
Terrazas Angulo, German (2009) Automated 
evolutionary design of self-assembly and self-organising 
systems. PhD thesis, University of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/10648/1/gztthesis.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Automated Evolutionary Design of Self-Assembly

and Self-Organising Systems

Germán Terrazas Angulo

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

October 2008



Abstract

Self-assembly and self-organisation are natural construction processes where the sponta-

neous formation of aggregates emerges throughout the progressive interplay of local in-

teractions among its constituents. Made upon cooperative self-reliant components, self-

assembly and self-organising systems are seen as distributed, not necessarily synchronous,

autopoietic mechanisms for the bottom-up fabrication of supra-structures. The systematic

understanding of how nature endows these autonomous components with sufficient “intel-

ligence” to combine themselves to form useful aggregates brings challenging questions to

science, answers to which have many potential applications in matters of life and techno-

logical advances. It is for this reason that the investigation to be presented along this thesis

focuses on the automated design of self-assembly and self-organizing systems by means of

artificial evolution. Towards this goal, this dissertation embodies research on evolutionary

algorithms applied to the parameters design of a computational model of self-organisation

and the components design of a computational model of self-assembly. In addition, an an-

alytical assessment combining correlation metrics and clustering, as well as the exploration

of emergent patterns of cooperativity and the measurement of activity across evolution,

is made. The results support the research hypothesis that an adaptive process such as

artificial evolution is indeed a suitable strategy for the automated design of self-assembly

and self-organising systems where local interactions, homogeneity and both stochastic and

discrete models of execution play a crucial role in emergent complex structures.
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Chapter 1

Introduction

This first chapter aims to present this thesis in four introductory sections covering the

goals, methodological aspects, structure and publications. In particular, the first section

summarises the purpose of the dissertation and the research area from which the topics of

study originate. The second section gives a concrete description of the problems to be inves-

tigated together with the proposed computational strategies and assessment methodologies.

The third section follows, setting out an organisational scheme for understanding how the

chapters interrelate to one another, and finally, the fourth section closes this introduction

with a list of publications produced by the research findings.

1.1 Dissertation Goals

The purpose of this thesis is to embark upon the automated design of self-assembly and self-

organised systems by means of artificial evolution. Towards this goal, the research is centred

on the application of genetic algorithms for the design optimisation of cellular automata

parameters and self-assembly Wang tiles. This investigation is also focused on a protocol
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of assessment comprising correlation metrics, clustering, generalised secondary structures

and evolutionary activity. To begin with, this dissertation starts with the definitions of

self-assembly and self-organization where common features and differences along with ex-

amples found in nature are enumerated. This is followed by the characterization of cellular

automata and Wang tiles as computational models of self-organised and self-assembly sys-

tems. After that, the study, classification and exemplification of evolutionary algorithms in

design and optimization of self-assembly and self-organised systems are given. The thesis

follows with the presentation of an evolutionary approach for the design optimisation of

cellular automata parameters and for the design optimisation of self-assembly Wang tiles.

The results of the methodologies introduce a set of protocols for the analyses and character-

ization of the fitness functions and the evolutionary activity. Finally, the thesis concludes

with an overview of the achieved results, contributions and future directions.

1.2 Methodological Aspects

The methodology employed in this research involves the use of a simple genetic algorithm

to be applied to the automated design optimisation of cellular automata parameters and

self-assembly Wang tiles which work as models of self-organised and self-assembly systems

respectively. These two archetypal domains represent a continuous design optimisation

problem with fixed length encoding (cellular automata) and a discrete design optimisation

problem with variable length encoding (self-assembly Wang tiles). The genetic algorithms

are equipped with three independent evaluation procedures: lattice scanner, universal sim-

ilarity metric and morphological image analysis, all of them fully explained in Chapter 5,
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Chapter 6 and Chapter 7. With this evolutionary methodology at hand, the research is

centred on addressing the following questions:

Is it possible to make an evolutionary-driven specification of the laws (rules, parameter

values) governing an observed cellular automata dynamics ?

Is it possible to make an evolutionary design of the set of tiles needed to obtain a par-

ticular supra-structure by means of self-assembly ?

In order to determine whether or not the proposed methods are effective, four

protocols of analyses are employed: fitness distance correlation, clustering, the emergence

of generalised secondary structures and evolutionary activity waves, all of which are dis-

cussed in Chapter 8 and Chapter 9. On the one hand, both fitness distance correlation

and clustering are applied in order to assess the genotype-phenotype-fitness mapping. In

particular, fitness distance correlation appraises the genotype-fitness relationship whereas

the clustering studies the phenotype-fitness affinity. Hence, at this stage of the research,

the interest is put on answering the following:

Is the genotype-fitness of an individual well correlated ? I.e. are the distances among

genotypes and the distances among fitness values equivalent ?

Are the fitness functions properly distinguishing the phenotypes ?
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On the other hand, the emergence of generalised secondary structures and evo-

lutionary activity waves embody analyses to be done at the phenotypic level of the self-

assembly Wang tiles design optimisation problem. Thus, the study of generalised secondary

structures enumerates and quantifies which type of self-assembly patterns evolve, whereas

evolutionary activity waves envisage an adaptive phenomena behind evolution. Both anal-

yses shed light on how the underlying self-assembly mechanism develops throughout the

evolutionary process, i.e. they address the questions:

Given an evolved self-assembly Wang tile system, how would a target shape emerge out

of the interaction of tiles ?

Given a set of generalised secondary structures, is there any way to identify which are

the most likely to participate in the self-assembly process ?

Given a genetic algorithm for the design optimisation of self-assembly Wang tiles, is there

any way to measure how the glue strengths participate along the evolutionary process ?

1.3 Structure of the Dissertation

The structure of this thesis is organised into background, proposed approach, experiments

and results, analyses and conclusions within ten chapters. The map depicted in Figure 1.1

shows an schematic relation of the chapters contained in this dissertation.
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Figure 1.1: Schematic structure of the dissertation starting with the notions of self-organization,

self-assembly and proposed models. After that, evolutionary algorithms are presented as an approach

for the automated design of self-assembly and self-organised systems. Then follows the experiments

and results for the automated tailoring of cellular automata and self-assembly Wang tiles by means

of artificial evolution. Finally, a set of protocols for the analysis and assessment of the applied

methodology is presented.

In what follows, Chapter 2 deploys the background needed to understand the re-

search area and proposes cellular automata and Wang tiles as computational models of

self-organization and self-assembly systems. Chapter 3 focuses on evolutionary algorithms

in design and optimisation as a methodology that could address the automated tailoring of

the presented models. Chapter 4 characterises the problems to be addressed and overviews

the operational aspects of the proposed methodology. Later on, Chapter 5, Chapter 6 and
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Chapter 7 detail the experiments performed and the achieved results by the proposed ap-

proach. After that, Chapter 8 and Chapter 9 present the protocols of analyses employed to

assess the proposed methodology. Finally, Chapter 10 concludes the dissertation, summa-

rizing the contributions and establishing future research directions.

1.4 Publications

The research to be presented in this thesis resulted in the following publications which have

been submitted and accepted in international conferences and journals:

[1] L. Li, P. Siepmann, J. Smaldon, G. Terrazas. and N. Krasnogor. Automated Self-

Assembling Programming. In N. Krasnogor, S. Gustafson, D. Pelta and J. L., editors,

Systems Self-Assembly: Multidisciplinary Snapshots, pages 281–307. Elsevier, 2008. The

contribution of this book chapter is shown in Chapter 9.

[2] G. Terrazas., M. Gheorghe, G. Kendall and N. Krasnogor. Evolving Tiles for Au-

tomated Self-Assembly Design. In IEEE Congress on Evolutionary Computation, pages

2001–2008. IEEE Press, 2007. (Best Paper award and Best Student Paper award).

The contribution of this paper is shown in Chapter 7.

[3] G. Terrazas., P. Siepmann, G. Kendall and N. Krasnogor. An Evolutionary Method-

ology for the Automated Design of Cellular Automaton-based Complex Systems. Journal

of Cellular Automata, 2(1):77–102, 2007. This journal paper contributes to Chapter 6.
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[4] P. Siepmann, G. Terrazas. and N. Krasnogor. Evolutionary Design for the Behaviour

of Cellular Automaton-Based Complex Systems. In 7th International Conference of Adap-

tive Computing in Design and Manufacture, pages 199–208. IP-CC, 2006. The contribution

of this paper is shown in Chapter 5.

[5] N. Krasnogor, G. Terrazas., D. Pelta and G. Ochoa. A Critical View of the Evo-

lutionary Design of Self-Assembly System. In 7th International Conference on Artificial

Evolution, volume 3871, pages 179–188. Lecture Notes in Computer Science, Springer,

2005. The contribution of this paper is shown in Chapter 7.

[6] G. Terrazas., N. Krasnogor, G. Kendall and M. Gheorghe. Automated Tile Design for

Self-Assembly Conformations. In IEEE Congress on Evolutionary Computation, volume 2,

pages 181–222. IEEE Press, 2005. The contribution of this paper is shown in Chapter 7.

[7] G. Terrazas., N. Krasnogor, M. Georghe, F. Bernardini, S. Diggle and M. Camara. An

Environment Aware P-Systems model of Quorum Sensing. In First Conference on Com-

putability in Europe, volume 3526, pages 479–485. Lecture Notes in Computer Science,

Springer-Verlag, 2005. The contribution of this paper is shown in Chapter 10.

[8] F. Bernardini, M. Gheorghe, N. Krasnogor and G. Terrazas.. Membrane Comput-

ing - current results and future problems. In First Conference on Computability in Europe,

volume 3526, pages 49–53. Lecture Notes in Computer Science, Springer-Verlag, 2005. The
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contribution of this paper is shown in Chapter 10.

[9] N. Krasnogor, M. Gheorghe, G. Terrazas., S. Diggle, P. Williams and M. Camara.

An Appealing Computational Mechanism Drawn from Bacterial Quorum Sensing. Bulletin

of the European Association for Theoretical Computer Science, (85):135–148, 2005. The

contribution of this paper is shown in Chapter 10.

1.5 Icons Used in this Dissertation

Here is a list of icons and meanings to be employed along this dissertation with the purpose

to assist and facilitate the reading.

Definition – introduces a description, explanation or clarification of a new concept.

Conceptual question – establishes a conjecture that originates an important query in

the line of the research.

Important fact – highlights an important analysis, a remarkable conclusion or an essential

statement of the research.

Technical detail – gives key description of an algorithm, data set or parameters to be

employed in an experiment.

Reminder – alerts the reader with a concept, hypothesis, analysis or conclusion that should

be kept in mind for further reading.



9

Chapter 2

Self-Organisation and Self-Assembly

The aim of this chapter is to establish the foundations needed to understand the research

area of this dissertation. The scope is mainly divided in two sections: introduction and

models. The former introduces self-organisation and self-assembly systems enumerating

examples observed in nature, highlighting their features and characteristics as well as noting

the differences between both concepts. After that, the models section describes some of

the existing approaches for modelling self-organisation and self-assembly proposing cellular

automata and self-assembly Wang tiles as computational models for the two.

2.1 Introduction

Self-organisation and self-assembly are closely related concepts. Although these terms share

many similarities and are sometimes confused, there are, indeed, important differences. For

this reason, it is the purpose of this section to introduce both concepts and to contrast

those points where they differ.



2. self-organisation and self-assembly 10

2.1.1 Self-Organisation

In physical and biological systems, self-organisation refers to pattern-formation processes

via interactions among similar components or events internal to a given system without

external influences. In this way, organisation emerges at the global level as a result of local

information exchanged among the constituents of the system. In other words, the achieved

patterns or self-organised structures are a collection of entities arranged due to cascades of

iterative interactions across space and time where complexity unfolds progressively.

The main differences among physical and biological self-organising systems lie in

the complexity of their components and their governing laws. For instance, entities of

biological systems like cells, fishes or ants are far more complex than physical elements such

as crystals. At the physical or chemical level, only physical laws govern the system whilst in

biological systems genetically controlled components (i.e. information processing) are also

influencing the behavioural interactions among the living entities.

The way in which components interact is crucial to understand how self-organisation

works in biological systems. Two important mechanisms of interaction are positive feedback

and negative feedback. The former takes an initial change in a system and reinforces it in

the same direction as the initial deviation. In contrast, negative feedback reinforces changes

in the opposite direction thus breaking and shaping the process, and hence inhibiting any

positive feedback process that may be at work. Self-organisation in biological systems also

arises from multiple interactions among individuals transferring information via signals or

cues. In some self-organising groups of living entities, the individuals usually contribute

with simple behavioural rules, known as rules of thumb [20], based upon the information
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collected from its neighbours. For example, a fish belonging to a fish school neither has

feedback regarding the direction of the school nor has all the trajectories of its neighbours.

However, it has neighbouring information that keeps it moving in the same direction trying

to stay close to the group and to avoid collisions with its neighbours (see Figure 2.1 (a)).

This information gathered from nearby members of the group is not the only source of

knowledge used by an organism belonging to a self-organising system. In those systems

where individuals contribute to a collective effort, the common (shared) medium could also

play an important role defining a kind of stimulus-response interaction called stigmergy.

For instance, the stimuli provided by the emerging structure when termites build a nest can

induce further activity such as performing additional labour or stopping building.

Self-organisation is an exciting research arena spanning physics, chemistry, biology

and computer science. Not only is the organised behaviour in flocks, fish schools, fireflies

synchronization and ants foraging (depicted in Figure 2.1 (a-d)) an example of naturally

occurring self-organising systems, but also the patterns observed in the visual cortex of

the macaque monkey, skin pigmentation of fish, pigmentation on shells of molluscs (Figure

2.2 (a-b)) and the zebra coat patterns qualify as examples of self-organising systems. On

the other hand, technology and computer science have experienced an explosion of self-

organising artefacts and technologies, e.g. the peer-to-peer systems [21], data bases [22]

[23], automated self-assembly programming [24] and patterns obtained from the application

of cellular automata rules [25][26][27].
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(a) (b)

(c) (d)

Figure 2.1: One of the most awesome instances of self-organisation in nature is the sight of thou-

sands of living entities orchestrating together as a coordinate unit. Some eye-catching examples are

schools of fish (a), fireflies (b), flocks (c) and ant trails (d). In schools of fish and flocks, each

individual of the group bases its behaviour on monitoring the velocity and position of the near-

est neighbours. The self-organisation among fireflies is observed by the synchronized flashing of

their abdominal lantern. The interaction among ants is signalled via the chemical trails known as

pheromones which act as positive (negative) feedback as they are enriched (evaporated). Extracted

from [1] [2].
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(a)

(b)

Figure 2.2: “Pattern” refers to a particular self-organised collection of objects across space and

time. The pigmentation of the shells of molluscs observed in Neritina ziczac (a) and Lioconcha

castrensis (b) is a beautiful natural example. Early works suggest that these patterns develop from

simple rules continually iterating among the components of the system as the cellular automaton

snapshots show at the right side of the figure. Extracted from [3].
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2.1.2 Self-Assembly

Self-assembly is a distributed process that creates structures from scratch through the

statistical exploration of components’ aggregates without external intervention. In gen-

eral, self-assembly components are autonomous, have no pre-programmed master assembly

plan, and interact with their local environment and other components. Self-assembly is a

mechanism whose power, as a reusable engineering concept, lies in the fact that it is a dis-

tributed, not necessarily synchronous, control mechanism for the bottom-up manufacture

of complex structures. This control mechanism is distributed across a myriad of elemental

components, none of which has either the storage or the computation capabilities to know

and follow a master plan for the assembly of the intended system. Instead, each component

has a very limited behavioural repertoire which tells it what to do under a reduced set of

well defined conditions.

From nano-particles to planets, self-assembly is a phenomenon studied in terms of

physics, chemistry, computer science and biology. The observed prominent features of self-

assembly systems in nature at different scales are robustness, versatility, reversibility and

mass transportation. Robustness comes from the fact that self-assembly systems comprise

a large number of parts that can replace one another in case of failure. A robust system can

withstand a variety of errors, perturbations, or even partial destructions on its functionality

getting back to its initial state by means of adaptation to the environmental changes and

generating order out of chaos [28]. Versatility, on the other hand, is given by the possibilities

of re-configuring the way in which components relate to each other subject by, for example,

attraction and repulsion of inherent forces. In some self-assembled structures like the poly-
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mer brushers in [29] or the metastable crystals in [30], the association between components

is expected to be reversible in the sense that the strength of the attracting forces must be

comparable to those of repelling order. For example, the collision between molecules must

be reversible for crystallization to occur, otherwise their resulting arrangement will end up

in glass. Notice that there are also other system-dependent features that can be described

at this stage but it is not the intend to consider these within the scope of this dissertation.

For instance, in chemical self-assembly systems where the components are embedded in

a solution, assuring mobility of the constituents becomes a crucial feature as gravity and

friction with the environment have a strong influence on their Brownian motion.

Figure 2.3: Polymerization is an example of a self-assembly process taking place at microscopic

level from where materials like polyethylene is manufactured. Polyethylene comprises a cross linked

chain of ethylene monomers (H2C) double bounded at the carbon (C) molecule. This resultant

polymer is a thermoplastic commodity heavily used in consumer products such as telephones, plastic

containers and toys. Extracted from [4].
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Figure 2.4: Lipids are a special kind of surfactant which consist of a hydrophilic head and a

hydrophobic double tail. In an aqueous system, the heads orientate towards the environment while

the tails minimise their contact with water making lipids self-assemble in a stable two-dimensional

sheet. These lipid bilayers have many functions in living organisms including structural components

of cell membranes which separate compartments inside the cell to protect the important processes

and events vital in life. Extracted from [5] [6].

Figure 2.5: Snow forms as water condenses into a tiny droplet which grows as more and more

water vapour condenses onto its surface. After that, the cold air freezes this droplet into ice crystals

of unique shape which eventually fall from the sky. Whilst falling, they come into contact with

warmer air that makes them melt as they descend. This melting acts like a glue causing crystals to

self-assemble into larger structures called snowflakes. Extracted from [7].
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Self-assembly systems are ubiquitous in nature and can be found at all scales.

At the microscopic level, lipid membranes (Figure 2.4), nucleic acid structures and other

complex cell entities are well-known biological examples of self-assembly. Molecular crystals

such as the crystalline form of table sugar and rock candy or colloids such as milk, butter,

asphalt or snow formation (Figure 2.5) are everyday cases of self-assembly where molecules

are kept together by interactive forces. Other striking examples of self-assembly are the

soap-like products making shampoos and other cosmetics. These materials are composed

by a class of molecules called amphiphiles which is a combination of hydrophobic and

hydrophilic molecules that, when mixed with water, take up complex and ordered structures.

2.1.3 Differences between Self-Organisation and Self-Assembly

Many attempts have been made to try to classify and separate self-organisation and self-

assembly. For example, a study of animal societies [31], defines self-organisation as a phe-

nomenon taking place at the organismal level that is characterized by the combination of

positive feedback, negative feedback, stochasticity and randomness, and multiple local inter-

actions. At this “organismal” level, self-assembly is outlined as a mechanism for obtaining

individual-based structures, e.g. army ant bridges (Figure 2.6 (a)) or bee curtains (Figure

2.6 (b)). Under this definition, self-assembly and stigmergy (defined in Section 2.1.1) seem

to have many features in common such as the movement of individuals over a structure.

However, one of the remarkable differences among them is that in self-assembly only animate

active entities take part in the pattern-formation process whilst in stigmergy inanimate en-

tities are also involved as part of the stimulus-response interaction. Moreover, it is argued

that self-organisation and self-assembly also differ on whether positive feedback is present
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or not. In studies related to assemblages in living systems, this interaction mechanism is

considered as part of self-assembly [31] [28]. For instance, in Eciton ants societies, the

formation of chains of ants (Figure 2.6 (a)) attracts others to continue the chain. In other

words, positive feedback operates through the already built structure, attracting more ants

to get located at the end of the aggregation, i.e. at the lowest part of the structure.

(a) (b)

Figure 2.6: Self-assembly at organismal level as a mechanism for obtaining individual-based struc-

tures like army ant bridges (a) or bee curtains (b). Extracted from [8] [9].

Following the biological line in [32], the difference between self-organisation and

self-assembly is stated in terms of the information stored in the cooperative entities. For

instance, in self-assembly each component carries an explicit encoding describing the type

of component with which to interact. On the other hand, in self-organisation, these com-

ponents follow more general rules without any type of encoding to get the final pattern.

A physical approach differentiates self-assembly from self-organisation in terms of

energy [33]. In the first case, the formation of aggregates is related with the minimisation

of energy in a closed system. Self-assembly involves processes of structure formation which

occur via a relaxation into a thermodynamic equilibrium state. In contrast, self-organisation
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is said to be far from any thermodynamical/chemical equilibrium nor restricted to enclosed

environments and it is generally thought to be a kinetically governed process. This is

also called conservative self-organisation or arrested self-assembly [34]. The following table

summarises the main features and differences between self-assembly and self-organisation

previously discussed.

Self-Organisation Self-Assembly

Type of Interaction With the local envi-
ronment throughout posi-
tive/negative feedback, and
with other components.

With the local environment
throughout positive feed-
back and with other com-
ponents.

Type of Systems Operative in open systems,
i.e. inputs/outputs of en-
ergy and matter.

Restricted to closed sys-
tems, i.e. absence of in-
puts/outputs of energy or
matter.

Type of Components Autonomous components
with general rules of
interaction.

Autonomous components
with specific rules of
interaction.

Type of Structures Complex organised struc-
tures and coordinated be-
haviour.

Complex aggregates.

Thermodynamic State The organisation among
entities emerges far-from-
equilibrium.

The construction of as-
semblies emerge by means
of close-to-equilibrium dis-
sipative processes which
minimise the energy of the
system.

Table 2.1: Features and differences between self-organisation and self-assembly according to the

type of interaction, systems , components, formed structures and thermodynamics of the system.
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2.2 Models

As seen in the previous section, self-organisation and self-assembly are complex systems

in nature mainly characterized by organic or living entities belonging to a particular en-

vironment and achieving global order as the result of local interactions. For instance, as

a concrete example of modelling natural systems, five different approaches for studying

the icosahedral virus capsid assembly are reviewed in [35]. In an effort to understand the

self-assembling of proteins which are to form the shell that encase the viral genome (Fig-

ure 2.7), five models have been proposed: kinetic, molecular dynamics, reaction landscape,

differential equations and a Monte Carlo simulation.

(a) (b)

Figure 2.7: Electron micrograph of Human adenovirus, a vertebrate with icosahedral capsid sym-

metry with a diameter of 80-110nm (a). Pathway of self-assembling dimers forming the virus capsid

to be deposited inside the host cell (b). Extracted from [10][11].
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The first idea attempts to model nucleation events, contact free energy and elon-

gation rate, although it is argued that some molecular details cannot be captured. Inspired

by local rules theory, the molecular dynamics model has been used in order to study the

oligomer-oligomer bindings during the assembly process [36]. This approach results in the

creation of a set of local rules capable of explaining the capsid formation, although they are

not universal and they introduce more restrictions than is necessary for a correct assem-

blage. The generation of a reaction landscape in order to understand the assembly pathway

has been done in terms of the enumeration of the possible intermediate structures and its

corresponding reaction paths [37]. According to the overall reported results, this model has

been found useful only to analyse the beginning of the assembly process. Since the three

reported models fail to explore the role of malformations in the self-assembly process, a

model based on differential equations capable of tracking all possible single monomer addi-

tion reactions is proposed in terms of concentrations of the population of various oligomers.

Although this approach yields reasonably good results, it was observed that the number of

differential equations grows rapidly for large structures generating a difficult and slow task

to perform. Even though this algebraic representation could work well when the population

is large, differential equations are difficult to formulate as they are meant for continuous

processes and they are hard to understand due to the abstraction level. In contrast to dif-

ferential equations, simulations like Monte Carlo use a different approach to modelling the

behaviour of each individual and incorporating certain features like randomness observed

in biological systems. In this case, a Monte Carlo simulator has been set up with discrete

protein subunits in order to monitor the addition reactions of every single particle. The
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Monte Carlo simulation starts with a given number of monomer unbound in 2D, a run time,

volume and forward/reverse rate. The simulation starts with choosing a random molecule

(a monomer at the first step) and a monomer. After that, an acceptance rule is evaluated,

deciding whether a forward reaction between the chosen objects is attempted or not. In

case of success, a random number is generated in order to establish the type of angle within

which these monomers have been bonded. After that, a reverse reaction will be attempted,

choosing a new random molecule and a reverse reaction acceptance rule capable of generat-

ing an open structure if the closing bond resulting from the acceptance rule breaks. Finally,

the simulation advances one step in time and repeats the process.

As the example shows, different perspectives of the same problem highlighting

some key features and ignoring others are achieved by alternative modelling approaches

although none of them can completely capture the complete system being modelled. Since

the purpose of this dissertation is to embark into the automated design of self-organising

and self-assembly systems by means of artificial evolution, a model capable of representing

the elements of interest of these systems, states and interactions is needed. Given that

the primary goal of any representation is to capture the essence of the underlying phenom-

ena without loss of generalization, this research considers that local interactions, statistical

exploration of configurations among entities, and emergent global order are some of the

important features that a model for self-organisation and self-assembly should be able to

capture. For this reason, an executable deterministic model like cellular automata and a

multi-agent system like Wang tiles are chosen as experimental target models of complex

phenomena for self-organisation and self-assembly systems respectively. One of the advan-
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tages of agent-based models is that they are applicable in cases where a small number of

entities govern the structure formation, an aspect which differential equations are not suf-

ficient to describe [38]. Multi-agent models also provide a flexible versatile tool to describe

self-assembly in complex systems reflecting the origin of new qualities and the unfolding of

complexity [39]. In the following two sections, each of these models is introduced.

2.2.1 Cellular Automata

A Cellular Automaton (CA) is a massively parallel, homogeneous computational device

that operates based on local interactions. By choosing the proper local rules, lattice and

neighbourhood, CAs have been employed as models in many applications such as address-

ing pattern formation of multicellular spheroids [40], screening of cultures of fibroblasts

[41] [42], protein folding prediction problem [43], emergent pattern interpretation in forest

ecosystem dynamics [44], the study of pattern formation in reaction-diffusion systems [45],

behaviour analysis in hydrodynamical systems in the field of discrete fluids [46], the quan-

tification of spatial and temporal correlations occurring in biological processes of plants [47],

land use change modelling [48] or traffic phenomena such as jams in [49], to name but a

few. Nevertheless, self-organisation has also been studied by means of CAs [50] [51] from

where the emergent structures are widely applied to different branches of science such as

the simulation of processes taking place in physics, biology, social sciences or chemistry.

Conversely, many CA patterns can be observed in natural systems but the under-

lying CA rule is unknown. The understanding of how self-organisation works is the key

problem the observer faces which, translated in CA terms, stands for identifying the sys-
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tem and its rules capable of predicting the observed output. Essentially, this is an inverse

problem where the observer knows the effects but ignores the causes. The purpose of this

research is to study CAs as models of self-organisation in order to extract the parameter

values and rules from captured spatio-temporal behaviour. This retrospective search is very

difficult to deal with since the solving methodologies tend to be introspective [52], they are

meant to divide the problem [53] [54] or they are automatic only for particular cases [55] [56].

A CA is defined as an infinite, regular grid of cells, each of which can be in one of

a finite number of states. At a given time step ti, the state of a cell is updated in agreement

with a transition function that applies a CA rule to the cell in question. In general, a

CA rule is defined in terms of the states of a cell’s neighbourhood at ti−1. According to

the type of neighbourhood, CAs are classified into one-dimensional CA, two-dimensional

CA or three-dimensional CA. In the first case, the neighbourhood comprises the adjacent

cells, i.e. the ones located at the left and right hand side of the cell of interest. The

simplest CA is a binary, nearest-neighbour, one-dimensional automaton. Such automata

are called “elementary cellular automata” by S. Wolfram, who has extensively studied

their various properties [57]. There exists 256 such automata, each indexed by a unique

binary number whose decimal representation is known as the “elementary rule” for the

particular automaton. Each rule is encoded with a binary array of length 8 where each part

is associated with a possible configuration given by the state of the cell containing the rule

and the state of its two immediate surrounding cells. During runtime, the state of the first

row of cells is randomly initialized with either 0 or 1. After that, at every time step ti, a cell
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ci executes its rule considering its internal state plus the state of its two adjacent cells ci−1

and ci+1. This determines the state of ci at time step ti+1 according to the related value

to that configuration. An illustrative example considering a one-dimensional automaton

associated to the elementary rule 121 is shown in the following figure where the rule is

defined in Figure 2.8 (a). Its application to a single line of cells at time step ti is depicted

in Figure 2.8 (b) that gives as a result the emergent spatio-temporal pattern like the one

captured in Figure 2.8 (c) after the the iterative applications of the rule across the time.

(a)

(b)

(c)

Figure 2.8: Encoding of the elementary rule 121 (a). A CA executing the rule 121 where each

possible neighbourhood configuration is associated with an output state used as the new state for the

next time step (b). An emergent spatio-temporal pattern (c).
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(a) (b) (c)

Figure 2.9: Illustrations of Moore vicinity defining its eight neighbouring cells (a), von Newman

neighbourhood with the corresponding north, south, east and west cells (b), and Margolus neighbour-

hood dividing the grid in neighbourhoods (Ni) of four cells (c).

In case of two-dimensional CA, the neighbourhood of a cell is defined in terms of

the surrounding cells. For instance, the Moore neighbourhood depicted in Figure 2.9 (a)

uses the eight surrounding cells of the cell in question for the update process, i.e. using these

eight states as input to the update function. Similarly, the von Neumann neighbourhood

shown in Figure 2.9 (b) only uses the four cells – defined as north, south, east and west

– that are strictly adjacent to the central cell. In contrast, the Margolus neighbourhood

from Figure 2.9 (c) divides the grid into groups of four cells, to which the update function

is locally applied (i.e. using only the information in this group of four cells). To allow

propagation through the grid, the grouping of the cells changes on each update. There

are also some extended models such as the Extended Moore where the distance of the

neighbourhood is bigger than a radius of one.

From the self-organisation point of view, pattern formation is observed in the

widely known Sierpinski Triangle. This fractal has been named after the mathematician
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Waclaw Sierpinski who described it in [58]. Based on a recursive process of replication,

shrinking and relocation of an equilateral triangle, a close approximation of this gasket

can be implemented by a one-dimensional CA using the elementary rule 90 defined in [57]

and shown in Figure 2.10 (a). After several iterations, the emergent pattern resembles a

collection of recurrent triangles organised one on the top of the other as depicted in Figure

2.10 (c). The Sierpinski Triangle emerges in nature as in the pigmentation of the Lioconcha

castrensis previously shown in Figure 2.2 (b). Multiple engineering applications using this

gasket in order to achieve multi-band frequency operation are found in [59], [60] and [61].

(a)

(b)

(c)

Figure 2.10: Encoding of the elementary rule 90 (a). A CA executing the rule 90 where each

possible configuration of three cells is associated with an output state used as the new state for the

next time step (b). The Sierpinski Triangle in a lattice of 300× 300 cells (c).
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2.2.2 Wang Tiles

Considered as a set of equal-sized components, square in shape and coloured at their edges,

Hao Wang defined in [62] a formal system called Wang tiles. Having an infinite amount of

tile copies arranged one by one from left to right and from top to bottom with matching

colours at their touching edges, it has been shown in [63][64] that there is no algorithm

for determining whether a set of tiles can tile a plane periodically or aperiodically, fact

that corresponds to the halting problem and establishes Wang tiles as Turing Universal [65]

[66]. The idea of matching colours between tile edges was captured as binding rules [67],

extending Wang’s system with an effective mechanism to embody self-assembly components.

As a result, the building blocks of universal computation in self-assembly were set up and an

enriched model of Wang tiles with striking theoretical properties and applications emerged.

One of the most prominent examples underlying the idea of self-assembly Wang

tiles is the DNA tiles model [67]. Based on the physiochemical properties that allow DNA

strands to assemble, tiles are manufactured using four strings of DNA with “sticky ends”

at both the right and left edges that associate according to Watson-Crick complementarity.

A bulk of tiles is left in solution undergoing self-assembly subject to the control of binding

forces and thermal energy. This bottom-up wet lab experiment ends up in the formation of

two-dimensional crystalline self-assembled nano structures proving that the engineering of

local interactions are particularly amenable to the design and synthesis of complex objects.

This abstract DNA assembly framework made of structured particles, environment, cohesive

forces and driving forces sets up the basis for DNA cubes [68], DNA bar codes [69], DNA-

based nanoarrays [70], and DNA origami [71].
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Inspired by the physical process of crystallization, a self-assembly model using

Wang tiles is defined in [12] [72]. This model is called Tile Assembly Model. It comprises

a set of square tiles with labelled edges associated to strength values. Formally speaking,

a tile system is defined as a quadruple (T , ts, g, τ) where T is a finite set of non-empty

tile types, ts is a seed tile belonging to T , g is a strength function and τ is a threshold

parameter. Elements of T are tile types t defined as a 4-tuple (σN , σE , σS , σW ) indicating

the associated labels at the north, east, south and west edges of the tile, which are assumed

to be square. This definition works together with a lattice of unit square locations, similar

to CAs, where the functions N,E,W,S are directions used to indicate relative positions in

the grid. Thus, tiles are defined as (t, pos) where t is a tile type and pos is its position (i, j)

in the lattice. Considering an unlimited supply of tiles, aggregates are formed by placing

one tile next to another whenever they have matching labels at their touching edges and

the summed strength given by g is greater than τ .

Figure 2.11: An example set of the Tile Assembly Model where the bold line, the half full circle,

the half empty circle and the double line define four types of edge labels associated to strengths 0, 1,

1, and 2 respectively. Extracted from [12].

In order to illustrate how this model works, consider the seven tiles depicted in

Figure 2.11. In this picture, the bold line, the half full circle, the half empty circle and

the double line define four types of edge labels whereas the strength associated to pairs

of matching labels is given by 0, 1, 1, and 2. Considering ts as the tile with strength-2

edges and the threshold parameter τ set to 2, there is a unique possibility of assembly that
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satisfies both matching labels at their touching edges and summed strengths greater than

τ . A step by step example process of six tiles self-assembling is shown in Figure 2.12 (a-

e). The continuation of this self-assembly strategy, reveals the Sierpinski Triangle pattern

embedded in the aggregate after several steps (see Figure 2.13).

(a) (b) (c) (d) (e)

Figure 2.12: Step-by-step self-assembly process of six tiles. Two tiles self-assemble at the left and

right hand sides of the seed tile (a - b). In a similar way, another tile self-assembles to the left side

of the aggregation (c). By matching dark semi-circles, a strength-1 edges tile self-assembles to the

middle of the aggregate (d). Following this process, another tile self-assembles at the right hand side

of the aggregate (e)

Figure 2.13: The tiles self-assembling strategy reveals the Sierpinski Triangle pattern embedded in

the aggregate as several computational steps take place under τ = 2. Extracted from [12].

In contrast to the dynamics defined above, the defined self-assembly Wang tiles

model allows tiles to perform a random walk across the lattice. In this case, if two tiles
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collide, they either self-assemble, i.e. they link, or they remain separated. In addition, the

decision of whether they assemble or not depends only on whether the glue types at their

colliding edges are compatible or not. This compatibility is computed by an interaction

function which evaluates the strength between the two labels or glue types of the colliding

edges against the specific kinetic energy associated to the tile set. A formal definition of a

tile system Tsys is given in Equation 2.1 where T is a finite set of non-empty Wang tiles, Σ

is a set of symbols, g is called the glue function, L is a lattice and τ is a threshold.

Tsys = (T ,Σ, g,L, τ)

T = {t|t = (c0, c1, c2, c3)} where c0, c1, c2, c3 ∈ Σ

g :: Σ2 → Z+ ∪ {0}

τ ∈ Z
+ ∪ {0} (2.1)

The elements defined by Σ are glue types labelling the edges associated to a tile.

This set also includes the special symbol λ representing an edge with no glue type. The

glue function g computes the strength associated to a pair of glue types at the colliding

edges of two adjacent tiles ti and tj located in L. Note that g is a symmetric and surjective

function, that is ∀ (ci, cj) ∈ Σ2, g(ci, cj) = g(cj , ci) and ∀ (ci, cj) ∈ Σ2 there is at least

one z ∈ Z+ ∪ {0} such that g(ci, cj) = z respectively. In the particular case where ci = λ

or cj = λ then g(ci, cj) = 0. The lattice L is a two-dimensional surface with size W × H

composed by a finite set of interconnected unit squared cells where tiles belonging to T are

located. Each cell can be occupied by one tile at any time. Each cell defines a position into
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the lattice with an associated coordinate value (x, y) ∈ N × N where x ≤ W and y ≤ H.

The threshold τ models the temperature associated to the tile system and it takes positive

values. The role of this parameter is to define the kinetic energy of the system. That is, the

higher τ is, the more likely a tile will bounce off other tiles due to the energy associated with

its motion. In order to show how this model operates, consider the set of three tiles depicted

in Figure 2.14 (a) where the colours at their edges represent different glue types and the

strength among them is encoded by the matrix of Figure 2.14 (b). Thus, the interaction

function is computed in terms of the cell value associated to a given pair of colours and the

specific kinetic energy τ .

(a) (b)

Figure 2.14: A set of three self-assembly Wang tiles where the colours at their edges represent

different glue types (a). An arbitrary matrix encoding the glue interactions (b).

Assuming the existence of an infinite amount of tiles randomly distributed across

the lattice and τ = 3, Figure 2.15 shows a section of the lattice where a step-by-step

tiles self-assembling takes place. At the beginning, two tiles self-assemble into a two-tiles

aggregate since the glue strength between white and orange is greater than τ (Figure 2.15

(a)). After that, another tile moves downwards whilst approaching the aggregation – in

this case no collision takes place (Figure 2.15 (b)). In the following time step, a third tile

moves upwards self-assembling to the existing aggregate since the glue strength between
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blue labelled edges is greater than τ (Figure 2.15 (c)). During the next two time steps,

another random walk without collision and an extra tile self-assembly take place (Figures

2.15 (d)-(e)). Finally, the last tile performs a random movement locating itself adjacent

to the aggregate (Figures 2.15 (f)). However, since the compatibility between orange and

green is smaller than τ , the tile randomly moves to the left where it self-assembles to the

rest of the aggregation (Figures 2.15 (g)).

(a) (b) (c) (d)

(d) (e) (f) (g)

Figure 2.15: A step-by-step self-assembly of five tiles randomly distributed across the lattice (a to

g).
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2.2.3 Wang Tiles Complexity

The study of the complexity of solving a problem provides the means for quantifying the up-

per and lower bounds required to find the solution of a given problem. Standard complexity

measures in computer science are calculated in terms of space and time. For example, one

may seek to determine the complexity for a certain word (sequence of symbols). Thus, the

space complexity is given as the length in part of the minimal instruction which generates

the wanted sequence, whereas the time complexity is defined as the processing time required

to generate the word out of the minimal instruction.

There are different ways of studying the efficiency in which a given collection of

tiles self-assemble in a particular geometric shape. The computational complexity of such

system has been analysed in terms of both program size and time with the aim of answering

the following two questions:

Which is the minimum amount of tile types needed to create an arbitrary shape by means

of self-assembly ?

Given the minimum amount of tiles, what is the minimum expected time required to create

that given shape ?

The most representative cases study the computational complexity of self-assembly

focus in the construction of rectangular shapes. In particular, the minimisation of the pro-

gram size complexity for assembling a solid square of N × N tiles is given in terms of a
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Tile Assembly Model with infinite supply of a finite number of tile types labelled with 0

or 1 [73]. The authors propose to construct a square employing binary counters which are

basically rows of binary numbers (rows of tiles) “written” from bottom to top and from

right to left. The approach claims an upper bound of O(log N) tile types.

Another mechanism for self-assembling a square of N ×N tiles is given in [74]. In

this case, the proposed method exploits the inherent parallelism of assembly achieving time

Θ(N). The work also contributes a set of tiles using optimal program size Θ( log N
log log N ) to

self-assemble the square. This result is achieved due to the combination of a base conversion

phase with the binary counters idea presented in [73]. That is, in the first step numbers

are represented in base Θ( log N
log log N ) employing only Θ( log N

log log N ) digits. After that, a par-

allel self-assembly process that simulates base conversion to binary is employed, hence still

achieving optimum time complexity.

Adleman et al. [75] define “Minimum Tile Set Problem (MTSP)” and “Tile Con-

centrations Problem (TCP)” as the optimum program size and optimum running time for

the self-assembly of generalized shapes. In particular, the authors focus their research in

the self-assembly of trees and squares of N ×N tiles. For the first definition, it is demon-

strated that the problem is both NP and NP-hard by giving a polynomial time algorithm

of verification and reducing 3-CNF SAT to MTSP respectively. For the TCP, a O(Log N)-

approximation deterministic algorithm that works for a large class of tile systems is pre-

sented.
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In [76], a connection between self-assembly and computation is given by consider-

ing a shape as the output of the “program” executed by a set of tiles which self-assemble

in the shape. Thus, the minimal number of tile types needed to self-assemble an arbitrary

shape is bounded both above and below by the Kolmogorov complexity of the shape. In this

case, the Kolmogorov complexity of a shape is defined as the smallest self-assembly program

outputting a shape in terms of a list of locations, i.e. K(S) = min{ |s| s.t. U(s) =< S >}

where K(S) is the Kolmogorov complexity of the shape S, U(s) is a universal Turing ma-

chine executing a string s and < S > is a binary encoding of the shape S. Although the

analysis concerns a scaled up version of the shape, it is shown that the scale must not be a

factor but that smaller versions of the same shape might require larger number of tile types.

Four generalized models of the original Tile Assembly Model, namely the flexible

glues model, the multiple-temperature model, the multiple-tile model and the unique shape

model are introduced and examined in [77]. For all them, an analysis of the program size

complexity for the self-assembly of thin and thick rectangular shapes of k×N with k ≤ N is

performed. A rectangular shape k ×N is considered thin when k < logN
log log N − log log log N

and thick otherwise. The contributions regarding upper and lower bounds are summarised

in Table 2.2.

An extra variety of the Tile Assembly Model is given in [78]. The purpose of this

extended model is to simulate catalysis and self-replication in terms of a time-dependent

glue strength approach. In other words, the glue strength between two juxtaposed tiles is
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considered as dependent on the time for which they have been in neighbouring positions.

Under these circumstances, the authors claim that the program size complexity of self-

assembling k ×N rectangular shape with K ≥ 2 is O( log N
log log N ).

Thin Rectangles Thick Rectangles

Original Ω(N
1

k

k ) O(N
1

k ) O( log N
log log N )

Flexible Glue Ω(N
1

k

k ) O(N
1

k ) O(
√

log N)

Multi-Temperature O( log N
log log N ) O( log N

log log N )

Multi-Tile Ω( log N
log log N ) O(N

1

k ) O( log N
log log N )

Unique Shape Ω(N
1

k

k ) O(N
1

k ) O( log N
log log N )

Table 2.2: Results regarding the lower bounds (Ω) and upper (O) bounds on program size complexity

under five models for the self-assembly of thin and thick rectangular shapes.

As well as the results on computational complexity presented above, researchers

have found it feasible to extend these results in order to solve NP-complete problems in terms

of tiles self-assembly for which there are unknown polynomial-time algorithms. A procedure

for solving SubsetSum [79] [80] and a system that solves k-SAT non-deterministically in [81]

are among the most familiar examples found in literature. Since this topic lies outside the

scope of this dissertation, any further description about the details of implementation is

omitted.
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Chapter 3

Evolutionary Design

The purpose of this dissertation is to investigate automated design of self-organised and

self-assembly systems by means of artificial evolution. For this reason, this chapter aims

to survey the application of evolutionary algorithms as strategies for evolutionary design.

The beginning intends to introduce a general view of evolutionary algorithms as method-

ologies applied to solve design problems. In particular, a variety of evolutionary design

approaches among illustrative examples found in the literature are mentioned outlining the

representation of the individuals, the initialization stage, the evaluation mechanisms and

the expected goals. The second part of the chapter continues by focusing on how evo-

lutionary algorithms have been successfully employed in evolutionary design optimisation

of self-organising and self-assembly systems. In this part, a collection of works related to

the research topic addressed in this dissertation highlighting motivation, subjacent models,

main technical features and findings are showcased.
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3.1 Aspects of Evolutionary Design

Evolutionary Algorithms (EAs) [82][83][84] are powerful stochastic search methods [85] [86]

loosely inspired by Darwinian evolutionary processes [87]. An EA maintains a population

of genotypes, each of which represents the solution to an optimisation (e.g. [88]), planning

(e.g. [89, 90]) or control problem (e.g. [91]). This population of solutions goes through a

series of evaluation, recombination and mutation phases defining what is called a generation.

In the evaluation, the assessment of each genotype takes place, this being a fitness value

that must be optimised. After that, the best solutions reproduce giving birth to similar

offspring. The schema depicted in Figure 3.1 represents the flowchart for a generic EA.

Figure 3.1: An EA flowchart comprising the minimal set of features to be an evolutionary system

which performs very well on problems where non-linear, stochastic or chaotic components are present.

The idea to use this biologically-inspired method in order to solve different types of problems

has been studied long before computers were used extensively as recorded in the collection
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of “fossilized” readings available in [92]. Based on natural selection, reproduction, mutation

and the survival of the fittest, evolutionary algorithms such as Genetic Algorithms (GAs)

[93] [94] [95] [96], Genetic Programming (GP) [97], Evolutionary Programming (EP) [98],

Evolution Strategy (ES) [99] [100] and Classifier System (CS) [101] [102] [103] have been

broadly developed across both theory and applications during the last decades. Parameter

optimisation [104] [105], heuristics design [106] [107] as well as many real-world problems

such as DNA sequence alignment [108], cancer chemotherapy scheduling [109], stock market

[110] [111], image processing [112] [113] and many multi-objective optimization problems

[114] [115], to name but a few, form the most important application areas of EAs. In addi-

tion, constraint handling, machine learning, evolutionary art and design form an emerging

field of applications of Darwinian ideas. Also, EAs have been applied to many design prob-

lems [116] giving birth to a branch of evolutionary computation called evolutionary design.

A wide range of examples are showcased in [117] where four major types of evolutionary

design have been identified according to the applicability and complexity of the algorithms

and the type of the genotype representations: evolutionary design optimisation, creative

evolutionary design, evolutionary art and evolutionary artificial life forms.

In evolutionary design optimisation the features of an established design are im-

proved by means of artificial evolution. Usually, genotypes are specific to the type of prob-

lem and the relation genotype-phenotype is approaching one-to-one as there is almost no

need for a mechanism to reconstruct the encoded representation. For instance, the design

optimization of crushers in comminution circuits has been treated with an ES in [13].
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(a) (b)

Figure 3.2: A comminution circuit: particles of material enter the crusher from the top, the

material is broken into small pieces by physical pressure at the closed-side of the conical head from

where those pieces smaller than a certain size take part of the final product whilst the bigger ones

recirculate (a). A detailed diagram of a cone crusher spinning at a certain rmp with an eccentric

angle where the distance between the mantle and the the bowl liner determines the closed-side setting

(b). Extracted from [13].

The term “comminution” refers to the collection of physical processes like crush-

ing, gridding and screening applied to a stream of material in order to change the size of its

particles in the stream. For instance, a mill performs a comminution process over corn in

order to obtain flour. One of the crucial components of this working circuit is the crusher

(Figure 3.2 (b)) which has a conical shape and is composed of an inner crushing surface

called a mantle, a conical crushing head that spins around the axis of the machine and

an outer part called a bowl. Into this device, located at the closest point, there is a gap

between the bowl and the crushing head defined as closed-side. During the comminution

process (Figure 3.2 (a)), the particles of material enter the crusher from the top and whilst
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the conical head spins, the material is broken into small pieces by the physical pressure at

the closed-side. Thus, those pieces smaller than a certain size constitute part of the final

product whilst the bigger ones recirculate. In this work, the capacity of the circuit, i.e. the

capacity and power requirements of the crusher together with the size of the product are

optimized. For this purpose, real numbers represent the closed-side setting, the rotational

speed and the eccentric angle of the crushing head, whilst an array of coordinates map the

geometrical representation of the shapes of the two liners. The initial population is set up

with the real values of these pieces and a multi-objective optimisation takes place with a

mutation operator. Although the design of these features are subject to physical and mod-

elling constraints, the implemented strategy gives acceptable results, removing the need of

arbitrary weightings made by engineers.

Creative evolutionary design, on the other hand, aims at generating novel and

original forms from scratch. This class of evolutionary design is further divided in two:

conceptual evolutionary design and generative evolutionary design. In the former, the

embryologies mapping genotype to phenotype are rudimentary due to the simple encoding

of the individuals. Conversely, complex and more general genotypes, advanced embryologies

and more sophisticated GAs capable of evolving variable length representations are often

part of the generative evolutionary design. Many approaches tackling designability problems

of objects are available in the literature. For instance, a basic canonical genetic algorithm

for the creation of three dimensional tables is employed in [14] [118]. A decomposition of

the solid into a collection of adjoining not intersecting cuboids with variable width, height,
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depth and position in space has been implemented in this approach. Thus, the genotype

encodes primitives like the size, location, mass, stability, flat surface and supportiveness of a

table. Starting with size and location, different experiments incorporating these primitives

were gradually performed. As evolution progresses, individuals are evaluated by a fitness

function mainly implemented with a table builder that reconstructs the phenotype from the

genotype in order to assess its functionality. The GA employed in this case has produced

some remarkably fit designs with the right size, nearly perfect flat surfaces and almost right

mass like the tables shown in Figure 3.3.

Figure 3.3: Evolved table designs with nearly perfect flat top surfaces, great stability and almost

right mass. These tables are composed by adjoining not intersecting cuboids with variable width,

height, depth and position in space. Extracted from [14].

In evolutionary art, shapes and images are evolved from scratch. In contrast to

creative evolutionary design, the evaluation of individuals is subject to a human evaluator

normally based on aesthetic appeal. In most of the cases, population sizes are small since a

quick judgement is needed in every generation. Moreover, representations range from equa-

tions to grammar rules and unsophisticated GAs are employed in most of the cases where



3. evolutionary design 44

there is no crossover operator. For instance, the evolution of prescriptive representations

for automated design and assembly of a physical object is presented in [119]. Descriptive

representations differ from prescriptive representations in the sense that the former is based

on what to build whilst the latter is focused on how to build. The approach proposes the

evolution of assembly sequences to build a goal structure by means of situated development

which is a kind of artificial ontogeny where a developmental process to obtain the phenotype

from its indirect representation encoded in the genotype is subject to physics. In this case,

each genotype encodes an assembly plan represented by a sequential set of parametrized

instructions such as move, rotate, put brick and take brick in order to construct the target

object. Two types of goals have been used as a target structure: an explicit goal and an

implicit goal. For the former, the target structure is represented with a bitmap and the

genotypes are evaluated in terms of length, mass, number of missing and number of wrong

located bricks. In the case of an implicit goal, the obtained structures encoded in the geno-

types are evaluated in terms of length, mass and a shaded area [120] that measures the total

amount of open volume beneath a structure.

A more general approach to evolutionary art is interactive evolutionary compu-

tation [121]. In this method, the optimisation is based on human subjective evaluation.

According to the application domain, a human not only plays the role of the fitness func-

tion of a conventional EA, but also reduces the search space by intervening in the selection of

the elite or modifying individuals of the population [122]. Contrary to the traditional EAs,

the problems tackled with interactive evolutionary computation are modeled using small

population size and few generations in order to avoid the human fatigue problem. Some of
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these evolutionary design approaches are based on GAs like in CA parameters design [123],

signal processing [124], ergonomic chair design [125] and biomorphs design [126].

The main goals in evolutionary artificial life forms are to have a deeper under-

standing of those mechanisms employed across natural evolution in order to find explana-

tions related to forms and facts observed in nature. In this type of evolutionary design,

populations are initialized mostly with random individuals although some approaches also

consider the fittest individuals coming as outputs from previous experiments. In general,

many representations are inspired in the genome structure of natural organisms requiring

the implementation of complex genetic operators. These representations are occasionally

flexible, variable in length and complex embryologies mapping genotypes to phenotypes are

needed. For example, virtual creatures composed of hundreds of parts are designed by evo-

lution in [15]. The main process for producing these living animates consists of a GA, an

encoding method based in L-systems and a fabrication method for constructing creatures

from the encoding. The population of the GA consists of a set of L-systems production

rules randomly initialised, each of which encodes a creature. Thus, in each generation, an

assembly method takes each individual, constructs the corresponding creature and returns

its fitness value calculated according to the distance covered by the creature’s centre of

mass. As a result, the most common evolved forms were rolling creatures, serpents like the

one in Figure 3.4 (a), inch-worms like in Figure 3.4 (b) and four legged walking creatures,

among others.
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(a) (b)

Figure 3.4: A serpent (a) and an inch-worm (b) are some of the most common creatures resulting

from evolving L-systems production rules with a GA where the fitness value is calculated according

to the distance covered by the creature’s centre of mass. Extracted from [15].

3.2 EAs in Design Optimisation of Self-Organisation and Self-Assembly

Studies concerning nano scale systems like the sub-cellular world as well as those exploring

macro interactive objects like galaxies, have featured the concepts of self-organisation and

self-assembly as crucial mechanisms for understanding emergent systems’ behaviour. As a

result of these observations, many self-assembly and self-organisation computational models

have been developed [127] [65] [128] opening the path to an extended variety of problems

where EAs could be used since evolutionary techniques promise acceptable solutions when

applied to problems that must accommodate and adapt to changes in the environment. In

what follows, a collection of works on self-organisation and self-assembly design optimisa-

tion are surveyed showcasing their purpose, subjacent models and technical details of the

employed evolutionary mechanisms.
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The automated design of self-assembling smart blocks which are capable of building

target structures is tackled with a GA-based approach in [17]. Each smart block is defined as

a two-dimensional object comprised of four edges and an internal state machine. Each edge

is associated with either a positive, negative or neutral polarity whereas the state machine

contains a set of rules which are capable of changing the polarity of the edges whenever

a sticking or unsticking event is captured. The edge state of a smart block is specified in

terms of a vector Q = (a1, a2, a3, a4) where ai ∈ {−1,+1, 0}, e.g. the edge state of the

smart block in Figure 3.5 is Q = (+1, 0, 0,−1). The smart blocks live in a 2-dimensional

multi-agent environment which attempts to simulate a simplified physical reality. When

two blocks become adjacent and their colliding faces turn out to have opposite polarities,

they attach to one another triggering a sticking event to be captured by their internal state

machines.

Figure 3.5: Structure of a smart block where a single thin line stands for positive (+1), double

lines for negative (-1) and a single thick line for neutral (0). The internal state machine can change

the polarity of each edge after sensing sticking or unsticking events. Extracted from [16].

If the colliding faces have equal polarity, the smart blocks repel. Otherwise, if a neutral

polarized face becomes adjacent to any other nothing takes place, i.e. the smart blocks

neither stick nor repel. After the event in the state machine is triggered, a change in the edge
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polarities of the smart block takes place, i.e. a rule is executed. Rules are encoded as Table

3.1 shows where each line represents a sticking edge (Si) initial edge state (a1i, a2i, a3i, a4i)

and final edge state (b1i, b2i, b3i, b4i).

Sticking Edge Initial Edge States Final Edge States

S1 a11 a21 a31 a41 b11 b21 b31 b41

S2 a12 a22 a32 a42 b12 b22 b32 b42

...
...

...

Sn a1n a2n a3n a4n b1n b2n b3n b4n

Table 3.1: Results regarding the upper and lower bounds on program size complexity under five

models for the self-assembly of thin and thick rectangular shapes.

Based on these interaction mechanisms, the self-assembly process begins placing a

smart block in the environment. All smart blocks are initialised with the same edge state,

i.e. the same polarity. For each of the subsequent blocks, all the sticking possibilities are

checked with the current built structure and a location is finally chosen at random. The

whole process stops once the structure either can no longer grow or contains 100 blocks.

Thus, in order to proceed with the automatic design of smart blocks, a GA evolving a colony

of rule sets encoded in a string is employed. After the simulation, parent rules are chosen

using a roulette wheel selection and according to the values returned by the fitness function.

In particular, two different types of evaluation methods were used: shape matching and

stable structure. The first fitness function measures how close the final aggregate matches
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the desired one by counting the number of smart blocks located in and out of the target

structure. On the other hand, in the second evaluation method the goal is to generate

stable structures, i.e. aggregates that stop growing after reaching a certain polarization at

its borders for which further sticking events cannot occur. Three classes of experiments

were performed addressing how the initial edge states affect the final structure, what kind

of internal states help get a stable structure and what is the effect of imposing symmetry

on the agents. Some of the achieved structures are depicted in Figure 3.6.

Figure 3.6: Three different assembled structures generated from varied initial block states. Ex-

tracted from [17].

Extending the previous approach, a model for the automated design of artificial

enzymes was introduced in [16]. Enzymes are biopolymers that mediate a variety of bio-

processes such as fermentation, animal’s digestion, sugar conversion in plants, etc.. On

this occasion, the agents are classified in sea blocks and enzyme blocks both sharing a

two-dimensional multi-agent environment and performing the same type of block-to-block

interactions as described above. An enzyme is defined as a stable assembled structure com-

posed of enzyme blocks each of which has an internal state machine initially set up with the
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same set of rules. Enzymes are assumed static, i.e. with fixed number of enzyme blocks,

shape and surrounding polarities, and capable of producing sea blocks assemblages. A sea

block moves with Brownian-like motion and when it becomes adjacent to an enzyme block,

they stick to one another triggering a simulated catalyst reaction where a transition in their

internal states and change in their edge polarities take place. As the simulation runs, a

finite sequence of reactions induce the creation of a structure by means of self-assembly.

Once a certain number of sea blocks is assembled into the structure, another sequence of

reactions separates the formed aggregation from the enzyme, i.e. they split. Hence, in order

to perform the automated design of artificial enzymes, a GA with individuals encoding the

enzyme size, its shape and its edge states together with the internal rule set of sea blocks

is defined. In each generation, an individual is evaluated according to whether the number

of blocks, the shape and the polarities of the self-assembled conformations are the same as

the original enzyme ranking high those individuals capable of generating enzymes. Three

experiments were carried out: one-block enzyme design, three-block enzyme design and

four-block enzyme design. For each generation, every member of the population defines a

potential enzyme which is allowed to grow in the environment until it splits into two or

more objects: the enzyme itself and aggregations. Thus, in the first experiment, one-block

enzymes produced aggregations with a maximum size of six blocks from where some of

them were self-replications, i.e. sea blocks with the same polarities of an enzyme. On the

other hand, using four-block enzymes has speeded up the process achieving larger and more

regular aggregations than with one-block enzymes like the one shown in Figure 3.7. All in

all, the experimental results show that the cooperation taking place among enzymes and
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agents can make the generation of self-assembled structures more flexible and general than

the approach followed in [17]. Following the idea of this model, an approach for designing

self-assembly DNA-based structures is presented in [129].

Figure 3.7: A four-block enzyme (circled) and other self-assembled independent structures in the

same figure where some of them are larger than the enzyme itself. Extracted from [16].

Another relevant example of an EA applied to the design of self-assembly exper-

imental settings is given in [130]. In this approach, a population of amphiphiles living

in a real chemical system exhibiting complex varieties of self-assembled molecular aggre-

gations like micelles, oil droplets and vesicles is optimised according to its turbidity level.

This functionality is a straightforward optical property of a system where high-throughput

assays can be easily achieved with a spectrophotometer. In this study, the genotype rep-

resents a receipt of 16 amphiphiles g = (g1, g2, ..., g16) where gi represents the number of

volume units per amphiphile type. At the initialization stage, the GA was set up with 30

randomly initialized recipes each of which is produced and tested in the laboratory using

multiwell plates hosting a single recipe at a time and which is capable of containing up to
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three replicates of each recipe. The turbidity readings at each generation are employed to

generate the recipes for the subsequent. Thus, a recipe’s fitness is calculated as the mean

turbidity minus its standard deviation and the next generations of recipes are computed

according to a specific procedure based on the probability value assigned to each individ-

ual. The findings demonstrate that the turbidity of vesicle populations mainly composed by

unilamellar, multilamellar and oil droplets was optimised as their sizes correlated with the

turbidity level. It is thought that variances of this approach can be applied to optimize an

array of other kinds of chemical properties even though the bottleneck in the methodology

is caused by the time required for laboratory procedures.

In relation to the previous work, a different evolutionary algorithm for designing

micelles formations is presented in [18] where a GA is linked to a model of chemical reaction

systems based on a dynamic-bounding dissipative particle dynamics (dbDPD) framework.

In this case, the GA has been employed in order to optimize the parameters of a dbDPD

model using a set of vectors of chemical system variables g = (g1, ..., gN ) as individuals

of the population. In contrast to the standard GA, parents are selected from the entire

population of genomes tested in previous generations, i.e. not just those tested in the

immediately preceding generation. Therefore, every parent produces one child genome gc

by mutation with the constraint that gc does not duplicate a previous individual tested by

the EA. With this scheme, one of the experiments is focused on amphiphile aggregations in

water where the EA tunes dbDPD parameters for 500 particles of water and 500 particles of

tail-head dimers. As micelles spontaneously self-assemble and their size is maximised, the

fitness function is based in a micelles-detecting algorithm that locates all the amphiphiles
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structures made up of a core of tails surrounded by heads. For this experiment, the results

show that the EA had no difficulty in creating large micelles although good solutions were

found at early generations and sometimes in a more gradual way. In the same work, this

evolutionary approach is also applied for the design of ligation of uniform oligomers and

non-uniform trimmers. Two comparative states of the evolutionary design of micelles is

shown in Figure 3.8.

(a) (b)

Figure 3.8: Before (a) and after (b) the evolutionary design of dbDPD parameters for the micelles

design. Extracted from [18].

An approach for evolving swarms capable of building 3D structures is presented in

[19]. In this case, a set of similar rule-based swarms living in a continuous world seeded with

cubic construction objects is designed by artificial evolution in order to produce interesting

3D target structures. A swarm consists of a number of equally acting agents each of which

decides on a specific action whenever a collision takes place with a cubic construction

element. Thus, the available set of actions allows a swarm agent to create or destroy a local

construction element, to destroy a remote collision object, to declare itself or another agent

as the swarm centre or to recant the swarm centre. As an agent moves during the simulation
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period, its velocity is updated with an acceleration vector calculated according to the value

of six weighted steering urges defined as centre, separation, alignment, cohesion, ground and

random. In the GA, an agent is represented by a set of five consecutive vectors representing

each of the six weighted steering urges, a maximum value for acceleration, a maximum

value for velocity and a set of rules which determine its constructional abilities. Each rule

is defined as a set of preconditions and an consequential action to take place whenever an

construction element is found. The recombination among individuals takes place using a

two point crossover assigning the smallest set of rules to the resultant offspring. The fitness

function is defined as the constructional difference between the reached structure and the

desired 3D one measuring the covering obtained volume, non covering obtained volume and

the desired volume. The findings of this approach result are very promising as interesting

structures have been found for seven different tested targets. Figure 3.9 depicts one of the

targets and the achieved results.

Figure 3.9: Two parallel planes (in yellow) given as target structures and evolved swarms generating

two-level flats (in blue). Extracted from [19].
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Chapter 4

Proposed Methodology

As it was seen in Chapter 3, employing evolutionary algorithms for design optimization

of self-organised and self-assembly systems has been taking place at all scales in many

fields of science. Following this line and in connection to the computational models of self-

organisation and self-assembly proposed in Chapter 2, this chapter enlarges on a GA-based

approach for the design optimisation of CAs parameter values and self-assembly Wang

tiles. In the following sections, an introduction and characterization of the problems to

be addressed and the reason for which they are the topic of investigation in this thesis.

The characterisation is done in terms of the relationship genotype-phenotype-fitness as well

as the domain of the problems to be treated. After that, overall descriptions of both the

architecture and the operational aspects of the EA to be employed are given. Finally,

an information-based metric and a morphological image analysis method are presented

as the two fitness functions that embody the evaluation stage of the proposed strategies.

Notice that neither of these two are part of development, although they are key elements

contributing to this investigation.



4. proposed methodology 56

4.1 Characterization of the Problems

This dissertation focuses on evolutionary design optimisation of self-organised and self-

assembly systems. In particular, the interest lies in self-organised and self-assembly prob-

lems where the mapping from genotype to phenotype and then from phenotype to fitness

is a highly complex, non-linear and in some cases stochastic relationship. It is non-linear

because different genotypes could lead to the same phenotype and, on the other hand,

different phenotypes might encode the same genotype due to stochasticity. This intricate

relationship makes the assessment of the genotype very difficult since the same (different)

fitness value could be assigned to different (the same) genotypes. The intricate mapping is

sketched in Figure 4.1.

Figure 4.1: The highly complex, non-linear and stochastic relationship taking place across the

mapping from genotype to phenotype and then from phenotype to fitness.
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On the one hand, the interest in combining CAs with EAs lies in the use of a

method for the automated manufacture of spatio-temporal behaviour resulting from the

correct combination of input parameter values and rules. This goal is related to a more

general question:

Is it possible to make an evolutionary-driven specification of the laws governing an observed

CAs dynamics?

Two types of CAs evolutionary design optimisation problems are presented: continuous

optimisation with fixed length individuals and discrete optimisation with fixed length indi-

viduals. In the first case, it is a continuous optimisation problem because the EA will evolve

CA input parameter values of real numbers domain. In the second case it is discrete because

the EA will evolve the CA rules where their encoding corresponds to integer domain. In

both cases, it is fixed length because the structure of the individuals is defined in terms of

either the amount of input parameters to tune or the number of rules to design.

On the other hand, the interest in combining self-assembly Wang tiles with EAs

has its grounds on the use of a method for the automated construction of supra-structures

that emerge as a result of tiles interaction. In this case, the research goal is to answer the

question:

Is it possible to make an evolutionary design of the glue types associated to the tile edges in

order to obtain a particular supra-structure by means of self-assembly?



4. proposed methodology 58

In particular, the employed agent-based system represents a discrete optimisation problem

with variable length individuals. It is discrete because the domain of the parameters to

evolve is given by a finite number of enumerable glue types and variable length size be-

cause the supra-structure to construct is independent of the diversity of tiles. Thus, both

discrete/continuous and fixed/variable problems are covered.

4.2 Cellular Automata Parameters Design

In order to undertake the evolutionary design optimisation of CA parameters, a GA will be

employed with the aim to fine tune the parametric quantities – in what follows the term

parameters will be used in a general way when referring to either numerical values or CA

rules unless it is specified. When a collection of parameters (GA chromosomes) is set up

to the CA model, the iterative application of CA rules gives results in a spatio-temporal

behaviour to be captured in a two-dimensional pattern which is compared in terms of

similarity against a user defined (target) pattern. This process, together with replication

and mutation operators, is repeated for a certain number of generations.

The proposed GA is shown in Figure 4.2. Each Pi represents a fixed length individ-

ual mapping CA parameters. After random initialisation, in the evaluation stage, each Pi is

set up in the CA generating a candidate pattern (phenotype) which is compared against a

target pattern for similarity using an information distance-based metric described in more

details in the following section. This metric returns a numerical representation of similarity

that is considered as the fitness of each individual. Henceforth, those individuals generating

similar patterns to the target are better ranked and become most likely to survive.
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Figure 4.2: Evolutionary approach for the evolutionary design optimisation of CA parameters.

A population of parameter sets (genotype) is randomly initialised. After that, each individual is

set up as input of the CA generating a candidate pattern (phenotype) to be compared to a target

for similarity. This returns the fitness value of a genotype. Later on, the application of genetic

operators follows where the best ranked individuals are likely to pass throughout selection, crossover

and mutation stages.

4.3 Self-assembly Wang Tiles design

The proposed approach for the automatic design of self-assembly Wang tiles follows a similar

methodology to the one previously described. In this case, the main goal of the GA is to

evolve a population of self-assembly Wang tile families. Broadly speaking, a self-assembly

Wang tile family is a template representing a class of tile and with the capability to be

instantiated with several identical copies. This descriptor comprises a set of glue types each

of which associated to the four sides of a self-assembly Wang tile as defined in Chapter 2.
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Figure 4.3: Evolutionary approach for the evolutionary design optimisation of self-assembly Wang

tiles. A population of self-assembling Wang tiles family (genotype) is randomly initialised. After that,

each individual is set up into a tiles simulator from where the emerging self-assembled aggregations

(phenotypes) are compared against a target structure for similarity. This comparison returns in the

fitness of the individual. Later on, the application of genetic operators follows where the best ranked

individuals are likely to pass throughout selection, crossover and mutation stages.

Thus, each tile family provides a number of tiles which are randomly located into

a simulation environment where they perform a random walk and interact with others for a

fixed amount of time self-assembling in aggregates. Once the simulation finishes, aggregates

are compared for similarity to a user defined (target) structure. This process, together with

replication and mutation operators, is applied to the population and repeated for a certain

number of generations. The proposed GA is depicted in Figure 4.3. In the beginning,

variable length individuals of the population (T1, T2, . . . , Tn) are created as sets of self-

assembly Wang tile families each of which are generated with four random glue types. At
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evaluation stage, a number of instances from each of the families of an individual (Ti) is

located into a tile simulator comprised of a lattice surface, an interaction function and a

temperature threshold. The lattice surface is a finite two dimensional structure made of

square sites where tiles are located and can move under Brownian motion. Whenever two

tiles become adjacent they either self-assemble into supra structures or bounce off according

to whether the glue types at their colliding edges are compatible or not. This compatibility

is computed by the interaction function which evaluates the strength between the two

glue types against the temperature of the system. After a finite number of simulation

steps the assembly assessment takes place comparing the emergent aggregates to the user

defined structure for shape similarity. This metric returns a numerical representation that is

considered as the fitness (Fitnessi) of each individual. Thus, individuals capable of creating

aggregates similar to the specified target are better ranked and become the most likely to

survive across generations.

4.4 Fitness Functions

The following sections present a domain independent metric to compute similarity and a

method to characterise morphology of structures. These two are key external contribu-

tions to this research and embody the fitness functions employed in the two evolutionary

approaches described in Section 4.3 and Section 4.2.

4.4.1 Universal Similarity Metric

Mathematically speaking, the term similarity refers to the degree of symmetry in both

analogy and resemblance between two or more objects in respect to one or multiple common
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features. The assessment of similarity can be described as a feature-matching process that

contrasts common and distinctive characteristics of entities under comparison [131]. This

concept is employed in a large number of research fields summarized in [132].

There are many approaches to measure the similarity [133]. One of them is called

Representational Distortion (RD) where the similarity between two entities is given in terms

of the “complexity” required to “distort” or “transform” the representation of one object

into the representation of another object [132]. In other words, the simpler the transfor-

mation distorting one representation to the other, the more similar the analysed objects

are assumed to be. This underlying idea led to a new class of appropriate metrics for

measuring effective similarities between objects represented as finite binary strings. This

class is built upon the Kolgomorov complexity [134] [135] which measures the amount of

information needed to specify an observed object. In this way, the Normalised Information

Distance (NID) [136] is defined as an information metric, proved to be universal among a

wide class of computable normalized information measures. Thus, given the observed data

x and y, their similarity in terms of information distance is established as:

NID(x, y) =

Max

{

K(x|y∗),K(y|x∗)

}

Max

{

K(x),K(y)

}

where

K(x) is the Kolmogorov complexity of x

K(x|y∗) is the Kolmogorov complexity of x given y∗ (4.1)
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In the formula shown above, x∗ is the shortest Turing machine program capable

of computing x and K(x) is the length of x∗. The subjacent idea is that those represen-

tations generated by a short program are considered simpler or less complex than those

generated by a long program. For example, a program that writes a string of 1′s is sim-

pler than a program for the creation of a random string. Likewise, K(x|y∗) is the length

of a shortest program to produce x from the input y∗. For example, given the sequences

x1 = 12345678 and y2 = 23456789 the values of K(y2|x∗
1) and K(x1|y∗2) are considered small

because the simple instructions add 1 to each digit as x1 and subtract 1 from each digit as y2

suffice to transform one into the other. In the same way, the sequences x3 = 12345678 and

y4 = 246810121416 related by the instruction multiply each digit by 2 and divide each digit

by 2 are presumed to have similar information distance. On the other hand, considering the

sequences x5 = 12345678 and y6 = 357911131517 they are viewed as less similar in terms

of information distance than the previous examples because two operations multiply each

digit by 2 and add 1 are required to transform one into the other.

Since the Kolmogorov complexity is not computable, an approximation of NID

can be developed in terms of a standard compressor C. The result of this approach is called

Normalised Compressed Distance (NCD) which after applied to the observed data results

in a non-negative number r such that 0 < r < 1 + ǫ. Thus, small (large) values of r denote

a big (small) similarity and ǫ represents an upper bond constant due to imperfections found

in the implementation of C. The definition of NCD is given in Formula 4.2 and in [137] its

(quasi-) universality as a metric is proven.
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NCD(x, y) =

C(xy)−Min

{

C(x), C(y)

}

Max

{

C(x), C(y)

}

where

C(xy) is the compressed size of x and y concatenated

C(x) is compressed size of x (4.2)

Broadly speaking, this compression-based similarity distance, commonly known as

the Universal Similarity Metric (USM), determines the similarity in terms of information

distance between pairs of objects according to the most dominant common feature. USM

concerns to the classification of genomes [138], classification of music pieces [139], plagiarism

of computer programs [140], image registration, letters phylogeny [141], protein structure

comparison [142] [143], genotyping [144] [145], tumor subclassification [146] and many oth-

ers.

In order to choose the most accurate compressor C, a set of experiments with

compressors Jzip, JBzip2, Jgzip, Zlib, JazzGzip, Jbar and PPMPZ were conducted. For

this purpose, six images (Figure 4.4) were created. Among them, img0 depicts an arbitrary

square whilst among the other five, imgi 1 ≤ i ≤ 5, one replicates the square four times and

the others show randomly introduced modifications. Thus, img0 with itself and with each

imgi taken in turns were set as parameters to USM values of which are shown in Table 4.1.
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img0 img1 img2

img3 img4 img5

Figure 4.4: An arbitrary square captured in a black and white image (img0) and four randomly

introduced modifications (img1, img2, img3, img4 and img5).

Jzip JBzip2 Jgzip Zlib JazzGzip Jbar PPMPZ

USM(img0, img0) 0.897 0.503 0.105 0.963 0.684 0.997 0.858

USM(img0, img1) 0.996 0.771 1.358 1.047 1.011 0.998 0.984

USM(img0, img2) 0.990 0.801 1.254 1.056 1.046 0.998 0.932

USM(img0, img3) 1.128 0.868 1.233 1.185 1.019 0.997 0.992

USM(img0, img4) 1.111 0.873 0.931 1.168 1.040 0.995 0.993

USM(img0, img5) 1.216 0.955 1.390 1.266 1.076 0.996 1.019

Table 4.1: Results for USM(img0, img0) and USM(img0, imgi) implemented with Jzip, JBzip2,

Jgzip, Zlib, JazzGzip, Jbar and PPMPZ. Blue colour indicates the best compression performance.
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Since in this case the purpose of the USM is to assess how similar two given

images are – approaching to 0 when identical and to 1 when there is a small amount of

information in common – and since compression technologies tend to look for regularities

in the data they are compressing – they reduce storage space by saying “just repeat that

block of common information with this symbol” instead of detailing the whole thing – the

idea of the experiments lies in that the compression ratio of two images with information

in common should be smaller than the compression ratio of two images with dissimilar

content. In other words, USM(img0, img0) is expected to achieve the smallest value since

the black square is repeated twice and the compressor would use one symbol for encoding

the replicated information. With a similar argument, USM(img0, img1) is expected to rank

in second place since the black square is repeated four times and the compressor would use

four symbols for encoding the replicated information. However, when USM(img0, img2) is

evaluated, the common information could be seen limited to a section of the black square.

This reduced similarity plus the fact that img2 contains short, scattered, black stripes, which

have nothing in common with img0, should make the resultant USM value to rank in third

place. A similar reasoning applied to the rest of the parameters tells that USM(img0, img3)

is expected to rank fourth, USM(img0, img4) to rank fifth and USM(img0, img5) to be the

closest to 1 since the similarity tends to be null as the randomly introduced modifications

generate a bigger number of scattered tiny squares.

From the conducted experiments, it turns out that JBzip2 is the most appropriate

compression algorithm since its associated trend is monotonic increasing (see Figure 4.5),

i.e. matching with the performed analysis.
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Figure 4.5: Assessment trends of five compression algorithms implementing the similarity metric

for comparing img0 towards itself and img0 towards each of the imgi 1 ≤ i ≤ 5.

The plots support a visual comparison given that the similarity in terms of infor-

mation between img0 and img1 ranks first, between img0 and img2 ranks second, between

img0 and img3 ranks third, between img0 and img4 ranks fourth and between img0 and

img5 ranks last. The trends for compressors Jzip and PPMPZ show that these two algo-

rithms might perform well as approximations. However, Jzip assigns to USM(img0, img4)

an inaccurate value since img3 is more similar to img0 than img4 is, and similarly PPMPZ

assigns to USM(img0, img2) an unexpected value since img1 is visually more similar to

img0 than img2 is. It is also interesting to note that, with the exception of JBzip2, the

minimum value for similarity is always bigger than 1. One of the reasons for this happening

might be related to extra information needed for storing the encoded compression which

translated to JBzip2 means the best storing performance.
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4.4.2 Additive Shape Descriptors – Minkowski Functionals

Different approaches to describe and characterize complex structures are, for instance,

Fourier transformations [147] [148] [149] [150] and wavelet transforms [151] [152] [153] [154].

Although for regular patterns Fourier transformations are able to provide both length scales

and orientation order, they fail when trying to distinguish irregular structures of different

topology [155] in terms of content and shape. Similarly, wavelet analysis is based on the ex-

traction of local amplitudes and phases but it becomes a non-trivial, numerically inefficient

method in most of the cases [156].

In contrast, the Morphological Image Analysis method (MIA) characterises the

morphology of a structure in terms of geometrical (i.e. configuration) and topological (i.e.

connectivity) descriptors [157] [158] that uniquely identify any object. Broadly speaking,

morphology refers to the study of the internal composition of a structure, that is the ar-

rangement of composites and how they aggregate to form a whole. With origins in the

calculation of the so-called Minkowski functionals [159], MIA involves the computation of

the area (A), the boundary length or perimeter (U), and the connectivity or Euler-Poincaré

characteristic (χ) that describes the connectivity of a given structure.

As an example, if one considers the 2-dimensional black pixelated drawings of

Figure 4.6, then the area (A) is the number of black pixels that make up the pattern, the

perimeter (U) is the number of lines making up both internal and external borders, and the

Euler (χ) is given by the connectivity of the pattern, i.e. the number of connected black

pixels regions minus the number of completely enclosed white pixelated regions in the image.
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(a) (b)

(c)

Figure 4.6: Minkowski functionals for three pixelated patterns where in (a) A = 13, U = 24 and

χ = 0, (b) A = 17, U = 30 and χ = 1 and (c) A = 12, U = 22 and χ = 1.

Since rotated occurrences of a given structure have the same morphological val-

ues, the radius of gyration (Rg) of the area about the x-axis is additionally calculated. The

radius of gyration describes the way in which the mass of a structure is distributed around

its centroidal axis in terms of its moment of inertia and its area.

Research works belonging to the field of statistical physics [160], cosmology [161]

[162], biology [163], seismology [164] and polymer sciences [165] [166] have demonstrated

that MIA is a robust approach to typify both 2-dimensional and 3-dimensional structures.

For instance, the geometrical and topological characterization of irregular spatial-temporal
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pattern structures emerging in a chemical reaction-diffusion system is performed in [156].

The structures to be characterized are digitized images of 512× 480 square lattice of pixels

with 256 grey levels depicting hexagonal, lamellar and turbulence structures resulting from

gradual variation of temperature and reagent concentrations in the system. Since these

variations unfold in different structural patterns, the goal is to capture their morphology

using Minkowski functionals in order to develop an analytical transition model. Thus, a de-

tailed characterization of the spatial structure is performed quantifying the area, boundary

line and connectivity considering different level contours. These give, as a result, the input

to a set of formulae embodied in functional equations to be approximated with polynomials

of very low degree. This resulting polynomial model makes up a mathematical approach

which is capable of capturing the transitions from hexagonal point and stripe patterns to

turbulent structures. Comparing experimental data, the authors conclude that this analyt-

ical model quantitatively describes irregular spatial patterns and their transition similar to

thermodynamic phase transitions.

4.5 Conclusions

This chapter has defined the type of problems to be addressed in the rest of this disserta-

tion. In particular, the interest lies in the evolutionary design optimisation of self-organised

and self-assembly systems, both problems characterised by presenting a highly complex,

non-linear genotype-phenotype-fitness relationship. In addition, the problems have been

featured as continuous optimisation with fixed length individuals, discrete optimisation

with fixed length individuals and discrete optimisation with variable length individuals.
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The foundations of two evolutionary design optimisation approaches have also

been presented. The first one is intended for the automated design optimisation of CA

parameters. Its interest lies not only in producing spatio-temporal patterns that emerge

from the application of CA rules, but also in answering whether it is possible to make

an evolutionary-driven specification of the laws governing a given system’s dynamics. In

a similar way, the second approach is intended for the automated design optimisation of

self-assembly Wang tiles. In this case, the proposed methodology is intended to contribute

to an evolutionary mechanism for the computer-assisted specification of tiles capable of

self-assembling into a user-defined structure.

This chapter has also presented a general overview of the GA topology to be em-

ployed in the rest of the dissertation. In addition, an information-based metric (USM)

and a Morphological Image Analysis method (Minkowski functionals) were introduced as

the mechanisms in charge to assess the performance of the individuals of the population.

On the one hand, the USM is a domain independent metric that determines the similarity

among two given objects in terms to the most dominant common features. In addition to

this, experiments and analyses to determine the best data compressors for the USM imple-

mentation were also given. On the other hand, the Minkowski funtionals were presented

as a mechanism to characterize complex structures in terms of geometrical and topological

descriptors such as area, perimeter and Euler characteristic.

In what follows, an experimental implementation for each of the systems to design

will be fully described. Details about the population, genetic representation, initialisation

phase, evaluation process, selection scheme and genetic operators will be provided.
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Chapter 5

An Evolutionary Approach to Cellular Automata

Parameter Design

The purpose of this chapter is to report on an EA based approach for the continuous design

optimisation of CAs input parameter values by means of artificial evolution. This methodol-

ogy contributes a strategy for the identification of CAs for which spatio-temporal snapshots

are available. The idea is to consider the CA as a black box device where the performance of

its input parameter values is measured in terms of information distance between the associ-

ated emergent behaviour and a sample snapshot. Essentially, the interest lies in answering

the following: having a CA together with a captured spatio-temporal behaviour, what are

the causes underlying the given effect ? To begin with, the architectural characteristics of

the methodology are introduced. Next, the conducted experiments along with the technical

details of the utilised models and the experimental data sets are presented. Finally, the

analysed results and conclusions complete this experimental part of the dissertation. The

research to be reported in this chapter has been published in “7th International Conference

of Adaptive Computing in Design and Manufacture” [167].



5. an evolutionary approach to cellular automata parameter design 73

5.1 Architecture

The following approach employs a GA whose goal is to tune up a collection of CA input

parameters in the following way. When a CA receives a specific set of input parameter

values, the iterative application of rules across time results in an associated spatio-temporal

behaviour which is captured in a two-dimensional pattern. This pattern, interpreted as a

visual image, is then compared in terms of similarity to a user defined target. Similarity is

then given by a numerical score or value that specifies how (dis)similar the evolved pattern

is with the target one. Repeating this two-step process, i.e. generation and comparison,

over different input parameter values results in a collection of captured patterns where those

better resembling the target are considered more fit. Hence, the better ranked a pattern

is, the closer the collection of parameter values are to those that gave rise to the original

(target) pattern.

Figure 5.1: Turbulence CA with input parameters INITIAL-TURBULENCE, COUPLE-

STRENGTH and ROUGHNESS. By fixing INITIAL-TURBULENCE = 75 and COUPLE-

STRENGTH = 0.345, the snapshots P1, P2 and P3 are obtained when ROUGHNESS is set up

to 0.0050, 0.0100 and 0.0150 respectively.
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In order to illustrate this approach with an example, consider the Turbulence CA (to be

defined in Subsection 5.1.1) with input parameters INITIAL-TURBULENCE, COUPLE-

STRENGTH and ROUGHNESS where the first two are fixed to 75 and 0.345 respectively

and the last one is left variable. So, if ROUGHNESS takes values 0.0050, 0.0100 and 0.0150

in turns, then the associated patterns P1, P2 and P3 will be created (see Figure 5.1).

(a) (b)

Figure 5.2: Process of comparison by similarity. A target snapshot Pt is compared to each of the

three generated patterns P1, P2 and P3 (a). The comparison by similarity produces a ranking where

those patterns better resembling the target snapshot are better positioned in similarity scale (b).

Following the example, consider the pattern Pt, depicted in Figure 5.2 (a), as the

target pattern. Then, the proposed approach is that P1, P2 and P3 will be compared in terms

of similarity to Pt where those better resembling the target will be highly ranked. In this

case, since P2 is more similar to Pt than P3 is to Pt, plus the fact that P1 is even less similar,

it emerges that the obtained ranking of similarity results in P2, P3 and P1, as Figure 5.2 (b)

shows. Thus, pattern creation and pattern comparison together with recombination and
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mutation operators will be repeated for a certain number of generations over a population

of individuals which represent sets of CA input parameter values. Figure 5.3 depicts a

chartflow of the extended GA where initialisation corresponds to the individuals’ generation;

evaluation is the stage involving pattern creation and pattern comparison; and crossover

and mutation are the moment when recombination and mutation operators are applied

upon the entire population.

Figure 5.3: Flowchart of the extended GA for evolving cellular automata.

5.1.1 Problem Description

Informally introduced before, the Turbulence CA, a NetLogo [168] implementation, is the

chosen model for this evolutionary design optimisation. Taking roots in StarLisp and Logo,

NetLogo is a multi-agent programming language, modelling tool and authoring environment

for simulating complex phenomena. The chosen CA is deterministic and it has been selected

as particularly well-suited to evolutionary design since the combination of different values

assigned to its input parameters are very well reflected in the resultant snapshots.
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Turbulence CA is based on a couple map lattice (CML) which is an abstract

representation introduced in 1983 by Kunuhuko Kaneko as a model to characterize spatio-

temporal chaos and pattern formation. Viewed as a dynamical system, CML has been ap-

plied for modelling biological problems such as heart rhythm, electrical activities in neural

tissues, fluid dynamics, population dynamics and neural dynamics to name but a few [169].

In particular, Turbulence CA helps in understanding the relationship between the turbu-

lence, laminarity and viscosity of a fluid flowing through a pipe showing how the roughness of

its surface can affect the fluid’s behaviour. Thus, a cell in the lattice represents either a lam-

inar or a turbulent behaviour subject to the value of its surrounding cells. This model con-

sists of three continuous variables: INITIAL-TURBULENCE, COUPLING-STRENGTH

(determining the extent to which cells influence their neighbours) and ROUGHNESS (con-

trolling the friction upon the modelled fluid). Four snapshots are supplied in Figure 5.4.

Figure 5.4: Sample snapshots of spatio-temporal patterns from Turbulence CA library.

The following table summarises the key concepts underlying the problem to be addressed.

Problem name gives a general self-explanatory outline of the problem; Instance char-

acterises the particular problem to address; i.e. the CA description emphasising the input

parameters to design; Solution details the expected type of answers for solving the problem;

and Measure indicates the mechanism by which the solution’s performance is scored.
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Problem name Turbulence CA parameter values design

Instance a CA simulating a fluid flowing through a pipe for understanding
the relationship between turbulence, viscosity and roughness

Solution three real numbers associated to turbulence, viscosity and roughness
working as input of a CA which outputs a spatio-temporal pattern
captured in a bitmap image

Measure comparison of the captured CA output against a user defined (tar-
get) pattern in terms of similarity by means of USM

Table 5.1: Problem name, instance, solution and measure for the automated design optimisation

of Turbulence CA input parameter values.

5.1.2 Population, Genetic Representation and Initialisation

The representation of the individuals is given by a collection of real-coded genotypes. That

is, each individual’s chromosome represents a set of input parameter values in terms of real

numbers. This is not only a more intuitive representation in this context, but research

[170] suggests that real-coded GAs may be more efficient than their binary counterparts.

Hence, an individual of the population is defined as a collection of three real numbers i,

c and r representing INITIAL-TURBULENCE, COUPLING-STRENGTH and ROUGH-

NESS respectively. Formally speaking, the population and its individuals are defined as:

Pop = {Ind1, Ind2, . . . , Indn}

Indj = {ij , cj , rj} (5.1)
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The three genes of each individual are randomly initialised with real values belonging to

the ranges shown in Inequality 5.2 and to an accuracy of five decimals precision.

0.0 ≤ ij ≤ 100.0

0.0 ≤ cj ≤ 1.0

0.0000 ≤ rj ≤ 0.0250 (5.2)

To sum up, evaluation, recombination and mutation operators are applied and repeated for

a certain number of generations over this population in which those individuals capable of

generating patterns similar to the user defined pattern will survive and is likely to guide

the evolutionary process across generations.

5.1.3 Selection Scheme and Genetic Operators

During the evolutionary process, offspring are obtained using uniform crossover [171] where,

for each gene, the algorithm determines randomly from which parent to draw an allele as

exemplified in Table 5.2. Mutation is implemented using the Breeder Genetic Algorithm

operator [172] which selects a value from a constant-size distribution either side of the

initial value. Individuals are selected to be parents using roulette wheel selection [173]

which essentially assigns to each individual a “slice” of the roulette wheel whose size is

proportional to the individual’s fitness. Thus, fitter parents have a greater probability of

being selected when the virtual wheel is spun, but all individuals in the population have

some chance of selection. The (µ+λ) replacement strategy is employed, where the children

and parents are considered together and the best (fittest) µ individuals are chosen to form
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the next generation’s population. The GA is run over 100 generations with a population

size of 20, i.e. µ = 20. At each generation, 10 offspring are created, i.e. λ = 10. Crossover

between parents occurs with 0.7 probability (XProb) and mutation with 0.3 probability

(MProb) per individual.

Individuals XProb = 0.7 Offspring

Indi = (ai
1, a

i
2, a

i
3, a

i
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Table 5.2: Uniform crossover with probability 0.7 applied to individuals Indi and Indj giving birth

to offspring Indo
i and Indo

j with the second, third, and sixth alleles interchanged.

5.1.4 Evaluation Procedure

The evaluation phase consists of two stages: pattern creation and pattern comparison.

Pattern Creation

As previously stated, an individual Indj is initialised with three real numbers representing

the input parameters: INITIAL-TURBULENCE, COUPLING-STRENGTH and ROUGH-

NESS. At this stage, three parameter values are set up as input to the CA where iterative

applications of the CA rules give rise to an associated spatio-temporal behaviour pattern

(Pj) to be captured in an image. To illustrate, instances of images capturing the spatio-

temporal behavioural patterns resulting from three individuals that encode the minimum,

median and maximum values for each of the input parameters are shown in Figure 5.5.
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(a) (b) (c)

Figure 5.5: Turbulence CA spatio-temporal behaviour patterns generated after applying the rules

capped at 200 iterations with random initialisation upon individuals: (a) {i = 50.5, c = 0.0, r =

0.0000}; (b) {i = 50.5, c = 0.50, r = 0.0125}; (c) {i = 100.0, c = 1.0, r = 0.0250}.

Pattern Comparison

Once the image capturing the spatio-temporal behaviour pattern is generated, its compar-

ison against a target pattern (T ) takes place. In order to perform this task, two arbitrary

groups of target patterns comprising five instances each were specified. For their creation,

the initial state of the cells were randomly initialised and the CA rules were executed

capped at 200 iterations. For the first group, the parameters were set up as INITIAL-

TURBULENCE = 50.5, COUPLING = 0.5 and ROUGHNESS = 0.0010 whilst for the

second group INITIAL-TURBULENCE = 50.5, COUPLING = 0.6 and ROUGHNESS

= 0.0010 (all shown in Figure 5.6). Each of these snapshots is used a as target pattern in

separate GA experiments. Thus, during the evaluation stage of an experiment, the fitness

function compares each Pj to the current T for similarity using the USM introduced in

Chapter 4. This metric returns a numerical representation that is considered as the fitness

of each individual, i.e. the value to minimise by the GA. Hence, those individuals generating

patterns that are similar to the target pattern are better ranked and become more likely to

survive throughout generations.
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T 1
1 T 1

2 T 1
3 T 1

4 T 1
5

T 2
1 T 2

2 T 2
3 T 2

4 T 2
5

Figure 5.6: Two arbitrary groups of target snapshots for Turbulence CA created with random

initialisation, rules execution capped at 200 iterations with INITIAL-TURBULENCE = 50.5, COU-

PLING = 0.5, ROUGHNESS = 0.0010 (T 1

1
- T 1

5
) and INITIAL-TURBULENCE = 50.5, COU-

PLING = 0.6, ROUGHNESS= 0.0010 (T 2
1 - T 2

5 ).

Given that for all the generated spatio-temporal behaviour the first row of cells

is randomly initialised, the captured patterns might differ for each initialisation. This

influences the comparison for similarity which would certainly give different results for the

same individual. For this reason, a reliable estimation of the true fitness is needed and

individuals must be evaluated several times. Consequently, each individual is evaluated five

times and its fitness is calculated as the average.

5.2 Results

This section aims to present the results of the GA experiments using the parameters sum-

marised in Table 5.3 for each run. For all the experiments the population size, the amount

of generations, the number of times an individual is evaluated, the crossover probability

and the mutation probability were fixed. The length of the individuals is also fixed and is
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given by the amount of CA input parameters, i.e. length 3 in case of Turbulence CA.

Population Size Generations Evaluations XProb MProb

20 100 5 0.7 0.3

Table 5.3: GA parameters for Turbulence CA evolutionary design optimisation.

A visual inspection of a representative result exposes visual features that can be

picked out for both groups of target patterns. For instance, an inspection of Figure 5.7

reveals that the evolved pattern (P 1
5 ) and the target snapshot (T 1

5 ) share the density of

light pixels, with a number of dark triangles dispersed throughout the image. Moreover,

the larger triangles at the top of T 1
5 have also been successfully represented in P 1

5 .

T 1
5 P 1

5 T 2
3 P 2

3

Figure 5.7: Representative target patterns (T 1

5
and T 2

3
) and designoids (P 1

5
and P 2

3
) resulting from

the first and second data set of Turbulence CA. The annotations show successfully achieved and

well-produced features at the top of P 1

5
.

Table 5.4 list the best individuals found in the experiments using the ten target

patterns presented in Section 5.1.4. The evolved patterns, called designoids [174], are

labelled under P followed by three columns ip, cp and rp containing the genes of the

fittest individuals. The target patterns and their creational values appear in column T and
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iT , cT , rT respectively. In the last column, USM(P, T) lists the fitness values of the

evolved individuals resulting from the similarity measure against the target.

P iP cP rP T iT cT rT USM(P, T)

P 1
1 62.90586 0.5235 0.00074 T 1

1 50.5 0.5 0.001 0.95657

P 1
2 69.47874 0.48819 0.00094 T 1

2 50.5 0.5 0.001 0.95738

P 1
3 51.97374 0.51587 0.0113 T 1

3 50.5 0.5 0.001 0.95725

P 1
4 71.83373 0.46997 0.0008 T 1

4 50.5 0.5 0.001 0.95817

P 1
5 43.03929 0.51941 0.00838 T 1

5 50.5 0.5 0.001 0.95653

P 2
1 55.92625 0.56941 0.00791 T 2

1 50.5 0.6 0.001 0.95785

P 2
2 65.98295 0.58869 0.01377 T 2

2 50.5 0.6 0.001 0.95657

P 2
3 68.37877 0.60256 0.0114 T 2

3 50.5 0.6 0.001 0.95608

P 2
4 53.86632 0.60256 0.00673 T 2

4 50.5 0.6 0.001 0.95915

P 2
5 48.21686 0.60334 0.00549 T 2

5 50.5 0.6 0.001 0.95781

Table 5.4: Results for the first and second data set of Turbulence CA snapshots. Best designoids

(P) with evolved individuals (iP , cP , rP ), targets (T) with their corresponding creational values (iT ,

cT , rT ), and fitness (USM(P, T)).

Certainly, the quality of the results is difficult to discern when inspecting the

snapshots in Figure 5.7. However, if a more heterogeneous target pattern is employed, the

distinction could be much clearer. For this reason, a new target, T 3, is defined with a low

value for i and giving more influence to r (see Figure 5.8). The results for this experiment are

listed in Table 5.5 and visually available in P 3 of Figure 5.8. These findings are noticeably

better since it has a USM value of 0.91980 which is substantially lower than the USM values

obtained in the previous experiments. Moreover, the evolved pattern is very similar to the
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target since it achieves half image with zero turbulence area followed by the inverted, pink

triangular structures and the turbulent region at the bottom.

T 3 P 3

Figure 5.8: Target pattern (T 3) and designoid (P 3) from the extra experiment of Turbulence CA

parameter values design problem. The annotations show particularly well-produced features since

the pink triangular structures, the upper plain area and the lower rough one have been successfully

achieved.

P iP cP rP T iT cT rT USM(P, T)

P 3 8.85724 0.54241 0.00356 T 3 6.98285 0.83854 0.00377 0.9198

Table 5.5: Result for the extra experiment. Best designoid (P) with evolved individual (iP , cP ,

rP ), target (T) with its creational values (iT , cT , rT ) and fitness (USM(P, T)).

In order to do an analytical evaluation of the results shown in Table 5.4 and Table

5.5, consider the error of the genes e(g) and the average error E(P ) of an individual defined

as follows. Let IndP = {iP , cP , rP } be one of the fittest individuals of the Turbulence CA

parameter values design problem associated with a spatio-temporal behaviour pattern P

and the target snapshot T obtained from the target values iT , cT and rT . Then, e(g) is
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defined as in Equation 5.3 and E(P ) as in Equation 5.4.

e(g) =
| gT − gP |

gT
(5.3)

E(P ) =
e(iP ) + e(cP ) + e(rP )

3
(5.4)

Thus, computing e(g) and E(P ) for the individuals of Table 5.4 and Table 5.5 an

errors list depicted in Table 5.6 is obtained. Looking at this last table, it is evident that

the GA has mixed success in approximating the actual target parameters.

P e(i) e(c) e(r) E(P)

P 1
1 0.24566 0.04699 0.25948 0.18405

P 1
2 0.37582 0.02361 0.06288 0.1541

P 1
3 0.02918 0.03173 10.29811 3.45301

P 1
4 0.42245 0.06005 0.19738 0.22663

P 1
5 0.14774 0.03883 7.3825 2.52302

P 2
1 0.10745 0.05098 6.91322 2.35722

P 2
2 0.30659 0.01885 12.7747 4.36672

P 2
3 0.35404 0.00426 10.40107 3.58646

P 2
4 0.06666 0.00426 5.73318 1.9347

P 2
5 0.04521 0.00556 4.48623 1.51234

P 3 0.26843 0.35314 0.05552 0.22569

Table 5.6: Designoids (P), errors of the genes (e(g)) and average errors (E(P)) calculated for each

of the best individuals obtained in the three experiments.
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On the one hand, for the first target snapshots, the error margins range from a most

satisfactory 4.3% (e(c) on P 2
3 ) to a widely inaccurate 1277% (e(r) on P 2

2 ). It is interesting

to note that the worst errors are all for parameter r (ROUGHNESS). This suggests that it

may be the case that r is the least influential in the generation of the images, and indeed

a brief experimentation with the Turbulence program reveals that this is the case, at least

when combined with these values of i = 50.5 and c = 0.50. It appears that when i, the

initial turbulence, is high, as in this case, a change in r makes little difference, but when i is

low, r is far more influential. This agrees with the physical dynamics of fluid flow which the

system is modelling – if the fluid is initially perturbed, one can intuitively surmise that the

roughness of the pipe will have a lesser effect than when the fluid is initially undisturbed.

These observations show that, although interesting, exact approximation of the parameters

is not necessarily a good indication as to the similarity (or lack thereof) of two spatio-

temporal behaviours. On the other hand, when analysing P 3 case, the parameters have

all been approximated to within about 35% of the target with a combined error value

E = 0.22569, and interestingly, r is now the most accurate approximation (e(r) = 0.05552).

Overall, these visual inspections together with the analytical analyses are just a

further confirmation of the highly complex, non-linear and stochastic nature of the genotype-

phenotype mapping for this inverse problem and why it is difficult to solve.

5.3 Conclusions

Finding the appropriate input values for a CA system which is capable of reconstructing

the operational mode of the cells in order to achieve a specific snapshot of automaton
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behaviour is a challenging open problem. This chapter contributed a GA based approach

for the continuous design optimisation of CAs input parameter values. The strategy of the

methodology is the search for a solution in a particular parametric space such that when

assigned as input of a CA, the captured spatio-temporal behaviour maximizes the measure

of similarity when compared with a specific target.

One of the most remarkable features of the presented approach is its abstract

operation, since it is clearly independent of the type of neighbourhood, dimension of the

subjacent lattice and the way interactions take place across the CA. In contrast to other

approaches, this proposal does not consider any type of introspective analysis since the CA

is taken as a black box device and emphasis for solving this inverse problem is given to the

quality of the output – which is analysed in terms of information distance (USM) – rather

than on its modus operandi. From the algorithmic point of view, this design optimisation

of input parameter values by means of artificial evolution contributes to a high abstraction

level strategy since it addresses the problem as a whole instead of tackling it with a sequence

of strategies corresponding to problem subdivisions.

The experiments have been conducted for Turbulence CA where the search has

been performed over a parametric space comprising three different input variables, each of

which takes values over a continuous range. The achieved results reveal that a significantly

different genotype can, in fact, result in a similar phenotype – yet another illustration of

the complex, non-linear nature of the genotype-phenotype-fitness mapping in these systems.

All this correlates in fact with what is established as ill possessed characterisation: different

inputs could be the causes of a given effect.
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Chapter 6

An Evolutionary Approach to Cellular Automata

Rule Design

Having presented an evolutionary approach to CA input parameter design, this chapter

aims to extend the methodology for the automated design optimisation of CAs input rules.

In order to perform this task, an invention called Meta-automata CA is introduced. With

this cellular machine at hand, the idea behind is to consider the CA as a black box device

where the performance of its rules is assessed in terms of information distance between the

associated emergent behaviour and a given sample snapshot. In this way, the main concern

lays in answering the following: having a CA together with captured spatio-temporal be-

haviour, what are the set of rules underlying the given effect? The architectural features of

the methodology are introduced in the first place. After that, the technical details of the

innovative model are presented followed by the experimental data sets and the conducted

experiments. The chapter finishes with analyses of the experimental results and conclusions

of the applied methodology. The research to be reported in this chapter has resulted in a

journal paper published in “Journal of Cellular Automata” [175].
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6.1 Architecture

The methodology proposed here employs a GA whose goal is to design the input rules of

the Meta-automaton CA. This cellular machine is an innovation that allows partitions over

the system’s spatial and temporal dynamics. The approach for the automated design of

the rules takes place in the following way. The CA is associated with specific input rules

and the values of the cells are randomly initialised. The rules are iteratively applied across

time resulting in an associated spatio-temporal behaviour to be captured in a visual pattern.

After that, the pattern is compared in terms of similarity with a user defined target, process

that returns a numerical value that specifies how (dis)similar the evolved pattern is with

the target one. Repeating both generation and comparison steps over different set of input

rules results in a collection of captured patterns where those better resembling the target

are considered more fit. Hence, the better ranked a pattern is, the closer the collection of

rules are to those that gave rise to the original (target) pattern.

Figure 6.1: Meta-automaton with input parameters K-TIMES, T-LIMIT and RULES. By fixing

K-TIMES = 50 and T-LIMIT = 255, the snapshots P1, P2 and P3 are obtained when RULES is set

up to 123, 126 and 195 respectively.
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For a better understanding of the methodology, consider the Meta-automaton CA,

with input parameters K-TIMES and T-LIMIT fixed to 50 and 255 respectively, and the

parameter RULES left variable. So, if RULES takes values 123, 126 and 195 in turns, then

the associated patterns P1, P2 and P3 will be generated as depicted in Figure 6.1.

(a) (b)

Figure 6.2: Process of comparison in terms of similarity. A target snapshot Pt is compared to each

of the three generated patterns P1, P2 and P3 (a). The comparison by similarity produces a ranking

where those patterns better resembling the target snapshot are better positioned in alikeness scale (b).

Consider the pattern Pt depicted in Figure 6.2 (a) as the user defined target. Then,

patterns P1, P2 and P3 will be compared in terms of similarity to Pt from where those better

resembling the target will be highly ranked. Since P1 is more similar to Pt than P3 is to Pt,

plus the fact that P2 is even less similar, the obtained ranking of similarity results in P1, P3

and P2, as Figure 6.2 (b) shows. Generation and comparison together with recombination

and mutation operators are repeated for a certain number of generations over a population

of individuals which represent sets of input CA rules (see Figure 5.3).
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6.1.1 Problem Description

The Meta-automaton CA has been implemented with NetLogo. This system is based

on a one-dimensional binary CA of radius 1 where the cells are associated with one of the

so called “256 elementary rules” [57]. The purpose of this automaton is to show how the

change of dynamics along space and time affects the information flow; to understand how

rules behave in a given configuration; and how different combinations of rules could affect

the complexity of the system. Example patterns of the CA are shown in Figure 6.3.

Figure 6.3: Sample snapshots of spatio-temporal patterns from Meta-automaton model.

The Meta-automaton CA can be seen as an instance of the so called non-uniform

CA [176]. In particular, this model allows partitions over the system’s spatial and temporal

dynamics using two discrete variables: K-TIMES and T-LIMIT – the former indicates that

groups of k-consecutive cells are associated to the same rule whilst the latter allows a

re-assignation of rules to take place every t time steps.

Table 6.1 summarises the key concepts underlying the problem to be tackled. In

this table, Problem name is a self-explanatory label describing the problem in general

terms; Instance describes the particular problem, i.e. the CA description emphasising

on the parameters to be designed; Solution stands for the type of answers that solve the

problem; and Measure specifies how the solution performance is scored.
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Problem name Meta-automaton CA rules design

Instance a one-dimensional CA of radius 1 allowing combinations of rules
distributed across space and time to affect the complexity of the
system

Solution a collection of n rules linked to n-groups of k-consecutive cells of the
CA which outputs a spatio-temporal behaviour pattern captured in
a bitmap image. k is integer taking values 100, 50 and 25

Measure comparison of the captured CA output against a user defined (tar-
get) pattern in terms of similarity by means of USM

Table 6.1: Problem name, instance, solution and measure for the evolutionary design optimisation

of Meta-automaton CA rules.

6.1.2 Population, Genetic Representation and Initialisation

Given that the cells of the CA are associated with elementary rules, a collection of integer

numbers for encoding the Meta-automaton CA rules is employed. Hence, an individual of

the population is defined as a sequence of n natural numbers, each of them representing

an elementary rule which is initially generated with a random value belonging to [0, 255].

Formally speaking, the population and its individuals are defined as:

Pop = {Ind1, Ind2, . . . , Indm}

Indj = {ej
1
, ej

2
, . . . , ej

n}

where 0 ≤ ej
i ≤ 255 (6.1)
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For each of these individuals, evaluation, recombination and mutation operators

are applied and repeated for a certain number of generations where those capable of creating

patterns similar to the target pattern will survive and is likely to guide the evolutionary

process across generations.

6.1.3 Selection Scheme and Genetic Operators

During the evolutionary process, individuals are selected to be parents using roulette wheel

selection, offspring are obtained using uniform crossover and mutation is implemented using

the Breeder Genetic Algorithm operator. For technical characteristics and features refer to

Section 5.1.3 in Chapter 5.

6.1.4 Evaluation Procedure

The evaluation phase consists of two stages: pattern creation and pattern comparison.

Pattern Creation

As previously stated, each individual Indj is initialized with a sequene of n integers (rules)

ranging from 0 to 255. At this stage, these rules are linked and applied to groups of k-

consecutive CA cells giving rise to an associated spatio-temporal behaviour pattern (Pj) to

be captured in an image. Three sample individuals initialised with rules 0, 133, 150 and

254 together with its associated spatio-temporal patterns are shown in Figure 6.4.
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(a) (b) (c)

Figure 6.4: Meta-automaton CA spatio-temporal behaviour patterns generated after applying the

rules upon individuals: (a) {150}; (b) {150, 133}; (c) {150, 133, 0, 254}.

Pattern Comparison

After the image capturing the spatio-temporal behaviour pattern is generated, its compar-

ison against a target pattern (T ) takes place. In order to perform this task, three arbitrary

data sets of target snapshots are defined. The cells of the first data set were associated

with the same rule without reassignment across time, i.e. K-TIMES = 100 and T-LIMIT

at infinitum. The target patterns and their correspondent rules are depicted in Figure 6.5.

T 1
1 T 1

2 T 1
3 T 1

4 T 1
5

T 1
6 T 1

7 T 1
8 T 1

9 T 1
10

Figure 6.5: Target patterns produced by the Meta-automaton CA using rule 122 for T 1

1
, rule 148

for T 1
2 , rule 181 for T 1

3 , rule 120 for T 1
4 , rule 97 for T 1

5 , rule 135 for T 1
6 , rule 229 for T 1

7 , rule 131

for T 1

8
, rule 154 for T 1

9
and rule 133 for T 1

10
.
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For the second data set of target snapshots (Figure 6.6), the spacial dynamics were

divided in two, i.e K-TIMES = 50 and n = 2. Thus, given two random rules chosen from

the pool of 256 rules, the first consecutive 50 cells were associated with one rule and the

remaining 50 with another rule. As in the previous data set, the states of the first row were

randomly initialised with no reassignment of rules during runtime.

T 2
1 T 2

2 T 2
3 T 2

4 T 2
5

T 2
6 T 2

7 T 2
8 T 2

9

Figure 6.6: Target patterns produced by the Meta-automaton CA changing dynamics over space

with two different using rules 177-132 for T 2

1
, rules 68-122 for T 2

2
, rules 65-135 for T 2

3
, rules 5-57

for T 2

4
, rules 25-60 for T 2

5
, rules 60-102 for T 2

6
, rules 147-2 for T 2

7
, rules 129-46 for T 2

8
and rules

167-180 for T 2

9
.

In order to provide an even more challenging data set, the spacial dynamics were

divided into four in the last set of target patterns, i.e. K-TIMES = 25 and n = 4. Thus,

cells were divided in groups of 25 consecutive cells to which a randomly selected rule from

the pool of 256 was applied. As before, there was no reassignment of rules across time. The

patterns for the third data set are shown in Figure 6.7.
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T 3
1 T 3

2 T 3
3

Figure 6.7: Target patterns produced by the Meta-automaton CA changing dynamics over space

with rules 49-34-84-147 for T 3

1
, rules 61-251-23-165 for T 3

2
and rules 41-183-195-110 for T 3

3
.

Each of the snapshots listed previously is set as a target pattern in separate GA

experiments. Thus, during the evaluation stage of an experiment, the fitness function

compares each Pj to the current T for similarity using the USM introduced in Chapter

4. This metric returns a numerical representation that is considered as the fitness of each

individual, i.e. the value to minimise by the GA. All in all, those individuals generating

patterns that are similar to the target are better ranked and become more likely to survive.

Given that for all the generated complex behaviour the first row of cells is randomly

initialized, the captured patterns might differ for each initialisation. This influences the

comparison for similarity which would certainly give different results for the same individual.

For this reason, a reliable estimation of the true fitness is needed and individuals must be

evaluated several times. Consequently, each individual is evaluated five times and its fitness

is calculated as the average.

6.2 Results

This section aims to present the results of the GA experiments using the parameters sum-

marised in Table 6.2 for each run. For all the experiments the population size, the amount
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of generations, the number of times an individual is evaluated, the crossover probability and

the mutation probability were fixed. The length of the individuals is given by the amount

of input rules, i.e. length n in case of the Meta-automaton CA.

Population Size Generations Evaluations XProb MProb

20 100 5 0.7 0.3

Table 6.2: GA parameters for Meta-automaton CA evolutionary design optimisation.

P eP
1

T eT
1

USM(P, T) Similarity

P 1
1 122 T 1

1 122 0.993958124 Correct

P 1
2 6 T 1

2 148 1.042744644 Mirror

P 1
3 181 T 1

3 181 0.984504855 Correct

P 1
4 106 T 1

4 120 0.983119009 Mirror

P 1
5 97 T 1

5 97 0.985429776 Correct

P 1
6 195 T 1

6 135 0.976343879 None

P 1
7 195 T 1

7 229 1.048922986 None

P 1
8 131 T 1

8 131 1.00218998 Correct

P 1
9 169 T 1

9 154 0.987069886 Low

P 1
10 133 T 1

10 133 0.950053315 Correct

Table 6.3: Results for the first group of Meta-automaton CA snapshots. Best designoids (P ),

evolved rules (eP
1
), targets (T) with their creational rules (eT

1
), fitness (USM(P, T )) and similarity

levels (Similarity).
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Table 6.3 lists the results of the experiments conducted over the first data set shown

in Section 6.1.4. In this table, the labels in column P refers to the obtained designoids whilst

eP
1

itemizes the genes of the fittest individuals. In the following two columns, T refers to the

target snapshots followed by the creation rules listed under eT
1
. In the last pair of columns,

the fitness values appear below USM and Similarity classifies the degree of visual likeness

between an obtained designoid and a target snapshot.

As the last column of Table 6.3 shows, the GA has evolved the same rules that

produce the target snapshots in five out of ten experiments. This is the case of T 1
1 , T 1

3 ,

T 1
5 , T 1

8 and T 1
10 in which the evolved rules achieve designoids with high level of similarity.

Further analyses reveal that two extra experiments have evolved rules which are capable

of producing designoids mirroring the targets. This is the case when experimenting with

T 1
2 and T 1

4 , as depicted by the plots in Figure 6.8, where the diagonal streams have been

successfully reproduced although in opposite directions.

T 1
2 P 1

2 T 1
4 P 1

4

Figure 6.8: Target patterns (T 1

2
and T 1

4
) and designoids (P 1

2
and P 1

4
) resulting from the first data

set of Meta-automaton CA rules design problem. The evolved rules generate spatio-temporal patterns

which mirror the target snapshots.

Nevertheless, experiments over T 1
9 resulted in a significant rule capable of gener-

ating a low level resemblant designoid, i.e. an evolved pattern with few features in common
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to the target snapshot. In this particular case, from a visual comparison between the target

snapshot and the evolved pattern (Figure 6.9) we can argue that the diagonal black strips

together with their orientation appearing in P 1
9 were very well captured by the USM.

T 1
9 P 1

9

Figure 6.9: Target pattern (T 1
9 ) and its designoid (P 1

9 ) resulting from the first data set of Meta-

automaton CA rules design problem. The evolved rule generates a spatio-temporal pattern with low

level degree of similarity although it is capable of capturing some underlying black diagonal structures

appearing in the target.

Unfortunately, none of the previous analyses apply to the findings when T 1
6 and

T 1
7 were set up as target snapshots. In these experiments, neither mirrored patterns nor

similar structures with different orientations were achieved by the evolved individuals as

depicted in the designoids of Figure 6.10.

T 1
6 T 1

7 P 1
6 /P 1

7

Figure 6.10: Target patterns (T 1

6
and T 1

7
) and designoids (P 1

6
/P 1

7
) from the first data set of Meta-

automaton CA rules design problem. The evolved rules are not able to generate spatio-temporal

patterns with any particular feature appearing in the targets.
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The findings for the second data set indicate that none of the evolved individuals

have achieved the target rules (see Table 6.4). However, in some cases, the GA evolved rules

capable of generating spatio-temporal patterns which mirror the target (see Figure 6.11).

P eP
1

eP
2

T eT
1

eT
2

USM(P, T) Similarity

P 2
1 164 177 T 2

1 177 132 0.818578016 Mirror

P 2
2 122 100 T 2

2 68 122 0.885830497 Mirror

P 2
3 215 146 T 2

3 65 135 0.948304844 None

P 2
4 115 192 T 2

4 5 57 0.870995252 None

P 2
5 26 125 T 2

5 25 60 0.96081944 None

P 2
6 183 20 T 2

6 60 102 0.964207074 None

P 2
7 130 147 T 2

7 147 2 0.905361748 Mirror

P 2
8 126 16 T 2

8 129 46 0.958283213 Captured

P 2
9 91 167 T 2

9 167 180 0.993560531 Captured

Table 6.4: Results for the second group of Meta-automaton CA snapshots. Best designoids (P ),

evolved rules (eP
i ), targets (T) with their creational rules (eT

i ), fitness (USM(P, T )) and similarity

levels (Similarity).

Analysing the composition of these three particular individuals (P 2
1 , P 2

2 and P 2
7

in Table 6.4) it is interesting to observe that in all the cases only one of the rules has been

successfully evolved, i.e. the same rule as that in the target individual. It is interesting

to note that this successful rule appears in the opposite position to where it is originally

located in the target individual. For instance, rule 177 is associated with the first group of

CA cells when generating the target snapshot (T 2
1 ) and with the second group of CA cells

when generating the designoid (P 2
1 ).
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T 2
1 P 2

1 T 2
2 P 2

2

T 2
7 P 2

7

Figure 6.11: Target patterns and designoids using two rules: T 2

1
and its mirror P 2

1
, T 2

2
and its

mirror P 2
2 , and T 2

7 and its mirror P 2
7 .

Even more interesting is what occurs in the second case since the unsuccessful rule

emerges as near equivalent to the one in the target. In this context, a rule ei is considered

“equivalent” to a rule ej if the spatio-temporal behaviour obtained by the application of ei

generates a similar spatio-temporal behaviour to the one obtained with ej . For instance, the

rule 132 associated with the second group of cells when generating the target snapshot T 2
1

and the rule 164 associated with the first group when generating the designoid P 2
1 achieve

a near-identical pattern. In order to perform a further analysis, the Hamming distance

among the binary representation of these rules is computed. All the calculations indicate a

difference in one position, hence supporting the observed similarity. Note that the encoding

of the individuals is not binary, and that given two binaries with Hamming distance of 1

this does not always map to similar spatio-temporal behaviours in the Meta-automaton CA.

This last analysis is summarised in Table 6.5.
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P eP
i (eP

i )2 T eT
i (eT

i )2 DH((eP
i )2, (eT

i )2)

P 2
1 164 10100100 T 2

1 132 10000100 1

P 2
2 100 11000100 T 2

2 68 01000100 1

P 2
7 130 10000010 T 2

7 2 00000010 1

Table 6.5: Analysis of the evolved rules. Designoids (P), evolved rules (eP
i ) and binary represen-

tations ((eP
i )2), targets (T) with their creational rules (eT

i ) and binary representations ((eT
i )2), and

Hamming distances (DH((eP
i )2, (e

T
i )2)).

Still interesting are the findings when experimenting with T 2
8 . As shown in Figure

6.12, the achieved designoid resembles the target in the following way. Structurally speak-

ing, the patterns appearing at the left side have been perfectly achieved although they

complement one another. That is, the light triangles in the target snapshot become dark

in the designoid and vice versa.

T 2
8 P 2

8

Figure 6.12: Captured similarities for a Meta-automata pattern using two rules: target pattern T 2

8

and its designoid P 2
8 .

Moreover , the diagonal wavy lines at the right side of the target snapshot have

been mirrored in the designoid although much thinner. Performing a further analysis (see

Table 6.6), the Hamming distance between the binary representation of the first rules of
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T 2
8 and P 2

8 indicates a difference in 8 positions, hence supporting the established comple-

ment as seen in previous analysis. Note that complementary rules do not always generate

complementary patterns.

P eP
1

(eP
1
)2 T eT

1
(eT

1
)2 DH((eP

1
)2, (eT

1
)2)

P 2
8 126 01111110 T 2

8 129 10000001 8

Table 6.6: Analysis of the evolved rules. Designoid (P), evolved rule (eP
1 ) and binary representation

((eP
1
)2), target (T) with its creational rule (eT

1
) and binary representation ((eT

1
)2), and Hamming

distance (DH((eP
i )2, (e

T
i )2)).

Table 6.7 summarises the results of the third data set. As the evolved rules reveals,

none of them matches the rules of the targets.

P eP
1

eP
2

eP
3

eP
4

T eT
1

eT
2

eT
3

eT
4

USM(P, T) Similarity

P 3
1 73 141 188 230 T 3

1 49 34 84 147 0.907788419 Captured

P 3
2 38 140 105 234 T 3

2 61 251 23 165 0.917228868 Captured

P 3
3 61 120 146 196 T 3

3 41 183 195 110 0.940763235 Captured

Table 6.7: Results for the third group of Meta-automaton CA snapshots. Best designoids (P ),

evolved rules (eP
i ), targets (T) with their creational rules (eT

i ), fitness (USM(P, T )) and similarity

levels (Similarity).

However, a visual inspection of the obtained designoid shown in Figure 6.13 sup-

ports the idea that some relevant features from the target snapshots were captured. For

instance, it is interesting to note that two rules capable of producing the inverted “V-

shape”, appearing in the middle of the target snapshot, were discovered although with
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inverted colouring and in a different position.

T 3
3 P 3

3

Figure 6.13: Target snapshot T 3

3
and its resulting designoid P 3

3
from the third data set of Meta-

automaton CA rules design problem. Two achieved rules generate an inverted “V-shape” with oppo-

site colouring and located at a different position.

In addition, the last two designoids also display some captured features generated

by the evolved individuals. For instance, a rule capable of generating the second strip of

T 3
2 (Figure 6.14) was evolved by the GA as shown in the fourth position of the associated

designoid (P 3
2 ). Nevertheless, some of the structures emerging in the chaotic pattern of the

last strip of the same target have been simulated, although not captured, in the spatio-

temporal behaviour generated by the third rule of the evolved individual.

T 3
2 P 3

2 T 3
3 P 3

3

Figure 6.14: Target snapshots together with their resulting designoids from the third data set of

Meta-automaton CA rules design problem. Rules capable of generating the black strip and the last

line of emergent structures in T 3

2
are captured at the fourth and third positions in P 3

2
. On the other

hand, the white triangular entities appearing in the third strip of P 3
3 resemble the black structures in

the second frame of T 3

3
.
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Finally, consider the visual similarities found among the target snapshot T 3
3 and

its associated designoid P 3
3 exposed in Figure 6.14. These two captured patterns reveal that

the triangular entities appearing in the third strip of the designoid accurately resemble the

ones in the second frame of the target although the colour of the dark triangles become

lighter in the designoid and vice versa.

6.3 Conclusions

Finding the appropriate input for a CA system capable of reconstructing the operational

mode of the cells in order to achieve a specific snapshot of automaton behaviour is a chal-

lenging open problem. This chapter contributed an innovative CA model and a GA based

approach for the evolutionary design optimisation of CA rules. The Meta-automaton CA

– an invention of the author – is based on a one-dimensional binary CA of radius 1 that

allows partitions over the system’s spatial and temporal dynamics. The strategy of the pro-

posed methodology is the searching for the appropriate combination of rules so that when

assigned onto a lattice partition, the captured emergent behaviour maximizes the measure

of similarity when compared with a specific snapshot.

Analyses of the results of the experiments revealed that a number of different rules

can achieve very similar spatio-temporal behaviour. Hence, as also seen in the results for

the Turbulence CA snapshots (Chapter 5), a significantly different genotype can, in fact,

result in a similar phenotype – yet another illustration of the complex, non-linear nature of

the genotype-phenotype-fitness mapping in these systems. All this correlates in fact with
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what is established as ill-possessed characterisation: different inputs could be the causes of

a given effect.

In addition, it is evident from these experiments that, although the USM’s infor-

mation distance-based metric works well in many cases, it has a number of shortcomings.

As illustrated by the last set of experiments, one of the most obvious drawbacks is its

blindness to complementary snapshots. Similarly, the USM does not differentiate between

mirror patterns – the actual information content of an image is identical to its mirror im-

age. Therefore, it is a logical progression to extend the fitness function using an additional

measurement such as Hamming distance or an entropy analysis. In the first case, using

a measure of Hamming distance involves calculating the colour difference between target

and designoid on a pixel-by-pixel basis. Alternatively, an image’s entropy is an estimate of

the distance between two images based on calculating the frequency of the appearance of

different sub-blocks or fragments of the images. In either case, we consider that the fitness

function would need to be extended to either a multi-objective setting or a single weighted

function.
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Chapter 7

An Evolutionary Approach to Self-Assembly Wang

Tiles Design

Finding the appropriate combination of autonomous entities capable of arranging them-

selves together in order to perform a common task is a challenging open problem for the

design and development of distributed cooperative systems. This chapter reports on an

evolutionary algorithm approach for the design optimisation of self-assembly Wang tiles.

The following section summarises Wang tiles as a model of physical and biological systems.

After that, the GA is explained in detail, in particular its population, genetic representa-

tion, initialisation phase, evaluation process, selection scheme and genetic operators. The

chapter also includes the conducted experiments where the technical details of the utilised

models and the experimental data sets will be presented. Finally, the analysed results and

conclusions complete this experimental part of the dissertation. The research to be reported

in this chapter has been published in “Proceedings of the 7th International Conference on

Artificial Evolution” [177], “2005 IEEE Congress on Evolutionary Computation” [178] and

“2007 IEEE Congress on Evolutionary Computation” [179].
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7.1 Architecture

The approach to be proposed employs a GA whose goal is to design a collection of Wang

tiles that will self-assemble into a specific target shape in the following way. A set of tiles

is dropped into a simulation environment comprising a two-dimensional lattice, a strength

matrix and a glue function. In this environment, tiles are randomly located on the lattice

where they perform a random walk for a certain amount of time. Tiles eventually collide and,

according to the strength of the colliding sides, they either stick to one another or bounce

off. Once the simulation finishes, the scattered tiles, together with the aggregates found

in the lattice, define a kind of layout called configuration. It is in this configuration where

a user defined (target) shape is surveyed, after which a value is returned indicating how

successful the tiles self-assembled in that shape. The repetition of this two-step process, i.e.

tiles simulation and search for the target shape over different sets of tiles, gives a collection

of configurations in which the ones receiving large values of success attribute the associated

tile sets a high rank. Hence, the more successful a configuration, the better designed is the

collection of associated tiles.

As an example, consider the three sets of self-assembly Wang tiles S1, S2 and S3

shown in Figure 7.1. Each of the sets is dropped in turn into the simulator where tiles

perform a random walk and interact with one another during a certain period of time.

Thus, each simulation generates an associated configuration Conf1, Conf2 and Conf3 as

Figure 7.1 shows. Following the example, if a square of 5×5 tiles is considered as the target

shape, then S1 ranks first, S2 ranks second and S3 follows since the aggregates achieved by

S1 are the most similar in shape to a square of 5× 5 tiles.



7. an evolutionary approach to self-assembly wang tiles design 109

Figure 7.1: Three different self-assembly Wang tiles sets (S1, S2 and S3) are dropped in turn into

a simulator comprising a lattice, glue function and strength matrix. After performing random walks

and interacting with one another, tiles embodying self-assembled aggregates define a layout called

configuration (Conf1, Conf2 and Conf3).

To sum up, the described process together with recombination and mutation oper-

ators is iteratively applied, for a certain number of generations, to a population of tile sets

where those capable of self-assembling in aggregates similar in shape to the user defined

target will survive and guide the evolutionary process across generations. Unlike many

problems for which the fitness function is a simple mapping from the genotype encoding

a solution to its fitness value, in this case there is a complex genotype-phenotype-fitness

mapping that makes the evolutionary process a complex system.
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Figure 7.2 depicts a chart flow of the extended GA where initialisation corresponds

to the process when the individuals comprising the set of tiles are created; evaluation is the

stage involving simulation and self-assembly assessment; and crossover and mutation shows

the process when one-point recombination and gene-wise mutation operators are mapped

across the entire population.

Figure 7.2: Flowchart of the extended GA for evolving self-assembly Wang Tiles.

7.1.1 Problem Description

The schematic problem description for the design optimisation of self-assembly Wang tiles is

summarised in Table 7.1. In this table, Problem name is a self-explanatory label shortly

describing what the problem is about; Instance describes the particular problem to be

addressed; Solution stands for the type of answers that solve the problem and Measure

indicates how the solution performance is scored.
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Problem Name Self-assembly Wang tiles design optimisation

Instance a Wang tiles system comprising:

• a two-dimensional square lattice where tiles perform random
walks, rotate and interact with one another with either a de-
terministic or a probabilistic stickiness criteria

• a symmetric matrix encoding the strength among glue types

• an interaction function that evaluates a glue strength against
the kinetic energy of the system

Solution a collection of self-assembly Wang tiles

Measure comparison between a user defined shape and the aggregations pro-
duced by the solution’s self-assembly process

Table 7.1: Problem name, instance, solution and measure for the automated design optimisation

of self-assembly Wang tiles.

7.1.2 Population, Genetic Representation and Initialisation

An individual of the population is defined as a collection of self-assembly Wang tile families.

That is, each individual’s chromosome is a class of tile that can be instantiated with several

identical copies. Since tiles are square in shape, each tile family is arbitrarily initialized with

four randomly chosen glue types to be assigned to each of its edges. A formal definition for

population (Pop) and its variable length individuals (Indi) to be evolved in the evolutionary

design optimisation of self-assembly Wang tiles is given as:
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Pop = {Ind1, Ind2, . . . , Indn}

Indi = {T i
1, T

i
2, . . . , T

i
ki
}

T i
j = {t|t = (C0, C1, C2, C3)}

where 1 ≤ ki ≤ 10

C0, C1, C2, C3 ∈ Σ (7.1)

The elements defined by Σ are glue types labelling the edges associated with a tile.

The GA keeps a population of n individuals each of them encoding ki tile families (T i
j ) up

to a maximum length of 10. As it is not known a priori how many tile families are needed

to encode a target shape, individuals are varying in length; |Indi| could be different from

|Indj | for 1 ≤ i, j ≤ n.

7.1.3 Evaluation Procedure

The evaluation phase consists of two stages: tiles simulation and self-assembly assessment.

Simulation

During the first stage, tiles are placed into a simulator composed of a two-dimensional

square lattice and a glue function. In particular, each lattice site is capable of holding only

one tile at a time. Essentially, for each tile family T i
j encoded by an individual Indi, an

equal number of tile instances drawn from the family is placed into an empty position in

the lattice. After that, tiles drift, sticking or bouncing until the simulation runs its course.
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In order to study how different dynamics affect the designability problem, four increasingly

richer simulation environments classified according to the way tiles interact with each other

are defined:

Model 1. When two tiles reach adjacent locations, the glue function evaluates

the interaction between the glue types at touching edges using a symmetric matrix M of

α × α glue strengths as shown in Table 7.2. If the resultant value is greater than the

temperature τ (a strong interaction) both tiles self-assemble and remain in their locations;

otherwise (a weak interaction occurs) they do not assemble and can eventually move apart.

For example, Figure 7.3 shows an example with an interaction matrix of α = 2 and τ = 4.

As it is depicted, the only way two tiles self-assemble is when black edges become adjacent

as any other type of interaction is smaller than τ .

C1 C2 . . . Cα

C1 v11 v12 . . . v1α

C2 v12 v22 . . . v2α

...
...

...
. . .

...

Cα v1α v2α . . . vαα

Table 7.2: A symmetric matrix M of α× α encoding strengths vij between two glue types Ci and

Cj for 1 ≤ i, j ≤ α.

Model 2. In this case, if two tiles become adjacent, they are evaluated as in the

previous model. However, the difference with Model 1 is the introduction of a probabilistic

rather than deterministic stickiness criteria: ρ per tile. For example, in Figure 7.4, tiles

self-assemble as the sum of interactions is 6. In this case, the corner tile contributes with a

strong interaction and remains in its position. In contrast, side tiles might still move as their
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(a) (b)

Figure 7.3: Interaction among two tiles with a symmetric matrix of α = 2 and τ = 4. (a) The glue

function evaluates the interaction between glue types at colliding edges at T ime i resulting in a weak

interaction that keeps tiles on the move afterwards. (b) The glue function evaluates the interaction

between glue types when collision takes place at T ime i resulting in a strong interaction that makes

tiles self-assemble and stand still henceforth.

interactions are weak. The concept of weak and strong interactions has been recognised as

weak and strong bonds in [73]. Equation 7.2 defines how the probabilistic stickiness criteria

ρ is updated for a given tile t. At the beginning, the probability of being moved is set to 1

and the tile is free to move on the lattice. As a tile interacts with others, ρ either decreases

when t self-assembles to another tile or increases if there is a tile detaching from t. In any

case, the calculation is performed in terms of the interaction value given by each of the tile

edges, its neighbours and τ .

Figure 7.4: Interaction among three tiles with a symmetric matrix of α = 2 and τ = 4. At T ime

i, the sum of interactions is 6 and the corner tile keeps the side tiles assembled although side tiles

might still move at T ime i + 1 since their interactions are weaker.
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ρ = Max

(

0, 1 −
4

∑

j=1

contact(t, tj).
strength(t, tj)

τ

)

tj =















































t1 is the northern neighbour of t

t2 is the eastern neighbour of t

t3 is the southern neighbour of t

t4 is the western neighbour of t

contact(t, tj) =















1 if t is adjacent to tj

0 otherwise

strength(t, tj) =















































M [tn, tsj ] if j = 1

M [te, twj ] if j = 2

M [ts, tnj ] if j = 3

M [tw, tej ] if j = 4

ti is a tile edge, e.g. the north edge is tn (7.2)

When a tile contributing with a weak interaction moves, a different arrangement of

tiles appears and ρ is re-computed as interactions change. Figure 7.5 shows four alternatives

in which the previous self-assembled structure could be modified. In the case of (a) and

(d) the side tiles have moved away leaving a weak interaction among the remaining tiles

and consequently disassembles the whole structure afterwards. Alternatively, in (b) and

(c), the sum of interactions is either maintained or greater than the original arrangement.

Nevertheless, both (b) and (c) show that with this model it is also possible to spin the whole

structure.
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Figure 7.5: Four alternatives in which a self-assembled structure composed by three tiles could be

modified. Each tile re-calculates its ρ as interactions with other tiles change.

In order to make the model richer, tiles are also considered as entities capable of

rotating. That is, once a tile moves to a new position in the lattice, a random number is

obtained. If it is less than zero then the tile rotates to the left, or else it rotates to the

right. So, considering the orientation of the grey edge depicted in Figure 7.6, a tile is able

to rotate 90 degrees clockwise or counter clockwise. Thereafter, the notation C1C2C3C2

encodes a tile by its glue types starting from the top edge going clockwise.

Figure 7.6: Tile rotating clockwise or counter clockwise: + (-) indicates the amount of clockwise

(counter clockwise) rotations of a tile marked with *. Notation C1C2C3C2 encodes a tile by its glue

types starting from the top going clockwise.
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Hence, Model 3 and Model 4 are defined as the combination of the two previous

models with rotation capability, i.e. tiles with deterministic criteria plus rotation and tiles

with probabilistic criteria plus rotation. Figure 7.7 shows the hierarchical organisation of

the models. Model 2 results from extending Model 1 with probabilistic criteria (ρ) whilst

Model 3 from extending Model 1 with rotation (♦). Finally, Model 4 integrates both

probabilistic stickiness criteria and rotation (ρ ♦).

Figure 7.7: Hierarchical organisation of the models.

Self-Assembly Assessment

Having chosen a model, tiles are placed into the simulation environment and the simulation

runs for a fixed number of time steps. Once the simulation stops, the final configuration is

evaluated in terms of the similarity between the target shape and each of the self-assembled

aggregations contained within the lattice. This assessment at phenotype level is assigned

to the genotype as its associated fitness value.

A further complication that must be taken into consideration when measuring the

fitness of an individual is that the self-assembly Wang tiles simulator is a stochastic process

and for that reason individuals must be evaluated several times as to be able to obtain a
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reliable estimation of its true fitness. Consequently, each individual is evaluated several

times and its fitness is finally calculated as the average.

Three different approaches have been employed in turn in order to compute the

individual fitness. The first one is a lattice scanning algorithm that searches within the

individual’s configuration for the region that best matches the user defined target. The

second approach uses the USM as has been done for CAs. Finally, the third methodology

utilises a morphological image analysis method based on the so called Minkowski functionals

[157] introduced in Chapter 4.

7.1.4 Selection Scheme and Genetic Operators

In this approach, single individual elitism was employed. In addition, the traditional genetic

operators one-point crossover and gene-wise mutation were chosen as part of the selection-

recombination scheme. As the employed elitist strategy forces the population to preserve

the best chromosome for the next generation, the highest ranked set of Wang tile families is

chosen as elite according to its computed fitness value and passes to the following generation.

The rest remains as a mating pool from where the new generation will be drawn.

The one-point crossover swaps the genetic material of paired individuals selected

without replacement from the mating pool at a given crossing site. For instance, consider

Inde = {T e
1 , T e

2 , . . . , T e
m} and Indf = {T f

1
, T f

2
, . . . , T f

l } as the two individuals chosen by

roulette-wheel selection with length m and l respectively. Then the recombination operator

picks the shortest individual followed by a random cutting point between its tiles. After

that, the same crossing point is set in the longest individual and the chromosomic recom-

bination takes place. Without loss of generality, if m < l and the cutting point is j, such
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that 1 ≤ j < m, then the following two offspring are created:

Indu = {T e
1 , T e

2 , T e
3 , . . . , T e

j , T f
j+1

, T f
j+2

, . . . , T f
l }

Indv = {T f
1
, T f

2
, T f

3
, . . . , T f

j , T e
j+1, T

e
j+2, . . . , T

e
m}

Once the set of offspring is completed, the gene-wise mutation operator is applied across

the whole collection. In this process, the operator takes an individual and for each of its tile

families one or more glue types is likely to be changed due to a mutation probability value.

For instance, let Indh = {T h
1 , T h

2 , T h
3 , . . . , T h

p } be an offspring and T h
j = (C1, C2, C3, C4)

a tile family of Indh. If C2 is likely to be mutated and Cx a randomly chosen glue type

to replace C2, then T h
j = (C1, Cx, C3, C4). The GA is a generational GA, hence the set

of offspring plus the elite individual becomes the current population after performing the

mutation phase; the artificial evolution process continues afterwards.

7.2 Evaluation Method 1 – Lattice Scanning Approach

This section aims to report on the first methodology employed to evaluate the individuals

of the GA used for the design optimisation of self-assembly Wang tiles. In this strategy, the

performance of an individual is given in terms of the region of the lattice that best matches

with the user defined shape which is a solid square of tiles.

7.2.1 Architecture

Based on our previous findings [177], the individuals of the initial population are created

with three types of genes: random genes, genes that promote the self-assembly of columns
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and genes that promote self-assembly of rows. The first archetype comprises tile families

randomly generated whilst the remaining are hand-crafted ones such that their instances

self-assemble in either columns or rows as depicted in Figure 7.8 and Figure 7.9 respectively.

In particular, 10% of the individuals were column builders, another 10% of the individuals

were row builders whilst the rest were left as randomly generated.

Figure 7.8: Three snapshots across time of a simulation running under Model 1 with τ = 4 and

a symmetric matrix of α = 2. The tiles self-assemble promoting column aggregates.

Figure 7.9: Three snapshots across time of a simulation running under Model 1 with τ = 4 and

a symmetric matrix of α = 2. The tiles self-assemble promoting row aggregates.
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After initialisation, the population is subject to a series of generations comprising

evaluation, crossover and mutation. It is then in the evaluation phase where instances of

the Wang tile families are dropped into a simulator executing Model 1 for 300 time steps

after which it is necessary to assess the performance of the self-assembly process. For this

purpose, the target shape is exhaustively sought across the configuration. That is, the

procedure quantifies the number of tiles filling areas with the dimension of the target shape

and the greatest quantity is returned as the fitness of the individual, value to maximise by

the GA. Figure 7.10 shows a scanning example going from top left to bottom right on a

final lattice configuration. As the self-assembly simulator executes a stochastic process, each

individual is repeatedly evaluated and its fitness is the average of the maximum Hamming

distances thus obtained.

7.2.2 Experiments

A number of eight experiments were run. For all of them the population size, the maximum

length of the individuals, crossover and mutation probabilities, the amount of generations

and the quantity of times each individual is evaluated were fixed. All these parameters

related to the GA are sown in Table 7.3.

Population Size k Generations Evaluations XProb MProb

100 10 100 20 0.3 0.01

Table 7.3: Experiment parameters: population size, maximum length of the individuals (k), amount

of generations, number of evaluations per individual, crossover probability value (XProb) and muta-

tion probability value (MProb).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.10: Shape scanning example over a final two-dimensional lattice configuration. The target

shape, denoted by a broken line area, is exhaustively sought from top left to bottom right over the

two-dimensional lattice. The process (a - l) counts how many tiles are present within each possible

region of 10× 10 tiles and returns the biggest quantity found as the fitness value of the individual’s

simulation.
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In addition, the simulator parameters such as the length of the simulation, the

temperature τ for the glue function, the size of the interaction matrix encoding the glue

types strength, the range of the strength values filling the matrix, the dimension of the

target shape and the lattice size are shown in Table 7.4.

Sim Length τ α Strengths Target Shape Lattice

300 4 10 [0, 9] 10× 10 tiles 40× 30 cells

Table 7.4: Simulator parameters: simulation length, temperature of the system (τ), number of glue

types (α), range of discrete strength values, target shape and lattice dimensions.

Table 7.5 shows the symmetric matrix of glue types used for encoding the inter-

action strength between α glue types. This structure is randomly initialised with discrete

values belonging to the range [0, 9] and remains fixed throughout all the experiments.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

C0 7 2 7 7 3 0 0 1 7 1

C1 2 7 1 5 7 3 8 2 1 6

C2 7 1 6 4 8 9 2 2 5 1

C3 7 5 4 8 5 3 3 7 9 6

C4 3 7 8 5 8 7 5 0 3 9

C5 0 3 9 3 7 6 0 3 9 5

C6 0 8 2 3 5 0 1 8 8 5

C7 1 2 2 7 0 3 8 3 9 6

C8 7 1 5 9 3 9 8 9 7 0

C9 1 6 1 6 9 5 5 6 0 0

Table 7.5: The symmetric matrix M of α×α glue types, randomly initialised with discrete strength

values belonging to [0, 9]. The strength between two glue types Ci and Cj is computed indexing

M [Ci, Cj ].
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7.2.3 Results

Figure 7.11 plots the evolution of the fitness versus generations for various GA experiments.

As it is shown, the best initial fitness values in each of the experiments are always between

30.00 and 33.00. As the evolution progresses, the fitness rises up to 40.00 or more. It is

interesting to note that for all the experiments, the fitness does not improve once it reaches

values between 40.00 and 42.00. This plateau is sometimes reached at early generations as

shown by the trends of experiments 3, 5, 6 and 8. The occurrence of the same phenomena

usually takes slightly longer for experiments 1, 2, 4 and 7. In particular, the slope in exper-

iment 1 suggests that there was enough population diversity throughout the evolutionary

process to improve steadily. On the other hand, experiments 3 and 5 would suggest that

considerable modifications were performed in the genomes present in the population in very

short periods of time pointing to a “punctuated-equilibrium” type of dynamics [180]. That

is, the individuals are generally stable and changing little along generations. In average,

each experiment has run for 72 hours in a Pentium 4-3GHz computer.

Figure 7.12 shows the progress towards the self-assembly of a square of a repre-

sentative individual of one of the runs. It is possible to see that as the evolution proceeds

the amount of noise in the simulated conformations decreases and small squares are being

self-assembled. In the first generations, the design of the tile families allow almost any pair

of instances to self-assemble. Easy self-assembly produces conformations very dissimilar

from the target shape. Due to the introduction of tiles that can build vertical or horizontal

strips the resulting conformations converge to shapes that are closer to the target one.
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Figure 7.11: Fitness evolution versus generations for the eight experiments. At early generations,

the best individuals fill the target shape with around 30 and 33 tiles rising this number up to 40 or

42 towards the end. In some experiments, a fitness plateau is reached within the first 20 generations

(experiments 3, 5, 6 and 8) although this phenomena could take slightly longer (experiments 1, 2, 4

and 7).
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Generation 0 Generation 15

Generation 30 Generation 45

Generation 60 Generation 75

Generation 90 Generation 99

Figure 7.12: Progress of GA experiment M1C when using the lattice scanning approach along

generations 0, 15, 30, 45, 60, 75, 90 and 99.
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7.2.4 Summary

This section has presented a GA approach, the goal of which is to design a set of Wang

tile families where instances are required to self-assemble into a 10 × 10 square. During

this evolutionary process, the instances of an individual are executed under Model 1 of

the simulator. Once the simulation finishes, the target shape is exhaustively sought across

the lattice computing Hamming distances between the content of every possible region of

10×10 tiles and the target shape from where the greatest quantity is returned as the fitness

of the individual. Clearly, computing the fitness value is very expensive in terms of time

since the sought area had to be moved across the lattice exhaustively.

In addition, the way the scanning takes place does not guarantee that the tiles

filling an area of 10 × 10 are actually self-assembled. For example, the scanning site at

Figure 7.10 (i) has a fitness value higher than the one in Figure 7.10 (a). However, the tiles

captured at Figure 7.10 (i) belong to three disconnected aggregations, hence misleading

the calculation of the fitness value. In order to solve this inconvenience, an additional

mechanism for checking the connectivity between the tiles in the scanned area is required,

hence increasing the cost per evaluation.

Nevertheless, it is evident that this methodology is strongly bounded to the mor-

phology of the underlying lattice and the geometry of the tiles. More important, this lack

of flexibility would be clearly manifested when the user decides to change the shape sought,

e.g. circular, triangular or other geometrical figures (which might include holes). It is,

therefore, the purpose of the next section to improve the current fitness function while

preserving a black-box methodology independent from any specific morphology.
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7.3 Evaluation Method 2 – Universal Similarity Metric Approach

This section aims to report on an information distance-based methodology employed to

evaluate the individuals of the GA used for the design optimisation of self-assembly Wang

tiles. This strategy operates in a black-box way since the fitness of an individual is given in

terms of the information encoded in a configuration comprising the achieved self-assembled

aggregates.

7.3.1 Architecture

In this approach, 100% of the individuals were initialised with random genes and the perfor-

mance of the self-assembly process has been assessed using the Universal Similarity Metric

(USM). Given that the USM is an information distance metric based in Kolmogorov com-

plexity, both the configuration and the target shape should be converted so that information

could be measured. Thus, the same way as the CA approach, once the simulation runs un-

der Model i (i ∈ [1, 4]), both the target shape and the configuration are to be captured by

binary images as shown in Figure 7.13. For the configuration, every position of the lattice

will be black if it is occupied by a tile or white otherwise. In the case of the target shape,

a black square representing the target shape is captured into a white image size of which

match with the one capturing the configuration.

Considering imgt and imgi two images with same dimensions capturing the target

shape and the self-assembly configuration evolved by the GA respectively, USM(imgt, imgi)

calculates the fitness of the individual. Given that the closer to 0, the more similar are the

USM arguments, the objective here is to minimise the fitness function.



7. an evolutionary approach to self-assembly wang tiles design 129

Figure 7.13: A set of tiles Si is dropped into the simulator where after a number of steps it achieves

the configuration Confi. This output is later captured by a binary image Imgi where black squares

map tiles located on the lattice.

7.3.2 Experiments

For each Model i (i ∈ [1, 4]), a set of five GA experiments initialised with three different

mutation probability values were run. For all of them, the population size, the maximum

length of the individuals, the crossover probability and the amount of generations remained

fixed. These parameters together with their values are shown in Table 7.6.

Population Size k Generations Evaluations XProb MProb

100 10 300 10 0.7 0.10/0.05/0.01

Table 7.6: GA parameters: population size, maximum length of the individuals (k), amount of

generations, number of evaluations per individual, crossover probability value (XProb) and mutation

probability value (MProb).

In addition, the simulator parameters such as the length of the simulation, the

temperature of the system τ , the number of glue strengths encoded in the interaction

matrix α, the range of strength values filling the matrix, the dimension of the user defined

shape, the lattice dimension and the compression algorithm implementing the information
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distance metric are shown in Table 7.7. As in the previous approach, the same symmetric

matrix shown in Table 7.5 has been employed.

Sim Length τ α Strengths Target Shape Lattice Compressor

9000 4 10 [0, 9] 10× 10 tiles 800 × 600 cells JBzip2

Table 7.7: Simulator parameters: simulation length, temperature of the system (τ), number of

glue types (α), range of discrete strength values, target shape dimension, lattice dimension and

compression algorithm.

7.3.3 Results

Table 7.8 summarises the GA findings for a simulator using JBzip2 where MProb holds the

mutation probability value, Best Individual encodes the fittest individual with its fitness

in column Fitness and Id labels the experiment as MiX where Mi stands for Model i

(i ∈ [1, 4]) and X takes values A, B, C linked to the probability values 0.01, 0.10, 0.05

respectively, e.g. M1B is the experiment using Model 1 with probability value 0.10.

From the numerical results summarised under Fitness column in Table 7.8, it is

interesting to note that when using rotation, i.e. Model 3 and Model 4, the performance

of the individuals is quite similar since their fitness values alternate between 0.81 and 0.83

regardless of whether the tiles are provided with probabilistic criteria or not. Conversely,

if the execution model lacks rotation, i.e. Model 1 and Model 2, there is a remarkable

difference subject to whether probabilistic stickiness criteria is set or not. For example, the

GA found more suitable numerical solutions when experimenting with Model 1 than when

performing the search with Model 2.
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Deterministic Criteria & No Rotation

MProb Best Individual Fitness Id

0.01 {6152, 6602, 6600} 0.657738 M1A

0.10 {4770, 4172} 0.664593 M1B

0.05 {0261, 0067} 0.647844 M1C

Probabilistic Criteria & No Rotation

MProb Best Individual Fitness Id

0.01 {1071, 5809, 7773} 0.769912 M2A

0.10 {7175, 5175, 4473, 5100} 0.777932 M2B

0.05 {7477, 7376, 1100, 4707} 0.774544 M2C

Deterministic Criteria & Rotation

MProb Best Individual Fitness Id

0.01 {9898, 9898} 0.819800 M3A

0.10 {1052, 7554, 1302, 8217, 6023, 2780} 0.823540 M3B

0.05 {9898} 0.821831 M3C

Probabilistic Criteria & Rotation

MProb Best Individual Fitness Id

0.01 {6265} 0.819730 M4A

0.10 {7271} 0.817750 M4B

0.05 {6065} 0.816220 M4C

Table 7.8: Results summary for the best GA experiments using a simulator set up with JBzip2.

MProb holds the mutation probability value, Best Individual encodes the fittest individual with score

under Fitness and Id labels the experiment.
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Since a design optimisation problem is addressed, it is important to discern whether

the evolutionary process has managed to perform any structural optimisation when tailoring

the tile families and, moreover, which are the characteristics of the achieved aggregates.

Thus, the structures of the individuals under Best Individuals in Table 7.8 reveal that

when rotation is set, i.e. Model 3 and Model 4, most of the fittest individuals are short in

length and their instances self-assemble in scattered small structures. These characteristics

are summarised in Figure 7.16 and Figure 7.17. On the other hand, important differences

in length and on the morphology of the aggregates appear when there is no rotation. For

instance, it turns out that individuals of Model 1 are usually of length 2 or 3 and that

their instances self-assemble in long vertical strips as shown in Figure 7.14. Furthermore,

individuals of Model 2 are usually of length 3 or 4 and their instances self-assemble in

small rectangular structures made of short vertical strips as Figure 7.15 shows.

An analysis of the plots obtained from the evolution of the fitness reveals that the

fittest individuals were not found at early generations as with the lattice scanning approach.

For example, the trends in Figure 7.18 show that in most of the cases the best individuals

were found after half of the evolutionary process: generation 182 for Model 1, 152 for

Model 2, 222 for Model 3 and 174 for Model 4.

The curves in Figure 7.18 also depict that the more complex the model, the fewer

modifications over the chromosomes are needed in order to achieve a relevant individual

across generations. For instance, the plot for the best experiment with Model 1 suggest

12 shifts whilst the plot for the best experiment with Model 4 suggests 9 shifts.

In average, each experiment has run for 7 days in a Sun V20z dual Opteron 248 (2.2GHz).
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Experiment M1A

MProb 0.01

Individual {6152, 6602,

6600}

Fitness 0.657738

Experiment M1B

MProb 0.10

Individual {4770, 4172}

Fitness 0.664593

Experiment M1C

MProb 0.05

Individual {0261, 0067}

Fitness 0.647844

Figure 7.14: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with deterministic stickiness criteria and no rotation

(Model 1).
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Experiment M2A

MProb 0.01

Individual {1071, 5809,

7773}

Fitness 0.769912

Experiment M2B

MProb 0.10

Individual {7175, 5175,

4473, 5100}

Fitness 0.777932

Experiment M2C

MProb 0.05

Individual {7477, 7376,

1100, 4707}

Fitness 0.774544

Figure 7.15: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with probabilistic stickiness criteria and no rotation

(Model 2).
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Experiment M3A

MProb 0.01

Individual {9898, 9898}

Fitness 0.819800

Experiment M3B

MProb 0.10

Individual {1052, 7554,

1302, 8217,

6023, 2780}

Fitness 0.823540

Experiment M3C

MProb 0.05

Individual {9898}

Fitness 0.821831

Figure 7.16: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with deterministic stickiness criteria and rotation

(Model 3).
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Experiment M4A

MProb 0.01

Individual {6265}

Fitness 0.819730

Experiment M4B

MProb 0.10

Individual {7271}

Fitness 0.817750

Experiment M4C

MProb 0.05

Individual {6065}

Fitness 0.816220

Figure 7.17: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with both probabilistic stickiness criteria and rotation

(Model 4).
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Comparing the number of changes made on each of the four models, it is certainly

clear that modifications on those including rotation have a significant impact in terms of

fitness value. For example, the numeric difference between the best individual of the first

generation and the best individual of the last generation in Model 1 (the simplest model)

is 0.1846 whilst the same calculi in Model 4 (the most complex model) is 0.023.

7.3.4 Summary

This section demonstrates a GA approach the goal of which is to design a set of Wang tile

families where instances are expected to self-assemble in a shape of 10×10 tiles. During this

evolutionary process, the instances of an individual are run with each of the four hierarchical

models presented in Subsection 7.1.3. Once the simulation finishes, the output is assessed

in terms of the USM introduced in Chapter 4.

After several GA experiments, the collected data has suggested that the simpler

the model, the better the performance of the individuals. This observation is supported

by the configurations captured in Figure 7.14, Figure 7.16, Figure 7.15 and Figure 7.17.

According to them, long vertical strips were found when tiles interact under Model 1 and

Model 3 whilst small scattered structures were achieved for Model 2 and Model 4.

In comparison to the aggregates obtained by the lattice scanning method presented

in Section 7.2, this new approach has shown that employing the USM does not address the

self-assembly Wang tiles design optimisation problem as efficiently as when applied to CA

parameters design optimisation. It is, therefore, the purpose of the next section to refine

further the fitness function through the morphological characterisation of each aggregate.
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Figure 7.18: Fitness evolution versus generations of the best experiments of each model against the

same target. According to the fitness evolution, the more complex the model is, the worse the fitness

values are. Experiments evolving self-assembly Wang tiles that interact with deterministic stickiness

criteria not only achieved the best performance but also produced large diversity across generations.
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7.4 Evaluation Method 3 – Minkowski Functionals Approach

This section aims to report on the last methodology employed to evaluate the individuals

of the GA used for the design optimisation of self-assembly Wang tiles. In contrast to the

information distance metric, this new strategy operates in an introspective way since the

performance of an individual is given in terms of the structural features of the achieved

self-assembled aggregates.

7.4.1 Architecture

In common to the previous approach, the individuals of the initial population are set up

with randomly created Wang tile families. After that, the population is subject to a series

of generations comprising evaluation, crossover and mutation. It is then in the evaluation

phase where instances of the Wang tile families comprising an individual are dropped into

a simulator executing Model i (i ∈ [1, 4]). Thus, once the simulation finishes, the fitness

is computed in terms of the Morphological Image Analysis method (MIA) considering the

whole collection of self-assembled aggregates. For example, if an individual Indi produces a

configuration Confi as depicted in Figure 7.19, then its evaluation takes place in the follow-

ing way. For each of the n aggregates the geometrical descriptors area (Aj), perimeter(Uj),

the connectivity characteristic Euler (χj) and the radius of gyration (Rgj) about the x-axis

are calculated. These numerical features together with the correspondent AT , UT , χT and

RgT of the target shape are evaluated by Equation 7.3 indicating how close, on average,

the achieved aggregates to the target shape are. Thus, the higher this numerical value, the

better an individual ranks.
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Figure 7.19: A set of tiles Si is placed into the simulator where after a number of steps achieves

the configuration Confi. For each of the aggregates, the area (Aj), perimeter(Uj), radius of gyration

(Rgj) and Euler (χj) are calculated.

Fitness(Indi) =
√

(∆A)2 + (∆U)2 + (∆χ)2 + (∆Rg)2

where ∆A = AT −
∑n

j=1
| AT −Aj |

n

∆U = UT −
∑n

j=1
| UT − Uj |

n

∆χ = χT −
∑n

j=1
| χT − χj |

n

∆Rg = RgT −
∑n

j=1
| RgT −Rgj |

n
(7.3)

Equation 7.3 calculates the mean distance between the area of the target shape and each

of the areas of the aggregates (∆A), the mean distance between the perimeter of the target

shape and each of the perimeters of the aggregates (∆U), the mean distance between the

Euler of the target shape and each of ones of the aggregates (∆χ) and the mean distances

between the radius of gyration of the target shape and the ones of the aggregates (∆Rg).
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7.4.2 Experiments

For each Model i (i ∈ [1, 4]), a set of five GA experiments initialised with three different

mutation probability values were run. For all of them, the population size, the maximum

length of the individuals, the crossover probability and the amount of generations remained

fixed. These parameters together with their values are shown in Table 7.9.

Population Size k Generations Evaluations XProb MProb

100 10 300 10 0.7 0.10/0.05/0.01

Table 7.9: GA parameters: population size, maximum length of the individuals (k), amount of

generations, number of evaluations per individual, crossover probability value (XProb) and mutation

probability value (MProb).

In addition, the simulator parameters such as the length of the simulation, the

temperature of the system τ , the number of glue strengths encoded in the interaction

matrix α, the range of strength values filling the matrix, the dimension of the user defined

shape and the lattice dimension are shown in Table 7.10. As in the two previous approaches,

the same symmetric matrix shown in Table 7.5 has been employed.

Sim Length τ α Strengths Target Shape Lattice

9000 4 10 [0, 9] 10× 10 tiles 800 × 600 cells

Table 7.10: Simulator parameters: simulation length, temperature of the system (τ), number of

glue types (α), range of discrete strength values, target shape and lattice dimensions.
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7.4.3 Results

The results for each of the GA experiments are summarised in Table 7.11 where MProb

holds the mutation probability value, Best Individual lists the fittest individual with score

Fitness and Id is the experiment in MiX notation where Mi stands for Model i (i ∈ [1, 4])

and X takes values A, B, C linked to the probability values 0.01, 0.10, 0.05 respectively, e.g.

M3C is the experiment where tiles undergo Model 3 and MProb = 0.05.

Observing the values under Fitness, it is interesting to note that the results of

those experiments where tiles are executed under Model 1 and Model 3 are quite similar

since the fitness of the best individuals vary between 12.00 and 16.00. Conversely, when the

execution model incorporates the probabilistic stickiness criteria, i.e. Model 2 and Model

4, there is a remarkable difference subject to the rotation feature. For example, the GA has

found more suitable solutions when experimenting with Model 3 than with Model 4.

In order to discern whether the GA has performed any kind of optimisation, an

additional examination over the data under Best Individuals reveals that the composition

of the individuals tends to be homogeneous when rotation is adopted. For instance, the

fittest individuals of Model 3 and Model 4 have been encoded with 1 or 2 families whilst

the ones of Model 1 and Model 2 have been encoded with up to 4. On the other hand,

from the geometrical characteristics of the achieved aggregates across Figure 7.20, Figure

7.21, Figure 7.22 and Figure 7.23, it is clear that their morphology is more similar to the

one of the target shapes when tiles interact under Model 2 or Model 4 .



7. an evolutionary approach to self-assembly wang tiles design 143

Deterministic Criteria & No Rotation

MProb Best Individual Fitness Id

0.01 {4483, 0859, 0869, 0999, 0969} 15.319270 M1A

0.10 {5909, 2449, 5809} 12.912152 M1B

0.05 {6622, 9900} 15.583095 M1C

Probabilistic Criteria & No Rotation

MProb Best Individual Fitness Id

0.01 {0217, 0771, 7047} 35.57111 M2A

0.10 {7517, 7410, 7557} 31.07997 M2B

0.05 {3550, 6467} 37.52435 M2C

Deterministic Criteria & Rotation

MProb Best Individual Fitness Id

0.01 {9999, 9088} 13.719727 M3A

0.10 {8890, 9999} 12.990824 M3B

0.05 {9999, 6576, 9999, 9999} 15.721738 M3C

Probabilistic Criteria & Rotation

MProb Best Individual Fitness Id

0.01 {7777, 7777, 7777, 7777, 7777, 7777} 27.830549 M4A

0.10 {7777, 7777} 27.004934 M4B

0.05 {7777} 28.063046 M4C

Table 7.11: Results summary for the best GA experiments. MProb holds the mutation probabil-

ity value, Best Individual encodes the fittest individual with score under Fitness and Id labels the

experiment.
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Experiment M1A

MProb 0.01

Individual {4483,
0859, 0869,

0999,0969}

Fitness 15.319270

Experiment M1B

MProb 0.10

Individual {5909, 2449,

5809}

Fitness 12.912152

Experiment M1C

MProb 0.05

Individual {6622, 9900}

Fitness 15.583095

Figure 7.20: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with deterministic stickiness criteria and no rotation

(Model 1).
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Experiment M2A

MProb 0.01

Individual {0217, 0771,

7047}

Fitness 35.57111

Experiment M2B

MProb 0.10

Individual {7517, 7410,

7557}

Fitness 31.07997

Experiment M2C

MProb 0.05

Individual {3550, 6467}

Fitness 37.52435

Figure 7.21: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with probabilistic stickiness criteria and no rotation

(Model 2).
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Experiment M3A

MProb 0.01

Individual {9999, 9088}

Fitness 13.719727

Experiment M3B

MProb 0.10

Individual {8890, 9999}

Fitness 12.990824

Experiment M3C

MProb 0.05

Individual {9999, 6576,

9999, 9999}

Fitness 15.721738

Figure 7.22: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with deterministic stickiness criteria and rotation

(Model 3).
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Experiment M4A

MProb 0.01

Individual {7777, 7777,

7777, 7777,

7777, 7777}

Fitness 27.830549

Experiment M4B

MProb 0.10

Individual {7777, 7777}

Fitness 27.004934

Experiment M4B

MProb 0.05

Individual {7777}

Fitness 28.063046

Figure 7.23: Aggregations, encoding and fitness values of the best individuals achieved by the GA

under MProb = 0.01, 0.10, 0.05. Tiles interact with probabilistic stickiness criteria and rotation

(Model 4).



7. an evolutionary approach to self-assembly wang tiles design 148

Figure 7.24 depicts the fitness evolution versus generations of the best experiment

for each of the models, i.e. M1C, M2C, M3C and M4C. Each point in these curves

represents the fitness of the best individual in a generation. The figure is reduced to half of

the generations as from generation 150 to 300 the fitness oscillate between the same values.

The analysis of these plots clearly reveal that the worse results were obtained when tiles

undergo models with deterministic stickiness criteria, e.g. Model 1 and Model 3. This

observation across generations comes to support the partial analysis done over Table 7.11.

Moreover, the figure also shows that there is an increasing variance among the

fitnesses of the best individuals of each generation as the model becomes more complex.

This result suggests that the morphological difference on the achieved configurations across

generations is more steady in Model 1 and Model 3 than in Model 2 and Model 4.

This indicates how important is the influence of the probabilistic stickiness criteria.

In average, each experiment has run for 5 days in a Sun V20z dual Opteron 248 (2.2GHz).

7.4.4 Summary

This section has presented a GA approach whose goal is to design Wang tile families,

instances of which are capable of crafting a square shape of 10 × 10 tiles by means of self-

assembly. During this evolutionary process, instances of an individual are left to interact

into a simulator executing one of the four hierarchical models presented in Subsection 7.1.3.

Once the simulation finishes, the output is assessed with an introspective methodology that

analyses the morphology of the achieved aggregates and returns a numerical value that acts

as the fitness of the individual.
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Figure 7.24: Fitness evolution versus generations of the best experiments of each model against

the same target. According to the fitness evolution, the more simple the model is, the worse the

fitness values are. Experiments evolving self-assembly Wang tiles that interact with deterministic

stickiness criteria had not only achieved the best performance but also produce large diversity across

generations.
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The contribution given by this approach evaluates the genotype in terms of Euler

connectivity and geometrical descriptors such as area, perimeter and radius of gyration.

This implementation results in an evaluation mechanism which is expensive in terms of time

given that, for each simulation, the aggregates of a configuration have to be detected and

evaluated separately. However, the way this evaluation takes place produces a more accurate

fitness calculation. From a more general point of view, this computed information gives not

only the quality but also the amount of achieved aggregations an individual contributes.

After several GA experiments, the numerical findings of the GA experiments have

suggested that the richer the model, the better the performance of the evolved individuals.

This observation is supported by both the configurations captured in Figure 7.20, Figure

7.21, Figure 7.22, Figure 7.23, and the trends of the fitness evolution versus generation of

Figure 7.24. According to these, large aggregates were found when tiles underwent Model

2 or Model 4 whilst these were small and scattered when subject to Model 1 and Model

3, indicating that the probabilistic stickiness criteria makes an important contribution in

the evolutionary design optimisation of self-assembly Wang tiles.

7.5 Conclusions

Engineering complex global structures or patterns from local interactions of a myriad of

components is challenging. From a computational point of view, the automated design of

local behaviour capable of achieving a particular global goal can be compared to the search

for specific programs or rules that allow the components to decide whether to bind others

under certain environmental properties. In this chapter, a GA approach to the automated
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design of self-assembly Wang tiles using lattice scanning, USM and morphological image

analysis as fitness function for individuals evaluation, has been presented.

In the lattice scanning method, the population has been mainly initialised with

Wang tile families whose instances are capable of self-assembling in complex aggregates as

rows and columns. These intermediate composites helped evolution to explore a more re-

duced search space since the GA is provided with some solutions which are morphologically

close to the specified target shape. Although the evaluation mechanism is built in terms

of an area that is scanned across the lattice counting the amount of embedded tiles, the

final results do not actually reflect the quality of the self-assembled aggregations since the

inspected sites do not consider whether the enclosed tiles are connected or not. Moreover,

the underlying idea of scanning was inflexible since a small geometric change in the look up

area would represent a considerable modification of the algorithm. Similarly, changes over

the topological features of the lattice or the tiles would lead to a complete reimplementation

and would eventually increase the evaluation cost.

In the information metric based approach, the population of the GA has been

randomly initialized and the simulator has been provided with four increasing models of

interaction in turn. In this case, once the simulation finishes, the obtained configuration is

captured in a binary image that is compared in terms of information distance with another

image that captures the target shape. Since this technique is based on Kolmogorov com-

plexity, an approximation in terms of data compression algorithm (JBzip2) has been used.
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The main features observed in this methodology were generality and independence at both

a geometrical and a topological level. These characteristics provide the maximum flexibility

and adaptation for both the evaluation of the self-assembled aggregates and the use of any

kind of tiles lattice or target shape. Although it presents a more dynamic mechanism of

evaluation, the quality of the results are yet not as favourable as the ones issued by the

lattice scanning approach.

In the Minkowski functionals approach, the initial population of the GA has been

randomly created and the simulator has been provided with the four models of interaction.

In this procedure, after performing the simulation of an individual, each of the self-assembled

aggregates found in the configuration is compared to the target shape in terms of Euler char-

acteristic, area, perimeter and radius of gyration. The main feature observed is its ability

for characterizing intricate forms that fuels the evolutionary process with accurate informa-

tion about the self-assembly process. Although this approach might be hard to extend on

different lattice topologies and dimensions, its implementation is not as rigid as the lattice

scanning. Overall, given the impressive similarity among the user defined shape and the

achieved aggregates, this fitness function emerges as the best among all the proposals for

evaluating the individual’s phenotype. Moreover, it does not require the implementation

of a pre-processing stage to seed the population with intermediate structures nor any pre-

assessment of external technologies such as compression algorithms.
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In order to show how the evolution has progressed, the best GA experiment when

employing the USM and Minkowski functionals is shown in a series of successive snapshots

by the following figures. For instance, Figure 7.25 presents the progress of the GA exper-

iment M1C when using the information distance metric approach across generations 0, 5,

21, 67, 153 and 180. This group of snapshots shows that the configuration achieved by the

best individual of the initial generation comprises several small structures scattered across

the two-dimensional lattice. A few generations later, at the sixth generation, the GA has

been able to evolve an individual that embodies vertical long strips uniformly distributed

in the configuration. From this generation in advance, there is not a significant contrast

in terms of aggregates’ morphology although the associated genotypes have increased in

fitness value. On the other hand, Figure 7.25 shows the progress of GA experiment M2C

when using the Minkowski functionals approach across generations 1, 8, 14, 24, 47 and 227.

As in the previous experiment, the best individual of the first generation embodies small

aggregates scattered across the lattice. After a few generations, the evolution has discovered

individuals whose instances are capable of self-assembling in larger aggregates; keeping a

stepwise improvement reflected in generations 14 and 24. Whilst the evolution steps up

towards the last generations, the achieved aggregates have gradually grown in dimension

nearly close to the target shape.
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Generation 0 Generation 5

Generation 21 Generation 67

Generation 153 Generation 80

Figure 7.25: Progress of GA experiment M1C when using the information distance metric approach

along generations 0, 5, 21, 67, 153 and 180.
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Generation 1 Generation 8

Generation 14 Generation 24

Generation 47 Generation 227

Figure 7.26: Progress of GA experiment M2C when using Minkowski functionals approach along

generations 1, 8, 14, 24, 47 and 227.
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Chapter 8

Genotype-Phenotype-Fitness Mapping Analysis

The previous two chapters reported on GAs for the design optimisation of CA parameters

and self-assembling Wang tiles. Apart from the significant findings, nothing has been yet

said about the efficiency by which individuals were evolved. In particular, given the fact

that the mapping from genotype to phenotype and from this to fitness is clearly a complex,

stochastic and non-linear relationship. One of the most common procedures would suggest

running many GA experiments for different configurations followed by a fitness compar-

ison, which is not only time-consuming but also inaccurate for such intricate mappings.

Thus, this chapter aims to report on a complementary dual assessment to analyse whether

the employed GAs are effective design optimisation methods for the two problems. The

following sections present a summary statistic to measure how effectively the fitness of an

individual correlates to its genotypic distance to a known optimum, and introduce clustering

as a mechanism to verify how the objective function can effectively differentiate between

dissimilar phenotypes and classify similar ones for the purpose of selection. Both proposals

are applied to instances of problems seen in Chapter 5, Chapter 6 and Chapter 7.
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8.1 Fitness Distance Correlation

Fitness Distance Correlation (FDC) [181] [182] is a summary statistic that performs a cor-

relation analysis in terms of a known optimum and samples taken from the search space,

predicting whether a GA will be effective for solving an optimisation problem. Thus, when

facing a minimisation (maximisation) problem, a large positive (negative) correlation indi-

cates that a GA may successfully treat the problem or that the problem is straightforward,

whereas a large negative (positive) value suggests that employing a GA may not be effec-

tive or that the problem is misleading. However, a correlation around zero, i.e. −0.15 ≤

FDC ≤ 0.15, would suggest that more nuisances, perhaps including scatter plots analyses,

of the fitness versus distance to the optimum should be done and, in general the problem

is categorized as difficult. The formula for computing the FDC is shown in Equation 8.1,

where n is the number of samples, fi is the fitness of sample i with distance to the known

optimum di, f and SF are the mean and standard deviation of the fitness values, and d and

SD are the mean and standard deviation of the distances.

FDC =
(1/n)

∑n
i=1

(fi − f)(di − d)

SF SD

f =
1

n

n
∑

i=1

fi

d =
1

n

n
∑

i=1

di

SF =

√

√

√

√

1

n− 1

n
∑

i=1

(fi − f)2

SD =

√

√

√

√

1

n− 1

n
∑

i=1

(di − d)2 (8.1)
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A study focused on whether FDC predicts the GA behaviour, and whether it

detects differences in encoding and representation for a number of well-studied minimisation

problems has been given in [181]. When predicting the GA behaviour, the FDC confirmed

that Deb & Goldberg’s 6-bit fully deceptive function and Whitley’s 4-bit (F2 and F3) fully

deceptive functions are indeed misleading since the correlation values were 0.30, 0.51 and

0.36 respectively, and the fitnesses tended to increase with the distance from the global

optimum. In addition, FDC also confirmed that problems like Ackley’s One Max, Two

Max, Porcupine and NK landscape problems for K ≤ 3 are easy since the correlation values

resulted in −0.83, −0.55, −0.88 and −0.35 respectively. Nevertheless, the FDC indicated

that NK(12,11) landscape, Walsh polynomials on 32 bits with 32 terms each of order 8,

Royal Road functions R1 and R2, as well as some of the De Jong’s functions like F2(12)

are difficult since the resulting correlation values were close to 0.0. When the differences

in encoding and representation were considered, experiments using Gray and binary coding

led to the conclusions that the superiority depends on the number of bytes used to encode

the numeric values. For instance, De Jong’s F2 with binary coding is likely to make the

search easier than with Gray coding when using 8 bits. In contrast, the correlation value of

F12 indicated that Gray coding works better than binary when using 12 or 24 bits.

An attempt to transfer FDC to Genetic Programming in order to study the equiv-

alent dynamics has been done in [183]. In this case, two different GP models based on trees

built upon function and terminal sets have been studied. In the first model, individuals

are forbidden to have as a child a function with an arity greater or equal than the arity

of the father, whereas in the second model such restriction is removed. Thus, individuals
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are evaluated with a fitness function defined in terms of their structural distance to the

optimum and an unimodal trap. In order to measure the success of a trap function, the

performance (p) was defined as the number of executions for which the global optimum has

been found in less than 200 generations over a total of 100 experiments. Thus, p and the

FDC have been calculated for various trap functions. The results have indicated that for

the first model, the performance went from 0 to 1 as the correlation varied from 1 to −1,

indicating that the FDC is an accurate predictor. In addition, the findings were similar

for the second model although the number of trap functions with FDC = −1 was larger

than the number found with the restricted model. In addition to these two experiments,

similar results were achieved with another trial towards a different optimum. Additional

satisfactory measures of problem difficulty analysing multimodal trap functions, royal trees

and the max problem were shown in [184].

Despite its successful application on a wide benchmarking set of problems, FDC is still

not considered to be a very accurate predictor in some other problems. A case where FDC

failed as a difficulty predictor has been presented when studying a GA maximising Ridge

functions [185]. Let S be a set of binary strings of length n, | S |= 2n, a string s ∈ S is

evaluated with a ridge function fn defined in Equation 8.2, where q is the number of con-

tiguous 1 starting from the left in s, m is the total number 1 in s and p is the total number

0 in s. Considering an optimum string sopt = 111 . . . 111 ∈ S, a specific path P of length

m is formed from the complement of the optimal towards the optimal as P = (000 . . . 000,

100 . . . 000, 110 . . . 000, . . ., 111 . . . 110, 111 . . . 111) where all si on-path P are given suc-
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cessively higher evaluations from the complement to the optimal as fn(si) < fn(si+1) for

1 ≤ i ≤ m. For instance, for n = 4, f4(1100) = 6 and f4(1010) = 2.

f(s) =















n + q if q > 0 and m = q

p otherwise

(8.2)

On the one hand, initial observations employing Hamming distance between an

individual and sopt, and Ridge functions starting with n = 20 have shown FDC values of

0.998906 tending to 1 as n tends to ∞ suggesting that Ridge functions would be difficult

to solve. On the other hand, a GA equipped with Roulette selection, a population size of

100 individuals, best fit merge and a mutation rate of 1/n has proven that the problem

is yet easy to treat since the average amount of evaluations needed to reach the optimum

represented a small fraction of the search space when experimenting with n = 20, 25, 30.

For instance, when n = 30 the average number of evaluations for achieving the optimum in

20 runs was 6921 which represents 0.0006% of the search space. In addition, experiments

using a GA without mutation found similar results since the average amount of simulations

has represented 0.0014% of the search space.

In summary, although FDC cannot be expected to be a perfect predictor of per-

formance, previous work reported in [186] [187] [188] [189] [190] suggests that it is indeed

a good indicator of performance. Therefore, the goal of the following sections is to assess

how effectively the fitness of an individual correlates to its genotype when using USM and

Minkowski functionals as fitness functions for the GA presented in Chapter 5, Chapter 6

and Chapter 7.
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8.2 Correlating the Cellular Automata Design

In a complex system such as the two CA-based investigated in Chapter 5 and Chapter 6, the

mapping from genotype to phenotype and then from phenotype to fitness is a highly complex

and computationally expensive non-linear and in some cases stochastic relationship. Figure

8.1 shows the three stage mapping process from genotype (the real numbered parameters)

onto a phenotype through the execution of the complex system (the CA model) itself and

then from this phenotype (a spatio-temporal pattern) onto a numerical fitness value via the

objective function (the USM).

Figure 8.1: Diagram of mappings from genotype onto phenotype and from phenotype onto numerical

fitness value, and relationship to the Fitness Distance Correlation.

As has been described, the FDC is a measure of how effectively the fitness of an

individual correlates to its genotypic distance to a known optimum. That is, given two

different genotypes, FDC measures the correlation of the (numerical) Euclidean distance

between them against their fitness values assigned by the objective function. If there is only

a small relationship between these two values, a parameter optimisation GA, or for that
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matter any metaheuristic based on the same representation, will not be too successful. For

this reason, since FDC performs an analysis of genotype-fitness relationship, the following

section pursues a USM assessment with FDC in order to study its effectiveness as fitness

function for the evaluation of captured spatio-temporal behaviours.

8.2.1 Experiments and Results

A data set comprising a number of spatio-temporal images was compiled for Turbulence CA

and Meta-automaton CA introduced in Chapter 5 and Chapter 6. In order to extend the

scope of the study, two CA are also included: CA Continuous and Gas Lattice CA which

are one-dimensional and two-dimensional CAs respectively, both implemented in Netlogo.

CA Continuous consists of a discrete time-space representation where the states

are encoded as continuous rather than discrete values allowing the model to create a rich va-

riety of complex behaviour. For instance, one of the applications of this system is modelling

the behaviour of a boiling liquid where at each time step, the value of a cell is a function

of its neighbours, in essence representing the process of heat diffusion. Some examples

generated with this implementation are captured in Figure 8.2.

Figure 8.2: Sample snapshots of spatio-temporal patterns from CA Continuous.

Gas Lattice CA is a system inspired in the Navier-Stokes equation derived from

the laws of conservation of mass, momentum and energy. Its dynamics are based on a set
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of particles associated with a certain velocity, living in a lattice and moving in a given

direction at every time step. Under these conditions, if two particles happen to share the

same lattice site, they collide and change their velocity. Four snapshots of the Gas Lattice

model are shown in Figure 8.3.

Figure 8.3: Sample snapshots of spatio-temporal patterns from Gas Lattice CA.

For each of the CAs, all the parameters, except one, were fixed and a number of

groups were generated as the variable parameter is altered along a certain range. For each

group, the CA was randomly initialised five times, hence resulting in 5 images per group.

Each image was labelled with the form xyz pQ where xyz refers to the CA model, p to the

group and Q to the pattern occurrence within that group. For example, turb e5 refers to

the fifth image in group e (i.e. the group generated with the variable parameter at value e)

of Turbulence CA. Table 8.1 lists for all the models: the number of groups for each model,

the number of images within the group, the NetLogo library and a list of parameters with

their names, values and domain. These images are available in Appendix A, Appendix B,

Appendix C and Appendix D. Hence, for each of the CAs, an image in turn was considered

as a target designoid (T ) against which the remaining snapshots of all the groups (Ti) were

evaluated on fitness using the USM and on distance using Euclidean difference among the

parameters of their associated genotypes (IndT and Indi) (see Equation 8.3).
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CA Continuous Gas Lattice CA

#Groups 11 12

#Images 5 per group 5 per group

Library CA Continuous Gas Lattice Automaton

Parameter ADD-CONSTANT RADIUS

Values 0.004, 0.1, 0.201, 0.301, 0.402,
0.502, 0.603, 0.703, 0.803, 0.9, 0.996

1, 10, 20, 30, 40, 50, 60, 70, 70, 80,
90, 100

Type Continuous Discrete

Parameter PRECISION-LEVEL DENSITY

Values 16 0

Type Discrete Discrete

Turbulence CA Meta-automaton CA

#Groups 10 10

#Images 5 per group 5 per group

Library Turbulence Own model

Parameter COUPLING-STRENGTH K-TIMES

Values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0

100

Type Discrete Discrete

Parameter ROUGHNESS RULES

Values 0.001 122, 148, 181, 120, 97, 135, 229, 131,
154, 133

Type Continuous Discrete

Table 8.1: Data set names, number of obtained groups per data set, number of images produced

per group, name of the NetLogo model, and name of the parameters used for the generation of the

spatio-temporal patterns.
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fi = f(Ti) = USM(Ti, T )

di = d(Indi, IndT ) = (

n
∑

k=1

(pari
k − parT

k )2)1/2

T is a target snapshot

pari
k is the k-parameter encoded in Indi (8.3)

The ranges listed in Table 8.2 show that the computed FDC values go from 0.214095 to

0.534271 in three out of four systems, indicating that the parameter design optimisation is

relatively easy for these CA models since the USM values have a relatively high correlation

with the associated genotypes of the snapshots. In particular, this information is very

well supported by the structures appearing in the scatter plots of Gas Lattice (see group e

depicted in Figure 8.4), although other models indicate that the USM may only be effective

in certain regions of the search space. For instance, plots of Turbulence may suggest that the

USM will be effective as fitness function of a GA only for target designoids with COUPLING-

STRENGTH values between 0.400 and 0.800 (see group f in Figure 8.5). Further plots in

Appendix E, Appendix F and Appendix G.

CA Model FDC range CA Model FDC range

Continuous [0.231396, 0.483353] Turbulence [0.214095, 0.330793]

Gas Lattice [0.351766, 0.534271] Meta-automata [-0.199424, 0.612101]

Table 8.2: Resulting maximum and minimum fitness distance correlation values for CA Continu-

ous, Turbulence, Gas Lattice and Meta-automata CA models.
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Figure 8.4: Graphics of the resultant scatter plots and correlation coefficients for the group e of

Gas Lattice model showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure 8.5: Graphics of the resultant scatter plots and correlation coefficients for the group f of

Turbulence model showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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On the other hand, the findings obtained after applying the FDC to the Meta-

automaton is more diverse. In this case, the figures range in total from −0.199424 to

0.612101, from where only 20% of the experiments reveal that USM values have a high

correlation with the associated genotypes of the snapshots. In particular, the FDC values lay

in [−0.199424, 0.159087] for groups metaK1 bQ, metaK1 cQ, metaK1 gQ and metaK1 iQ,

for 1 ≤ Q ≤ 5, indicating that it is difficult for the GA to achieve the optimum rule for

any given snapshot of these four. However, the level of difficulty decreases when analysing

groups metaK1 aQ, metaK1 dQ, metaK1 fQ and metaK1 hQ, for 1 ≤ Q ≤ 5, as their

correlation values range in [0.252358, 0.591984]. In addition, any snapshot belonging to

either group metaK1 eQ or group metaK1 jQ, for 1 ≤ Q ≤ 5, would be easier to evolve

since their FDC values range in [0.446261, 0.612101] (see group j depicted in Figure 8.6).

Most of these findings match with the results obtained by the GA in Chapter 7 although

some counter examples were found. For instance, the GA has found the correct rule when

given metaK1 c1 (T 1
3 ) as the target snapshot whereas the FDC analyses reported correlation

coefficients which suggest that the problem is difficult to solve over five instances of this

group. Conversely, the GA was not able to achieve a designoid when metaK1 f1 (T 1
6 )

was set as the target snapshot although the FDC analyses concluded that the GA may

successfully treat the problem. A special point to highlight is that the evolved mirror

snapshot achieved for metaK1 d1 (T 1
4 ) is indeed supported by the FDC analyses, although

the same line of reasoning indicates the opposite in the case of metaK1 b1 (T 1
2 ). Further

scatter plots are available in Appendix H.
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Figure 8.6: Graphics of the resultant scatter plots and correlation coefficients for the group j of

Meta-automaton model showing that the USM has a relatively high correlation with the genotype of

the spatio-temporal behaviour pattern.
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8.3 Correlating the Self-Assembly Wang Tiles Design

Another highly complex, non linear and stochastic relationship among mappings from geno-

type to phenotype and then from phenotype to fitness is observed when approaching the

self-assembly Wang tiles design optimisation problem seen in Chapter 7. The three-stage

mapping process from genotype (the set of tiles) onto phenotype through the execution of

the complex system (simulator) and then from the assembled aggregates onto a numerical

value via the objective function (the assembly assessment) is shown in Figure 8.7.

Figure 8.7: Diagram of mappings from genotype onto phenotype and from phenotype onto numerical

fitness value, and relationship to the Fitness Distance Correlation.

Since different set of tiles may self-assemble in aggregates similar in shape to the

target structure, it is again of interest to study how effectively the fitness of an individual

correlates to its genotypic distance to a known optimum. Given that Minkowski funtionals

represented the best approach, the following section pursues its FDC analysis in order to

study its effectiveness as fitness function for the evaluation of the achieved aggregates.
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8.3.1 Experiments and Results

In order to perform a FDC analysis, the best individual found by the Minkowski functionals

approach when using probabilistic criteria and no rotation (Section 7.1.3 of Chapter 7) has

been chosen. A data set comprising 500 individuals at different Hamming distances from

the best individual was created. In particular, given two individuals Indi and Indj of same

length, their Hamming distance H is defined as in Equation 8.4.

H(Indi, Indj) =

n
∑

k=1

diff(T i
k, T

j
k )

diff(Ti, Tj) =

3
∑

l=0

ci
l ⊖ cj

l

ca ⊖ cb =















1 if ca 6= cb

0 otherwise

ca, cb ∈ Σ (8.4)

Thus, this 500 individuals data set comprises all the possible chromosomes at

Hamming distance of 1 plus some other randomly generated individuals at greater dis-

tance, all of these systematically generated following the pseudocode described in Algorithm

1 where DuplicateReplacing(Tk, cl, cnew) duplicates tile Tk replacing colour cl with cnew,

DuplicateReplacing(Indi, Tk, Tnew) duplicates individual Indi replacing tile Tk with Tnew,

T ileAt(Indi, k) returns the tile at position k of an individual, and Replace(Tk, cl, cnew)

replaces colour cl in tile Tk with colour cnew.
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Algorithm 1 GenerateIndividuals

Input: Ind an individual

Output: S a set of individuals

1. for all tiles Tk in Indi do

2. for all colours cl in Tk do

3. for all colour cnew ∈ Σ do

4. Tnew ← DuplicateReplacing(Tk, cl, cnew)

5. Indnew ← DuplicateReplacing(Indi, Tk, Tnew)

6. Insert(S, Indnew)

7. end for

8. end for

9. end for

10. while | S |< 500 do

11. Indnew ← Duplicate(randomly chosen Indi ∈ S)

12. n← Random(0, | Indnew |)

13. for all k to n do

14. Tk ← T ileAt(Indnew, k)

15. m← Random(0, 3)

16. for all l to m do

17. cnew ← Random(Σ \ cl)

18. Replace(Tk, cl, cnew)

19. Insert(S, Indnew)

20. end for

21. end for

22. end while
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In total, each of the generated individuals was simulated 5 times giving as a result

a group with equal number of final configurations. Thus, a configuration in turn was

considered as a target (ConfT ) against which the remaining configurations of all the groups

(Confi) were evaluated on fitness (fi) and on distance (di) among their associate genotypes

(see Equation 8.5).

di = H(indi, indT )

fi = f(Confi) = Eval(Confi, ConfT ) =
√

(∆A)2 + (∆P)2 + (∆N )2

∆A = max{AT
1 , . . . , AT

m} −max{Ai
1, . . . , A

i
n}

∆P =
m

∑

k=1

P T
k −

n
∑

k=1

P i
k

∆N = m− n (8.5)

Since a configuration comprises a collection of aggregates, a way is needed to

perform an evaluation involving all its aggregations collectively. For this reason, considering

a target configuration ConfT and an arbitrary one Confi with aggregates {AT
1 , . . . , AT

m} and

{Ai
1, . . . , A

i
n} respectively, Confi will be evaluated upon ConfT in terms of the difference

in areas, perimeters and number of achieved aggregations as shown in Equation 8.5.

After performing the calculations, the findings show that the FDC values range

from −0.331444 to 0.281457. Since Equation 8.5 defines a minimisation, 50.60% of the FDC

values indicate that using a GA may not be effective, 44.72% that the problem is difficult

to solve and a 4.68% that the GA may successfully treat the problem (see Figure 8.8). In
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Figure 8.8: Proportion of FDC values falling into difficult, misleading and easy to solve cate-

gories. From the 2500 analyses performed over 500 individuals, only a 4.68% reveals that a GA may

successfully treat the problem.

particular, visual inspections over scatter plots obtained from the values captured into the

smallest percentage depict good correlation on 3 individuals (see Figure 8.9). Hence, from

the sampling of 500 individuals and 2500 simulations subject to FDC analyses, it emerges

that employing Minkowski functionals as fitness function does not offer a proper correlation

upon the relationship genotype-fitness for half of the putative samples.

Contrary to the interpretations given by some of the FDC figures seen in this

section, the results reported in Chapter 7 reveal that using Minkowsi functionals as evalua-

tion method of a GA has positively addressed the self-assembly Wang tiles design problem.

Henceforth, analyses on the phenotype-fitness relationship are expected to shed light on the

reasons for which such evolutionary approach has been effective.
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Figure 8.9: Graphics of the resultant scatter plots and correlation coefficients for the self-assembly

Wang tiles model showing that the Minkowski functionals has a relatively satisfactory correlation

with the genotype for some of the self-assembly Wang tile families.
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8.4 Cluster Analysis

In all the problems investigated in this thesis, several different genotypes can encode the

same phenotype and hence introduce severe noise in the FDC analysis. As, ultimately, se-

lection is based on fitness which in turn depends on the phenotype, studying the phenotype-

fitness mapping could shed light on why the GAs worked quite well, even though in some

cases FDC says it should not. For this reason, this section introduces clustering as a method

for analysing the phenotype-fitness relationship in both CAs design optimisation and self-

assembly Wang tiles design optimisation.

Cluster analysis or clustering is a technique for grouping objects according to their

similarities [191] [192] [193] [194]. In contrast to classification, clustering is an unsupervised

task in which a set of objects is partitioned in groups, called clusters, according to their

proximities such that those belonging to a cluster are more similar to each other than objects

in a different cluster. A clustering procedure comprises four basic stages: feature selection

or extraction, clustering algorithm selection, cluster validation and results interpretation.

In the first stage, the features by which the objects will be distinguished are chosen. This

pairwise affinity is then considered to compute a proximity matrix to which a cluster strategy

is applied. The resulting partition of the data is subject to a subsequent testing criteria

in order to validate the clustering process. Finally, a visualization and interpretation over

the achieved clusters closes the procedure with the hope of providing meaningful insights

coming from the original data. The whole inter-relation among these tasks can be seen as

a sequential procedure as detailed and commented in Figure 8.10.
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Figure 8.10: Clustering procedure comprising feature selection, inter-object comparison, clustering,

validation of data partition and results interpretation.

Clustering algorithms are classified as hierarchical, partitioning, density-based par-

titioning, grid-based, evolutionary methods and so forth in [194] [195] [196]. Although there

are slight differences among the proposed taxonomies, many are the common features asso-

ciated with them [192]. For instance, according to their structure and operation, a clustering

algorithm is agglomerative if clusters arise from singletons (bottom-up) or divisive if one

super cluster is split in several ones (top-down). The sequential or simultaneous use of ob-

ject features in the clustering process also plays an important role as it defines whether the
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algorithm is monothetic or polythetic. Additionally, it is also reported that some method-

ologies allow objects to belong to a single cluster (hard classification) or to multiple clusters

(fuzzy classification). Besides these three characterizations, a clustering algorithm can also

be deterministic, stochastic, incremental or non-incremental if there are constraints on ex-

ecution time or memory affecting the architecture of the algorithm.

The clustering methods appearing in the literature are, mainly, variants of the

hierarchical agglomerative clustering. Among them, the single-link (SLINK), complete-link

(CLINK) or minimum-variance [197] are the best-known where their differences lay on the

way they characterise the similarity between pairs of clusters. In addition, the Unweighted

Pair Group Method using arithmetic Average (UPGMA), Weighted Pair Group Method

using arithmetic Average (WPGMA), the Unweighted Pair Group Method using Centroids

(UPGMC) and the Weighted Pair Group Method using Centroids (WPGMC) are also

broadly employed in many applications [198] [199] [200].

8.5 Clustering the Cellular Automata Snapshots

As pointed out in Section 8.2, the mapping genotype-phenotype and phenotype-fitness is a

highly complex, non-linear relationship. In the CA-based systems previously investigated,

there is a mapping process that goes from genotype (the real numbered parameters) onto

phenotype through the execution of the CA model itself, and from this (the spatio-temporal

snapshot) onto a numerical fitness value computed by the USM (see Figure 8.11).
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Figure 8.11: Diagram of mappings from genotype onto phenotype and from phenotype onto nu-

merical fitness value, and relationship to clustering analysis.

Although FDC has been used to assess the quality of the representation vis-à-vis

the fitness function, e.g. [201], it has never been combined with a clustering process to

obtain better insight of the complex mapping described above. For this reason, to verify

the phenotype-fitness relationship, this part of the research proposes the use of clustering

and for this to be effective, the feature selection and clustering algorithm to be employed

are presented in the next subsection. It is important to remark that the aim here is not to

uncover any structure among the data since this is known a priori by their construction.

8.5.1 Experiments and Results

In order to proceed with the clustering experiments, the CA Continuous, Turbulence, Gas

Lattice and Meta-automata snapshots generated for the FDC analysis in Section 8.2.1 are

employed. As these CA spatio-temporal snapshots comprise the clustering input data, the

feature selection for which objects are expected to be distinguished is their information
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content. Thereby, the measure of affinity between every pair of snapshots (Ti, Tj) is com-

puted in terms of USM, values of which are stored in a symmetric matrix Ms of n × n (n

is the number of snapshots) as defined in Equation 8.6. Although a number of different

clustering methods and representations are available, the unweighted pair-group method us-

ing arithmetic average (UPGMA) [202] has been chosen along with a logarithm dendogram

representation to visualize and interpret the data partition.

Ms[i, j] =















USM(Ti, Tj) if i 6= j

0 otherwise

Ms is a proximity matrix s.t. Ms[i, j] = Ms[j, i]

Ti, Tj are snapshots

1 ≤ i, j ≤ n (8.6)

The pseudocode for the clustering algorithm is UPGMA outlined in Algorithm 2

where MergeRows joins the content of row i and row j, MergeColumns joins the content

of column i and column j and MakeNode associates i and j in a node that InsertNode

will add to the hierarchical structure T .
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Algorithm 2 MakeCluster

Input: Ms a proximity symmetric matrix

Output: T a hierarchical structure

1. while dimension(Ms) ≥ 3× 3 do

2. for all i, j such that i 6= j do

3. minimum← min(Ms[i, j],Minimum)

4. end for

5. MergeRows(Ms, i, j)

6. MergeColumns(Ms, i, j)

7. Ms[k, ij] ← avg(Ms[k, i],Ms[k, j])

8. Ms[ij, k] ← avg(Ms[i, k],Ms[j, k])

9. node←MakeNode(i, j)

10. InsertNode(T, node,minimum)

11. end while

The first experiment was conducted over CA Continuous snapshots. The resulting

data partition in which eleven clusters have been clearly created is shown in Figure 8.12.

An important characteristic to note within this structure is the homogeneity of each of the

eleven partitions, i.e. each branch comprises labels of the form cac pQ where p is fixed and

Q varies from 1 to 5. More important, this fact reveals that there is a strong correlation

phenotype-fitness since the USM has been capable of detecting similarities among snapshots

of the same creational group as well as dissimilarities among those created with different

parameter values. Each branch shows a representative snapshot of each image class.
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Figure 8.12: Illustration of the logarithmic cluster tree for snapshots belonging to the CA Continu-

ous model. Clustering the fifty-five spatio-temporal patterns of this model have generated the expected

clusters each of which corresponds to the eleven creational groups.
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An outcome with similar characteristics was achieved after processing Turbulence

snapshots. The resulting partition of data is depicted in Figure 8.13 where a number of

ten different clusters is easy to visualize. As previously seen, these groups are also homo-

geneously constructed, i.e. each cluster contains labels of the form turb pQ with group id

(p) fixed and occurrence number (Q) varying from 1 to 5. Despite this result, it is inter-

esting to note that there is an outlying snapshot (turb c4) along the central stem of the

dendogram. Although this misplacement may suggest a total dissimilarity to its peers, the

assigned location still reflects a certain degree of similarity since the snapshot is not far

from the cluster where those of the same creational group are placed.

An additional positive finding was obtained after processing Gas Lattice snapshots.

The resulting data partition shown in Figure 8.14 reveals that eleven homogeneous clusters

were created with a dendogram topology rather different from the ones obtained in the two

previous experiments. In this case, the central axis gives origin to six stems from where

binary branches extend the clusters. A remarkable fact to notice is that the clusters are

sequentially arranged. That is, a series of clusters lat aQ, lat bQ, lat cQ, lat dQ, lat eQ,

lat fQ, lat gQ, lat hQ, lat iQ, lat jQ, lat kQ and lat lQ, for 1 ≤ Q ≤ 5, is found in

alphabetic order starting from lat aQ and going clockwise. This interesting distribution

resembles indeed the order in which the snapshots of this model have been created.
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Figure 8.13: Illustration of the logarithmic cluster tree for snapshots belonging to the Turbulence

model. Clustering the fifty spatio-temporal patterns of this model have generated the expected clusters

each of which corresponds to the ten creational groups.
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Figure 8.14: Illustration of the logarithmic cluster tree for snapshots belonging to the Gas Lattice

model. Clustering the sixty spatio-temporal patterns of this model have generated the expected clusters

each of which corresponds to the eleven creational groups.
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In order to subject the USM to a more challenging assessment, the total number

of snapshots corresponding to the three systems studied below were taken together for

clustering. Hence, considering n snapshots of CA Continuous (TCAC
i ), m snapshots of

Turbulence (T TUR
r ) and l snapshots of Gas Lattice (TLAT

s ), the proximity matrix Ms storing

inter-snapshot similarities is now generated as defined in Equation 8.7.

Ms[i, j] =



































































































USM(TCAC
i , TCAC

j ) if i 6= j ∧ 1 ≤ i, j ≤ n

USM(TCAC
i , T TUR

r ) if i 6= j ∧ 1 ≤ i ≤ n < j ≤ n + m

USM(TCAC
i , TLAT

s ) if i 6= j ∧ 1 ≤ i ≤ n ∧ n + m < j ≤ l + n + m

USM(T TUR
r , T TUR

t ) if i 6= j ∧ n < i, j ≤ n + m

USM(T TUR
r , TLAT

s ) if i 6= j ∧ n < i ≤ n + m < j ≤ n + m + l

USM(TLAT
s , TLAT

u ) if i 6= j ∧ n + m < i, j ≤ n + m + l

0 if i = j

Ms is a proximity matrix s.t. Ms[i, j] = Ms[j, i]

1 ≤ i, j ≤ n + m + l ∧ 1 ≤ r, t ≤ m ∧ 1 ≤ s, u ≤ l (8.7)

Thus, after applying Algorithm 2 to Ms, the resulting cluster analysis reveals that

inter-system and intra-system characteristics were very well captured by the USM. On the

one hand, the features captured at inter-system level are manifested by the creation of three

clear partitions of the data, in which the Turbulence objects (red), the CA Continuous ones

(green) and the Gas Lattice instances (blue) are located (Figure 8.15).
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Figure 8.15: Illustration of the logarithmic cluster tree for snapshots belonging to the Turbulence,

CA Continuous and Gas Lattice models. The characteristics of the three different collections were

detected giving three different logical partitions locating the Turbulence model objects in the top, the

CA Continuous in the middle and the Gas Lattice model instances at the bottom.
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These divisions along the dendogram aim to support that the information con-

tained in each of the three CA models is indeed different from one another, but shared

among the snapshots belonging to the same system. On the other hand, the features cap-

tured at intra-system level matches with the ones found when the systems were analysed

individually, i.e. the snapshots within a system belonging to the same creational group have

been placed together. For example, the ten clusters containing five snapshots each (a to

j) when observing the central stems (green) correspond to the CA Continuous. Both the

inter-system and intra-system characterizations suggest that the USM is a successful, direct

proximity measure capable of making distinction not only in terms of information content

but also, in this case, in terms of colours as the systems’ snapshots are colour-based patterns.

Two supplementary experiments employing Meta-automaton snapshots were con-

ducted. In both cases, the Meta-automaton spacial dynamics was divided in two (K-TIMES

= 50). That is, cells were divided in groups of 50 consecutive cells to which a rule from

the pool of 256 elementary rules was applied. In order to conduct the first experiment, an

algorithm that receives a pair of elementary rules (r1, r2) as input and generates a set of

16-pairs of elementary rules S = {(ra, rb) | ra 6= rb ∧ ra, rb ∈ [0, 255]} in terms of muta-

tion and Cartesian product was implemented. The complete pseudocode of this process is

shown in Algorithm 3 where MutateRule(ri) returns an elementary rule in [0, 255] \ {ri},

Insert(S, elem) inserts an element elem in S and Get(S) returns a copy of an element

included in S. In particular, consider that Get(S) in line 16 returns a different element for

each of the values that j takes per iteration of the i-loop.
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Algorithm 3 RulesCreator

Input: (r1, r2) a pair of elementary rules r1, r2 ∈ [0, 255]

Output: S a set of pairs of elementary rules

1. Sa ← {}

2. Sb ← {}

3. S ← {}

4. Insert(S, (r1, r2))

5. for all i ∈ [1, 3] do

6. ra ←MutateRule(r1)

7. Insert(Sa, (ra, r2))

8. Insert(S, (ra, r2))

9. rb ←MutateRule(r2)

10. Insert(Sb, (r1, rb))

11. Insert(S, (r1, rb))

12. end for

13. for all i ∈ [1, 3] do

14. (ra, r2)← Get(Sa)

15. for all j ∈ [1, 3] do

16. (r1, rb)← Get(Sb)

17. Insert(S, (ra, rb))

18. end for

19. end for
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Hence, considering the arbitrary pair of rules (60, 102) as input of Algorithm 3,

16 pairs of rules shown in Figure 8.16 were obtained. Afterwards, for each (ra, rb) ∈ S,

groups of five randomly initialised, spatio-temporal patterns were generated assigning ra

and rb to the first and second 50-cells slot of the Meta-automaton. Each of these patterns

was captured in snapshots labelled as meta pQ where p refers to the group and Q to the

occurrence within that group. Representatives and their rules are shown in Figure 8.16.

meta p1 / (60, 120) meta a1 / (122, 102) meta b1 / (167, 102) meta c1 / (161, 102)

meta d1 / (60, 129) meta e1 / (60, 105) meta f1 / (60, 103) meta g1 / (122, 129)

meta h1 / (122, 105) meta i1 / (122, 103) meta j1 / (167, 129) meta k1 / (167,105)

meta l1 / (167, 103) meta m1 / (161, 129) meta n1 / (161, 105) meta o1 / (161, 103)

Figure 8.16: Sixteen resulting snapshots after processing (60, 102) with Algorithm 3. Labels of the

form xyz pQ / (ra, rb) indicate group and associated creational rules.
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As in the first three experiments, an inter-snapshots proximity matrix Ms was

built and set as input of the UPGMA clustering algorithm. This two-steps process gave as

a result a data partition in Figure 8.17 revealing homogeneous and heterogeneous clusters.

On the one hand, homogeneous clusters are straightforward to observe in the

central region of the stem grouping the snapshots of meta eQ, meta fQ, meta lQ, meta mQ

and meta pQ for 1 ≤ Q ≤ 5. Other instances on a smaller scale are the grouping of meta o2

with meta o3 (magenta) as well as meta i2 with meta i4 (red).

On the other hand, the heterogeneous clusters are divided in two types: bipartite

clusters and tripartite clusters. Bipartite clusters are observed at the bottom of the den-

dogram where meta bQ (black) with meta kQ (green), meta aQ (yellow) with meta hQ

(magenta), or meta cQ (cyan) with meta nQ (red) populate the same group. In each of

these cases, the USM has captured similarity by pattern matching at the left side of the

snapshots. This fact is indeed supported by the way the snapshots were constructed. For

instance, the ones in meta bQ (black) and meta kQ (green) were created using the pair of

rules (167, 102) and (167, 105) respectively. Yet another particular instance of this type of

relationship is also seen in the cluster comprising meta o4 (magenta) and the snapshots of

meta dQ (green). Tripartite clusters appear at the top of the dendogram in which the whole

meta jQ (cyan) plus meta i1 (red), meta i3 (red) and meta o3 (magenta) are grouped to-

gether, and at the top-left in which the five snapshots of meta gQ (blue) are clustered with

meta i5 (red) and meta o1 (magenta). In both cases, the linkage between the prominent

group and the other snapshots suggests that the USM has captured common structures

such as triangular particles or diagonal strips.
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Figure 8.17: Illustration of the logarithmic cluster tree for snapshots belonging to the Meta-

automaton model, rules of which were obtained with Algorithm 3. The data partition reveals both

homogeneous and heterogeneous clusters.
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In order to perform the second experiment, nine groups of 5 snapshots each were

generated from arbitrary chosen pairs of rules. This experiment differs from the latter in the

sense that there is no underlying mechanism of creation for establishing a relation among

the generated groups of snapshots. A representative snapshot of each group together with

its rule is depicted in Figure 8.18.

meta a1/(122, 102) meta j1/(167, 129) meta q1/(177, 132)

meta r1/(218, 62) meta s1/(111, 42) meta t1/(1, 5)

meta u1/(77, 239) meta v1/(145, 26) meta w1/(57, 225)

Figure 8.18: Representative snapshots of groups generated with nine arbitrary chosen rules. Labels

of the form xyz pQ / (ra, rb) indicate group and associated creational rules.

Thus, after creating and processing the inter-snapshots proximity matrix Ms, the

resultant data partition is shown in Figure 8.19.
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Figure 8.19: Illustration of the logarithmic cluster tree for nine arbitrary groups of snapshots

belonging to the Meta-automaton model. The data partitions reveal homogeneous and heterogeneous

clusters where some similarities seemed to have been found in terms of complementary mirrored

snapshots.



8. genotype-phenotype-fitness mapping analysis 195

On the one hand, the achieved dendogram reveals that the USM has detected

very well the similarities among the snapshot belonging to meta tQ, meta aQ, meta jQ,

meta wQ and meta sQ, resulting from the five homogeneous clusters. On the other hand,

due to the differences in number and length of the underlying structures, the snapshots of

meta vQ were placed in two distinct homogeneous partitions. The first one hosts snapshots

meta v1 and meta v2 (red) each of which have long, vertical, black strips at the left side

and large, triangular, white structures at the right side. The second partition, however,

comprises meta v3, meta v4 and meta v5 (red), where the triangular white structures are

considerably smaller and the growth of the black strips seems interrupted by diagonal

particles “falling” from the right (see Figure 8.20).

meta v1 meta v2 meta v3 meta v4 meta v5

Figure 8.20: A group of snapshots split in two clusters. Snapshots meta v1 and meta v2 with

long, vertical, black strips (left side) and large, triangular, white structures (right side) were hosted

together whereas meta v3, meta v4 and meta v5 were distinguished by their tiny triangular white

structures and the black strips broken by diagonal particles “falling” from the right.

In the same way, snapshots meta r1, meta r2, meta r4 and meta r5 (cyan) were placed

in separate clusters due to their underlying structures. Following an analogous analysis,

the long, compact, triangular strips at the right side characterise the first two snapshots.

Conversely, the intensified “falling” diagonal particles, which make these strips shorter and

less dense, place the last two snapshots in a different partition (see Figure 8.21).
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meta r1 meta r2 meta r4 meta r5

Figure 8.21: Length, size and density of the vertical strips at the right side of the snapshots

differentiate meta r1 and meta r2 from meta r4 and meta r5.

Nevertheless, snapshots meta u1, meta u4 and meta u5 (green) were also clustered

apart from their two other peers. In this case the separation is clearly evident as it is

explained by the black trapezoidal area that appears at the bottom right corner of some

snapshots, but it is missing in the rest (see Figure 8.22).

meta u1 meta u4 meta u5 meta u2 meta u3

Figure 8.22: A group of snapshots split in two clusters. The separation is clearly evident as it is

explained by the black trapezoidal area that appears at the bottom right corner of meta u1, meta u4

and meta u5 and is absent in meta u2 and meta u3.

The remaining clusters in Figure 8.19 consist of snapshots coming from different

creational groups. Such is the case of the partitions hosting meta q2 (red) with meta u3

(green), meta q3 (red) with meta u2 (green), and meta q4 (red) with meta r3 (cyan). In

each of these pairwise clusters, the USM seemed to have detected similarities in terms of

complementary mirrored snapshots, likewise the results seen in Chapter 6. For instance,
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complementing and mirroring snapshot meta q4 results in a snapshot meta q4 c similar

to meta r3 as Figure 8.23 shows. The same line of reasoning may help understand the

allocation of meta q1 and meta q5 close to meta u1 and meta r1 respectively. Figure 8.23

depicts the complementary mirrored snapshots of meta qQ, for 1 ≤ Q ≤ 5, together with

their alike counterparts as detected by the USM.

meta q1 c meta u1

meta q2 c meta u3 meta q3 c meta u2

meta q4 c meta r3 meta q5 c meta r1

Figure 8.23: Complementary mirrored snapshots of meta qQ, for 1 ≤ Q ≤ 5, together with their

alike counterparts as seemed to be detected by the USM.

Although FDC analyses performed in Section 8.1 say that using USM as fitness

function is not always effective in all the experiments performed above the clustering con-

firms that it is. This is the reason why overall the GAs findings are significant.
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8.6 Clustering the Self-Assembly Wang Tiles

As it was seen in Section 8.3, there is also a complex, non-linear, stochastic relationship

observed in the mapping from genotype (the tiles) to phenotype and from phenotype (the

assembled aggregates) to fitness (numerical value) in the self-assembly Wang tiles evolu-

tionary design optimisation problem.

Figure 8.24: Diagram of mappings from genotype onto phenotype and from phenotype onto nu-

merical fitness value, and relationship to clustering analysis.

As in the previous section, the clustering procedure indicated in Section 2 will

be applied at phenotype level with the hope of obtaining a better insight and of verifying

the phenotype-fitness relationship (see Figure 8.24). For this to be effective, the cluster

analysis is considered over the final configurations obtained by the individuals created with

the algorithm of Section 8.3.1 and from where the resulting findings of this methodology will

be used as a complementary assessment of the Minkowski functionals as fitness function.
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8.6.1 Experiments and Results

In order to undertake the cluster experiments, the whole set of final configurations obtained

from the self-assembly Wang tile simulations performed in Section 8.3.1 is employed. As

these configurations comprise the actual clustering input data, the feature selection by which

the objects are expected to be distinguished is the number of aggregates, their perimeters

and the biggest aggregate area. Thereby, the measure of affinity between each pair of

configurations (Confi, Confj) is computed in terms of the evaluation function (see Equation

8.5) and stored in the similarity matrix Ms defined in Equation 8.8. Likewise, for the cluster

experiments performed in the previous section, the UPGMA algorithm is employed by which

resultant data partitions will be visualized and interpreted over a dendogram representation.

Ms[i, j] =















Eval(Confi, Confj) if i 6= j

0 otherwise

Ms is a proximity matrix s.t. Ms[i, j] = Ms[j, i]

Confi, Confj are final configurations

1 ≤ i, j ≤ 2500 (8.8)

Thus, the resultant data partition showing eight clusters labelled as A, B, C, D,

E, F, G and H is depicted in Figure 8.25. By sampling representative configurations from

each of these clusters, it is possible to observe that the data has been well partitioned since

the distribution and morphology of the aggregations is mostly similar in each of the clusters.
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Figure 8.25: Illustration of the logarithmic cluster tree for self-assembly Wang tiles configurations,

individuals of which were obtained with Algorithm 1.
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On the one hand, by analysing the partitions located at the top part of the den-

dogram, the configurations of cluster H reveal scattered tiles with no or very few small

aggregates like those appearing in the snapshot of Figure 8.26 (a). Conversely, represen-

tatives of cluster G reveal large-size aggregates with very few unassembled tiles as in the

configuration depicted in Figure 8.26 (b). Close to these two types of partitions, the con-

figurations of cluster F have achieved assemblies which are either large in size and merged

with some small others as shown in Figure 8.26 (c), or medium-size aggregates combined

with few others of minor area as shown in the configuration in Figure 8.26 (d).

(a) (b)

(c) (d)

Figure 8.26: Representatives of three clusters: (a) Scattered tiles and small size aggregates char-

acterise partition H; (b) large aggregates feature partition G; (c-d) large and small size aggregates

as well as medium and small size aggregates characterise partition F.
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On the other hand, from an analysis of some representatives belonging to the

bottom right partitions labelled as A and B, it is evident that the morphology of the

aggregates is contrary to the ones described before. For instance, the configurations observed

in A comprise either aggregates with dendritic shape along with scattered tiles as shown

in Figure 8.27 (a), or small strips also sharing the lattice with few unconnected tiles as

depicted in Figure 8.27 (b). Similarly, the aggregations found in cluster B also comprise

small rectangular aggregates although mixed with T-shaped and L-shaped structures in

most of the cases as appears in configurations of Figure 8.27 (c) and Figure 8.27 (d).

(a) (b)

(c) (d)

Figure 8.27: Representatives of two clusters: (a-b) dendritic aggregates along with scattered tiles

and small strips with few unconnected tiles characterise partition A; (c-d) the appearance of T-shaped

and L-shaped structures characterise partition B.
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The three partitions located at the central part of the dendogram seem to represent

a transition between the two analyses done above. For instance, the configurations belonging

to cluster D mostly show medium-size strips together with a vast number of scattered

tiles distributed across the lattice as it is shown in Figure 8.28 (a) and Figure 8.28 (b).

Configurations with similar morphology and a reduced number of scattered tiles are among

those observed in cluster E (see Figure 8.28 (c)). Moreover, the same partition also includes

some other type of configurations where aggregates are usually large and, in many cases,

surrounded by scattered tiles (see Figure 8.28 (d)).

(a) (b)

(c) (d)

Figure 8.28: Representatives of two clusters: (a-b) medium strips surrounded by a vast number

of scattered tiles distributed across the lattice identify partition D; (c-d) a number of scattered tiles

approaching to nil and some big aggregates characterise partition E.
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Finally, the occurrence of large- and medium-size aggregates combined with scat-

tered tiles is the common feature that identifies the configurations observed in partition C

(see Figure 8.29).

(a) (b)

Figure 8.29: Two representatives configurations of partition C showing large- and medium-size

aggregates combined with unassembled tiles distributed across the lattice.

To summarise, the findings achieved after applying cluster analyses over the 2500

final configurations, i.e. product of simulating 500 individuals, come to support the view

that there is in fact an acceptably high correlation between the phenotypes and their fitness

values. In other words, these findings verify that Minkowski functionals can effectively

differentiate between dissimilar phenotypes and classify similar ones for the purpose of

selection.

8.7 Conclusions

This chapter has presented a dual assessment to study the effectiveness of the proposed

GAs as methods for the design optimisation of CA parameters and self-assembly Wang tiles

shown in Chapter 5, Chapter 6 and Chapter 7 respectively.
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Such is the complexity of the genotype-phenotype-fitness mapping, that FDC can-

not, alone, be guaranteed to give a completely accurate picture. Indeed, the objective func-

tion itself is also only an approximation of two individuals’ phenotypic similarity. For these

reasons, relying on only FDC or only clustering to validate complex problems as the ones

solved here would not be adequate. It is for this reason that both methods were combined

with the aim to show whether a given fitness function is a suitable evaluation mechanism

for the evolutionary design optimisation problems addressed in Chapter 5, Chapter 6 and

Chapter 7.

In the CAs instances presented in Chapter 5 and Chapter 6, the GA findings

added some support for the use of compression-based information distance metrics, such as

the USM, as fitness functions. However, from the analysis of the FDC and clustering, one

could expect (and this was indeed confirmed by the evolutionary runs) that there would

be cases where the USM cannot properly inform the evolutionary process. Moreover, an

introspective analysis of the cases where the FDC reported poor correlation and where the

USM induced bad clustering can shed light on ways on improving the fitness function used.

In a similar way, the results obtained with the morphological image analyses in Chapter 7

supports the use of Minkowski functionals as fitness function, although only 5% of the FDC

analysis applied to the systematically obtained individuals of length 2 has revealed that the

use of GA may successfully solve the problem. On the other hand, the cluster analyses have

accurately classified the configurations according to their morphological features, supporting

the way in which the fitness function evaluates the self-assembled aggregates.
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As a general conclusion, the combination FDC plus cluster analysis presented in

Subsection 8.2 and Subsection 8.5 indicates that the use of USM – with both the chosen

representation and genotype to phenotype mapping – are amenable for the evolutionary

design of complex systems such as CAs. However, the FDC analysis and scatter plots also

reveal that some of the target spatio-temporal patterns might be more difficult to evolve

than others. So it is expected that the evolutionary algorithm would, in some cases, find

it difficult to evolve suitable patterns. Similarly, the application of this dual methodology

in Subsection 8.3 and Subsection 8.6 reveals that employing a fitness function in terms of

Minkowski functionals for the evolutionary design optimisation of self-assembly Wang tiles

results in a complex mechanism of evaluation where, although its success as phenotype

evaluator seems to be appropriate, a different type of analysis is needed for an assessment

of how effectively an individual correlates to its genotypic distance to a known optimum.

Considering the combination of the results presented in Chapter 5, Chapter 6

and Chapter 7 and those shown in this chapter, it emerges that employing the combina-

tion clustering plus FDC is a dual assessment that reveals an accurate indication of the

quality of the encoding, i.e. genotype, its mapping to phenotype and USM or Minkowski

functionals as fitness functions. Therefore, the application of this methodology before start-

ing long and expensive evolutionary runs should be considered in any problem where the

genotype-phenotype-fitness mapping is complex, stochastic, many-to-many and computa-

tionally expensive. Thus, this protocol analysis is a contribution of general interest beyond

self-assembly and self-organisation optimisation design.
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Chapter 9

Self-Assembly Dynamics

In this dissertation, a GA approach for the design optimisation of four hierarchical simula-

tion models of self-assembling Wang tiles was presented. After that, a complementary dual

assessment combining FDC and clustering in order both to diagnose whether the proposed

GA effectively tackles the problem and to analyse how the objective function accurately

differentiates phenotypes was introduced. In addition to the significant evolved designs

and the indicators collected after studying the complex, non-linear relationship genotype-

phenotype-fitness, attention should also be given to the role of the model dynamics and

to how the information it provides is processed across evolution. Consequently, this chap-

ter explores the emergent mechanisms of cooperation among tiles and the way in which

the strength values encoded in the interaction matrix are employed across the evolutionary

process. The first section presents a methodology to explore the underlying cooperative

strategies that evolved tiles employ to promote self-assembling, whilst the second part fo-

cuses on phenotypic evolutionary activity. This chapter extends a book chapter published

in “Systems Self-Assembly: Multidisciplinary Snapshots” [203]
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9.1 Emergence of Generalised Secondary Structures

Understanding how autonomous components, equipped with a limited local view of an ex-

tensive decentralized environment, find the way of arranging themselves in large aggregates

is not a straightforward task. For instance, consider the twelve-steps animation depicted

in Figure 9.1 in which a set of self-assembly Wang tiles describes one of the many possible

ways to build a square shape when undergoing Model 2.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 9.1: Simulation of an individual undergoing Model 2: (1-3) three tiles self-assembling in

a pseudo-corner; (4-5) tile 3 moves up due to probabilistic criteria whilst tile 4 assembles and tile 5

approaches the aggregation; (6-7) tile 5 assembles, tile 3 moves downwards and tile 2 moves to the

right; (8-10) tiles 6 and 7 assemble; (11-12) due to the probabilistic critieria, tile 7 moves up as two

extra tiles complete the square shape.
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The collective stochastic behaviour among these tiles demands a systematic and

careful analysis of their local (edge-to-edge) interactions in order to understand the causes

by which large structures emerge. In other words, the interest lays in addressing the fol-

lowing question:

Given an evolved self-assembly Wang tile system, how would a target shape emerge out

of tiles’ interactions ? i.e. how did the evolutionary process “engineer” self-assembly ?

For this reason, the current section aims to unveil the many co-operative strategies of as-

sembly operating as intermediate steps for the creation of supra-aggregates. In particular,

the focus here is centred on the enumeration of all the possible combinations of two, three,

four and five tiles in which the resultant strength among the edges to collide is greater than

the temperature of the system. These intermediate tile assemblies are referred as Gener-

alised Secondary Structures (GSSs) which are deemed to be building blocks for achieving a

target shape across evolution. The name is inspired by protein’s secondary structures that

are thought to be the key milestones for its three-dimensional conformation. GSSs were

also referred as self-organised higher order structures which are hyperstructures created

under constant external influence [204] [205]. Hyperstructures are attributed to the result

of emergence and hierarchy which is a cumulative structure (not necessarily recursive) of

primitive agents interacting and forming second order agents with new properties and lev-

els of interaction. It has been observed that it is precisely by this new unfolded levels of

interaction that a system is able to produce further and yet more profound complexity.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 9.2: GSSs across the simulation of an individual undergoing Model 2.

Figure 9.2 uncovers the participating GSSs of the simulation shown in Figure 9.1.

Tiles in which their edges are painted in red or yellow constitute what is called three-tiles

self-assembly GSS whilst those painted in cyan or magenta define a four-tiles self-assembly

GSS. Later on, the place where the approaching tile is about to collide will be referred as

the binding site (green box). In order to give a more accurate definition of GSSs, consider

the four groups of images depicted in Figure 9.3. The first row characterizes two-tiles self-

assembly GSSs. A GSS belonging to this group is an elementary assembly formed by the

interaction of only two tiles and it is the most simple and primitive type of GSSs.
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Two-tiles self-assembly GSSs

(a) (b) (c) (d)

Three-tiles self-assembly GSSs

(e) (f) (g)

Four-tiles self-assembly GSSs Five-tiles self-assembly GSSs

(h) (i)

Figure 9.3: Two, three, four and five-tiles self-assembly Generalised Secondary Structures (GSSs)

which operate as intermediate steps for the creation of supra-aggregates across the evolutionary

process.
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Considering the tiles Tp and Tx, two-tiles self-assembly GSSs comprise the four

potential aggregates where Tx attempts to stick on north of Tp (Figure 9.3 (a)), east of Tp

(Figure 9.3 (b)), south of Tp (Figure 9.3 (c)) or west of Tp (Figure 9.3 (d)).

The second group characterizes the three-tiles self-assembly GSSs. These are el-

ementary assemblies obtained by the interaction among three tiles. Considering the tiles

Tp, Tq, Tx and Ty, these are the six aggregates where Tx (Ty) attempts to assemble Tp and

Tq when coming from the west (east) (Figure 9.3 (e)), when Tx (Ty) comes from the north

(south) (Figure 9.3 (f)) and when a tile attempts to assemble to any other two forming a

pseudo-corner structure. Following Figure 9.3 (g), this last group is formed by aggregates

where Tx attempts to assemble Tp and Tq when coming from north-east; Tz to Tq and Tr

when coming from the south-east; Ty to Ts and Tr when coming from south-west; and Tw

to Ts and Tp when coming from north-west.

Following the similar line of reasoning, four-tiles self-assembly GSSs and five-tiles

self-assembly GSSs are defined as the elementary assemblies formed by the interaction of

four and five tiles respectively. Considering the tiles To, Tp, Tq, Tr, Ts, Tx, Ty, Tw and Tz,

the former group comprises the four aggregates where Tx attempts to assemble Tq, To and

Tr when coming from the east; Ty to Tr, To and Ts when coming from the south; Tz to Tp,

To, and Ts when coming from the west; and Tw to Tp, To and Tq when coming from the

north (Figure 9.3 (h)).

In the latter, five-tiles self-assembly GSS is the aggregate obtained when tiles Tp,

Tq, Tr and Ts attempts to assemble Tx from north, east, south and west respectively (Figure

9.3 (i)).
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In order to enumerate the two, three, four and five-tiles self-assembly GSSs, four

independent algorithms which receive an individual (Indi), a matrix encoding the glue types

interaction (M) and returns the GSSs were implemented. The pseudocode to enumerate the

two-tiles self-assembly GSSs is shown in Algorithm 4 where N , S, E and W are functions

that return the glue type associated to the north, south, east or west edge of a given tile

respectively and SH , SV are sets of pair of tiles that self-assemble in elementary structures

of two tiles as shown in Figure 9.3 (b-d) and Figure 9.3 (a-c) respectively, i.e. in horizontal

or vertical fashion.

Algorithm 4 Enumerate Two-Tiles GSSs

Input: Indi an individual, M interaction matrix

Output: SH , SV sets of two-tiles self-assembly GSSs

1. for all tiles Tp, Tx in Indi do

2. if M [N(Tp), S(Tx)] > τ or M [S(Tp), N(Tx)] > τ then

3. Insert(SV , (Tp, Tx))

4. end if

5. if M [W (Tp), E(Tx)] > τ or M [E(Tp),W (Tx)] > τ then

6. Insert(SH , (Tp, Tx))

7. end if

8. end for

The pseudocode for enumerating the three-tiles self-assembly GSSs is shown in

Algorithm 5 where SH , SV , S1, S2, S3, S4 are sets comprising tuples of three tiles self-

assembling as shown in Figure 9.3 (e), Figure 9.3 (f) and as in each of the four pseudo-corners

depicted in Figure 9.3 (g) respectively.
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Algorithm 5 Enumerate Three-Tiles GSSs

Input: Indi an individual, M interaction matrix

Output: SH , SV , S1, S2, S3, S4 sets of three-tiles self-assembly GSSs

1. for all tiles Tp, Tq, Tx in Indi do

2. if M [S(Tp), N(Tx)] + M [N(Tq), S(Tx)] > τ then

3. Insert(SV , (Tp, Tq, Tx))

4. end if

5. if M [E(Tp),W (Tx)] + M [W (Tq), E(Tx)] > τ then

6. Insert(SH , (Tp, Tq, Tx))

7. end if

8. if M [N(Tp), S(Tx)] + M [W (Tq), E(Tx)] > τ then

9. Insert(S1, (Tp, Tq, Tx))

10. end if

11. if M [E(Tp),W (Tx)] + M [N(Tq), S(Tx)] > τ then

12. Insert(S2, (Tp, Tq, Tx))

13. end if

14. if M [S(Tp), N(Tx)] + M [E(Tq),W (Tx)] > τ then

15. Insert(S3, (Tp, Tq, Tx))

16. end if

17. if M [W (Tp), E(Tx)] + M [S(Tq), N(Tx)] > τ then

18. Insert(S4, (Tp, Tq, Tx))

19. end if

20. end for
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In a similar way, Algorithm 6 draws the pseudocode for enumerating the four-tiles

self-assembly GSSs. In this case, S1, S2, S3, S4 comprises tuples of four tiles capable of

self-assembling as in each of the four alternatives shown in Figure 9.3 (h).

Algorithm 6 Enumerate Four-Tiles GSSs

Input: Indi an individual, M interaction matrix

Output: S1, S2, S3, S4 sets of four-tiles self-assembly GSSs

1. for all tiles Tp, Tq, Tr, Tx in Indi do

2. if M [E(Tp), N(Tx)] + M [N(Tq), S(Tx)] + M [W (Tr), E(Tx)] > τ then

3. Insert(S1, (Tp, Tq, Tr, Tx))

4. end if

5. if M [S(Tp), N(Tx)] + M [E(Tq),W (Tx)] + M [N(Tr), S(Tx)] > τ then

6. Insert(S2, (Tp, Tq, Tr, Tx))

7. end if

8. if M [W (Tp), E(Tx)] + M [S(Tq), N(Tx)] + M [E(Tr),W (Tx)] > τ then

9. Insert(S3, (Tp, Tq, Tx))

10. end if

11. if M [S(Tp), N(Tx)] + M [W (Tq), E(Tx)] + M [N(Tr), S(Tx)] > τ then

12. Insert(S4, (Tp, Tq, Tx))

13. end if

14. end for

Finally, the pseudocode depicted in Algorithm 7 presents the mechanism to enu-

merates five-tiles self-assembly where S is a set comprising tuples of five tiles capable of
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self-assembling GSSs as depicted in Figure 9.3 (i).

Algorithm 7 Enumerate Five-Tiles GSSs

Input: Indi an individual, M interaction matrix

Output: S set of five-tiles self-assembly GSSs

1. for all tiles Tp, Tq, Tr, Ts, Tx in Indi do

2. if M [S(Tp), N(Tx)]+M [W (Tq), E(Tx)]+M [N(Tr), S(Tx)]+M [E(Tr),W (Tx)] > τ

then

3. Insert(S, (Tp, Tq, Tr, Tx))

4. end if

5. end for

9.1.1 Experiments and Results

With the four algorithms at hand, the following analysis aims to inspect which type and

how many GSSs were discovered by the evolutionary process. For this purpose the best

individuals achieved by the GA when employing the Minkowski functionals as fitness func-

tion (see Chapter 7) was employed. That is, for every combination of two, three, four and

five tiles of an individual, the algorithms will explore which possible arrangements in which

the resultant strength among the edges to collide are greater than the temperature, that is

which intermediate GSSs are stable thus potentially able to “seed” the target structure.

Two-tiles self-assembly GSSs were found in some of the experiments using Model

1 and Model 3. For instance, the best individuals found by experiments M1A and M1B

have only one tile capable of sticking to any other tile, thus increasing the chances to

form small self-assembly aggregations at the beginning of the simulation. A similar fact is
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observed by the individuals found in M3A, M3B and M3C. These analyses are shown in

Table 9.1, Table 9.2, Table 9.3 and Table 9.4 where each element of the column Tiles is the

entry point in the table. The combination of N, S, E and W labels the edges by which the

tile binds to another, e.g. NS means instances where the two tile types could assemble by

their north and south edges.

Tiles

EW NSEW NSEW NSEW

NSEW - - -

NSEW - - -

NSEW - - -

Table 9.1: Two-tile self-assembly GSSs analysis on experiment M1A. Tile 4483 sticks to any other

increasing the possibilities of obtaining early small self-assembled aggregates.

Tiles

- NSW -

NSE NSEW NSE

- NSW -

Table 9.2: Two-tile self-assembly GSSs analysis on experiment M1B. Tile 2449 sticks to any other

boosting the possibilities of forming early small self-assembled aggregates.
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Tiles

- - - - -

- EW ES ESW SW

- NW SN SW SWN

- EWN EN WE WN

- EN ESN ES SN

Table 9.3: Two-tile self-assembly GSSs analysis for the best individual obtained with experiments

M3A and M3B. Tile 9088 together with its three alternative rotations is the only one capable of

self-assembling to any other.

Tiles

- NESW NESW NESW NESW

NESW NS S E W

NESW N WE W S

NESW W E NS N

NESW E N S WE

Table 9.4: Two-tile self-assembly GSSs analysis for the best individual obtained with experiment

M3C. Tile 6576, together with its three alternative rotations, is the only one capable of self-assembling

to any other.
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Interestingly, in the experiments using Model 2 and Model 4, there is no pos-

sibility of obtaining two-tiles self-assembly GSSs. That is, there are no combinations of

two tiles such that the glue types at their sticking edges obtain a strength greater than

the temperature in the system. Hence, three-tiles co-operation is an emergent feature of

the system where more than two tiles are required in order to initiate self-assembly. This

kind of cooperation was recognised by Winfree and Rothemund in [73] as necessary for

programmable self-assembly and it is a remarkable result that the evolutionary design of

self-assembly Wang tiles achieved precisely that – namely, high cooperativity.

Therefore, for those experiments where two-tiles self-assembly GSSs are not ob-

served, the possible combinations of three tiles are considered; i.e. where one tile attempts

to stick to any other two as shown in Figure 9.3 (e), Figure 9.3 (f) and Figure 9.3 (g). In

order to make this characterization more tractable, a further analysis counting the number

of occurrences for each type of GSSs is performed, i.e. according to the direction from where

the red tiles approach in Figure 9.3 (e-g). The outcome of the analysis is summarised in

Table 9.5. On the one hand, a few three-tiles self-assembly GSSs are employed in those

experiments using Model 1. For instance, experiment M1A has developed only 1 occur-

rence for a particular type of GSS whereas experiment M1C has achieved up to 1 occurrence

for each of the six possible types of three-tiles self-assembly GSSs. On the other hand, in

Model 2 and Model 4, it emerges that a total of 97 occurrences of this type of GSSs were

developed by M2A, 96 by M2B, 15 by M2C and 6 by experiments M4A, M4B and M4C.

Experiments performed with Model 3 do not report any occurrence.
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M1A M1C M2A M2B M2C M4ABC

1 1 15 27 1 1

− 1 16 9 2 1

− 1 16 15 3 1

− 1 17 15 3 1

− 1 14 15 3 1

− 1 19 15 3 1

Total 1 4 97 96 15 6

Table 9.5: Amount of three-tiles self-assembly GSSs occurrences found for the best individual

obtained with experiments M1A, M1C, M2A, M2B, M2C and M4ABC.

The last analyses concerning GSSs attempt to reveal if four-tiles self-assembly

GSSs (Figure 9.3 (h)) and five-tiles self-assembly GSSs (Figure 9.3 (i)) also participate in

the formation of supra-aggregates. Certainly, these have been found only in some individuals

of Model 1 and Model 2. The figures for experiments M1C and M2A are listed in Table

9.6. In the former, only 2 occurrences of four-tiles self-assembly GSSs and 1 of five-tiles

self-assembly GSSs were found. In contrast, M2A registers a total of 26 occurrences of

four-tiles self-assembly GSSs and none involving co-operation among five tiles.

It is interesting to note that among the results obtained when analysing the three-

tiles self-assembly GSSs (Table 9.5), some of the elementary assemblies are more likely to

occur than others. For instance, the figures under M2B reveal that some GSSs will par-

ticipate with a total of 27 occurrences while others participate with just 9 or 15. In fact,
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Total

M1C − 1 1 − 2 M1C 1

M2A 7 5 9 5 26 M2A −

Table 9.6: Amount of four-tiles and five-tiles self-assembly GSSs occurrences found for the best

individual obtained with experiments M1C and M2A.

these numbers indicate the percentage of participation for a given type of GSS, but they do

not really reflect how much strength they contribute. In other words, this fact brings into

discussion the following question:

Given a set of GSSs, is there any way to identify which are the most likely to partici-

pate in the self-assembly process ?

In order to answer this question, the total strength by which any three tiles are expected to

contribute to building a three-tiles self-assembly GSS, is calculated. Inspired by the quan-

tification of free energy contributions taking place in proteins [73] [206], this value receives

the name of Normalised Average Free Energy (NAFE). Thus, Equation 9.1, Equation 9.2,

Equation 9.3 and Equation 9.4 calculate the NAFE for those binding sites where the Tx

tile would bind when coming from north-east, south-east, north-west and south-west re-

spectively (Figure 9.3 (g)) whilst Equation 9.5 and Equation 9.6 compute the NAFE for

those where the Tx tile would bind when coming from east (west) (Figure 9.3 (e)) and north

(south) (Figure 9.3 (f)). In these equations, G is the glue function where its arguments are
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tile edges, e.g. the north edge of the x-tile is T n
x , and |Indi| is the length of the individual.

NAFEne(Tx, Tp, Tq) =

∑|Indi|
x=1

(G(T e
p , Tw

x ) + G(T n
q , T s

x))

|Indi|
(9.1)

NAFEse(Tx, Tr, Tq) =

∑|Indi|
x=1

(G(T e
r , Tw

x ) + G(T s
q , T n

x ))

|Indi|
(9.2)

NAFEnw(Tx, Tp, Ts) =

∑|Indi|
x=1

(G(Tw
p , T e

x) + G(T n
s , T s

x))

|Indi|
(9.3)

NAFEsw(Tx, Tr, Ts) =

∑|Indi|
x=1

(G(Tw
r , T e

x) + G(T s
s , T n

x ))

|Indi|
(9.4)

NAFEe/w(Tx, Tp, Tq) =

∑|Indi|
x=1

(G(T s
p , T n

x ) + G(T n
q , T s

x))

|Indi|
(9.5)

NAFEn/s(Tx, Tp, Tq) =

∑|Indi|
x=1

(G(T e
p , Tw

x ) + G(Tw
q , T e

x))

|Indi|
(9.6)

The equations given above contribute with an analytical step to identify which of the three-

tiles self-assembly GSSs are on average more likely to participate in a self-assembly process.

This process is applied to each of the individuals resulting from the experiments summarised

in Table 9.5. The obtained results are further partitioned in equivalence classes in which it

is said that two GSSs are deemed equivalent if their NAFEs have equal value. The resulting

partitions for experiments M1A, M1C, M2A, M2B, M2C, M4ABC – short for M4A, M4B

and M4C – are shown in Table 9.7 and Table 9.8. These results reveal that the total amount

of GSSs provided by equivalence classes with NAFE lesser than or equal to τ is greater than

the quantity provided by equivalence classes with higher NAFE. In other words, GSSs with

NAFE smaller than τ are highly likely to participate in the self-assembly process.
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Individual 4483-0859-0869-0999-0969 (M1A)

Eq. Class NAFE Quantity Eq. Class NAFE Quantity

i 7.0 2 xvii 7.4 2

ii 8.6 4 xviii 3.6 8

iii 3.2 6 xix 15.2 1

iv 2.6 10 xx 12.8 1

v 6.8 2 xxi 13.2 1

vi 8.0 8 xxii 3.8 2

vii 3.4 24 xxiii 8.4 2

viii 7.8 4 xxiv 10.0 4

ix 7.6 6 xxv 7.2 1

x 4.4 6 xxvi 3.0 12

xi 8.8 2 xxvii 9.8 4

xii 9.2 2 xxviii 12.0 1

xiii 2.2 4 xxix 14.4 1

xiv 9.6 2 xxx 2.8 20

xv 8.2 2 xxxi 10.8 1

xvi 14.0 1 xxxii 4.2 4

Individual 6622-9900 (M1C)

Eq. Class NAFE Quantity Eq. Class NAFE Quantity

i 2.0 6 iv 2.5 8

ii 1.5 8 v 1.0 1

iii 3.0 1

Table 9.7: Equivalent classes, normalised average free energy values (NAFE) and amount of bind-

ing site configurations for the best individuals found by experiments M1A and M1C.
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Individual Individual 0217-0771-7047 (M2A)

Eq. Class NAFE Quantity Eq. Class NAFE Quantity

i 3.0 3 iv 4.66 6

ii 3.33 12 v 4.33 3

iii 3.66 18 vi 4.0 12

Individual 7517-7410-7557 (M2B)

Eq. Class NAFE Quantity Eq. Class NAFE Quantity

i 2.0 1 v 3.0 8

ii 5.0 4 vi 4.33 18

iii 5.33 3 vii 4.0 14

iv 3.33 6

Individual 3550-6467 (M2C)

Eq. Class NAFE Quantity Eq. Class NAFE Quantity

i 2.0 5 iv 3.0 8

ii 3.5 4 v 2.5 1

iii 5.0 1 vi 4.5 5

Individual 7777 (M4ABC)

Eq. Class NAFE Quantity

i 6.0 6

Table 9.8: Equivalent classes, normalised average free energy values (NAFE) and amount of bind-

ing site configurations for the best individuals found by experiments M2A, M2B, M2C and M4ABC

- short for M4A, M4B and M4C.
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The analyses shown in this section have contributed with a procedure to quantify

and identify key emergent cooperative for understanding the mechanisms employed by the

evolved tiles for self-assembling into supra-aggregates. The findings have revealed that

generalized secondary structures naturally emerge as a product of artificial evolution acting

as milestones across the design optimisation process. From these observations, the selection

of the appropriate glue strengths may also play a crucial role for the discovery of those

tiles capable of self-assembling into the target shape. This is the reason why the following

section expands in a methodology that aims to investigate the activity of the glue strengths

in terms of adaptation across generations.

9.2 Evolutionary Activity

In the previous section, the GSSs were introduced as elementary assemblies that character-

ize the way in which large structures emerge out of local interactions among tiles. Although

the identification of these GSSs clearly contributes to a systematic understanding of how co-

operativity among tiles takes place, nothing has yet been said about how evolution selects,

across generations, the adequate type and number of glue strengths to perform a successful

self-assembly of large aggregates. It is therefore a crucial part of the analysis to answer the

following question:

Given a GA for the design optimisation of self-assembly Wang tiles, is there any way to

measure how the glue strengths participate in the evolutionary process ?
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In order to envisage this adaptive phenomena in evolving systems, a general framework

for defining and measuring evolutionary activities is defined in [207]. An evolutionary ac-

tivity is a statistic that measures the extent to which components of an evolving system

have been resisting selection pressure over its entire history. The general idea is based on

the identification of the component to analyse, a way to define its activity and the initial

activity values. Once the component is chosen, the focus must be on which instances of

these are present in the system at a given time including births and deaths, since the extant

components of most of the evolving systems change over time. In most of the cases, the

activity of a component is stored in its activity counter. Hence, if new components are

added to the evolving system, their activity counters must be initialized either by assigning

the same initial value at all times or by subject to the context. Usually, the activity counter

is incremented at each moment that the component exists, e.g. when there is exposure to

selection, and in terms of its concentration in the population.

In order to visualize an evolutionary activity, the activity distribution function and

activity wave were defined in [208]. The first concept combines information about how the

activity of each component changes over time whilst the second is the associated visualiza-

tion method comprising salient lines called waves. These graphs depict how the evolutionary

activity of the components (on the y-axes) varies as function of time (on the x-axis) by the

presence of waves. In particular, each wave corresponds to a single component of interest

mapping its evolutionary activity over time. For instance, when the birth of a compo-

nent takes place, a new wave arises from the x-axis increasing its slope as the observed

concentration of its associated component grows. When the component goes extinct, its



9. self-assembly dynamics 227

associated wave falls to zero and ends, reflecting the changes in concentration. Since many

components co-exist in the evolving system, it is also possible that multiple waves co-exist

in the activity wave diagram, uncovering interactions that may affect the concentrations of

the components. Thus dominating components would appear as dominating waves during

a given epoch of evolution.

The application of evolutionary activity statistics can be seen in systems under-

going cultural evolution such as is reported in [209] where the aim is to create an empirical

picture of the adaptive dynamics in the evolution of patented inventions. More studies of

activity distribution functions for genotypes were performed in Holland’s Echo model [94],

Packard’s Bugs model [210], taxonomic families in the fossil record [211], evolution of assem-

bly language programs [208], the Santa Fe artificial stock market [212], Lindgren’s model of

evolving strategies in the iterated prisoner’s dilemma [213], Ray’s Tierra model [214] and

multimeme algorithms [215], to name but a few. In the following experiments, the activity

of interest is considered at the phenotypic level given that it is a more convenient method

when genes are highly epistatic. For this reason, the focus of the analysis will be upon the

cooperation mechanisms operating among the self-assembly Wang tiles of an individual.

9.2.1 Experiments and Results

Considering the findings achieved by Model 4 when applying the Minkowski functionals

as fitness function (see Chapter 7), the experiments in this section aim to visualize the

evolutionary activity over the glue strengths (0...9) employed by the GSSs. Thus the evo-

lutionary activity ai(t) maps the cumulative usage for a glue of strength i, as instantiated
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by some GSS, up to generation t. This is specified in Equation 9.7 where Ci(t) refers to the

concentration in the population of glues with strength i at generation t. A cut-off of 0.1

was used for the concentration so as to capture only significant glues, hence when it falls

below 0.1 the counting is restarted.

ai(t) =















∑t
j=k Ci(j) if Ci(j) > 0

0 otherwise

(9.7)
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Figure 9.4: Activity waves of the 10 different glue strengths of the system when undergoing Model

4. Crests depict the degree of participation of the glue strengths along the evolutionary process as

two tiles attempt to assemble.

The chart in Figure 9.4 shows the resulting activity waves of the possible glue

strengths for a representative run of the evolutionary algorithm under Model 4. The
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analysis is applied to all the possible two-tiles assemblies. Since this model is invariant

under rotation, glue strengths arising from interactions in the X or Y axis are equivalent.

Thus, the evolutionary activity plots in Figure 9.4 show how the algorithm explores several

strategies for building two-tiles interactions at the beginning of the run, that is, all the glue

strengths are (to a degree) initially represented. As the evolutionary process progresses,

several glue strengths are discarded and they become extinct, i.e. their evolutionary waves

vanish, only to be replaced with a glue strength of 2, 1 and 3 until generation 80. This

happens because strong links – glue strengths bigger than τ – form assemblies too early

which are too different, chaotic and small from the target. Therefore, it must preserve

glues that by being close to the “edge of chaos”, in this instant τ , can co-operatively

assemble but also correct early errors by disassembling. From generation 115 onwards, glue

strengths 3 drives all the rest to extinction. Since the temperature τ is 4, it is important

to notice that this glue strength is the smallest that is closer to τ . Hence, the two-tile

assemblies, although not sticking permanently, do have a high chance of staying together.

Thus, evolution “tunes” the stickiness of two-tiles generalised secondary structures so as

to avoid premature aggregations but still having a high chance of building up higher order

GSSs.

9.3 Conclusions

Such is the complexity of the system, that the autonomy, stochastic behaviour and variety of

configurations makes it difficult to understand of how large aggregates emerge out of many

local interactions that have been fine-tuned by evolution. The first part of this chapter
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has presented a methodology to quantify and explore the many self-assembly cooperative

mechanisms among tiles. As an overall conclusion, it is important to say that certain types of

observed cooperation, defined here as generalized secondary structures, emerge as a product

of artificial evolution serving as building blocks for the assembly of greater aggregates. In

addition, it is also interesting to note that the less complex the simulation model, the smaller

the resulting aggregations as two-tiles self-assembly GSSs become not only common but also

frequent building blocks. In contrast, experiments using tiles assisted with probabilistic

criteria result in larger aggregations due to the usage of three-tiles, four-tiles and five-

tiles cooperativeness. In other words, probabilistic criteria necessitates intermediate larger

building blocks for adequate self-assembly to occur. Thus, it seems that a conservation

of complexity principle is operating whereby the richer the environment the simpler the

individuals and, conversely, the simpler the environment the more complex the individuals.

The second part of this chapter focused on the application of a methodology for

the measurement and visualization of evolutionary activity which is a statistic used for

analysing adaptive phenomena in evolving systems. In this case, the analysis has been done

at the phenotype level in order to track the glue strengths employed by the GSSs across the

evolutionary process. In particular, the study has revealed that all the available strength

values of the model were found among the first generations of the evolutionary process. Such

diversity was reduced to a set of glue strengths with values smaller than τ starting from the

third part of the total generations onwards. Thus, the findings revealed that achieving small

aggregates is highly likely along the first generations whereas greater assemblies produced

by better types of cooperation would emerge towards the last generation.
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Chapter 10

Conclusions

Self-organisation and self-assembly are both phenomena which are ubiquitous in nature

where complex structures and coordinated behaviour emerge as the result of the local

exchange of information among the components of the system. Although self-organised

structures appear far from any thermodynamic equilibrium and are mostly part of open en-

vironments, there are many underlying features common to both concepts such as the lack

of master plan, absence of external intervention and the existence of predefined autonomous

behaviour at entity level.

Understanding how nature produces, tunes and relies upon these two natural

phenomena to manufacture magnificent engineering solutions is of enormous scientific and

technical relevance. For this reason, this thesis investigated the automated design of self-

assembly and self-organising systems by means of artificial evolution. Towards this goal,

this research was principally focused on the use of CA systems, self-assembly Wang tiles

and GAs. As a complementary analytical part of the methodology, a dual assessment model

based on FDC and clustering as well as the analysis of emergent patterns of cooperativity
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and the measurement of adaptive activity across evolution were explored.

These findings support the hypothesis that biologically-inspired methods such as

the Darwinian principles of natural selection, reproduction, mutation and survival of the

fittest implemented in GAs are suitable mechanisms for the automated design and optimi-

sation of systems where the local interactions among their components play a crucial role

for the emergent development of complex structures and coordinated behaviour.

10.1 Contributions

Chapter 5, Chapter 6 and Chapter 7 have contributed strategies for the automated design

optimisation of CAs input parameters and self-assembly Wang tiles by means of artificial

evolution.

The first approach addresses, in separate studies, a continuous and a discrete design

optimisation problem by means of a GA aiming to tune a population of CA input parameters

in order to design a spatio-temporal behaviour. For that purpose, individuals have been

established as fixed length ensembles of randomly generated values, each of which act as

input of a CA system. The iterative application of CA rules produces a two-dimensional

pattern captured in an image that, together with a user defined pattern, established as the

target, are compared in terms of similarity using USM. Thus, the more similar the generated

and the user defined patterns, the closer the collection of parameters to those that gave rise

to the target. The results achieved by this approach have been reported in Chapter 5

and Chapter 6 where the input parameter values of Turbulence CA and the input rules of

Meta-automaton CA were the subject of design optimisation. In general, visual inspections
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of the resulting evolved spatio-temporal patterns obtained from both Turbulence CA and

Meta-automaton CA successfully match the targets in most of the cases. This evidence

is indeed analytically supported by the USM values associated to the fittest individuals of

the experiments. Not withstanding the highly complex, non-linear and stochastic nature of

genotype-phenotype-fitness mapping, the findings shown in this dissertation have revealed

that in most of the cases it is possible to tune the CA input parameters by means of artificial

evolution, hence supporting the evolutionary design optimisation on complex behavioural

systems of this kind.

The second approach addresses a discrete optimisation design problem by means

of a GA, the aim of which is to design a set of Wang tiles capable of self-assembling in a user

defined shape. In this case, the individuals of the population were set up as variable length

sets of randomly created Wang tile families, instances of which undergo self-assembly in a

fixed time simulation environment. This simulation results in a configuration defined as a

group of aggregations which are later compared with a target structure by a lattice scanning

function, USM or Minkowski functionals. This comparison returns a value indicating the

similarity of the target shape and the resulting self-assembled aggregations. Hence, the more

resemblance found, the better designed the collection of tiles families to build the target

structure. The findings of this approach were reported in Chapter 7. In this study, three

different fitness functions and four increasingly richer simulation environments – classified

according to the way in which tiles interact – have been investigated. On the one hand,

the use of the lattice scanning as an evaluation function implies not only an expensive com-

putational effort but also uncertainty on whether the embedded tiles enclosed in a certain
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scanned position are part of a whole aggregation. Unlike the results obtained in the CA in-

put parameters design optimisation problem, it was also shown that measuring similarities

in terms of information distance between the resulting aggregations of the simulator and the

target shape is not as effective as when comparing spatio-temporal patterns. On the other

hand, the use of a sophisticated fitness function, such as the Minkowski functionals, gives

a more appropriate fitness value since a better characterization of the resulting phenotype

can be performed. In particular, the computation of Euler, area, perimeter and radius of

gyration have contributed to a more accurate evaluation between the self-assembled aggre-

gations and the target shape. With regard to the different models, the experimental results

have shown that the use of probabilistic stickiness criteria help the tiles to self-assemble in

aggregations greater in size than those achieved when neither deterministic stickiness crite-

ria is present nor rotation is allowed. In addition, considering both the model and the size

of the resulting individuals, it was observed that a conservation of complexity principle is

operating whereby the richer the environment the simpler the individuals needed to achieve

a specific structure and vice versa.

As well as presenting methodologies, Chapter 8 has contributed a complementary

dual assessment for validating complex, stochastic, non-linear genotype-phenotype-fitness

relationships. The proposed methodology developed in this chapter combines FDC and

clustering validation techniques. The results revealed that USM and Minkowski functionals

are both suitable fitness functions for the evaluation of spatio-temporal patterns and self-

assembled structures. In addition, these indicators have contributed a more general result

which is a method for assessing the quality of the encoding and the accuracy of its map-
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ping to phenotype in evolutionary systems where genotype-phenotype-fitness is an intricate

association.

Finally, Chapter 9 has carried out an analysis of how the evolutionary process

“programs” the self-assembly Wang tiles in order to be effective for building a specific

target shape. These studies have been carried out by enumerating the generalised secondary

structures and by measuring the glue strengths activity in the evolutionary process. The

former has revealed that certain types of patterns of cooperation emerge across evolution

as natural milestones to achieve the target shape. In addition, the latter has measured

and visualised the participation of the glue strengths by means of activity waves which

have revealed that, as the evolutionary process progresses, several glue strengths survive to

the selective pressure and others become extinct. This last result highlighted a panoramic

view where evolution is seen fine-tuning the stickiness of first order generalized secondary

structures (i.e. two-tiles elementary assemblies) in order to avoid premature self-assembled

aggregations but giving the chance to build up higher order generalized secondary structures

(i.e. three, four and five-tiles elementary assemblies).

10.2 Future Directions

The investigations presented in this thesis suggest many directions for further research. For

this reason, the following subsections discuss ideas that reinforce current methodologies and

outline the potential fields of impact.
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10.2.1 Reinforcements

A future study would consider how to improve the operative mechanism in which USM is

employed as an evaluation function for the evolutionary design optimisation of self-assembly

Wang tiles. One way to do this would be to perform a fine grain comparison rather than

a single measure of the whole. Clearly, this comprises many to one calculations that could

involve computing the information distances between each aggregation and the target shape

separately followed by an average. This alternative way to calculate similarity predicts a

thick (in terms of time) layer between the resulting simulation and the evaluation function,

and an explosive increase in terms of computational cost. Although current architectures

like parallel or multi-thread processing would be responsible for counterbalancing such im-

pact, recognising the aggregates produced by the first generations would still be a very clear

bottleneck to speed up. In general terms, this underlying idea could be enriched with the

combination of satellite fitness functions capable for strengthening the calculus by measur-

ing the entropy, density or other morphological characteristics of the aggregates such as

symmetries.

Since one of the important outcomes of this research was the identification and

quantification of generalized secondary structures post experiment, an additional and dif-

ferent evaluation approach would consider the use of a reward-penalization schema in the

evaluation stage. That could be implemented as an adaptive evaluation criteria where the

contribution of two, three, four and five-tiles self-assembly GSSs would be gradually re-

warded. Since individuals are randomly initialised, a first sight of such a scheme suggests

predefining milestones, in terms of number of generations, where lower to higher order GSSs
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are preferred as the evolutionary process takes place. This in-line enumeration of patterns

of cooperativity would inject “small doses” of selective pressure expecting, of course, to

improve the quality of the evolved tiles. Notice that integrating such an idea is totally

independent of the fitness functions already implemented.

The self-assembly model studied in this thesis is equipped with a very simple

physical simulation environment, i.e. a finite size lattice where the glue strengths and the

temperature remain fixed. A more realistic version would consider, among others, variable

temperature, adaptive glue strength matrix, a non-bounded lattice or the addition of many

other physical features such as acceleration, gravity, friction and realistic bouncing. For

instance, one can assume that the cooler (warmer) the system becomes, the lower (higher)

the acceleration of the tiles certainly affecting the self-assembly dynamics of the system.

Similarly, the chosen CA would present a more challenging combination of parameters, dy-

namic neighbourhood topology, etc.. For instance, it could be considered reasignation of

rules across time in the Meta-automaton CA or a combined set of parameters compris-

ing continuous and discrete values. Any combination would offer a different perception of

the reality where the proposed evolutionary approach may either outperform the simplis-

tic version or stick in a poor quality local optima. In any case, the stochastic, non-linear

intricate relation genotype-phenotype-fitness would still be present undermining the fitness

functions. Would the complementary dual assessment (FDC & clustering) still be an appro-

priate mechanism for analysing the complex mapping ? On the one hand, a brief analysis

of the FDC does not project as much positive feedback since the many combinations of the

variables estimate a huge search space dimension, i.e. the chosen optimum and the sam-
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ples would be parametrically far apart. On the other hand, one could also expect negative

feedback from the fitness function due to erroneous distinctions among the phenotypes and,

in consequence, meaningless clusters. One of the proposed improvements here would be to

change the genotype encoding in order to get a less intricate relationship towards the pheno-

type. This becomes a problem-dependent approach that would require a thorough analysis

of methods of representation and extensive computational time to validate the complexity

of the mappings. However, a more tractable and scalable approach would be to perform a

variety of independent assessments. That is, in turn, to fix some parameters and to perform

studies of FDC & clustering rather than attempt to achieve a “multi-objective” panacea.

10.2.2 Multidisciplinary Impact

Chapter 7 demonstrated the challenge of attempting to design the most adequate set of

self-assembling Wang tiles needed to build a certain target shape. This, viewed as an evolu-

tionary design optimisation problem using the representation employed here, is translated in

an intricate genotype-phenotype-fitness relationship. Although this requires a more stren-

uous effort, it is worth considering these questions: what could be the applications where

the evolved aggregates would become useful ? What would be the benefits of spending such

paramount amount of computation and analysis ?.

Recall that when defining the Tiles Assembly Model, Winfree [12] has shown com-

putation where the south and east edges of a tile work as input ports, the north and west

as output ports and the binary message read from bottom to top constitutes output bit

strings. With this general idea in mind, one of the inspirations lies in the development of au-

tomatic program solving constructions. To be more precise, self-assembly Wang tiles could
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be seen as independent heuristics (Figure 10.1 (a)) as their assemblage a solving strategy

in full (Figure 10.1 (b)). However, it is still important to discuss the input/output ports

and the sequence (if not parallel) to execute the operations. This overall idea can be seen

as automatic design of hyper-heuristics feasible for solving NP-hard problems since actual

research has proven that tiles are successful [80] [81] [79].

(a) (b)

Figure 10.1: A self-assembly Wang tile embedding a heuristic with two inputs and an output (a);

an aggregate defining a composition of self-assembly heuristics with two alternative execution threads

comprising five heuristics each (b).

Recent advances in biotechnology, bioinformatics and computational modelling

promise deeper understanding of the complexity of biological systems when capturing the

internal behaviour in terms of computation. One of the most important mechanisms of this

kind that has been discovered is quorum sensing (QS) which is defined as a behavioural

coordination system that takes place under changing environments [216] [217] [218]. For

this coordination to occur, QS relies on the activation of a response regulator protein by a

diffusible signal molecule referred as “autoinducer”. The concentration level of autoinducers

reflects the number of bacterial cells in a particular niche and perception of a threshold

concentration of that signal molecule indicates that the population is ready to mount a
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unified behavioural decision such as swarming, biofilm formation or antibiotic biosyntesis

[219]. A simulation of QS is shown in Figure 10.2.

(a) (b) (c)

(d) (e) (f)

Figure 10.2: A quorum sensing simulation. Signal molecules in the environment (black) induce

their replication (green) into the bacteria (red squares). As the simulation progresses from (a) to

(f), bacteria aggregate in structures (white squares) interpreted as biofilm.

This bacterial cell-to-cell communication and coordination system, clearly an in-

stance of self-organisation, was informally proven as computationally complete and modelled

in P-systems [220] in some of my initial investigations reported in [221] [222] [223]. Although

this findings focused on capturing the main entities involved in QS, i.e. bacteria, autoin-

ducers, environmental rules and topological representation, a substantial expansion capable

of simulating richer dynamics of quorum sensing would pursue the grounds for applying

any of the evolutionary design optimisation approaches presented in this thesis. Ongoing

advances on the field are recently reported in [224] [225].
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Appendix A

CA Continuous

This appendix lists a collection of spatio-temporal snapshots correspondent to CA Contin-

uous. For this one-dimensional model, all the parameters, except ADD-CONSTANT, were

fixed and a number of 11 groups comprising 5 snapshots each were generated. The groups

are defined as the variable parameter is altered taking values [0.004, 0.1, 0.201, 0.301, 0.402,

0.502, 0.603, 0.703, 0.803, 0.9, 0.996]. The notation used to identify a particular snapshot

is of the form xyz pQ where xyz refers to the model itself, p to the group and Q to the

pattern occurrence within that group.

cac a1 cac a2 cac a3 cac a4 cac a5

Figure A.1: Group a of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.004 and PRECISION-LEVEL = 16.
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cac b1 cac b2 cac b3 cac b4 cac b5

Figure A.2: Group b of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.1 and PRECISION-LEVEL = 16.

cac c1 cac c2 cac c3 cac c4 cac c5

Figure A.3: Group c of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.201 and PRECISION-LEVEL = 16.

cac d1 cac d2 cac d3 cac d4 cac d5

Figure A.4: Group d of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.301 and PRECISION-LEVEL = 16.

cac e1 cac e2 cac e3 cac e4 cac e5

Figure A.5: Group e of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.402 and PRECISION-LEVEL = 16.
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cac f1 cac f2 cac f3 cac f4 cac f5

Figure A.6: Group f of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.502 and PRECISION-LEVEL = 16.

cac g1 cac g2 cac g3 cac g4 cac g5

Figure A.7: Group g of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.603 and PRECISION-LEVEL = 16.

cac h1 cac h2 cac h3 cac h4 cac h5

Figure A.8: Group h of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.703 and PRECISION-LEVEL = 16.

cac i1 cac i2 cac i3 cac i4 cac i5

Figure A.9: Group i of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.803 and PRECISION-LEVEL = 16.
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cac j1 cac j2 cac j3 cac j4 cac j5

Figure A.10: Group j of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.9 and PRECISION-LEVEL = 16.

cac k1 cac k2 cac k3 cac k4 cac k5

Figure A.11: Group k of CA Continuous generated with random initialisation, ADD-CONSTANT

= 0.996 and PRECISION-LEVEL = 16.
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Appendix B

Turbulence CA

This appendix lists a collection of spatio-temporal snapshots correspondent to Turbulence

CA. For this one-dimensional model, all the parameters, except COUPLING-STRENGTH,

were fixed and a number of 10 groups comprising 5 snapshots each were generated. The

groups are defined as the variable parameter is altered taking values [0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0]. The notation used to identify a particular snapshot is of the form

xyz pQ where xyz refers to the model itself, p to the group and Q to the pattern occurrence

within that group.

turb a1 turb a2 turb a3 turb a4 turb a5

Figure B.1: Group a of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.1 and ROUGHNESS = 0.001.
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turb b1 turb b2 turb b3 turb b4 turb b5

Figure B.2: Group b of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.2 and ROUGHNESS = 0.001.

turb c1 turb c2 turb c3 turb c4 turb c5

Figure B.3: Group c of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.3 and ROUGHNESS = 0.001.

turb d1 turb d2 turb d3 turb d4 turb d5

Figure B.4: Group d of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.4 and ROUGHNESS = 0.001.

turb e1 turb e2 turb e3 turb e4 turb e5

Figure B.5: Group e of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.5 and ROUGHNESS = 0.001.
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turb f1 turb f2 turb f3 turb f4 turb f5

Figure B.6: Group f of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.6 and ROUGHNESS = 0.001.

turb g1 turb g2 turb g3 turb g4 turb g5

Figure B.7: Group g of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.7 and ROUGHNESS = 0.001.

turb h1 turb h2 turb h3 turb h4 turb h5

Figure B.8: Group h of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.8 and ROUGHNESS = 0.001.

turb i1 turb i2 turb i3 turb i4 turb i5

Figure B.9: Group i of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 0.9 and ROUGHNESS = 0.001.
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turb j1 turb j2 turb j3 turb j4 turb j5

Figure B.10: Group j of Turbulence CA generated with random initialisation, COUPLING-

STRENGTH = 1.0 and ROUGHNESS = 0.001.
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Appendix C

Gas Lattice CA

This appendix lists a collection of spatio-temporal snapshots correspondent to Gas Lattice.

For this two-dimensional model, all the parameters, except RADIUS, were fixed and a num-

ber of 12 groups comprising 5 snapshots each were generated. The groups are defined as

the variable parameter is altered taking values [1, 10, 20, 30, 40, 50, 60, 70, 70, 80, 90,

100]. The notation used to identify a particular snapshot is of the form xyz pQ where xyz

refers to the model itself, p to the group and Q to the pattern occurrence within that group.

gas a1 gas a2 gas a3 gas a4 gas a5

Figure C.1: Group a of Gas Lattice CA generated with random initialisation, RADIUS = 1 and

DENSITY = 0.
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gas b1 gas b2 gas b3 gas b4 gas b5

Figure C.2: Group b of Gas Lattice CA generated with random initialisation, RADIUS = 10 and

DENSITY = 0.

gas c1 gas c2 gas c3 gas c4 gas c5

Figure C.3: Group c of Gas Lattice CA generated with random initialisation, RADIUS = 20 and

DENSITY = 0.

gas d1 gas d2 gas d3 gas d4 gas d5

Figure C.4: Group d of Gas Lattice CA generated with random initialisation, RADIUS = 30 and

DENSITY = 0.

gas e1 gas e2 gas e3 gas e4 gas e5

Figure C.5: Group e of Gas Lattice CA generated with random initialisation, RADIUS = 40 and

DENSITY = 0.
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gas f1 gas f2 gas f3 gas f4 gas f5

Figure C.6: Group f of Gas Lattice CA generated with random initialisation, RADIUS = 50 and

DENSITY = 0.

gas g1 gas g2 gas g3 gas g4 gas g5

Figure C.7: Group g of Gas Lattice CA generated with random initialisation, RADIUS = 60 and

DENSITY = 0.

gas h1 gas h2 gas h3 gas h4 gas h5

Figure C.8: Group h of Gas Lattice CA generated with random initialisation, RADIUS = 70 and

DENSITY = 0.

gas i1 gas i2 gas i3 gas i4 gas i5

Figure C.9: Group i of Gas Lattice CA generated with random initialisation, RADIUS = 70 and

DENSITY = 0.
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gas j1 gas j2 gas j3 gas j4 gas j5

Figure C.10: Group j of Gas Lattice CA generated with random initialisation, RADIUS = 80 and

DENSITY = 0.

gas k1 gas k2 gas k3 gas k4 gas k5

Figure C.11: Group k of Gas Lattice CA generated with random initialisation, RADIUS = 90 and

DENSITY = 0.

gas l1 gas l2 gas l3 gas l4 gas l5

Figure C.12: Group l of Gas Lattice CA generated with random initialisation, RADIUS = 100

and DENSITY = 0.
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Appendix D

Meta-automaton CA

This appendix lists a collection of spatio-temporal snapshots correspondent to Meta-automaton

CA. For this one-dimensional model, all the parameters, except RULES, were fixed and a

number of 10 groups comprising 5 snapshots each were generated. The groups are defined

as the variable parameter is altered taking values [122, 148, 181, 120, 97, 135, 229, 131, 154,

133]. The notation used to identify a particular snapshot is of the form xyz pQ where xyz

refers to the model itself, p to the group and Q to the pattern occurrence within that group.

metaK1 a1 metaK1 a2 metaK1 a3 metaK1 a4 metaK1 a5

Figure D.1: Group a of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 122.
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metaK1 b1 metaK1 b2 metaK1 b3 metaK1 b4 metaK1 b5

Figure D.2: Group b of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 148.

metaK1 c1 metaK1 c2 metaK1 c3 metaK1 c4 metaK1 c5

Figure D.3: Group c of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 181.

metaK1 d1 metaK1 d2 metaK1 d3 metaK1 d4 metaK1 d5

Figure D.4: Group d of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 120.

metaK1 e1 metaK1 e2 metaK1 e3 metaK1 e4 metaK1 e5

Figure D.5: Group e of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 97.
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metaK1 f1 metaK1 f2 metaK1 f3 metaK1 f4 metaK1 f5

Figure D.6: Group f of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 135.

metaK1 g1 metaK1 g2 metaK1 g3 metaK1 g4 metaK1 g5

Figure D.7: Group g of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 229.

metaK1 h1 metaK1 h2 metaK1 h3 metaK1 h4 metaK1 h5

Figure D.8: Group h of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 131.

metaK1 i1 metaK1 i2 metaK1 i3 metaK1 i4 metaK1 i5

Figure D.9: Group i of Meta-automaton CA generated with random initialisation, K-TIMES = 100

and RULES= 154.
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metaK1 j1 metaK1 j2 metaK1 j3 metaK1 j4 metaK1 j5

Figure D.10: Group j of Meta-automaton CA generated with random initialisation, K-TIMES

= 100 and RULES= 133.
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Appendix E

CA Continuous Scatter Plots

This appendix lists a collection of scatter plots correspondent to the fitness distance corre-

lation experiments performed over CA Continuous in Section 8.2.1 of Chapter 8. In turns,

each of the CA snapshots was considered as a target (T ) to which the remaining snap-

shots of all the groups (Ti) were evaluated on fitness (fi) using the USM and on distance

(di) using Euclidean difference among the values of their associated creational parameters.

Equation E.1 shows the calculation of FDC where n is the number of samples, f and SF

are the mean and standard deviation of the fitness values, and d and SD are the mean and

standard deviation of the distances.

fi = f(Ti) = USM(Ti, T )

di = (

n
∑

k=1

(pari
k − parT

k )2)1/2

FDC =
(1/n)

∑n
i=1

(fi − f)(di − d)

SF SD

T is a target snapshot

pari
k is the creational k-parameter (E.1)
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Figure E.1: Graphics of the resultant scatter plots and correlation coefficients for the group a of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.2: Graphics of the resultant scatter plots and correlation coefficients for the group b of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.3: Graphics of the resultant scatter plots and correlation coefficients for the group c of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.4: Graphics of the resultant scatter plots and correlation coefficients for the group d of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.5: Graphics of the resultant scatter plots and correlation coefficients for the group e of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.6: Graphics of the resultant scatter plots and correlation coefficients for the group f of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.7: Graphics of the resultant scatter plots and correlation coefficients for the group g of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.8: Graphics of the resultant scatter plots and correlation coefficients for the group h of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.9: Graphics of the resultant scatter plots and correlation coefficients for the group i of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.10: Graphics of the resultant scatter plots and correlation coefficients for the group j of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure E.11: Graphics of the resultant scatter plots and correlation coefficients for the group k of

CA Continuous showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Appendix F

Turbulence CA Scatter Plots

This appendix lists a collection of scatter plots correspondent to the fitness distance corre-

lation experiments performed over Turbulence CA in Section 8.2.1 of Chapter 8. In turns,

each of the CA snapshots was considered as a target (T ) against which the remaining snap-

shots of all the groups (Ti) were evaluated on fitness (fi) using the USM and on distance

(di) using Euclidean difference among the values of their associated creational parameters.

Equation F.1 shows the calculation of FDC where n is the number of samples, f and SF

are the mean and standard deviation of the fitness values, and d and SD are the mean and

standard deviation of the distances.

fi = f(Ti) = USM(Ti, T )

di = (

n
∑

k=1

(pari
k − parT

k )2)1/2

FDC =
(1/n)

∑n
i=1

(fi − f)(di − d)

SF SD

T is a target snapshot

pari
k is the creational k-parameter (F.1)
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Figure F.1: Graphics of the resultant scatter plots and correlation coefficients for the group a of

Turbulence CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure F.2: Graphics of the resultant scatter plots and correlation coefficients for the group b of

Turbulence CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure F.3: Graphics of the resultant scatter plots and correlation coefficients for the group c of

Turbulence CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure F.4: Graphics of the resultant scatter plots and correlation coefficients for the group d of

Turbulence CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure F.5: Graphics of the resultant scatter plots and correlation coefficients for the group e

of Turbulence CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure F.6: Graphics of the resultant scatter plots and correlation coefficients for the group f

of Turbulence CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure F.7: Graphics of the resultant scatter plots and correlation coefficients for the group g

of Turbulence CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure F.8: Graphics of the resultant scatter plots and correlation coefficients for the group h

of Turbulence CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure F.9: Graphics of the resultant scatter plots and correlation coefficients for the group i of

Turbulence CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure F.10: Graphics of the resultant scatter plots and correlation coefficients for the group j of

Turbulence CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Appendix G

Gas Lattice CA Scatter Plots

This appendix lists a collection of scatter plots correspondent to the fitness distance corre-

lation experiments performed over Gas Lattice CA in Section 8.2.1 of Chapter 8. In turns,

each of the CA snapshots was considered as a target (T ) against which the remaining snap-

shots of all the groups (Ti) were evaluated on fitness (fi) using the USM and on distance

(di) using Euclidean difference among the values of their associated creational parameters.

Equation H.1 shows the calculation of FDC where n is the number of samples, f and SF

are the mean and standard deviation of the fitness values, and d and SD are the mean and

standard deviation of the distances.

fi = f(Ti) = USM(Ti, T )

di = (

n
∑

k=1

(pari
k − parT

k )2)1/2

FDC =
(1/n)

∑n
i=1

(fi − f)(di − d)

SF SD

T is a target snapshot

pari
k is the creational k-parameter (G.1)
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Figure G.1: Graphics of the resultant scatter plots and correlation coefficients for the group a

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.2: Graphics of the resultant scatter plots and correlation coefficients for the group b of

Gas Lattice CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure G.3: Graphics of the resultant scatter plots and correlation coefficients for the group c of

Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.4: Graphics of the resultant scatter plots and correlation coefficients for the group d

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.5: Graphics of the resultant scatter plots and correlation coefficients for the group e

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.6: Graphics of the resultant scatter plots and correlation coefficients for the group f

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.7: Graphics of the resultant scatter plots and correlation coefficients for the group g

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.8: Graphics of the resultant scatter plots and correlation coefficients for the group h

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.9: Graphics of the resultant scatter plots and correlation coefficients for the group i of

Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure G.10: Graphics of the resultant scatter plots and correlation coefficients for the group j of

Gas Lattice CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure G.11: Graphics of the resultant scatter plots and correlation coefficients for the group k of

Gas Lattice CA showing that the USM has a low correlation with the genotype of the spatio-temporal

behaviour pattern.
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Figure G.12: Graphics of the resultant scatter plots and correlation coefficients for the group l

of Gas Lattice CA showing that the USM has a relatively high correlation with the genotype of the

spatio-temporal behaviour pattern.
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Appendix H

Meta-automaton CA Scatter Plots

This appendix lists a collection of scatter plots correspondent to the fitness distance corre-

lation experiments performed over Meta-automaton CA in Section 8.2.1 of Chapter 8. In

turns, each of the CA snapshots was considered as a target (T ) against which the remaining

snapshots of all the groups (Ti) were evaluated on fitness (fi) using the USM and on distance

(di) using Euclidean difference among the values of their associated creational parameters.

Equation H.1 shows the calculation of FDC where n is the number of samples, f and SF

are the mean and standard deviation of the fitness values, and d and SD are the mean and

standard deviation of the distances.

fi = f(Ti) = USM(Ti, T )

di = (

n
∑

k=1

(pari
k − parT

k )2)1/2

FDC =
(1/n)

∑n
i=1

(fi − f)(di − d)

SF SD

T is a target snapshot

pari
k is the creational k-parameter (H.1)
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Figure H.1: Graphics of the resultant scatter plots and correlation coefficients for the group a of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.2: Graphics of the resultant scatter plots and correlation coefficients for the group b of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.3: Graphics of the resultant scatter plots and correlation coefficients for the group c of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.4: Graphics of the resultant scatter plots and correlation coefficients for the group d of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.5: Graphics of the resultant scatter plots and correlation coefficients for the group e of

Meta-automaton CA showing that the USM has a significant correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure H.6: Graphics of the resultant scatter plots and correlation coefficients for the group f of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.7: Graphics of the resultant scatter plots and correlation coefficients for the group g of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.8: Graphics of the resultant scatter plots and correlation coefficients for the group h of

Meta-automaton CA showing that the USM has a significant correlation with the genotype of the

spatio-temporal behaviour pattern.
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Figure H.9: Graphics of the resultant scatter plots and correlation coefficients for the group i of

Meta-automaton CA showing that the USM has a low correlation with the genotype of the spatio-

temporal behaviour pattern.
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Figure H.10: Graphics of the resultant scatter plots and correlation coefficients for the group j

of Meta-automaton CA showing that the USM has a significant correlation with the genotype of the

spatio-temporal behaviour pattern.


