
Moss, Ben (2007) The data integrity problem and multi-
layered document integrity. PhD thesis, University of
Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10538/1/bxm-thesis-corrected.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

The Data Integrity Problem

and

Multi-layered Document Integrity

Ben Moss, B.Sc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

July 2007

mailto:bxm@cs.nott.ac.uk
http://www.nottingham.ac.uk/

To Katie and William

Abstract

Data integrity is a fundamental aspect of computer security that has attracted much interest

in recent decades. Despite a general consensus for the meaning of the problem, the lack of a

formal definition has led to spurious claims such as “tamper proof”, “prevent tampering”, and

“tamper protection”, which are all misleading in the absence of a formal definition.

Ashman recently proposed a new approach for protecting the integrity of a document that

claims the ability to detect, locate, and correct tampering. If determining integrity is only part

of the problem, then a more general notion of data integrity is needed. Furthermore, in the

presence of a persistent tamperer, the problem is more concerned with maintaining and proving

the integrity of data, rather than determining it.

This thesis introduces a formal model for the more general notion of data integrity by

providing a formal problem semantics for its sub-problems: detection, location, correction, and

prevention. The model is used to reason about the structure of the data integrity problem

and to prove some fundamental results concerning the security and existence of schemes that

attempt to solve these sub-problems.

Ashman’s original multi-layered document integrity (MLDI) paper [1] is critically evaluated,

and several issues are highlighted. These issues are investigated in detail, and a series of

algorithms are developed to present the MLDI schemes. Several factors that determine the

feasibility of Ashman’s approach are identified in order to prove certain theoretical results

concerning the efficacy of MLDI schemes.

iii

Acknowledgements

I would like to express my most sincere thanks to Nottingham University’s School of Computer

Science and Information Technology for all its support. The School has provided various funding

throughout this research — both directly and indirectly — for which I am extremely grateful.

Alongside the School, I wish to thank BT Exact for jointly funding the initial three years of this

research, and for allowing me the freedom to investigate a broad range of security problems.

Furthermore, I would like to thank many members of the School for their help and support

during the course of this work. First and foremost I would like to thank my supervisors, Dave

Elliman and Graham Kendall, for reviewing my drafts and generally “fostering” much of the

writing-up phase of this thesis. Their encouragement, advice, and wisdom has been invaluable.

Thanks also go to my examiners, David Hilton and David Brailsford, for their useful comments

and suggestions that helped to mature this thesis to completion.

I would also like to acknowledge and thank: Helen Ashman for introducing me to the idea

of multi-layered document integrity, which formed the initial investigation area of this research;

Leon Harrison for his advice on supervisory matters; Dario Landa-Silva for his support and help

on problem semantics; Roland Backhouse for his excellent introduction to rigorous proof styles;

Graham Hutton for his long-standing support and encouragement; Colin Higgins for his help

and support with funding in recent months; and Edmund Burke for his support and wisdom

when it was really needed.

Many thanks go to my friends and family for their support and encouragement over the

past seven years — particularly since the arrival of Katie and William, which provided a most-

pleasant interlude in this research. A special thanks go to my good friend Jonathan Morley for

providing numerous helpful suggestions concerning the programming aspects of this research,

and for ensuring I retained some form of social life. For their continual support and encour-

agement throughout my education, I would like to thank my parents, and to extend thanks for

their support when Katie and William were born. I would also like to thank Holly’s parents for

their support and encouragement, which has meant a great deal to me.

I am clearly indebted to many for their help in the completion of this thesis, but none more

so than Holly. Her constant support and encouragement have been invaluable over the past six

years, and I am extremely grateful for her patience and understanding.

Thank you all — for your support, patience, encouragement, and understanding.

Ben Moss

University of Nottingham

July, 2007

iv

Contents

Front Matter i

Cover i

Abstract iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables x

List of Propositions xi

List of Definitions xii

List of Algorithms xiv

List of Examples xv

List of Notations xvi

Part I Background 1

1 Introduction 2

1.1 Aims and Objectives . 4

1.2 Scope . 4

1.3 Contributions . 6

1.4 Structure . 6

1.5 Notational Style . 7

Chapter Summary . 9

2 Related Work 10

2.1 The Revision Control Problem . 10

2.2 The Fault Problem . 11

2.2.1 Error Detection . 11

2.2.2 Error Correction . 12

2.3 The Commitment Problem . 12

v

2.4 The Privacy Problem . 14

2.5 The Key Exchange Problem . 15

2.6 The Authentication Problem . 16

2.7 The Integrity Problem . 17

2.7.1 Tamper Detection . 17

2.7.2 Tamper Location . 17

2.7.3 Tamper Correction . 19

2.8 The Censorship Problem . 21

Chapter Summary . 23

Part II The Data Integrity Problem 24

3 Fundamentals 25

3.1 Participant Model . 25

3.2 Transaction Model . 26

3.3 Data Model . 26

3.4 Adversary Model . 27

3.5 Preservative Model . 28

3.6 Process Model . 30

Chapter Summary . 32

4 Taxonomy 34

4.1 Behaviour Model . 35

4.1.1 Detection Behaviour . 35

4.1.2 Location Behaviour . 36

4.1.3 Correction Behaviour . 37

4.1.4 Prevention Behaviour . 37

4.2 Solvability Model . 38

4.2.1 Detection Solvability . 38

4.2.2 Location Solvability . 39

4.2.3 Correction Solvability . 39

4.2.4 Prevention Solvability . 40

4.3 Security Model . 41

Chapter Summary . 42

5 Results 43

5.1 Taxonomy . 43

5.2 Solvability . 46

5.2.1 Vulnerable Preservative Model . 46

5.2.2 Invulnerable Preservative Model . 50

Chapter Summary . 55

vi

Part III Multi-layered Document Integrity 56

6 Fundamentals 57

6.1 Deterministic Model . 57

6.1.1 Preservation . 58

6.1.2 Resolution . 64

Chapter Summary . 70

7 Realization 71

7.1 Probabilistic Model . 71

7.1.1 Collision Resistant Model . 71

7.1.2 Collision Prone Model . 76

7.1.3 Hybrid Model . 78

7.2 Attack Models . 79

7.2.1 Overt Attacks . 80

7.2.2 Covert Attacks . 81

Chapter Summary . 84

8 Results 85

8.1 Constraints . 85

8.1.1 Preservative Size . 85

8.1.2 Determinability . 87

8.1.3 Time Complexity . 92

8.1.4 Security . 92

8.2 Efficacy . 92

8.2.1 Preservative Size Versus Determinability 93

8.2.2 Time Complexity . 94

8.2.3 Security . 95

Chapter Summary . 96

Part IV Conclusion 97

9 Conclusions 98

9.1 Summary . 98

9.2 Contributions . 101

9.3 Future Work . 103

9.3.1 Optimization of the Resolution Algorithm 103

9.3.2 Bounded-preimage Hash Functions . 104

9.3.3 Distributive Data Integrity Model . 104

9.4 Discussion . 105

Back Matter 107

A Function Properties 108

vii

B Algorithms 110

B.1 Preliminaries . 110

B.2 Full MLDI Algorithms . 111

References 118

Colophon 122

viii

List of Figures

1.1 Thesis Scope in the Context of Modification Types 5

2.1 A Simple Merkle Hash Tree . 18

2.2 A Simple Ashman Hash Tree . 20

3.1 Basic Process Model . 31

3.2 Ideal Process Model . 31

3.3 Signature-based Integrity Detection Scheme Process Model 32

3.4 Multi-layered Document Integrity Process Model 33

6.1 Perfect k-ary Tree as a Worst Case . 61

6.2 Bounded data block with b := 4 and k := 4 . 62

6.3 Bounded data block with b := 4 and k := 3 . 62

6.4 An Ashman Hash Tree of a Bounded data block 64

6.5 Binary Hash Tree with One Tampered Leaf Node Identified 69

7.1 Tampered Leaf Node . 80

7.2 Tampered Leaf Siblings . 81

7.3 Transposed Leaf Siblings . 81

7.4 Counterfeit Leaf Node . 82

7.5 Counterfeit Mid Node . 82

7.6 Multi-level Counterfeit . 83

7.7 Multi-level Counterfeit with Dummy . 83

8.1 Candidate Reduction Model . 88

ix

List of Tables

1.1 Summary of Notation . 8

3.1 Contrasting Roles of the Parties . 26

4.1 Ideal Versus Achievable Detection Results . 36

6.1 Time Complexities of Searching for m Modified Blocks 59

6.2 Search Space Reduction . 66

6.3 Time Complexities for Algorithms in the Deterministic Model 70

8.1 Time Complexities for Algorithms in the Probabilistic Model 94

x

List of Propositions

Lemma 5.1 Preventable Implies Correctable . 44

Lemma 5.2 Correctable Implies Locatable . 44

Lemma 5.3 Locatable Implies Detectable . 45

Corollary 5.1 Data Integrity Problem is Hierarchical 45

Claim 5.1 Detection is Solvable in the VP Model . 46

Theorem 5.1 Non-existence of Data-only IDS . 48

Claim 5.2 Location is Unsolvable in the VP Model . 49

Claim 5.3 Correction is Unsolvable in the VP Model 49

Claim 5.4 Prevention is Unsolvable in the VP Model 50

Claim 5.5 Hash-only IDSs are Unsecure in the VP model 51

Claim 5.6 Hash-only IDSs are Secure in the IP Model 51

Theorem 5.2 Preservative Upper Bound . 53

Claim 5.7 Kolmogorov-Kerckhoffs Claim . 54

Theorem 5.3 Non-existence of Deterministic Correction 54

Remark 6.1 Search Time Complexities: List Versus Tree 60

Claim 8.1 Number of Nodes in a Level . 86

Theorem 8.1 Hash Tree Size . 86

Remark 8.1 Efficient Storage of a k -ary Tree . 86

Theorem 8.2 Reduction Theorem . 89

Lemma 8.1 Leaf Node Possibilities . 90

Theorem 8.3 Root Node Candidates . 91

Theorem 8.4 Preservative Size and Determinability Constraints Contradict 93

xi

List of Definitions

2.1 Cryptographic Hash Function . 13

2.2 Secret-key Cryptosystem . 15

2.3 Public-key Cryptosystem . 16

2.4 Digital-signature Scheme . 16

2.5 Signature-based IDS . 17

2.6 Censorship Resistance Scheme . 23

3.1 Medium . 26

3.2 Data Block . 27

3.3 Tampering Function . 28

3.4 Preserving Function . 28

3.5 Vulnerable Preservative Model . 29

3.6 Preservative Exposure Problem . 29

3.7 Kolmogorov Complexity . 30

3.8 Invulnerable Preservative Model . 30

4.1 Data Integrity Problem . 34

4.2 Detection Behaviour Function . 35

4.3 Location Behaviour Function . 37

4.4 Correction Behaviour Function . 37

4.5 Prevention Behaviour Function . 38

4.6 Tamper Detectable . 39

4.7 Tamper Locatable . 39

4.8 Tamper Correctable . 40

4.9 Tamper Preventable . 40

4.10 General Tampering Game . 41

5.1 Data-only IDS . 47

6.1 Perfect Hash Function . 57

6.2 Perfect One-way Hash Function . 57

6.3 Bounded . 58

6.4 Practically Bounded . 59

6.5 Perfect k -ary Tree . 60

6.6 Data Block Search Space . 65

6.7 Possibility . 65

7.1 Pigeonhole Principle . 71

7.2 Candidate . 72

7.3 Hash Collision Probability Assumption . 73

7.4 Bounded-preimage Hash Function . 77

8.1 Preservative Size Constraint . 85

xii

8.2 Possibility Quantification Function . 87

8.3 Candidate Quantification Function . 87

8.4 Determinability Constraint . 87

8.5 Reduction Axiom . 88

8.6 Enlargement Axiom . 88

8.7 Time Complexity Constraint . 92

8.8 Security Constraint . 92

A.1 Easy to Compute . 108

A.2 Hard to Compute . 108

A.3 Compressive . 108

A.4 Non-compressive . 108

A.5 Preimage Resistant . 108

A.6 Second Preimage Resistant . 108

A.7 Collision Resistant . 109

A.8 Collision Free . 109

A.9 Self-invertible . 109

A.10 Invertible . 109

A.11 Universal Validity . 109

A.12 Forgery Resistant . 109

xiii

List of Algorithms

6.1 Autobound . 61

6.2 Preservation . 63

6.3 Preserve Block . 63

6.4 Deterministic Preservation . 64

6.5 Resolution . 66

6.6 Detection . 67

6.7 Correction . 67

6.8 Deterministic Find Possibilities . 68

6.9 Deterministic Find Candidates . 68

6.10 Deterministic Resolution . 69

7.1 Collision Resistant Preservation . 72

7.2 Probabilistic Find Possibilities . 75

7.3 Probabilistic Find Candidates . 75

7.4 Collision Resistant Resolution . 76

7.5 Collision Prone Preservation . 77

7.6 Collision Prone Resolution . 77

7.7 Hybrid Probabilistic Preservation . 78

7.8 Ashman-style Resolution . 78

7.9 Hybrid Resolution . 79

8.1 Counterfeit . 95

B.1 Cartesian Product of n Sets . 111

B.2 Full Deterministic Preservation . 112

B.3 Full Deterministic Resolution . 112

B.4 Full Collision Resistant Preservation . 113

B.5 Full Collision Resistant Resolution . 113

B.6 Full Collision Prone Preservation . 114

B.7 Full Collision Prone Resolution . 114

B.8 Full Hybrid Probabilistic Preservation . 115

B.9 Full Ashman-style Resolution . 116

B.10 Full Hybrid Resolution . 117

xiv

List of Examples

1.1 Alice and Bob’s Integrity Problem . 3

2.1 Unfair Coin Flipping by Telephone . 13

2.2 Party-verified Data . 19

2.3 Alice and Bob’s Censorship Problem . 22

3.1 Data Block . 27

6.1 Bounded and Unbounded Data Blocks . 58

6.2 Exact Division Auto-bounding . 62

6.3 Best Division Auto-bounding . 62

6.4 Search Space Reduction . 65

6.5 Deterministic Resolution . 69

7.1 Potential for Candidate Increases . 74

xv

List of Notations

Abbreviations

CHF Cryptographic hash function, page 13

DIP Data integrity problem, page 34

ECC Error-correcting code, page 12

IDS Integrity detection scheme, page 17

IP Invulnerable preservative, page 30

MLDI Multi-layered Document Integrity, page 3

PGP Pretty Good Privacy , page 19

PHF Perfect hash function, page 57

POHF Perfect one-way hash function, page 57

RCS Revision control system, page 10

SIDS Signature-based integrity detection scheme, page 17

VP Vulnerable preservative, page 28

Data

b Bit length of a practically bounded data block, page 59

c data block (candidate), page 72

d Data block (original), page 27

e Data block (exposed), page 35

f data block (tampered), page 28

g Guess made by a party involved in some protocol, page 13

h Hash or digest, page 13

i Integer index or counter, page 27

xvi

k Branching factor of a tree, page 60

k
A

Private key of Alice, page 16

kA Public key of Alice, page 16

k
AB

Key shared by Alice and Bob, page 15

l Depth of a tree, page 60

m Message, page 15

n Bit length or input size, page 27

p Preservative data block (original), page 28

q Preservative data block (exposed), page 29

r Preservative data block (tampered), page 29

s Signature, page 16

u Hash collision probability, page 73

v Validation, page 16

w Information concealed by a party involved in some protocol, page 14

x Generic data or value, page 27

y Generic data or value, page 53

Existing Functions

C Correction algorithm, page 40

D Detection algorithm, page 39

E Secret-key/Public-key encryption/decryption function, page 15

F Generic function, page 107

G Generic algorithm, page 35

↔

H Hash function (perfect), page 57

→

H Hash function (perfect one-way), page 57

H Hash function (cryptographic), page 13

99K

H Hash function (bounded-preimage), page 77

I(x) Shortest description of x, page 30

xvii

K(x) Kolmogorov complexity of x, page 30

L Location algorithm, page 39

O(x) Complexity order of x (”big-O notation”), page 59

P Prevention algorithm, page 40

Pr(Z) Conditional probability of event Z, page 73

R Resolution algorithm, page 92

S
A

Sign function belonging to Alice, page 16

VA Validate function belonging to Alice, page 16

Original Functions

ε Bit exposable function, page 53

β Candidate quantification function, page 87

χ Correction behaviour function, page 37

X Correction solvability function, page 40

δ Detection behaviour function, page 35

∆ Detection solvability function, page 39

ǫ Exposable function, page 53

γ General behaviour function, page 41

Γ General solvability function, page 41

Λ Location solvability function, page 39

λ Location behaviour function, page 37

α Possibility quantification function, page 87

̟ Preserving function, page 28

π Prevention behaviour function, page 38

Π Prevention solvability function, page 40

τ Tamper function, page 28

xviii

Operators

≈ Approximate equality, page 73

= Equality, page 13

6= Non-equality, page 29

:= Assignment, page 14

|x| Number of bits in x, page 27

#(x) Number of blocks in x, page 27

⌈x⌉ Ceiling of x, page 61

‖ Concatenation, page 14

::= Definition, page 27

Participants

A Alice, page 15

∗ Everyone (Universal party of all participants), page 25

B Bob, page 15

J Jude (Mutually-trusted third party), page 25

T Tom (Tamperer), page 25

Spaces

B
b Leaf data block search space, page 65

B
n Root data block search space, page 65

C Candidate data block search space, page 72

xix

If a man will begin with certainties, he shall end in doubts; but if he will be content to

begin with doubts, he shall end in certainties.

— Francis Bacon, The Advancement of Learning (1605)

Part I
Background

1

Chapter 1

Introduction

No man can purchase his virtue too dear, for it is the only thing whose value must ever

increase with the price it has cost us. Our integrity is never worth so much as when we

have parted with our all to keep it.

— Ovid [attributed]

I
ntegrity is not only a fundamental aspect of virtue, it is also a fundamental

problem in computer security. In both contexts it has a similar meaning; the state of

being true, honest, pure or whole. In the field of security, the integrity problem concerns

the unauthorized modification of data — in other words, tampering.

Many consider the integrity problem to have been solved with the advent of public-key cryp-

tography, hash functions and digital signatures, which provide a robust means of determining

data integrity. This view is reflected by the fact that relatively little active research exists in

this area compared to other security problems such as privacy. However, determining integrity

is only part of the overall problem, and does not really solve anything when the tamperer is

persistent. In the presence of a persistent tamperer, the problem is concerned with maintaining

and proving the integrity of data, rather than just determining it.

Consider the hypothetical situation described in Example 1.1. It highlights some of the

current problems with the all-or-nothing solution to the integrity problem. If the data is original

then it has some value, otherwise it has been tampered with and is completely worthless.

2

Example 1.1 (Alice and Bob’s Integrity Problem)

Alice wishes to send a message to her fiancé Bob, but Bob is away on a remote expedition in

the Amazon. Being such a remote location, their only chance of communication is by email,

and Internet connectivity in the middle of the jungle is extremely poor. Unfortunately,

every email that Bob receives from Alice is corrupted. At least, his “secure” and “user-

friendly” email software tells Bob the emails are corrupted. Bob blames this constant

corruption on the poor Internet connectivity, but the real cause of the problem is Tom,

another member of the expedition. Tom is Alice’s secret admirer, and frequently borrows

Bob’s laptop to “write-up his notes”. In reality Tom has been tampering with the emails in

Bob’s inbox to suggest Alice wants to break-off their engagement. Of course, Bob’s email

client is secure enough to prevent these scandalous emails from ever being seen, but Bob

still has the problem of not receiving anything from Alice. If only he could identify some

parts of Alice’s emails that had not been corrupted or, better still, recover the original

emails.

In 2000, Ashman proposed a new approach to protecting a document from tampering,

known as multi-layered document integrity (MLDI) [1]. The approach involves checking a

document’s integrity at different levels, rather than the integrity of the document as a whole.

The paper briefly describes a method, which is claimed to have substantial benefits over normal

hashing, providing the ability to detect, locate, and correct tampering within a document.

Tampering is detected by hashing the entire document using a standard cryptographic hash

function, in the same way as current schemes. Subsequent tamper location is achieved by

hashing each subsection of the document, which is then iterated through further subsections.

Tamper correction can be achieved by using small preimage hashing of the subsections, which

allows an exhaustive search through all possible subsections to determine the original. There

are several problems with MLDI as it was originally stated, but despite these problems the idea

postulated by Ashman is sound and warrants further development. A critical evaluation of the

original MLDI paper is given in Chapter 2.

The idea of tamper detection is synonymous with that of data integrity and, despite the lack

of a formal definition, there is a general consensus for the meaning of the problem. However,

the ideas of locating and correcting tampering, as described in Ashman’s paper, suggest a

more general notion of data integrity. Even the definition of tampering has two similar – but

fundamentally different – definitions in common use. The common definition is that tampering

is the act of unauthorized modification of data, irrespective of whether the receiver accepts

it as valid or not. The resulting problem of tamper detection is that of determining whether

the data is original. An alternative definition of tampering is associated with the act of the

receiver accepting an illicitly modified (or counterfeit) message as a valid message from the

sender. This blurred definition can be used to justify claims such as “tamper proof”, “prevent

tampering” and “tamper protection”, which are misleading in the absence of a formal definition

[4, 29, 36, 42].

3

Aims and Objectives

1.1 Aims and Objectives

The initial aim of this thesis was to investigate the idea of multi-layered document integrity,

and to implement Ashman’s algorithm in a proof-of-concept software tool that can protect a

document from tampering. The tool was to provide a testbed for analysis of the algorithm,

and a basis for further research. However, the process of designing and developing the software,

and the subsequent preliminary results, highlighted several issues with MLDI. In particular,

simulating the end-to-end process in software, highlighted issues with the process, initially

raising concerns with the claims made in Ashman’s original paper. Furthermore, preliminary

results from the software tool suggested that correcting small amounts of data in a reasonable

time, required a disproportionately large amount of redundant hash data.

To enable further research on MLDI, a more thorough definition of the problem was required,

which prompted the main stem of theoretic research documented in this thesis. Moreover,

the literature review identified a lack of research covering the broader, and potentially more

significant, area concerning the problem of data integrity in general. Consequently, the main aim

of this thesis is to provide a better understanding of the general data integrity problem. More

specifically, this thesis aims to differentiate the problem of data integrity from other problems

concerning modification of data; and provide a means to effectively describe and reason about

the problem and its potential solutions.

This thesis also aims to address the issues with MLDI as it was originally presented, provid-

ing an in-depth understanding of the underlying principles involved with the idea. By resolving

these issues, this thesis aims to develop the idea of multi-layered document integrity into a con-

crete scheme, in order to verify Ashman’s claims. The final aims are to determine the efficacy

of MLDI schemes, and evaluate Ashman’s idea for solving the data integrity problem.

The objectives of this thesis are to conduct an overview of the general literature concerned

with the modification of data, in which the discussion should be focussed towards deliberate

and unauthorized modification. The review should highlight any of the problem’s perceived

differences that occur within the literature, providing a basis for a formally defined problem

model. The model should consider the semantics of data integrity beyond that of the tamper

detection problem, to encapsulate a broader notion of the problem.

This thesis will critically review the idea of MLDI as it was originally postulated, to deter-

mine if such an idea can be realized. The idea will be presented in depth, and with sufficient

justification; introducing all the relevant concepts, principles, and algorithms. A theoretical

model for MLDI will be developed in order to determine whether the idea can provide an

effective solution to the data integrity problem.

1.2 Scope

This thesis is concerned with the preservation of data integrity where the data is subject to

modification from a persistent adversary. The deliberate and unauthorized nature of the mod-

ification considered in this thesis differentiates this work from the subjects of revision control

systems (see §2.1) and error-correcting codes (see §2.2), which otherwise have commonalities

with aspects of this work.

4

Scope

Within the context of computer security, this thesis broadens the commonly perceived notion

of data integrity to include the problems of tamper prevention, correction, and location (see

Figure 1.1). This generalized notion of data integrity is discussed in the context of a malicious

adversary that attempts to undermine all aspects of data integrity (i.e. more than tamper

detection).

Unauthorized

Authorized

Authorized

Data Integrity Problem

Deliberate

Accidental

Accidental

UndoECCs

RCSs

Detection Location Correction Prevention

SIDSs

Merkle Hash Trees

MLDI

CRSs

Figure 1.1: Thesis Scope in the Context of Modification Types

This work specifically focusses on the problem of a single atomic copy of the data, which is

stored on a single device or transmitted over a single channel. The possibility of distributing —

either entire copies or parts of — the data is not considered, and therefore the sole copy of the

data is susceptible to tampering. Data privacy is not considered as a co-requisite for integrity,

and hence the sole data copy is assumed publicly readable. These limitations model the notion

of data transmission as originally described in MLDI, and are reflected in the adversary and

process models described in Chapter 3.

Furthermore, it is assumed that: the adversary knows the system being adopted for secu-

rity (Kerchoffs’ Principle); the defending and attacking parties have the same resources and

capabilities; and no physical measures are used to compromise the schemes.

Due to the vastness of the subject and the theoretical results which limit the use of MLDI,

only algorithms that fulfil the properties described in Ashman’s original paper [1] are discussed

in detail. Further optimization of the basic algorithms is discussed in §9.3.

Despite its theoretical nature and heavy reliance on Mathematics, the research presented in

this thesis falls firmly within the discipline of Computer Science. Extensive use of mathematics

can be found in a wide range of fields within Computer Science, including many areas of

Computer Security.

5

Contributions

1.3 Contributions

This thesis contributes knowledge that is distinct from any other research, being (as far as

the author is aware) the first to consider the wider data integrity problem. The thesis also

constitutes the first in-depth investigation of Ashman’s multi-layered document integrity idea.

The following is a list of the most significant contributions of this research, which are dis-

cussed in more detail in §9.2. The main areas of contribution concern models for the generalized

data integrity problem and Ashman’s proposed solution.

• A general review of the literature concerning the modification of data;

• A formal hierarchical definition of the data integrity problem;

• Establishing that detection is the only solvable problem in the vulnerable preservative

model;

• Establishing the non-existence of data-only integrity detection;

• Establishing an underlying model for multi-layered document integrity;

• Describing a well-defined set of algorithms for preservation and resolution in MLDI;

• Outlining several feasible attacks against MLDI algorithms;

• Establishing the efficacy of multi-layered document integrity;

• Establishing that detection is the only solvable problem in the invulnerable preservative

model.

Aside from the literature review, the contributions from the two models are defined in terms of

their propositions, corresponding proofs, and related original definitions.

1.4 Structure

This thesis is divided into four distinct parts, which are then divided into one or more chapters.

• Part I discusses the background to this work; giving an overview of prior knowledge in

this research field.

– Chapter 1 provides the overall motivation for this work, and also includes an overview

of the notational style adopted throughout the remainder of the thesis.

– Chapter 2 surveys related work, covering research that may be confused with this

work, research that approaches it, and research that solves the problem using al-

ternative methods. It provides a discussion and review of related and similar work,

including an in-depth description and critical discussion of Ashman’s original paper

on multi-layered document integrity.

• Part II addresses matters relating to the general problem of data integrity.

– Chapter 3 defines the fundamental aspects of the problem in terms of users, infor-

mation and processes.

6

Notational Style

– Chapter 4 presents the problem model as a formal problem semantics, defining each

sub-problem in terms of how a solution should behave and whether a given solution

can solve an instance of the problem. These formal definitions are then used as the

basis for the security model.

– Chapter 5 reasons about the data integrity problem with a discussion and series

of propositions directed towards establishing whether each of the sub-problems is

solvable in the predefined models.

• Part III develops and evaluates a postulated solution.

– Chapter 6 introduces the fundamental concepts of MLDI within the context of a

simplified deterministic model. The model is based around the assumption that

collision-free hashing is used. The notion of bounding and the divide-and-conquer

approach for reducing the search space are discussed in this chapter, and the first

preservation and resolution algorithms are given.

– Chapter 7 gradually introduces the more-realistic probabilistic model, in a series

of increasingly complex collision models. Each model is described in terms of its

increasingly realistic assumptions, and the required algorithm modifications are de-

scribed.

– Chapter 8 presents results concerning MLDI; defining the main constraints of MLDI,

and determining whether these constraints can be satisfied.

• Part IV concludes with a summary and discussion of future work.

– Chapter 9 gives a summary of the entire thesis and its findings. The contributions of

this research are given in full, and some possible areas of future work are described.

The thesis concludes with a short discussion regarding the findings of this research.

This thesis has two appendices.

• Appendix A is a number of short definitions for pre-existing function properties referred

to in the main text. Compiling them in an appendix prevents repetition and allows for

brevity in some of the more complex definitions within the main text.

• Appendix B is aimed at readers who wish to implement any of the algorithms. It outlines

some of the preliminaries used in the algorithms, and presents all of the MLDI algorithms

in full.

1.5 Notational Style

The convention adopted for this thesis is to denote data (values, types, data types, objects)

with single lower-case Latin characters. Processes (functions, algorithms) are denoted in two

different ways, depending on their originality. If a process was documented before the work of

this thesis, then it is denoted by a single upper-case Latin character; If the process is original

to the work of this thesis, then it is denoted by a single Greek character of either case.

7

Notational Style

To denote several instances of a data item, the common notation of a numerical right

subscript is used. Non-numerical right subscripts denote ownership of data or a process, and

this is extended to private ownership using both an over bar and under bar on the subscript. An

exception to this notation occurs when a counter variable is used to denote a generic instance

of a data item (e.g. di).

Persons or parties (groups of persons) are denoted with single upper-case script characters

when used in definitions, propositions, examples, etc., and named fully in standard text when

discussed in the main text body.

Universal sets are denoted with single upper-case blackboard-bold characters, which may

be embellished with a right superscript to add a maximal length for elements of the set.

Examples UPPERCASE lowercase
Roman H,h Existing Process Data
Greek Π, π Original Process Original Process
Script A,T Party or Person -

Blackboard Bold B, N Universal Set -

Table 1.1: Summary of Notation

To be consistent throughout, and in order to formally prove some results, a notational

style for function application is used that may be unfamiliar to some readers. Rather than

the conventional style of using the function name followed by parentheses which contain the

function’s arguments, a more formal approach is adopted. Functions can only have a single

argument, which may be a tuple containing multiple data items. This approach also allows

the composition of two or more functions into one, when the relevant input and output data

types correspond accordingly. In the case where functions are abstract and the notation is well-

established, this alternative notation is deviated from in favour of the more common notation.

For example, log(. . .) is used for the logarithm function, O(. . .) is used for computational

complexity, and K(. . .) for the Kolmogorov complexity.

When deriving one statement from another in a proof or example, the derivations are written

in the following form:

statement A

= {explanation of why statement A = statement B}

statement B

= {explanation of why statement B = statement C}

statement C

⇒ {explanation of why statement C ⇒ statement D}

statement D

etc.. . .
This style of derivation is adapted from that of Gries and Schneider’s book, A logical approach

to discrete math [24], which has been an extremely useful tool in producing some of the results

of this thesis. The style used for linear quantification has also been adapted from the same text,

following a similar style to set and list comprehension, where braces and square brackets are

used respectively. In the case of quantification, angled brackets are used to delimit the scope

8

Chapter Summary

of dummy variables, with the quantifier, range, and term, written as follows:

〈 quantifier | range : term 〉.

A single equals symbol (i.e. =) is used to denote equality between its left and right operands.

The statement x = y should be read as a proposition that x is equal to y. Assignment is denoted

with a single colon followed by an equals symbol (i.e. :=), so the statement x := y is used to

denote that x takes the current value of y. Finally, definition is denoted with a double colon

followed by an equals symbol (i.e. ::=), so the statement x ::= y is used to denote that x is

defined in the same manner as y, such that it is not possible to fully-evaluate y (e.g. if y is a

function with an undefined argument).

Notations used exclusively in the algorithms, are discussed in Appendix B.

Chapter Summary

The common consensus that data integrity concerns only the problem of tamper detection has

led to spurious claims of systems that can guarantee tamper-free data. Furthermore, this view

of data integrity does not encapsulate the true meaning of integrity, where maintaining the

truth is equally as important as determining it. The idea of multi-layered document integrity

postulated by Ashman aims to provide a level of data integrity beyond that of detection, thus

furthering the need for a more general notion of the problem.

This thesis aims to conceptualize the general data integrity problem, and determine whether

multi-layered document integrity can provide a feasible solution. The aims and objectives have

been discussed in detail, and the scope of this thesis has been defined; differentiating the focus

from a variety of schemes involved in the processes of data modification. The main contributions

of this thesis have been outlined and its significance has been discussed. A description of the

various notational styles used throughout this thesis has been provided for the less-obvious

conventions used to present this research.

9

Chapter 2

Related Work

It is a capital mistake to theorize before one has data. Insensibly one begins to twist

facts to suit theories, instead of theories to suit facts.

— Sir Arthur Conan Doyle, A Scandal in Bohemia (1891)

M
any research problems are concerned with the modification of data, and com-

monalities exist between different solutions. This chapter discusses some of the

well-established research problems (and solutions) that relate to data modifica-

tion. In particular, the focus is on methods for detecting the presence of modifications, locating

where the modifications have occurred, and correcting or restoring the modified data to its

original state.

When discussing this work within the research community, the similarities with revision

control or error-correcting codes are often noted. Therefore, these are briefly discussed in the

first two sections of this chapter, and the fundamental differences are highlighted.

The first section deals with modifications that were made legitimately, but require monitor-

ing; and the second with accidental modification, such as that experienced in transmission over

a noisy channel. The final sections discuss the problems surrounding malicious modification,

with which the problem of tampering is associated.

2.1 The Revision Control Problem

When data is modified by someone who is legitimately allowed to make changes to the data —

the modification is authorized. Authorized modification is implicitly deliberate, as permission

is given assuming modifications are intended. When modification of the data is expected, the

changes can be recorded to allow later reversal of the modifications, if desired. This is the case

for the undo feature in many software applications, and is also the basis behind version control

or revision control systems.

The problem of revision control is that of how to keep multiple file versions well organized.

One solution to revision control in text files is the software tool RCS (Revision Control System)

[41]. RCS manages multiple revisions of a file for storage and retrieval, but also provides

features for logging, identification, merging revisions, and access control, which facilitates work

in group-based environments. It is most useful for frequently revised data, such as source code

and documentation.

RCS manages revisions in an ancestral tree, which has a root revision and successive revisions

for each version. Revisions are stored in the form of separate deltas, which are essentially the

10

The Fault Problem

differences between successive revisions. A delta is the sequence of modifications to transform

one string into another. RCS deltas are line-based, so insertion and deletion of lines are the only

modifications permitted. If just one character in a line is modified, the entire line is considered

to have been changed. In RCS, the most recent revision on the trunk is stored intact. All other

revisions on the trunk are stored as reverse deltas, which describe how to reverse a modification.

The ancestral tree in RCS holds information about the changes which have already occurred,

allowing them to be reversed afterwards. As such, updates to the ancestral tree must also be

made from an authorized party. Therefore this method of restoring modified data is not suited

to situations where the modifications are unauthorized.

2.2 The Fault Problem

In many situations, whether data is stored or transmitted it may be subject to faults or errors.

These errors are usually due to fault-prone storage or a noisy transmission channel. Television

and radio broadcasts, static and mobile telephone networks, and particularly computer net-

works, all rely upon the detection (and sometimes correction) of errors. Since the errors are

of a non-deliberate nature, they occur randomly. Such changes are generally detected more

easily than non-random changes, because any structural patterns that exist within the data

are disturbed. For example, if the data consists of a string of bytes in which every first bit is

redundant and is always unset (of value 0), then the detection of a byte with its first bit set (of

value 1) would indicate an error. This simple example only allows the detection of errors (and

only if the byte’s first bit was affected), but there are many complex schemes that are able to

detect, locate, and correct these accidental errors.

2.2.1 Error Detection

The most widely used and well-known scheme for error detection is parity checking, which uses

parity bits to check that data has been transmitted correctly. The transmitted information has

a parity bit appended to each chunk of data, usually 7-bit chunks with a parity bit (a byte in

total). Each chunk has either an odd or an even number of set bits. Assume, for example, that

communication is being done with even parity (the most common form of parity checking).

As data is transmitted, the number of set bits in each chunk of seven bits is counted. If the

number of set bits is even, then the parity bit is unset, but if the number of set bits is odd,

then the parity bit is set. In this way, every byte has an even number of set bits. As the data

is received, each byte is checked to make sure that it has an even number of set bits. If a byte

contains an odd number of set bits, then there was an error during its transmission. This is a

basic form of error detection used in communications: Some errors are detected, but it cannot

detect situations in which an even number of bits in the same data chunk have been changed;

and, the parity bit is itself is also susceptible to error. Detection of an error might prompt a

request that the data is retransmitted. However, in many situations this is not possible, and so

there is a need for methods that correct errors detected in the data.

11

The Commitment Problem

2.2.2 Error Correction

As discussed, an error correcting mechanism that can cope with multiple errors is crucial for

data to be transmitted safely. For example, information transmitted from satellites exploring

outer space is, not only expensive, but also highly subject to error. It is therefore increasingly

expensive if the data is made useless due to non-correctable faults. Just as parity checking

embeds redundant information to detect faults, an error-correcting code (ECC) embeds infor-

mation to correct them.

A repetition ECC can correct multiple errors by repeating each bit of the original data

as it is being sent [33]. The code uses two codewords with length equal to the number of

repetitions. For example, a (5, 1)-repetition ECC uses the codewords 11111 and 00000 to

represent set and unset bits respectively. Receiving the word 10111 could have resulted from

two situations; sending the codeword 11111 with a single error or sending the codeword 00000

with 4 errors; the former being the most probable would suggest the word is corrected to 11111.

This ECC can correct up to two errors, but if three errors were to occur then the ECC cannot

determine the original word. Obviously, the greater the codeword length the greater the number

of errors that can be corrected, but this is also directly proportional to the volume of data to

be transmitted. Generally, a (k, 1)-repetition ECC can correct up to (k − 1)/2 errors, and is

not very efficient. However there are many other ECCs that are more efficient, but at the cost

of using a more complex techniques (e.g. Hamming [26] or Reed-Solomon [34] codes). ECCs

are an extremely useful tool, but fall outside the scope of this work. Whilst ECCs can be very

effective at detecting, locating and correcting accidental modifications (errors), they cannot be

applied to situations where modifications are deliberate (tampering). It is necessary to store

or transmit this redundant data separately from the original data in a multi-layered document

integrity scheme, so that an adversary cannot tamper with the original data and then change

the redundant data to hide the tampering.

This work is more concerned with the problem of unauthorized and deliberate changes in

data as opposed to authorized or accidental changes. This problem is fundamentally more

difficult to solve, since the modifier can make subtle changes to the data that might imitate the

original data. The modifier may also make changes to redundant bits used to track changes or

detect and correct errors so as to reflect their subtle changes, thereby hiding any evidence of

their unauthorized modifications.

2.3 The Commitment Problem

The commitment problem is one that occurs frequently in games played with two or more

players. One of the most simple ways to illustrate the problem is described in Blum’s coin

flipping by telephone [28], and is shown in the following example:

12

The Commitment Problem

Example 2.1 (Unfair Coin Flipping by Telephone)

Alice and Bob have just divorced and want to decide who gets the car by flipping a coin.

As they live in different cities, they must make the decision over the telephone. They

decide that Alice will flip the coin and that the Boolean values true and false denote heads

and tails respectively.

Alice flips the coin to determine the Boolean flip value x, she keeps this value to herself.

Then Bob makes his guess g of the flip value, which he tells Alice over the telephone. If

x = g then Alice should tell Bob that he has won. However, Alice can ensure she always

wins by changing the flip value whenever Bob guesses correctly to indicate that Bob guessed

incorrectly.

The problem can be solved with the use of a primitive known as a cryptographic hash function

(CHF), for which there is no obvious relation between its input and output (see Definition 2.1).

Moreover, one cannot predict the change in hash for a given change in the input and vice versa.

Definition 2.1 (Cryptographic Hash Function)

A cryptographic hash function H is a function that maps an arbitrary finite-length input

string to a fixed-length output string h, known as the hash, hash value or digest [23, 29].

Properties:

(i) Easy to compute;

(ii) Compressive;

(iii) Preimage resistant;

(iv) Second preimage resistant;

(v) Collision resistant.

Cryptographic hash functions are most commonly used to check a file or message’s integrity.

Properties (i) and (ii) ensure that the function is practical to use; the former in terms of time and

the latter in terms of space. Property (iii) allows a message’s hash to be made public without

revealing any information about the contents of the message from which it was derived. This

is particularly important, so hash functions can be used to time-stamp a message without

revealing its contents to the time-stamping service. Properties (iv) and (v) are similar, and are

justified in the situation of hashes used in digitally signing messages. Property (iv) prevents

the situation whereby an adversary can find a counterfeit message with matching signature

to a signed message they have been given, then later switching the messages. Property (v)

prevents the situation whereby an adversary can find two different messages (one true and one

counterfeit) which will have the same signature, presenting the true message to be signed and

then later switching the signature to the counterfeit message.

13

The Privacy Problem

In terms of the commitment problem, property (iii) conceals Alice’s flip so she can send it to

Bob before his guess, whilst property (v) binds Alice to the flip, preventing her from changing

after Bob has guessed. The following steps show how Alice and Bob can “flip a coin” fairly by

telephone [28]:

1. Alice flips the coin by randomly selecting a bit value x (i.e. 1 and 0 might denote heads

and tails respectively);

2. Alice picks a large random number x1;

3. Alice conceals her flipped value as w using a cryptographic hash function H, such that

w := H · (x‖x1);

4. Alice sends her concealed value w to Bob;

5. Bob makes a guess g and sends it to Alice;

6. Alice reveals both the flipped value x and random number x1 to Bob;

7. Bob verifies that the flipped value is legitimate by computing w = H · (x‖x1).

Bob will now win whenever his guess g is equal to the flipped value x, since for Alice to

convince Bob she has won in this case she must determine a value x2 such that w = H · (ḡ‖x2).

The preimage resistance (see Definition A.5) of the CHF, prevents Bob from determining the

true value of the flip from the concealed value before making his guess. The second preimage

resistance and collision resistance of the CHF prevent Alice from determining the counterfeit

involving x2.

Cryptographic hash functions are documented extensively in literature [3], and their design

constitutes its own field of active research. Three well-known and widely used cryptographic

hash functions are MD5 and SHA-1 [35, 19]. In 1996, the use of MD5 has been discouraged

in favour of SHA-1 [16], and more recently, successful attacks against the MD5 algorithm were

confirmed in 2004 [45]. In 2005, attacks against the full SHA-1 algorithm were found that require

less than 269 hash operations to determine a collision [46] — significantly less than an exhaustive

brute-force search. Currently, hash functions in the SHA-2 family [20] are recommended.

2.4 The Privacy Problem

The privacy problem is probably the oldest and most widely discussed problem in cryptography.

Essentially the problem involves three parties: Alice and Bob, who wish to communicate a secret

over an insecure channel; and Eve who wishes to discover the secret by eavesdropping on their

communications.

If the channel is insecure, then anything transmitted on it is effectively public information,

and hence the adversary has access to it. The problem can be solved by the use of a symmetric

encryption scheme, also known as a shared- or secret-key cryptosystem.

14

The Key Exchange Problem

Definition 2.2 (Secret-key Cryptosystem)

A secret-key cryptosystem is comprised of a public encryption/decryption function E and a

private key k
AB

shared between communicating parties A and B. For simplicity, secret-key

encryption/decryption using a key shared by Alice and Bob is denoted E
AB

.

Properties:

(i) E
AB

is self-invertible;

(ii) E
AB

is preimage resistant.

In terms of the privacy problem, property (ii) ensures that only Alice and Bob can determine

a message m from E
AB

·m, since only they know k
AB

. If Alice wishes to send a message m to

Bob using this cryptosystem:

1. Alice conceals the message as w, such that w := Ek
AB

· m;

2. Alice sends the concealed message w to Bob;

3. Bob determines the message using m := Ek
AB

· w.

Although this solves the privacy problem, there is a further problem in the initialization of

this protocol: It requires Alice and Bob to have prior knowledge of a shared secret — the key

k
AB

. This problem is commonly referred to as the key agreement or key exchange problem.

2.5 The Key Exchange Problem

The key exchange problem [15] is essentially the problem of establishing a secure transmission

channel via the secure exchange of a key, which itself requires a secure transmission channel.

This problem occurs when there is a need to transmit data securely, but is not such an issue

when storing data securely. This is due to both encryption and decryption occurring in the

same physical location; hence the key is not exchanged and can be secured more easily. For

example, the key could be stored on a physically secured mobile device (e.g. a smart card) or

even memorized by its owner as a passphrase [18].

The problem is solved with an asymmetric encryption scheme; commonly known as a public-

key cryptosystem (see Definition 2.3). In such a scheme it is computationally difficult to find

the decryption function from the encryption function, allowing the encryption function to be

made public without compromising security.

15

The Authentication Problem

Definition 2.3 (Public-key Cryptosystem)

A public-key cryptosystem is comprised of a public encryption/decryption function E and

two keys: one public encryption key kA and one private decryption key k
A

.

Properties:

(i) EA is invertible by E
A

;

(ii) EA is preimage resistant;

(iii) Given E and kA, k
A

is hard to compute.

For a public-key cryptosystem, properties (ii) and (iii) ensure that only Alice can determine

m from EA·m. The idea of a function that is hard to compute unless some secret information

is used, is known as a trapdoor function. This idea is used, not only solve the key exchange

problem (and therefore the privacy problem), but also in solving many other computer security

problems such as authentication, zero-knowledge proofs [21] and verifiable secret sharing [10].

2.6 The Authentication Problem

The authentication problem is that of allowing the receiver of a message to authenticate its

origin. For example, if Alice receives a message claiming to be from her business partner Bob

asking her to send back the combination of their safe, how does she know the message really

came from Bob? Alice has no way to authenticate the origin of the message.

The problem occurs because Tom knows everything that Bob knows (i.e. nothing) and so

Tom has the same abilities as Bob. Therefore, if Bob can use some protocol to convince Alice

that he is Bob, Tom can use this same protocol to convince Alice that he is Bob.

Definition 2.4 (Digital-signature Scheme)

A digital-signature scheme is comprised of two functions: one private function S
A

that

allows its owner A to sign messages and produce a signature s; and one public function

VA that allows anyone to validate a the owner’s signature to determine its authenticity v.

Properties:

(i) Universal validity;

(ii) Forgery resistant.

Various levels of forgery have been defined [22], which essentially correspond to the different

resistance properties of a cryptographic hash function (see Definition 2.1). In the context of this

thesis, if an adversary is given a message and its signature and is able to construct a different

message with the same signature, then this constitutes forgery.

16

The Integrity Problem

2.7 The Integrity Problem

The integrity problem is closely related to that of authentication, in that unauthorized modifica-

tions are considered to be a compromise of integrity. The majority of literature discussing data

integrity focusses on the problem of detecting any modification, whilst relatively little attention

has been given to the problems of locating and correcting modifications [42, 38, 36, 14, 37].

2.7.1 Tamper Detection

The tamper detection problem is concerned with determining unauthorized modification in

data. If Alice sends Bob a message, then Bob needs to determine whether the message he

receives is the same message that Alice sent. The solution is an integrity detection scheme

(IDS), which is commonly implemented using digital signatures. A signature-based integrity

detection scheme is essentially the same as a digital-signature scheme, but the primary goal

of signature-based integrity detection is to protect the document’s integrity rather than its

authenticity.

Definition 2.5 (Signature-based IDS)

A signature-based integrity detection scheme (SIDS) is comprised of the same two functions

as a digital signature scheme (see Definition 2.4).

The sign function computes the encrypted hash of a given message using the private en-

cryption function, therefore S
A

must remain private. The validation function evaluates to true

only when given a document with the same hash (using H·m) and when corresponding public

and private keys are used to construct the functions. Otherwise, it evaluates to false. Since

both H and EA are public, VA is also publicly available.

If an attacker should modify the message or its signature in any way, then VA will evaluate

to false, since the adversary cannot compute a new corresponding pair (m2, s2) such that

VA·(m2, s2) evaluates to true, since S
A

is private.

2.7.2 Tamper Location

The tamper location problem concerns determining which parts or blocks of data have been

modified. One possible solution is to split the data into a series of blocks and apply an IDS

to each block. In practice this method is not used due to its large computational and memory

overheads. A more practical solution is the Merkle hash tree [30], which is commonly used to

prevent damaged and counterfeit data from propagating through peer-to-peer networks.

A Merkle hash tree (originally known as an authentication tree) is a binary tree in which

the leaf nodes are hashes of the data blocks of a file (or set of files) and internal nodes are the

hashes of their concatenated children’s hashes. Figure 2.1 shows an example Merkle hash tree

where hi denotes H·mi, and hi‖j denotes H·(hi‖hj).

The master hash (also known as the root or top hash) is obtained by the client from a

trusted source (e.g. a trusted web site), which is used to verify the integrity of the hash tree

17

The Integrity Problem

H ·(h1‖2‖h3‖4)

H ·(h1‖h2) H ·(h3‖h4)

H ·m1 H ·m2 H ·m3 H ·m4

Figure 2.1: A Simple Merkle Hash Tree

from any non-trusted source (i.e. a peer on the network). Since large files shared on peer-to-

peer networks are shared more efficiently when split into smaller data blocks, the use of hash

trees allows the integrity of these blocks to be verified individually. The larger the file, the

larger its hash tree becomes. However, only the branches which correspond to the blocks being

downloaded are required for verifying those blocks.

For example, suppose a document is split into four blocks (m1, m2, m3, and m4) as shown

in Figure 2.1. The client Alice has determined the master hash from a trusted source, such as

a well-known Web page. Alice can verify the integrity of m1 downloaded from an untrusted

server (Bob or Tom), by also requesting the hashes h2 and h3‖4 from the server. By hashing

m1 to determine h1, Alice can then determine h1‖2 and therefore H·(h1‖2‖h3‖4), which can be

verified against the master hash.

Assuming the downloaded block and hashes verify correctly, Alice can then repeat the

process to download another block from the same source, utilizing the hashes already verified

to reduce the overheads. If, at any point, the current block and hashes do not verify correctly,

then the latest unverified information can be disregarded and the process can continue with an

alternative source.

Supposing Alice chooses Bob as the untrusted server. Since Bob is honest, this should

correctly verify the integrity of m1, allowing her to repeat the protocol for m2. However, if

she chooses Tom as the untrusted server, the integrity verification of the block will fail, since

Tom is dishonest. Alice would then repeat the protocol for m1, but selecting another untrusted

server (e.g. Bob), since she now knows not to trust Tom.

Given that Merkle hash trees can verify integrity block by block, there is a relatively small

increase in the amount of transmitted data for all untrusted servers in comparison to verifying

the data as a whole. However, there is a relatively large decrease in the amount of transmitted

data when one or more dishonest servers are selected.

The Merkle hash tree method exploits network diversity, and relies on the fact that trusted

servers exist. If a similar method is adopted with a single dishonest server (or alternatively all

servers on the entire network are dishonest), then the scheme will only provide integrity location

and some blocks will remain unverified. Example 2.2 highlights why it could be dangerous to

utilize partly-verified data.

18

The Integrity Problem

Example 2.2 (Party-verified Data)

Supposing one intends to utilize the verified blocks of the following partly-verified data in

which the first two data blocks were tampered with (denoted with “?”s):

“?????? PAY THE COMPANY ONE THOUSAND POUNDS”

The original data could have been either of the following possibilities that have contrary

meanings:

“PLEASE PAY THE COMPANY ONE THOUSAND POUNDS”

“DO NOT PAY THE COMPANY ONE THOUSAND POUNDS”

2.7.3 Tamper Correction

The tamper correction problem involves both determining which blocks of data have been

modified and reverting them to their original state. It is this problem which constitutes the

main focus of this thesis, and therefore a detailed discussion is left for the following chapters. In

this section Ashman’s idea of multi-layered document integrity (MLDI) [1] is discussed, which

the author believes to be the only work prior to this that tackles the problem.

Ashman tackled the problem of tampering with the approach that hash functions are non-

deterministic, and hence the only way to determine the possible inputs for a corresponding

output is to conduct an exhaustive search through all possible inputs. If, however, the hash

function’s input data size (preimage size) is small enough then the search space is reduced.

So by sectioning the data into smaller chunks and hashing each chunk, the search space for

determining the input for a given chunk’s hash is reduced. The effect of this also allows an

adversary to determine multiple chunks of data with identical hashes, and hence weakens the

integrity provided by hashing. However, by hashing a document at many levels (hashing the

whole document followed by hashing its subsections), the integrity can be preserved. This also

allows for location of tampering, since checking the hash of a subsection determines whether or

not that subsection has been changed.

This scheme can easily be applied to documents with a tree structure, where hashing occurs

at each node and encompasses the data of all its sub-nodes. Therefore a change in any leaf node

results in a mismatch of all hashes along the path connecting itself to the root (inclusive). To

section the document at many levels, Ashman states that “the document must be decomposed

in such a way that every lower-level element belongs to some higher-level element”. By doing

this, it is effectively superimposing a tree structure onto the document. This is done until the

lowest level of the document, which may be decided by the size of the search space at that level

and the importance of its recovery. The process of decomposing the document forms a type of

document tree, which can then be hashed by hashing each level below the root in turn, until

the lowest level is reached. The hashed data can either be sent separately to the document or

it can be encrypted using a signature-based integrity detection scheme (similar to the way that

Pretty Good Privacy (PGP) secures its integrity data [47]). When the document is received at

its destination, its integrity as a whole is determined by comparing the top-level hash to the

19

The Integrity Problem

hash of the received document. If there is a mismatch, then changes are further located by

computing and comparing all hashes at the next level down. This is repeated until the changes

have been located to the lowest level. At this stage the original leaf node can be determined

by a brute-force search through all possible leaf nodes. It is highly probable that multiple leaf

nodes have matching hashes, but identifying which of these multiple possibilities is correct, can

be determined by checking them at higher levels.

An Ashman hash tree (originally known as a tree of hashes) is an arbitrary tree in which the

leaf nodes and internal nodes are weakened hashes of the data blocks of a file (or concatenated

data blocks for internal nodes). The top level or root hash is a cryptographic hash of all data

blocks concatenated together (i.e. a hash of the entire file) (see Figure 2.2).

H ·(m1‖m2‖m3‖m4)

99K

H ·(m1‖m2)
99K

H ·(m3‖m4)

99K

H ·m1

99K

H ·m2

99K

H ·m3

99K

H ·m4

Figure 2.2: A Simple Ashman Hash Tree

There are two main differences between Merkle and Ashman hash trees. The first difference

concerns their respective internal nodes, which are are direct hashes of data in an Ashman

hash tree, rather than hashes of other hashes as in Merkle hash trees. The second difference

concerns non-root nodes, since an Ashman hash tree uses weakened hashing as opposed to

the cryptographic hashing used in Merkle hash trees. The reasoning behind these differences

stems from Ashman hash trees aiming to provide the ability for correction, which requires weak

hashes. If a Merkle-like “hash of child hashes” approach is used, then a counterfeit occurring

at one node would not be recognized at its parent nodes, and the root hash (used for detection)

would match, irrespective of any tampering.

There are several problems with Ashman’s scheme as it is described, mostly due to expla-

nations being too brief and, at times, ambiguous, but also due to some oversights. First the

ambiguities are addressed, to fully understand the idea. Ashman describes the idea in terms of

sending a document, for example, over the Internet, but this is not necessarily the only appli-

cation. The idea can equally apply to the storage of a document on some tamper-vulnerable

storage device. A second ambiguity is the use of the term “small hashes”, which could mean

that the hash input (preimage) is small in size, but equally could mean that the hash output

(image) is small in size. From the context of Ashman’s argument, the author assumes that

“small hashes” actually refers to small preimage hashes, which make a brute-force search of the

preimage space more realistic. However, small image hashes would also be beneficial to such a

scheme, as it reduces the total size of the hash data. This poses a problem with Ashman’s al-

gorithm, in that, if standard cryptographic hashing was applied throughout the document tree

20

The Censorship Problem

then the hash data would almost certainly be greater in size than the original data. Therefore

the original data could be stored or transmitted in the same (tamper-invulnerable) manner as

the hash data. Ashman does not comment on this scenario, but it is discussed in more detail

in Chapter 3.

A further ambiguity is in the description of when to stop decomposing the document. In the

first description, it is stated that the size of the search space at that level and the importance

of its recovery determine the lowest level of document decomposition required. However, in

the later example describing the algorithm in terms of decomposing image data, it is stated

that decomposition occurs until the document section is homogeneous. The first description

is correct: The size of the search space must be a factor in the decision (see Definition 6.4),

but this statement is too vague to implement the algorithm. The problem of data (document)

decomposition is discussed more thoroughly in Chapter 3.

2.8 The Censorship Problem

The censorship problem is fundamentally similar to that of integrity, with the common goal

of data preservation in the presence of a malicious adversary. The problem concerns three

participants: a publisher, a viewer and a censor. The publisher publishes documents for the

viewer to view. However, the censor is attempting to suppress some or all of the published

document via whatever means is necessary. Typically this situation might apply on the Internet,

where a censor might pressure a publisher through legal action to remove content they have

published on a Web page. Whilst there are many justifiable reasons for censoring information,

in many cases censorship can also be unjustified. Censorship resistance is the term used to

describe how well a publishing method can overcome the problem of censorship.

21

The Censorship Problem

Example 2.3 (Alice and Bob’s Censorship Problem)

Whilst working on a remote expedition in the Amazon, Bob’s only means of communication

is through the Internet, and his email has been unreliable since the start of the expedition.

All the emails he’s received from his fiancée, Alice, have been corrupted, and none of his

replies to her appear to have been received. Wishing to allay any fears Alice might have

for his safety, Bob opts to publicly announce his well-being (and email problem) by posting

a message to a public newsgroup that he knows Alice (the viewer) reads frequently.

Initially, Bob experiences connectivity problems with the newsgroup server but, after sev-

eral hours of persistence, finally manages to post his message. When Bob checks the

newsgroup for a reply the following morning, he finds his message has been removed. De-

spite further attempts, none of Bob’s messages appear on the newsgroup, and he is out of

ideas.

The cause of Bob’s problem is Tom, Alice’s secret admirer, who does everything in his

power to prevent them from communicating. Tom (the censor) initially tried to suppress

Bob’s message using a denial of service attack against Bob’s Internet service provider,

but Bob’s persistence defeated the attack. Tom then successfully managed to bribe the

newsgroup’s editor (the publisher) to suppress all posts from Bob. If only Bob had access to

some anonymous or unsuppressible publishing method, he would be able to communicate

with Alice.

The main approaches to censorship resistance have been categorized as schemes for data

replication, anonymous communication, server deniability and data entanglement [32]. Data

replication schemes typically involve the creation and distribution of multiple copies of the

data under the assumption that censorship of all copies is unlikely. Anonymous communication

schemes attempt to provide censorship resistance through the use of encryption to protect the

origins of the data. The assumption is that if the source of data cannot be determined, then

it cannot be censored. Server deniability schemes such as Publius [44] rely on the idea of

distributing encrypted copies of the data amongst many servers with each server holding only

part of the decryption key. The assumption is that any given server cannot be held responsible

for the content of the data as it does not posses the ability to determine its content. Data

entanglement schemes such as Tangler [43] and Dagster [40] split data into blocks in such a

way that a single block becomes part of several documents. The assumption is that there exist

documents which are both desirable and undesirable for the censor, and hence removal of any

undesirable document will also remove data blocks (and hence documents) which were desirable.

All censorship resistance schemes (see Definition 2.6) work on the principle of data dis-

tribution, although not necessarily in terms of replicated distribution. Each type of scheme

has various problems, but these are beyond the scope of this discussion. Instead, the reason

why censorship-resistance schemes do not provide a solution to the data integrity problem is

highlighted.

22

Chapter Summary

Definition 2.6 (Censorship Resistance Scheme)

A censorship resistance scheme is any document publishing scheme that provides non-

revocation and accessibility.

Properties:

(i) Non-revocation: It should be computationally infeasible for a censor to

be able to force a publisher to revoke a published document.

(ii) Accessibility: It should be computationally infeasible for a censor to be

able to prevent a viewer from accessing a published document.

There are two common approaches to achieving censorship resistance by satisfying properties

(i) and (ii). The first approach involves the use of an anonymous publishing method, which

prevents the censor identifying the publisher and therefore satisfies (i). This method may also

helps towards satisfying (ii), since it may be difficult to block access to an unknown source,

but may also introduce problems for the viewer obtaining the document from an unknown

source. The second approach involves data distribution, which makes the blocking of all sources

more difficult and therefore satisfies (ii). This method also helps towards satisfying (i), since

the censor must determine multiple sources and then force them all to revoke the published

document. (All sources need to be forced if all sources are publishing the entire document.)

In practice, all the schemes encountered use data distribution; probably due to it being

both simpler and more robust. However, the use of distribution makes it equally difficult

for authorized modifications to be made as for unauthorized censorship; therefore nobody is

authorized to remove old documents or modify documents that may contain mistakes. This

characteristic of censorship resistance schemes differentiates them from integrity correction

schemes, and make them unsuitable for solving the data integrity problem.

Chapter Summary

Various methods of addressing modification in data have been discussed through a series of

problems, describing the general or widely-accepted solution of each. Whilst revision control

and error detection/correction schemes provide useful methods of monitoring changes, neither is

suitable in the presence of a malicious adversary. The problems that followed, led to the common

cryptographic primitives used for (and related to) solving parts of the integrity problem.

Ashman’s idea of multi-layered document integrity has been discussed [1] as a solution to the

tamper correction problem (as well as detection and location). However, several problems have

been noted within MLDI [31] that need to be resolved to develop it into a concrete algorithm

that can be implemented. The author believes that the most fundamental problem is the lack

of a solid theoretical foundation, preventing the idea and its algorithm being described clearly.

Despite the problems with MLDI, it seems to be a reasonable approach to solving the tamper

correction problem, and therefore deserves further development.

23

It isn’t that they can’t see the solution. It’s that they can’t see the problem.

— Gilbert Keith Chesterton, The Point of a Pin (1935)

Part II
The Data Integrity Problem

24

Chapter 3

Fundamentals

Everything should be made as simple as possible, but not simpler.

— Albert Einstein [attributed in Reader’s Digest (October 1977)]

T
his chapter discusses the fundamental problem of digital tampering. The aim is

to highlight both the obvious and the not-so-obvious concepts, in order to define

the scope of later chapters. To begin, some of the fundamental terms and concepts

associated with the problem are outlined.

3.1 Participant Model

A party is considered to be a group of participants with a common goal. However, the role that

each participant plays to achieve the goal may differ.

Essentially, the problem concerns two parties with adverse goals: The honest defending party

attempts to protect data against tampering; whereas the dishonest attacking party attempts to

modify the defending party’s data. This model can be applied when the data is stored by Alice

(A) on a device and retrieved from that device by Alice at some later point in time. Therefore

Tom (T) might have an opportunity to tamper with the data before it has been retrieved.

A slightly different model is required when the data is transmitted by Alice over a channel

and received by Bob (B) somewhere else. Here the defending party consists of two different

participants: a source and a destination. In this situation the process can be described using

three participants. Alice is the honest defending source of the data, Tom is the dishonest

attacker or adversary, and Bob is the honest defending destination of the data.

In order to reason about the problem in a simplified manner, these two models are general-

ized into one, where Alice is known as the preserver, Tom is known as the tamperer and Bob is

known as the resolver.

An additional party is the neutral party, which can be considered impartial to both the

attacking and defending parties. The goal of the neutral party is to ensure fairness between

the other parties. Jude (J) acts as an impartial judge on transactions between participants

from the attacking and defending parties. Table 3.1 summarizes the roles of these participants

within the proposed model.

Finally, the universal party Everyone (∗) is added, which includes all participants.

25

Transaction Model

Participant Symbol Party Trust Role
Alice A Preserver
Bob B

Defending Honest
Resolver

Tom T Attacking Dishonest Tamperer
Jude J Trusted Third Party Mutual Judge

Everyone ∗ Universal party of all participants N/A N/A

Table 3.1: Contrasting Roles of the Parties

3.2 Transaction Model

When data is in the possession of a participant it is assumed that only that participant can

modify it, and any modifications are authorized with respect to all participants in their party.

So when Alice has some data, only she can modify it, and this modification is authorized with

respect to Bob too (since they belong to the same party). A transaction is considered to be any

process in which data is obtained or released by a participant; it signifies the point at which a

participant gains or loses their possession of the data.

When data is not in the possession of a participant, it is assumed to be in storage on a device

or in transmission over a channel ; it cannot be passed directly from one participant to another.

The terms device and channel are generalized into the term medium (see Definition 3.1). When

data is stored on a device or transmitted over a channel, the term expose via a medium is used.

When data is retrieved from a device or received from a channel, the term obtain via a medium

is used.

The terms vulnerable and invulnerable are used to describe whether a medium is vulnerable

or invulnerable to tampering, respectively. For example, “obtained via a vulnerable medium”

would mean the data has been vulnerable to tampering, whereas “obtained via an invulnerable

medium” means the data will be tamper free. Note that an invulnerable medium is similar to,

but not the same as, an authentic channel, which is typically simulated using a digital signa-

ture scheme to provide authentication [29]. A simulated authentic channel provides a means

for integrity detection, but does not prevent tampering from occurring. However, authenti-

cation must be a prerequisite for an invulnerable medium, otherwise the data may have an

unauthorized origin.

Definition 3.1 (Medium)

The generic term used in place of storage device or transmission channel when no distinc-

tion should be made between the processes of storage and transmission. If the medium is

vulnerable to tampering then it said to be a vulnerable medium, whereas an invulnerable

medium is invulnerable to tampering.

3.3 Data Model

A partitionable data model is required for discussion of the tamper location problem (see

Definition 3.2).

26

Adversary Model

Definition 3.2 (Data Block)

Data is considered to be a data block d, which is a list of size #(d) that consists of one or

more discrete sub-blocks di, such that

d ::= [d0, d1, . . . , d#(d)−1]

As #(d) denotes the number of sub-blocks in d, the length of d in bits is denoted |d| or

simply n. Therefore d is one of 2n possible data blocks in the set B
n. Example 3.1 shows how

this notion of a data block might be applied.

Example 3.1 (Data Block)

Consider a 32-bit encryption key k, which is a string of binary digits

k := 10011000101010111010000100101110.

It might be represented as a single data block with n = 32 and #(d) = 1

d := [10011000101010111010000100101110]

or split into several data blocks with n = 32 and #(d) = 4

d := [[10011000], [10101011], [10100001], [00101110]].

3.4 Adversary Model

By nature, tamperers are active adversaries (as opposed to passive), since they are able to

modify the data during exposure. The modification can be categorized into three types of

transformation: addition, deletion and replacement.

A destructive adversary has the ability to modify data with these transformations, but

without being able to selectively modify the data. More formally, they apply a finite, arbitrary

number of random transformations, provided that this has the cumulative effect of reducing the

data’s entropy [2]. Alternatively, an arbitrary adversary can select whichever transformations

they wish to apply, allowing them unrestricted write-access to the data, which can range from

deleting the data entirely to replacing it with any other data. In either case the cumulative

transformation can be represented as a single transformation (see Definition 3.3).

27

Preservative Model

Definition 3.3 (Tampering Function)

The deliberate modification of data is modelled by the tampering function τ , where tam-

pering can only occur when the data is vulnerable (i.e. exposed via a tamper-vulnerable

medium). For simplicity, original data d that has been tampered with is denoted f, such

that

f ::= τ · d.

A malicious adversary is aware that the defending party will attempt to protect their data’s

integrity by any means available to them, and therefore the adversary uses their abilities to

overcome any protection schemes adopted. A malicious adversary can be either destructive or

arbitrary.

Finally, a persistent adversary will continually tamper with the defending party’s data,

rendering the try and try again method useless for the defending party. A persistent adversary

may be malicious and/or arbitrary (or neither).

The adversary assumed in this thesis (Tom) is arbitrary, malicious and persistent.

3.5 Preservative Model

The defending party is attempting to protect the integrity of their data. Irrespective of the

exposure method, they must adopt some kind of scheme to do this, which will require some

information that is redundant with respect to the data itself. This redundant information

is defined as the preservative, since its purpose is to preserve integrity. The preservative is

computed before the data is exposed and acts as a guard or monitor for the data during

exposure. This can then be used, when the data has been obtained, to provide information

regarding its integrity.

Definition 3.4 (Preserving Function)

The preserving function ̟ is the initialization process applied to original data d as a pre-

emptive method to preserve integrity. The process produces redundant data, the preser-

vative p, such that

p ::= ̟ · d.

This work describes two different preservative models — vulnerable and invulnerable. In

the vulnerable preservative model (VP model), the preservative is exposed along with the data,

allowing the adversary access to modify the data and its preservative (see Definition 3.5). This

paradigm can be used to model an unrestricted medium which (intentionally or unintention-

ally) permits unauthorized write access. Many real-world systems fit this model: For example,

transmission over the Internet using an signature-based integrity detection scheme (see Defini-

tion 2.5).

28

Preservative Model

Definition 3.5 (Vulnerable Preservative Model)

In the vulnerable preservative model the original data d and its original preservative p are

exposed together via a vulnerable medium. When the information is obtained, the exposed

data e is either the original data d or the tampered data f, such that

(e = d) 6= (e = f)

≡

¬(d = f). (3.1)

Similarly, the exposed preservative q is either the original preservative p or the tampered

preservative r, such that

(q = p) 6= (q = r)

≡

¬(p = r). (3.2)

The alternative paradigm would be a restricted medium which permitted only authorized

write access. This is modelled with the invulnerable preservative model (IP model) (see Defini-

tion 3.8), where the preservative is exposed via an invulnerable medium, protecting its integrity.

However, if such a medium existed, then it should be possible to expose the data via this invul-

nerable medium, therefore achieving tamper-free data without the need for a preservative. This

situation is described in an analogous manner to the key exchange problem (see §2.5). In the

key exchange problem the key had to be exchanged via a private channel to establish a private

channel, whereas in the preservative exposure problem the preservative has to be exposed via

an invulnerable medium to establish an invulnerable medium (see Definition 3.6).

Definition 3.6 (Preservative Exposure Problem)

The problem of using a preservative to achieve an invulnerable medium for data exposure,

which is only possible if the preservative itself is exposed via an invulnerable medium.

An important distinction between keys and preservatives is that a key is generally unrelated

to the data it is used to encrypt. As such, a key can generally be used to encrypt multiple data

blocks. However, a preservative is generated for specific data and is of no use to other data. For

similar reasons encryption keys are of fixed-size and can be kept relatively small in comparison

to the data they are used to encrypt, whereas a preservative will be of variable-size relative to

the size of its original data.

Solving the key exchange problem via whatever means, whether it is an expensive secure

courier or a computationally-heavy public-key cryptosystem, becomes worthwhile when consid-

ering the ratio of key size to encryptable data size is high (for a single key). Therefore this work

could employ a similar evaluation method to determine how worthwhile solving the preservative

exposure problem would be.

29

Process Model

As a single preservative can be used for just one specific data block, this work looks at

the ratio between the size of the data and the size of its preservative. However, rather than

measuring data and preservative size in terms of the number of bits, this work considers a

measure of the information contained within each. This is done by using the Kolmogorov

complexity (see Definition 3.7), to suppress any redundancy that might be discarded as a result

of compression.

Definition 3.7 (Kolmogorov Complexity)

Given a string x, the Kolmogorov complexity K(x) is the minimum number of bits into

which x can be compressed without losing information. This is defined with respect to a

fixed, but universal decompression scheme, given by a universal Turing machine [6].

Let I(x) be the shortest description of the string x, then

K(x) = |I(x)|. (3.3)

The tamper-invulnerable medium used for exposure of the preservative could potentially be

used to expose the data, so there must be an upper-bound for the amount of information in the

preservative. Consideration of this fact suggests that if the preservative is to be exposed via an

invulnerable medium, then it must contain less information than the data it corresponds to, oth-

erwise it becomes redundant. (One may as well expose the data via the invulnerable medium.)

Therefore this work considers the possible existence of a limited invulnerable medium, which is

restricted in the amount of information that can be exposed via it, and essentially restricting

the size of the preservative. Definition 3.8 encompasses this restriction in Equation 3.4, limiting

the Kolmogorov complexity of the preservative to be less than the Kolmogorov complexity of

the data (see Theorem 5.2).

Definition 3.8 (Invulnerable Preservative Model)

In the vulnerable preservative model, the original data d and its original preservative p are

exposed separately. The data being exposed via a vulnerable medium and the preservative

via an invulnerable medium. When the information is obtained, the exposed data e is

either the original data d or the tampered data f, in an identical manner to the VP model,

and thefore Equation 3.1 holds. However, the exposed preservative q remains original, such

that

q = p,

with the restriction that

K(p) < K(d). (3.4)

3.6 Process Model

The most basic process model involves just three stages (see Figure 3.1). The initiation stage

is where the data is produced in some way, and is therefore original. The exposure stage begins

30

Process Model

when Alice exposes (stores or transmits) the data on a vulnerable medium. When the exposed

data is tampered with by Tom, it becomes counterfeit. The completion stage begins when Bob

obtains (retrieves or receives) the data from the vulnerable medium. As Bob has no way of

knowing that the data has been tampered with, he accepts the counterfeit data as if it were

original.

d

Initiation

Expose Tamper Obtain

Exposure Completion

d f f

(Vulnerable)

A T B

Figure 3.1: Basic Process Model

The ideal solution to this problem would be for Alice to expose the data on an invulnerable

medium, rather than a vulnerable one (see Figure 3.2). By using an invulnerable medium,

Tom is prevented from tampering with the data altogether, and so Bob will always obtain

original data. However, the feasibility of an unlimited invulnerable medium makes this solution

idealistic, rather than realistic.

d

Initiation

Expose

Exposure

d d

(Invulnerable)

A

Obtain

Completion

B

Figure 3.2: Ideal Process Model

An alternative solution is for Alice and Bob to use a signature-based integrity detection

scheme to solve the problem (see Figure 3.3). This involves adding two extra stages to the

process for protecting and verifying the data. Alice adds a protection stage before exposing

the data, in which the data is protected using the sign function of a signature-based integrity

detection scheme. Both the data and its signature are then exposed on a vulnerable medium,

where they become subject to tampering by Tom. The counterfeit data and counterfeit (or

31

Chapter Summary

original) signature are then obtained by Bob who adds a verification stage before completion.

In this stage, Bob uses the validate function of a signature-based integrity detection scheme to

determine whether the data is original, in which case the data becomes validated. However,

since the data is counterfeit, the validate function determines the data is false as the result of

verification.

d Expose Tamper ObtainProtect Verify

Exposure (Vulnerable)Initiation Verification CompletionProtection

false

d

p

d

p

f

q

f

q

A A T B B

Figure 3.3: Signature-based Integrity Detection Scheme Process Model

This thesis uses a more general process model that accommodates different aspects of the

previous process models (see Figure 3.4). This model is similar to that used for signature-

based integrity detection schemes, but also incorporates the IP model for exposure. After

initiation, the preservative is computed in the preservation stage — a more general stage than

the protection stage of a signature-based integrity detection scheme (SIDS). In the exposure

stage the data is exposed via a vulnerable medium and the preservative is exposed via a limited

invulnerable medium (as in the IP model). When the data and its preservative are obtained the

resolution stage begins — a more general stage than the verification stage of a signature-based

integrity detection scheme. Within this stage Bob resolves any problems with the data using

its preservative, thereby resulting in the original data.

Chapter Summary

The fundamentals of the data integrity problem have been discussed by defining a model for

each of its main aspects. The discussion has been focussed around three areas of the problem:

the participants, the data and the processes.

The participants have been discussed in terms of the attacking and defending parties and

their adverse goals. The role that each participant plays in achieving their party’s goal has been

defined, and the idea of a trusted third-party used in the security model has been introduced.

The abilities of the attacking party have been elaborated on by discussing the adversary model

of this work, and a powerful adversary with the ability for unrestricted modification to data

exposed via a vulnerable medium has been defined. Alongside this vulnerable medium, an

invulnerable medium has been defined, where the adversary has no ability to modify the exposed

data.

32

Chapter Summary

d d d f

Exposure (Invulnerable)

f

Exposure (Vulnerable)

Initiation Resolution CompletionPreservation

d

p p p

P
re

s
e
r
v
e

R
e
s
o
lv

e

Expose

Expose Tamper Obtain

Obtain

A A T B B

Figure 3.4: Multi-layered Document Integrity Process Model

The data model has been defined in terms of a partitionable data structure, which provides

the ability to locate modifications to specific data blocks, rather than as a whole. Subsequently,

the idea of a preservative has been discussed, which is determined from the data prior to

exposure. The preservative can be used to resolve any data integrity problems after exposure,

thereby helping to preserve the data’s integrity.

The final area of the problem concerns its processes. The transaction model has further

defined some aspects of the participants’ abilities and has outlined the definition of a medium.

The different types of media have been discussed, including the use of the term exposure in

place of store and transmit, and the use of vulnerable and invulnerable media as respective

synonyms for tamper-vulnerable and tamper-invulnerable media. Various process models have

been discussed, which help to illustrate the problem of integrity preservation by classifying the

various stages of the problem, and defining the participants and data involved at each stage.

33

Chapter 4

Taxonomy

sed quis custodiet ipsos custodes?

[but who is to guard the guards themselves?]

— Juvenal, Satire VI (1st–2nd Century)

A
common issue with security schemes concerns the actual definition of secure. Whilst

other security problems have well-defined models to define security within the prob-

lem’s context, the integrity problem lacks such a model. In this chapter, a well-

defined model for the data integrity problem is introduced. The model considers the problem as

four distinct sub-problems (see Definition 4.1), allowing a formal definition to be constructed

for each one.

Definition 4.1 (Data Integrity Problem)

The problem encapsulates the following sub-problems:

• Detection: Determining any modification in the exposed data;

• Location: Identifying any instances of modification in the exposed data;

• Correction: Restoring any instances of modification in the exposed data to their

original state;

• Prevention: Precluding any instances of modification in the exposed data.

Two approaches are required in order to distinctly define each of the sub-problems. The

first approach defines the problem in terms of its behaviour, and the second approach in terms

of its solvability. Collectively, these approaches provide a formal problem semantics for data

integrity.

The problem semantics can be used to build a new security model for determining whether

or not a protocol can solve any of the sub-problems that constitute the data integrity problem.

A generalized description of this security model is described in the final section of this chapter.

34

Behaviour Model

4.1 Behaviour Model

The behaviour model is formally defined as a set of behaviour functions, with one function

defined for each of the sub-problems. These functions describe the sub-problems by defining

the output for a given input. Informally, a behaviour function could be described as “specifying

how an algorithm for solving the sub-problem should operate”.

A common characteristic of the behaviour functions is that, despite the original data block

(d) being used in the definition of all the functions, it is not given as an input to the functions.

The original data block is only used to specify the functions’ behaviour in relation to their

input. In other words, it specifies how an algorithm should evaluate, but the definition itself

cannot be used as an algorithm.

Consider the generic sub-problem Z. The behaviour function (γ) for Z might be defined

γ · x ::= z (i.e. given the input x, an algorithm to solve Z should output z). Whereas an

algorithm (G) for solving Z might be defined G · x ::= y (i.e. given input x, an algorithm G

to solve Z outputs y). In either case x is the input, and therefore if y = z, then G meets the

behaviour specification and is therefore a possible solution to Z. However, if y 6= z, then G is

definitely not a solution to Z. For a possible solution to be an actual solution, a further type of

specification must be met (see §4.2).

4.1.1 Detection Behaviour

The problem of detection is the most commonly discussed problem regarding data integrity

and tampering. Both the problem and its widely-accepted solution (signature-based integrity

detection schemes) have been studied in detail. However, the approach taken in this work is to

construct an abstract model of the detection problem.

Essentially, detection is a process that determines modification in exposed data. That is, if

the exposed data block was tampered with, the detection behaviour function should return the

value false; otherwise the exposed data block has not been tampered with and the value true

should be returned (see Definition 4.2). This problem requires that only one bit of information

be determined, irrespective of the size of the original data block.

Definition 4.2 (Detection Behaviour Function)

Given an exposed data block e, the detection behaviour function δ evaluates to true if the

exposed data block is original, and false if it has been tampered with. The function is

formally defined as

δ · e ::= (e = d).

The problem with determining the integrity of exposed data from the data alone is that

all of the information available is part of the data itself. In order to determine integrity, extra

information regarding the original data must be included in the form of a preservative. A

detection algorithm therefore operates on an exposed tuple, which is made up of both the data

and its preservative.

35

Behaviour Model

As a result of packaging the data along with a preservative in a tuple, there are now four

possibilities for tampering. Ideally, detection should determine whether the exposed document

is the original document. However, when the exposed preservative is tampered with, there is no

reliable means to determine whether the data is original. The result of this is that the only reli-

able means to achieve detection is when both data and preservative are original. Table 4.1 shows

the different possible exposed data and preservative values, along with a statement representing

them both being original. Note that when the IP model is used, the exposed preservative is

original by definition (see Definition 3.8).

e q e = d q = p (e = d) ∧ (q = p)
d p true true true
d r true false false
f p false true false
f r false false false

Table 4.1: Ideal Versus Achievable Detection Results

To illustrate this idea, consider a simple detection algorithm D that uses cryptographic

hashing. The definition for the behaviour of D is that when given an exposed data block e and

its corresponding preservative q, D should return e = d in accordance with Definition 4.2.

D · (e, q)

= {Let D · (e, q) ::= (̟ · e = p) ∧ (q = p)}

(̟ · e = p) ∧ (q = p)

= {Definition 3.4}

(̟ · e = ̟ · d) ∧ (q = p)

= {̟ ::= H}

(H · e = H · d) ∧ (q = p)

= {Definition 2.1, properties (iv) and (v)}

(e = d) ∧ (q = p)

⇒ {Weakening}

e = d
The penultimate step of this derivation will only hold under the assumption that no two different

inputs can hash to the same output. In theory this does not hold for a useful cryptographic

hash function, but in practice (and for the sake of this illustration) this assumption can be

made. The final step is a compromise, in that a stronger statement can be achieved than is

actually required to satisfy detection. The algorithm determines that both the exposed data

and its preservative are original, which can be weakened to just the exposed data being original.

4.1.2 Location Behaviour

The location problem is less straightforward than that of detection. Rather than determining

whether any modification has taken place in the exposed data, the problem must determine

whether any modification has taken place in each of the exposed data blocks. By defining an

“instance” of tampering using data blocks (see Definition 3.3), a deterministic decision can be

36

Behaviour Model

made as to whether each block has been modified; considering each block as an autonomous

piece of data as opposed to the whole data being considered as an autonomous block.

A further complication arises because it is unclear what the output of the location process

should be. This issue is resolved by considering the data model and the aim of location. Given

two data blocks d and e, the aim of location is to perform a pairwise comparison on each of their

data block pairs (di, ei). If a data block is modified in any way, given both the original and

modified data blocks, the location behaviour function should determine where modifications

have occurred with respect to the original data block (see Definition 4.3). Essentially the

location process is identical to the detection process, but iterated over each of the data blocks.

Definition 4.3 (Location Behaviour Function)

Given exposed data e that consists of #(e) data blocks e0, e1, . . . , e#(e)−1, the location

behaviour function λ indicates which blocks of the exposed data were original. The function

is formally defined as

λ · e ::= [i ∈ N | 0 ≤ i < #(d) : di = ei].

The location sub-problem requires that one bit of information be determined for each data

block of the original data block. Therefore the information required for a solution is dependent

on the size and structure of the original data block. However, at most n bits of information are

required to determine the solution for an n-bit original data block.

4.1.3 Correction Behaviour

The correction problem is that of restoring the original data block, given an exposed data

block. Therefore exactly n bits of information are required to determine the solution for an

n-bit original data block.

Definition 4.4 (Correction Behaviour Function)

Given an exposed data block e, the correction behaviour function χ determines the original

data block. The function is formally defined as

χ · e ::= d.

4.1.4 Prevention Behaviour

The prevention problem is fundamentally different from the other sub-problems in several ways.

Essentially the adversary is inhibited from modifying the exposed data block, and so the original

and exposed data blocks must be identical. In other words, if the adversary can make any

modification to the data block, then prevention has not been achieved, irrespective of whether

tampering can be detected, located or corrected. One might even argue that if the adversary

37

Solvability Model

cannot modify the data, then they become passive (rather than active), which would contradict

the adversary model given in §3.4.

Another fundamental difference of prevention is that the computation modelled by the

behaviour function for the other sub-problems is done at resolution stage. However, any com-

putation done by the defending party after exposure cannot affect the outcome of prevention.

The difference becomes more apparent when considering the prevention behaviour function

(see Definition 4.5), which is defined in an identical way to correction. Essentially, both of these

processes should produce the same result - the original data block.

Definition 4.5 (Prevention Behaviour Function)

Given an exposed data block e, the prevention behaviour function π determines the original

data block. The function is formally defined as

π · e ::= d.

This situation is one of the reasons that this model must be extended further to encompass

the fundamental difference of prevention, and thereby distinguish this sub-problem.

4.2 Solvability Model

The solvability model is formally defined as a set of solvability functions, with one function

defined for each of the sub-problems, in a similar way to the behaviour functions. These

functions describe the sub-problems in terms of whether a given algorithm for solving one

of the sub-problems is correct, and therefore constitutes an actual solution to the problem.

Informally, the solvability functions determine whether or not the given algorithm can solve the

sub-problem.

Consider the generic sub-problem Z. The solvability function (Γ) for Z might be defined

Γ · x ::= z, where z is a function of the equality between the result of the algorithm (G) and

the result of the behaviour function (γ), except in the special case of the prevention sub-problem.

In other words:

Γ · x ::= G · y = γ · y (4.1)

As a consequence of this underlying pattern the discussion given for the solvability of location

(see §4.2.2) and correction (see §4.2.3) is just an iteration of that given for detection with appro-

priate substitutions. These sections are included for the sake of completeness and referencing.

4.2.1 Detection Solvability

Detection solvability is essentially the same as the tamper detectable property (see Defini-

tion 4.6). It verifies the solvability for results of a detection algorithm by comparing them

against the results of the detection behaviour function.

Exposed data is said to be tamper detectable if, on input of the exposed data and its original

preservative, a given detection algorithm evaluates in the same way as the detection behaviour

function. This can be formally expressed as follows:

38

Solvability Model

D · (e, q) = δ · e

= {Definition 4.2}

D · (e, q) = (d = e)

Definition 4.6 (Tamper Detectable)

Given an original data element d, an exposed data block e, an exposed preservative q, and

an algorithm D, the detection solvability function ∆ determines whether the exposed data

is tamper detectable. The function is formally defined as

∆ · (d, e, q, D) ::= D · (e, q) = (d = e).

If ∆ evaluates to true for an exposed data block, then the data block is tamper detectable.

4.2.2 Location Solvability

Location solvability is essentially the same as the tamper locatable property (see Definition 4.7).

It verifies the solvability for results of a location algorithm by comparing them against the results

of the location behaviour function.

Exposed data is said to be tamper locatable if, on input of the exposed data and its original

preservative, a given location algorithm evaluates in the same way as the location behaviour

function. This can be formally expressed as follows:

L · (e, q) = λ · e

= {Definition 4.3}

L · (e, q) = [i ∈ N | 0 ≤ i < #(d) : di = ei]

Definition 4.7 (Tamper Locatable)

Given an original data element d, an exposed data block e, an exposed preservative q, and

an algorithm L, the detection solvability function Λ determines whether the exposed data

is tamper locatable. The function is formally defined as

Λ · (d, e, q, L) ::= L · (e, q) = [i ∈ N | 0 ≤ i < #(d) : di = ei].

If Λ evaluates to true for an exposed data block, then the data block is tamper locatable.

4.2.3 Correction Solvability

Correction solvability is essentially the same as the tamper correctable property (see Defini-

tion 4.8). It verifies the solvability for results of a correction algorithm by comparing them

against the results of the correction behaviour function.

Exposed data is said to be tamper correctable if, on input of the exposed data and its original

preservative, a given correction algorithm evaluates in the same way as the correction behaviour

function. This can be formally expressed as follows:

39

Solvability Model

C · (e, q) = χ · e

= {Definition 4.4}

C · (e, q) = d

Definition 4.8 (Tamper Correctable)

Given an original data element d, an exposed data block e, an exposed preservative q, and

an algorithm C, the detection solvability function X determines whether the exposed data

is tamper correctable. The function is formally defined as

X · (d, e, q, C) ::= C · (e, q) = d.

If X evaluates to true for an exposed data block, then the data block is tamper correctable.

4.2.4 Prevention Solvability

Prevention solvability is essentially the same as the tamper preventable property (see Defini-

tion 4.9). However, unlike the other sub-problems, tamper prevention requires that no mod-

ification occurs during exposure - it requires a preventative, rather than reactive, measure.

As mentioned previously, if the adversary can make any modification to the data block, then

prevention has not been achieved.

In order to solve such a problem in a preventative manner, the solution must not only

adhere to the prevention behaviour function, but also ensure that the exposed data block

remains unmodified (i.e. d = e).

The notion of tamper preventable might be formally expressed as follows:

P · (e, q) = π · e ∧ d = e

= {Definition 4.5}

P · (e, q) = d ∧ d = e

That is, there must exist an algorithm (P) that determines the same value as the prevention

behaviour function (condition 1) and the exposed data must not be different to the original

data (condition 2). However, there are two problems with this definition. The first problem is

due to the assumption that the algorithm P , which is applied after exposure, can in some way

prevent a tamperer from modifying the data during exposure. The second problem is that if

condition 2 holds, then condition 1 becomes redundant; i.e. if the exposed data is not modified,

then there is no requirement to perform any process on it. Therefore prevention solvability can

be defined in terms of the second condition alone.

Definition 4.9 (Tamper Preventable)

Given an original data element d, an exposed data block e, an exposed preservative q, and

an algorithm C, the detection solvability function X determines whether the exposed data

is tamper correctable. The function is formally defined as

Π · (d, e, q, P) ::= d = e.

40

Security Model

If Π evaluates to true for an exposed data block, then the data block is tamper preventable.

4.3 Security Model

The security model simulates the tampering problem in terms of a game played between the

attacking and defending party. Each game involves a series of challenges between the parties

in order to formalize their goals and determine a winner. This process requires the help of

a mutually-trusted third party (J) to impartially judge the winner in a transparent manner,

thereby convincing all parties that the game is fair.

The general tampering game (see Definition 4.10) is defined in terms of a general algorithm

and a general solvability function. The game is used to determine the security of the algorithm

(G) by using the general solvability function (Γ) to determine the winner. If Γ evaluates to true

then the defending party wins the game and G is considered secure, but if it evaluates to false

then the attacking party wins and G is considered to be insecure. The game consists of three

stages, each divided into three steps — nine steps in total.

Definition 4.10 (General Tampering Game)

An abstract protocol played between honest and dishonest parties, with the help of a

mutually-trusted third party Jude. The protocol involves the following three stages:

Stage 1

VP Model IP Model

1: A: (d, q) (d, q)

2: A 99K J: (d, q) (d, q)

3: J 99K T: (d, q) (d, q)

Stage 2

VP Model IP Model

1: T: (f, r) (f, r)

2: T 99K J: (f, r) (f, r)

3: J 99K B: (f, r) (f, q)

Stage 3

VP Model IP Model

1: B: G G

2: B 99K J: G G

3: J 99K ∗: Γ·(d, f, r, G) Γ·(d, f, q, G)

If Jude announces true then Alice and Bob win the game, but if Jude announces false,

then Tom wins.

Stage 1 allows Alice to challenge Tom with a data block and corresponding preservative.

The first stage is identical in both preservative models. Similarly, stage 2 allows Tom to

41

Chapter Summary

respond with a modified data block and preservative challenge for Bob. However, in the IP

model, Bob obtains the original preservative rather than the modified preservative from Tom’s

challenge. Stage 3 determines the winner by checking Bob’s response to the challenge, which is

an algorithm for responding to Tom’s challenge. Alternatively, in the IP model, Bob is able to

use the original preservative from Alice’s challenge rather than Tom’s preservative.

There are three steps involved in each stage. In the first step the active participant de-

termines some value, which is then sent to Jude in the second step. The final step involves

Jude sending some value to the next active participant, except in the last stage, where the

value is announced (sent to all active participants). This prevents any active participant from

repudiating any of their earlier actions, thus ensuring the game is fair.

The general tampering game is general in that it is not defined for a specific sub-problem.

However, by specifying a corresponding algorithm and solvability function, it can be instantiated

for each of the tampering sub-problems. The functions are chosen to reflect the particular game

being played. That is, a detection algorithm and solvability function are used in the detection

game, a location algorithm and solvability function are used for the location game, and similarly

for the other games. These specifics are only required for the third stage of the game, as stages

1 and 2 are identical to the general stages given in Definition 4.10.

In summary, this approach is adopted to be able to reason about a sub-problem, which

requires an instance of the general tampering game for that sub-problem. To avoid repetition,

and since each sub-problem’s game is almost identical to the general tampering game, only the

general game is given. Constructing a sub-problem’s tampering game from the general game

is simply a matter of replacing G with the algorithm that potentially solves that sub-problem,

and Γ with its corresponding solvability function.

Chapter Summary

A taxonomy for the data integrity problem has been presented by dividing it into four distinct

sub-problems. A formal problem semantics has been defined for each sub-problem in terms of

its behaviour and solvability functions. The behaviour function specifies how an algorithm for

solving the sub-problem should behave in respect to its input and output. The solvability func-

tion specifies whether the output given by such an algorithm is correct. These two specification

methods allow each sub-problem to be well-defined and differentiated.

A security model for the data integrity problem has been given in the form of the general

tampering game. This general model can be used to construct the security model for each of

the sub-problems. Each sub-problem’s security model is based on the solvability function for

that sub-problem, and can be used to determine the security of a given algorithm within that

context.

42

Chapter 5

Results

After great pain, a formal feeling comes—

— Emily Dickinson, After great pain, a formal feeling comes (1862)

H
aving outlined and developed a model for the data integrity problem in the pre-

vious chapters, this chapter presents the main results surrounding the problem. The

relationship between these sub-problems is determined, and this result is developed

further to determine the security of existing protocols.

5.1 Taxonomy

Having formally defined the sub-problems of the data integrity problem, each sub-problem is

now differentiated by its solvability function. These formal definitions have several uses, the

first of which is to determine the relationship between the sub-problems.

Assuming that only the modified data blocks of the document are corrected, then the four

sub-problems form a hierarchy: Locating where tampering has taken place implies that tam-

pering has been detected; and correction of that tampering implies that the tampering has been

located. Moreover, the following results hold:

43

Taxonomy

Lemma 5.1 (Preventable Implies Correctable)

If a data block is tamper preventable, then it is also tamper correctable.

Proof

Assumption: Π·(d, e, q, P)

Conclusion: X·(d, e, q, C)

Π · (d, e, q, P)

= {Definition of Π}

P · (e, q) = d ∧ d = e

⇒ {Weakening}

P · (e, q) = d

⇒ {C · (e, q) ::= P · (e, q)}

C · (e, q) = d

⇒ {Definition of X}

X · (d, e, q, C) �

Lemma 5.2 (Correctable Implies Locatable)

If a data block is tamper correctable, then it is also tamper locatable.

Proof

Assumption: X·(d, e, q, C)

Conclusion: Λ·(d, e, q, L)

X · (d, e, q, C)

= {Definition of X}

C · (e, q) = d

⇒ {Function application}

F · (C · (e, q), e) = F · (d, e)

⇒ {L · (e, q) ::= F · (C · (e, q), e)}

L · (e, q) = F · (d, e)

⇒ {L · (e, q) ::= [i ∈ N | 0 ≤ i < #(d) : di = ei]}

L · (e, q) = [i ∈ N | 0 ≤ i < #(d) : di = ei]

⇒ {Definition of Λ}

Λ · (d, e, q, L) �

44

Taxonomy

Lemma 5.3 (Locatable Implies Detectable)

If a data block is tamper locatable, then it is also tamper detectable.

Proof

Assumption: Λ·(d, e, q, L)

Conclusion: ∆·(d, e, q, D)

Λ · (d, e, q, L)

= {Definition of Λ}

L · (e, q) = [i ∈ N | 0 ≤ i < #(d) : di = ei]

⇒ {Function application}

F · L · (e, q) = F · [i ∈ N | 0 ≤ i < #(d) : di = ei]

⇒ {F · x ::= 〈 ∀xi ∈ x | 0 ≤ i < #(x) : xi 〉}

F · L · (e, q) = 〈 ∀(di, ei) ∈ d | 0 ≤ i < #(d) : di = ei 〉

⇒ {Conjunction of all pairwise comparisons}

F · L · (e, q) = (d = e)

⇒ {D · (e, q) ::= F · L · (e, q)}

D · (e, q) = (d = e)

⇒ {Definition of ∆}

∆ · (d, e, q, D) �

The apparent hierarchical relationship between these sub-problems can be shown formally

by “chaining” these results together with the transitivity of implication (see Corollorary 5.1).

Corollary 5.1 (Data Integrity Problem is Hierarchical)

The data integrity problem is formed from a hierarchy of the four data integrity sub-

problems in the following way:

• Solving prevention allows correction to be solved trivially;

• Solving correction allows location to be solved trivially;

• Solving location allows detection to be solved trivially.

Proof

Follows trivially from Lemma 5.1, Lemma 5.2 and Lemma 5.3, using the transitivity of

implication.
�

The significance of Corollorary 5.1 is that the existence of an algorithm for solving one of

the sub-problems implies the existence of an algorithm for solving all the other sub-problems

that are lower in the hierarchy. For example, if one has an algorithm L that performs location

according to the behaviour of Definition 4.3 and solvability of Definition 4.7, then one can

45

Solvability

trivially construct an algorithm that performs detection according to the behaviour of Defini-

tion 4.2 and solvability of Definition 4.6 by composition of 〈 ∀xi ∈ x | 0 ≤ i < #(x) : xi 〉 and

L.

5.2 Solvability

The next aim is to determine which of the sub-problems are solvable and under what restrictions.

The most desirable solutions will exist within the VP model, where no special exposure method

is required for the preservative. An algorithm that solves a sub-problem in the VP model

would be considered the most ideal solution. However, if the model shows that a sub-problem

is unsolvable in the VP model, the IP model will be considered as a compromise.

5.2.1 Vulnerable Preservative Model

The VP model is effectively a model of the typical real-life situation, whereby storage devices

and transmission channels are vulnerable to tampering. Current tamper protection relies on

signature-based integrity detection schemes, which solve the detection problem. The security

model can be used to show that SIDSs are secure in the VP model by analysis of the announce-

ment made in stage 3 of the detection game. Claim 5.1 shows how a signature-based integrity

detection scheme is secure with respect to tamper detection in the VP model.

Claim 5.1 (Detection is Solvable in the VP Model)

Signature-based integrity detection schemes provide a secure solution to the detection

problem in the VP model.

Proof

Assumption: D ::= VA

Conclusion: ∆·(d, f, r,D)

∆ · (d, f, r,D)

= {Definition of ∆}

D · (f, r) = (d = f)

= {Equation 3.1}

D · (f, r) = false

= {D ::= VA}

VA · (f, r) = false

= {Forgery resistance of VA}

false = false

= {Reflexivity of =}

true �

A signature-based integrity detection scheme can be used to solve detection, but if the

tamperer is persistent, then the defending party will never learn anything about the original

data. Therefore tamper location becomes the next goal of the defending party. If tamper

46

Solvability

location can be solved in the VP model, then the defending party should be able to determine

the unmodified data blocks, thereby learning something about the original data.

SIDSs are secure in the VP model because they are based on a publicly-verifiable relationship

being established between the data and its source. This relationship is packaged together with

the data in the form of a preservative. This so-called package can then be publicly verified to

determine whether the relationship still holds: if so, then it can be assumed that nothing in

the package has been modified; if not, then all that can be determined is that something in

the package has been modified. The latter situation could have resulted from three possible

causes: Either the data was modified, the preservative was modified, or both (see Table 4.1).

The information is enough to determine that the package has been tampered with, but not

enough to determine that the data has been tampered with.

Definition 5.1 (Data-only IDS)

A data-only integrity detection scheme is a scheme for integrity detection such that, given

an exposed data block and its preservative, the scheme can determine whether the exposed

data block is original. Formally, a data-only IDS evaluates as

d = e.

If one assumes the existence of a data-only integrity detection scheme capable of determining

the presence of tampering in a single bit of data, then one can construct a scheme for tamper

location and correction in arbitrary-length data. First, the data d is divided into single bits

d0, d1, . . . , dn−1. Then multiple instances of the scheme are applied, such that each bit is

considered individually with its own instance of the scheme. To locate the tampering, detection

is performed for each of the schemes in a bitwise manner. Moreover, correction can be achieved

simply by inverting the tampered bits given that location has already determined the exact bits

that have been modified and the only possible modification of a bit is inversion.

This hypothetical situation highlights some important observations regarding the informa-

tion that can be determined from schemes in the VP model. In particular, location can be

achieved through multiple instances of detection simply by applying a detection scheme to the

sub-elements of the data. Also, a data-only integrity detection scheme for determining modi-

fication in n-bit data allows the elimination of 1 of the 2n possible data blocks. However, this

can only be achieved if just the the data is vulnerable to tampering, in other words, in the IP

model. Theorem 5.1 shows that no scheme for data-only integrity detection exists.

47

Solvability

Theorem 5.1 (Non-existence of Data-only IDS)

No algorithm for data-only integrity detection exists.

Proof

Assume an IDS algorithm D exists. Being a data-only IDS is conditional on satisfying the

equality in the existential quantification (i.e. implication is not sufficient), and therefore

the condition is that D · (a, b) = (a = b) and q = d.

〈 ∃D | : D · (e, q) = (d=e) 〉 ⇒ ((D · (a, b) = (a = b)) ∧ (q = d))

= {D · (a, b) ::= (a = b) and q ::= τ · d (due to VP model)}

〈 ∃D | : D · (e, q) = (d = e) 〉 ⇒ (((a = b) = (a = b)) ∧ (τ · d = d))

= {Reflexivity of = and Definition 3.3}

〈 ∃D | : D · (e, q) = (d = e) 〉 ⇒ (true ∧ (f = d))

= {Identity of ∧ and contradiction with Equation 3.1}

〈 ∃D | : D · (e, q) = (d = e) 〉 ⇒ false

= {Contrapositive of ⇒}

¬false ⇒ ¬〈 ∃D | : D · (e, q) = (d = e) 〉

= {Definition of ¬ and reflexivity of ≡}

true ⇒ ¬〈 ∃D | : D · (e, q) = (d = e) 〉

= {Left identity of ⇒}

¬〈 ∃D | : D · (e, q) = (d = e) 〉 �

Having confirmed that in the VP model, package detection is solvable, and having deter-

mined that data-only detection is unsolvable, the next sub-problem to consider is location. The

most obvious method to achieve location is to split the data into elements and use a signature-

based integrity detection scheme on each element. This approach is similar to Ashman’s MLDI

idea, which uses hash functions rather than signature-based integrity detection schemes (al-

though PGP [47] is suggested as a method of encrypting the hashes to ensure integrity).

This scheme allows the defending party to locate the position of tampering to the exact data

blocks where the modifications occurred. The defending party then knows that the remaining

data blocks are unmodified and therefore that their content can be safely utilized. However,

since the adversary is aware of this scheme, they can easily prevent location by modifying every

data block, reordering the data blocks, or even by modifying all the corresponding preservative

elements.

Within the proposed adversary model, the problem of tamper location is unsolvable in the

VP model because the adversary can modify an arbitrary number of the data blocks and hide

this fact (in the sense of location) by modification of every preservative — detection is still

possible, but location is not.

48

Solvability

Claim 5.2 (Location is Unsolvable in the VP Model)

Location cannot be solved in the VP model.

Proof

Assumption: (e = d) ∧ (q = r)

Conclusion: ¬Λ · (d, e, q, L)

Λ · (d, e, q, L)

= {Definition of Λ}

L · (e, q) = [i ∈ N | 0 ≤ i < #(d) : di = ei]

= {Assumption}

L · (d, r) = [i ∈ N | 0 ≤ i < #(d) : di = di]

= {Reflexivity of =}

L · (d, r) = [i ∈ N | 0 ≤ i < #(d) : true]

= {Simplification}

L · (d, r) = [true, . . . , true]
︸ ︷︷ ︸

#(d)

= {Theorem 5.1}

[false, . . . , false]
︸ ︷︷ ︸

#(d)

= [true, . . . , true]
︸ ︷︷ ︸

#(d)

= {Simplification}

false �

This result can be used with the problem hierarchy to show that correction and prevention

are also unsolvable in the VP model. The sketch of the proof is to assume that correction is

solvable, then show (by the relevant problem hierarchy lemma) that a location solution can be

constructed, which contradicts Claim 5.2 and so correction is not solvable.

Claim 5.3 (Correction is Unsolvable in the VP Model)

Correction cannot be solved in the VP model.

Proof
¬ X · (d, e, q, C)

⇒ {Lemma 5.2}

¬ Λ · (d, e, q, L)

⇒ {Claim 5.2}

¬ false

⇒ {Simplification}

true �

The proof for prevention follows a similar line of reasoning, despite the problem’s natural

differences.

49

Solvability

Claim 5.4 (Prevention is Unsolvable in the VP Model)

Correction cannot be solved in the VP model.

Proof
¬ Π · (d, e, q, P)

⇒ {Lemma 5.1}

¬ X · (d, e, q, C)

⇒ {Claim 5.3}

¬ false

⇒ {Simplification}

true �

The general conclusion that can be made from these four results (Claims 5.1–5.4) is that

tamper detection is the only solvable sub-problem in the VP model.

5.2.2 Invulnerable Preservative Model

Any solution that is secure in the VP model must also be secure in the IP model, and there-

fore VP is a sub-model of IP. The IP model is effectively a weaker security model than VP,

since solvability in the VP model implies solvability in IP model. This can be illustrated by

comparison of their detection games for a hash-only integrity detection protocol, which use a

cryptographic hash of the data as their preservative.

It is well-known that protocols using hash-only IDSs are easily broken when considering

Kerckhoffs’ principle (or Shannon’s maxim) — that the adversary is able to replicate the security

system being used. Claim 5.5 states that this is true in the VP model, whilst Claim 5.6 shows

that they are secure in the IP model.

50

Solvability

Claim 5.5 (Hash-only IDSs are Unsecure in the VP model)

Hash-only signature-based integrity detection schemes are not secure in the VP model.

Proof

By examination of the detection solvability function from the detection game.

∆ · (d, f, r,D)

= {Definition of ∆}

D · (f, r) = (d = f)

= {Equation 3.1}

D · (f, r) = false

= {D · (d, q) ::= H · d = q with d := f, q := r}

(H · f = r) = false

= {Definition of r}

(H · f = H · f) = false

= {Definition of =}

true = false

= {Simplification}

false �

Claim 5.6 (Hash-only IDSs are Secure in the IP Model)

Hash-only signature-based integrity detection schemes are secure in the IP model.

Proof

By examination of the detection solvability function from the detection game.

∆ · (d, f, q, D)

= {Definition of ∆}

D · (f, q) = (d = f)

= {Equation 3.1}

D · (f, q) = false

= {D · (d, q) ::= H · d = q with d := f, q := q}

(H · f = q) = false

= {Definition of q}

(H · f = H · d) = false

= {Second preimage resistance of H}

false = false

= {Reflexivity of =}

true �

Since hash-only signature-based integrity detection schemes are secure in the IP model,

but not secure in the standard VP model, then solutions for the other sub-problems may also

exist in the IP model. Corollorary 5.1 showed that by solving a sub-problem in the hierarchy,

51

Solvability

it then becomes trivial to construct solutions to all problems lower down in the hierarchy.

Therefore a sensible approach is to determine whether the prevention sub-problem is solvable,

and thus be able to solve all of the other sub-problems trivially from that solution. However,

as previously discussed, there is a fundamental difference between prevention and the other

sub-problems, whereby prevention is only solvable when the data remains unmodified. This

contradicts the adversary model, which states that the adversary can modify the data: An

adversary with unrestricted write access to the medium can always win the prevention game.

Therefore prevention cannot be achieved within this model.

In practice, prevention requires some form of physical protection of the medium, such as

a dedicated communication channel or safe storage for a device. Effectively the data is being

exposed via a tamper-invulnerable medium, which would contradict the preservative model

definition (see Definition 3.8). This would appear to be an expensive solution to the problem

that is not always available (i.e. on the Internet). Moreover, one might ponder the philosophical

question, “Will it ever be possible to store or transmit data in a manner such that it cannot be

destroyed?” and consider whether absolute prevention is achievable in the real world. However,

this debate is beyond the scope of this work; being more relevant to censorship resistance (see

§2.8).

The best alternative to solving the prevention sub-problem is to solve that of correction,

since either solution should yield tamper-free data. There appears to be two general methods to

solve the correction sub-problem. The first method involves distributing multiple copies of the

data and exposing them via multiple media. The second method is to compute a preservative

from the data before exposing a single copy of it, and then use the preservative to resolve any

problems.

The distributive method assumes that at least one distributed copy remains unmodified,

and is therefore similar to censorship resistance. Maintaining privacy alongside integrity seems

more difficult using a distributed scheme, as the privacy of every distributed copy must be

maintained.

The preservative method assumes that a predetermined relationship between the data and

its preservative can be used to determine information for solving the integrity problem. A

signature-based integrity detection scheme, for example, allows the detection sub-problem to

be solved in this way, but the idea might be used to solve the location and correction sub-

problems too. However, §5.2.1 showed that only the detection sub-problem is solvable in the

VP model. Therefore the IP model must be adopted and the preservative exposure problem

(see Definition 3.6) must be considered.

As a result of the preservative exposure problem, the IP model is defined such that the

information contained in the preservative must be less than that contained in the data (see

Definition 3.8). Theorem 5.2 is a formal statement of this requirement.

52

Solvability

Theorem 5.2 (Preservative Upper Bound)

If the preservative contains at least as much information as the data, then it becomes

redundant to the scheme.

Proof

Let ǫ·(x, t) denote that data x is exposable on the medium t and ε·(|x|, t) denote that |x|

bits of data are exposable on the medium t. Both functions return true if exposure on the

given medium is possible, and false if it is not possible.

If the preservative p can be exposed on an invulnerable medium t and K(p) is at least

K(d), then d can be exposed on the medium t, and therefore p is redundant the scheme.

ǫ · (p, t) ∧ (K(p) ≥ K(d))

= {Definition of ǫ and Equation 3.3}

ε · (|I(p)|, t) ∧ (|I(p)| ≥ |I(d)|)

= {Let z ::= I(p) and x ::= I(d)}

ε · (|z|, t) ∧ (|z| ≥ |x|)

= {Let z ::= x + y, where y ∈ N}

ε · (|x + y|, t) ∧ (|x + y| ≥ |x|)

= {y ∈ N}

ε · (|x + y|, t) ∧ true

= {Identity of ∧}

ε · (|x + y|, t)

= {〈 ∀i, j | i, j ∈ N : ε · (|i + j|, t) ≡ ε · (|i|, t) ∧ ε · (|j|, t) 〉}

ε · (|x|, t) ∧ ε · (|y|, t)

⇒ {Weakening}

ε · (|x|, t)

⇒ {Definition of x}

ε · (|I(d)|, t)

⇒ {Definition of ε}

ǫ · (d, t) �

Correction in the IP model involves recovery of all the information contained within the

original data from the exposed data and the original preservative. However, the adversary can

remove all the information in the exposed data thus information recovery must be done from

the original preservative alone. Theorem 5.2 and the Kolmogorov-Kerckhoffs Claim (derived

from the Kolmogorov complexities surrounding Kerckhoffs’ principle (see Claim 5.7)), can be

used to show that no deterministic correction algorithm exists.

53

Chapter Summary

Claim 5.7 (Kolmogorov-Kerckhoffs Claim)

For any function F with arguments x0, x1, . . . , xn

K(F · (x0, x1, . . . , xn)) ≤ K(x0, x1, . . . , xn).

Proof

Informally, the Kolmogorov complexity is a measure of information, and Kerckhoffs’ prin-

ciple effectively states that all information should exist within a function’s arguments,

rather than its definition. Therefore a function should (at most) retain the information of

its arguments.
�

Theorem 5.3 (Non-existence of Deterministic Correction)

No deterministic correction algorithm exists in the IP model.

Proof
¬〈 ∃C | : X · (d, e, q, C) 〉

= {Definition of X}

¬〈 ∃C | : d = C · (e, q) 〉

= {IP Model}

¬〈 ∃C | : d = C · (e, p) 〉

= {Let e := p}

¬〈 ∃C | : d = C · (p, p) 〉

⇒ {Kolmogorov complexity}

¬〈 ∃C | : K(d) = K(C · (p, p)) 〉

⇒ {Claim 5.7}

〈 ∃C | : K(d) ≤ K(p, p) 〉

⇒ {Kolmogorov complexity}

〈 ∃C | : K(d) ≤ K(p) 〉

⇒ {Contradiction of Equation 3.3}

¬〈 ∃C | : false 〉

⇒ {One point rule, reflexivity of ≡}

true �

Theorem 5.3 states that a correction algorithm cannot determine the original data with

absolute certainty, as the preservation process must be many-to-one to satisfy Equation 3.4.

As well as solving the problem of determining the correct data, such an algorithm must also

deal with the problem of attacks constructed to exploit this feature. For example, suppose that

both d and f are possibilities, then there should be a small probability of an attacker being

able to determine f. Perhaps the most obvious solution is to develop a probabilistic algorithm

that would suggest one possible data candidate to be far more feasible than the others, whilst

ensuring that a polynomially-bounded adversary cannot determine a false candidate.

54

Chapter Summary

Chapter Summary

Having defined each distinct sub-problem, the hierarchical relationship between these problems

has been determined. This showed that solving any sub-problem in the hierarchy is essentially

equivalent to solving all sub-problems lower in the hierarchy. Therefore solving the highest

possible sub-problem, should be the goal of the defending party.

Using the previously defined model, the solvability of each sub-problem has been determined

for both the VP and IP models. It has been shown that detection is the only solvable sub-

problem in the VP model, which is essentially a result of the information required to solve

each problem versus the abilities of the adversary in manipulating information. The difference

between package and data-only integrity detection has been highlighted, with non-existence of

the latter being proven. In the VP model it has been shown that prevention cannot be achieved

under the defined adversary model: Instead, the possibility of correction has been discussed,

which led to a further discussion on restricting the size of the preservative, and that correction

cannot be deterministic.

The solvability results show that integrity correction in the IP model is the best result pos-

sible, and that a scheme for solving this problem will be probabilistic at best. This probabilistic

method is the idea behind Ashman’s MLDI and becomes the focus of Part III.

55

. . . there is always a well-known solution to every human problem - neat, plausible, and

wrong.

— Henry Louis Mencken, Prejudices: Second Series (1920)

Part III
Multi-layered Document Integrity

56

Chapter 6

Fundamentals

and the leaves of the tree were for the healing of the nations.

— John of Patmos, Book of Revelation (1st Century)

M
ulti-layered document integrity schemes consist of two stages: An initial

preservation stage that involves deriving the preservative from the original data

before exposure; and a terminal resolution stage that involves resolving any in-

tegrity problems in the exposed data. It is assumed that tampering of the data can only occur

between these two stages, and that the preservative remains free from tampering.

This chapter begins to develop Ashman’s MLDI idea into a rudimentary multi-layered doc-

ument integrity scheme. The discussion focusses around introducing preliminary algorithms for

preservation and resolution, justifying their design against the fundamental principles underly-

ing the idea.

6.1 Deterministic Model

The deterministic model provides a simplified model for introducing some of the principles

involved in MLDI. In this model hash functions are deterministic, and therefore invertible. For

a hash function to be invertible, it must be free of collisions. Such collision-free hash functions

are known as perfect hash functions [13] (see Definition 6.1).

Definition 6.1 (Perfect Hash Function)

A perfect hash function (PHF), denoted
↔

H, is a hash function that is non-compressive and

collision free.

A perfect one-way hash function (not to be confused with a perfectly one-way hash function

[8]) combines the cryptographic properties of a cryptographic hash function (CHF) with the

collision free property of a PHF. The resulting hash function exhibits the non-compressive

property of a PHF, rather than the compressive property of a CHF (see Definition 6.2).

Definition 6.2 (Perfect One-way Hash Function)

A perfect one-way hash function (POHF), denoted
→

H, is a perfect hash function that is

preimage resistant (i.e. computationally one-way).

57

Deterministic Model

Using POHFs in the deterministic model means that if data is found to have a matching

hash to the original data’s hash, then that data must be original. This property is derived from

a POHF being collision free (see Definition A.8):

〈 ∀d, di | d 6= di :
→

H ·d 6=
→

H ·di 〉

= {Trading}

〈 ∀d, di | : d 6= di ⇒
→

H ·d 6=
→

H ·di 〉

= {Definition of 6=}

〈 ∀d, di | : ¬(d = di) ⇒ ¬(
→

H ·d =
→

H ·di) 〉

= {Contrapositive of ⇒}

〈 ∀d, di | :
→

H ·d =
→

H ·di ⇒ d = di 〉

6.1.1 Preservation

The preservation process in MLDI uses an Ashman hash tree as the preservative. Constructing

the preservative involves the decomposition and hashing of the document to derive the hash tree.

The document can be considered a data block (see Definition 3.2), and hence decomposition is

done in terms of sub-elements.

The fundamental idea behind data correction in MLDI is that given the hash of an un-

known data block, one can determine the unknown data block in reasonable time. However,

if the perfect hash function is preimage resistant, then the best algorithm to determine an

original data block from its hash is an exhaustive search through all 2n possible data blocks

(i.e. d0, d1, . . . , d2n−1), hashing each one and comparing the result to the original hash. For

cryptographic hash functions this is computationally infeasible, but the use of small preimage

hashing is suggested for MLDI, and using a small value of n makes this practically feasible.

By applying a publicly known constraint on the possible values of d to limit the preimage

size, it becomes possible to conduct an exhaustive search for h to determine d. For example,

if one knows that d is a single byte, then there are only 28 different possible values for d, and

256 hash computations are required (at most) to reproduce a matching hatch and determine

d. When known constraints have been applied on the set of data blocks from which the hash

preimage comes, the data block is said to be bounded (see Definition 6.3).

Definition 6.3 (Bounded)

A leaf data block is bounded if it is an element of a well-defined finite set of values B
b. A

non-leaf data block is bounded if all of its children are bounded.

The term unbounded is used to describe data blocks with unknown bounds, for example, all

data blocks from infinite sets are unbounded (see Example 6.1).

Example 6.1 (Bounded and Unbounded Data Blocks)

A byte is bounded, having 256 possible values; whereas a sentence is unbounded, since

arbitrary-length sentences are feasible and therefore the data block’s set size is effectively

infinite.

58

Deterministic Model

An exhaustive search through large search spaces is infeasible in practice, and so a stronger

notion of bounding is required for an original data block to be determined. The notion of

practically bounded enforces a practical limit on the size of the search space (see Definition 6.4):

The size being defined at the application level due to its dependence on pragmatic factors (i.e.

current hardware benchmarks).

Definition 6.4 (Practically Bounded)

A leaf data block is practically bounded if it is bounded and if an exhaustive search through

all 2b elements in the set B
b is practically feasible. A non-leaf data block is practically

bounded if all of its children are practically bounded.

If a practically-bounded data block’s hash is known, then it is feasible to determine the

original data block by computing the hash for all possible data blocks within the same bounds,

and then comparing them to the original hash. Therefore data blocks must be decomposed into

practically-bounded data blocks to be tamper correctable. This is achieved through a process

known as auto-bounding.

Auto-bounding can be done in a number of ways, according to varying constraints. The

two most obvious approaches to auto-bounding are linear and recursive. Linear data division

will produce a list of data blocks. It could be done by specifying a maximum block size and

dividing the data into a sequence of blocks with this size. For example, by using 4 bytes for

the block size, auto-bounding would decompose the data into a number of 4-byte data blocks.

Alternatively, recursive data division will produce a tree structure of data blocks, where blocks

contain sub-blocks, which may contain further sub-blocks, and so on. This might be done by

specifying a fixed or maximum number of sub-blocks that each block can be divided into and

specifying a maximum block size for leaf node blocks, to determine when to stop dividing. For

example, dividing raw data into two equally-sized sub-blocks, and repeating this process on the

newly formed sub-blocks until they are (at most) 4 bytes in size.

The time complexity of auto-bounding is dependent upon the number of modified parts and

their distribution (see Remark 6.1). Table 6.1 shows that, overall, the recursive approach to

data division has more favourable time complexities.

Number of Modified Parts (m) List Search k-ary Tree Search
0 O(n) O(1)
1 O(n) O(logk n)

1 < m < n (best) O(n) O(logk n)
1 < m < n (worst) O(n) O(n)

n O(n) O(n)

Table 6.1: Time Complexities of Searching for m Modified Blocks

59

Deterministic Model

Remark 6.1 (Search Time Complexities: List Versus Tree)

Assuming that any number of blocks could have been modified but only one block has been

modified, then a linear list search for a single modified block in a list of length n, takes

O(n) (average and worst case). Alternatively, a recursive k-ary tree search takes O(logk n)

(average case and worst case).

Assuming that any number of blocks could have been modified and that all the blocks have

been modified, then a linear list search for all modified blocks in a list of length n, takes

O(n) (average and worst case). Alternatively, a recursive k-ary tree search takes O(n)

(average and worst case).

Irrespective of the distribution, assuming that the number of modified parts is between one

and all, then the complexity for a linear list search is O(n) (average and worst case). How-

ever, for a recursive k-ary tree search, the time complexity is bounded between O(logk n)

and O(n) (average and worst case).

A data block is modelled as a tree, whereby the only vertex of in-degree 0 (i.e. no parent)

is the root node (all other vertices have in-degree 1) and the only vertices with out-degree 0

(i.e. no children) are the leaf nodes. Every vertex is connected to the root by a directed path.

If a node is not a leaf, then it is an internal node and is the parent of one or more child nodes.

All children of the same node are siblings. The level of a vertex in a tree is the length of the

directed path connecting it to the root. The depth of a rooted tree is the greatest level of any

leaf [7].

A k-ary tree is a tree with at most k children for each node. A full k-ary tree is a k-ary tree

that has exactly k children for each non-leaf node. A k-ary tree with depth l is balanced if all

of its leaves are at level l or level l − 1 and every node at a level less than l − 1 has k children.

These definitions provide the basis for defining a perfect k-ary tree, which is both flexible and

complex enough to model data blocks.

Definition 6.5 (Perfect k-ary Tree)

A tree with all leaf nodes at the same depth and all internal nodes having exactly k children

[5].

Definition 6.5 describes a k-ary tree that is both full and balanced. The model assumes

that all data blocks are structured as perfect k-ary trees to provide a generic model when the

data is a perfect tree structure, and a worst case otherwise; with k being the greatest number

of children of any single data block and the depth being the greatest level of any data block.

Figure 6.1 illustrates how a perfect 3-ary tree of depth 2 can be considered as a worst case for

a non-perfect tree with a greatest branching factor of 3 and a depth of 2.

For simplicity, data blocks are considered to be initially unstructured, and therefore must

be bounded in the preservation stage. Algorithm 6.1 takes an unstructured data block as input

and returns an equivalent practically-bounded data block with a perfect k-ary tree structure as

60

Deterministic Model

Figure 6.1: Perfect k-ary Tree as a Worst Case

output, where every internal node has a data size greater than b, and at most b for every leaf

node.

Algorithm 6.1 (Autobound)

Given b and k, a leaf data block is bounded by the following algorithm:

Constants: b, k

begin Autobound(data)
list := []

dataSize := |data|

if dataSize ≤ b then
list.add(data)

else

for i = 0 to k-1 do

blockSize :=
⌈

dataSize
k−i

⌉

dataSize := dataSize − blockSize

block := data.range(k · i, blockSize)

list.add(Autobound(block))
end

end

return list
end

Examples 6.2 and 6.3 illustrate how Algorithm 6.1 handles decomposition of a data block

when division is exact and “best fit” respectively. In Example 6.2, the data is divided exactly

by k, and the resulting child data blocks are within B
b. The structure of the result is shown

more clearly in Figure 6.2.

61

Deterministic Model

Example 6.2 (Exact Division Auto-bounding)

Suppose the following data is auto-bounded using Algorithm 6.1 with b := 4 and k := 4:

PAY HIM 10K MORE

The result would be:

[[PAY],[HIM],[10K],[MORE]]

PAY HIM 10K MORE

PAY HIM 10K MORE

Figure 6.2: Bounded data block with b := 4 and k := 4

In Example 6.3, the data cannot be divided exactly by k, but the resulting child data blocks

are still within B
b. The resulting structure is shown more clearly in Figure 6.3.

Example 6.3 (Best Division Auto-bounding)

Suppose the following data is auto-bounded using Algorithm 6.1 with b := 4 and k := 3:

PAY HIM 10K MORE

The result would be:

[[[PA],[Y],[HI]], [[M],[10],[K]], [[M],[OR],[E]]]

PAY HIM 10K MORE

PAY HI M 10K MORE

PA Y HI M 10 K M OR E

Figure 6.3: Bounded data block with b := 4 and k := 3

Once a data block is in the form of a perfect k-ary tree, its corresponding hash tree is

determined by hashing the content at each node. This may be done by processing a bounded

62

Deterministic Model

data block with an algorithm that traverses every element hashing its data, or by extending the

auto-bounding algorithm to compute the hashes of each sub-data block as they are determined.

In either case, the result is a perfect k-ary tree, where the data is a hash of the corresponding

data from the bounded data block.

The initial part of this processes, common to all preservation algorithms, is to precompute

the practically bounded data block and preserve it in some way (see Algorithm 6.2).

Algorithm 6.2 (Preservation)

Given b, k and input data data, its corresponding hash tree is computed by the following

algorithm:

Constants: b, k

begin Preserve(data)
node := Autobound(data)

return XPreserve(node)
end

The general preservation process for a single node is to hash all the node’s data as a whole,

then append each of its processed child nodes. The method of hashing and the method of

processing the child nodes are left undefined (see Algorithm 6.3).

Algorithm 6.3 (Preserve Block)

The corresponding hash tree node for a data node is computed by the following algorithm:

begin PreserveNode(node)
list := []

list.add(XHash(node.data()))

for i = 1 to #(node) do
list.add(XPreserveNode(node.data(i)))

end

return list
end

In order to define a concrete preservation algorithm, a definition must be given for each of

the undefined methods. The deterministic preservation algorithm (see Algorithm 6.4) defines

preservation solely in terms of the generic algorithm using a perfect one-way hash function.

Refer to Algorithm B.2 for a full definition of this algorithm.

63

Deterministic Model

Algorithm 6.4 (Deterministic Preservation)

Given b, k and input data data, its corresponding deterministic hash tree is computed by

the algorithm defined as follows:

XPreserve ::= PreserveNode, where XHash ::=
↔

H

XPreserveNode ::= PreserveNode, where XHash ::=
↔

H

Figure 6.4 shows the deterministic Ashman hash tree that corresponds to the bounded data

block from Example 6.2.

→

H ·(PAY HIM 10K MORE)

→

H ·(PAY)
→

H ·(HIM)
→

H·(10K)
→

H·(MORE)

Figure 6.4: An Ashman Hash Tree of a Bounded data block

Preservation is concluded when the preservative (i.e. the Ashman hash tree) has been

determined. The original data block and its preservative can now be exposed as described in

Figure 3.4.

6.1.2 Resolution

The resolution stage is a three-step process that follows exposure, attempting to resolve the

three solvable sub-problems. The detection step determines whether location is required, and

the location step determines which of the data blocks require correction. Each sub-problem is

solved using a different well-known principle.

Detection is achieved by comparing the hash tree’s root hash with a hash of the exposed

data block. The principle behind this solution is the collision resistance of cryptographic hash

functions. Location is achieved using recursive detection over each sub-element and its cor-

responding hash element from the preservative. Search trees are the principle behind this

solution. Correction is achieved by hashing all possible data blocks until a match is found with

the corresponding original hash. This exhaustive search method is effectively impossible over

an unbounded data block and computationally infeasible over a bounded leaf data block, unless

the data block is small. However, a divide and conquer approach allows the search space to be

drastically reduced.

The detection and location principles are almost identical to those used in hash-only integrity

detection schemes and Merkle hash trees (see §2.7.2). Cryptographic hashes constitute the

preservative, which is exposed via a trusted medium (effectively the same as the IP exposure

model). Any data obtained via a tamper-vulnerable medium can have its integrity detected

and located by comparison of its hash tree with the original hash tree (the preservative). Due

to the collision free property of the POHF, any tampered leaf data block will be indicated by all

64

Deterministic Model

nodes in the path between itself and the root node. Thus any nodes that indicate no tampering

do not need to be expanded further.

For the purpose of simplification, all three steps are combined into a single process known

as resolution. The defending party uses resolution to maintain data integrity. If the data is

original, then this is determined by the detection process of resolution and the original data

is returned. If the data is tampered with, then this is determined by the detection process

and located by iterating detection over increasingly smaller data blocks. Data blocks where

tampering has been identified are restored by the correction process, all encapsulated within

resolution, which also returns the original data. Furthermore, only tampered data requires

location and only tampered parts of the data require correction. Therefore the processes of

detection, location and correction are not discrete: Detection is a step of the location process,

and location is a step of the correction process. Despite this simplification, the main discussion

of resolution concerns the process of correction.

When tampering has been located to one or more of the leaf nodes in the hash tree, each of

these nodes can be corrected individually. To correct an individual leaf node its bounds must

be known, which is essentially the size of the leaf space used to create the hash tree (i.e. b)

(see Definition 6.6). Knowing b allows an exhaustive search through all possibilities in B
b (see

Definition 6.7), and provided that b is small enough, the search can be performed in reasonable

time. Each individual search ends when a match is found, as the assumption about collision

free hashing means no other match can exist. The original data has been recovered when all

the tampered leaf data blocks are corrected.

Definition 6.6 (Data Block Search Space)

The set of all possible values that a data block comes from. In the context of the whole

data d the space is the root search space B
n. In the context of the smallest division of the

data di the space is the leaf search space B
b.

Definition 6.7 (Possibility)

A data block di is a possibility for an unknown data block d ∈ B
n, if di ∈ B

n.

An exhaustive search through all possibilities for the whole data is computationally infeasi-

ble. However, the search space can be divided into a collection of smaller, individually-verifiable

search spaces by auto-bounding the data, reducing the overall computational cost of the search.

Example 6.4 (Search Space Reduction)

There are 2128 possibilities for a 128-bit data block. However, if the data block was bounded

using a quad tree, with a 32-bit maximum size for each leaf data block, then the search

space is reduced to four individual searches through 232 possibilities. The total number of

possibilities is now 234, which has reduced the search space by a factor of 294.

65

Deterministic Model

The search space reduction highlighted in Example 6.4 can be generalized by considering a

data block of length n, (i.e. a 128-bit string has n := 128). Initially there are 2n possibilities

for an exhaustive search. Assuming that the data block is structured as a k-ary perfect tree of

depth l in which the length of data at any two leaf nodes differs by at most 1, then the number

of possibilities for initial values of l is given in Table 6.2.

Depth Leaves Leaf Search Space Root Search Space
0 1 2n 2n

1 k 2⌈
n

k ⌉ k · 2⌈
n

k ⌉

2 k2 2⌈
n

k2 ⌉ k2 · 2⌈
n

k2 ⌉

...
...

...
...

l kl 2⌈
n

kl ⌉ kl · 2⌈
n

kl ⌉

Table 6.2: Search Space Reduction

As the depth of tree increases the number of possibilities decreases, reducing the search

space. However, there exists a point where it becomes impossible to divide the data any

further: where a leaf data block consists of a single bit. Moreover, as the depth of the tree

increases, so does the size of the hash tree, and the limit on the size of the preservative must

be considered.

The deterministic resolution algorithm (see Algorithm 6.10) is based around the assumption

that any modified data blocks (or sub-data blocks) are determined by their corresponding hash,

irrespective of the preimage size. As with preservation, the initial process of resolution is

common to all resolution algorithms. The process involves checking that a single result for the

original data has been determined. If zero or multiple results are found, then a null value is

returned to indicate an error (see Algorithm 6.5).

Algorithm 6.5 (Resolution)

From b and k, given exposed data data and its corresponding original preservative p, the

original data is computed by the following algorithm:

Constants: b, k

begin Resolve(data, p)
node := Autobound(data)

results := XResolve(node, p)

if #(results) = 1 then
return results.data()

else
return null

end

end

The first step in resolving the exposed data is to detect whether it was tampered with or

not by comparison of the hash of the node’s data and its corresponding original hash. If the

66

Deterministic Model

hashes match, then the node’s data is assumed to be original, otherwise it must be corrected

(see Algorithm 6.6).

Algorithm 6.6 (Detection)

Given exposed data and its corresponding original preservative, the following algorithm

returns a list of all data of with relevant matching hash(es) to the original data.

begin Detect(node, p)

if XHash(node.data()) = p.hash() then
return node

else
return Correct(node, p)

end

end

The general correction process involves two steps. First a set of all possibilities must be

determined for the current node, then each possibility must be tested to determine if it is a

candidate for the current node (see Algorithm 6.7).

Algorithm 6.7 (Correction)

Given exposed data and its corresponding original preservative, the following algorithm

returns a list of candidates for the original data.

begin Correct(node, p)
possibilities := XFindPossibilities(node, p)

return XFindCandidates(possibilities, p)

end

The set of possibilities at a leaf node is the set of all data within the bounds b. Only one

possibility will match in the deterministic model (i.e. the original data), and this is formed by

concatenating (in order) the matching possibility for each leaf node (see Algorithm 6.8).

67

Deterministic Model

Algorithm 6.8 (Deterministic Find Possibilities)

Given exposed data and its corresponding original preservative, the following algorithm

returns a set of possibilities for the original data.

Constants: b, k

XFindPossibilities ::= DFindPossibilities

begin DFindPossibilities(node, p)

if #(p) = 1 then

return B
b

else
block := null

for i = 1 to k do
block := block‖XResolveNode(node.data(i), p.hash(i))

end

return {block}

end

end

Candidates are possibilities that have the same hash as the original data, but in the deter-

ministic model only the original data will have this hash. The list of candidates is determined

by hashing each possibility from the given set of possibilities until one matches the correspond-

ing hash in the hash tree. The process ends once a match is found, because the only candidate

in the deterministic model is the original data (see Algorithm 6.9).

Algorithm 6.9 (Deterministic Find Candidates)

Given a set of possibilities for the original data and its corresponding original preservative,

the following algorithm returns a list of candidates for the original data.

XFindCandidates ::= DFindCandidates

begin DFindCandidates(possibilities, p)

foreach possibility ^ possibilities do

if XHash(possibility) = p.hash() then
return [possibility]

end

end

end

The deterministic resolution algorithm (see Algorithm 6.10) defines each of the abstract

algorithms in the generic resolution algorithm. The algorithm is based on depth-first recursion

of the generic detection and correction algorithms, using a perfect one-way hash function for

all hashing. Refer to Algorithm B.3 for a full definition of this algorithm.

68

Deterministic Model

Algorithm 6.10 (Deterministic Resolution)

Given exposed data and its corresponding original preservative, the following algorithm

returns the original data.

Constants: b, k

XResolve ::= Detect, where XHash ::=
↔

H

XFindPossibilities ::= DFindPossibilities

XFindCandidates ::= DFindCandidates, where XHash ::=
↔

H

XResolveNode ::= XResolve

Example 6.5 (Deterministic Resolution)

Suppose that a data block d is made up of four data blocks (d0, d1, d2, d3) and structured

as binary tree such that the root data block is d0‖d1‖d2‖d3, its children are d0‖d1 and

d2‖d3 and its leaves are each individual block. Algorithm 6.4 can be used to determine its

corresponding hash tree p.

If d is tampered with so that d1 is replaced with f1, then Algorithm 6.10 will determine

that the root is modified. At level 2 it will determine that the left child is modified and

check its children before checking the right child. At level 3 it will determine that the left

child is original, but the right child is modified. Since the right child is a modified leaf node

it will then begin an exhaustive search through all possibilities until it checks d1, which it

will return as the match. As there are no more children, it assumes that the left child at

level 2 is now corrected and checks the right child at level 2. As this level 2 node is original

there is no need to check its children, and since there are no further nodes at this level it

assumes to have corrected the parent, which is the root.

The scenario described in Example 6.5 is illustrated in Figure 6.5, which shows checked

nodes determined to be original with a “3”, checked nodes determined to be modified with a

“7”, and unchecked nodes with a “?”.

→

H·(d0‖f1‖d2‖d3)

✗
→

H·(d0‖f1)

✗

→

H·(d2‖d3)

✓
→

H·d0

✓

→

H·f1

✗

→

H·d2

?

→

H·d3

?

Figure 6.5: Binary Hash Tree with One Tampered Leaf Node Identified

69

Chapter Summary

Using MLDI employs a divide-and-conquer technique to reduce the correction problem from

an exhaustive search of 2n possibilities to an exhaustive search of 2b possibilities when tampering

has been located to a single block, or kl (where l ::= logk ⌈
n
b
⌉) individual exhaustive searches

when all blocks contain tampering. Without MLDI, an unoptimized method would have to

correct tampering before it could be located. Therefore the unoptimized time complexity for

location is equal to that of correction. However, MLDI can achieve block-level location in

O(log n) for a single instance, and in O(n) when all blocks contain tampering. In any case, the

detection process requires a single hash computation. These time complexities are summarized

in Table 6.3.

Process Tampered Unoptimized Deterministic
Blocks Method MLDI

Detect 1 O(1) O(1)
all O(1) O(1)

Locate 1 O(2n) O(logk n)
all O(2n) O(n)

Correct 1 O(2n) O(1)
all O(2n) O(n)

Overall 1 O(2n) O(logk n)
all O(2n) O(n)

Table 6.3: Time Complexities for Algorithms in the Deterministic Model

Chapter Summary

The fundamental principles of multi-layered document integrity have been introduced, including

the central idea concerning the divide-and-conquer approach to location and correction. The

notion of bounding the data and structuring it as a perfect k-ary tree to compute a hash tree

as a preservative has also been discussed.

The deterministic model has presented multi-layered document integrity in a simplified

manner, introducing generic algorithms for preservation and resolution, and using them to build

a deterministic solution. The time complexities of deterministic MLDI indicate that it could

provide a feasible solution to the data integrity problem in terms of computational complexity.

Despite the favourable time complexities, the hash tree size has not been considered in the non-

compressive deterministic model, and therefore contravenes the previous result that correction

must be non-deterministic. As such, the use perfect one-way hashing to provide a simplified

deterministic model must be readdressed.

70

Chapter 7

Realization

Between falsehood and useless truth there is little difference. As gold which he cannot

spend will make no man rich, so knowledge which cannot apply will make no man wise.

— Dr Samuel Johnson, The Idler No. 84 (November 1759)

S
ome of the fundamental ideas behind MLDI were introduced in the determinis-

tic model, where hash collisions are non-existent. However, the use of perfect one-way

hashing means the image size is at least the preimage size (due to the non-compressive

property). This results in the hash tree’s root node being at least the size of the data, and

therefore the preservative must be at least the size of the original data (without even considering

any children in the hash tree). The deterministic model for preservation and resolution con-

flicts with the invulnerable preservative model for exposure (see Definition 3.8). This chapter

introduces an alternative probabilistic model that aims to solve this problem.

7.1 Probabilistic Model

The probabilistic model is based on compressive hash functions, whereby collisions must exist

due to the pigeonhole principle (see Definition 7.1). In practice, the use of a cryptographic

hash function minimizes the problem of collisions by providing compression whilst remaining

collision resistant (see Definition A.7).

Definition 7.1 (Pigeonhole Principle)

If n discrete objects are to be allocated to m containers, then at least one container must

hold no fewer than ⌈ n
m
⌉ objects [25].

7.1.1 Collision Resistant Model

The collision resistant model is based on the use of cryptographic hash functions. This model

assumes that collisions exist in theory, but do not occur in practice. Moreover, the hash function

will always identify tampered data blocks, thereby preventing an attacker from determining a

collision. However, when tampered data blocks are identified, all possibilities must be checked

for a match rather than accepting the first match. These differences necessitate several modi-

fications to the deterministic algorithms.

71

Probabilistic Model

The preservation algorithm is identical to that of deterministic preservation, except that

a cryptographic hash function is used in place of a perfect one-way hash function (see Algo-

rithm 7.1). The preservative is now constructed from fixed-length cryptographic hashes and

therefore is generally smaller in overall size than a corresponding deterministic preservative.

Refer to Algorithm B.4 for a full definition of this algorithm.

Algorithm 7.1 (Collision Resistant Preservation)

Given B
b and k, the Ashman hash tree for a leaf data block is produced by the following

algorithm:

XPreserve ::= PreserveNode, where XHash ::= H

XPreserveNode ::= PreserveNode, where XHash ::= H

The same principles underlie solving the detection and location problem, due to the assump-

tion that collisions do not occur. The existence of collisions dictates that the original value of a

block can be any one of several colliding values. The deterministic resolution algorithm termi-

nates as soon as a match is found, but if there are multiple possibilities that match, then all of

these must be found. Multiple possibilities that share the same hash as the original data block

are defined as candidates for the original data block (see Definition 7.2).

Definition 7.2 (Candidate)

A possibility c is a candidate for a data block d if its hash matches the corresponding data

block’s hash from the hash tree (H · c = H · d and c, d ∈ B
n). The set of candidates is

denoted C, such that c ∈ C.

The full set of candidates for a leaf data block will always contain the original leaf data

block. Therefore, when the set of candidates has been determined, a method is required to

identify which candidate is the original. By testing each candidate at the parent level, it should

be possible to eliminate some of the candidates, and iteration of this technique should allow

the original data to be determined.

To illustrate the idea of testing candidates at the parent level, consider the example illus-

trated in Figure 6.5 where one of the four data blocks (d1) had been tampered with. Assume

that when correcting this block the exhaustive search determines a set of eight candidates from

all the possibilities. These eight candidates all have matching hashes, which also match the cor-

responding original hash from the hash tree. To determine which is the original, each candidate

c0, c1, . . . , c7 can be concatenated with its verified siblings (or sibling in this case) to form a set

of possibilities for the parent data block d0‖c0, d0‖c1, . . . , d0‖c7. Each parent possibility can be

hashed and compared against the corresponding original parent hash from the hash tree. Since

one of the candidates is the original value for d1, then the hash of (at least) one of the parent

possibilities (d0‖c0, d0‖c1, . . . , d0‖c7) will match the original parent hash (H·(d0‖d1)).

Even if multiple parent candidates match, by iterating this process upwards the set of

candidates should be reduced, since only candidates (as opposed to all possibilities) need to be

72

Probabilistic Model

considered as potential original data blocks after the leaf node level. Eventually the number of

candidates should be reduced to one: the original data block.

The principle behind correction, when collision-resistant hash functions are used, is based

around the candidate reduction process. To model this process it is assumed that whenever a

set of candidates is determined or reduced via comparisons with a corresponding hash in the

original hash tree, the process is behaving as a filter. The repeated filtering of possibilities to

candidates should eventually determine the original data.

Ideally a cryptographic hash function should map its input values to output values with a

discrete uniform distribution, albeit in a seemingly random manner. As such, the frequency

of each possible output value, the collision frequency, should be approximately constant and

equal to the size of the domain divided by the size of the range. The collision frequency can

be used to provide an approximation for how many candidates a filter produces. For example,

a hash function with a 16-bit preimage and an 8-bit hash will have a collision frequency of

approximately 216/28 = 28. If the preimage size changes and the hash size remains the same,

then the collision frequency will change accordingly. However the probability of a possibility

(in the sense of Definition 6.7) or candidate filtering through a stage remains the same, as the

distribution is approximately uniform.

To reason about the candidate reduction process it is necessary to make an assumption

as to the probability of a possibility filtering through one stage to become a candidate. A

preimage can map to any of the possible hashes and does so with uniform distribution, since

only possibilities that collide with the original hash are candidates, then the collision probability

can be assumed to be that given in Definition 7.3.

Definition 7.3 (Hash Collision Probability Assumption)

The probability u of a possibility di having a hash collision with the original data d (i.e.

Pr(H · c = H · d)) is approximately
1

2|h|
,

where h is an image of the hash function H. To reason about the number of candidates,

this approximation is assumed as the equality

u = 2−|h|. (7.1)

Each single filtering process should remove some of the possibilities as potential original

values of a data block. The remaining possibilities (candidates) must then be combined with

their siblings to form a set of possibilities for the parent. If the same hash function is used

throughout, then the collision probability remains constant throughout the process. By mod-

elling each filter process as a discrete event the probability of a single instance of tampering

passing through i levels is 1
2(i·|h|) . Therefore it becomes increasingly improbable for a single

instance of tampering to remain uncorrectable over multiple levels.

The same principle does not hold when considering multiple instances of tampering. If

there are non-verified siblings for which the original data blocks are still undetermined (i.e.

73

Probabilistic Model

have candidates), then this could potentially result in a larger set of possibilities/candidates at

the parent level (see Example 7.1).

Example 7.1 (Potential for Candidate Increases)

Supposing a binary tree has two sibling leaf nodes, each having 1024 possibilities (i.e.

2048 possibilities in total). If each node is determined to have a set of 100 candidates,

then there are 100 · 100 = 10000 possibilities for the parent. Since this is greater than

the original number of possibilities for the two leaf nodes combined and the hash collision

probability remains constant, then there will be more than 100 candidates at the parent

node.

When multiple leaf nodes contain tampering, a set of candidates can exist for multiple

siblings. In this case the possibilities to be tested at the parent level are the elements of the

set formed by the Cartesian product of the sibling candidates. Consider a perfect k-ary tree

with the parent’s branches labelled 0 through k − 1. If Ci is the set of candidates on branch i

at the child data block, then the set of parent possibilities is determined by all possible ordered

combinations of the child candidates, given by C0 × C1 × . . . × Ck−1.

Two parts of the deterministic resolution algorithm must be revised to reflect the presence

of hash collisions, and cryptographic hashing must be used in place of perfect one-way hashing.

The principle behind the revised algorithm is to assume that all verified nodes are original and

all non-verified nodes have been modified, and therefore should be corrected by considering all

possibilities.

The probabilistic algorithm for determining the set of possibilities is based on the determinis-

tic algorithm, but differs in the case of internal nodes. When determining the set of possibilities

for an internal node the algorithm computes the Cartesian product of the candidate sets from

each child node (see Algorithm 7.2). An algorithm for computing the Cartesian product can

be found in Appendix B (see Algorithm B.1).

74

Probabilistic Model

Algorithm 7.2 (Probabilistic Find Possibilities)

Given exposed data and its corresponding original preservative, the following algorithm

returns a set of possibilities for the original data.

Constants: b, k

XFindPossibilities ::= PFindPossibilities

begin PFindPossibilities(node, p)

if #(p) = 1 then

return B
b

else
list := []

for i = 1 to k do
list.add(XResolve(node.data(i), p.hash(i)))

end

return CartesianProduct(list)
end

end

Determining the candidates from the set of possibilities in the deterministic model involves

hashing each possibility in the set until a match was found. In the probabilistic model, every

possibility must be hashed to determine a list of all matching possibilities. Algorithm 7.3

performs the exhaustive search to determine this list of candidates.

Algorithm 7.3 (Probabilistic Find Candidates)

Given a set of possibilities for the original data and its corresponding original preservative,

the following algorithm returns a list of candidates for the original data.

XFindCandidates ::= PFindCandidates

begin PFindCandidates(possibilities, p)
candidates := []

foreach possibility ^ possibilities do

if XHash(possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates
end

The collision resistant resolution algorithm (see Algorithm 7.4) is almost identical to its de-

terministic counterpart. However, cryptographic hashing is used throughout, and probabilistic

algorithms replace the previous deterministic algorithms for determining the possibilities and

candidates. Refer to Algorithm B.5 for a full definition of this algorithm.

75

Probabilistic Model

Algorithm 7.4 (Collision Resistant Resolution)

Given exposed data and its corresponding original preservative, the following algorithm

returns the original data.

Constants: b, k

XResolve ::= Detect, where XHash ::= H

XFindPossibilities ::= PFindPossibilities

XFindCandidates ::= PFindCandidates, where XHash ::= H

XResolveNode ::= XResolve

The collision resistant model employs cryptographic hashing in order to realize the assump-

tion that collisions exist, but do not occur. This approach is based on the second preimage

resistance of cryptographic hash functions, making it computationally infeasible for an adver-

sary to determine a counterfeit data block at any stage of the process due to the large search

space. However, if the data blocks are practically bounded for correction purposes, then the

search space must be small enough for an attacker to determine counterfeit blocks (i.e. collisions

or candidates). Given a hash node from the preservative, an attacker can use the correction

algorithm (see Algorithm 6.7) with the probabilistic algorithms for finding possibilities and

candidates to determine a list of collisions for the corresponding data. Any of the colliding

values can then be used to create a counterfeit for the original data, which will be detected by

the collision resistant algorithm, but cannot be located or corrected by it. The assumptions

concerning collisions must be weakened further to incorporate both their existence and their

occurrence.

7.1.2 Collision Prone Model

The collision prone model assumes both the existence and the occurrence of hash collisions.

The principles behind solving the detection and location problems still hold, due to the hash’s

collision resistance. However, the collision resistance is weakened at each successive level in

the hash tree as the preimage size decreases, approaching (and possibly surpassing) the image

size due to bounding. Consequently, it becomes more feasible for an adversary to determine

collisions, which can be substituted for the original lower-level data blocks.

If an attacker can feasibly create a counterfeit data block that contains tampered elements

that collide at one level, then this possibility needs to be incorporated into the resolution

algorithm. If a data block’s hash and its corresponding original hash from the hash tree match,

then it cannot be assumed that the data block is original. To show that a data block is original

it must be determined to be the only candidate, which involves a search throughout all of

its child possibilities. However, the algorithm must also handle multi-level collisions, where a

tampered data block collides at multiple consecutive levels throughout the hash tree.

A further problem with the collision resistant algorithm is the hash tree size. Using crypto-

graphic hashes to build the hash tree has the advantage of collision resistance, but the resulting

hash tree is still relatively large in size. The most trivial solution to this problem is to reduce

the size of the hashes at the cost of increasing the collision frequency for each node.

76

Probabilistic Model

The latter problem is addressed using bounded-preimage hashing (see Definition 7.4) in place

of cryptographic hashing for each algorithm. The former problem is addressed by removing the

detection and location processes from the resolution algorithm, which results in an algorithm

that indiscriminately traverses every node in the hash tree, considering every possibility and

determining every candidate. By expanding every node fully, the algorithm will never accept a

counterfeit node as genuine.

Definition 7.4 (Bounded-preimage Hash Function)

A bounded-preimage hash function
99K

H is a cryptographic hash function with a practically-

bounded preimage, such that all inputs are in B
b, allowing an exhaustive search of B

b

within a practically-feasible time period.

The preservation algorithm is identical to the previous preservation algorithms, except for

the use of bounded-preimage hashing (see Algorithm 7.5). Refer to Algorithm B.6 for a full

definition of this algorithm.

Algorithm 7.5 (Collision Prone Preservation)

Given b and k, the Ashman hash tree for a leaf data block is produced by the following

algorithm:

XPreserve ::= PreserveNode, where XHash ::=
99K

H

XPreserveNode ::= PreserveNode, where XHash ::=
99K

H

The problem of multi-level collisions is addressed by assuming that all nodes have been

tampered with, and therefore the possibility and candidate lists for every node must be de-

termined. Algorithm 7.6 replaces the detection-correction process with correction alone, and

therefore performs indiscriminate resolution by traversing and correcting all nodes, irrespective

of whether they have been tampered with. Refer to Algorithm B.7 for a full definition of this

algorithm.

Algorithm 7.6 (Collision Prone Resolution)

Given exposed data and its corresponding original preservative, the following algorithm

returns the original data.

Constants: b, k

XResolve ::= Correct, where XHash ::=
99K

H

XFindPossibilities ::= PFindPossibilities

XFindCandidates ::= PFindCandidates, where XHash ::=
99K

H

XResolveNode ::= XResolve

77

Probabilistic Model

Assuming that the exposed data has been tampered with at every level means that it is never

referenced. Algorithm 7.6 requires the exposed data and original preservative as arguments, for

generality rather than necessity. In practice, the exposed data is not required as an input to

the collision-prone resolution algorithm.

The use of bounded-preimage hashing provides more flexibility in the size of the hash tree,

enabling the preservative to be smaller than the data. Aside from the increased risk of multi-

level collisions, the lack of detection and correction results in an inefficient resolution algorithm.

This is particularly prevalent when the exposed data is original, because the algorithm expands

every node reconstructing the data from the preservative alone.

7.1.3 Hybrid Model

The hybrid model is a compromise between the two contrasting probabilistic models. The MLDI

idea postulated by Ashman uses a cryptographic hash at the root of the hash tree to prevent

counterfeits from filtering through all layers, whilst keeping the overall size of the hash tree to

a minimum by using “small hashes” (i.e. bounded-preimage hashes).

The root node is considered as a special case in the hybrid model and must therefore be han-

dled separately in both preservation and resolution (see Algorithm 7.7). Refer to Algorithm B.8

for a full definition of this algorithm.

Algorithm 7.7 (Hybrid Probabilistic Preservation)

Given b and k, the Ashman hash tree for a leaf data block is produced by the following

algorithm:

XPreserve ::= PreserveNode, where XHash ::= H

XPreserveNode ::= PreserveNode, where XHash ::=
99K

H

The original algorithm outlined by Ashman [1] has been interpreted into the so-called

Ashman-style resolution algorithm (see Algorithm 7.8). Refer to Algorithm B.9 for a full defi-

nition of this algorithm.

Algorithm 7.8 (Ashman-style Resolution)

Given exposed data and its corresponding original preservative, the following algorithm

returns the original data.

Constants: b, k

XResolve ::= Detect, where XHash ::= H

XFindPossibilities ::= PFindPossibilities

XFindCandidates ::= PFindCandidates, where XHash ::= H

XResolveNode ::= Detect, where XHash ::=
99K

H

XFindCandidates ::= PFindCandidates, where XHash ::=
99K

H

78

Attack Models

Ashman’s algorithm performs detection using cryptographic hashing at the root node and

location with bounded-preimage hashing elsewhere. As previously mentioned, when bounded

pre-image hashing is used for location, an attacker can determine multi-layer collisions, which

remain undetectable. Therefore a final hybrid resolution algorithm is given that uses cryp-

tographic hashing for detection and, without performing location, fully corrects the data if

tampering is indicated (see Algorithm 7.9). Refer to Algorithm B.10 for a full definition of this

algorithm.

Algorithm 7.9 (Hybrid Resolution)

Given exposed data and its corresponding original preservative, the following algorithm

returns the original data.

Constants: b, k

XResolve ::= Detect, where XHash ::= H

XFindPossibilities ::= PFindPossibilities

XFindCandidates ::= PFindCandidates, where XHash ::= H

XResolveNode ::= Correct, where XHash ::=
99K

H

XFindCandidates ::= PFindCandidates, where XHash ::=
99K

H

The hybrid resolution algorithm uses bounded-preimage hashing in a similar manner to

Ashman’s algorithm, allowing correction to be performed whilst minimizing the preservative

size. However, the purpose of algorithms in the hybrid model is only in providing a basis

for reasoning about MLDI schemes: The design of compression- and performance-optimized

algorithms is left as an open problem (see §9.3).

7.2 Attack Models

There are several approaches an adversary might take in attacking a MLDI scheme; and the

nature of these approaches depends on what the adversary is attempting to achieve and the

resources they have available. For example, a powerful adversary might have the computational

resources to determine a counterfeit that is undetectable by a MLDI scheme, whereas a weaker

adversary might attempt only to make one data block uncorrectable, disregarding the fact that

their tampering will be detected.

Attacks can be classified into two categories: overt and covert. A tampered node is indicated

by the presence of one or more f blocks. If the hash of a tampered node matches the corre-

sponding hash in the original hash tree (indicated by a 3 below), the counterfeit node forms

the basis of a covert attack. Alternatively, an overt attack is formed by an easily-detectable

tampered node where the corresponding hashes do not match (indicated by a 7 below). A

non-root, non-leaf node is referred to as a mid node. Counterfeit nodes can be either single-

or multi-level, with the latter meaning a counterfeit which has a child or parent also being a

counterfeit (i.e. counterfeits on consecutive levels).

The attacks are presented by means of an example, based on data split into four blocks.

The hybrid preservation algorithm (see Algorithm 7.7) is used to create a binary hash tree with

79

Attack Models

a cryptographic root hash and bounded-preimage hashes throughout the rest of the tree. As

such, it is assumed that determining a single-level counterfeit leaf or mid node is practically

feasible, as is determining a multi-level counterfeit within the leaf and mid nodes. However

determining a root counterfeit is assumed to be computationally infeasible.

7.2.1 Overt Attacks

The most basic form of attack is for an adversary to arbitrarily modify a single block of the

data. In a tampered leaf node attack, the modified block is present in all nodes along the

path between the root and itself, and the corresponding hashes will indicate this. Figure 7.1

illustrates this type of attack on a simple hash tree where the original block d0 has been replaced

with tampered block f0. A resolution algorithm should be trivially secure against a tampered

leaf node attack.

H·(f0‖d1‖d2‖d3)

✗
99K

H ·(f0‖d1)

✗

99K

H ·(d2‖d3)

✓
99K

H ·f0

✗

99K

H ·d1

✓

99K

H ·d2

✓

99K

H ·d3

✓

Figure 7.1: Tampered Leaf Node

A similar attack involves modifying two or more blocks that correspond to siblings in the

hash tree. In a tampered leaf siblings attack, the modified blocks are present in their parent

node and all nodes from it to the root. Figure 7.2 illustrates the case when two leaf siblings,

(d0 and d1), are replaced by two tampered leaf siblings (f0 and f1). A resolution algorithm

designed with the assumption that correction of a single tampered child node will automatically

correct its parent, will not be secure against this form of attack.

There are two methods for overcoming a tampered leaf siblings attack. The pre-emptive

method checks all children of a tampered node before determining its candidates. This method

is generally less efficient in terms of the number of hash comparisons, but less complex to

implement as the tree traversal is more straightforward. The post-emptive method checks all

remaining children of a tampered node after determining that none of the currently established

candidates are correct. This method is generally more efficient, but requires a more complex

tree-traversal algorithm. Either method provides a solution to the problem; each having ad-

vantages over the other.

The final tampering attack illustrates that tampering does not necessarily involve a direct

change in content: instead, it might involve a change in the block ordering. In a transposed leaf

siblings attack, blocks that correspond to two or more sibling nodes are reordered, therefore

80

Attack Models

H·(f0‖f1‖d2‖d3)

✗
99K

H ·(f0‖f1)

✗

99K

H ·(d2‖d3)

✓
99K

H ·f0

✗

99K

H ·f1

✗

99K

H ·d2

✓

99K

H ·d3

✓

Figure 7.2: Tampered Leaf Siblings

indicating modification of the nodes involved. Figure 7.3 illustrates a simple hash tree in which

blocks d0 and d1 have been swapped.

H·(d1‖d0‖d2‖d3)

✗
99K

H ·(d1‖d0)

✗

99K

H ·(d2‖d3)

✓
99K

H ·d1

✗

99K

H ·d0

✗

99K

H ·d2

✓

99K

H ·d3

✓

Figure 7.3: Transposed Leaf Siblings

Securing a resolution algorithm against the transposition of sibling nodes is achieved in the

same manner as the general case of tampered leaf siblings. However, an algorithm could be

optimized to overcome this type of attack without the need for exhaustive searching.

7.2.2 Covert Attacks

The more serious form of attack that MLDI schemes face involve counterfeits; where a tampered

node appears to be original. An adversary can construct a counterfeit leaf node attack, by

replacing a single original data block d0 with a tampered block f0 that has a matching hash

(see Figure 7.4). This is achieved using a similar method to that of correction, by an exhaustive

search through the set of leaf node possibilities (Bb). A simple resolution algorithm would

identify tampering in the parent node, but then fail to identify which of its child nodes were

tampered with.

To overcome this problem a resolution algorithm’s design must assume that any tampered

mid node must be the result of a descendant tampered leaf node. Therefore each of the descen-

dant nodes is a potential counterfeit, and their candidates must be determined and checked at

81

Attack Models

H·(f0‖d1‖d2‖d3)

✗
99K

H ·(f0‖d1)

✗

99K

H ·(d2‖d3)

✓
99K

H ·f0

✓

99K

H ·d1

✓

99K

H ·d2

✓

99K

H ·d3

✓

Figure 7.4: Counterfeit Leaf Node

the parent level. However, an exhaustive search is performed on any descendant nodes that do

not contain tampering, which might be avoided using an alternative technique. In the example

illustrated in Figure 7.4, the hash tree indicates that data blocks f0 and d1 are both original,

therefore an exhaustive search must be performed on both of them, despite only f0 containing

tampering.

A similar situation occurs when an adversary can construct a counterfeit mid node attack,

whereby the tampered data block forms a counterfeit at a mid node. However, an exhaustive

search of all descendant possibilities from a mid node requires many more hash computations

than at a leaf node.

H·(d0‖d1‖d2‖f3)

✗
99K

H ·(d0‖d1)

✓

99K

H ·(d2‖f3)

✓
99K

H ·d0

✓

99K

H ·d1

✓

99K

H ·d2

✓

99K

H ·f3

✗

Figure 7.5: Counterfeit Mid Node

By assuming that counterfeits cannot occur over multiple consecutive levels, the problem

can be solved by expanding all nodes a further level to determine which child nodes indicate

tampering. In the example shown in Figure 7.5, the expansion of the left-hand mid node would

indicate that data blocks d0 and d1 are original, therefore the right-hand mid node would be

expanded, and the source of tampering would be located to data block f3.

A multi-level counterfeit attack is based on the assumption that counterfeits can occur on

two or more consecutive levels, which might be feasible when bounded-preimage hashing is

used. In this case, an exhaustive search of all possibilities below the root node is necessary, but

due to the complexity of this task, optimization techniques would be beneficial.

82

Chapter Summary

The situation is similar to that of the previous problem, but the algorithm can not determine

any false candidates by checking their children for modifications as the children themselves are

false candidates (see Figure 7.6).

H·(d0‖d1‖d2‖f3)

✗
99K

H ·(d0‖d1)

✓

99K

H ·(d2‖f3)

✓
99K

H ·d0

✓

99K

H ·d1

✓

99K

H ·d2

✓

99K

H ·f3

✓

Figure 7.6: Multi-level Counterfeit

The solution to this problem is simply to recursively check all children of a parent with at

least one false child candidate. In the case of leaf data blocks (with no children to check), all

leaf candidates are found, and the true candidates are found by checking the parent candidates

recursively.

Other types of attack that an algorithm designer should be aware of involve a combination of

the previously mentioned attacks. For example, it may be feasible for an attacker to construct a

multi-level counterfeit attack that contains a dummy node: indicating the presence of tampering

in one part of the hash tree when further tampering is present in another part of the tree, but

“hidden” behind a multi-level counterfeit. Figure 7.7 illustrates a simple form of the dummy

attack, where data blocks f0 and f1 form an easily-locatable dummy and data block f3 forms

a less obvious multi-level counterfeit.

H·(f0‖f1‖d2‖f3)

✗
99K

H ·(f0‖f1)

✗

99K

H ·(d2‖f3)

✓
99K

H ·f0

✗

99K

H ·f1

✗

99K

H ·d2

✓

99K

H ·f3

✓

Figure 7.7: Multi-level Counterfeit with Dummy

Again, the obvious solution to this problem is an exhaustive search for all candidates beyond

the root node, but this has a relatively high computational cost so optimization techniques

should be considered §9.3.1.

83

Chapter Summary

Chapter Summary

Based on the assumption that collisions exist, the probabilistic nature of multi-layered document

integrity has been addressed by the introduction of two opposing collision models. These models

differ in their assumption regarding the occurrence of collisions. The collision resistant model

assumes that collisions do not occur, despite their existence. Therefore an attacker is unable to

substitute data blocks which remain undetected and/or cannot be located. The collision prone

model assumes that collisions do occur and, in the extreme case, every node must be corrected

to ensure substituted data blocks are corrected. Ultimately this means ignoring the indicators

for detection and location. A compromise solution that is both secure and efficient, has been

presented in the form of the hybrid model, which combines cryptographic hashing at the root

node with bounded-preimage hashing elsewhere.

The hash collision probability has been defined, along with the notion of a node having

multiple candidates when hashes collide. The idea of the candidate reduction process has been

described, including the potential for an increase in candidates when sibling nodes in the hash

tree contain tampered blocks. To realize the invertible hashing described by Ashman, this

thesis has introduced the concept of practically bounding the preimage of the hash function.

A side-effect of bounded-preimage hashing is a large increase in the collision probability. The

higher collision probability makes the hash tree more susceptible to collisions, at both single

and multiple levels in the tree.

Collisions are not only a problem from the point of view of determining the original data,

but also from a security aspect. Various tampering attacks have been introduced, which can be

classed as overt or covert, dependent on the hash tree’s ability to indicate them. Two adversarial

aims have been discussed for attacking MLDI schemes: those which address the data integrity

problem directly, and those which attempt to make resolution less efficient. It is suggested,

therefore, that the security of MLDI should be considered from two perspectives: whether the

algorithm can resolve the integrity problems; and, if so, whether the problems can be resolved

in a reasonable time period.

84

Chapter 8

Results

He said the only way you can get around it is to come up with believable limitations, and

you have to be very specific about what those limitations are right at the outset.

— David Eddings [attributed in an interview]

T
he remaining results of this thesis are presented in this chapter, which (for the

most part) relate to the previous two chapters. however, several overall results are

also presented. Section 8.1 describes the four major constraints of multi-layered

document integrity that all MLDI schemes must adhere to. Section 8.2 discusses the ability of

such schemes to meet these constraints, thereby determining the efficacy of MLDI as a solution

to the data integrity problem.

8.1 Constraints

Unless otherwise stated, the model of multi-layered document integrity used throughout this

section is based on a hash tree with identically-sized hashes at every node. This model is a

minor simplification of the hybrid hash tree described in Algorithm 7.7, which allows for a

more elegant expression of definitions, propositions, and their related proofs. Regardless of this

simplification, all results still hold in the less elegant model.

8.1.1 Preservative Size

Theorem 5.2 showed that the amount of information in the preservative must be limited by the

amount of information in the data. The limitation forms part of the definition of the IP model

(see Equation 3.4), which effectively states that the preservative size must be less than that of

the original data (see Definition 8.1).

Definition 8.1 (Preservative Size Constraint)

The constraint that limits the size of the preservative relative to the size of the data such

that:

|p| < |d| (8.1)

In the context of multi-layered document integrity, the preservative size constraint limits

the size of the hash tree to being smaller than the data from which it was derived. The hash

85

Constraints

tree size is the product of the hash function’s image size and the number of nodes in the tree,

which can be determined by summing the number of nodes at each level (see Claim 8.1).

Claim 8.1 (Number of Nodes in a Level)

The number of nodes in a perfect k-ary tree at level i is given by ki.

Proof

The proof (by induction on i) is trivial and covered in many introductory discrete mathe-

matics textbooks.
�

The size of a hash tree is determined by the product of the hash function’s image size

and the sum of the number of nodes at all levels in the tree (as defined by its depth) (see

Theorem 8.1). No structural data (i.e. any pointers) is necessary due to the fixed node size

and regular structure of a perfect k-ary tree (see Remark 8.1).

Theorem 8.1 (Hash Tree Size)

The size of a hash tree with hashes of size |h|, a branching factor k and a depth l is given

by:

|h| ·

(
kl+1 − 1

k − 1

)

(8.2)

Proof
|p|

= {p is constructed of a number of equally-sized hashes}

[single hash size]·[number of hashes]

= {number of hashes = sum of number of hashes at each level}

|h| · ([sum of number of hashes at each level])

= { l levels after the root (level 0) and ki hashes at level i}

|h| · 〈 Σi | 0 ≤ i ≤ l : ki 〉

= {Geometric series}

|h| ·
(

kl+1−1
k−1

)

�

Remark 8.1 (Efficient Storage of a k-ary Tree)

A perfect k-ary tree can be stored in an array, where the x-th child of the node stored in

array position i is at position (k · i) + x. In terms of raw data, if each node contains |h|,

then the x-th child of the node stored at offset i · |h| is at offset ((k · i) + x)|h|.

Using a bounded-preimage hash function with a relatively small image will reduce the over-

all size of the hash tree, but has an impact on the probability of candidate collisions (see

Definition 7.3), which affects the candidate reduction process.

The tree’s depth and branching factor determine the structure of the tree, which is dependent

upon the computational bounds of the tree (see Definition 6.4). In general, the greater the

86

Constraints

branching factor of a tree, the smaller its depth, and the less nodes it has. Therefore increasing

the branching factor generally reduces the overall size of the hash tree. However, the branching

factor of the tree has an impact on the number of internal candidates, thereby affecting the

candidate reduction process.

The hash tree must be optimized to meet the preservative size constraint, but adjusting any

of the factors that influence the hash tree size will also affect the candidate reduction process.

8.1.2 Determinability

The candidate reduction process must determine a single data block as the original data block.

If more than one possibility exists, then one or more counterfeit data blocks exist that the

scheme is unable to detect. Unless correction is deterministic, an attacker can determine the

entire set of counterfeit data blocks in a reasonable time using a slightly modified resolution

algorithm that returns all matching results rather than a null result.

To model the candidate reduction process for determinability, functions are defined to quan-

tify both the number of possibilities and the number of candidates at a given level in the hash

tree.

Definition 8.2 (Possibility Quantification Function)

The possibility quantification function α·i determines the number of data block possibilities

at a given hash tree level i.

Definition 8.3 (Candidate Quantification Function)

The candidate quantification function β·i determines the number of data block candidates

at a given hash tree level i.

Definition 8.3 is used to define the determinability constraint, effectively stating that for a

scheme to be deterministic, at most one candidate can filter through the tree (see Definition 8.4).

Definition 8.4 (Determinability Constraint)

The constraint that limits the number of candidates determined by the hash tree such that:

β · 0 ≤ 1 (8.3)

The candidate reduction model can be constructed using Definition 8.2 and Definition 8.3 to

formulate the number of possibilities and candidates corresponding to each position in the hash

tree. Any two nodes at the same level in the tree will have an identical number of possibilities

and candidates, since the tree is assumed to be a perfect k-ary tree. The candidate reduction

model is illustrated in Figure 8.1, where the candidates are indicated in the top part of the

node and the possibilities indicated in the bottom part.

87

Constraints

β·0
α·0

β·1
α·1

· · · β·1
α·1

...
· · · ...

· · · ...
· · · ...

β·l−1
α·l−1

· · · β·l−1
α·l−1

β·l
α·l

· · · β·l
α·l

· · · β·l
α·l

· · · β·l
α·l

Figure 8.1: Candidate Reduction Model

Two axioms can be determined from the model: the reduction axiom and the enlargement

axiom. The reduction axiom concerns any single node, for which the number of candidates is

equal to the product of the number of possibilities and the probability of a hash collision (see

Definition 8.5).

Definition 8.5 (Reduction Axiom)

Any single node in the candidate reduction model with x possibilities and a hash collision

probability of u has u · x candidates.

β · i = u · α · i (8.4)

The enlargement axiom concerns a parent node and its children, for which the number of

possibilities for the parent is equal to the product of the number of candidates for each child.

The property is simplified by all parents having k children, and siblings having an equal number

of candidates (see Definition 8.6).

Definition 8.6 (Enlargement Axiom)

Any single parent node in the candidate reduction model with k children, each having x

candidates, has xk possibilities.

α · i = (β · (i + 1))k (8.5)

A combination of the two axioms can determine an iterative function for candidate reduction,

which can be used to determine the condition required for a reduction in the total number of

possibilities (see Theorem 8.2).

88

Constraints

Theorem 8.2 (Reduction Theorem)

In order for the number of possibilities to be reduced at any stage the following must hold:

k − 1

k
<

|h|

|d|
(8.6)

Proof
α · (i − 1) < α · i

= {Definition of α}

(β · i)k < α · i

= {Definition of β}

(α · i · 2−|h|)k < α · i

= {Definition of α at leaf with bounding |d|}

(2|d| · 2−|h|)k < 2|d|

= {Indices laws}

(2|d|−|h|)k < 2|d|

= {Indices laws}

2k(|d|−|h|) < 2|d|

= {Application of logarithm function is monotonic}

log 2k(|d|−|h|) < log 2|d|

= {Logarithm power law}

k(|d| − |h|) · log 2 < |d| · log 2

= {Multiplication of 1
log 2 is monotonic as 1

log 2 > 0}

k(|d| − |h|) < |d|

= {Monotonicity of addition}

k|d| − |d| < k|h|

= {Factorization}

(k − 1)|d| < k|h|

= {Monotonicity of multiplication}
k−1

k
< |h|

|d| �

Furthermore, the iterative function can also be used to determine the number of candi-

dates at the root node (see Theorem 8.3) from the number of possibilities at a leaf node (see

Lemma 8.1).

89

Constraints

Lemma 8.1 (Leaf Node Possibilities)

The number of data block possibilities at a single leaf in a perfect tree at depth l is given

by:

α · l = 2(
n

kl). (8.7)

Proof

By induction:

For the base case, let l := 0 and note that this is a string of length n in base 2.

α · 0

= {Definition of α}

2(n

k0)

= {Indices laws}

2(n

1)

= {Simplification}

2n

For the inductive case, assume α · l = 2(
n

kl). At depth l+1 the size of a single leaf decreases

by a factor of k to n
kl+1 . Therefore the number of possibilities decreases to 2(

n

kl+1) (i.e. by

a factor of 2(
n

kl+1 − n

kl)).

(α · l) · 2(n

kl+1 − n

kl)

= {Definition of α}

2(n

kl) · 2(n

kl+1 − n

kl)

= {Indices laws}

2(n

kl+1)

= {Definition of α}

α · (l + 1) �

90

Constraints

Theorem 8.3 (Root Node Candidates)

The number of candidates at the root node in a perfect k-ary tree of depth l is given by:

β · 0 = 2
n−

(

|h|·
(

k
l+1−1
k−1

))

. (8.8)

Proof
β · 0

= {Combination of Definition 8.5 and Definition 8.6}

u · (β · 1)k

= {Combination of Definition 8.5 and Definition 8.6}

u · (u · (β · 2)k)k

= {Combination of Definition 8.5 and Definition 8.6}

u · (. . . u · (
︸ ︷︷ ︸

l

β · l)k . . .)k

︸ ︷︷ ︸

l

= {Indices laws}

u · uk · uk2

· . . . · ukl−1

· (β · l)kl

= {Definition 8.5}

u · uk · uk2

· . . . · ukl−1

· (u · α · l)kl

= {Indices laws}

u · uk · uk2

· . . . · ukl−1

· ukl

· (α · l)kl

= {Indices laws}

u(1+k+k2+...+kl−1+kl) · (α · l)kl

= {Geometric series}

u

(
k

l+1−1
k−1

)

· (α · l)kl

= {Equation 7.1 and Lemma 8.1}
(
2−|h|

)
(

k
l+1−1
k−1

)

·
(

2(n

kl)
)kl

= {Indices laws}

2
−|h|·

(
k

l+1−1
k−1

)

· 2n

= {Indices Laws}

2
n−

(

|h|·
(

k
l+1−1
k−1

))

�

The number of possibilities for a single leaf (α·l) is directly related to the size of a bounded

data block, which is a function of the tree’s branching factor, its depth, and the size of the

overall data size (see Table 6.2). To reduce the number of leaf possibilities without reducing

the data size, the tree structure must be adjusted by increasing either the branching factor or

the depth. In either case, this affects the size of the hash tree.

In the uniform distribution model, increasing the size of the hash image is the only method

to reduce the hash collision probability. Therefore the size of the hash tree will be affected by

reducing the hash collision probability. The hash tree must be optimized to meet the deter-

minability constraint, but adjusting any of the factors that influence the candidate reduction

process will also affect the hash tree size.

91

Efficacy

8.1.3 Time Complexity

A further constraint on multi-layered document integrity is for resolution to be achieved within

a reasonable time period. In the context of this thesis, a reasonable time period is defined as

polynomial time (see Definition 8.7).

Definition 8.7 (Time Complexity Constraint)

The constraint that limits the time complexity of a resolution algorithm R such that:

R ∈ O(nc), (8.9)

from some constant c > 1.

8.1.4 Security

In Part II, precise definitions for the integrity detection, location, and correction problems were

given. These definitions can be used to determine the security of MLDI schemes as shown in

§4.3. Since MLDI does not provide any obvious advantages over the existing schemes for tamper

detection (i.e. hash-only and signature-based IDSs) or for tamper location in the IP model (i.e.

Merkle hash trees), a security constraint is defined in terms of MLDI schemes providing security

against the integrity correction problems (see Definition 8.8).

Definition 8.8 (Security Constraint)

The minimum security requirement for a multi-layered document integrity scheme R in

the IP model is that R provides security against the data integrity correction problem for

all original data d and tampered data f, where p ::= ̟ · d.

〈 ∀d, f | : X · (d, f, p,R) 〉

8.2 Efficacy

In order for MLDI to be effective, the following constraints must be satisfied:

• Preservative size constraint (see Definition 8.1);

• Determinability constraint (see Definition 8.4);

• Time complexity constraint (see Definition 8.7);

• Security constraint (see Definition 8.8).

The first two of these constraints have a direct impact upon each other, whilst the other

two are more weakly related in that the time complexity of correction is linked to the time

complexity of constructing an attack.

92

Efficacy

8.2.1 Preservative Size Versus Determinability

As previously mentioned, reducing the preservative size will affect the candidate reduction

process (i.e. the determinability) and increasing the determinability will affect the preservative

size. In fact, Theorem 8.4 states that the preservative size and determinability constraints

contradict.

Theorem 8.4 (Preservative Size and Determinability Constraints Contradict)

Multi-layered document integrity is unable to determine the original data under the con-

straint on the preservative size.

Proof

The constraints on the preservative size (see Definition 8.1) and the determinability (see

Definition 8.4) contradict.

[|p| < |d|] ∧ [β · 0 ≤ 1]

= {Equation 8.2, Equation 8.8}
[

|h| ·
(

kl+1−1
k−1

)

< |d|
]

∧

[

2
n−

(

|h|·
(

k
l+1−1
k−1

))

≤ 1

]

= {Multiplication by 2
|h|·

(
k

l+1−1
k−1

)

is monotonic}
[

|h| ·
(

kl+1−1
k−1

)

< |d|
]

∧

[

2n ≤ 2
|h|·

(
k

l+1−1
k−1

)]

= {Logarithm function is monotonic}
[

|h| ·
(

kl+1−1
k−1

)

< |d|
]

∧

[

log (2n) ≤ log

(

2
|h|·

(
k

l+1−1
k−1

))]

= {Logarithm power law}
[

|h| ·
(

kl+1−1
k−1

)

< |d|
]

∧
[

n · log 2 ≤ |h| ·
(

kl+1−1
k−1

)

· log 2
]

= {Multiplication by 1
log 2 is monotonic}

[

|h| ·
(

kl+1−1
k−1

)

< |d|
]

∧
[

n ≤ |h| ·
(

kl+1−1
k−1

)]

= {n = |d|, let x ::= |h| ·
(

kl+1−1
k−1

)

}

[x < n] ∧ [n ≤ x]

= {Contradiction}

false �

Theorem 8.4 is based on the underlying fine detail of MLDI schemes, and the same result

can be shown more trivially from an information-theoretic approach. The preservative can be

considered as a compression of the data, such that

p ::= K(d), (8.10)

since all the information in the data must be recoverable from the preservative alone (i.e.

deterministic) when the adversary is arbitrary, malicious, and persistent.

93

Efficacy

From the definition of the IP model for exposure, the information in the preservative must

be less than the information in the data, such that

K(p) < K(d),

which derives to the contradiction when Equation 8.10 is substituted:

K(d) < K(d).

Therefore, if the data is vulnerable to tampering, then recovery of the original data cannot

be deterministic. Irrespective of this rather damning result, it might be useful to determine

whether the other constraints can be met.

8.2.2 Time Complexity

The resolution process can be categorized in different ways, since the degree of tampering affects

its performance and the process itself consists of three sub-processes. For example, if no data

blocks are modified, then the detection process is O(1) and the other processes are unnecessary.

The algorithm for determining leaf node candidates (see Algorithm 7.3) involves an exhaus-

tive search, which typically has exponential time complexity. However, the use of bounded

data blocks allows a single block to be searched in constant time with 2n comparisons, which

is independent of the input size n. In the case where one data block contains tampering, prior

tamper location ensures that only a single data block requires an exhaustive search; if all were

tampered with, the number of searches is proportional to the input size.

Having performed the exhaustive searching at the leaf nodes, the remaining candidates need

to be filtered out through the depth of the tree, which is logarithmic in respect to the length

of the input data. Table 8.1 shows the time complexities for the Ashman-style and hybrid

resolution algorithms in the case where a single data block is tampered with and all data blocks

are tampered with. The time complexities are based on the assumption that no counterfeits

exist, and that the hash functions operate in constant time, as is typical for most hash functions.

Process Tampered Ashman-style Hybrid
Blocks Resolution Resolution

Detect 1 O(1) O(1)
all O(1) O(1)

Locate 1 O(logk n) O(n)
all O(n) O(n)

Correct 1 O(logk n) O(n logk n)
all O(n logk n) O(n logk n)

Overall 1 O(logk n) O(n logk n)
all O(n logk n) O(n logk n)

Table 8.1: Time Complexities for Algorithms in the Probabilistic Model

The overall time complexities of both hybrid resolution algorithms are linearithmic, and

therefore within the time complexity constraint of polynomial time.

94

Efficacy

8.2.3 Security

The Ashman-style resolution algorithm (see Algorithm 7.8) aims to provide secure tamper de-

tection through cryptographic hashing at the root node. Its tamper detection security is equiv-

alent to that of a hash-only IDS, and therefore considered secure under the same assumptions

as Claim 5.6.

One might question whether the additional information in the hash tree (i.e. the non-

root nodes) provide extra information to an adversary, rendering the tamper detection security

of MLDI less than that of a hash-only IDS. In terms of preimage resistance, an attacker can

determine what the input was more easily from the hash tree; after all, that is the purpose of the

hash tree in tamper correction. Furthermore, privacy of the original data is beyond the scope of

MLDI (see §1.2). However, in terms of collision resistance and second-preimage resistance, this

is left as an open question. From one perspective, the attacker has more information to utilize

than with a hash-only IDS, but from another perspective, this information reduces the total

number of possibilities: If collisions were evenly distributed, then this process would impede the

adversary’s ability to find collisions. Furthermore, the nature of such attacks has no obvious

correlation to the design of hash functions, making it increasingly unlikely to be successful.

The tree of hashes corresponding to data blocks aims to provide secure tamper location.

However, cryptographic hashing is only used at the root node, below which, bounded preimage

hashing is used. This weaker form of hashing allows an adversary to construct a counterfeit

leaf node attack in reasonable time using an algorithm to determine a list of candidates (see

Algorithm 8.1).

Algorithm 8.1 (Counterfeit)

Given exposed data and its corresponding original preservative, the following algorithm

returns a list of candidates for the original data.

Constants: b, k

begin Counterfeit(data, p)
node := Autobound(data)

return Correct(node, p)

end

Counterfeits must exist due to the pigeonhole principle and the preservative size constraint

§7.1. The algorithm allows an adversary to determine a list of all candidates in the same time

it takes the resolver to perform correction (when all nodes were tampered with); and less time

when only a single counterfeit is required. As the Ashman-style resolution algorithm cannot

locate counterfeits, it is unable to correct them, since correction relies on successful location.

The hybrid resolution algorithm solves the detection problem identically to the Ashman-

style algorithm. In the case of location, however, it does not rely on indications from bounded-

preimage hashing to locate tampered data blocks: The algorithm effectively skips the location

process, assuming all blocks to contain tampering. The algorithm will compute all possible

candidates for every node and, assuming the determinability constraint is met, reduces the can-

95

Chapter Summary

didates to determine the original data. After the initial detection process, the hybrid algorithm

only uses the original preservative to reconstruct the original data, so correction is achieved

irrespective of any attack performed on the data.

It is debatable as to whether the hybrid algorithm is tamper location secure, since the

obvious location process is omitted. However, the fact that the hybrid algorithm solves the

correction problem implies that the location problem is also solved (via the problem hierarchy

model): Having determined the original data through correction, a simple block-wise compari-

son with the exposed data identifies the modified blocks.

Chapter Summary

Multi-layered document integrity in general is subject to four types of constraint: an upper-

bound on the preservative size; an upper-bound on the number of root node candidates; an

upper-bound on the time complexity of resolution; and a lower-bound on the security.

The preservative size has been shown to be equivalent to the size of the hash tree and,

aside from the size of the data, is largely dependent on the preimage size and image size of the

bounded-preimage hash function. The number of root node candidates (i.e. the determinability)

has also been shown to be dependent on the same factors, resulting in a contradiction when

attempting to meet both constraints - the problem is unsatisfiable.

Assuming that tampering has occurred to some extent, the time complexity of resolution

has been shown to be O(logk n) for the Ashman-style algorithm in the best case (O(n logk n) for

the hybrid algorithm) and O(n logk n) for the worst case (for both algorithms); and therefore

meets the constraint of being within polynomial time.

The security constraint dictated that correction must be solvable (as defined in Part II

of the thesis) to improve upon existing research. It has been shown that the Ashman-style

algorithm does not achieve this, since an adversary can determine counterfeit data blocks,

which the algorithm fails to locate. Moreover, the adversary can construct this form of attack

in reasonable time using a modified resolution algorithm. However, at the cost of computation

time, counterfeit attacks are located and corrected by the hybrid algorithm; although extra

computational time does not affect the overall time complexity.

If all leaf node elements were tampered with then the performance of the collision prone

resolution algorithm has been shown to be similar to that of the collision resistant resolution

algorithm. However, the performance of the collision prone resolution algorithm is independent

of the number of tampered leaf node elements, so will perform similarly even when no leaf node

elements are tampered with.

96

Great is the art of beginning, but greater the art is of ending;

— Henry Wadsworth Longfellow, Elegiac Verse (1882)

Part IV
Conclusion

97

Chapter 9

Conclusions

Compromise is but the sacrifice of one right or good in the hope of retaining another —

too often ending in the loss of both.

— Tryon Edwards [attributed in The New Dictionary of Thoughts (1963)]

A
n overview of the outcomes of this research is presented here, beginning with a

summary of the previous chapters, outlining some of the important definitions and

significant results. The contributions of this work are stated, and the potential for

future work is discussed. The thesis concludes with a discussion of the work and its general

results.

9.1 Summary

The common consensus that data integrity concerns only the problem of tamper detection has

led to spurious claims of systems that can guarantee tamper-free data. Furthermore, this view

of data integrity does not encapsulate the true meaning of integrity, where maintaining the

truth is equally as important as determining it. The idea of multi-layered document integrity

postulated by Ashman aims to provide a level of data integrity beyond that of detection, thus

furthering the need for a more general notion of the problem.

This thesis aimed to conceptualize the general data integrity problem, and determine whether

multi-layered document integrity can provide a feasible solution. The aims and objectives were

discussed in detail, and the scope of this thesis was clearly defined; differentiating the focus from

a variety of schemes involved in the processes of data modification. The main contributions of

this thesis were outlined and its significance was discussed. A description of the various nota-

tional styles used throughout this thesis were provided for the less-obvious conventions used in

presenting this research.

Various methods of addressing modification in data were discussed through a series of prob-

lems, describing the general or widely-accepted solution of each. Whilst revision control and

error detection/correction schemes provide useful methods of monitoring changes, neither are

suitable in the presence of a malicious adversary. The problems that followed, introduced

the common cryptographic primitives used for (and related to) solving parts of the integrity

problem.

Ashman’s idea of multi-layered document integrity was discussed as a solution to the tamper

correction problem (as well as detection and location). However, several problems were noted

within MLDI that had to be resolved to develop it into a concrete algorithm that can be

98

Summary

implemented. The author believed that the most fundamental problem is the lack of a solid

theoretical foundation, preventing the idea and its algorithm being described clearly. Despite

the problems with MLDI, it seemed to be a reasonable approach to solving the tamper correction

problem, and therefore deserved further development.

The fundamentals of the data integrity problem were discussed by defining a model for

each of its main aspects. The discussion was focussed around three areas of the problem: the

participants, the data and the processes.

The participants were discussed in terms of the attacking and defending parties and their

opposing goals. The role that each participant plays in achieving their party’s goal was then

defined, and the idea of a trusted third-party used in the security model was introduced. The

abilities of the attacking party were elaborated on by discussing the adversary model of this

work and a powerful adversary with the ability for unrestricted modification to data exposed via

a vulnerable medium was defined. Alongside this vulnerable medium, an invulnerable medium

was defined, where the adversary has no ability to modify the exposed data.

The data model was defined in terms of a partitionable data structure, which provides the

ability to locate modifications to specific data blocks, rather than as a whole. Subsequently, the

idea of a preservative was discussed, which is determined from the data prior to exposure. The

preservative can be used to resolve any data integrity problems after exposure, thereby helping

to preserve the data’s integrity.

The final area of the problem concerned its processes. The transaction model further defined

some aspects of the participants’ abilities and gave the definition of a medium. Then the

different types of media were discussed, including the use of the term exposure in place of

store and transmit, and the use of vulnerable and invulnerable media as respective synonyms

for tamper-vulnerable and tamper-invulnerable media. Various process models were discussed,

which help to illustrate the problem of integrity preservation by classifying the various stages

of the problem, and defining the participants and data involved at each stage.

A taxonomy for the data integrity problem was presented by dividing it into four distinct

sub-problems. A formal problem semantics has been defined for each sub-problem in terms of

its behaviour and solvability functions. The behaviour function specifies how an algorithm for

solving the sub-problem should behave in respect to its input and output. The solvability func-

tion specifies whether the output given by such an algorithm is correct. These two specification

methods allow each sub-problem to be well-defined and differentiated.

A security model for the data integrity problem was given in the form of the general tam-

pering game. This general model can be used to construct the security model for each of the

sub-problems. Each sub-problem’s security model was based on the solvability function for

that sub-problem, and can be used to determine the security of a given algorithm within that

context.

Having defined each distinct sub-problem, the hierarchical relationship between these prob-

lems was determined. This showed that solving any sub-problem in the hierarchy is essentially

equivalent to solving all sub-problems lower in the hierarchy. Therefore solving the highest

possible sub-problem, should be the goal of the defending party.

Using the previously defined model, the solvability of each sub-problem was determined for

both the VP and IP models. It was shown that detection is the only solvable sub-problem in the

99

Summary

VP model, which is essentially a result of the information required to solve each problem versus

the abilities of the adversary in manipulating information. The difference between package and

data-only integrity detection was highlighted, with non-existence of the latter being proven. In

the VP model it was shown that prevention cannot be achieved under the defined adversary

model: Instead, the possibility of correction was discussed, which led to a further discussion on

restricting the size of the preservative and that correction cannot be deterministic.

The solvability results show that integrity correction in the IP model is the best result pos-

sible, and that a scheme for solving this problem will be probabilistic at best. This probabilistic

method is the idea behind Ashman’s MLDI and became the focus of Part III, which introduced

the fundamental principles of multi-layered document integrity. In particular, the central idea

concerning the divide-and-conquer approach to location and correction was discussed; including

the notion of bounding the data and structuring it as a perfect k-ary tree to compute a hash

tree as a preservative.

The deterministic model presented multi-layered document integrity in a simplified man-

ner, introducing generic algorithms for preservation and resolution, and using them to build

a deterministic solution. The time complexities of deterministic MLDI indicated that it could

provide a feasible solution to the data integrity problem in terms of computational complexity.

Despite the favourable time complexities, the hash tree size was not considered in the non-

compressive deterministic model, and therefore contravened the previous result that correction

must be non-deterministic. As such, the use perfect one-way hashing to provide a simplified

deterministic model had to be readdressed.

Based on the assumption that collisions exist, the probabilistic nature of multi-layered doc-

ument integrity was addressed by the introduction of two opposing collision models. These

models differ in their assumption regarding the occurrence of collisions. The collision resistant

model assumes that collisions do not occur, despite their existence. Therefore an attacker is

unable to substitute data blocks which remain undetected and/or cannot be located. The colli-

sion prone model assumes that collisions do occur and, in the extreme case, every node must be

corrected to ensure substituted data blocks are corrected. Ultimately this means ignoring the

indicators for detection and location. A compromise solution that is both secure and efficient,

was presented in the form of the hybrid model, which combines cryptographic hashing at the

root node with bounded-preimage hashing elsewhere.

The hash collision probability was defined, along with the notion of a node having multiple

candidates when hashes collide. The idea of the candidate reduction process was described,

including the potential for an increase in candidates when sibling nodes in the hash tree contain

tampered blocks. To realize the invertible hashing described by Ashman, this thesis introduced

the concept of practically bounding the preimage of the hash function. A side-effect of bounded-

preimage hashing is a large increase in the collision probability. The higher collision probability

makes the hash tree more susceptible to collisions, at both single and multiple levels in the tree.

Collisions are not only a problem from the point of view of determining the original data, but

also from a security aspect. Various tampering attacks were introduced, which can be classed

as overt or covert, dependent on the hash tree’s ability to indicate them. Two adversarial aims

were discussed for attacking MLDI schemes: those which address the data integrity problem

directly, and those which attempt to make resolution less efficient. It is suggested, therefore,

100

Contributions

that the security of MLDI should be considered from two perspectives: whether the algorithm

can resolve the integrity problems; and, if so, whether the problems can be resolved in a

reasonable time period.

The four types of constraint on the general idea of multi-layered document integrity were

defined as: an upper-bound on the preservative size; an upper-bound on the number of root

node candidates; an upper-bound on the time complexity of resolution; and a lower-bound on

the security.

The preservative size was shown to be equivalent to the size of the hash tree and, aside from

the size of the data, is largely dependent on the preimage size and image size of the bounded-

preimage hash function. The number of root node candidates (i.e. the determinability) was

also shown to be dependent on the same factors, resulting in a contradiction when attempting

to meet both constraints - the problem was determined to be unsatisfiable.

Assuming that tampering has occurred to some extent, the time complexity of resolution

was shown to be O(logk n) for the Ashman-style algorithm in the best case (O(n logk n) for the

hybrid algorithm) and O(n logk n) for the worst case (for both algorithms); and therefore meets

the constraint of being within polynomial time.

The security constraint dictated that correction must be solvable (as defined in Part II of the

thesis) to improve upon existing research. It was shown that the Ashman-style algorithm does

not achieve this, since an adversary can determine counterfeit data blocks, which the algorithm

fails to locate. Moreover, the adversary can construct this form of attack in reasonable time

using a modified resolution algorithm. However, at the cost of computation time, counterfeit

attacks are located and corrected by the hybrid algorithm; although extra computational time

does not affect the overall time complexity.

If all leaf node elements were tampered with then the performance of the collision prone

resolution algorithm was shown to be similar to that of the collision resistant resolution algo-

rithm. However, the performance of the collision prone resolution algorithm is independent of

the number of tampered leaf node elements, so will perform similarly even when no leaf node

elements are tampered with.

9.2 Contributions

The main contributions of this research lie in two areas of data integrity, as reflected by the

title and structure of the thesis:

• Part II introduces the first formal model for the generalized data integrity problem (as

far as the author is aware).

• Part III provides a detailed discussion of, and underlying model for, Ashman’s concept of

multi-layered document integrity.

Aside from the literature review, the contributions from the two models can be defined in

terms of their propositions, corresponding proofs, and related original definitions. The most

significant contributions are:

• A general review of the literature concerning the modification of data: This

review defined several well-known problems concerning data modification, categorizing the

101

Contributions

modification in terms of two factors: accidental versus deliberate; and authorized versus

unathorized. The generally accepted solution to each problem was discussed, and the

focus became the overlap of deliberate and unauthorized modification — data integrity.

After differentiating MLDI from existing schemes for solving the detection and location

problems, Ashman’s original MLDI paper was discussed in depth.

• A formal hierarchical definition of data integrity problem: By defining each of the

data integrity sub-problems with a formal problem semantics, the relationship between

each sub-problem could be determined. This relationship was proven to be a hierarchy,

in which the solution to any sub-problem can be trivially reduced to solve sub-problems

lower in the hierarchy. Furthermore, the non-existence of a solution to any sub-problem

implies the non-existence of solutions higher in the hierarchy.

• Establishing that detection is the only solvable problem in the vulnerable

preservative model: In the VP model, it was shown that signature-based integrity

detection schemes provide a solution to the detection problem, but that the location

problem is unsolvable, as were correction and prevention from the problem hierarchy.

• Establishing the non-existence of data-only integrity detection: The idea of data-

only integrity was defined, which concerns the integrity of an atomic piece of information,

unreliant on a preservative. It was shown that no scheme can determine the integrity of

data alone; it is only possible to determine integrity of data packaged with a preservative.

• Establishing an underlying model for multi-layered document integrity: This

model allowed a clear discussion of the issues surrounding the efficacy of MLDI and how

these issues can be resolved.

• A well-defined set of algorithms for preservation and resolution in MLDI:

The algorithms have been decomposed into several fundamental functions, which were

presented alongside a detailed discussion and justification of their design.

• Outlining several feasible attacks against MLDI algorithms: The attacks out-

line some of the security threats to MLDI schemes and serve as an aid in the design of

algorithms.

• Establishing the efficacy of multi-layered document integrity: The four con-

straints on MLDI were formally defined, and used to determine its efficacy. It was shown

that Ashman’s original MLDI algorithm is not secure against problems other than detec-

tion, since it cannot locate counterfeit nodes that an adversary can determine in a rea-

sonable amount of time. Moreover, it was determined that the constraints of preservative

size and determinability contradict, rendering the general concept of MLDI ineffective.

• Establishing that detection is the only solvable problem in the invulnerable

preservative model: The main result concerning the efficacy of MLDI was generalized

from an information-theoretic point of view, to establish that detection is the only solvable

data integrity sub-problem, irrespective of the preservative exposure model.

102

Future Work

9.3 Future Work

The results of this thesis are relatively conclusive in that little scope remains for incremental

research. Perhaps the most significant area of future work concerns extending the problem

model to cover schemes that preserve integrity through the use of data distribution. The result

concerning the efficacy of MLDI, seriously limits its capacity for future research, and the work

of this thesis suggests that future work on MLDI is unlikely to have any significant impact on

data integrity research. Despite this, some of the more obvious research problems posed by this

study, may have an impact in other research fields.

9.3.1 Optimization of the Resolution Algorithm

One of the more obvious areas of incremental research surrounding MLDI is to design and

implement more efficient resolution algorithms, whilst maintaining security against counterfeits.

The two resolution algorithms presented in §7.1.3 serve as complementary best and worst cases:

the Ashman-style algorithm being efficient, but insecure; and the hybrid algorithm being secure,

but inefficient.

The correction process of resolution involves bounded exhaustive searches performed at every

tampered leaf node. These searches are unnecessarily costly for two reasons: all possibilities

within the bound must be hashed; and an identical search and corresponding hashing is repeated

for each tampered leaf node. Using a pre-computed lookup table for fixed bounding size and

indexed by hash image would drastically improve the time taken for correction at the cost of

some disk space [39, 27]. The financial feasibility of using purpose-built hardware with a built-in

lookup table could also be investigated.

Alternatively, one or more lookup tables for various bounding sizes might be both computed

and stored in a distributed manner to reduce the initial computation time and overall storage

space. In this situation, a user would request the candidates for a data block by submitting

the corresponding hash from the hash tree. The candidate list can be determined in constant

time from a lookup in the distributed lookup table, removing the need for a costly exhaustive

search at the leaf node.

The location process of resolution is subject to so-called covert attacks that involve counter-

feit nodes. When counterfeit nodes are present, especially in the case of multi-level counterfeits,

it becomes increasingly difficult to identify which parts of the data contain tampered blocks.

The problem is essentially a tree searching problem, where a strategy is required in determining

which nodes to expand and continue searching.

An optimized location algorithm could be designed by employing search heuristics, which

prioritize the set of nodes that can be expanded after each step of location, with an estimate

of whether a sub-tree contains tampering. Possible considerations for optimizing location are:

• Number of data blocks: If one sub-tree contains more data blocks than another, then it

might be more prone to tampering since it potentially contains more candidates. However,

the converse might be true, since the sub-tree with fewer data blocks requires less time

for an adversary to construct a brute-force attack against it.

103

Future Work

• Number of processed data blocks: As in the previous case, but subtrees containing verified

or, at least, processed (i.e. where some/all possible candidates have been determined)

should be less prone to tampering.

• Number of processed levels: A sub-tree with i matching ancestor nodes should be more

likely to contain tampering than a sub-tree with i + 1 matching ancestor nodes.

Interesting points of this problem are that any number of data blocks can contain tampering

and all must be determined to constitute a solution. It should be possible to determine whether

the problem has been solved at any point in the search, by comparison of the root hash, which

is assumed to be collision resistant.

9.3.2 Bounded-preimage Hash Functions

The concept of a weakened invertible hash function was originally described by Ashman [1], and

defined more formally in this thesis as a bounded-preimage hash function (see Definition 7.4).

If schemes for MLDI were implemented, then such functions would need to be designed. The

design and analysis of bounded-preimage hash functions would constitute a new area of research.

Under supervision of the author, the M.Sc. thesis of Drakoulis carried out initial work in

this area [17]; investigating several designs of bounded-preimage hash functions based around

the MD5 and SHA-1 cryptographic hash functions. The central idea was to first compute a

cryptographic hash of the bounded data block and then compress the output to form a weaker

bounded-preimage hash.

The results of the thesis suggest that cryptographic hash function provide a suitable basis

for bounded-preimage hash functions with a reasonably uniform collision frequency. However,

it seems feasible that much more efficient algorithms with a similar or more uniform collision

frequency can be realized without pre-computing the cryptographic hash.

9.3.3 Distributive Data Integrity Model

This thesis has established that detection is the only solvable problem of the data integrity

problem for both the VP and IP exposure models. However, this result is based on the assump-

tion that the data is a single atomic piece of information that cannot be distributed. In reality,

it is feasible to make multiple instances of the data, and expose each instance via a different

medium, and recent trends in computing have seen the popularization of this methodology for

both storage and transmission of data.

Peer-to-peer schemes such FreeNet [11] and BitTorrent [12] allow users to upload and down-

load files from other users. Furthermore, these schemes suffer from a variety of attacks aiming

to compromise data integrity, and various methods have been proposed to secure against these

attacks. This area of research is closely related to that of censorship-resistance schemes (see

§2.8), and solutions are typically based on the idea of Byzantine fault tolerance [9].

Data distribution-based schemes form a preventive (rather than reactive) approach by as-

suming that one or more distributed instances of the data remains unchanged. Rather than

determining the original data from any possibility (of the given size), it is determined from a

104

Discussion

relatively small number of distributed instances, of which one or more could be original. Conse-

quently the preservative only has to contain enough information to solve the detection problem

(or multiple instances of the detection problem for partitioned data). As such, the preservative

can be much smaller than the data that it is preserving, and the conditions on the IP exposure

model are trivially satisfied.

The model proposed in this thesis could be extended to incorporate the idea of distributive

data integrity by adjusting the definitions of the underlying models, and the resulting problem

taxonomy. The transaction model would use the IP exposure model to obtain an initial preser-

vative and, if necessary, obtain further preservative partitions via the VP model, which then

can be verified against the initial one. After preservative partitions have been verified, they can

be used to verify the integrity of the corresponding data partitions that are exposed as part

of the VP model. Only the initial preservative requires exposure via the IP model, and this

preservative can be a fixed-length cryptographic hash.

In addition to multiple partitions in the data, the data model would have to encompass

multiple instances for each partition. Furthermore, any number of instances for each partition

could have been tampered with, so the adversary model might be required to consider the ratio

between tampered and original instances of each data partition. Essentially, the preservative

model would be the same as that defined in Chapter 3, despite the preservative being smaller.

However the process model would require additional steps for establishing the preservative, and

would incorporate multiple sources, as opposed to a single source.

Having extended the underlying model, the problem taxonomy could be adjusted to incor-

porate these extensions. The changes would stem primarily from the assumption that one or

more distributed instances are original, and involve the identification of at least one original

instance of the data, albeit from multiple sources. The general notion of the main results will

still apply, but some of the definitions and assumptions will change. One of the more obvious

changes would be in the problem definitions, as multiple distributed instances must be con-

sidered. For example, the prevention problem might be redefined to permit modification in

instances, provided at least one instance of each partition remains original. Alternatively, an

absolute definition of prevention might stipulate that all instances of the data must remain

original.

Extending the data integrity model proposed in this thesis to accommodate distributed

exposure models might provide a better understanding of the security issues involved with

distributed data integrity. Such work could be useful in determining the feasibility of certain

types of attack and/or methods for securing against them.

9.4 Discussion

This thesis has investigated the notion of data integrity beyond tamper detection within the

context of non-distributed data exposure and a powerful, but realistic, adversary. To verify

Ashman’s claim that MLDI can provide location and correction of tampering, the formal model

for the general data integrity problem was developed. The model introduced the idea of vul-

nerable and invulnerable exposure of the preservative, showing that only tamper detection was

possible in the former, and the preservative exposure problem applied to the latter.

105

Discussion

After defining a model for MLDI and implementing Ashman’s idea in concrete algorithms,

the four constraints of MLDI were defined. These constraints were shown to be unsatisfiable

within the context of the problem model, due to a fundamental result concerning the ability

to preserve information in the presence of a powerful adversary. Based on this result, it was

determined that MLDI is an ineffective method for preserving data integrity.

One of the arguments for MLDI is that it can use the vulnerable preservative model with

the aid of some public-key cryptosystem or digital-signature scheme. However, this can only

solve the the detection problem, since the adversary can tamper with the data or preservative

in an arbitrary manner. A further argument is that in the invulnerable preservative model,

the preservative does not have to be smaller than the data, and it can be compressed, and

the compressed preservative will be smaller than the data. However, the relative size of the

data and preservative is defined in terms of the Kolmogorov complexity, so any compression is

irrelevant.

It is easy to entertain the idea that tamper location is possible if one assumes a less malicious

adversary where some, but not all, of the blocks are tampered with. However, MLDI is not

suitable for this, since the bounded-preimage hashing employed to provide tamper correction,

is the very thing that weakens the idea against solving location. Alternatively, each block might

be protected individually using a Signature-based IDS: Location is simply a matter of block-

by-block verification of the data. This common misconception stems from the assumption

that the data integrity problem is all about detection and that attacks are concerned with

producing counterfeits. However, if the defending party adopts a scheme to solve the location

problem, then the attacking party is not necessarily concerned with producing counterfeits to

attack the scheme, since any method that obstructs the defender’s goals constitutes an attack.

If Kerckhoffs’ Principle is assumed (i.e. the adversary knows the system), then it must be

assumed that the attacking party is “playing the same game” as the the defending party.

In conclusion, the formal model for the data integrity problem presented in Part II has been

used to prove that the problems of tamper location, correction, and prevention are not solvable

in a realistic situation, where the preservative is exposed with the data. Furthermore, the

results of Part III showed that even if the preservative is exposed in a tamper-free manner, it

is not possible to solve these problems in a realistic situation, due to the preservative exposure

problem. However, it is important to note that the results outlined in the list of contributions

are valid for the models defined within this thesis. In particular, the results are limited to the

context of non-distributed data integrity, but suggested future work described how the models

could be extended to incorporate the more realistic notion of distributed data integrity.

106

107

Appendix A

Function Properties

The following definitions are given here for the sake of readability, brevity, and completeness in

the main text.

Definition A.1 (Easy to Compute)

A function F is easy to compute if the algorithm operates in deterministic polynomial time.

Definition A.2 (Hard to Compute)

A function F is hard to compute if the algorithm operates in non-deterministic polynomial

time.

Definition A.3 (Compressive)

A function F is compressive if the (typically fixed-size) output F ·x is smaller than its input

x.

Definition A.4 (Non-compressive)

A function F is non-compressive if |F · m| ≥ |m|.

Definition A.5 (Preimage Resistant)

A function F is preimage resistant if given m, the algorithm for finding F ·m operates in

deterministic polynomial time, and given F ·m, the algorithm for finding m operates in

non-deterministic polynomial time.

Definition A.6 (Second Preimage Resistant)

A function F is second preimage resistant if given the pair (m1, F ·m1), the algorithm for

finding m2 such that m1 6= m2 and F · m1 = F · m2 operates in non-deterministic polyno-

mial time.

108

Definition A.7 (Collision Resistant)

A function F is collision resistant if the algorithm for finding any pair (m1,m2) such that

m1 6= m2 and F · m1 = F · m2 operates in non-deterministic polynomial time.

Definition A.8 (Collision Free)

A function F is collision free if 〈 ∀m1,m2 | m1 6= m2 : F · m1 6= F · m2 〉.

Definition A.9 (Self-invertible)

A function F is self-invertible if 〈 ∀m ∈ B
n | : F · F · m = m 〉.

Definition A.10 (Invertible)

A function F is invertible by G if 〈 ∀m | : G · F · m = m 〉.

Definition A.11 (Universal Validity)

A digital signature scheme comprising of a private sign function S
A

and a public validate

function VA has universal validity if 〈 ∀m | : VA · (m,S
A
· m) 〉.

Definition A.12 (Forgery Resistant)

A digital signature scheme comprising of a private sign function S
A

and a public vali-

date function VA is forgery resistant if, given the pair (m1, s) such that VA·(m1, s), the

algorithm for finding any pair (m2, s) such that m1 6= m2 and VA·(m2, s) operates in non-

deterministic polynomial time.

109

Appendix B

Algorithms

B.1 Preliminaries

Any constants are assumed to be publicly-known, but algorithm-independent values that are

assigned at the application level. For example, it might be decided that all schemes will use a

branching factor of 2 (i.e. k := 2).

Three primitive data structures are used: strings, sets and lists. A string is a simple bitstring

of with typical length and concatenation operations. When the .range(off, len) function

is applied to a string it returns the substring that starts at the given offset off (inclusive and

zero-indexed) and ends at the point when the substring is of the given length of characters len.

A set with elements x0, x1, . . . , xn−1 is denoted x0, x1, . . . , xn−1, and a list of the same elements

is denoted [x0, x1, . . . , xn−1]. The .add(...) function is used to add the given element to the

specified set or list and, in the case of a list, the element is added to the end. For example,

[x0, x1, . . . , xn−1].add(xn) is [x0, x1, . . . , xn]

The majority of the algorithms are based on tree-like data structures implemented as recur-

sive lists, such that a list’s elements might also be lists. Consider the two representations for

the encryption key given in Example 3.1:

x := [10011000101010111010000100101110]

y := [[10011000], [10101011], [10100001], [00101110]]

Both representations have the same data, but different structures. This is reflected by

the function .data(), which returns “10011000101010111010000100101110” in either case.

However, when an integer argument i is given, the function attempts to return the ith child

element (with 1 being the first element), but returns a null value if no such child element

exists. For example, x.data(1) returns the same as x.data(), but y.data(1) will return

“[10011000]”.

In contrast to the tree structure used for data whereby parent data is defined in terms of its

children, the hash tree data structure uses a different indexing system to encompass the fact

that a parent hash is not directly derived from its child hashes. The first element of a list used

to implement a hash tree is reserved for the current level hash, and followed by elements for its

children. For example, the corresponding hash tree for y, might be:

y := [0110, [11], [10], [01], [01]]

110

Full MLDI Algorithms

As such, the .hash() function would return “0110”, whereas .hash(1) would return “[11]”.

Note that whilst #(y) can be used to correctly determine the number of child data blocks in

block y, it will also count the root hash when applied to a hash tree.

The algorithm descriptions that appear in the main text use abstract functions (denoted

with an X suffix) to represent functions with definition-specific implementations. For example,

the XHash function denotes an abstract hash function, which might be implemented as H,
99K

H ,
↔

H, etc. depending on the required definition. Furthermore, an abstract function (the parent)

that is itself implemented in terms of an abstract function (the child), must provide a definition

for both parent and child. For example, in Algorithm 7.4 defining XResolve as Detect requires

that XHash is defined as H, since Detect is defined in terms of XHash.

B.2 Full MLDI Algorithms

Algorithm B.1 (Cartesian Product of n Sets)

The following algorithm is used in the resolution process for which hash collisions are

present. The algorithm constructs the set of parent possibilities from the set of k child

candidate sets.

Constants: k

begin CartesianProduct(candidates)
possibilities := candidates.data(1)

if |candidates| > 1 then

for i = 2 to k do
list := []

foreach p ^ possibilities do

foreach c ^ candidates.data(i) do

list.add(p ‖ c)

end

end

possibilities := list

end

return possibilities

end

111

Full MLDI Algorithms

Algorithm B.2 (Full Deterministic Preservation)

Given b, k and input data data, its corresponding hash tree is computed by the following

algorithm:

Constants: b, k

begin Preserve(data)
node := Autobound(data)

return PreserveNode(node)

end

begin PreserveNode(node)
list := []

list.add(
↔
H(node.data()))

for i = 1 to #(node) do
list.add(PreserveNode(node.data(i)))

end

return list

end

Algorithm B.3 (Full Deterministic Resolution)

From b and k, given exposed data data and its corresponding original preservative p, the

original data is computed by the following algorithm:

Constants: b, k

begin Resolve(data, p)
node := Autobound(data)

results := Detect(node, p)

if #(results) = 1 then
return results.data()

else
return null

end

end

begin Detect(node, p)

if
↔
H(node.data()) = p.hash() then

return node

else
return Correct(node, p)

end

end

begin Correct(node, p)

if #(p) = 1 then

possibilities := B
b

else
block := null

for i = 1 to k do

block := block‖Detect(node.data(i), p.hash(i))

end

possibilities := {block}

end

foreach possibility ^ possibilities do

if
↔
H(possibility) = p.hash() then

return [possibility]

end

end

end

112

Full MLDI Algorithms

Algorithm B.4 (Full Collision Resistant Preservation)

Given b, k and input data data, its corresponding hash tree is computed by the following

algorithm:

Constants: b, k

begin Preserve(data)
node := Autobound(data)

return PreserveNode(node)

end

begin PreserveNode(node)
list := []

list.add(H(node.data()))

for i = 1 to #(node) do
list.add(PreserveNode(node.data(i)))

end

return list

end

Algorithm B.5 (Full Collision Resistant Resolution)

From b and k, given exposed data data and its corresponding original preservative p, the

original data is computed by the following algorithm:

Constants: b, k

begin Resolve(data, p)
node := Autobound(data)

results := Detect(node, p)

if #(results) = 1 then
return results.data()

else
return null

end

end

begin Detect(node, p)

if H(node.data()) = p.hash() then
return node

else
return Correct(node, p)

end

end

begin Correct(node, p)

if #(p) = 1 then

possibilities := B
b

else
list := []

for i = 1 to k do
list.add(Detect(node.data(i), p.hash(i)))

end

possibilities := CartesianProduct(list)

end

candidates := []

foreach possibility ^ possibilities do

if H(possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates

end

113

Full MLDI Algorithms

Algorithm B.6 (Full Collision Prone Preservation)

Given b, k and input data data, its corresponding hash tree is computed by the following

algorithm:

Constants: b, k

begin Preserve(data)
node := Autobound(data)

return PreserveNode(node)

end

begin PreserveNode(node)
list := []

list.add(
99K

H (node.data()))

for i = 1 to #(node) do
list.add(PreserveNode(node.data(i)))

end

return list

end

Algorithm B.7 (Full Collision Prone Resolution)

From b and k, given exposed data data and its corresponding original preservative p, the

original data is computed by the following algorithm:

Constants: b, k

begin Resolve(data, p)
node := Autobound(data)

results := Correct(node, p)

if #(results) = 1 then
return results.data()

else
return null

end

end

begin Correct(node, p)

if #(p) = 1 then

possibilities := B
b

else
list := []

for i = 1 to k do
list.add(Correct(node.data(i), p.hash(i)))

end

possibilities := CartesianProduct(list)

end

candidates := []

foreach possibility ^ possibilities do

if H(possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates

end

114

Full MLDI Algorithms

Algorithm B.8 (Full Hybrid Probabilistic Preservation)

Given b and k, the Ashman hash tree for a leaf data block is produced by the following

algorithm:

Constants: b, k

begin Preserve(data)
node := Autobound(data)

return RootPreserveNode(node)

end

begin RootPreserveNode(node)
list := []

list.add(H(node.data()))

for i = 1 to #(node) do
list.add(PreserveNode(node.data(i)))

end

return list

end

begin PreserveNode(node)
list := []

list.add(
99K

H (node.data()))

for i = 1 to #(node) do
list.add(PreserveNode(node.data(i)))

end

return list

end

115

Full MLDI Algorithms

Algorithm B.9 (Full Ashman-style Resolution)

From b and k, given exposed data data and its corresponding original preservative p, the

original data is computed by the following algorithm:

Constants: b, k

begin Resolve(data, p)
node := Autobound(data)

results := RootDetect(node, p)

if #(results) = 1 then
return results.data()

else
return null

end

end

begin RootDetect(node, p)

if H(node.data()) = p.hash() then
return node

else
return RootCorrect(node, p)

end

end

begin RootCorrect(node, p)

if #(p) = 1 then

possibilities := B
b

else
list := []

for i = 1 to k do
list.add(Detect(node.data(i), p.hash(i)))

end

possibilities := CartesianProduct(list)

end

candidates := []

foreach possibility ^ possibilities do

if H(possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates

end

begin Detect(node, p)

if
99K

H (node.data()) = p.hash() then
return node

else
return Correct(node, p)

end

end

begin Correct(node, p)

if #(p) = 1 then

possibilities := B
b

else
list := []

for i = 1 to k do
list.add(Detect(node.data(i), p.hash(i)))

end

possibilities := CartesianProduct(list)

end

candidates := []

foreach possibility ^ possibilities do

if
99K

H (possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates

end

116

Full MLDI Algorithms

Algorithm B.10 (Full Hybrid Resolution)

Given exposed data and its corresponding original preservative, the following algorithm

returns the original data.

Constants: b, k

begin Resolve(data, p)
node := Autobound(data)

results := RootCorrect(node, p)

if #(results) = 1 then
return results.data()

else
return null

end

end

begin RootCorrect(node, p)

if #(p) = 1 then

possibilities := B
b

else
list := []

for i = 1 to k do
list.add(Correct(node.data(i), p.hash(i)))

end

possibilities := CartesianProduct(list)

end

candidates := []

foreach possibility ^ possibilities do

if H(possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates

end

begin Correct(node, p)

if #(p) = 1 then

possibilities := B
b

else
list := []

for i = 1 to k do
list.add(Correct(node.data(i), p.hash(i)))

end

possibilities := CartesianProduct(list)

end

candidates := []

foreach possibility ^ possibilities do

if
99K

H (possibility) = p.hash() then
candidates.add(possibility)

end

end

return candidates

end

117

References

[1] Ashman H. L. Hashes DO Grow on Trees - Document Integrity at Every Level. In

Sixth Australian World Wide Web Conference (AusWeb 2000), Southern Cross University,

Cairns, June 2000.

[2] Aspnes J., Feigenbaum J., Yampolskiy A. and Zhong S. Towards a theory of data entan-

glement. In Ninth European Symposium on Research in Computer Security, volume 3193,

pages 177–192, Berlin, September 2004. Springer-Verlag.

[3] Bakhtiari S., Safavi-Naini R. and Pieprzyk J. Cryptographic Hash Functions: A Survey.

Technical Report 95-09, Department of Computer Science, University of Wollongong, July

1995.

[4] Balusani R. M. S. Active certificates: A new paradigm in digital certificate management.

In 2002 International Conference on Parallel Processing Workshops (ICPPW’02), page 30,

2002.

[5] Black P. E. “perfect k-ary tree”, from Dictionary of Algorithms and DataStructures. NIST,

January 2006.

[6] Black P. E. and Algorithms and Theory of Computation Handbook C. “Kolmogorov com-

plexity”, from Dictionary of Algorithms and Data Structures. NIST, April 2006.

[7] Black P. E. and Algorithms and Theory of Computation Handbook C. “tree”, from Dic-

tionary of Algorithms and Data Structures. NIST, January 2006.

[8] Canetti R., Micciancio D. and Reingold O. Perfectly one-way probabilistic hash functions

(preliminary version). In STOC ’98: Proceedings of the thirtieth annual ACM symposium

on Theory of computing, pages 131–140, New York, NY, USA, 1998. ACM Press.

[9] Castro M. and Liskov B. Practical byzantine fault tolerance. In OSDI ’99: Proceedings

of the third symposium on Operating systems design and implementation, pages 173–186,

Berkeley, CA, USA, 1999. USENIX Association.

[10] Chor B., Goldwasser S., Micali S. and Awerbuch B. Verifiable secret sharing and achieving

simultaneity in the presence of faults. In Proceedings of the 26th IEEE Conference on the

Foundations of Computer Science (FOCS), pages 383–395, October 1985.

[11] Clarke I., Hong T. W., Miller S. G., Sandberg O. and Wiley B. Protecting free expression

online with freenet. IEEE Internet Computing, 6(1):40–49, 2002.

[12] Cohen B. Incentives build robustness in bittorrent. Technical report, bittorrent.org, 2003.

118

[13] Cormen T. H., Leiserson C. E., Rivest R. L. and Stein C. Introduction to Algorithms,

chapter 11.5: Perfect hashing, pages 245–249. MIT Press and McGraw-Hill, second edition,

2001.

[14] Deswarte Y., Blain L. and Fabre J.-C. Intrusion Tolerance in Distributed Computing

Systems. In IEEE Symposium on Security and Privacy, pages 110–121, 1991.

[15] Diffie W. and Hellman M. E. New Directions In Cryptography. IEEE Transactions on

Information Theory, IT-22(6):644–654, 1976.

[16] Dobbertin H. The Status of MD5 After a Recent Attack. Technical Report 2, RSA

Laboratories, Summer 1996.

[17] Drakoulis I. Analysis of tamper-tolerant hash functions. Master’s thesis, School of Com-

puter Science and Information Technology, University of Nottingham, UK, September

2006.

[18] Ellison C., Hall C., Milbert R. and Schneier B. Protecting secret keys with personal

entropy. Future Generation Computer Systems, 16(4):311–318, 2000.

[19] (FIPS) F. I. P. S. Secure Hash Standard (SHS). Technical Report 1, National Institute of

Standards and Technology (NIST), 1995.

[20] (FIPS) F. I. P. S. Secure Hash Standard (SHS). Technical Report 2, National Institute of

Standards and Technology (NIST), August 2002.

[21] Goldreich O., Micali S. and Wigderson A. Proofs that yield nothing but their validity or all

languages in np have zero-knowledge proof systems. Journal of the ACM, 38(3):690–728,

1991.

[22] Goldwasser S., Micali S. and Rivest R. L. A digital signature scheme secure against adaptive

chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[23] Gollmann D. Computer Security. Worldwide Series in Computer Science. John Wiley &

Sons Ltd, 1999.

[24] Gries D. and Schneider F. B. A logical approach to discrete math. Springer-Verlag New

York, Inc., New York, NY, USA, 1993.

[25] Grimaldi R. P. Discrete and Combinatorial Mathematics: An Applied Introduction. Addi-

son Wesley, fourth edition, December 1998.

[26] Hamming R. W. Error Detecting and Error Correcting Codes. The Bell System Technical

Journal, 26(2):147–160, April 1950.

[27] Knuth D. E. The Art of Computer Programming, volume 1. Fundamental Algorithms.

Addison-Wesley, second edition, 1998.

[28] Manuel B. Coin flipping by telephone a protocol for solving impossible problems. SIGACT

News, 15(1):23–27, 1983.

119

[29] Menezes A. J., van Oorschot P. C. and Vanstone S. A. Handbook of Applied Cryptography,

volume 6 of Discrete Mathematics and Its Applications. CRC Press, fifth printing (august

2001) edition, 1996.

[30] Merkle R. Secrecy, authentication, and public key systems. PhD thesis, Stanford University,

1979.

[31] Moss B. and Ashman H. Hash-Tree Anti-Tampering Schemes. In IEEE International Con-

ference on Information Technology and Applications (ICITA 2002), Bathurst, Australia,

November 2002.

[32] Perng G., Reiter M. K. and Wang C. Censorship Resistance Revisited. In et al. M. B.,

editor, Proceedings of Information Hiding Workshop (IH 2005), volume 3727 of Lecture

Notes in Computer Science, pages 62–76, Berlin Heidelberg, June 2005. Springer-Verlag.

[33] Pretzel O. Error-Correcting Codes and Finite Fields. Oxford Applied Mathematics and

Computing Science. Clarendon Press, August 1992.

[34] Reed I. S. and Solomon G. Polynomial codes over certain finite fields. SIAM Journal of

Applied Math., 8(2):300–304, June 1960.

[35] Rivest R. The MD5 Message-Digest Algorithm. IETF RFC 1321, MIT Laboratory for

Computer Science and RSA Data Security, Inc., April 1992.

[36] Roskos J. E., Welke S. R., Boone J. and Mayfield T. A taxonomy of integrity models,

implementations and mechanisms. In 13th NIST-NCSC National Computer Security Con-

ference, NCSC National Computer Security Conference, pages 526–540, Washington D.C.,

October 1990. NIST.

[37] Sandhu R. Terminology, Criteria and System Architectures for Data Integrity. In Ruthberg

Z. G. and Polk W. T., editors, Invitational Workshop on Data Integrity, volume 500 of

Special Publication, pages 1–14. National Institute of Standards and Technology NIST,

September 1989. Section A.4.

[38] Sandhu R. S. On Five Definitions of Data Integrity. In Keefe T. and Landwehr C., editors,

IFIP Workshop on Database Security - Status and Prospects, volume 7 of Database Security,

pages 257–267. North-Holland, 1993.

[39] Sedgewick R. Algorithms in Java, Parts 1-4. Addison-Wesley, third edition, July 2002.

[40] Stubblefield A. and Wallach D. S. Dagster: Censorship-resistant publishing without repli-

cation. Technical Report TR01-380, Rice University, 2001.

[41] Tichy W. F. RCS–A System for Version Control. Software-Practice & Experience,

15(7):637–654, 1985.

[42] Tsudik G. Message Authentication with One-Way Hash Functions. ACM Computer Com-

munication Review, 22(5):29–38, October 1992.

120

[43] Waldman M. and Mazières D. Tangler: A censorship-resistant publishing system based

on document entanglements. In 8th ACM Conference on Computer and Communications

Security, pages 126–135, 2001.

[44] Waldman M., Rubin A. D. and Cranor L. F. Publius: A robust, tamper-evident,

censorship-resistant, web publishing system. In 9th USENIX Security Symposium, 2000.

[45] Wang X., Feng D., Lai X. and Yu H. Collisions for Hash Functions MD4, MD5, HAVAL-128

and RIPEMD. Technical report, Cryptology ePrint Archive, 2004.

[46] Wang X., Yin Y. L. and Yu H. Advances in Cryptology CRYPTO 2005, volume 3621/2005

of Lecture Notes in Computer Science, chapter Finding Collisions in the Full SHA-1, pages

17–36. Springer Berlin / Heidelberg, Santa Barbara, California, USA, August 2005.

[47] Zimmermann P. R. The Official PGP User’s Guide. MIT Press, Cambridge, MA, USA,

1995.

121

Colophon

This thesis was typeset using LATEX2ε, edited using TEXnicCenter (v1 Beta 7.01), and compiled

using pdfeTEX distributed with MikTEX (v2.4). The figures were also typeset using LATEX2ε:

the majority of tree diagrams were produced using the xyling package; and the others with

the pstricks package aided by jPicEdt (v1.4pre4). BibTEX (v0.99c) was used to typeset the

references.

Layout of the main text is based around a customized version of the memoir class, using the

epigraph, lettrine, hyperref, ntheorem and algorithm2e packages.

The main body text is set in the Computer Modern font at 10pt, and the type1cm package

was used for the dropped capital at the start of each chapter. Other fonts include the AMS

Euler script font used to denote parties, and the JD font used for the dedication page.

122

	Front Matter
	Cover
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Propositions
	List of Definitions
	List of Algorithms
	List of Examples
	List of Notations

	I Background
	1 Introduction
	1.1 Aims and Objectives
	1.2 Scope
	1.3 Contributions
	1.4 Structure
	1.5 Notational Style
	Chapter Summary

	2 Related Work
	2.1 The Revision Control Problem
	2.2 The Fault Problem
	2.2.1 Error Detection
	2.2.2 Error Correction

	2.3 The Commitment Problem
	2.4 The Privacy Problem
	2.5 The Key Exchange Problem
	2.6 The Authentication Problem
	2.7 The Integrity Problem
	2.7.1 Tamper Detection
	2.7.2 Tamper Location
	2.7.3 Tamper Correction

	2.8 The Censorship Problem
	Chapter Summary

	II The Data Integrity Problem
	3 Fundamentals
	3.1 Participant Model
	3.2 Transaction Model
	3.3 Data Model
	3.4 Adversary Model
	3.5 Preservative Model
	3.6 Process Model
	Chapter Summary

	4 Taxonomy
	4.1 Behaviour Model
	4.1.1 Detection Behaviour
	4.1.2 Location Behaviour
	4.1.3 Correction Behaviour
	4.1.4 Prevention Behaviour

	4.2 Solvability Model
	4.2.1 Detection Solvability
	4.2.2 Location Solvability
	4.2.3 Correction Solvability
	4.2.4 Prevention Solvability

	4.3 Security Model
	Chapter Summary

	5 Results
	5.1 Taxonomy
	5.2 Solvability
	5.2.1 Vulnerable Preservative Model
	5.2.2 Invulnerable Preservative Model

	Chapter Summary

	III Multi-layered Document Integrity
	6 Fundamentals
	6.1 Deterministic Model
	6.1.1 Preservation
	6.1.2 Resolution

	Chapter Summary

	7 Realization
	7.1 Probabilistic Model
	7.1.1 Collision Resistant Model
	7.1.2 Collision Prone Model
	7.1.3 Hybrid Model

	7.2 Attack Models
	7.2.1 Overt Attacks
	7.2.2 Covert Attacks

	Chapter Summary

	8 Results
	8.1 Constraints
	8.1.1 Preservative Size
	8.1.2 Determinability
	8.1.3 Time Complexity
	8.1.4 Security

	8.2 Efficacy
	8.2.1 Preservative Size Versus Determinability
	8.2.2 Time Complexity
	8.2.3 Security

	Chapter Summary

	IV Conclusion
	9 Conclusions
	9.1 Summary
	9.2 Contributions
	9.3 Future Work
	9.3.1 Optimization of the Resolution Algorithm
	9.3.2 Bounded-preimage Hash Functions
	9.3.3 Distributive Data Integrity Model

	9.4 Discussion

	Back Matter
	A Function Properties
	B Algorithms
	B.1 Preliminaries
	B.2 Full MLDI Algorithms

	References
	Colophon

