(QG) have a long and 
ompli
ated history of whi
h it is not our intention to
over here; for an overview see [1℄. A mu
h more 
omplete introdu
tion to thesubje
t is given in [2℄ and a progress report is given in [3℄. It is the aim of thisthesis to dis
uss aspe
ts of two approa
hes to QG, namely 
anoni
al quantumgravity and twistor theory.The thesis is split into two fairly unrelated parts � part I, 
onsisting ofChapters 2 through 6, investigates point parti
les 
oupled to (2 + 1)-dimensionalgravity and the Hamiltonian formulation thereof. Part II, 
onsisting of Chapters7 and 8, addresses SL(2,C) twistor spa
e and some of its appli
ations within
onformal �eld theory. The results are summarised and dis
ussed in 
hapter 9.1



In the rest of this 
hapter we brie�y introdu
e the spe
i�
 topi
s to beinvestigated in Parts I and II and give a 
hapter-by-
hapter outline of the thesis.1.1 Canoni
al quantum gravity (CQG) and point par-ti
lesCanoni
al quantum gravity (CQG) is an attempt to quantise GR dire
tly bywriting GR in its 
anoni
al/Hamiltonian form and then quantising via a setof te
hniques invented by Dira
 in 1950 [4℄. The basi
 notions of CQG wereestablished by DeWitt in 1967 [5℄; the theory is written in terms of a set of 
on-�guration variables and 
anoni
ally 
onjugate momentum variables des
ribingthe state of the system at some point in time. One 
an then obtain the time-evolution of both sets of variables from the Hamiltonian form of the a
tion. Inthe �usual� way, the two sets of variables are then treated as operators obeying
ertain 
ommutation relations in order to translate to the quantum theory.Attempts to 
anoni
ally quantize (3 + 1)-dimensional GR have histori
allyrun into many di�
ulties. The (2 + 1)-dimensional theory, however, providesus with a te
hni
ally simpli�ed setting while retaining many of the 
on
eptualfeatures of the (3 + 1)-dimensional theory. n-dimensional GR has n (n− 3)physi
al degrees of freedom per spa
etime point [6℄, motivating the statementthat (2 + 1)-dimensional GR is lo
ally trivial, having zero (lo
al) degrees offreedom. However, due to the te
hni
al simpli
ity of the theory in 2 + 1 di-mensions it 
an be 
onsistently 
oupled to point parti
les and topologi
allynontrivial spa
etimes 
an be 
onstru
ted with a �nite number of global degreesof freedom. Su
h spa
etimes 
an be 
onstru
ted in terms of holonomies aroundnon-trivial loops whi
h is ni
ely explained in the 
ase of a zero and non-zero
osmologi
al 
onstant in [7℄ and [8℄ respe
tively. More re
ently [9℄ formulatesand analyses the Hamiltonian dynami
s of a pair of massive spinless point parti-
les in (2 + 1)-dimensional Einstein gravity for the 
ase where the 
osmologi
al
onstant is zero. The approa
h of [9℄ is to �rstly work out the geometry of the2



spa
etime at the spatial in�nity and then an
hor the parti
le traje
tories to thisgeometry. They then use the des
ription of two-parti
le spa
etimes in termsof a pie
e of Minkowski geometry between the parti
le world lines [10℄, andtranslate this des
ription into one that relates the worldlines of the parti
les tothe spatial in�nity. Finally they use the expli
it form of the 
lassi
al solutionsan
hored to the in�nity to redu
e the gravitational a
tion and �nd the redu
edHamiltonian.The quantisation of the Hamiltonian formulation obtained in [9℄ is 
on-sidered in [11℄.1.2 Point parti
les 
oupled to AdS3 gravityIn Chapters 2 through 6 we would like to emulate the work done in [9℄ by gen-eralising it to the 
ase where we in
lude a negative 
osmologi
al 
onstant. Wewould like to obtain a Hamiltonian formulation for two massive point parti
les
oupled to AdS3 gravity. The main upshot of in
luding a negative 
osmologi
al
onstant is that there are bla
k hole solutions, meaning we 
an study the bla
khole formation and analyse the 
riti
al phenomena at the formation threshold.We will also be able to 
omment on the a
tion for tunelling from the bla
k hole.Chapter 2 des
ribes the geometri
al details of the two-parti
le spa
etimes.All the relevant 
oordinate 
onventions are established and the one-parti
lespa
etimes are dis
ussed. The two-parti
le spa
etimes are then 
onstru
tedwhere the spa
etime has a non-zero spin parameter but assuming that thespa
etime does not have a bla
k hole. The last se
tion in this 
hapter spe
ialisesto the 
ase where the parti
les 
ollide, being the setting for the rest of the work.In Chapter 3 we dis
uss the �rst order a
tion formalism of AdS3 gravity.The gauge transformations of the theory are identi�ed in order to make use ofthem in the Hamiltonian redu
tion in Chapter 6. We then spe
ify a (2 + 1)-de
omposition of the a
tion and �nally dis
uss the 
ontributions to the a
tion3



from the parti
les and from the boundary term at in�nity.Chapter 4 des
ribes the embedding of the parti
le surfa
e in relation tothe two-parti
le spa
etimes dis
ussed in Chapter 2. We embed the surfa
e
ontaining the parti
les in a way that is 
onsistent with the known 
lassi
alsolutions and the boundary 
onditions at the spatial in�nity. We then use thedetails of the embedding to �x a gauge for the �elds in a 
ertain te
hni
al wayin order to evaluate the redu
ed a
tion in subsequent 
hapters.Chapter 5 deals with the 
ontribution to the a
tion from the Liouvilleterm using the details of the embedding and gauge 
hoi
e from Chapter 4. Weevaluate part of this 
ontribution dire
tly and 
onvert the remaining part intoa one-dimensional boundary integral using Stokes' theorem. The evaluation ofthe boundary integral is examined in some detail, and whilst we do not 
ompletethe analysis due to algebrai
 
ompli
ations, we do establish the general formthat the Liouville term takes.In Chapter 6, the �nal 
hapter in this �rst part of the thesis, we �rst usethe general form of the Liouville term found in Chapter 5 and our knowledge ofthe equations of motion to �nd the fully redu
ed a
tion and write this a
tionin Hamiltonian form. The phase spa
e has dimension two. We then perform a
anoni
al transformation to a phase spa
e 
hart in whi
h the �position� 
oor-dinate is the geodesi
 distan
e between the two parti
les. We use this a
tionto analyse the bla
k hole formation threshold and �nd the leading order 
rit-i
al exponent to be one, 
oin
iding with the result obtained in [12℄. Finallywe study the bla
k hole 
reation/annihilation as a quantum me
hani
al tun-nelling pro
ess and �nd that the imaginary part of the a
tion is equal to theBekenstein-Hawking entropy of the bla
k hole.
4



1.3 Twistor theoryTwistor theory in its original form was invented by Roger Penrose in 1967.His vision was that fundamental physi
s should be reformulated in terms ofobje
ts 
alled twistors living in twistor spa
e. Twistors 
ould then be used tore
onstru
t spa
etime in a pres
ribed mathemati
al manner. Penrose's popularmonograph [13℄ des
ribes the main ideas of twistor theory and an a

essiblete
hni
al introdu
tion to twistor theory is given in [14℄. Twistor theory waslargely ignored by the wider theoreti
al physi
s 
ommunity until 2003 whenEdward Witten wrote a paper relating string theory and twistor geometry [15℄.Twistor string theory was born and many papers followed, for example [16℄,bringing twistor theory on
e again into the limelight of mainstream resear
h.1.4 SL(2, C) twistor spa
e and 
onformal �eld theoryOne of the unique selling points of twistor theory is that solutions to the mass-less wave equation naturally arise using the methods of twistor geometry. ThePenrose/twistor transform, whose details were �rst established in [17℄, is anintegral transform from a 
ertain subset of fun
tions on twistor spa
e to thespa
e of solutions to the massless wave equation on 
ompa
ti�ed Minkowskispa
e. The twistor transform is not, however, restri
ted to Penrose's twistorspa
e; [18℄ shows how to 
onstru
t the twistor transform for SO (1, n) ratherthan SU (2, 2) twistors.The AdS/CFT 
orresponden
e (or Malda
ena duality) states there is anequivalen
e between a 
ertain string theory living on AdS ×K, where K is a
losed manifold, and a 
onformal �eld theory (CFT) living on the boundary ofthe AdS spa
e. See [19℄, [20℄ and the review [21℄.In Chapters 7 and 8 we draw upon the ideas of AdS/CFT and attemptto determine the relationship between CFT 
orrelation fun
tions on two spa
esthat have not been extensively studied in the literature. We elu
idate properties5



of �SL(2,C) twistor spa
e�, T, and attempt to 
onstru
t the twistor transform
orresponding to this spa
e. We go on to explore the form of CFT 
orrelationfun
tions within T and various related spa
es.In Chapter 7 we des
ribe a �SL(2,C) twistor spa
e� that arises naturallyfrom the Lie group SL (2,C). In 
ontrast with Penrose's twistor spa
e, whi
hhas 
omplex dimension 4, SL(2,C) twistor spa
e has 
omplex dimension 2. Wealso 
onstru
t a related spa
e and dis
uss its global properties. Chapter 7 es-sentially sets the mathemati
al s
ene for physi
al appli
ations within 
onformal�eld theory.In Chapter 8 we examine the form of 
onformal �eld theory n-point fun
-tions in SL(2,C) twistor spa
e and two related spa
es. We also make a numberof 
omments on the twistor transform for T.

6



Chapter 2
One and two-parti
le AdS3geometry

In this 
hapter we establish the basi
 notation and 
onventions for the three-dimensional anti de Sitter spa
e, AdS3. We start by dis
ussing one realisation of
AdS3 and how the various isometries a
t in this realisation. We then establishour 
oordinate 
onventions for AdS3 and various related spa
es in order to
onstru
t the one-parti
le spa
etimes in the following se
tion. The two-parti
lespa
etimes are then 
onstru
ted in all generality where the spa
etime has a non-zero spin parameter, but assuming that the spa
etime does not have a bla
khole. Finally the spe
ial 
ase where this spin parameter is zero is presented asthe setting for the work in the subsequent 
hapters.2.1 AdS3 hyperboloid and the isometry groupHere we initially follow the 
onventions used in [22℄ although our Killing ve
torsare de�ned with a slightly di�erent orientation.

AdS3 
an be realised as an embedded hyperboloid in R
2,2. The metri
 on

R
2,2 is

ds2 = −dU2 − dV 2 + dX2 + dY 2. (2.1.1)7



For x = (U, V,X, Y ) ∈ R
2,2 and l > 0 the equation of the hyperboloid is

〈x, x〉
R2,2 = −U2 − V 2 +X2 + Y 2 = −l2. (2.1.2)For simpli
ity we will only 
onsider �unit� AdS3 su
h that l = 1 to avoid litteringthe formulae with a s
ale parameter.

AdS3 is a maximally symmetri
 spa
e in that it admits six linearly in-dependent Killing ve
tor �elds (KVF's). A (standard) set of su
h KVF's are
U∂V − V ∂U , (2.1.3a)
X∂Y − Y ∂X , (2.1.3b)
U∂X +X∂U , (2.1.3
)
U∂Y + Y ∂U , (2.1.3d)
V ∂X +X∂V , (2.1.3e)
V ∂Y + Y ∂V , (2.1.3f)and the isometry group generated by them is Oc(2, 2), where the subs
ript cstands for the 
onne
ted 
omponent. The six isometries generated by (2.1.3)(with a parameter θ) read expli
itly as follows:

(U, V ) rotations:

 U

V


 7→


 cos θ − sin θ

sin θ cos θ




 U

V


 , (2.1.4)

(X,Y ) rotations:

 X

Y


 7→


 cos θ − sin θ

sin θ cos θ




 X

Y


 , (2.1.5)

(U,X) boosts:

 U

X


 7→


 cosh θ sinh θ

sinh θ cosh θ




 U

X


 , (2.1.6)8



(U, Y ) boosts: 
 U

Y


 7→


 cosh θ sinh θ

sinh θ cosh θ




 U

Y


 , (2.1.7)

(V,X) boosts:

 V

X


 7→


 cosh θ sinh θ

sinh θ cosh θ




 V

X


 , (2.1.8)

(V, Y ) boosts: 
 V

Y


 7→


 cosh θ sinh θ

sinh θ cosh θ




 V

Y


 , (2.1.9)For our purposes, it is 
onvenient to write the Oc(2, 2) a
tion on AdS3 byusing the group de
omposition

Oc(2, 2) ∼= (SU(1, 1) × SU(1, 1)) /Z2, (2.1.10)and expressing a general element of AdS3 by a matrix, W ∈ SU(1, 1), su
h that
W =


 U + iV X + iY

X − iY U − iV


 , (2.1.11)where

U2 + V 2 −X2 − Y 2 = 1. (2.1.12)We denote elements of the isometry group by pairs; (gL, gR) ∈ SU(1, 1) ×
SU(1, 1) and �nd that the a
tion Oc(2, 2) : AdS3 → AdS3 is equivalent to
SU(1, 1)× SU(1, 1) : SU(1, 1)→ SU(1, 1). Con
retely, for (gL, gR) ∈ SU(1, 1)×
SU(1, 1), the a
tion is

W 7→W ′ = gLWg−1
R . (2.1.13)Note that the hyperboloid 
ondition (2.1.12) is implemented by det(W ) = 1and this 
ondition is invariant under the a
tion (2.1.13). The invariant metri
(2.1.1) is given in this matrix representation by 1

2Tr
[(
W−1 dW

)2].We now list, for the reader's 
onvenien
e, the elements of SU(1, 1) ×
SU(1, 1) that give the six isometries (2.1.4) to (2.1.9) in the form (2.1.13).9



Most of the 
al
ulations of the two-parti
le spa
etimes will use these matri
esand various 
ompositions thereof.
(U, V ) rotations (2.1.4):

gL =


 exp

(
iθ
2

)
0

0 exp
(
− iθ

2

)


 , (2.1.14a)

gR =


 exp

(
− iθ

2

)
0

0 exp
(
iθ
2

)


 . (2.1.14b)

(X,Y ) rotations (2.1.5):
gL =


 exp

(
iθ
2

)
0

0 exp
(
− iθ

2

)


 , (2.1.15a)

gR =


 exp

(
iθ
2

)
0

0 exp
(
− iθ

2

)


 . (2.1.15b)

(U,X) boosts (2.1.6):
gL =


 cosh

(
θ
2

)
sinh

(
θ
2

)

sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.16a)

gR =


 cosh

(
θ
2

)
− sinh

(
θ
2

)

− sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.16b)

(U, Y ) boosts (2.1.7):
gL =


 cosh

(
θ
2

)
i sinh

(
θ
2

)

−i sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.17a)

gR =


 cosh

(
θ
2

)
−i sinh

(
θ
2

)

i sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.17b)

(V,X) boosts (2.1.8):
gL =


 cosh

(
θ
2

)
i sinh

(
θ
2

)

−i sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.18a)

gR =


 cosh

(
θ
2

)
i sinh

(
θ
2

)

−i sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.18b)10



(V, Y ) boosts (2.1.9):
gL =


 cosh

(
θ
2

)
− sinh

(
θ
2

)

− sinh
(
θ
2

)
cosh

(
θ
2

)


 , (2.1.19a)

gR =


 cosh

(
θ
2

)
− sinh

(
θ
2

)

− sinh
(
θ
2

)
cosh

(
θ
2

)


 . (2.1.19b)Finally, note that the isometries 
an be written in terms of real-valuedmatri
es if SU(1, 1) is repla
ed by the isomorphi
 group SL(2,R) (see, for ex-ample, [23℄). The use of SU(1, 1) has however 
ertain 
omputational advantagesfor our purposes.2.2 Coordinate de�nitionsA set of 
oordinates (T,R, φ) that 
overs all of AdS3 is de�ned by

U = (1 +R2)
1

2 cos T, (2.2.1a)
V = (1 +R2)

1

2 sinT, (2.2.1b)
X = R cosφ, (2.2.1
)
Y = R sinφ. (2.2.1d)The metri
 reads

ds2 = −
(
1 +R2

)
dT 2 +

(
1 +R2

)−1
dR2 +R2dφ2. (2.2.2)Note that there is a 
oordinate singularity at R = 0 but this does not 
on
ernus here. As T is periodi
 with period 2π, we see that the spa
etime has 
losedtimelike 
urves. If we unwrap T , we obtain the universal 
overing spa
e CAdS3.Let us now 
onsider this done and with an abuse of notation refer to this
overing spa
e as AdS3. The 
oordinate ranges for this spa
e are −∞ < T <∞,

R ≥ 0 and 0 ≤ φ < 2π.Coordinates whi
h will be used extensively in the sequel are the so-
alled11



�sausage� 
oordinates (T, ρ, φ) de�ned by
R =

2ρ

1− ρ2
(2.2.3)with −∞ < T <∞, 0 ≤ ρ < 1 and 0 ≤ φ < 2π, yielding

ds2 = −
(

1 + ρ2

1− ρ2

)2

dT 2 +

(
2

1− ρ2

)2 (
dρ2 + ρ2dφ2

)
. (2.2.4)The 
oordinates (T, ρ, φ) yield a simply visualisable pi
ture of AdS3 as an in�-nite sta
k of Poin
aré disks of 
onstant T - see Figure 2.1.

Poincare Disk

}

Infinite stack of disks

Figure 2.1: AdS3 as an in�nite sta
k of Poin
aré disks. Ea
h 
onstant Tsli
e of the 
ylinder has the metri
 (2.2.5).Ea
h 
onstant T sli
e has the Poin
aré disk metri

ds2 =

(
2

1− ρ2

)2 (
dρ2 + ρ2dφ2

)
, (2.2.5)12



whi
h 
an be written in the more standard hyperboli
 polar 
oordinates via the
oordinate transformation ρ = tanh
(
w
2

), yielding
ds2 = dw2 + sinh2 w dφ2. (2.2.6)As ρ → 1 the metri
 (2.2.5) diverges - geodesi
 distan
es from points on theboundary of the disk to any other point on the disk are in�nite.Finally, we introdu
e the spinning BTZ 
oordinates (t, r, ψ), [22℄, via

T = αt+ Sψ, (2.2.7a)
φ = St+ αψ, (2.2.7b)
R2 =

r2 + S2

α2 − S2
, (2.2.7
)where α and S are parameters satisfying α > 0 and −α < S < α. The metri
reads

ds2 = −
(
r2 + S2 + α2

)
dt2 − 2Sαdtdψ +

r2dr2

(r2 + S2) (r2 + α2)
+ r2dψ2. (2.2.8)Setting M = −

(
S2 + α2

) and J = 2Sα, the metri
 be
omes
ds2 = −

(
r2 −M +

J2

4r2

)
dt2 +

dr2(
r2 −M + J2

4r2

)+r2
(
dψ − J

2r2
dt

)2

. (2.2.9)The metri
 (2.2.9) 
omes to us with the restri
tion M < 0. We 
ould, however,start from (2.2.9) and ask what spa
etime this metri
 des
ribes for arbitraryvalues of M and J . The (partial) answer is that the 
ontinuation of (2.2.9)into the region where M > 0 but |J | ≤ M , with the 
oordinates identi�ed as
(t, r, ψ) ∼ (t, r, ψ + 2π), des
ribes the BTZ bla
k hole analysed in [22℄. We donot wish to say any more about this here but will return to the bla
k hole in
hapter 6.2.3 Single spinning point parti
le - �AdS 
oni
al ge-ometry�We 
onstru
t the single spinning parti
le spa
etimes by adapting the dis
ussionof [9℄ from Minkowski spa
e to AdS3. This will allow us to dis
uss the two-13



parti
le spa
etimes and their stru
ture at spa
elike in�nity.We de�ne AdS as the (2 + 1)-dimensional spa
etime obtained by remov-ing the timelike geodesi
 R = 0 from AdS3 and ÃdS as the universal 
overingspa
e of AdS. We introdu
e on ÃdS a set of global 
oordinates akin to thesausage 
oordinates (2.2.4), with the φ 
oordinate unwound around the parti-
le worldline so that T ∈ R, 0 < ρ < 1 and −∞ < φ < ∞. Due to the inho-mogeneity introdu
ed into the original spa
e by removing a timelike geodesi
,there are now only two independent isometries on ÃdS, namely rotations in
(U, V ), generated by ∂T = −V ∂U +U∂V , and rotations in (X,Y ), generated by
∂φ = −Y ∂X +X∂Y . In the sausage 
oordinates these isometries are given by

J := exp (2πS∂T + 2πα∂φ) , (2.3.1)with the a
tion
J : (T, ρ, φ) 7→ (T + 2πS, ρ, φ + 2πα) . (2.3.2)We now interpret ÃdS/Z, where the Z a
tion is generated by (2.3.1),as the spa
etime generated by a single spinning point parti
le at ρ = 0 [7�9, 24℄. The mass of the parti
le equals π (1− α) and S gives the spin of theparti
le. ÃdS/Z 
an be des
ribed in terms of a fundamental domain, D, andan identi�
ation a
ross its boundaries, where the identi�
ation takes the form(2.3.2). If α < 1, D 
an be embedded in AdS and the identi�
ation is a spe
i�


Oc(2, 2) transformation of R
2,2, namely a 2πα rotation in (X,Y ) (about theremoved timelike geodesi
) 
omposed with a 2πS rotation in (U, V ). We 
anthen 
hoose a wedge of the sausage for D - see Figure 2.2. The value α = 0 isthe threshold of bla
k hole formation whi
h we 
onsider in 
hapter 6.We introdu
e on ÃdS the 
oordinates (t, r, ψ) via (2.2.7) with the ψ 
o-ordinate unwound so that −∞ < t < ∞, r > 0 and −∞ < ψ < ∞. In these
oordinates, the isometry J (2.3.1) reads
J := exp (2π∂ψ) , (2.3.3)

J : (t, r, ψ) 7→ (t, r, ψ + 2π) , (2.3.4)14



T’=T+2    Sπ

δ

δ

T

Figure 2.2: Cylindri
al sausage with a parti
le wedge 
ut out. The wedgewith angle δ := 2π (1− α) is 
ut out of the spa
etime leavingthe fundamental domain for α < 1 to the right of the 
ut outwedge. The identi�
ation of the timelike boundary is indi
atedby the shaded segments of the diagram. The parti
le mass isgiven by δ

2
whereas the parti
le spin is given by S.
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and we refer to the 
oordinates (t, r, ψ) with the identi�
ation (t, r, ψ) ∼ (t, r, ψ+

2π) as the AdS 
oni
al 
oordinates on ÃdS/Z.2.4 Spa
etime of two spinless parti
lesNow that we have established the main 
onventions for spa
etimes with mas-sive point parti
les we turn our attention to the main fo
us of this 
hapter� des
ribing the geometry of two-parti
le AdS3 spa
etimes. (Note that thismethod of 
onstru
ting spa
etimes with parti
les 
an be extended to n parti
lesfor n > 2 but we will not do so here.)We label the parti
les with an index i ∈ {1, 2} and in a neighbourhoodof ea
h parti
le worldine the geometry is the spinless spe
ial 
ase (S = 0) ofse
tion 2.3. We denote the defe
t angles of the parti
les by δi := 2π (1− αi) andwe de�ne ci := cos δi2 and si := sin δi
2 . The requirement that the parti
le massesare greater than zero give the inequalities δi > 0. We also require that ea
hparti
le is nothing more exoti
 than a point parti
le and so also set δi < 2π. Wefurther require that the geometry near the spa
elike in�nity is that of a singlespinning point parti
le as des
ribed in se
tion 2.3. This implies δ1 + δ2 < 2πand c1 + c2 > 0, as in the 
ase of a vanishing 
osmologi
al 
onstant [9℄, andalso a further 
ondition, spe
i�
 to a negative 
osmologi
al 
onstant, whi
h willemerge at the end of the se
tion as (2.4.11).What remains is to des
ribe the geometry of the two-parti
le spa
etimein terms of a fundamental domain Ω̃0 - a pie
e of AdS3 spa
etime betweenthe parti
les. We will �rst do so, but we will then translate this pi
ture intoan equivalent one in whi
h the properties of the spa
elike in�nity are moreapparent.Without loss of generality we may assume the worldline of parti
le 1 to beat the 
entre of the sausage evolving straight up (as in Figure 2.2). We introdu
ethe notation B (w1, w2) for a boost parameter pair (w1, w2) as the 
omposition16



of a (U,X) boost with parameter w1 and a (V, Y ) boost with parameter w2;
B (w1, w2) :




U

V

X

Y



7→




coshw1 U + sinhw1 X

coshw2 V + sinhw2 Y

sinhw1 U + coshw1 X

sinhw2 V + coshw2 Y



. (2.4.1)The worldline of parti
le 2 is obtained by taking a worldline at the 
entre of thesausage and transforming via the inverse of (2.4.1) with the pair (β, v), where

β 6= 0 and v 6= 0;
B−1 (β, v) :




U

V

X

Y



7→




cosh β U − sinhβ X

cosh v V − sinh v Y

− sinhβ U + cosh β X

− sinh v V + cosh v Y



. (2.4.2)The two defe
t angles 
ombined with their relevant boost parameter pair (β, v)at T = 0 give us the initial data of the system. See Figure 2.3 for a 
ross-se
tionof the sausage at T = 0 showing the beginning of the evolution. Note that wehave 
hosen β > 0 and v > 0 for Figure 2.3 and all subsequent �gures. Theanalysis in this se
tion holds for β 6= 0 and v 6= 0 but the �gures are drawn for

β > 0 and v > 0.From Figure 2.3 it is 
lear that we will want to de�ne Ω̃0 so that theparti
le worldlines are timelike geodesi
s on the boundary of Ω̃0. We denotethe worldline of parti
le i by Pi with 
orresponding proper time λi, with thezeroes 
hosen so that λi = 0 at T = 0. The Pi are given by
P1 =




U1

V1

X1

Y1




=




cos λ1

2

sin λ1

2

0

0



, (2.4.3)

17



�
�
�
�

�
�
�
� δ

1Ω
∼ 12

δ
2

∼
0

Figure 2.3: Initial data sli
e T = 0. The parti
les are lo
ated on this 
on-stant T sli
e as shown. The single and double stroked lines arethe restri
tion of the relative single and double stroked bound-aries of Ω̃0 to this 
onstant T sli
e. The single stroked bound-aries are identi�ed by an (X,Y ) rotation on 
onstant T sli
es.The double stroked boundaries are identi�ed by an (X,Y ) ro-tation 
onjugated by a boost (2.4.1) with boost-pair (β, v), ina way that, for v 6= 0, does not preserve the 
onstant T sli
esand is dis
ussed in more detail in se
tion 2.5. δ̃2 
an be givenin terms of δ2 and the boost parameter pair (β, v) but is notparti
ularly important for our subsequent analysis. The arrowatta
hed to parti
le 2 indi
ates its velo
ity at T = 0. Ω̃0 isshown on the �gure between the removed wedges. Note that
Ω̃0 rea
hes the in�nity in two dis
onne
ted parts and is there-fore not well adapted to des
ribing the spa
elike in�nity.
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P2 =




U2

V2

X2

Y2




=




cosh β cos λ2

2

cosh v sin λ2

2

− sinhβ cos λ2

2

− sinh v sin λ2

2



. (2.4.4)The parti
les evolve as shown in Figure 2.4. Elementary geometry shows that

2
1 πΤ=

2
3 πΤ=

T= 2 π

12 T= 0

Τ= π

Figure 2.4: Evolution of the parti
les. Parti
le 2 orbits the worldline ofparti
le 1 in a helix-like manner. The evolution is periodi
 withperiod T = 2π.
19



the geodesi
 distan
e s between points with given λ1 and λ2 is given by
cosh s = cos

λ1

2
cos

λ2

2
cosh β + sin

λ1

2
sin

λ2

2
cosh v. (2.4.5)We now wish to translate this des
ription into one an
hored to the AdS
oni
al in�nity. We omit the 
al
ulations but give a pres
ription by whi
h theinterested reader 
an reprodu
e them.

• Write the worldlines Pi in the SU(1, 1) matrix form Wi a

ording to(2.1.11). Write the identi�
ation of the double-stroked boundaries in Fig-ure 2.3 as a pair of SU(1, 1) matri
es.
• Cut Ω̃0 into two along a timelike surfa
e 
onne
ting the parti
le worldlinesin a way whose details will be spe
i�ed in se
tion 2.5. Rotate the twohalves of Ω̃0, via a pair of SU(1, 1) matri
es, about the worldline of parti
le1 so that the wedge originally at parti
le 1 
loses and a new one opens.Keep tra
k of the form of the Wi and the SU(1, 1) pair identifying thedouble-stroked boundaries. Figure 2.5 shows the new domain Ω̃′

0 afterthis �
ut and rotate� pro
ess - Parti
le 2 is now at two positions in thisnew pi
ture, labelled by 2 and 2′.
• Perform a �nal isometry on the spa
etime su
h that the double-strokedboundaries are now identi�ed by a pair of matri
es implementing the 
om-position of an (X,Y ) rotation and a (U, V ) rotation. This identi�
ationis now in the form (2.3.1), an
horing the system to the in�nity. This �nalisometry will be given by a transformation of the type (2.4.1) with a boostparameter pair (β1, v1). The Wi 
an now be expressed in terms of twonew boost parameter pairs (β1, v1) and (β2, v2) where both pairs 
an begiven in terms of the initial data. See Figure 2.6 for the initial data inthe new fundamental domain Ω̃.

20



δ
1

∼
Ω�

�
�
�

�
�
�
�

�
�
�
�

2

2’

1
0
’

Figure 2.5: T = 0 sli
e after �
ut and rotate� pro
ess. The single-strokedboundaries are still identi�ed by an (X,Y ) rotation whereasthe double-stroked boundaries are identi�ed as before but 
on-jugated by an additional (X,Y ) rotation. Again, the identi�-
ation of the double stroked boundaries does not preserve the
onstant T sli
es when v 6= 0.
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∼
Ω�

�
�
�

�
�
�
�

�
�
�
�

1

2’

2

δ

Figure 2.6: The �
entre of mass� frame. The single-stroked boundaries ofthe fundamental domain Ω̃ are identi�ed by an (X,Y ) rotation
onjugated by a boost (2.4.1) with boost-pair (β1, v1) given by(2.4.8). The double-stroked lines are identi�ed by the 
ompo-sition of an (X,Y ) rotation and a (U, V ) rotation as shown bythe grey segments in Figure 2.2. Note that parti
le 1 is in the
T = 0 plane, but parti
les 2 and 2' are in this plane only for
v = 0.
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In Ω̃, the worldlines of the parti
les read
P1 =




U1

V1

X1

Y1




=




cos λ1

2 cosh β1

sin λ1

2 cosh v1

cos λ1

2 sinhβ1

sin λ1

2 sinh v1



, (2.4.6)

P2,2′ =




U2,2′

V2,2′

X2,2′

Y2,2′




=




cos λ2

2 cosh β2 cos τ2 ∓ sin λ2

2 cosh v2 sin τ
2

± cos λ2

2 cosh β2 sin τ
2 + sin λ2

2 cosh v2 cos τ2

− cos λ2

2 sinhβ2 cos δ2 ∓ sin λ2

2 sinh v2 sin δ
2

± cos λ2

2 sinhβ2 sin δ
2 − sin λ2

2 sinh v2 cos δ2



,(2.4.7)where the upper (lower) signs pertain to parti
les 2 (2'), and the parameters

βi, vi, δ and τ are determined in terms of β, v and δi by
tanh (v1 ± β1) =

s2 sinh (v ± β)

s1c2 + s2c1 cosh (v ± β)
, (2.4.8)

tanh (v2 ± β2) =
s1 sinh (v ± β)

s2c1 + s1c2 cosh (v ± β)
, (2.4.9)

cos

(
δ ± τ

2

)
= c1c2 − s1s2 cosh (v ± β) . (2.4.10)Equation (2.4.10) shows that the manipulations to spe
ify the new funda-mental domain Ω̃ are well de�ned provided

|c1c2 − s1s2 cosh (v ± β)| < 1, (2.4.11)ensuring that Figure 2.6 exists. We assume (2.4.11) for now, but will relax this
ondition in Chapter 6 when we dis
uss the bla
k hole parameter range.2.5 Worldlines in other 
oordinatisations and the equa-tions of motionWhat is not portrayable in the spatial sli
es in Figures 2.3, 2.5 and 2.6 is thenon-planar nature of the identi�ed boundaries. For example, in Figure 2.6 the23



single-stroked boundary is identi�ed on a sli
e of varying T where, if we takethe line starting from parti
le 1 to be at T = 0, T in
reases (de
reases) aswe travel along the line from parti
le 1 to parti
le 2 (2'). The double-strokedboundary from 2 (2') to the edge of the disk is on a 
onstant T sli
e where
T > 0 (T < 0).With this in mind we introdu
e a new parameter σ de�ned along theparti
le worldlines by

tanσ = tan

(
λ1

2

)
sinh v1
sinhβ1

= tan

(
λ2

2

)
sinh v2
sinhβ2

, (2.5.1)su
h that
−π

2
< σ <

π

2
(2.5.2)and σ = 0 at T = 0. Note that σ is well-de�ned only when v 6= 0. We 
onsiderthe 
ase where v = 0 in se
tion 2.6.We now rewrite the worldlines of the parti
les (2.4.6) and (2.4.7) in thesausage 
oordinates (2.2.4) in terms of σ, (abusing notation for the Pi some-what),

P1 =




T1

ρ1

φ1


 =




arctan

(
tanσ tanhβ1

tanh v1

)

ρ1 (σ)

σ



, (2.5.3)

P2,2′ =




T2,2′

ρ2,2′

φ2,2′


 =




arctan

(
tanσ tanhβ2

tanh v2

)
± τ

2

ρ2 (σ)

σ ± πα



, (2.5.4)where

ρi (σ) =



(
cosh2 βi sinh2 vi + tan2 σ cosh2 vi sinh2 βi

) 1

2 −
(
sinh2 vi + tan2 σ sinh2 βi

) 1

2

(
cosh2 βi sinh2 vi + tan2 σ cosh2 vi sinh2 βi

) 1

2 +
(
sinh2 vi + tan2 σ sinh2 βi

) 1

2




1

2

,(2.5.5)The equation for the geodesi
 distan
es between the parti
les (2.4.5), with the
24



same value of σ on ea
h worldline, be
omes
cosh s =

cos2 σ cosh β sinh v1 sinh v2 + sin2 σ cosh v sinhβ1 sinhβ2
(
cos2 σ sinh2 v1 + sin2 σ sinh2 β1

) 1

2
(
cos2 σ sinh2 v2 + sin2 σ sinh2 β2

) 1

2

.(2.5.6)This spe
i�es how Ω̃0 was originally 
ut into two between the parti
les: thesurfa
e is formed from spa
elike geodesi
s 
onne
ting the parti
les at the samevalue of σ at ea
h end.Finally we introdu
e the AdS 
oni
al 
oordinates (2.2.7a - 2.2.7
) in aneighbourhood of the in�nity but repla
ing t by t − t0 and ψ by ψ − ψ0. Theworldlines be
ome
P1 =




t1

r1

ψ1


 =




t0 +

α arctan

(
tanσ tanhβ1

tanh v1

)
− Sσ

α2 − S2

r1 (σ)

ψ0 +

−S arctan

(
tan σ tanhβ1

tanh v1

)
+ ασ

α2 − S2




, (2.5.7)
P2,2′ =




t2,2′

r2,2′

ψ2,2′


 =




t0 +

α arctan

(
tan σ tanhβ2

tanh v2

)
− Sσ

α2 − S2

r2 (σ)

ψ0 +

−S arctan

(
tan σ tanhβ2

tanh v2

)
+ ασ

α2 − S2
± π




,

(2.5.8)where
ri (σ) =

(
α2 sinh2 vi sinh2 βi − S2

(
cos2 σ sinh2 vi + sin2 σ sinh2 βi + sinh2 vi sinh2 βi

)

cos2 σ sinh2 vi + sin2 σ sinh2 βi

) 1

2

,(2.5.9)
α = 1− δ

2π
, (2.5.10)

S = 1− τ

2π
. (2.5.11)Note also that

tanhβ1 tanh v2 = tanhβ2 tanh v1, (2.5.12)25



so that
t1 = t2,2′ (2.5.13)and

ψ1 = ψ2,2′ ∓ π. (2.5.14)The 
onstants {t0, ψ0} give the AdS 
oni
al time and 
oni
al angle respe
tivelywhen σ = 0. They en
ode the zero-point of time and the orientation of thetwo-parti
le system relative to the AdS 
oni
al 
oordinates.We 
an extend the formulae (2.5.3) to (2.5.14) de�ned for (2.5.2) to therange −∞ < σ < ∞ (to des
ribe the full evolution) by adding π (−π) to Twhenever σ in
reases (de
reases) through the divergent points of tanσ.2.6 The 
olliding 
aseWe now address the spe
ial 
ase v = 0, in whi
h the parti
les 
ollide and whi
hwas not 
overed by the dis
ussion in se
tion 2.5.The initial data of the system is given by the two defe
t angles and theboost parameter β. See Figure 2.7 for this initial 
on�guration. The Pi aregiven by
P1 =




U1

V1

X1

Y1




=




cos λ1

2

sin λ1

2

0

0



, (2.6.1)

P2 =




U2

V2

X2

Y2




=




cosh β cos λ2

2

sin λ2

2

− sinhβ cos λ2

2

0



. (2.6.2)The pro
edure to translate the fundamental domain into the 
entre-of-mass frame is essentially the same as before. Ω̃0 is now initially 
ut along linesof 
onstant T . The �nal fundamental domain, Ω̃, is shown in Figure 2.8. The26



Ω
∼

�
�
�
�

�
�
�
� δ

1

12
δ
2

∼
0

Figure 2.7: Initial data sli
e T = 0 for v = 0. The parti
les in the ini-tial 
on�guration are lo
ated as shown. The single and doublestroked lines are geodesi
s identi�ed on the Poin
aré disk. Thesingle stroked boundaries are identi�ed by an (X,Y ) rotation on
onstant T sli
es. The double stroked boundaries are identi�edby a (X,Y ) rotation 
onjugated by the transformation (2.4.1)with w1 = β, w2 = v = 0 on 
onstant T sli
es. The velo
ity ofparti
le 2 at T = 0 is orthogonal to the T = 0 surfa
e. Ω̃0 isshown on the �gure between the removed wedges.
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�

1

2’

2

δ

Figure 2.8: T = 0 sli
e in the �
entre of mass� frame for v = 0. Thesingle-stroked boundaries are identi�ed by an (X,Y ) rotation
onjugated by a boost (2.4.1) with w1 = β1 and w2 = 0 on
onstant T sli
es. The double stroked lines are identi�ed by asimple (X,Y ) rotation. At T = 0, the velo
ities of parti
le 1and the two 
opies of parti
le 2 are orthogonal to the T = 0surfa
e.
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worldlines of the parti
les on the boundary of Ω̃ be
ome
P1 =




U1

V1

X1

Y1




=




cos λ1

2 cosh β1

sin λ1

2

cos λ1

2 sinhβ1

0



, (2.6.3)

P2,2′ =
(
U2,2′ , V2,2′ ,X2,2′ , Y2,2′

)
=




cos λ2

2 cosh β2

sin λ2

2

− cos λ2

2 sinhβ2 cos δ2

± cos λ2

2 sinhβ2 sin δ
2



, (2.6.4)where the upper (lower) signs pertain to parti
le 2 (2'). The relevant boostparameters and the total de�
it angle are given by

tanhβ1 =
s2 sinhβ

s1c2 + s2c1 cosh β
, (2.6.5)

tanhβ2 =
s1 sinhβ

s2c1 + s1c2 cosh β
, (2.6.6)

cos
δ

2
= c1c2 − s1s2 cosh β. (2.6.7)Note that (2.6.7) shows that the parti
le geometry near the in�nity is the spin-less S = 0 spe
ial 
ase of the one-parti
le geometry. The dynami
s are onlyde�ned in the range −π

2 ≤ T ≤ π
2 , where ±π

2 are the values of T at whi
h theparti
les 
ollide respe
tively in the future and in the past.In the sausage 
oordinates the parti
le worldlines take the form
P1 = (T1, ρ1, φ1) =




T

ρ1 (T )

0


 , (2.6.8)

P2,2′ =
(
T2,2′ , ρ2,2′ , φ2,2′

)
=




T

ρ2 (T )

±πα


 , (2.6.9)
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where
ρi (T ) =


cosh βi −

(
cos2 T + sin2 T cosh2 βi

) 1

2

cosh βi +
(
cos2 T + sin2 T cosh2 βi

) 1

2




1

2

, (2.6.10)whi
h is well-de�ned for all |T | < π
2 . Finally, in the AdS 
oni
al 
oordinateswe repla
e t by t− t0 and the worldlines take the form

P1 = (t1, r1, ψ1) =




t0 +
T

α
α cos T sinhβ1

(
cos2 T + sin2 T cosh2 β1

) 1

2

0



, (2.6.11)

P2,2′ =
(
t2,2′ , r2,2′ , ψ2,2′

)
=




t0 +
T

α
α cos T sinhβ2

(
cos2 T + sin2 T cosh2 β2

) 1

2

±π



. (2.6.12)Clearly, t1 = t2,2′ and ψ1 = ψ2,2′ ∓ π. The geodesi
 distan
e rc between theparti
les in a 
onstant T sli
e is

cosh rc =
cos2 T cosh β + sin2 T cosh β1 cosh β2

(
cos2 T + sin2 T cosh2 β1

) 1

2
(
cos2 T + sin2 T cosh2 β2

) 1

2

. (2.6.13)Note that t0 is the AdS 
oni
al time when T = 0. The 
oni
al angle ψ0has been dropped as it will not be needed in the redu
tion of the a
tion inChapter 6.Figures 2.9 and 2.10 show plots of the 
entre-of-mass fundamental domain
Ω̃ with spe
i�
 
hoi
es for the parameters. The evolution begins at T = 0 atthe base of the plotted 
ylinder and evolves to 
ollision at T = π

2 at the top ofthe 
ylinder.
30



Figure 2.9: Two dimensional surfa
e formed from drawing the boundaryof the fundamental domain Ω̃ ∀T ∈ [0, π

2
], for δ1 = δ2 = π

2
,

β = ln (2 +
√

3) and S = 0. T = 0 is at the base of the 
ylinderwhere the two parti
les are indi
ated. The point of 
ollision isat T = π

2
at the top of the 
ylinder.31



Figure 2.10: Two dimensional surfa
e formed from drawing the boundaryof the fundamental domain Ω̃ ∀T ∈ [0, π

2
], for δ1 = δ2 = π

4
,

β = 2 and S = 0. T = 0 is at the base of the 
ylinder wherethe two parti
les are indi
ated. The point of 
ollision is at
T = π

2
at the top of the 
ylinder.32



Chapter 3
A
tion for (2 + 1)-dimensionalgravity with a negative
osmologi
al 
onstant

In this 
hapter we dis
uss the �rst order formulation of (2 + 1)-dimensionalEinstein gravity with a negative 
osmologi
al 
onstant in terms of two Chern-Simons 
onne
tions. We identify the gauge transformations for the Chern-Simons 
onne
tions, in order to make use of them in the Hamiltonian redu
tionin Chapters 4 and 5. Finally we dis
uss the 
ontributions to the a
tion fromthe point parti
les and from the boundary term at in�nity.3.1 First order formalismWe 
onsider a three dimensional manifold M . The basi
 dynami
al variables inthe �rst order formalism are the 
o-triad eIa and the O(2, 1) 
onne
tion AIa on
M . The upper 
ase latin letters I, J,K, ... denote internal indi
es taking valuesin {0, 1, 2}, pertaining to a 3-dimensional �xed internal ve
tor spa
e V . Theinternal indi
es are raised and lowered with a �xed Minkowski metri
 ηIJ withsignature (−,+,+). The lower 
ase latin letters a, b, c, ... are spa
etime indi
es.33



We assume from now on that the 
o-triad is non-degenerate, det
(
eIa
)
6= 0. Atany point p in M the 
o-triad provides then a linear isomorphism between thetangent spa
e of M and the internal spa
e V , and we 
an 
onstru
t from the
o-triad a spa
etime metri
 of signature (−,+,+) by gab = ηIJe

I
ae
J
b . We use

gab to raise and lower the spa
etime indi
es. For generalisations to a degenerate
o-triad, see [25℄.We write the gravitational bulk a
tion as a fun
tion of the dynami
alvariables (following the notation in [9℄) as
Sbulk =

1

2π

∫

M
d3x η̃abceaI

(
F Ibc +

1

3
ǫIJKe

J
b e
K
c

)
, (3.1.1)where our units are su
h that the 
osmologi
al 
onstant Λ = − 1

l2
= −1 and

8G = 1 (following [22℄ with l = 1). η̃abc is the Levi-Civita density a

ording to
d3x η̃abc = dxa ∧ dxb ∧ dxc and F Ibc is the 
urvature of the 
onne
tion,

F Ibc = 2∂[bA
I
c] + ǫIJKA

J
bA

K
c , (3.1.2)where

A[aBb] :=
1

2
(AaBb −AbBa) . (3.1.3)Here ǫIJK , with all lower indi
es, is the totally antisymmetri
 symbol with

ǫ012 = 1 and the indi
es are raised and lowered with the Minkowski metri
 ηIJ .The equations of motion obtained by varying the a
tion (3.1.1) with re-spe
t to AIa and eIa are the 
ondition that the 
onne
tion is torsion free,
∂[be

I
c] + ǫIJKA

J
[be

K
c] = 0, (3.1.4)and the 
onstant negative 
urvature 
ondition,

F Ibc = −ǫIJKeJb eKc . (3.1.5)Taken together, [6℄, these equations are equivalent to Einstein's equation forthe metri
 gab with Λ = −1,
Rab −

1

2
Rgab − gab = 0. (3.1.6)34



As an example 
onsider the region in a neighbourhood of the spatial in�n-ity of the 
olliding geometry, se
tion 2.6. The 
o-triad one-forms and 
onne
tionone-forms as given by eI = eIadx
a and AI = AIadx

a are
e0 =

(
r2 + α2

) 1

2 dt, A0 =
(
r2 + α2

) 1

2 dψ, (3.1.7a)
e1 =

(
r2 + α2

)− 1

2 dr, A1 = 0, (3.1.7b)
e2 = rdψ, A2 = rdt, (3.1.7
)and as 
an easily be 
he
ked, these �elds satisfy the equations of motion.See the se
tion �2+1 Palatini theory 
oupled to a 
osmologi
al 
onstant�in [26℄ for a detailed overview of the bulk a
tion (3.1.1).3.2 Chern-Simons formulation of the a
tionFollowing [27℄ we split the bulk a
tion (3.1.1) into two Chern-Simons (C-S) typea
tions via the use of two O(2, 1) C-S 
onne
tions,

±AIa = AIa ± eIa, (3.2.1)yielding
Sbulk = +Sbulk

(
+AIa
)
−−Sbulk

(−AIa
)
, (3.2.2)where

±Sbulk

(±AIa
)

=
1

8π

∫

M
d3x η̃abc±AaI

(
±FIbc −

1

3
ǫIJK

±AJb ±AKc
)
. (3.2.3)The ±FIbc are the 
urvatures of the two C-S 
onne
tions and the equations ofmotion are simply the 
ondition that both 
onne
tions are �at,

±FIbc = 2∂[b
±AIc] + ǫIJK

±AJb ±AKc = 0. (3.2.4)As an example, we 
an transform the 
o-triad and 
onne
tion one-forms
35



(3.1.7) into their C-S 
ounterparts, with the result
+A0 =

(
r2 + α2

) 1

2 (dt+ dψ) , −A0 =
(
r2 + α2

) 1

2 (−dt+ dψ) , (3.2.5a)
+A1 =

(
r2 + α2

)− 1

2 dr, −A1 = −
(
r2 + α2

)− 1

2 dr, (3.2.5b)
+A2 = r (dt + dψ) , −A2 = r (dt− dψ) . (3.2.5
)3.3 Gauge transformations in SU(1, 1) representation3.3.1 Finite gauge transformationsThree dimensional gravity with a negative 
osmologi
al 
onstant is related toa gauge theory with gauge group G = Oc(2, 2) ∼= (SU(1, 1) × SU(1, 1)) /Z2,[27℄. The (2 + 1)-dimensional gravitational �eld in the �rst order formalismis a 
onne
tion form Aa in a G-bundle over M , taking values in o(2, 2) ∼=

su (1, 1) ⊕ su (1, 1). We make use of the group de
omposition (2.1.10) to split
Aa into a linear sum of the C-S 
onne
tions,

Aa = +AIa+aI + −AIa−aI , (3.3.1)where the ±aI are bases for the two distin
t 
opies of su(1, 1) where we have
hosen
a0 =

1

2


 i 0

0 −i


 , (3.3.2)

a1 =
1

2


 0 1

1 0


 , (3.3.3)

a2 =
1

2


 0 i

−i 0


 , (3.3.4)with the 
ommutation relations

[±aI ,±aJ ] = ǫKIJ
±aK ,

[+aI ,
−aJ ] = 0.

(3.3.5)We take
g =

(
+g ,−g

)
∈ (SU(1, 1) × SU(1, 1)) (3.3.6)36



with the group 
omposition law
(
+g2 ,

−g2
)
◦
(
+g1 ,

−g1
)

=
(
+g2

+g1 ,
−g2

−g1
) (3.3.7)and the inverse

(
+g ,−g

)−1
=
(
+g−1 ,−g−1

)
. (3.3.8)Writing A = Aadx

a we �nd [28℄ that the gauge transformations leaving(3.2.3) invariant are
A 7→ g−1

Ag + g−1dg (3.3.9)and after some relatively simple algebra using (3.3.7) and (3.3.8) we �nd thatthe gauge transformations for the C-S 
onne
tions are
±AIaaI 7→ ±g−1±AIaaI±g + ±g−1∂a

±g. (3.3.10)It is now a simple 
al
ulation to 
he
k that (3.2.3) is invariant undertransformations of the type given by (3.3.10).3.3.2 In�nitesimal gauge transformationsWe de�ne the in�nitesimal gauge parameter u as
u := +τ I+aI + −τ I−aI . (3.3.11)Writing the element of the gauge group to �rst order,

±g = exp
(±τ I±aI

)
= 1 + ±τ I±aI , (3.3.12)we �nd the in�nitesimal form of the gauge transformation is

δ±AIa = ∂a
±τ I + ǫIJK

±AJa±τK . (3.3.13)We will use this result in Chapter 4.
37



3.4 Splitting the a
tionWe start from the bulk a
tion in the form (3.2.2) and assume that the spa
etimemanifold has the form M = Σ×R where Σ is a two-dimensional manifold. The
2 + 1 de
omposition of ea
h C-S bulk a
tion (3.2.3) is

±Sbulk

(±AIa
)

=
1

4π

∫
dt

∫

Σ
d2x

(
±ÃjI∂t±AIj + ǫ̃ij±AtI±FIij

)
, (3.4.1)where i, j, ... are spatial indi
es 
orresponding to the two-dimensional surfa
e

Σ and t is the 
oordinate on R. ǫ̃ij is the Levi-Civita density on Σ given by
ǫ̃ij = η̃tij , ±AIj is the pull-ba
k of ±AIa to Σ and ±ÃjI is a 
onne
tion density givenby ±ÃjI = ǫ̃ji±AiI . The 
urvature of the pulled-ba
k 
onne
tion ±AIj is given by

±FIij = 2∂[i
±AIj] + ǫIJK

±AJi ±AKj (3.4.2)and the ±AtI a
t as Lagrange multipliers enfor
ing the 
onstraints that thepulled-ba
k 
onne
tions are �at,
±FIij = 0. (3.4.3)The total bulk a
tion 
an therefore be rewritten in terms of the two C-S
onne
tions as

Sbulk =
1

4π

∫
dt

∫

Σ
d2x Lint, (3.4.4)where

Lint = +ÃjI∂t+AIj + ǫ̃ij+AtI+FIij − −ÃjI∂t−AIj − ǫ̃ij−AtI−FIij . (3.4.5)3.5 Parti
le a
tionsFor a summary of the parti
le a
tions see [9℄. In the Λ = −1 setting the analysisis exa
tly the same and the upshot is that after the Hamiltonian redu
tion inChapter 6 the parti
le a
tion terms will not 
ontribute to the redu
ed a
tion.38



3.6 Boundary term from the spatial in�nityWhen we vary the a
tion integrand (3.4.5) in a neighbourhood of the spatialin�nity su
h that (3.2.5) holds we get the variation term
δLint = −2 ǫ̃rψ ∂r

(
δ
(
α2
))
. (3.6.1)Therefore, the variation of (3.4.4) a
quires from the spatial in�nity the bound-ary term

−
∫
dt δ

(
α2
)
. (3.6.2)We 
an 
an
el this boundary term by adding to Sbulk the boundary term S∞given by

S∞ =

∫
dt
(
α2 +C

)
, (3.6.3)where the 
onstant C 
an be 
hosen at will. We shall from now on take C = 0:this 
hoi
e has be
ome standard in the literature, and it has the property that

S∞ vanishes at the threshold of bla
k hole formation, α→ 0 [22, 23℄.
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Chapter 4
Redu
tion of the a
tion I:Gauge 
hoi
e

In this 
hapter we redu
e the a
tion (3.4.4) by imposing the 
onstraints on the
onne
tion density pair ±ÃjI and also �xing the gauge. We let F denote a (forthe moment �
titious) spa
etime of the form dis
ussed in se
tion 2.6 of Chapter2 and Σ denote a surfa
e within this spa
etime 
ontaining the parti
les. The
±ÃjI live on Σ and we impose the 
onstraints by embedding Σ into F in su
h away that the embedding is smooth and remains 
onsistent with the identi�edboundaries of F . We then �x the gauge of ±ÃjI using the knowledge of theembedding. The δi are 
onsidered �xed and so F is spe
i�ed 
ompletely by αor β through (2.6.7).4.1 Embedding of the parti
le surfa
e ΣThe embedding of Σ in F is most easily understood by introdu
ing a simply-
onne
ted fundamental half-strip Ω on Σ 
oordinatised by (λ, ω) su
h that
Ω := {(λ, ω) | λ > 0,−π < ω < π} - see Figure 4.1. The boundaries of Ω at
ω = ±π are identi�ed via (λ, ω) ∼ (λ, ω + 2π). Parti
le 1 is on the boundaryof Ω at λ = 0 whereas parti
le 2 (2') is on the boundary of Ω at (1,±π).40
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Figure 4.1: The fundamental half strip Ω. Regions I, II and III and theline between parti
les 2 and 2′ as indi
ated on the diagram areexplained in the text.We now spe
ify the embedding so that near the in�nity (λ, ω) are thespatial AdS 
oni
al 
oordinates of F , (2.2.7b) and (2.2.7
) with S = 0, whilenear the parti
les (λ, ω) are suitably adapted to the parti
le motion.We introdu
e λc > 1 and where λ > λc (region I) we take the embeddingto be in the surfa
e of 
onstant AdS 
oni
al time t.Region II, where 1 < λ < λc is the region from parti
le two up to thespatial in�nity neighbourhood, whereas region III, where 0 < λ < 1 is theregion between parti
les one and two.In order to spe
ify the embedding of Σ in regions II and III we need to
onsider the embedding of F into the fundamental domain Ω̃ dis
ussed in se
tion2.6. In terms of this embedding the single and double-stroked boundaries of Ωlie at the 
orresponding single and double-stroked boundaries on the 
onstant
T spa
elike se
tions of Ω̃ shown in Figure 2.8.41



4.1.1 Region I, λ > λcIn region I we embed Σ in a surfa
e of 
onstant AdS 
oni
al time in F by taking
λ = r, (4.1.1a)
ω = ψ, (4.1.1b)where r and ψ are the spatial 
oni
al 
oordinates (2.2.7b) and (2.2.7
).4.1.2 Region II, 1 < λ ≤ λcEverywhere near and on the double-stroked boundary and near and on the lineat λ = λc in region II we set

∂t = Ṫ ∂T , (4.1.2a)
∂λ = f (λ) ∂ρ, (4.1.2b)
∂ω = α∂φ, (4.1.2
)su
h that f (λ) is a positive fun
tion with domain 1 < λ ≤ λc obeying the
ondition ∫ λc

1
f (λ) dλ = ρc − ρ2, (4.1.3)ensuring that ρ = ρ2 at λ = 1 and ρ = ρc at λ = λc. ρc is the value of ρ whereregions I and II meet.4.1.3 Region III, 0 < λ ≤ 1The single-stroked boundary segments on Ω̃ are geodesi
s on the Poin
aré diskdependent on the initial data of the system (see [29℄ for the details 
on
erningthe geodesi
s). Using the disk metri
 in the form (2.2.5) we obtain the geodesi
Lagrangian

L =

(
2

1− ρ2

)2
((

dρ

du

)2

+ ρ2

(
dφ

du

)2
)
. (4.1.4)42



Noting that φ is 
y
li
 we 
hoose to parameterise the 
oordinates via the properdistan
e s. The Euler-Lagrange equation for φ then yields
dφ

ds
=
K
(
1− ρ2

)2

2ρ2
, (4.1.5)where we have 
hosen the 
onstant of integration to be 4K. Using this we 
annow solve the Euler-Lagrange equation for ρ (s) to �nd that

ρ (s,w0) =

(
es (1 + w0)− 2 (1−w0) + e−s (1 + w0)

es (1 + w0) + 2 (1−w0) + e−s (1 + w0)

) 1

2

, (4.1.6)where
K =

√
w0

1− w0
, (4.1.7)and geometri
ally √w0 is the point of 
losest approa
h of the geodesi
 to the
entre of the disk. √w0 
an be obtained from the intital data via

√
w0 =

A+ −A−

2ρ1ρ2 sinφ
, (4.1.8)where

A± =

(
(
1± ρ2

1

)2
ρ2
2 sin2

(
δ

2

)
+

(
ρ1

(
1 + ρ2

2

)
+ ρ2 cos

(
δ

2

)(
1 + ρ2

1

))2
) 1

2

,(4.1.9)
δ 
an be obtained from (2.6.7) and the ρi are given by (2.6.10).Solving (4.1.5) for φ we �nd

φ (s,w0) = ± arctan

((
f (w0) + e2s

)
(1 + w0)

2

4
√
w0 (1− w0)

)
+ C, (4.1.10)where

f (w0) =
−
(
1− 6w0 + w2

0

)

(1 + w0)
2 , (4.1.11)

C is the 
onstant of integration (
hosen appropriately to produ
e the Figures2.9 and 2.10) and the upper (lower) sign in (4.1.10) pertain to the boundarysegments from 1 to 2 (2').Having found the form of ρ and φ in terms of the proper distan
e and theinitial data we 
an now spe
ify the embedding of the single-stroked boundary43



in region III. Everywhere near and on the single-stroked boundary segments ofreqion III we set
∂λ = rcds = rc (∂sρ∂ρ ± ∂sφ∂φ) . (4.1.12)The fa
tor rc is the geodesi
 distan
e between the parti
les, (2.6.13), and isintrodu
ed so that ‖ ∂λ ‖= rc. The 
oe�
ients in (4.1.12) 
an be 
omputedfrom (4.1.5), (4.1.6) and (4.1.7).We require ∂ω to be orthogonal to ∂λ on the single-stroked boundary and
ontinuous on Σ a
ross the identi�ed boundaries of Ω. It 
an be veri�ed thatthis is a
hieved by setting
∂ω = ±k1∂T ± k2∂ρ + k3∂φ, (4.1.13)where

k1 =
SV Y

(
(−SX + CU)2 + V 2 − 1

) 1

2

(U2 + V 2)

, (4.1.14a)
k2 =

−SUY
(
(−SX + CU)2 + V 2 − 1

) 1

2

(U2 + V 2)
1

2 (U2 + V 2 − 1)
1

2

(
(U2 + V 2)

1

2 + 1
) ,(4.1.14b)

k3 =
C
(
X2 + Y 2

)
− SUX

(
(−SX + CU)2 + V 2 − 1

) 1

2

(X2 + Y 2)

, (4.1.14
)
S = sinhβ1, (4.1.15a)
C = cosh β1, (4.1.15b)and X, Y , U and V are given by the sausage 
oordinates (2.2.1) and (2.2.3)with ρ and φ given by (4.1.6) and (4.1.10).To summarise, everywhere near and on the single-stroked boundary inregion III the embedding is given by

∂t = Ṫ ∂T , (4.1.16a)
∂λ = rc (∂sρ∂ρ ± ∂sφ∂φ) , (4.1.16b)
∂ω = ±k1∂T ± k2∂ρ + k3∂φ, (4.1.16
)44



where the upper (lower) sign in (4.1.16) indi
ates the boundary segments from1 to 2 (2').The embedding of Σ in F is now spe
i�ed at and near the boundaries ofregions I and II and everywhere in region III. As we will see in the following
hapter that is all that will be required for the 
omputation of the Liouvilleterm in the redu
ed a
tion. As the embedding at and near the boundaries isbased on the form of Ω̃ it is 
ontinuous a
ross the identi�ed boundaries of Ω.We 
an 
hoose a smooth embedding of Σ everywhere ex
ept at the parti
lesand we now 
onsider that done.4.2 Gauge 
hoi
eWe now 
hoose a gauge for the C-S �elds ±AI to 
oin
ide with the embeddinggiven in the previous se
tion.In a neighbourhood of the spatial in�nity the �elds take the form (3.2.5).To 
hoose a gauge in region I we transform the spatial proje
tion of these �eldsto (λ, ω) 
oordinates via (4.1.1). The resulting gauge is
+A0 =

(
λ2 + α2

) 1

2 dω, −A0 =
(
λ2 + α2

) 1

2 dω, (4.2.1a)
+A1 =

(
λ2 + α2

)− 1

2 dλ, −A1 = −
(
λ2 + α2

)− 1

2 dλ, (4.2.1b)
+A2 = λdω, −A2 = −λdω. (4.2.1
)The 
hoi
e of gauge in regions II and III is substantially more 
ompli-
ated. The task is to 
hoose a gauge in whi
h the �elds are smooth a
ross theidenti�
ation of the boundaries of Ω. We shall do this by writing the �eldsas a β1-dependent gauge transformation of a referen
e 
on�guration that isindependent of β1.As a preliminary, we �rst introdu
e on the fundamental domain Ω̃ of F

45



the �elds
e0 =

(
1 + ρ2

1− ρ2

)
dT, A0 =

(
1 + ρ2

1− ρ2

)
dφ, (4.2.2a)

e1 =

(
2

1− ρ2

)
dρ, A1 = 0, (4.2.2b)

e2 =

(
2ρ

1− ρ2

)
dφ, A2 =

(
2ρ

1− ρ2

)
dT, (4.2.2
)where the eI reprodu
e the sausage metri
 (2.2.4) via ds2 = ηIJe

IeJ and the
AI are the 
onne
tion 
omponents 
ompatible with the eI . Rewriting (4.2.2)in terms of R

2,2 
oordinates, we �nd that the C-S 
ounterparts are
±
rA0 =

K

K2 − 1
(XdY − Y dX)± 1

K
(UdV − V dU) , (4.2.3a)

±
rA1 = ± 1

K (K2 − 1)
1

2

(UdU + V dV ) , (4.2.3b)
±
rA2 =

(
K2 − 1

) 1

2

K2
(UdV − V dU)± 1

(K2 − 1)
1

2

(XdY − Y dX) , (4.2.3
)where
K =

(
U2 + V 2

) 1

2 . (4.2.4)The pre-subs
ript r refers to the invarian
e of ±
rAI under the (X,Y ) rotations.Note that ±

rAI are independent of β1. We also introdu
e a set of zero �elds,
±
0AI = 0 ∀I. (4.2.5)Finally, we set

±
bA0 =

Kn

K2
n − 1

[(CX − SU) dY − Y (CdX − SdU)]

± 1

Kn
[(CU − SX) dV − V (CdU − SdX)] , (4.2.6a)

±
bA1 =± 1

Kn (K2
n − 1)

1

2

[(CU − SX) (CdU − SdX) + V dV ] , (4.2.6b)
±
bA2 =

(
K2
n − 1

) 1

2

K2
n

[(CU − SX) dV − V (CdU − SdX)]

± 1

(K2
n − 1)

1

2

[(CX − SU) dY − Y (CdX − SdU)] , (4.2.6
)46



where
Kn =

(
(CU − SX)2 + V 2

) 1

2

, (4.2.7)and C and S are given by (4.1.15). Note that ±
bAI is the pull-ba
k of ±rAI by theboost (2.4.1) with (w1, w2) = (β1, 0). ±

bAI is hen
e invariant under rotationsabout the worldline of parti
le 1 on the boundary of Ω̃.Next, we wish to write ±
bAI as a gauge transformation of ±rAI . For this, wetake a short interlude to review the relationship of di�eomorphisms and gaugetransformations in the Chern-Simons formulation.4.2.1 Relating the gauge transformations to di�eomorphismsIn [27℄ it is shown, by analysing the generators of the gauge transformationsin relation to the generators of di�eomorphisms, that the Chern-Simons gaugetransformations do 
oin
ide with the usual transformations of (2 + 1)-dimensionalgravity for Λ = 0. The key point is that the generator of the gauge transfor-mations, τ , is dependent on the ve
tor �eld generating the di�eomorphisms, v,and the �eld 
on�guration being transformed. Adapting the dis
ussion in [27℄to the 
ase where Λ < 0 we �nd that a ve
tor �eld v generates the in�nitesimaltransformation

δ̃±AIa = vb∂[b
±AIa] + ∂a

(
vb±AIb

)
, (4.2.8)and this agrees with the gauge transformation (3.3.13) i�

±τ I = va±AIa. (4.2.9)Consider in parti
ular the one-parameter family ±AIa (t) of �eld 
on�gurationsobtained by a
ting on the 
on�guration ±AIa (0) by the one-parameter family ofdi�eomorphisms generated by the ve
tor �eld v. We wish to write ±AIa (t) asthe t-dependent gauge transformation of ±AIa (0). To do this, we observe from(4.2.9) that the generator of the gauge transformation is given by
±τ I (t) = va±AIa (t) . (4.2.10)47



The required gauge group element ±g (t) is thus obtained by integrating
±g−1 (t)±ġ (t) = ±τ I (t) aI , (4.2.11)where the dot indi
ates di�erentiation with respe
t to t, with the initial 
ondi-tion

±g (0) = 1. (4.2.12)A simple exampleAs an example let us 
onsider v = (0, 0, Y,−X), whi
h generates an (X,Y )rotation, and 
hoose the �eld 
on�guration to be given by (4.2.3), whi
h isinvariant under the (X,Y ) rotation. Denoting the parameter of the gaugetransformation by θ, from (4.2.10) we �nd
±τ0 (θ) = −K, (4.2.13a)
±τ1 (θ) = 0, (4.2.13b)
±τ2 (θ) = ∓

(
K2 − 1

) 1

2 , (4.2.13
)whi
h are all independent of θ. The solution of (4.2.11) su
h that (4.2.12) holdsis therefore simply
±g (θ) = exp

(
θ±τ IaI

)
, (4.2.14)and a small 
al
ulation yields

±g (θ) =


 cos θ2 − i sin θ

2K ∓i sin θ
2

(
K2 − 1

) 1

2

±i sin θ
2

(
K2 − 1

) 1

2 cos θ2 + i sin θ
2K


 . (4.2.15)As a 
he
k, it is a straightforward (but long-winded) task to verify that thegauge transformation implemented by (3.3.10) with ±g given by (4.2.15) doesleave the �eld 
on�guration (4.2.3) invariant.4.2.2 Gauge transformation from ±

rAI to ±
bAITo �nd the gauge transformation from ±

rAI (4.2.3) to ±
bAI (4.2.6), we re
all that

±
bAI is the pull-ba
k of ±

rAI by the boost (2.4.1) with (w1, w2) = (β1, 0), and48



this boost is generated by the ve
tor �eld v = (X, 0, U, 0). We may thereforeuse (4.2.10) with ±AI = ±
bAI (β1), v = (X, 0, U, 0) and t = β1. We �nd

±τ0 =
Kn

K2
n − 1

Y (CU − SX)± 1

Kn
V (CX − SU) , (4.2.16a)

±τ1 = ∓ 1

Kn (K2
n − 1)

1

2

(CX − SU) (CU − SX) , (4.2.16b)
±τ2 = ± 1

(K2
n − 1)

1

2

Y (CU − SX) +

(
K2
n − 1

) 1

2

K2
n

V (CX − SU) . (4.2.16
)The τ I are now dependent on β1. To solve (4.2.10), we �rst observe from(4.2.16) that
±τ2 = ±

(
K2
n − 1

) 1

2

Kn

±τ0. (4.2.17)As |±τ0| > |±τ2|, we may �nd a pair of matri
es ±h ∈ SU (1, 1) su
h that theinternal ve
tor ±σI de�ned by
±σIaI = ±h±τ IaI

±h−1, (4.2.18)satis�es ±σ2 = 0. Choosing ±h to be a pure boost in the internal (02) plane, we�nd
±h =

1√
2


 (Kn + 1)

1

2 ± (Kn − 1)
1

2

± (Kn − 1)
1

2 (Kn + 1)
1

2


 , (4.2.19)and

±σ0 =
1

K2
n − 1

Y (CU − SX)± 1

K2
n

V (CX − SU) , (4.2.20a)
±σ1 = ∓ 1

Kn (K2
n − 1)

1

2

(CX − SU) (CU − SX) , (4.2.20b)
±σ2 = 0. (4.2.20
)Now, writing

±g = ±k±h (4.2.21)and substituting (4.2.21) into (4.2.11) we �nd that the equation for ±k is
±k−1±k̇ = ±σ − ±ḣ±h−1 = ±γIaI , (4.2.22)49



where
±γ0 =

1

K2
n − 1

Y (CU − SX)± 1

K2
n

V (CX − SU) , (4.2.23a)
±γ1 = 0, (4.2.23b)
±γ2 = 0. (4.2.23
)The general solution to (4.2.22) is

±k = ±̃k




±f 0

0 ±f−1


 , (4.2.24)where ±̃k ∈ SU (1, 1) is independent of β1 and ±f satis�es

±ḟ − i

2
±f±γ0 = 0. (4.2.25)The solution to (4.2.25) is

±f = ±C exp

(
i

2

∫
±γ0dβ1

)
, (4.2.26)where ±C is a 
onstant of integration satisfying |±C| = 1. Evaluating this inte-gral, we �nd

±f =

{
[Y − i (CX − SU)] [V ∓ i (CU − SX)]

[Y + i (CX − SU)] [V ± i (CU − SX)]

} 1

4

, (4.2.27)where the prin
ipal bran
h of the fra
tional power is understood and we haveset ±C = 1 without loss of generality. ±f has a bran
h point singularity atparti
le one, where Y = 0 and CX = SU , but as we shall see in Chapter 5,this will not a�e
t us when 
omputing the Liouville term as we 
an 
hoose thebran
h 
ut su
h that the 
ontour of integration will never 
ross it.Finally the 
onstant matrix pair ±̃k is �xed by the initial 
ondition
±g (β1 = 0) = 1. (4.2.28)This gives the �nal gauge element in the form

±g = ±m±n, (4.2.29)50



where
±m = ±B−1

0
±R−1

0 , (4.2.30a)
±n = ±R±B, (4.2.30b)and

±B0 =
1√
2


 (K + 1)

1

2 ± (K − 1)
1

2

± (K − 1)
1

2 (K + 1)
1

2


 , (4.2.31a)

±R0 =




±f |β1=0 0

0 ±f−1|β1=0


 , (4.2.31b)

±R =




±f 0

0 ±f−1


 , (4.2.31
)

±B =
1√
2


 (Kn + 1)

1

2 ± (Kn − 1)
1

2

± (Kn − 1)
1

2 (Kn + 1)
1

2


 . (4.2.31d)Again it is a straightforward task to verify that the gauge transformationimplemented by (3.3.10) with ±g given by (4.2.29) transforms ±

rAI (4.2.3) into
±
bAI (4.2.6).We further �nd by virtue of the forms of ±m and ±n that

±m−1 : ±
0A → ±

rA, (4.2.32)and
±n : ±

0A → ±
bA. (4.2.33)4.2.3 Gauge 
hoi
e in regions II and IIIAfter all the above preperation, we 
an now state the gauge 
hoi
e in regions IIand III. We 
hoose a gauge near and at the double-stroked boundaries and theline λ = λc of region II a

ording to ±m−1
(±
0A
). We also 
hoose a gauge nearand at the single-stroked boundaries and the line λ = 0 of region III a

ordingto ±n

(±
0A
). As will be seen in the following 
hapter, this partial spe
i�
ationof the gauge (see Figure 4.2) will be enough to evaluate the Liouville term.51
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Figure 4.2: The gauge is 
hosen via the gauge elements n and m−1 in thetwo regions indi
ated as explained in the text.4.3 Continuity of the gauge 
hoi
eThe gauge 
hoi
e for all three regions de�ned in the previous se
tion 
an beextended from Ω to Σ. In order to verify this we need to show that the �elds are
ontinuous a
ross the double-stroked (region II) and single-stroked (region III)boundaries. In region I the �elds are extendable to Σ by de�nition. In regionII on the double-stroked boundaries the non-vanishing 
omponents of ±AIj are
±A0

ω = α

(
1 + ρ2

1− ρ2

)
, (4.3.1a)

±A1
λ = ±f (λ)

(
2

1− ρ2

)
, (4.3.1b)

±A2
ω = ±α

(
2ρ

1− ρ2

)
, (4.3.1
)whi
h are all 
ontinuous a
ross the identi�
ation. A similar analysis revealsthat the non-vanishing 
omponents of ±AIj in region III are 
ontinuous a
rossthe identi�
ation of the single-stroked boundaries.The gauge has therefore been spe
i�ed on and near the boundaries of thefundamental domain Ω. What remains is to evaluate the redu
ed a
tion whi
h52



we shall address in Chapters 5 and 6.
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Chapter 5
Redu
tion of the a
tion II:The Liouville term

In Chapter 4 we explained the gauge �xing pro
edure and with this 
hoi
e ofgauge we now evaluate the redu
ed a
tion. The 
onstraint terms in (3.4.5)vanish by the gauge 
hoi
e, and so do the parti
le 
ontributions as dis
ussed inse
tion 3.5. The boundary term at in�nity was found in se
tion 3.6 and reads
S∞ =

∫
dt α2. (5.0.1)What remains are the Liouville terms in (3.4.5), given by

L =
1

4π

∫

Σ
d2x

(
+ÃjI∂t+AIj − −ÃjI∂t−AIj

)
. (5.0.2)For 
onvenien
e we will rewrite (5.0.2) as the tra
e over Lie-algebra valued�elds,

L = +L− −L, (5.0.3)where
±L =

1

2π

∫

Σ
d2x ǫ̃ji Tr

(±Ai∂t±Aj
)
, (5.0.4)and

±Ai = ±AIi aI , (5.0.5)and we have used the identity ηIJ = 2 Tr (aIaJ). The purpose of this 
hapteris to analyse these Liouville terms (5.0.4).54



5.1 Dire
t evaluation in region IIn region I on Ω the �elds are given by (4.2.1) and the integrand in (5.0.4) isidenti
ally zero. There is no 
ontribution to the a
tion from the Liouville termin this region.5.2 Integral 
onversionIn the other two regions of Ω we will show that due to the form of the gauge
hoi
e des
ribed in Chapter 4 we 
an write the Liouville term as an integral of atotal derivative. By Stokes' theorem, we 
an then 
onvert the two-dimensionalintegral in (5.0.4) into a one-dimensional integral over the boundary of ea
hregion.We introdu
e ±
rAi and ±

bAi to denote the Lie-algebra valued spatial pro-je
tion of (4.2.3) and (4.2.6) respe
tively. Using (4.2.29) we �nd that
±
xAi = ±l−1∂i

±l, (5.2.1)where x = r and ±l = ±m−1 for region II whereas x = b and ±l = ±n for regionIII. (5.0.4) now be
omes
±L =

1

2π

∫

Σ
d2x ǫ̃ji Tr

[(±l−1∂i
±l
)
∂t
(±l−1∂j

±l
)] (5.2.2)

=
1

2π

∫

Σ
d2x ǫ̃ji Tr

[
∂j
(±l−1∂i∂t

±l
)
− ±l−1∂i

±l±l−1∂t
±l±l−1∂j

±l
]
. (5.2.3)In both regions ±l 
an be written as the produ
t of two SU(1, 1) matri
es. Forexample, in region III, (the analysis in region II is analogous)

±l = exp
(
a0

±φ
)
exp

(
a1

±χ
)
, (5.2.4)for some ±φ and ±χ. Therefore

±l−1∂a
±l = GIaaI , (5.2.5)55



where
G0
a = cosh±χ∂a

±φ, (5.2.6a)
G1
a = ∂a

±χ, (5.2.6b)
G2
a = sinh±χ∂a

±φ. (5.2.6
)The se
ond term in (5.2.3) 
an therefore be written as
− 1

8π

∫

Σ
d2x ǫ̃jiǫIJKG

I
iG

J
t G

K
j , (5.2.7)where we have used the identity

Tr (aIaJaK) =
1

4
ǫIJK. (5.2.8)Evaluating the integrand in (5.2.7) using (5.2.6) reveals that it is zero, inde-pendently of the fun
tions ±φ and ±χ. We hen
e obtain

±L =
1

2π

∫

Σ
d2x ǫ̃ji∂j Tr

(±l−1∂i∂t
±l
)
, (5.2.9)where the integrand is now a total derivative as promised. The integral givenby (5.0.4) 
an therefore be 
onverted into a integral over the boundary of ea
hregion. The orientation of the boundary is a
quired from the orientation of thethree-dimensional spa
etime; the boundaries of regions II and III are orientedin an anti-
lo
kwise dire
tion with respe
t to Figure 4.1. We now 
onsider therelevant parts of the boundary in ea
h region.In region II we have the line at λ = λc, the double-stroked lines at ω = ±π,two small quarter-
ir
les about the singular points 2 and 2' and the line at

λ = 1. In region III we have the line at λ = 0, the single-stroked lines at
ω = ±π, two small quarter-
ir
les about the singular points 2 and 2' and theline at λ = 1. The 
ontribution from the line at λ = 1 in region II will 
an
elwith the 
ontribution from the line at λ = 1 in region III due to the orientationof the boundaries and the 
ontinuity of the gauge 
hoi
e. We are left with �vedistin
t parts of the boundary we need to 
onsider;1. The line at λ = λc on the boundary of region II ,56



2. The double-stroked lines at ω = ±π on the boundary of region II ,3. The single-stroked lines at ω = ±π on the boundary of region III ,4. The line at λ = 0 on the boundary of region III ,5. Two small half-
ir
les about the singular points 2 and 2' .We will write Li where i ∈ {1, 2, 3, 4, 5} to denote the 
ontribution from theLiouville term for ea
h of the �ve parts and address all of these 
ontributionsin turn in the following se
tion.5.3 Evaluation of the 
ontributionsFor ea
h 
ontribution to the Lagrangian from evaluating (5.2.9) on the relevantboundaries we will write
±Wi = ±l−1∂i∂t

±l. (5.3.1)We also note that a

ording to our previously de�ned 
onventions we have
η̃tλω = ǫ̃λω = +1 (5.3.2)In order to evaluate the resulting one-dimensional integrals we need to use thedetails of the embedding and gauge elements elu
idated in Chapter 4.5.3.1 λ = λc and the double-stroked boundariesThe embedding at the boundaries is given by (4.1.2) and the gauge element is

±l = ±m−1.On the line at λ = λc the 
ontribution is
±L1 =

1

2π

∫ π

−π
dω Tr ±Wω. (5.3.3)Upon evaluating ±Wω we �nd

±Wω = ∓1

4
I2αṪ , (5.3.4)57



where I2 is the identity matrix. Taking the tra
e and evaluating the integralwe obtain the �nite 
ontribution to the Lagrangian from this boundary being
L1 = −αṪ . (5.3.5)On the double-stroked boundaries the 
ontribution is

− 1

2π

∫ λc

1
dλ Tr ±Wλ, (5.3.6)along the boundary at ω = −π and

− 1

2π

∫ 1

λc

dλ Tr ±Wλ, (5.3.7)along the boundary at ω = π. Upon evaluating ±Wλ we �nd that it is pro-portional to a Lie-algebra valued matrix. Taking the tra
e yields zero for theintegrand. The 
ontribution to the Lagrangian from the double-stroked bound-aries is zero,
L2 = 0. (5.3.8)5.3.2 The single-stroked boundariesThe embedding at the boundaries is given by (4.1.16) and the gauge element is

±l = ±n.On the single-stroked boundaries the 
ontribution is
− 1

2π

∫ 1

0
dλ Tr ±Wλ, (5.3.9)along the boundary at ω = −π and

− 1

2π

∫ 0

1
dλ Tr ±Wλ, (5.3.10)along the boundary at ω = π. It is easiest to evaluate these integrals byparameterising in terms of the proper distan
e, s, as opposed to λ. We nowhave to evaluate ±Ws by 
onsidering the gauge element ±n in the form (4.2.30b)58



and by di�erentiating (4.2.31d) and (4.2.31
) with respe
t to t and s we notethe intermediate results,
∂t

±B = ±d a1
±B, (5.3.11a)

∂t
±R = ±e a0

±R, (5.3.11b)
∂s

±B = ±b a1
±B, (5.3.11
)

∂s
±R = ±r a0

±R, (5.3.11d)where
±d = ±

(CX − SU)
(
SV Ṫ − (CU − SX) β̇1

)

Kn (K2
n − 1)

1

2

, (5.3.12a)
±e = ±V (CX − SU) β̇1 +

(
C
(
U2 + V 2

)
− SUX

)
Ṫ

K2
n

+
Y
(
(CU − SX) β̇1 − SV Ṫ

)

K2
n − 1

,(5.3.12b)
±b = ±(CU − SX) (C∂sU − S∂sX) + V ∂sV

Kn (K2
n − 1)

1

2

, (5.3.12
)
±r =

(CX − SU) ∂sY − Y (C∂sX − S∂sU)

K2
n − 1

± (CU − SX) ∂sV − V (C∂sU − S∂sX)

K2
n

.(5.3.12d)A further 
al
ulation reveals that
Tr
(
+Ws − −Ws

)
=

1

2

(−e−r − +e+r
)

= f (s) , (5.3.13)where
f (s) = − 1

K2
n (K2

n − 1)

{(
V (CX − SU) β̇1 +

(
C
(
U2 + V 2

)
− SUX

)
Ṫ
)
×

((CX − SU) ∂sY − Y (C∂sX − S∂sU))

+ Y
(
(CU − SX) β̇1 − SV Ṫ

)
×

((CU − SX) ∂sV − V (C∂sU − S∂sX))
}
. (5.3.14)Using the property that f (s) swit
hes sign a
ross the identi�
ation of theboundary (Y → −Y ), we 
an 
ombine (5.3.9) and (5.3.10) into one simpleexpression evaluated on the boundary at ω = π,

L3 =
1

π

∫ sf

si

ds f (s) . (5.3.15)59



To evaluate this integral we must �rst parameterise the integrand expli
itly interms of s and w0. The parameterisation for U , V , X and Y is
U =

(
1 + w0

1− w0

)
cosh s cos T, (5.3.16a)

V =

(
1 + w0

1− w0

)
cosh s sinT, (5.3.16b)

X =
(1 + w0)

2 (1− w0) (e2si + 2f + e−2si)
1

2

((
es+si + e−s−si

)
+ f

(
es−si + e−s+si

))
,(5.3.16
)

Y =
2w

1

2

0

(1 +w0) (e2si + 2f + e−2si)
1

2

(
es−si − e−s+si

)
, (5.3.16d)where we have used (4.1.10) and also inverted (4.1.10) to obtain si and sf , theinitial and �nal proper distan
es,

si = − log

(
(1− w0w1)

1

2 + (w1 − w0)
1

2

(1− w0w1)
1

2 − (w1 − w0)
1

2

)
, (5.3.17a)

sf = + log

(
(1− w0w2)

1

2 + (w2 − w0)
1

2

(1− w0w2)
1

2 − (w2 − w0)
1

2

)
, (5.3.17b)where wi is the square of the distan
e of parti
le i from the 
entre of the disk.

w0, w1 and w2 
an be rewritten in a similar form in terms of the initial dataand T ,
w0 =

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 −
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 +
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

, (5.3.18a)
wi =

(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 −
(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2 +
(
s2i sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

.(5.3.18b)Using (5.3.17) and (5.3.18) we 
an now rewrite (5.3.16),
U = A cosh s, (5.3.19a)
V = B cosh s, (5.3.19b)
X = D cosh s+ E sinh s, (5.3.19
)
Y = F cosh s+G sinh s, (5.3.19d)60



where.
A =

(
sin2 δ

2 + s21s
2
2 sinh2 β1

sin2 δ
2 + s21s

2
2 sinh2 β1 sin2 T

) 1

2

cos T, (5.3.20a)
B =

(
sin2 δ

2 + s21s
2
2 sinh2 β1

sin2 δ
2 + s21s

2
2 sinh2 β1 sin2 T

) 1

2

sinT, (5.3.20b)
D =

s1s2 sinhβ1 cosT
(
s21 sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

, (5.3.20
)
E =

−c1 sin δ
2(

sin2 δ
2 + s21s

2
2 sinh2 β1

) 1

2

, (5.3.20d)
F =

c1s1s2 sin δ
2 sinhβ1 cos T

(
sin2 δ

2 + s21s
2
2 sinh2 β1

) 1

2
(
sin2 δ

2 + s21s
2
2 sinh2 β1 sin2 T

) 1

2

, (5.3.20e)
G =

(
s21 sin2 δ

2 + s21s
2
2 sinh2 β1

sin2 δ
2 + s21s

2
2 sinh2 β1

) 1

2

. (5.3.20f)We now reparameterise the integral via
p = tanh

s

2
, (5.3.21)so that

cosh s =
1 + p2

1− p2
, (5.3.22a)

sinh s =
2p

1− p2
, (5.3.22b)We now have

L3 = − 2

πφ

∫ pf

pi

dp
P (p)

(p2 − p2
a)
(
p2 − p2

b

)
(p2 − p2

c)
2 . (5.3.23)
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where
φ =

(
(CA− SD)2 +B2

)(
(CD − SA)2 + F 2

)
, (5.3.24a)

pf =

(
w2 − w0

1− w0w2

)1

2

, (5.3.24b)
pi = −

(
w1 − w0

1− w0w1

) 1

2

, (5.3.24
)
p2
a =

2SE

CA− SD + iB
− 1, (5.3.24d)

p2
b =

2SE

CA− SD − iB − 1 = p̄2
a, (5.3.24e)

p2
c = −2 [CE (CD − SA) + FG]

(CD − SA)2 + F 2
− 1, (5.3.24f)

P (p) = K0 +K1p
(
1− p4

)
+K2p

2
(
1− p2

)
, (5.3.24g)

K0 = SEB
[
F (CA− SD) β̇1 − SBFṪ

]
, (5.3.24h)

K1 = 2SEB
[
(G (CA− SD)− SEF ) β̇1 − SBGṪ

]
, (5.3.24i)

K2 = SEB
[
(F (CA− SD)− 4SEG) β̇1 − SBFṪ

]
. (5.3.24j)The integral (5.3.23) 
an be evaluated in terms of elementary fun
tions. Theresult is

L3 = − 2

πφ

[
A+Log (p+ pa) +A−Log (p− pa)

+B+Log (p+ pb) +B−Log (p− pb)

+ C+Log (p+ pc) + C−Log (p− pc)

− K+

p+ pc
− K−

p− pc

]∣∣∣∣
pf

pi

. (5.3.25)where
A± =

∓P (∓pa)
2pa

(
p2
a − p2

b

)
(p2
a − p2

c)
2 , (5.3.26a)

B± =
∓P (∓pb)

2pb
(
p2
b − p2

a

) (
p2
b − p2

c

)2 , (5.3.26b)
C± =

P± (p2
a, p

2
b , p

2
c

)

4p3
c (p2

c − p2
a)

2 (p2
c − p2

b

)2 , (5.3.26
)
K± =

P (∓pc)
4p2
c (p2

c − p2
a)
(
p2
c − p2

b

) , (5.3.26d)62



and
P± (p2

a, p
2
b , p

2
c

)
=±K0

(
−3p2

c

(
p2
a + p2

b

)
+ p2

ap
2
b + 5p4

c

)

− 2p3
cK1

(
2p2
ap

2
bp

2
c − p2

a − p2
b − p2

bp
4
c − p2

ap
4
c + 2p2

c

)

± p2
cK2

(
−p2

ap
2
b + 3p4

c − p2
ap

2
c − p2

bp
4
c − p2

ap
4
c − p6

c − p2
bp

2
c + 3p2

ap
2
bp

2
c

)
.(5.3.27)We will leave the solution in the form (5.3.25) for now.5.3.3 The line at λ = 0On the line at λ = 0 we need to perform the integration for the 
ontour shownin Figure 5.1.

r

Boundary orientation

θ
1

Figure 5.1: Contour of integration about parti
le 1.The parameterisation for the R
2,2 
oordinates is

U =

(
1 + (ρ1 + r cos θ)2 + r2 sin2 θ

1− (ρ1 + r cos θ)2 − r2 sin2 θ

)
cos T, (5.3.28a)

V =

(
1 + (ρ1 + r cos θ)2 + r2 sin2 θ

1− (ρ1 + r cos θ)2 − r2 sin2 θ

)
sinT, (5.3.28b)

X =
2 (ρ1 + r cos θ)

1− (ρ1 + r cos θ)2 − r2 sin2 θ
, (5.3.28
)

Y =
2r sin θ

1− (ρ1 + r cos θ)2 − r2 sin2 θ
, (5.3.28d)where r and θ are shown in Figure 5.1. After the integration we will take thelimit r → 0. The fun
tion we integrate is similar to (5.3.14) with s repla
ed63



by θ. After performing a similar analysis to the previous se
tion we �nd thatthe 
ontribution to the Lagrangian from this 
ontour is
L4 =

1

π

[
cosh β1√

χ
(
√
χδ1 − θi) Ṫ −

cot T√
χ sinhβ1

(√
χ
δ1
2
− θi

)
β̇1

]
, (5.3.29)where

θi = arctan

(√
χ tan

δ1
2

)
, (5.3.30)and

χ = cos2 T + sin2 T cosh2 β1. (5.3.31)5.3.4 The two small half-
ir
les about the singular points 2and 2'The �nal 
ontribution to the Lagrangian is from the two small half-
ir
les aboutthe singular points 2 and 2'. The gauge 
hoi
e in this region is determined by�rst spe
ifying a group-valued fun
tion in the interval ρ ∈ (ρ2 − τ, ρ2 + ǫ) where
τ and ǫ are small, su
h that it takes the value ±n at ρ = ρ2 − τ and ±m−1 at
ρ = ρ2 + ǫ. A prospe
tive 
hoi
e for this fun
tion is provided by the formula

±p =




±f̃ 0

0 ±f̃−1


 1√

2




(
K̃ + 1

) 1

2 ±
(
K̃ − 1

) 1

2

±
(
K̃ − 1

) 1

2
(
K̃ + 1

) 1

2


 , (5.3.32)
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where
f̃ =

(
Ỹ − i

(
C̃X̃ − S̃Ũ

)) 1

4
(
Ṽ ∓ i

(
C̃Ũ − S̃X̃

)) 1

4

(
Ỹ + i

(
C̃X̃ − S̃Ũ

)) 1

4
(
Ṽ ± i

(
C̃Ũ − S̃X̃

)) 1

4

, (5.3.33a)
C̃ = cosh (β1 (1− p)) , (5.3.33b)
S̃ = sinh (β1 (1− p)) , (5.3.33
)
K̃ =

(
C̃Ũ − S̃X̃

)2
+ Ṽ 2, (5.3.33d)

Ũ =

(
1 + ρ̃2

1− ρ̃2

)
cos T, (5.3.33e)

Ṽ =

(
1 + ρ̃2

1− ρ̃2

)
sinT, (5.3.33f)

X̃ =

(
2ρ̃

1− ρ̃2

)
cos φ, (5.3.33g)

Ỹ =

(
2ρ̃

1− ρ̃2

)
sinφ, (5.3.33h)

ρ̃ = ρ2 + ǫp− τ (1− p) . (5.3.33i)We have introdu
ed the parameter p ∈ [0, 1] to interpolate between the two val-ues in the interim region. p = 0 at ρ = ρ2−τ and p = 1 at ρ = ρ2 +ǫ. However,formula (5.3.32) 
ould 
on
eivably fail if it be
omes singular somewhere in thedomain bounded by the two small semi
ir
les and the lines p = 0 and p = 1.As we will only be needing the gauge 
hoi
e on the two small semi
ir
les it ispossible to resolve this issue by an indire
t argument as follows.Consider the gauge 
hoi
e ±p (5.3.32) on the two small semi
ir
les andon the lines p = 0 and p = 1. When tra
ing over the 
losed 
urve formed bythese four lines the gauge fun
tion ±p tra
es, by 
onstru
tion, a 
losed 
urve in
SU (1, 1) ∼= R2 × S1. If this 
losed 
urve in SU (1, 1) is homotopi
ally trivial,that is, does not wind around the S1 fa
tor, then there exists an extension of thegauge fun
tion into the domain bounded by the four lines and we may use ±pon the small semi
ir
les. If this 
losed 
urve in SU (1, 1) is not homotopi
allytrivial, we modify ±p by in
luding on one or both of the small semi
ir
les afa
tor that does the requisite unwinding to make the new 
urve homotopi
allytrivial. We then use this modi�ed 
hoi
e for ±p on the small semi
ir
les.65



The author has not been able to 
omplete this analysis and the 
ontri-bution L5 remains undetermined. However, as the idea behind all of this is toobtain a �ni
e� form for the redu
ed a
tion we are not overly worried about
L5 mainly due to the intra
table nature of L3. A �ni
e� form for the redu
eda
tion will be obtained in a di�erent way in Chapter 6.
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Chapter 6
The redu
ed a
tion

In this 
hapter we �rst obtain the redu
ed Hamiltonian a
tion in a phase spa
e
hart in whi
h the �position� 
oordinate is the geodesi
 distan
e between the twoparti
les. We then use this a
tion to analyse the bla
k hole formation thresholdin the language of 
riti
al phenomena, and in parti
ular we 
ompute the 
riti
alexponent of the bla
k hole mass at this threshold. We also use the Hamiltoniana
tion to analyse the bla
k hole 
reation/annihilation as a quantum me
hani
altunnelling pro
ess, �nding that the imaginary part of the a
tion is equal to theBekenstein-Hawking entropy.6.1 The equations of motionAlthough algebrai
 
ompli
ations prevented us from 
omputing the Liouvilleterms in the redu
ed Hamiltonian a
tion in Chapter 5, the analysis of Chapter5 did show that the phase spa
e is two-dimensional and 
an be 
oordinatisedby the (a priori non-
anoni
al) 
hart (α, T ) as 
an be seen from the form of
L1 (5.3.5), L3 (5.3.25) and the equations relating α to β1 (2.6.7) and (2.6.5).
α refers to a two-parti
le spa
etime, T refers to a parti
ular spa
elike sli
ewithin the spa
etime, and both parameters are here understood as fun
tionsof the BTZ 
oordinate time t. The analysis also showed that the value of theHamiltonian is −α2 by virtue of the form of S∞ (5.0.1). Further, it follows67



from the de�nition of T , α and the BTZ time t that the equations of motion inthis 
hart take the simple form
α̇ = 0, (6.1.1a)
Ṫ = α, (6.1.1b)where the dot indi
ates di�erentiation with respe
t to t. We shall now use thesefa
ts to indire
tly determine the Liouville terms in the a
tion.6.1.1 Reprodu
ing the E.O.MWe wish to �nd an a
tion, S, that reprodu
es (6.1.1), with the Hamiltonian

H = −α2 and with Liouville terms of the form obtained in Chapter 5. Thea
tion must take the form
S =

∫
dt
[
Ṫ F (α, T ) + α̇G (α, T ) + α2

] (6.1.2)where the fun
tions F (α, T ) and G (α, T ) are to be determined.We 
an simplify (6.1.2) somewhat by noting that there exists a fun
tion
h (α, T ) su
h that

G (α, T ) =
∂h (α, T )

∂α
. (6.1.3)The se
ond term in the integrand in (6.1.2) 
an thus be rewritten as

α̇G (α, T ) =
d

dt
h (α, T )− Ṫ ∂h

∂T
. (6.1.4)As a total derivative in the integrand in (6.1.2) will not a�e
t the E.O.M, itsu�
es to 
onsider the a
tion

S =

∫
dt
[
Ṫ f (α, T ) + α2

]
, (6.1.5)where the fun
tion f (α, T ) is to be determined.The Euler-Lagrange equation for α 
ombined with (6.1.1b) yields a di�er-ential equation for f ,

∂f

∂α
= −2, (6.1.6)68



whi
h is easily solved,
f = −2α+ φ (T ) . (6.1.7)The Euler-Lagrange equation for T 
ombined with (6.1.1a) shows that φ (T ) isa 
onstant, and we may assume without loss of generality that φ (T ) = 0. ALagrangian reprodu
ing (6.1.1) is therefore
L = −2αṪ + α2. (6.1.8)Rewriting α in terms of the new variable
pT := −2α, (6.1.9)the a
tion takes the Hamiltonian form

S =

∫
dt
[
pT Ṫ −H

]
, (6.1.10)where

H = −p
2
T

4
. (6.1.11)The phase spa
e has thus dimension two, and the pair (T, pT ) provides a 
anon-i
al 
hart, with −π

2 < T < π
2 and −2 < pT < 0.6.2 Massless parti
lesAs seen above, the theory has a two-dimensional phase spa
e and (T, pT ) isa 
anoni
al 
hart. The task now is to undertake a 
anoni
al transformation

(T, pT ) → (rc, prc) where rc is the geodesi
 distan
e between the parti
les and
prc is its 
onjugate momentum. In this se
tion we shall do this in the limitwhere the parti
les are massless, δ1 → 0 and δ2 → 0. As we have until nowassumed both δ1 and δ2 to be stri
tly positive, we �rst need to take this limitin the formulas of Chapter 2.To analyse the limit we write δ1 = ǫm1 and δ2 = ǫm2 where mi areregarded as positive 
onstants and ǫ is a positive parameter that will eventually69



be taken to zero. We anti
ipate that in the limit ǫ→ 0, β should go to in�nity.An ansatz whi
h turns out to give the 
orre
t s
aling is to write
cosh β =

4µ

ǫ2m1m2
, (6.2.1)where µ is independent of ǫ. We then �nd, after taking ǫ→ 0, that

ci = 1, (6.2.2a)
si = 0, (6.2.2b)

cos
δ

2
= 1− µ. (6.2.2
)We 
an rearrange (6.2.2
) to express α as

α =
1

π
arccos (µ− 1) . (6.2.3)Note that pure AdS3 o

urs when µ = 0 and the threshold of bla
k hole for-mation o

urs at µ = 2.For the geodesi
 distan
e between the parti
les, taking the ǫ→ 0 limit of(2.6.13) gives

cosh rc = 1 +
(2− µ)

tan2 T
. (6.2.4)6.2.1 The 
anoni
al transformationFor brevity of notation, we now drop the subs
ript c and let r stand for thegeodesi
 distan
e between the parti
les and pr for its 
onjugate momentum. Asa �rst step towards the 
anoni
al transformation we �nd, from (6.1.9), (6.2.3)and (6.2.4)

sinh
r

2
= −sin

(πpT

4

)

tanT
, (6.2.5)We have 
hosen a minus sign in (6.2.5) as −2 < pT < 0 and we're assumingthat we are in the 
olliding parti
le regime where 0 < T < π

2 . Rearranging(6.2.5) gives
pT = − 4

π
arcsin

(
tanT sinh

r

2

)
. (6.2.6)70



The 
riterion for the transformation from (T, pT )→ (r, pr) to be 
anoni
al
an be written as [30℄
prdr − pTdT = df, (6.2.7)where pr and pT are regarded as fun
tions of T and r, and f is an arbitraryfun
tion of T and r. To �nd a pr (T, r) that satis�es (6.2.7), we note that (6.2.7)is equivalent to the 
ondition
∂pr
∂T

= −∂pT
∂r

. (6.2.8)After a fairly lengthy straightforward 
al
ulation using (6.2.6) we �nd that
∂pr
∂T

= − 2

π

∂

∂T
arccosh

(
cos T

tanh r
2

)
. (6.2.9)The general solution is

pr = − 2

π
arccosh

(
cosT

tanh r
2

)
+ g (r) , (6.2.10)where the fun
tion g (r) is arbitrary. We 
hoose g (r) = 0 for reasons that willbe
ome apparent shortly.The new phase spa
e 
oordinates (r, pr) are then de�ned impli
itly by

− sin
(πpT

4

)
= sinh

(r
2

)
tan T, (6.2.11a)

cos T = cosh
(πpr

2

)
tanh

(r
2

)
. (6.2.11b)Eliminating T from (6.2.11) we �nd

pT =
4

π
arccos

(
− cosh

(r
2

)
tanh

(πpr
2

))
. (6.2.12)In the new 
hart the Hamiltonian takes therefore the form

H = − 4

π2

[
arccos

(
− cosh

(r
2

)
tanh

(πpr
2

))]2
. (6.2.13)Note that in the limit pr → 0, we have H → −1, and the spa
etimebe
omes pure AdS3. This was the reason to 
hoose g (r) = 0 in (6.2.10).In deriving (6.2.13) we have used the information that we are in the 
ol-liding parti
le regime where pr < 0 and 0 < T < π

2 . We 
an generalise (6.2.13)71



to 
over both the 
olliding (pr < 0, 0 < T < π
2 ) and the expanding (pr > 0,

−π
2 < T < 0) parti
le regime by writing

H = − 4

π2

[
arccos

(
cosh

(r
2

)
tanh

(
π|pr|

2

))]2

. (6.2.14)When cosh
(
r
2

)
tanh

(
π|pr|

2

)
> 1, the Hamiltonian (6.2.14) 
ontinues ana-lyti
ally to

H =
4

π2

[
arccosh

(
cosh

(r
2

)
tanh

(
π|pr|

2

))]2

, (6.2.15)whi
h takes positive values. The geometry near the in�nity is then the BTZgeometry (2.2.9) with M = H > 0, S = 0 and ψ periodi
 with period 2π. Thisis the spinless BTZ bla
k hole with mass M = H [22, 23℄.We note that our Hamiltonian (6.2.15) di�ers from that obtained in [31℄,even though both use the geodesi
 distan
e as the 
on�guration variable. Thereason is that the time 
oordinate used in [31℄ (see equation (3.21) therein) isrelated to the BTZ time 
oordinate by a res
aling that depends on M .6.2.2 Threshold of bla
k hole formationThe threshold of bla
k hole formation is where H = 0. We wish to examinehow the mass of the bla
k hole depends on pr near this threshold.From (6.2.14) we 
an see that H = 0 o

urs when
cosh

(r
2

)
tanh

(
π|pr|

2

)
= 1. (6.2.16)We set

cosh
(r

2

)
tanh

(
π|pr|

2

)
= 1 + ǫ, (6.2.17)for small ǫ > 0. The behaviour of H in terms of ǫ is

H =
8

π2
ǫ+O

(
ǫ2
)
. (6.2.18)For �xed r, ǫ behaves as

ǫ = K (pr − p0) , (6.2.19)72



where p0 is the value of pr at whi
h H = 0 and K is 
onstant. We hen
e �nd
H =

8K

π2
(pr − p0) +O (pr − p0)

2 , (6.2.20)Near the bla
k hole formation threshold, the mass therefore depends linearly onthe momentum of the parti
les. In the language of 
riti
al exponents, we 
ansay that the mass behaves linearly as a fun
tion of the initial data, or has the
riti
al exponent 1. This agrees with what was found in [12℄ in a formulationthat parameterises the phase spa
e in terms of the time-independent Oc (2, 2)holonomies of the two-parti
le spa
etime.6.2.3 A
tion for tunnelling from the bla
k holeIn [32℄ the authors evaluate the 
lassi
al a
tion S of the positive de�nite se
tionof the S
hwarzs
hild geometry. They postulate that Z ≈ exp (−S) is the 
orre
tpartition fun
tion to use, and show that this partition fun
tion indeed repro-du
es the Bekenstein-Hawking entropy by the usual formulae of the 
anoni
alensemble. See also [33℄ and the review in [34℄.Motivated by this and subsequent work, in [35℄ the authors perform atunnelling 
al
ulation for ripping a pair of magneti
ally 
harged bla
k holes outof the va
uum. Some 
larifying 
omments are in [36℄.As we have formulated a 
lassi
al a
tion for our point parti
le system, weare motivated to 
onsider a quantum me
hani
al pro
ess analogous to the one
onsidered in [35℄ in whi
h the parti
les semi
lassi
ally tunnel out of the bla
khole. To begin, suppose we are in the bla
k hole regime, H > 0, and 
onsiderthe a
tion in the new 
hart,
S =

∫
dt (pr ṙ −H) , (6.2.21)where H is given by (6.2.15). Assume further r to be so large that the parti
lesare outside the horizon, and 
onsider the expanding 
ase pr > 0. One E.O.M73



is simply that H is 
onstant. The other E.O.M is that
ṙ =

∂H

∂pr
, (6.2.22)whi
h after some algebra yields

ṙ =
2
√
H

sinh
(
π
√
H

2

)
cosh

(
r
2

)

[
sinh2

(r
2

)
− sinh2

(
π
√
H

2

)]
. (6.2.23)The expression in square bra
kets is zero when

r = rhorizon = π
√
H, (6.2.24)whi
h is the value of r at whi
h both parti
les are at the horizon of the bla
khole. It would take an in�nite amount of 
oordinate time t to rea
h rhorizon asone would expe
t by the form of the BTZ metri
 (2.2.9) with positive mass.The solution to (6.2.23) is found by �rst making the substitutions

A = sinh

(
π
√
H

2

)
, (6.2.25a)

S = sinh
(r

2

)
, (6.2.25b)so that after some manipulation

2
√
Hdt = d ln

(
S −A
S +A

)
. (6.2.26)Choosing a suitable zero for t, we end up with

sinh
(r

2

)
= − coth

(√
Ht
)

sinh

(
π
√
H

2

)
, (6.2.27)where t < 0. Note that r →∞ as t→ 0− and r → rhorizon as t→ −∞.We now wish to examine the tunnelling pro
ess from r = 0 to r > rhorizon.The traje
tory will have to be 
omplex but it should have a well-de�ned a
tion.We wish to evaluate this a
tion and see whether its imaginary part is relatedto the Bekenstein-Hawking entropy.We 
an express (6.2.21) in terms of an integral over r;

S =

∫
dr

(
pr −

H

ṙ

)
. (6.2.28)74



The �rst term in the integrand is
pr =

2

π
arctanh




cosh
(
π
√
H

2

)

cosh
(
r
2

)


 . (6.2.29)The integral we are interested in is

∫ ∞

0
prdr = − 1

π

∫ ∞

0
dr ln




cosh
(
r
2

)
− cosh

(
π
√
H

2

)

cosh
(
r
2

)
+ cosh

(
π
√
H

2

)


 , (6.2.30)and evaluating this gives the imaginary 
ontribution

−iηπ
√
H, (6.2.31)where η = +1, (η = −1) if r has a small positive (negative) part around thesingularity at r = rhorizon.The se
ond term in the integrand is

H

ṙ
=
A
√
H

2

cosh
(
r
2

)

sinh2
(
r
2

)
−A2

, (6.2.32)so that the integral be
omes
−
∫ ∞

0

H

ṙ
dr = −

√
H

2

[
ln

(
S −A
S +A

)]r=∞

r=0

. (6.2.33)Evaluating this gives an imaginary 
ontribution of
iηπ

√
H

2
. (6.2.34)Colle
ting both imaginary terms together we get the imaginary 
ontribution tothe total a
tion of

−iη2π
√
H

4
= −iηA

4
, (6.2.35)where A is the horizon 
ir
umferen
e,

A = 2π
√
H, (6.2.36)The imaginary part of the a
tion is hen
e equal to the Bekenstein-Hawkingentropy of the bla
k hole [22℄. 75



6.3 Massive parti
lesIn this se
tion we keep the masses of the two parti
les stri
tly positive. Westart with generi
 values of the masses but spe
ialise early on to equal masses.6.3.1 The 
anoni
al transformationFor two massive parti
les the algebra in �nding a 
anoni
al transformation issubstantially more di�
ult. The geodesi
 distan
e between the parti
les is givenby (2.6.13),
cosh r =

cos2 T cosh β + sin2 T cosh β1 cosh β2
(
cos2 T + sin2 T cosh2 β1

) 1

2
(
cos2 T + sin2 T cosh2 β2

) 1

2

, (6.3.1)where βi are given by (2.6.5) and (2.6.6) and β is related to α through (2.6.7).The �rst task is to invert (6.3.1) to �nd an expression for T in terms of rand pT . To do this we write
v = cos

(πpT
2

)
= − cos

(
δ

2

)
, (6.3.2)where −1 < v < 1, and

σ = sin2 T, (6.3.3)and �nd (after a lengthy 
al
ulation) that
tan2 T =

2g
(
R2 − v2

)

R2 (m+ n)− 2vh −R (1− v2)
[
R2
(
c21 − c22

)2
+ 4c1c2

√
m
√
n
] 1

2

− 1,(6.3.4)where
R = cosh r, (6.3.5a)
g = c21 + c22 − 1 + 2vc1c2 + v2, (6.3.5b)
h = v

(
c21 + c22

)
+ c1c2

(
1 + v2

)
, (6.3.5
)

m = (c1 + c2v)
2 , (6.3.5d)

n = (c2 + c1v)
2 . (6.3.5e)We shall only 
onsider the spe
ial 
ase of equal masses, δ1 = δ2.76



6.3.2 Equal massesSpe
ialising to equal masses, c1 = c2 := c, where 0 < c < 1, (6.3.4) simpli�es to
tan2 T =

(
u2

S2
+ 1

)(
c2 − u2

c2 (1− u2)

)
− 1, (6.3.6)where we have written

u = −
√

1− v
2

, (6.3.7a)
S = sinh

r

2
=

√
R− 1

2
. (6.3.7b)The range of u is su
h that −c < u < 0. Note that when we take the masslesslimit c→ 1 we re
over (6.2.11a).We now 
onsider pr and T as fun
tions of pT and r. The 
ondition for thetransformation from (T, pT ) to (r, pr) to be 
anoni
al is then

prdr + TdpT = df̃ , (6.3.8)where f̃ is a fun
tion of r and pT . An equivalent form is
∂pr
∂pT

=
∂T

∂r
. (6.3.9)The R.H.S is easily 
omputed and we �nd

∂pr
∂pT

= − u2C

2S3
(
1 + u2

S2

) [(
1 + u2

S2

)(
c2−u2

c2(1−u2)

)
− 1
] 1

2

, (6.3.10)where
C = cosh

(r
2

)
, (6.3.11)and we have assumed we are in the range 0 < T < π

2 . Changing the di�eren-tiation variable to u and simplifying the expression in the square bra
kets we�nd
∂pr
∂u

=
2Ccu

π (u2 + S2) [1− s2C2 − u2]
1

2

, (6.3.12)where
s =

√
1− c2. (6.3.13)77



We 
an integrate this dire
tly by 
hanging variables. The answer is
pr =

1

π
ln


Cc−

(
1− s2C2 − u2

) 1

2

Cc+ (1− s2C2 − u2)
1

2


 , (6.3.14)where we have set the arbitrary fun
tion of r obtained when integrating to zeroin order that pr = 0 at T = 0. We now rearrange this expression to �nd

(
1− u2

) 1

2 = C
(
s2 + c2 tanh2

(πpr
2

)) 1

2

. (6.3.15)Colle
ting everything together we 
an now express the Hamiltonian in the new
hart as
H = − 4

π2

{
arccos

[
C
(
s2 + c2 tanh2

(πpr
2

)) 1

2

]}2

. (6.3.16)The analyti
 
ontinuation of (6.3.16) to the bla
k hole regime, H > 0, is
H =

4

π2

{
arccosh

[
C
(
s2 + c2 tanh2

(πpr
2

)) 1

2

]}2

, (6.3.17)where C (s2 + c2 tanh2
(πpr

2

)) 1

2 > 1. To 
ompute (6.3.16) we have assumedthat 0 < T < π
2 and pr < 0. A similar analysis shows that (6.3.16) holds alsowhen −π

2 < T < 0 and pr > 0. The result thus holds for −π
2 < T < π

2 .6.3.3 Threshold of bla
k hole formationThe threshold of bla
k hole formation is where H = 0. As in the massless 
asethe analysis yields the same formula for the Hamiltonian (6.2.20) showing thatthe 
riti
al exponent is 1, again in agreement with [12℄.6.3.4 A
tion for tunnelling from the bla
k holeThe analysis in this se
tion is qualitatively similar to the a
tion analysis for themassless 
ase. Again, one E.O.M is simply that H is 
onstant. After a lengthy
al
ulation the other E.O.M yields
sinh2

(
r
2

)

sinh2
(
π
√
H

2

) =

s2

c2
tanh2

(
π
√
H

2

)
+ 1

s2

c2
tanh2

(
π
√
H

2

)
+ tanh2

(√
Ht
) . (6.3.18)78



The parti
les again rea
h the bla
k hole horizon when rhorizon = π
√
H. It wouldtake an in�nite amount of 
oordinate time t to rea
h rhorizon.After evaluating the imaginary 
ontribution of the a
tion we �nd it to beagain given by formulas (6.2.35) and (6.2.36), and hen
e equal to the Bekenstein-Hawking entropy of the bla
k hole.6.4 One massive and one massless parti
leTo end this 
hapter, we 
onsider brie�y the spe
ial 
ase when we have onemassive and one massless parti
le. We will just state the result, the analysisbeing entirely analogous with the previous se
tions in this 
hapter.Taking parti
le 2 to be massless, we have s2 = 0 and c2 = 1. The Hamil-tonian in the bla
k hole regime is

H =
4

π2

{
arccosh

[
− c1

(
1− tanh2

(πpr
2

))

+ cosh (r) tanh

(
π|pr|

2

)(
s21 + c21 tanh2

(πpr
2

)) ]}2
. (6.4.1)We did not 
omplete the analysis for the 
riti
al exponent and the tun-nelling a
tion but have no reason to expe
t the results would be any di�erentto those obtained in the massless and equal massive 
ases.A

ording to the AdS/CFT 
orresponden
e, [20℄, pro
esses happeninginside AdS spa
e should be des
ribable by a 
onformal �eld theory on theboundary of AdS. In parti
ular, the pro
esses involving point parti
les we have
onsidered in the �rst part of the thesis should be able to be des
ribed in termsof a CFT, see [37℄ and [38℄. Although we do not follow up on this here, wenow draw motivation from the AdS/CFT 
orresponden
e to dis
uss CFT in adi�erent setting in the se
ond part of the thesis.
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Chapter 7
SL(2, C) twistor spa
e

This 
hapter is 
on
erned with homogeneous spa
es 
onstru
ted from the Liegroup G = SL(2,C) via 
oset spa
e te
hniques. We realise �SL(2,C) twistorspa
e�, showing that it has 
omplex dimension two, a metri
 with signature
(+,+,−,−) and an interesting 
omplex stru
ture. We also 
onsider a se
ond
oset spa
e of G and dis
uss its global properties. Essentially we would liketo set the mathemati
al s
ene for physi
al appli
ations within 
onformal �eldtheory.7.1 The twistor 
oset, T - matrix representationWe 
onsider the Lie group G = SL(2,C). We de�ne the twistor 
oset T as ahomogeneous spa
e via a quotient spa
e 
onstru
tion,

T := G/A = {gA | g ∈ G} , (7.1.1)where A is the diagonal subgroup,
A =






 δ−1 0

0 δ


 | δ ∈ C \ {0}



 . (7.1.2)Elements of G/A are equivalen
e 
lasses on G where the equivalen
e relation is

g ∼ g′ if ∃ a ∈ A | g′ = ga, and so [g] = [ga] ∀a ∈ A. The relationship between80



elements g ∈ G and elements [g] ∈ T is, for
g =


 a b

c d


 , (7.1.3)

[g] =




 a b

c d




 =






 aδ−1 bδ

cδ−1 dδ


 | δ ∈ C \ {0}



 . (7.1.4)When d 6= 0, we may 
hoose 
omplex 
oordinates (x1, x2) on T by setting

δ = d−1, x1 = b
d and x2 = c

a in (7.1.4), so that a unique representative of a
lass in T is given by
t(x1, x2) =




1

1− x1x2
x1

x2

1− x1x2
1


 , (7.1.5)where xi ∈ C, and

x1x2 6= 1. (7.1.6)An alternative parameterisation is
t̄(ξ1, ξ2) =




ξ2
ξ2 − ξ1

ξ1

1

ξ2 − ξ1
1


 , (7.1.7)where ξi ∈ C, and

ξ1 6= ξ2. (7.1.8)The equivalen
e 
lasses where d = 0 form a subset of T of 
omplex dimension
1 and 
an be understood as singular limits in the parameterisations (7.1.5) or(7.1.7).Among the in�nitely many parameterisations of T available these par-ti
ular two give �ni
e� transformations of the 
oordinates when the a
tion ofthe 
overing group on the spa
e is 
onsidered as will be done in the followingsubse
tion.
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7.2 G-a
tion on TWe show here that the natural left a
tion of G on T is by distin
t fra
tionallinear transformations on the two 
omplex 
oordinates. In deriving this resultwe use the fa
t that the a
tion of G on elements of G/A is the same as the 
lassof the a
tion of G on any representative of G/A, namely (for g ∈ G)
g[t] = [gt]. (7.2.1)We denote an element of A by

ã (δ) =


 δ−1 0

0 δ


 , (7.2.2)and use a generi
 representative h of G/A by leaving δ freely spe
i�able for themoment,

h(x1, x2, δ) = t(x1, x2) ◦ ã (δ)

=




δ−1

1− x1x2
δx1

δ−1x2

1− x1x2
δ


 . (7.2.3)The a
tion is

g[t(x1, x2)] = g[h(x1, x2, δ)] =


 a b

c d










δ−1

1− x1x2
δx1

δ−1x2

1− x1x2
δ







=





 a b

c d







δ−1

1− x1x2
δx1

δ−1x2

1− x1x2
δ







=







(a+ bx2)(cx1 + d)

1− x1x2

ax1 + b

cx1 + d

(c+ dx2)(cx1 + d)

1− x1x2
1







=[t(x′1, x
′
2)], (7.2.4)82



where in the last step we have 
hosen δ = (cx1 + d)−1. The expli
it 
oordinatetransformation is given by
(x1, x2) 7→

(
x′1, x

′
2

)
=

(
ax1 + b

cx1 + d
,
dx2 + c

bx2 + a

)
. (7.2.5)In the alternative 
oordinatisation the transformation is

(ξ1, ξ2) 7→
(
ξ′1, ξ

′
2

)
=

(
aξ1 + b

cξ1 + d
,
aξ2 + b

cξ2 + d

)
. (7.2.6)We now study the one-parameter subgroups of G and 
al
ulate the 
orre-sponding left invariant ve
tor �elds on G.We use the generi
 representative (7.2.3), denoted by h = t ◦ ã. Thenatural left a
tion of G is via h 7→ h′ = g ◦ h where g ∈ G. If we parameterisethe element g in the same way as (7.2.3) with 
oordinates (z1, z2, β) the expli
ittransformation of the 
oordinates is

x′1 =
β2z1 (1− z1z2) + x1

β2 (1− z1z2) + z2x1
, (7.2.7a)

x′2 =
β2x2 (1− z1z2) + z2
β2x2z1 (1− z1z2) + 1

, (7.2.7b)
δ′ =

δ
(
β2 (1− z1z2) + z2x1

)

β (1− z1z2)
, (7.2.7
)with 
orresponding inverse transformations

x1 =
β2 (1− z1z2) (x′1 − z1)

(1− z2x′1)
, (7.2.8a)

x2 =
x′2 − z2

β2 (1− z1z2) (1− z1x′2)
, (7.2.8b)

δ =
δ′ (1− z2x′1)
β (1− z1z2)

. (7.2.8
)The transformation of basis ve
tors is
∂x′

1
=

(
β2 (1− z1z2) + z2x1

)2

β2 (1− z1z2)2
∂x1
− z2δ

(
β2 (1− z1z2) + z2x1

)

β2 (1− z1z2)2
∂δ, (7.2.9a)

∂x′
2

=

(
β2x2z1 (1− z1z2) + 1

)2

β2 (1− z1z2)2
∂x2

, (7.2.9b)
∂δ′ =

β (1− z1z2)
β2 (1− z1z2) + z2x1

∂δ, (7.2.9
)83



with similar inverse transformations.We now take the 
anoni
al basis for the 
omplex Lie algebra sl(2,C)

σ+ =


 0 1

0 0


 , σ− =


 0 0

1 0


 , σ3 =


 1 0

0 −1


 , (7.2.10)with the 
ommutation relations

[σ+, σ−] = σ3, [σ3, σ+] = 2σ+, [σ3, σ−] = −2σ−. (7.2.11)The real one-parameter subgroups of SL(2,C) 
orresponding to these basis el-ements are
g+(t) = etσ+ =


 1 t

0 1


 , g̃+(t) = eitσ+ =


 1 it

0 1


 , (7.2.12a)

g−(t) = etσ− =


 1 0

t 1


 , g̃−(t) = eitσ− =


 1 0

it 1


 , (7.2.12b)

g3(t) = etσ3 =


 et 0

0 e−t


 , g̃3(t) = eitσ3 =


 eit 0

0 e−it


 , (7.2.12
)where t ∈ R. The 
orresponding 
omplex ve
tor �elds invariant under the left

SL(2,C) a
tion are
X1 =

x2

δ(1 − x1x2)
∂δ +

1

δ2
∂x1

, (7.2.13a)
X2 = δ2(1− x1x2)

2∂x2
, (7.2.13b)

X3 = −δ∂δ , (7.2.13
)
X4 =

ix2

δ(1 − x1x2)
∂δ +

i

δ2
∂x1

, (7.2.13d)
X5 = iδ2(1− x1x2)

2∂x2
, (7.2.13e)

X6 = −iδ∂δ , (7.2.13f)
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with the 
orresponden
e
X1 ←→


 0 1

0 0


 = σ+, (7.2.14a)

X2 ←→


 0 0

1 0


 = σ−, (7.2.14b)

X3 ←→


 1 0

0 −1


 = σ3, (7.2.14
)

X4 ←→


 0 i

0 0


 = iσ+, (7.2.14d)

X5 ←→


 0 0

i 0


 = iσ−, (7.2.14e)

X6 ←→


 i 0

0 −i


 = iσ3. (7.2.14f)We form real left-invariant ve
tor �elds from the Xi via

Yi = Xi + X̄i, (7.2.15)and de�ne a set of dual, left-invariant one-forms {ωi} by 〈ωi | Yj〉 = δij . Theyread
ω1 =

1

2

(
δ2dx1 + δ̄2dx̄1

)
, (7.2.16a)

ω2 =
1

2

(
dx2

δ2(1− x1x2)2
+

dx̄2

δ̄2(1− x̄1x̄2)2

)
, (7.2.16b)

ω3 =
1

2

(
x2dx1

1− x1x2
+

x̄2dx̄1

1− x̄1x̄2
− dδ

δ
− dδ̄

δ̄

)
, (7.2.16
)

ω4 =
i

2

(
−δ2dx1 + δ̄2dx̄1

)
, (7.2.16d)

ω5 =
i

2

(
− dx2

δ2(1− x1x2)2
+

dx̄2

δ̄2(1− x̄1x̄2)2

)
, (7.2.16e)

ω6 =
i

2

(
− x2dx1

1− x1x2
+

x̄2dx̄1

1− x̄1x̄2
+
dδ

δ
− dδ̄

δ̄

)
. (7.2.16f)
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7.3 Map to Oc(1, 3)There is a well known two-to-one group homomorphismH : SL(2,C)→ Oc(1, 3),where the subs
ript c stands for the 
onne
ted 
omponent. The expli
it formof the homomorphism is
{H(g)}jk =

1

2
Tr(σjgσkg

†), (7.3.1)where the 
hoi
e of Pauli matri
es is
σ0 =


 1 0

0 1


 , σ1 =


 0 1

1 0


 , (7.3.2a)

σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 . (7.3.2b)The kernel of H is the subgroup {±I2} ⊂ A, and the image of A under H isthe dire
t produ
t Oc(1, 1) × Oc(2). It follows that T has a realisation as thehomogeneous spa
e

T = Oc(1, 3)/ [Oc(1, 1) ×Oc(2)] . (7.3.3)The a
tion of H on our representative element (7.1.5) of T is given by
H : t(x1, x2) 7→ T (x1, x2) = (V0, V1, V2, V3), (7.3.4)where [T (x1, x2)] ∈ Oc(1, 3)/ [Oc(1, 1) ×Oc(2)] and the V0, V1, V2, V3 are 
olumns
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given by
V0 =

1

2|1 − x1x2|2




1 + |x2|2 + |1− x1x2|2(1 + |x1|2)
x2 + x̄2 + |1− x1x2|2(x1 + x̄1)

i
[
x̄2 − x2 + |1− x1x2|2(x1 − x̄1)

]

1− |x2|2 + |1− x1x2|2(−1 + |x1|2)



, (7.3.5a)

V1 =
1

2|1 − x1x2|2




(1− x̄1x̄2)(x̄1 + x2) + (1− x1x2)(x1 + x̄2)

(1− x̄1x̄2)(1 + x̄1x2) + (1− x1x2)(1 + x1x̄2)

i [(1− x̄1x̄2)(1− x̄1x2) + (1− x1x2)(−1 + x1x̄2)]

(1− x̄1x̄2)(x̄1 − x2) + (1− x1x2)(x1 − x̄2)



,(7.3.5b)

V2 =
1

2|1 − x1x2|2




i [(1− x̄1x̄2)(−x̄1 − x2) + (1− x1x2)(x1 + x̄2)]

i [(1− x̄1x̄2)(−1− x̄1x2) + (1− x1x2)(1 + x1x̄2)]

(1− x̄1x̄2)(1− x̄1x2) + (1− x1x2)(1− x1x̄2)

i [(1− x̄1x̄2)(x2 − x̄1) + (1− x1x2)(x1 − x̄2)]



,(7.3.5
)

V3 =
1

2|1 − x1x2|2




1 + |x2|2 + |1− x1x2|2(−1− |x1|2)
x2 + x̄2 + |1− x1x2|2(−x1 − x̄1)

i
[
x̄2 − x2 + |1− x1x2|2(x̄1 − x1)

]

1− |x2|2 + |1− x1x2|2(1− |x1|2)



. (7.3.5d)

7.3.1 Lorentz-orthonormal basis in R1,3If we denote the Minkowski inner produ
t in R
1,3 by bra
kets;

(X,Y )R1,3 = −X0Y0 +X1Y1 +X2Y2 +X3Y3, (7.3.6)then
(V0, V0)R1,3 = −1, (V0, Vi)R1,3 = 0, (Vi, Vj)R1,3 = δij , (7.3.7)so that the ve
tors obtained from the 
olumns of T form a Lorentz-orthonormalbasis in the Minkowski spa
e R

1,3. In parti
ular, at x1 = x2 = 0 these ve
tors87



form the standard frame
V0 =




1

0

0

0



, V1 =




0

1

0

0



, V2 =




0

0

1

0



, V3 =




0

0

0

1



.(7.3.8)7.3.2 A spe
ial ve
torWe now form the 
omplexi�
ation of R

1,3, namely R
1,3C ∼= C

1,3, and re
all thatelements of this spa
e are formed from 
omplex linear 
ombinations of the realsubspa
e, namely for X ∈ R
1,3 and Y ∈ R

1,3 we have
Z = (X + iY ) ∈ C

1,3. (7.3.9)We 
an also extend the domain of the Minkowski inner produ
t ( , )R1,3 tothe 
omplexi�ed spa
e (for Z = X + iY, W = U + iV ) via
(Z,W )C1,3 = (X,U)R1,3 − (Y, V )R1,3 + i [(Y,U)R1,3 + (X,V )R1,3 ] , (7.3.10)where the 
omplexi�ed Minkowski inner produ
t is the 
omplex bilinear formde�ned, for Z,W ∈ C

1,3, by
(Z,W )C1,3 = −Z0W0 + Z1W1 + Z2W2 + Z3W3. (7.3.11)We now introdu
e a 
ertain 
omplex linear 
ombination of the ve
tors V1 and

V2 by
Z(x1, x2) :=

1√
2
(V1 − iV2) =

1√
2(1− x̄1x̄2)




x1 + x̄2

1 + x1x̄2

i(1− x1x̄2)

x1 − x̄2



. (7.3.12)

Z has the properties
(Z,Z)C1,3 = 0, (Z, Z̄)C1,3 = 1. (7.3.13)88



The reason why pre
isely this linear 
ombination is 
onsidered is that thegroup H(A) = Oc(1, 1)×Oc(2) when a
ting on Z̃ = Z(0, 0) only 
hanges Z̃ bya phase, and so H(A) ◦ Z̃ still satis�es the 
onditions (7.3.13). We will use theresult (7.3.12) when dis
ussing a di�erent realisation of T in se
tion 7.7.7.4 Tangent spa
e in Oc(1, 3) representationUnder the group homomorphism (7.3.1) the six one-parameter subgroups (7.2.12a)to (7.2.12
) of SL(2,C) are mapped to their 
orresponding subgroups inOc(1, 3).The resulting Lie algebra elements in Oc(1, 3) representation are given by thematri
es
a+ =




0 1 0 0

1 0 0 −1

0 0 0 0

0 1 0 0



, a− =




0 1 0 0

1 0 0 1

0 0 0 0

0 −1 0 0



, (7.4.1)

ã+ =




0 0 −1 0

0 0 0 0

−1 0 0 1

0 0 −1 0



, ã− =




0 0 1 0

0 0 0 0

1 0 0 1

0 0 −1 0



, (7.4.2)

a3 = 2




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



, ã3 = 2




0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0



, (7.4.3)where ai is the algebra element 
orresponding to the 1-parameter subgroup

H ◦ gi(t).
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We form linear 
ombinations of the algebra elements su
h that
e1 =

1

2
(a+ + a−) =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



, (7.4.4)

e2 =
1

2
(ã− − ã+) =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0



, (7.4.5)

f1 =
1

2
(a− − a+) =




0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0



, (7.4.6)

f2 =
1

2
(ã+ + ã−) =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0



. (7.4.7)These algebra elements in Oc(1, 3) representation provide us with a basis forve
tors in the tangent spa
e at the origin e of T where x1 = x2 = 0. Note that

a3 and ã3 are not required sin
e δ is not a bona-�de 
oordinate on T. If werepresent an element V of the tangent spa
e TeT via the 
ombination V = m+nwhere n = niei , m = mifi and i ∈ {1, 2} we have
V =




0 n1 n2 0

n1 0 0 m1

n2 0 0 m2

0 −m1 −m2 0



. (7.4.8)

We now parameterise the isotropy group in the SL(2,C) representation as
δ = e

t
2 e

iθ
2 where t ∈ R and θ ∈ (−2π, 2π]. The 
orresponding isotropy group90



in Oc(1, 3) representation is given by
H(A) =




cosh t 0 0 sinh t

0 cos θ sin θ 0

0 − sin θ cos θ 0

sinh t 0 0 cosh t



. (7.4.9)The adjoint a
tion of H(A) (7.4.9) on V is V 7→ V ′ = H(A) ◦ V ◦H−1(A), sothat

V ′ =




0 n′1 n′2 0

n′1 0 0 m′1

n′2 0 0 m′2

0 −m′1 −m′2 0



, (7.4.10)where

n′1 = cosh t(n1 cos θ + n2 sin θ)− sinh t(m1 cos θ +m2 sin θ), (7.4.11)
n′2 = cosh t(n2 cos θ − n1 sin θ) + sinh t(m1 sin θ −m2 cos θ), (7.4.12)
m′1 = − sinh t(n1 cos θ + n2 sin θ) + cosh t(m1 cos θ +m2 sin θ), (7.4.13)
m′2 = − sinh t(n2 cos θ − n1 sin θ)− cosh t(m1 sin θ −m2 cos θ). (7.4.14)We now 
hoose to represent the 
omponents of our ve
tor �eld V ∈ TeTas a 2× 2 matrix

Vc =


 n1 n2

m1 m2


 . (7.4.15)Thus, the a
tion of the isotropy group A on Vc in this representation splitsa

ording to

V ′
c = B(t) ◦ Vc ◦R(θ), (7.4.16)where
V ′
c =


 n′1 n′2

m′1 m′2


 , (7.4.17)

B(t) =


 cosh t − sinh t

− sinh t cosh t


 , (7.4.18)91



and
R(θ) =


 cos θ − sin θ

sin θ cos θ


 . (7.4.19)If we introdu
e a 2-dimensional Minkowski metri
 η su
h that

η =


 −1 0

0 1


 , (7.4.20)we �nd, by virtue of the pseudo-orthogonality 
ondition BT ηB = η, that abilinear form invariant under the a
tion of the isotropy group is given by

Tr
(
V ′T

c ηṼ
′
c

)
= Tr

(
RTV T

c B
T ηBṼcR

)
= Tr

(
V T
c ηṼc

)
. (7.4.21)7.5 Metri
 on TFrom the previous 
onstru
tion, we �nd that a bilinear form in the tangentspa
e at the origin, invariant under the a
tion of A, is given by

g(V, Ṽ ) = (n, ñ)− (m, m̃), (7.5.1)where (m, m̃) = m1m̃1 +m2m̃2 is the usual inner produ
t on R
2.If we re
all the relation between basis ve
tors in the tangent spa
e at the
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origin and left invariant ve
tor �elds, we have the 
orresponden
e
e1 =

1

2
(a+ + a−) =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



←→ 1

2
(X1 +X2) =: U1, (7.5.2)

e2 =
1

2
(ã− − ã+) =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0



←→ 1

2
(X5 −X4) =: U2, (7.5.3)

f1 =
1

2
(a− − a+) =




0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0



←→ 1

2
(X2 −X1) =: U3, (7.5.4)

f2 =
1

2
(ã+ + ã−) =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0



←→ 1

2
(X4 +X5) =: U4. (7.5.5)The duality relations between ve
tors and 
o-ve
tors in this new basis is 〈ρi | Uj〉 =

δij , where the dual 
o-ve
tors are
ρ1 = ω1 + ω2, (7.5.6)
ρ2 = ω5 − ω4, (7.5.7)
ρ3 = ω2 − ω1, (7.5.8)
ρ4 = ω4 + ω5. (7.5.9)The invariant bilinear form (7.5.1) thus allows us to introdu
e on T, withthe possible ex
eption of the points in T not 
overed by the parameterisation
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(7.1.5), a metri
 by
gT = ρ1 ⊗ ρ1 + ρ2 ⊗ ρ2 − ρ3 ⊗ ρ3 − ρ4 ⊗ ρ4

=
dx1 ⊗ dx2 + dx2 ⊗ dx1

(1− x1x2)2
+
dx̄1 ⊗ dx̄2 + dx̄2 ⊗ dx̄1

(1− x̄1x̄2)2
. (7.5.10)The metri
 has signature (+,+,−,−) and is, by 
onstru
tion, invariant underthe SL(2,C) a
tion on T.7.6 Complex stru
ture of TThe almost 
omplex stru
ture on a manifold is 
ompletely determined by thea
tion of a linear map Jp : TpM → TpM satisfying J2

p = −id. For reasonswhi
h will be
ome apparent we 
onsider the simple 
ase of a 4-dimensionalEu
lidean spa
e R
4 =

{(
x1, y1, x2, y2

)
| xµ ∈ R, yµ ∈ R

} ∼= C
2 and spe
ify analmost 
omplex stru
ture via Jp(∂xµ) = ∂yµ , Jp(∂yµ) = −∂xµ , 
orresponding toa π

2 anti-
lo
kwise rotation in the planes {(x1, y1
)} and {(x2, y2

)}. Note thatthe Jp operator satis�es J2
p = −id and that Jp is 
ompatible with the Eu
lideanmetri
, g, on R

4; g(JpV, JpṼ ) = g(V, Ṽ ). Writing ∂zµ = 1
2 (∂xµ − i∂yµ) and

∂z̄µ = 1
2 (∂xµ + i∂yµ) we �nd the a
tion of Jp on 
omplex basis ve
tor �elds is

Jp(∂zµ) = i∂zµ , Jp(∂z̄µ) = −i∂z̄µ , that is, multipli
ation by±i. Note �nally thatthis 
hoi
e of an almost 
omplex stru
ture 
orresponds to the usual 
onjugationoperation on the 
omplex 
oordinates zµ = xµ + iyµ, z̄µ = xµ − iyµ. If we hadde�ned the almost 
omplex stru
ture to 
orrespond to a π
2 
lo
kwise rotation,the eigenvalues of Jp would be inter
hanged.Bearing all of this in mind we seek an almost 
omplex stru
ture on Twhi
h is invariant under the a
tion of the isotropy group and also 
ompatiblewith the metri
 (7.5.10).
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7.6.1 Invarian
e under the a
tion of AA a
ts on 
omponents of ve
tor �elds via
A : Vc 7→ V ′

c ; V ′
c = BVcR. (7.6.1)where B and R are de�ned by (7.4.18) and (7.4.19). We spe
ify the ve
tor �eldon T via

V = Tr(VcUb), (7.6.2)where Ub is the matrix of basis ve
tor �elds, (7.5.2) to (7.5.5), given by
Ub =


 U1 U3

U2 U4


 . (7.6.3)The a
tion of A on the ve
tor �eld is then

A : V 7→ V ′ = Tr(BVcRUb), (7.6.4)so the a
tion of A is equivalently spe
i�ed on Ub via
A : Ub 7→ U ′

b = RUbB. (7.6.5)The almost 
omplex stru
ture operator a
ts on basis ve
tor �elds. Themost general a
tion of Jp is spe
i�ed via
Jp : Ub 7→ U ′

b = JLUbJR, (7.6.6)where
JL =


 a b

c d


 , (7.6.7)and

JR =


 e f

g h


 , (7.6.8)are 2× 2 matri
es with 
omplex-valued entries.Invarian
e of the almost 
omplex stru
ture under the a
tion of A meansthat A ◦ Jp ◦ Ub = Jp ◦A ◦ Ub, 
orresponding to

RJLUbJRB = JLRUbBJR, (7.6.9)95



whi
h is ne
essary and su�
ient for
[R, JL] = 0, [B, JR] = 0, (7.6.10)or equivalently

JL =


 a b

−b a


 , JR =


 e f

f e


 . (7.6.11)Further restri
tions on the entries of JL and JR follow from the idempoten
y
ondition of Jp. In terms of our matri
es we 
onsider two 
ases:(I) J2

L = 1, J2
R = −1;(II) J2

L = −1, J2
R = 1.

(7.6.12)Case (I) gives the possibilities
E1 : a = ±1, b = 0;

F1 : a = 0, b = ±i;
G1 : e = ±i, f = 0;

H1 : e = 0, f = ±i;

(7.6.13)whilst 
ase (II) gives the possibilities
E2 : a = ±i, b = 0;

F2 : a = 0, b = ±1;

G2 : e = ±1, f = 0;

H2 : e = 0, f = ±1.

(7.6.14)and the eight possible permutations are
Ei ∩Gi, Ei ∩Hi, Fi ∩Gi, Fi ∩Hi. i ∈ {1, 2}. (7.6.15)Although the entries of JL and JR 
an be 
omplex valued we require the totaltransformation to be real whi
h rules out the four 
ases

Ei ∩Gi, Ei ∩Hi. i ∈ {1, 2}. (7.6.16)96



We also note that the 
hoi
e of i ∈ {1, 2} merely 
hanges the a
tion by anoverall minus sign so it su�
es to 
onsider the two 
ases F1 ∩G1 and F1 ∩H1.
F1 ∩G1 yields the equation


 Jp(U1) Jp(U3)

Jp(U2) Jp(U4)


 = ±


 −U2 −U4

U1 U3


 , (7.6.17)whereas F1 ∩H1 yields


 Jp(U1) Jp(U3)

Jp(U2) Jp(U4)


 = ±


 −U4 −U2

U3 U1


 . (7.6.18)Writing

α =
1

δ2
∂x1

, (7.6.19a)
β = δ2 (1− x1x2)

2 ∂x2
, (7.6.19b)

ᾱ =
1

δ̄2
∂x̄1

, (7.6.19
)
β̄ = δ̄2 (1− x̄1x̄2)

2 ∂x̄2
, (7.6.19d)we �nd

U1 = α+ ᾱ+ β + β̄, (7.6.20a)
U2 = i

(
−α+ ᾱ+ β − β̄

)
, (7.6.20b)

U3 = −α− ᾱ+ β + β̄, (7.6.20
)
U4 = i

(
α− ᾱ+ β − β̄

)
. (7.6.20d)For the 
ase F1 ∩G1 we �nd

Jp
(
α+ ᾱ+ β + β̄

)
= ∓i

(
−α+ ᾱ+ β − β̄

)
, (7.6.21a)

Jp
(
−α− ᾱ+ β + β̄

)
= ∓i

(
α− ᾱ+ β − β̄

)
, (7.6.21b)

Jp
(
−α+ ᾱ+ β − β̄

)
= ∓i

(
α+ ᾱ+ β + β̄

)
, (7.6.21
)

Jp
(
α− ᾱ+ β − β̄

)
= ∓i

(
−α− ᾱ+ β + β̄

)
. (7.6.21d)Forming appropriate linear 
ombinations of these and using the linearity of Jp,97



we 
an write this 
omplex stru
ture as
Jp (∂x1

) = ±i∂x1
, (7.6.22a)

Jp (∂x2
) = ∓i∂x2

, (7.6.22b)
Jp (∂x̄1

) = ∓i∂x̄1
, (7.6.22
)

Jp (∂x̄2
) = ±i∂x̄2

. (7.6.22d)For the 
ase F1 ∩ H1 similar reasoning shows that we 
an write the 
omplexstru
ture as
Jp (∂x1

) = ±i∂x1
, (7.6.23a)

Jp (∂x2
) = ±i∂x2

, (7.6.23b)
Jp (∂x̄1

) = ∓i∂x̄1
, (7.6.23
)

Jp (∂x̄2
) = ∓i∂x̄2

. (7.6.23d)The almost 
omplex stru
ture spe
i�ed by (7.6.22) is 
ompatible with the metri
(7.5.10) as g (Jp(V ), Jp(Ṽ )
)

= g
(
V, Ṽ

) whereas the almost 
omplex stru
turespe
i�ed by (7.6.23) satis�es g (Jp(V ), Jp(Ṽ )
)

= −g
(
V, Ṽ

) and hen
e is not
ompatible with the metri
. The unique almost 
omplex stru
ture on T (up toan overall minus sign) is given by (7.6.22). Furthermore, the Nijenhuis tensor
NJp de�ned by its a
tion on ve
tor �elds X and Y , [39℄,

NJp (X,Y ) = [X,Y ] + Jp [JpX,Y ] + Jp [X,JpY ]− [JpX,JpY ] , (7.6.24)vanishes for Jp de�ned by (7.6.22). Therefore the almost 
omplex stru
ture isin fa
t a 
omplex stru
ture.We make a 
hoi
e of sign for this 
omplex-stru
ture and 
ompare thestru
ture with the 
omplex manifold C
2 
onsidered at the start of this se
tion.For the C

2 
ase the 
anoni
al 
omplex stru
ture was equivalent to the usual
omplex 
onjugation on 
oordinates. In the T 
ase, however, mat
hing theeigenvalues of Jp leads us to introdu
e a ∗ operation on 
oordinates, distin
tfrom 
omplex 
onjugation, given by
∗ : (x1, x2, x̄1, x̄2) 7→ (x2, x1, x̄2, x̄1) . (7.6.25)98



7.7 T as a 
omplex quadri
We wish to show how T 
an be realised as a quadri
 embedded in CP 3. Todo this we make a short digression into the realms of proje
tive geometry. The
3-dimensional 
omplex proje
tive spa
e CP 3 is de�ned as CP 3 = (C4 \{0})/ ∼where the equivalen
e relation on C

4 is Z ∼ Z ′ if ∃p ∈ C | Z ′ = pZ and p 6= 0.Geometri
ally this 
orresponds to the spa
e of 
omplex lines through the originin C
4. We denote the proje
tion C

4 \ {0} → CP
3 by π. The homogeneous
oordinates (z0, z1, z2, z3) on C

4 no longer provide us with an independent setof 
oordinates on the quotient spa
e as the quotient kills one 
omplex dimension.However, we 
an de�ne a set of independent 
oordinates by �rstly spe
ifyinga set of 
harts Uµ, where µ ∈ {0, 1, 2, 3}, su
h that Uµ is the set of lines in
C

4 where zµ 6= 0. Note that CP 3 =
⋃3
µ=0 Uµ. In a 
hart Uµ we de�ne theinhomogeneous 
oordinates by

ξ(µ)
ν =





zν

zµ
if ν ≤ µ− 1

zν+1

zµ
if ν ≥ µ (7.7.1)where µ labels the spe
i�
 
hart and ν ∈ {0, 1, 2} labels the inhomogeneous
oordinate. In Uµ ∩Uν the transition fun
tions Ψµν : CP 3 → CP 3 are given by

ξ
(ν)
λ 7→ ξ

(µ)
λ =

zµ

zν
ξ
(ν)
λ and are ne
essarily holomorphi
.We now de�ne the subset Q2(C) ⊂ CP 3 as the proje
tion of the quadri


(Z,Z)
C1,3 = 0:

Q2(C) =
{
π(Z) | Z ∈ C

4 \ {0} , (Z,Z)
C1,3 = 0

}
. (7.7.2)As the 
omplex ve
tor Z (x1, x2) (7.3.12) is on this quadri
, we obtain an em-bedding of T in Q2(C) by

q(x1, x2) := π(Z(x1, x2)) ∈ Q2(C), (7.7.3)with the possible ex
eption of the points in T not 
overed by the parameteri-sation (7.1.5).
Q2(C) inherits a 
omplex stru
ture from its embedding in CP 3. Param-eterising the 
oordinates on CP 3 in terms of the 
oordinates (x1, x2) we 
an99




al
ulate the pushforward, to Q2(C), of the basis ve
tors spanning CP 3. The
anoni
al 
omplex stru
ture on CP 3 then reveals that the 
omplex stru
tureon Q2(C) is 
ompatible with the 
omplex stru
ture given by (7.6.22).7.8 The 
oset spa
e BWe now de�ne another 2-dimensional subspa
e of G, whi
h we denote by B,dis
ussing its global stru
ture and the a
tion of G on B.We de�ne B in a similar way to T via a quotient spa
e 
onstru
tion
B := N+\G, (7.8.1)where N+ is the 1-parameter subgroup of upper triangular matri
es,

N+ =






 1 n+

0 1


 | n+ ∈ C



 . (7.8.2)and the \ in (7.8.1) is understood as denoting a set of right 
osets of N+ w.r.t

G.7.8.1 Global stru
ture of BA general element of B is a 
lass
[N+g] =




 a+ n+c b+ n+d

c d




 , (7.8.3)where n+ ∈ C. In the equivalen
e 
lasses (7.8.3), c and d 
annot both bezero. When c 6= 0, we 
an 
hoose a unique representative by setting n+ = −a

c :writing c = z1 ∈ C \ {0} and d = z2 ∈ C, this representative reads
b1(z1, z2) =




0 − 1

z1

z1 z2


 . (7.8.4)
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Similarly, when d 6= 0, we 
an 
hoose a unique representative by setting n+ =

− b
d : writing d = z2 ∈ C \ {0} and c = z1 ∈ C, this representative reads

b2(z1, z2) =




1

z2
0

z1 z2


 . (7.8.5)These two parameterisations show that B 
an be 
overed by the two 
harts U1and U2, where

U1 =
{
(z1, z2) ∈ C

2 | z1 6= 0
}
, (7.8.6a)

U2 =
{
(z1, z2) ∈ C

2 | z2 6= 0
}
, (7.8.6b)su
h that the transition fun
tion on U1 ∩ U2 is the identity. We hen
e have

B ∼= U1 ∪ U2 = C
2 \ {(0, 0)}.7.8.2 G-a
tion on BThe 
anoni
al a
tion of G on itself from the right indu
es an a
tion of G on B.In the parameterisation B ∼= C

2\{(0, 0)}, this a
tion is the linear transformation

 a b

c d


 : (z1, z2) 7→ (z′1, z

′
2) = (az1 + cz2, bz1 + dz2). (7.8.7)We have realised two distin
t 
oset spa
es of SL(2,C) , T and B, andestablished various properties of these spa
es. We will now go on to dis
uss
onformal �eld theory n-point fun
tions with referen
e to T and B.
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Chapter 8
Conformal �eld theory (CFT)

This 
hapter des
ribes relevant aspe
ts of 
onformal �eld theory (CFT) in var-ious fun
tion spa
es and the relationships between said spa
es using te
hniquesfrom representation theory.8.1 CFT n-point fun
tionsA CFT on the sphere (whi
h we 
onsider as the boundary of hyperboli
 three-spa
e) is de�ned by the set of all its n-point 
orrelation fun
tions. We sum-marise here, for 
onvenien
e, the 2, 3 and 4 point fun
tions of �elds as given in[40℄. On the sphere we are interested in the 2-point fun
tion of �elds whi
hare 
orrelated only if they have the same s
aling dimension ∆, [40℄, namelyfun
tions of the form
KC∗

∆ (z, y) =
C12

|z − y|2∆ , (8.1.1)where the supers
ript C
∗ denotes the one-point 
ompa
ti�
ation of C into theRiemann sphere, z, y ∈ C

∗ are the two points on the sphere and C12 is amultipli
ative 
onstant 
orresponding to the normalisation of the �eld. Thisfun
tion is also known as the boundary-to-boundary propagator [41℄.The 3-point fun
tion of �elds (with di�ering s
aling dimensions ∆1, ∆2102



and ∆3), 
an be given in the form
CC∗

∆1∆2∆2
(z, u, v) =

C123

|z − u|∆1+∆2−∆3 |z − v|∆1+∆3−∆2|u− v|∆2+∆3−∆1
.(8.1.2)The 4-point fun
tion in two dimensions is unique only up to a multipli
a-tive fun
tion dependent on one anharmoni
/
ross ratio. The fun
tion thereforehas the form

SC∗

∆1∆2∆3∆4
= φ

( |z − y||u− v|
|z − u||y − v|

)
×

|z − y|α3 |z − u|
β
3 |z − v|

γ
3 |y − u| δ3 |y − v| ǫ3 |u− v|

ζ
3 , (8.1.3)where φ is a multipli
ative fun
tion of the 
ross ratio, and

α = ∆3 + ∆4 − 2∆1 − 2∆2, (8.1.4a)
β = ∆2 + ∆4 − 2∆1 − 2∆3, (8.1.4b)
γ = ∆2 + ∆3 − 2∆1 − 2∆4, (8.1.4
)
δ = ∆1 + ∆4 − 2∆2 − 2∆3, (8.1.4d)
ǫ = ∆1 + ∆3 − 2∆2 − 2∆4, (8.1.4e)
ζ = ∆1 + ∆2 − 2∆3 − 2∆4. (8.1.4f)A

ording to the �
onformal bootstrap� idea, [40℄, the n-point fun
tion of�elds for n > 4 
an be 
onstru
ted out of these three simpler fun
tions.8.2 Spa
es of fun
tionsWe are interested in mapping spe
i�
 fun
tions between spe
i�
 mathemati
alspa
es. We denote the 
olle
tion of all fun
tions on a manifold M by F(M)and we wish to explore the following diagram
F(C∗)

OO

��

oo // F(H3)
OO

��

F(B) oo // F(T)

. (8.2.1)
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More spe
i�
ally, there will be various 
onstraints pla
ed on the possible fun
-tions in a spa
e and we will 
onsider fun
tions on n 
opies of a manifold (or
n-point fun
tions). Also, we shall understand �fun
tions� to in
lude also densi-ties of spe
i�ed (
omplex) weights.To begin to explore this diagram we need to turn to representation theoryof SL(2,C) whi
h has been extensively studied in the literature and of whi
hwe only use the details here whi
h are of interest to us.8.3 Representation theory of SL(2, C)We follow [42℄ for the majority of this se
tion taking advantage of the isomor-phism B ∼= C

2 \{(0, 0)} obtained in the previous 
hapter. We derive some fa
tsabout representation theory of SL(2,C) where the representations a
t in spa
esof importan
e to us. We take the de�ning equation of a representation to be
T (g1)T (g2) = T (g1g2), (8.3.1)where the T (g) are understood to a
t on a spe
i�ed linear spa
e, g is an elementof the group, and the representation of the identity element 
orresponds to theidentity transformation on the linear spa
e. Various realisations of the T (g) areavailable, the most trivial being where g is represented by itself and a
ts on C

2.We wish to explore more interesting examples. In what follows, for simpli
itywe shall denote fun
tions of d 
omplex variables by
f(z1, . . . , zd) := f(z1, . . . , zd; z̄1, . . . , z̄d). (8.3.2)8.3.1 The in�nite-dimensional linear spa
e HF (B)We �rst take a subspa
e of F(B), namely the spa
e of homogeneous fun
tionsof bidegree (λ, µ) whi
h we denote HF(B) where we have supressed the (λ, µ)dependen
e for notational 
onvenien
e. Elements of this in�nite dimensional104



linear spa
e are 
hara
terised by the 
ondition
f(pz1, pz2) = pλp̄µf(z1, z2), (8.3.3)where p ∈ C \ {0} and (λ− µ) ∈ Z in order that the above equation is single-valued.8.3.2 Representation of SL(2, C) a
ting on HF(B)

SL(2,C) a
ts on B from the right via (z1, z2) 7→ (az1 + cz2, bz1 + dz2) (7.8.7)and 
an be 
onsidered to indu
e a transformation on HF(B) whi
h we spe
ifyin terms of a representation a
tion via
(T (g)f) (z1, z2) = f g(z1, z2) = f(az1 + cz2, bz1 + dz2). (8.3.4)It is immediate that f ∈ HF(B) =⇒ f g ∈ HF(B) and also
(T (g1g2)f) (z1, z2) = f

[
(a1a2 + b1c2) z1 + (c1a2 + d1c2) z2,

(a1b2 + b1d2) z1 + (c1b2 + d1d2) z2
]

= (T (g1)T (g2)f) (z1, z2), (8.3.5)showing that the T (g) satisfy the fun
tional equation (8.3.1). Also the rep-resentation of the identity element is the identity transformation on HF(B),and the equation de�ning the representation (8.3.4) depends 
ontinuously on
g ∈ G. In all generality we have the pairing (T (g),HF(B)) whi
h (abusingterminology) we 
all the representation and we understand this representationin terms of (8.3.3) and (8.3.4).8.3.3 F(C∗) and its relation to HF(B)We now wish to relate fun
tions de�ned on the Riemann sphere F(C∗) to
HF(B).Firstly we note [42℄ that elements of HF(B) are uniquely determined bytheir values on a 
ontour in B that 
rosses on
e ea
h 
omplex line of the form

a1z1 + a2z2 = 0, (8.3.6)105



where
(a1, a2) 6= (0, 0) . (8.3.7)The 
omplex 
ontour z2 = 1 
rosses ea
h 
omplex line of the form (8.3.6) on
e,with a1 6= 0, and so elements of HF(B) are determined uniquely by their valueson this 
ontour, ex
ept for the values on the lines with a1 = 0. To this e�e
twe de�ne
ψ(z) := f(z, 1). (8.3.8)Note that ψ(z) is well-de�ned on the 
omplex plane C. Similarly we 
an 
onsiderthe 
ontour z1 = 1 and de�ne
ψ̂(m) = f(1,m), (8.3.9)whi
h is also well-de�ned on C. Using the homogeneity of f it is then simpleto spe
ify elements of HF(B) in terms of ψ(z) and ψ̂(m), in the 
harts U1 and

U2 we de�ned in Chapter 7, by
U1 : f(z1, z2) = zλ1 z̄

µ
1 ψ̂

(
z2
z1

)
, (8.3.10a)

U2 : f(z1, z2) = zλ2 z̄
µ
2ψ

(
z1
z2

)
. (8.3.10b)On the interse
tion of the 
harts, the two fun
tions (8.3.8) and (8.3.9) arerelated by

ψ(z) = zλz̄µψ̂

(
1

z

)
, (8.3.11a)

ψ̂(m) = mλm̄µψ

(
1

m

)
. (8.3.11b)Equation (8.3.11) shows that we are really dealing with fun
tions on the Rie-mann sphere C∗, not just on C; further, these fun
tions are not s
alar-valuedbut must be understood as densities whose holomorphi
 and antiholomorphi
weights are spe
i�ed by λ and µ. Through (8.3.10) we 
an transform thedensity-valued fun
tions on C

∗ into the 
orresponding homogeneous fun
tionson B. Conversely, any homogeneous fun
tion on B 
an be transformed into adensity-valued fun
tion on C
∗. For brevity, we shall refer to the elements of

F(C∗) simply as fun
tions. 106



In order to make these details a little more 
lear we 
onsider the simple
ase of a spe
i�
 homogeneous polynomial f of degree (2, 2) on B where
f(z1, z2) = z2

1(z̄2
1 + z̄2

2). (8.3.12)The 
orresponding fun
tion on the sphere (again depending on the 
hart in B)is
U1 : ψ̂(m) = 1 + m̄2, (8.3.13a)
U2 : ψ(z) = z2(z̄2 + 1), (8.3.13b)

U1 ∩ U2 : ψ(z) = z2z̄2ψ̂

(
1

z

)
. (8.3.13
)We have thus established an isomorphi
 mapping of the two fun
tionspa
es

HF(B) ∼= F(C∗), (8.3.14)where the isomorphism is given expli
itly by (8.3.10).The representation (8.3.4) is realised in this isomorphi
 ve
tor spa
e viathe equations
(
T (g)ψ̂

)
(m) = (a+ cm)λ(ā+ c̄m̄)µψ̂

(
b+ dm

a+ cm

)
, (8.3.15a)

(
T (g)ψ

)
(z) = (bz + d)λ(b̄z̄ + d̄)µψ

(
az + c

bz + d

)
, (8.3.15b)where use has been made of the linear property of the T (g). Again, it is asimple task to verify that the T (g) satisfy the fun
tional equation (8.3.1) andthe representation of the identity element is the identity transformation on

F(C∗). On
e again, the pairing (T (g),F(C∗)) is 
alled the representation andis understood via (8.3.15).8.4 CFT 
orrelation fun
tions as fun
tions in BAll of the previous representation theory has been 
on
erned with only one 
opyof the underlying manifold. To map n-point fun
tions we need the generalised107



representation theory in the 
ontext of n 
opies of the relevant manifold. We
an, however, immediately generalise the previous theory to n-point fun
tionson (n 
opies of) the two spa
es of interest to us, B and C
∗. We denote n 
opiesof B by

B
n = B×, . . . ,×B︸ ︷︷ ︸n 
opies , (8.4.1)and similarly for n 
opies of C
∗. We further denote the fun
tion spa
es by

HF⊗n
i=1

(λi,µi)(B
n) (for ea
h 
opy of B we spe
ify the appropriate degree ofhomogeneity) and F(C∗n) and note they are both linear spa
es.8.4.1 The linear spa
e HF⊗n

i=1
(λi,µi)(B

n)In an analogous way to the 1-point fun
tions de�ned previously we denoteelements of HF⊗n
i=1

(λi,µi)(B
n) by

f


(w1, w2) , (x1, x2) , . . . , (z1, z2)︸ ︷︷ ︸n pairs 

 , (8.4.2)with
f
(
(p1w1, p1w2) , . . . , (pnz1, pnz2)

)
= pλ1

1 p̄µ1

1 · · · pλn
n p̄µn

n ×

f
(
(w1, w2) , . . . , (z1, z2)

)
. (8.4.3)The natural representation of G on this spa
e is

(T (g)f)
(
(w1, w2) , . . . , (z1, z2)

)
= f

(
(aw1 + cw2, bw1 + dw2) , . . .

. . . , (az1 + cz2, bz1 + dz2)
)
. (8.4.4)
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8.4.2 F(C∗n) and its relation to HF⊗n
i=1

(λi,µi)(B
n)The relation between the n-point fun
tion spa
es is

Un1 : ψ̂ (p, . . . ,m) = w−λ1

1 w̄1
−µ1 · · · z−λn

1 z̄1
−µn×

f
(
(w1, w2) , . . . , (z1, z2)

)
, (8.4.5a)

Un2 : ψ (w, . . . , z) = w−λ1

2 w̄2
−µ1 · · · z−λn

2 z̄2
−µn×

f ((w1, w2) , . . . , (z1, z2)) , (8.4.5b)where w = w1

w2
, . . . , z = z1

z2
and p = w2

w1
, . . . , n = z2

z1
. Note that the n-pointfun
tions are restri
ted to n 
opies of a spe
i�
 
hart. On the interse
tion ofthe 
harts the n-point transition fun
tions are given by the analagous versionof (8.3.11). The representation a
ting on this spa
e is given by

(
T (g)ψ̂

)
(p, . . . ,m) = (a+ cp)λ1 (ā+ c̄p̄)µ1 · · · (a+ cm)λn (ā+ c̄m̄)µn ×

ψ

(
b+ dp

a+ cp
, . . . ,

b+ dm

a+ cm

)
, (8.4.6a)

(
T (g)ψ

)
(w, . . . , z) = (bw + d)λ1

(
b̄w̄ + d̄

)µ1 · · · (bz + d)λn
(
b̄z̄ + d̄

)µn ×

ψ

(
aw + c

bw + d
, . . . ,

az + c

bz + d

)
. (8.4.6b)In the following 
ontext of CFT 
orrelation fun
tions we will only use thesubset of HF⊗n

i=1
(λi,µi)(B

n) where λi = µi so that without loss of generality we
an denote HF⊗n
i=1

(λi,λi)(B
n) by HF(Bn). We will also use the fa
t that the
onformal s
aling dimension is equal to �minus the degree of homogeneity� [41℄,

∆i = −λi.8.4.3 2,3 and 4-point fun
tionsWe map the 2-point fun
tion on C
∗ (8.1.1), using (8.4.5b) with n = 2, into the
orresponding 2-point fun
tion on U2 whereby

KU2

λ (z1, z2; y1, y2) = C12| (z1y2 − z2y1) |2λ. (8.4.7)109



We map the 3-point fun
tion (8.1.2), using (8.4.5b) with n = 3, into the
orresponding fun
tion on U2 whereby
CU2

λ1λ2λ3
= C123| (z1u2 − z2u1) |λ3−λ1−λ2×

| (z1v2 − z2v1) |λ2−λ1−λ3| (u1v2 − u2v1) |λ1−λ2−λ3 . (8.4.8)We map the 4-point fun
tion (8.1.3), using (8.4.5b) with n = 4, and �ndthe fun
tion takes the following form
SU2

λ1λ2λ3λ4
= φ

( |z1y2 − y1z2||u1v2 − v1u2|
|z1u2 − u1z2||y1v2 − v1y2|

)
×

|z1y2 − y1z2|
α
3 |z1u2 − u1z2|

β
3 |z1v2 − v1z2|

γ
3×

|y1u2 − u1y2|
δ
3 |y1v2 − v1y2|

ǫ
3 |u1v2 − v1u2|

ζ
3 , (8.4.9)where

α = −λ3 − λ4 + 2λ1 + 2λ2, (8.4.10a)
β = −λ2 − λ4 + 2λ1 + 2λ3, (8.4.10b)
γ = −λ2 − λ3 + 2λ1 + 2λ4, (8.4.10
)
δ = −λ1 − λ4 + 2λ2 + 2λ3, (8.4.10d)
ǫ = −λ1 − λ3 + 2λ2 + 2λ4, (8.4.10e)
ζ = −λ1 − λ2 + 2λ3 + 2λ4. (8.4.10f)8.5 Integral transform from B to TWe have determined the left hand arrow of the diagram (8.2.1) (with suitable
onstraints pla
ed on the fun
tions on B) and mapped the fun
tions of interestto us into B. We wish to do the same thing for the bottom arrow of the diagram,namely transform n-point fun
tions into T

n. As an attempt at doing this, anintegral transform �nding fT
p (z0

1 , z
0
2) (i.e. a fun
tion at a spe
i�
 point in T)

110



when fB(z1, z2) is known, is given in [42℄ as
fT
p (z0

1 , z
0
2) =

i

2

∫

C

|a1a2|χ− 1

2

(
a1

a2
,
a2

a1

)
×

∂µµ̄

{
|µ|2fB(µ(a1a2)

1

2 z, µ(a1a2)
1

2 )
}
µ=1

dzdz̄, (8.5.1)where
µ ∈ C, (8.5.2a)
aj =

z0
j

z0
j − z

, (8.5.2b)
χ(z1, z2) = zn1

1 z̄n2

1 zm1

2 z̄m2

2 . (8.5.2
)We generalise this to generate n-point fun
tions on T,
fTn

p (w0
1, w

0
2 ; . . . ; z

0
1 , z

0
2) =

(
i

2

)n ∫
. . .

∫

︸ ︷︷ ︸
n

| a1a2 . . . d1d2︸ ︷︷ ︸n pairs ×

|χ− 1

2

(
a1

a2
,
a2

a1

)
. . . χ− 1

2

(
d1

d2
,
d2

d1

)
×

∂µ1µ̄1···µnµ̄n

{
|µ1|2 . . . |µn|2×

fBn

(µ1(a1a2)
1

2 z, . . . , µn(d1d2)
1

2 )
}
µi=1
×

dzdz̄ . . . dwdw̄, (8.5.3)where
µn ∈ C ∀n ∈ Z, (8.5.4a)
aj =

z0
j

z0
j − z

, . . . , dj =
w0
j

w0
j − w

, (8.5.4b)
χ(z1, z2) = zn1

1 z̄n2

1 zm1

2 z̄m2

2 . (8.5.4
)To make the formula (8.5.3) a little more 
lear we 
onsider the transfor-
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mation of the 2-point fun
tion and �nd that the integral takes the form
fT2

p (y0
1 , y

0
2 ; z

0
1 , z

0
2) = −1

4
(1−∆)4C12

∫ ∫ (
z0
1y

0
1(

z0
1 − z

) (
y0
1 − y

)
) 1

2
(1−∆+m1−n1)

×

(
z̄0
1 ȳ

0
1(

z̄0
1 − z̄

) (
ȳ0
1 − ȳ

)
) 1

2
(1−∆+m2−n2)

×

(
z0
2y

0
2(

z0
2 − z

) (
y0
2 − y

)
) 1

2
(1−∆−m1+n1)

×

(
z̄0
2 ȳ

0
2(

z̄0
2 − z̄

) (
ȳ0
2 − ȳ

)
) 1

2
(1−∆−m2+n2)

×

(z − y)−∆ (z̄ − ȳ)−∆ dydȳdzdz̄. (8.5.5)We wish to �nd the values of ∆ for whi
h the integral (8.5.5) 
onverges. Possiblepoints of divergen
e are where z = z0
1 , z = z0

2 , z = y and z →∞, and similarlyfor y.For an integral su
h as
I =

i

2

∫

C

dz ∧ dz̄
(z − x)a (z̄ − x̄)ā

, (8.5.6)where x is a �xed 
omplex number, we reparameterise via 
oordinates adaptedto the possible point of divergen
e z = x+ reiφ and �nd that
I =

∫ 2π

0

∫ ∞

0
r1−a−āeiφ(ā−a)dr ∧ dφ. (8.5.7)The φ integral will 
onverge for all a. The r integral will 
onverge at r = 0if and only if 1− a− ā > −1, i.e. a+ ā < 2.Returning to the form of the 2-point fun
tion (8.5.5) on T

2 we �nd that forthe 
ases z = z0
1 and z = z0

2 , ∆ has to obey ∆ > −1 for the integral to 
onverge.However, the z → ∞ limiting 
ase yields an even bigger problem as ∆ dropsout of the dominating term and we �nd the integral diverges logarithmi
ally.In 
on
lusion, the 2-point fun
tion on T
2 derived in this way diverges ∀∆ andwe 
on
lude that the formula given in [42℄ yields divergent fun
tions on T.112



8.6 The bulk-to-bulk propagator in H3We now turn our attention to the top-most arrow of the diagram (8.2.1). In [43℄the authors 
al
ulate the bulk-to-bulk propagator in Hd+1. For our purposes
d = 2, so that Hd+1 = H3. In the upper half-spa
e model of H3 individualpoints (with subs
ript i) 
an be denoted by ξi =

(
ξ0i , ξi

)
=
(
ξ0i , ξ

1
i , ξ

2
i

) where
ξ0i > 0. Viewing H3 in the unit ball model it is simple to see the topologi
alboundary is the Riemann sphere whi
h we 
oordinatise by (x1, x2

). We nowintrodu
e a bulk-to-boundary propagator [43℄ whi
h is a fun
tion (of a given
onformal dimension ∆) dependent on a point in the bulk and a point on theboundary
K∆ (ξ, x) =

(ξ0)∆

((ξ0)2 + |ξ − x|2)∆
. (8.6.1)Note that |ξ − x|2 = (ξ1 − x1)2 + (ξ2 − x2)2 denoting the Eu
lidean distan
ebetween the proje
tion of bulk points onto the boundary and the boundarypoint itself.The 2-point fun
tion, or bulk-to-bulk propagator is then found by inte-grating over the boundary two bulk-to-boundary propagators (of representationweight ∆ and ∆̄) 
onne
ted on the boundary at the same point, namely

KH3

∆ (ξ1, ξ2) =

∫

S2

d2xK∆ (ξ1, x)K∆̄ (ξ2, x) , (8.6.2)whi
h 
onverges ∀∆ ∈ C. Following [43℄ we will restri
t ourselves to Type Irepresentations where
∆ = 1 + iρ. (8.6.3)After a lengthy 
al
ulation (see [43℄ for the details) we obtain the �nalresult for the 2-point fun
tion on H3,

KH3

ρ (ξ1, ξ2) =
π

ρ

sin ρl

sinh l
, (8.6.4)where

l = log

(
ξ01
ξ02

)
. (8.6.5)113



We do not 
ompute the 3 and 4-point fun
tions on H3 using these te
h-niques expli
itly as they are quite 
omplex obje
ts.8.7 Integral transform from H3 to T - the �twistortransform�Having elu
idated the details of two of the arrows on the diagram (8.2.1) (andattempted one of the others unsu

esfully) we now turn our attention to theright-most arrow. This transformation (like the B to T transform) is also anintegral transform. The fas
inating thing about the transform is that when weintegrate a fun
tion over a 
ertain spa
e of hyperplane se
tions in T we aresupposed to obtain a fun
tion on HC
3 that automati
ally satis�es the masslesswave equation.Referen
e [18℄ develops twistor 
onstru
tions for SO(1;n) and spe
i�
allygives the details of the Penrose transform. Here we present some original workon this transformation using the formulae from [18℄ but unfortunately 
on
ludethat the transformation in this parameterisation is still ill-understood.We wish �rst to explain the types of dual spa
es we are interested in.8.7.1 First-kind and se
ond-kind 
oupled spa
esWe de�ne a �rst-kind 
oupled spa
e to T very simply as the 
omplex hyperboloid

HC
3 ,

HC
3 =

{
ξ ∈ C

1,3 | 〈ξ, ξ〉 = 1
}
. (8.7.1)Se
ond-kind 
oupled spa
es are a little more tri
ky to visualise, so we makea brief aside here in order to alert the reader to how the 
onstru
tions work.We 
onsider, for visualisable simpli
ity, the �eld of real numbers although the
onstru
tion works equally well for K ∈ {R,C}. The appli
ation we have inmind is for 3-dimensional 
omplex proje
tive spa
e.114



The simplest 
ase to 
onsider is the Eu
lidean plane R
2 and elements xthereof. We �rstly note that the 1-dimensional real proje
tive spa
e RP 1 isde�ned as RP 1 = (R2 \ {0})/ ∼ where the equivalen
e relation on R

2 is x ∼ x′if ∃p ∈ R | x′ = px and p 6= 0. Geometri
ally this 
orresponds to the spa
e ofreal lines through the origin in R
2. We denote elements of RP 1 by [x].We take the usual inner produ
t on R

2 and spe
ify elements of a subset(in this 
ase a linear subspa
e) of R
2 by

L[x] =
{
y ∈ R

2 | 〈x, y〉 = 0
}
. (8.7.2)Geometri
ally, L[x] is the real line orthogonal to x, but note that L[x] is onlyde�ned up to proje
tive res
alings of x so that L[x] is orthogonal to [x] explainingthe notation. Due to this fa
t we have the following duality

[x]↔ L[x]. (8.7.3)In words, points in RP 1 are dual to origin interse
ting lines in R
2, i.e pointsin RP 1. In this 2-dimensional 
ase the duality is geometri
ally very trivial.However, when we 
onsider R

3 and elements x and y thereof we immediatelysee through the 
ondition
〈x, y〉 = 0, (8.7.4)that points in RP 2 are dual to origin-interse
ting 2-dimensional planes in R

3whi
h are 
ompletely spe
i�ed by the original point in RP 2. Although theplanes are no longer elements of R
3 or RP 2 we 
an 
onsider the manifold formedfrom these hyperplane se
tions to be isomorphi
 to RP 2. The duality in 3dimensions takes the same form as (8.7.3) where now [x] ∈ RP 2 and L[x] is anelement of the spa
e of hyperplane se
tions.8.7.2 GeneralisationsWe 
an immediately generalise to an (n+ 1)-dimensional 
overing spa
e withthe 
orresponding n-dimensional proje
tive geometry. We obtain the result115



that the manifold formed from hyperplane se
tions a

ording to (8.7.4) is iso-morphi
 to the n-dimensional proje
tive spa
e with the duality of the elementsgiven by (8.7.3). With the parti
ular quadri
 
ondition (8.7.4) the hyperplanese
tions are �at and all interse
t the origin. It is important to note, however,that the underlying geometri
al dimension of an element of the �hyperplane se
-tion� manifold is n in 
omparison with the usual �point� manifolds where thegeometri
al dimension of a single element is zero. We 
an also generalise to an
(n+ 1)-dimensional 
overing Minkowski spa
e with the same quadri
 
ondition(8.7.4) but now with respe
t to the Minkowski inner produ
t with (−,+, ...,+)signature. All the previous analysis holds (in
luding the origin interse
ting
ondition) but, of 
ourse, the notion of perpendi
ularity 
hanges.We now generalise to the 
omplex 
ase by merely repla
ing R by C in theprevious paragraphs! A spe
ialisation whi
h will be of parti
ular importan
eto us will be the 
omplex 
ase where n = 3.8.7.3 The transformWe �rst de�ne a 
omplex form of bidegree (r, s), or an (r, s)-form, on M as [39℄

ω =
1

r!s!
ωµ1...µr ν̄1...ν̄sdz

µ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs , (8.7.5)so that ω ∈ Ωr,s (M). The a
tion of the exterior derivative d on elements of
Ωr,s (M) splits a

ording to its destinations by

d = ∂ + ∂̄, (8.7.6)where
∂ : Ωr,s (M)→ Ωr+1,s (M) , (8.7.7a)
∂̄ : Ωr,s (M)→ Ωr,s+1 (M) . (8.7.7b)By ∂-
losed we mean forms ω su
h that ∂ω = 0 and similarly, ∂̄-
losed meansforms ω su
h that ∂̄ω = 0. We further de�ne a homogeneous form of bidegree

(λ, µ) to be a form ω whose 
omponent fun
tions obey (8.3.3).116



We work in the 
omplex quadri
 representation of T, (7.7.2). The integraltransform as given in [18℄ is
ψ̂(ξ) =

∫

S
ψ ∧ ωξ, (8.7.8)where ψ is a ∂̄-
losed (0, 1) form on T homogeneous of bidegree (0,−1). This isthe fun
tion on T we wish to integrate with some additional form dependen
e.

ωξ is a ∂-
losed (1, 0) form on the hyperplane se
tion S of T that we integrateover. S is found by 
onsidering the interse
tion of T with a se
ond kind dualobje
t 
orresponding to a point in the �rst kind dual obje
t. For this 
omplexvariable 
ase, the point in the �rst kind dual obje
t is an element ξ of HC
3 ,whi
h via the duality 
ondition

〈z, ξ〉 = 0, (8.7.9)has a 3-dimensional 
omplex hyperplane asso
iated with it L[ξ] ∈ CP 3
ξ . Theinterse
tion of this hyperplane with T gives us a 1-dimensional 
omplex hyper-plane se
tion S = T ∩ L[ξ] whi
h we integrate over.Referen
e [18℄ gives the formula for the invariant one-form as

ωξ =
[u, v, z, dz]

〈u, z〉 〈ξ, v〉 . (8.7.10)The notation [a, b, c, d] denotes the determinant of a 4 × 4 matrix with the 4-
omponent obje
ts a, b, c, d as the 
olumns. u, v, z, ξ are all C
1,3 ve
tors obeyingthe 
onditions

〈z, z〉 = 0, (8.7.11)spe
ifying the quadri
 and
〈z, ξ〉 = 0, (8.7.12)spe
ifying the duality 
ondition. 〈u, z〉 6= 0 and 〈ξ, v〉 6= 0 ensure that the formis well-de�ned.Note that this form is indeed invariant under the a
tion of the group

Oc(1, 3) as was 
he
ked via Maple. Cru
ially this form is dependent on a pointin the �rst kind dual spa
e ξ ∈ HC
3 so that the result ψ̂ is a fun
tion on HC

3 .117



However, 
ontrary to the 
laim in [18℄, the measure is dependent on u and v.We do not want to have a transformation de�ned only up to some dependen
eon two C
1,3 ve
tors so we rede�ne the one-form via

ωξ =
[u, v, z, dz]

〈u, z〉 〈ξ, v〉 − 〈u, ξ〉 〈z, v〉 , (8.7.13)whi
h is again Oc(1, 3) invariant but now is independent of u and v. It is thisse
ond form (8.7.13) whi
h we use in the 
omputations.8.7.4 Real twistor transformAs a �rst step on the path to the full 
omplex twistor transform we �rst 
onsiderthe simpler 
ase of real variables. (In this 
ontext we 
hange the nomen
latureof the variables; z → x, ξ → y). The spe
i�
 advantage of 
onsidering thissimpler 
ase is that all the geometry is visualisable. The 
omplex quadri
pres
ription of T takes on a well known form when we restri
t our attention toreal variables. Consider the equation de�ning the quadri

〈x, x〉 = 0, (8.7.14)where x ∈ R

1,3. This equation de�nes the 3-dimensional light 
one (where we
onsider only the part with x0 > 0) so that
L+ =

{
x ∈ R

1,3 | 〈x, x〉 = 0, x0 > 0
}
, (8.7.15)and when we remember that we are working in proje
tive spa
e we obtain theproje
tive light 
one,

PL+ = L+/ ∼, (8.7.16)where ∼ is the equivalen
e relation x ∼ x′ ⇔ x = λx′ for some λ ∈ R
+. Wehave obtained the result that the �real� twistor spa
e is simply the proje
tivelight 
one, whi
h is isomorphi
 to the 2-sphere,

T
R = PL+

∼= S2. (8.7.17)118



The �rst-kind dual spa
e in the 
ontext of real twistor spa
e is simply de Sitter
3-spa
e dS3, spe
i�ed by elements y ∈ R

1,3 s.t 〈y, y〉 = 1. The duality 
ondition(8.7.3) gives us (for y ∈ dS3) timelike 3-planes orthogonal to y,
L[y] = {x | 〈x, y〉 = 0} . (8.7.18)The hyperplane se
tion of T

R we integrate over is the interse
tion of this timelike
3-plane with the 2-sphere whi
h gives us a 
ir
le on the sphere. For example ifwe 
hoose y = (0, 0, 0, 1) ∈ dS3 then the 
ondition (8.7.4) pla
es no restri
tionon x0, x1, x2 but sets x3 = 0 to give us a timelike 3-plane L[y]. Taking advantageof the equivalen
e relation in (8.7.16) we 
an parameterise PL+ by x0 = 1 and�nd that the interse
tion of L[x] and PL+ is

Lx ∩ PL+ =
{
x ∈ L+ | x0 = 1, x2

1 + x2
2 = 1, x3 = 0

}
, (8.7.19)being a spe
i�
 
ir
le S1 ⊂ S2. Other points in dS3 give rise to other 
ir
les onthe sphere. Finally we note that y and −y in dS3 spe
ify the same 
ir
le on the

2-sphere. De�ning an equivalen
e relation ∼ by y ∼ y′ ⇔ y = −y′ we obtainthe result that dS3/ ∼ is isomorphi
 through (8.7.4) to the spa
e of 
ir
les onthe sphere. The real version of the one-form (8.7.13) now gives us an invariantmeasure on this spa
e of 
ir
les. We wish to parameterise this one-form on ageneral 
ir
le.To parameterise the one-form we 
onsider inverse stereographi
 proje
tionfrom the 2-plane to the 2-sphere σ−1 : R
2 → S2 so that

σ−1 (X1,X2) =

(
1,

2X1

1 +X2
,

2X2

1 +X2
,
X2 − 1

1 +X2

)

∼
(

1 +X2

2
,X1,X2,

X2 − 1

2

)
= x ∈ R

1,3. (8.7.20)as x is de�ned only up to proje
tive res
alings. Here X = (X1,X2) ∈ R
2 and

X2 = X2
1 +X2

2 = 〈X,X〉
R2 . We also 
hoose a 
oordinate system for dS3 with

y ∈ dS3 su
h that
y = (sinh t, cosh t Y ) , (8.7.21)119



where Y = (y1, y2, y3) ∈ R
3 and Σiy

2
i = 1 so that 〈y, y〉 = 1 is automati
allysatis�ed. For a �xed y the duality 
ondition (8.7.4) gives us the equation of a
ir
le on R

2,
(
X1 −

y1

p− y3

)2

+

(
X2 −

y2

p− y3

)2

=
1− p2

(p− y3)
2 , (8.7.22)with 
entre

(y1, y2)

p− y3
, (8.7.23)and radius (

1− p2
)1/2

p− y3
, (8.7.24)where

p = tanh t. (8.7.25)We introdu
e a polar angle χ along this 
ir
le by
(X1,X2) =

1

p− y3

(
y1 +

(
1− p2

)1/2
cosχ, y2 +

(
1− p2

)1/2
sinχ

)
, (8.7.26)whi
h parameterises the 
ir
le for y ∈ dS3.We now 
ompute the real version of the one-form (8.7.13) and �nd

ωy =
dχ

sinh t− cosh t
(
1− y2

1 − y2
2

)1/2 , (8.7.27)whi
h is independent of u and v in (8.7.13) and gives us the 
orre
t measureto use when integrating fun
tions over this 
ir
le on S2. One point to note isthat using this form of the sterographi
 proje
tion, ωy is ill-de�ned for 
ir
lesinterse
ting the north pole as the stereographi
 proje
tion will send this pointto in�nity.Using ωy we now wish to integrate fun
tions of an appropriate degree ofhomogeneity on the sphere, over this 
ir
le, with the desire that the resultingfun
tion automati
ally satis�es the wave equation in dS3.
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8.8 Solutions to the wave equation on dS3We now 
onsider solutions to the wave equation in general and give a result
on
erning the solution in dS3.The Lapla
ian ∆ is de�ned using the exterior derivative and its adjoint asa linear map ∆ : Ωr (M)→ Ωr (M), where ∆ =
(
d+ d†

)2 [39℄. For the spe
i�

ase where r = 0 the Lapla
ian is a linear map between fun
tions given by theexpression,
∆ =

1√
|g|
∂ν

(√
|g|gνµ∂µ

)
, (8.8.1)where g is the metri
 on the manifold.In the 
ontext of the real twistor transform we wish to obtain fun
tionsautomati
ally satisfying the wave equation on dS3 whi
h has the metri


ds2 = −dt2 + cosh2 t dΩ2, (8.8.2)where dΩ2 is the metri
 on the 2-sphere. This metri
 is indu
ed from the metri
on R
1,3 and has indu
ed signature (−,+,+). On dS3 the Lapla
ian takes theform

∆dS3 =
1

cosh2 t

(
−∂t

(
cosh2 t ∂t

)
+ ∆S2

)
, (8.8.3)where ∆S2 is the Lapla
ian on the 2-sphere.We sear
h for separable solutions to the massless wave equation of theform f = T (t)Y (θ, φ) and see that the Y part of the solution takes the usualform of a spheri
al harmoni
 on the 2-sphere

∆S2Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ), (8.8.4)
Y m
l (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (8.8.5)where the Pml (cos θ) are the asso
iated Legendre polynomials. We are thus leftwith the T part of the solution satisfying the di�erential equation

(
∂t(cosh

2 t∂t) + l(l + 1)
)
T (t) = 0. (8.8.6)121



Via the 
hange of variables σ = −e2t we transform to
σ (1− σ)T ′′ − 2σT ′ − l(l + 1)

1− σ T = 0, (8.8.7)where di�erentiation is indi
ated w.r.t σ.We now make the substitution T = coshl t e(l+2)tF so that F satis�es thehypergeometri
 equation
σ (1− σ)F ′′ + (c− (1 + a+ b)σ)F ′ − abF = 0, (8.8.8)with a = l + 1, b = l + 2, c = 2. One solution to this equation is given bythe hypergeometri
 series, [44℄, Fl+1,l+2 = F

(
l + 1, l + 2, 2,−e2t

), whi
h 
anbe simpli�ed to give
Fl+1,l+2 =





(
1 + e2t

)−1
l = 0,

(l + 1)
(
1 + e2t

)−2l−1∑l−1
c=0

(l+1
c+1

)(l−1
c

) (
−e2t

)c
l ≥ 1.

(8.8.9)In [45℄ the two linearly independent solutions to the massive, m 6= 0, waveequation on dS3 are given. The result (8.8.9) is the massless spe
ial 
ase ofthe result obtained in [45℄, with the hypergeometri
 part written expli
itly asa polynomial. We obtain the �nal result that one solution to the masslesswave equation on dS3 is given (for an integer value of l and 
orrespondinginteger values of m) by the produ
t of the hypergeometri
 fun
tion (8.8.9),
coshl t e(l+2)t and spheri
al harmoni
s Y m

l . We expe
t the result of the realtwistor transform to give (at least) a subset of these fun
tions and possiblyinterse
t with the whole set.Returning to the twistor transform we now use (8.8.3) in the form
∆dS3

= −∂2
t − 2 tanh t∂t +

1

cosh2 t

(
∂2
θ + cot θ∂θ +

1

sin2 θ
∂2
φ

)
, (8.8.10)where we have 
hosen Y = (cosφ sin θ, sinφ sin θ, cos θ). Unfortunately, we
ould not make fun
tions ψ̂ transformed using the real version of (8.7.8) withthe form ωy (8.7.27) satisfy ∆dS3

ψ̂ = 0.122



8.9 Complex twistor transformOf 
ourse, it is the 
omplex version whi
h we are really interested in to un-derstand the right-most arrow of the diagram (8.2.1). It is a relatively simpleextension where we now use inverse 
omplex sterographi
 proje
tion σ−1
C

: C
2 →

PLC
+, φ, t and y are now 
omplex parameters and we spe
ify the �rst kind dualmanifold as 〈ξ, ξ〉 = 1. The invariant form on the spa
e of hyperplane se
tionsis

ωξ =
dφ

cosh t− sinh t
(
1− y2

1 − y2
2

)1/2 , (8.9.1)whi
h is a ∂-
losed (1, 0)-form.The problems a�i
ting the real twistor transform are present in the 
om-plex 
ase as well - the transformation does not give us a set of fun
tions satisfy-ing the massless wave equation on HC
3 . One possible problem is that the form(8.7.13) is an ansatz whi
h turned out to be expli
itly u, v independent. If wewere to return to this problem we would 
ompute the measure as given in [18℄from �rst prin
iples as the residue of a 
losed form with a simple pole.
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Chapter 9
Con
lusions

The thesis was split into two parts; 
hapters 2 through 6 dis
ussed the Hamilto-nian formulation of two massive point parti
les 
oupled to AdS3 gravity whereas
hapters 7 and 8 dis
ussed SL(2,C) twistor spa
e and 
onformal �eld theory
n-point fun
tions.9.1 Point parti
les 
oupled to AdS3 gravityIn one sense GR in 2 + 1 dimensions is trivial when 
ompared with its (3 + 1)-dimensional 
ounterpart; the triviality abounding from the fa
t that a (2 + 1)-dimensional spa
etime has no lo
al degrees of freedom, physi
ally meaningthere are no gravitational waves. However, in 2 + 1 dimensions the theory
an be 
onsistently 
oupled to point parti
les, providing us with one method of
onstru
ting topologi
ally nontrivial spa
etimes whi
h have a �nite number ofglobal degrees of freedom. There are a number of (
lassi
ally equivalent) waysto analyse (2 + 1)-dimensional gravitational theories being that of geometri
stru
tures, the Chern-Simons formulation and the ADM formalism [46℄. Thereare also many ways in whi
h to formulate the dynami
s of su
h a system withpoint parti
les present, parti
ularly with respe
t to the boundary 
onditions ofthe theory, see referen
es in [9℄. 124



In the �rst part of the thesis we formulated and analysed the Hamiltonianfor a pair of massive point-parti
les 
oupled to AdS3 gravity.We began by dis
ussing the geometry of two parti
les 
oupled to AdS3.We 
hose, following [9℄, to an
hor the dynami
s to the asymptoti
ally AdS
oni
al in�nity, and in doing so des
ribed the geometry of the system in therelativisti
 analogue to the Newtonian 
entre-of-mass frame. We did this by�rstly des
ribing the geometry of the two-parti
le spa
etimes in terms of a pie
eof AdS3 spa
etime between the parti
les and then translating this des
riptioninto one in whi
h we 
ould relate the spa
etime dynami
s to the in�nity. Thisan
horing pro
edure also led us to use the BTZ time as the time 
oordinate inour dis
ussion of the Hamiltonian formulation. We made a substantial te
hni
alsimpli�
ation at this point by spe
ialising to the 
ase of zero angular momentumyielding a spa
etime 
ontaining 
olliding parti
les.We 
hose further to use the Chern-Simons formulation of gravity in orderto dis
uss the bulk a
tion and how it naturally splits into two Chern-Simons(C-S) type a
tions. We then went on to dis
uss the gauge transformations ofthe theory whi
h we used when dis
ussing how to �x the gauge. We then splitthe spa
etime manifold a

ording to M = Σ × R and 
al
ulated the 2 + 1de
omposition of the bulk a
tion in order to dis
over what form the Liouvilleterm took. We also brie�y dis
ussed the parti
le a
tions and 
hose the a
tionon the boundary at the spatial in�nity.In order to redu
e the a
tion we imposed the 
onstraints and �xed thegauge of the theory by embedding Σ into a �
titious spa
etime of the form al-ready dis
ussed. We then used the details of the embedding and gauge �xing toevaluate the Liouville term. We evaluated the term through a 
ombination ofdire
t evaluation and 
onversion of the term into a one-dimensional boundaryintegral by Stokes' theorem. The evaluation of this boundary integral presentedthe largest problem within the whole body of work and although we did not
omplete the redu
tion using these te
hniques, we did 
arry it out to a stagewhere it was possible to sidestep the remaining te
hni
alities and use 
onsis-125



ten
y with the known equations of motion to 
omplete the analysis.We thus evaluated the redu
ed a
tion of the theory, for three spe
ial 
asesof the masses of the two parti
les, and obtained a two dimensional redu
edphase spa
e. The dimensionality of the phase spa
e was due to the fa
t thatwe were in the 
olliding parti
le regime and thus needed only one position andone momentum 
oordinate to des
ribe the system fully. We would expe
t toobtain a four dimensional redu
ed phase spa
e if the analysis were 
ompletedfor the spinning parti
le regime as is the 
ase in [9℄. We performed a 
anoni
altransformation to a phase spa
e 
hart 
oordinatised by the geodesi
 distan
ebetween the parti
les, being analagous to the redu
ed position ve
tor of a New-tonian two-body system in the 
entre-of-mass frame, and its relative 
onjugatemomentum, and wrote the Hamiltonian in terms of these variables.In 
ontrast to [9℄ our theory in
luded a negative 
osmologi
al 
onstantmeaning we had a 
ertain regime in whi
h the spa
etime 
ontained a bla
khole. We 
ontinued the Hamiltonian analyti
ally to the bla
k hole regime andalso analysed the threshold of bla
k hole formation H = 0. We found that nearthis threshold the mass of the bla
k hole depended linearly on the momentumof the parti
les. In the language of 
riti
al phenomena, this equates to the masss
aling with 
riti
al exponent 1 in agreement with what was found in [12℄ by amethod that uses the 
onstants of motion as 
oordinates on the phase spa
e.We also used the a
tion to 
ompute the semi
lassi
al tunnelling probabilityamplitude of two parti
les out of the bla
k hole. We found that the imaginarypart of the a
tion was equal to the Bekenstein-Hawking entropy of the bla
khole. In a similar analysis for a spheri
al shell in four dimensions [47℄, theimaginary part of the a
tion was found to be half of the Bekenstein-Hawkingentropy SBH, leading to the fa
tor exp (−SBH) on taking the modulus squared ofthe semi
lassi
al probablility amplitude. The reason for the fa
tor of 2 di�eren
ebetween our result and that of [47℄ appears to be in the di�erent 
hoi
es of thetime 
oordinate [48℄. 126



In summary, we have formulated and analysed a Hamiltonian for threespe
i�
 
ases for two-parti
le AdS3 spa
etimes. We have des
ribed the geom-etry of su
h spa
etimes and used the Chern-Simons formulation of gravity indis
ussing the a
tion. We �xed the gauge and evaluated the redu
ed a
tion ofthe theory. Finally we performed a 
anoni
al transformation to �nd a Hamil-tonian for ea
h of the three 
ases.For two of the 
ases (two massless parti
les and two parti
les with equalpositive masses) the 
riti
al exponent for the threshold of bla
k hole forma-tion was shown to 
oin
ide with the results in [12℄. Also for these two 
asesthe equations of motion have been analysed and used to 
al
ulate the imag-inary 
ontribution to the a
tion whi
h has been shown to 
oin
ide with theBekenstein-Hawking entropy. The author has no reason to expe
t that theresults for arbitrary vlues of the masses would be di�erent.We 
ould extend the resear
h in a variety of ways. One thing to 
onsiderwould be when the spa
etime 
ontained n > 2 parti
les. In theory we 
ouldpro
eed with the analysis of the spa
etime geometry in the same way althoughin pra
ti
e the 
al
ulations would get in
reasingly more di�
ult. We 
ould also
onsider evaluating the redu
ed a
tion for the spinning parti
les 
ase although itmay be worthwhile to re�ne the te
hniques used to 
arry out the redu
tion �rst.One other area worthy of further study would be to 
onsider the quantisationof the various Hamiltonians obtained. The quantisation of the Hamiltonian forthe zero 
osmologi
al 
onstant 
ase has been 
onsidered in [11℄ and it would beworthwhile to 
onsider the quantisation of the negative 
osmologi
al 
onstant
ase along similar lines. We leave this question open for further studies.9.2 SL(2, C) twistor spa
e and 
onformal �eld theoryIn the se
ond part of the thesis we analysed the properties of SL(2,C) twistorspa
e, T, and explored the form that 
onformal �eld theory takes within T andvarious related spa
es. We gave some details on the twistor transform for T.127



We were �rst 
on
erned with 
oset spa
es 
onstru
ted from SL(2,C). Werealised �SL(2,C) twistor spa
e�, showing that it has 
omplex dimension two,a metri
 with signature (+,+,−,−) and an interesting 
omplex stru
ture. Wealso realised one representation of the 
oset spa
e B. We went on to examinethe form of 
onformal �eld theory n-point fun
tions in S2, H3, T and B. Inorder to translate the n-point fun
tions to the various spa
es we needed tomake use of two separate integral transforms, one being the twistor transformfor T. We gave the details of the 2, 3 and 4-point 
orrelation fun
tions de�nedon the Riemann sphere and used some te
hniques from representation theoryto transform the fun
tions of interest into B. We then analysed the integraltransform from B to T as given in [42℄ but unfortunately 
on
luded that theformula given in [42℄ yields divergent fun
tions on T.In the attempt to understand the twistor transform from T to H3 our workenabled us to write the hypergeometri
 part of the solution to the massless waveequation on dS3 expli
itly as a polynomial. Unfortunately the 
omputation ofthe twistor transform did not yield fun
tions automati
ally satisfying the waveequation (being the main motivation for this work). If we were to return to thisproblem we would 
ompute the measure as given in [18℄ from �rst prin
iples asthe residue of a 
losed form with a simple pole. However, we unfortunately hadto 
on
lude that the twistor transform in this 
ontext is still ill understood.
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