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Abstract

Second order matrix equations arise in the description of real dynamical systems. Tra-

ditional modal control approaches utilise the eigenvectors of the undamped system to

diagonalise the system matrices. Any remaining off-diagonal terms in the modal damping

matrix are discarded. A regrettable automatic consequence of this action is the destruc-

tion of any notion of the skew-symmetry in the damping.

The methods presented in this thesis use the ‘Lancaster Augmented Matrices’ (LAMs)

allowing state space representations of the second order systems. ‘Structure preserving

transformations’ (SPTs) are used to manipulate the system matrices whilst preserving the

structure within the LAMs. Utilisation of the SPTs permits the diagonalisation of the

system mass, damping and stiffness matrices for non-classically damped systems. Thus

a modal control method is presented in this thesis which exploits this diagonalisation.

The method introduces independent modal control in which a separate modal controller

is designed in modal space for each individual mode or pair of modes.

The modal displacements and velocities for the diagonalised systems are extracted

from the physical quantities using first order SPT-based filters. Similarly the first order

filters are used to translate the modal force into the physical domain. Derivation of the

SPT-filters is presented together with a method by which one exploits the non-uniqueness

of the diagonalising filters such that initially unstable filters are stabilised.

In the context of active control of rotating machines, standard optimal controller

methods enable a trade-off to be made between (weighted) mean-square vibrations and

(weighted) mean-square control forces, or in the case of a machines controlled using mag-

netic bearings the currents injected into the magnetic bearings. One shortcoming of such

controllers for magnetic bearings is that no concern is devoted to the voltages required. In
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practice, the voltage available imposes a strict limitation on the maximum possible rate

of change of control force (force slew rate). This thesis presents a method which removes

the aforementioned existing shortcomings of traditional optimal control.

Case studies of realistic rotor systems are presented to illustrate the modal control and

control force rate penalisation methods. The system damping matrices of the case studies

contain skew-symmetric components due to gyroscopic forces typical of rotating machines.

The SPT-based modal control method is used to decouple the non-classically damped

equations of motion into n single degree of freedom systems. Optimal modal controllers

are designed independently in the modal space such that the modal state, modal forces

and modal force rates are weighted as required. The SPT-based modal control method

is shown to yield superior results to the conventional notion of independent modal space

control according to reasonable assessment.
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Chapter 1

Introduction

Many dynamic systems naturally present themselves in a second order form. Consider

the equations of motion typical of a second order system

MA q̈A(t) + DA q̇A(t) + KA qA(t) = SA uA(t) = fA(t) (1.1)

where MA,DA,KA ∈ R
n×n are the system mass, damping and stiffness matrices, re-

spectively, and qA(t) ∈ R
n the vector of physical coordinates. The vector uA(t) ∈ R

r

represents the short vector of applied forces with the matrix SA ∈ R
n×r representing a

selection matrix describing the locations of applied forces, and fA(t) ∈ R
n×r represents the

long vector of applied forces. The dot above qA(t) denotes differentiation with respect to

time. From here onwards the notation describing dependence on time has been removed.

The properties of the system determine the response of the system to external influ-

ence. There is an ever increasing call for lightweight dynamic structures with demanding

properties. It is now increasingly common for dynamic systems to substitute real damp-

ing with artificially induced damping of the system using velocity dependent forces [S3].

This results in little physical damping being present in a system. Systems may also be

artificially stiffened using displacement dependent forces.

Many methods exist to manipulate the physical properties of the system using con-

trol feedback such as proportional-integral-derivative action, pole allocation methods and

modal control. It is the intent for this thesis to extend the knowledge in the area of control

methodology available for application to rotating systems.
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1.1 Modal Control

The basis for the areas explored in this project arises directly from the structure

preserving transformations (SPTs) developed by Garvey et al. [G2, G3]. The study of

the SPTs requires that the second order equations of motion be presented in a state space

form

 0 KA

KA DA




 qA

q̇A


−


 KA 0

0 −MA




 q̇A

q̈A


 =


 0

fA


 (1.2)


 KA 0

0 −MA




 qA

q̇A


−


 −DA −MA

−MA 0




 q̇A

q̈A


 =


 fA

0


 (1.3)


 0 KA

KA DA




 qA

q̇A


−


 −DA −MA

−MA 0




 q̈A

...
qA


 =


 ḟA

fA


 (1.4)

Two points arise from these particular representations of the equations of motion:

1. There exists a set of transformations for non-defective systems allowing the diag-

onalisation of all three system matrices for generally damped systems [G1]. The

2n dimensional state space representations allows a greater degree of manipulation

than the n dimensional second order form thus one may fully transform all three sys-

tem matrices as desired whilst retaining the block structure within the state space

representation.

2. The specific form of equation (1.4) presents the equations of motion in a form which

yields access to the rate of change of control force.

The first point raises the possibility of decoupling the equations of motion and applying

modal control to a generally damped system. The second point highlights the potential to

weight the relative importance on the rate of change of control action against the system

response and applied forcing. The following sections elaborate on these points.

1.1 Modal Control

The SPTs allow the diagonalisation of the system matrices thus presenting the opportunity

to decouple the equations of motion for non-classically damped systems. This creates the

possibility to alter the properties of the system using modal control.
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1.1 Modal Control

Modal control is a generic term used to describe the technique of controlling individual

modes of vibration. This in effect represents n single degree of freedom second order

systems to control where n is the number of modelled modes or simply the dimension

of the system. Modal control preserves the mode shapes of the system thus tending to

conserve control energy whilst moving the controlled poles of the open loop system to

more desirable locations on the complex plane. The method presents itself intuitively

since there is a direct relationship with the modal properties of the system.

Traditional modal control for second order systems utilises the mass-normalised left

and right eigenvectors, ΦL and ΦR respectively, to diagonalise the system matrices. The

coordinate transformation qA = ΦR qB is applied and the system matrices are pre-

multiplied by the transpose of the left eigenvectors, ΦL
T .

From

ΦL
T MA ΦR q̈B + ΦL

T DA ΦR q̇B + ΦL
T KA ΦR qB = ΦL

T fA (1.5)

one has

I q̈B + Γ q̇B + Λ2 qB = ΦL
T fA (1.6)

with qB representing the modal coordinates of the system.

The new damping matrix Γ is assumed to be of diagonal form. Convention dictates

that one strips any remaining off-diagonal terms in Γ such that Γ is diagonal [G7]. How-

ever, the damping matrix typical of rotating machines contains skew-symmetry due to

gyroscopic effects. The result of ignoring these off-diagonal terms for rotating systems

has the consequence of ignoring the rotating nature of the system itself.

Meirovitch and Baruh introduced a first order modal control method using a state

space representation of system containing skew-symmetry in the damping matrix [M2].

The modal contributions are extracted from the physical quantities using modal filters

[M6] but the method does not derive an inverse modal filter to revert the modal quantities

back to the physical domain. A backward transformation is defined which allows only one

half of the modelled modes to be controlled. Meirovitch and Baruh proposed to control

only the lower-order modelled modes with the justification for this being that the higher
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1.2 Optimal Control

order modes are more difficult to excite hence do not contribute significantly to the system

response. The method introduced in this thesis removes this constraint by defining an

inverse filter making it possible to control all the modelled modes.

The first order modal control technique outlined by Meirovitch and Baruh expands

the n-dimensional control problem into a 2n-dimensional problem. Modern computers

have enough computational capacity such that worries concerning the expansion of the

control problem to 2n rather than an n-dimensional problem is not an issue for moderate

values of n. However, redefining the second order equations of motion into a first order

realisation has the disadvantage of destroying some properties such as symmetry and

definiteness of the matrices describing the motion [R1]. The form of the first order state

space model used by Meirovitch does not preserve any notion of the second order nature

of the system hence is insufficient to truly describe a second order system. Here, direct

second order techniques allow the retention of the natural form of dynamic systems arising

from Newtonian mechanics.

In spite of the existence of a large body of literature referring to modal control little

of it exploits the second order form of the equations of motion. Methods for dealing with

modal control for classically damped systems exist but these are subject to constraints

on the form of damping which are particularly unrealistic for rotating systems.

1.2 Optimal Control

Standard optimal control techniques allow a trade-off to be made between weighted system

state error and weighted control force. From equation (1.4) one may notice that the state

space representation contains rate of change of force in addition to the conventional force

and state. A limitation of traditional optimal control is that no emphasis is placed on

the rate of change of control force. Evidently control forces cannot be instantaneously

changed and indeed several applications exist where the rate at which control forces can

be modified is sufficiently important to warrant this work.

Consider magnetic bearings as a representative contemporary example of a control
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1.3 Proposed Work

actuator for a dynamic system [C3]. It is usual to operate these bearings with a bias

current such that the net force produced by the bearing in a direction is linearly propor-

tional to the control currents injected into the bearing over a wide range of currents. The

maximum force achievable by the bearing is dependent on the maximum control currents

which can be injected, and the bearing force is identified as control input fA. The role of

conventional optimal control in trying to keep fA small is obvious here. Large mean-square

currents would require thick conductors in the bearing and a higher current-rating in the

power-amplifiers.

The rate of change of force in a magnetic bearing is dependent on the rate of change of

current. All magnetic bearings have some inductance thus a finite rate of change of current

requires a finite voltage in addition to the voltage required to drive a steady current. In

many practical applications, the voltages associated with the rates of change of current

are many times greater than the steady voltages. If the controller requires the magnetic

bearing to produce very high rates of change of force then the power-amplifiers will require

large internal voltages and the insulation between coils in the magnetic bearing will have

to be large. Hence, for magnetic bearings, it is actually highly desirable to be able to

develop controllers which minimise some cost function that is determined by both control

input (mean square current) and rate of change of control input (mean square voltage).

1.3 Proposed Work

The proposed work for this PhD project may be introduced as two contributing areas:

1. Extension of conventional modal control techniques to include second order systems

with substantial gyroscopic terms in the damping matrix for rotating machines. This

will be achieved through the utilisation of the SPTs to simultaneously diagonalise

all three system matrices for generally damped systems.

2. Extension of the optimal control method to encompass penalising the rate of change

of force in addition to penalising the system state and force.
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1.4 Applications

Figure 1.1: Rolls-Royce Trent 1000 Aero Engine

1.4 Applications

It is desirable at this point to highlight the applications of this project. Although the

origins of this project stem from the investigation of the SPTs, this project is partly funded

by Rolls-Royce plc. As a consequence of the source of funding, this project is concerned

with tackling real issues encountered by Rolls-Royce in the design of new gas-turbine

engines amongst which aero engines figure very importantly.

An important criterion of every new aircraft engine designed is to reduce lifetime

cost to the customer. This can be achieved through numerous means such as increased

efficiency and reduced weight. For example, every additional 1 kilogram in weight of an

engine represents approximately £1, 000 increased annual running cost per aircraft for a

commercial airliner operating transatlantic journeys [R5]. For airline companies operating

many aircraft this can amount to a significant annual cost.

A significant proportion of the weight of an aircraft engine is due to the main rotors

which can be observed in the Rolls-Royce Trent 1000 engine in figure 1.1. As a consequence

there is a certain desirability to run the engine with increasingly slender rotors which

signify a reduction in the overall weight of the engine. Additional benefits of slender rotors

are increased efficiency and reduced running noise. This can be achieved through stiffness

gains made through progression in materials science but active control also presents the

opportunity to artificially increase the stiffness and damping properties of the rotor [I2].

One possibility of incorporating the necessary actuators into a system is through the
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1.5 Summary of Thesis Work

use of active electro-magnetic bearings which may perform the operation expected of a

bearing as well as providing control forces to the system [U1]. Although at their current

stage of evolution active electro-magnetic bearings cannot provide the force to weight ratio

of conventional bearings the potential use of them is undeniably appealing. As outlined

previously conventional optimal control provides inadequate controller design and hence

the justification of extending the optimal control method is obvious here.

1.5 Summary of Thesis Work

A short summary is now presented of the work in this thesis. The author believes that an

introduction to these findings will help the reader appreciate the intricacies of the work

to follow. The summary is divided into separate modal and optimal control sections.

1.5.1 Summary of Modal Control Work

Theoretical application of structure preserving transformation based modal control is

presented in this thesis. The SPT modal control method is not subjected to constraints on

the structure of the damping matrix as conventional second order modal control methods

are. This means that one may independently control modes of vibration for non-classically

damped systems. Numerical examples are provided to justify this assertion.

As stated, the SPT modal control method has its origins in utilising the SPTs to si-

multaneously diagonalise the second order system mass, damping and stiffness matrices.

Knowledge of the system eigenvalues are used to construct the diagonalised system matri-

ces and subsequently use the eigenvectors of of the original and diagonalised state space

systems to construct the diagonalising SPTs. Because the diagonalising SPTs are applied

to state space representations of the second order system one must use first order modal

filters to extract the modal co-ordinates from the physical co-ordinates. Conversely one

must use an inverse modal filter to revert the modal force into a physical force such that

true independent control of the system modes is realised.
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1.5 Summary of Thesis Work

The inverse modal filter used to transform the modal force into physical force results

in both the force and time derivative of the force being available. For practical application

of control methods one must implement the control system in discrete time. Thus one

has the opportunity to smooth the discrete force though interpolation using knowledge

of the rate of change of force. It is found that this may actually result in a more efficient

controller with a lower associated cost of implementing the control. This is an advantage

of the SPT based modal control over conventional modal control methods.

The modal filters are constructed directly from the definition of the diagonalising

SPTs. A necessary requirement is that these filters must be stable. One may exploit

the non-uniqueness of the SPTs using reflexive SPTs to attempt to stabilise the modal

filters. The reflexive SPTs represent a non-trivial transformations such that one may

map any diagonal system back onto itself. The reflexive SPTs are highly structured with

2n parameters available for manipulation. Application of the reflexive SPT results in a

new diagonalising SPT which may or may not provide stable filters. One can exploit this

possibility to try and move the filter eigenvalues into the stable half region by appropriately

selecting the construction parameters of the reflexive SPT.

Two methods are presented by which one may flow the eigenvalues of the filter towards

the stable half plane by determining the reflexive SPT construction parameters. The first

method is the direct method where one selects the change to be made to the eigenvalues,

and second method is the gradient method where one moves in the largest stable change

of direction of the eigenvalues. Numerical examples are used to demonstrate the two

methods and one finds that both have respective merits and disadvantages. The direct

solution enables one to specify the the change of eigenvalues and find the corresponding

reflexive parameters to give the change. The disadvantage is that one does not know to

what extent the eigenvalues may be altered to stay within a linear range whilst maximising

the change at each stage. The gradient method does not require one to specify the change

in eigenvalues and correspondingly the determination of the parameters is numerically

less intensive than the direct solution. However the gradient solution does not determine

the optimum direction in which to change the eigenvalues only the direction in which the

eigenvalues will become more stable.
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One unfortunate consequence of any modal control method is that one can only control

as many pairs of modes as actuators available. This is because each actuator is designated

to control one pair of modes. This means that the system is subjected to control spillover

in which the applied control forces may excite the uncontrolled and un-modelled modes.

It will be shown that control spillover cannot destabilise the system for the SPT modal

control method but may degrade the system performance adversely. Control spillover is

an unfortunate side effect of the conventional modal control method as well as the SPT

based method.

1.5.2 Summary of Optimal Control Work

As stated conventional optimal control may not provide adequate control in situations

where strict limitations are placed on the rate at which control forces may be applied.

This thesis first approaches this limitation of the optimal control problem by extending

the conventional first order optimal control problem to augment the system state with

the control force. This requires that one feeds back the rate of change of control force and

subsequently integrate it. One obtains a conventional first order state space system for

which the conventional optimal control method may be applied to the augmented system.

One may consequently penalise the rate of change of control force by augmenting the

state weighting matrix to include the weighting placed on the control force and use the

conventional weighting matrix used to weight the control force to weight the importance

of the rate of change of control force instead. Numerical example demonstrate that this

method successfully penalises the rate at which control forces are applied to the system.

A sub-optimal control method is presented by which one can approach the extended

optimal control problem using the second order matrices. The method requires that a non-

unique pseudo-inverse is used to generate the feedback controller matrices meaning that

the method presented does not provide the optimal solution. Despite the non-uniqueness

of the solution, numerical example show that the controller provide a means to penalise

the rate of change of control force in addition to the displacements, velocities and control

forces of the system. One does indeed manage to provide substantial improvement to
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limiting the time derivative of the control force.

The author also considers the possibility of incorporating the actuator dynamics into

the equations of motion. Through inclusion of the actuator dynamics one may apply the

conventional optimal control problem and place appropriate weighting on the components

which are directly responsible for imposing the physical limitations on the actuators. This

would make the need to extend the optimal control problem obsolete but one would require

exact knowledge of the actuator properties. It is shown that although this can be achieved

through great effort, a more convenient (and almost equivalent) method would be to use

one of the extended optimal control methods presented. This would negate the need to

accurately model the actuator dynamics in the equations of motion.

1.6 Outline of Thesis

The remaining chapters of the thesis may be summarised as follows:

◦ Chapter 2 discusses currently available literature with regards to the various sub-

tleties of this project.

◦ Chapter 3 introduces the structure preserving transformation as a basis for the

modal control method.

◦ Chapter 4 discusses the stability of SPT-based filters necessary for the implemen-

tation of SPT-based modal control.

◦ Chapter 5 introduces the extended optimal control problem which incorporates the

rate of change of force to the existing optimal control problem.

◦ Chapters 6 introduces a theoretical case study of a realistic rotor-turbine system.

◦ Chapter 7 presents the conclusions of the methods presented and proposed future

work.
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Chapter 2

Literature Review

The ambitions of this project are to extend the concept of modal control to rotating

machinery. This chapter deals with the currently available literature with regards to the

various subtleties of this project. The layout of this chapter may thus be summarised:

◦ Section 1 introduces the concept of rotating machine models and the system equa-

tions of motion.

◦ Section 2 introduces various types of co-ordinate transformations for matrix systems.

◦ Section 3 explores the ideas of model reduction applied to large scale systems with

many degrees of freedom.

◦ Section 4 introduces the structure preserving transformations which form the back-

bone of this project. They allow the idea of decoupling non-classically damped

system to be extended to the case of non-classically damped systems.

◦ Section 5 reviews the literature relevant to active control.

◦ Section 6 discusses the pole placement method for user defined assignment of system

eigenvalues.

◦ Section 7 introduces the optimal control method for optimal determination of the

controller design subject to user defined constraints.
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2.1 Rotating Machine Modelling

◦ Section 8 introduces modal control which is the ability to individually control the

modes of vibration making up the system physical response.

◦ Section 9 concludes the chapter.

2.1 Rotating Machine Modelling

The aim of this project is to control a dynamic rotor system using active control. Before

the controller is applied to a real system it is first appropriate to apply a controller to

a system in a theoretical setting. It therefore becomes necessary to build a valid model

on which to base the control. The model needs to reproduce accurately the dynamic

response of the real system over the frequency range of interest and also needs to be

versatile enough to model variations of the rotor dynamic properties.

For the purposes of this project it is assumed that the rotor system flexibility can

be modelled using Timoshenko beam elements which take into account transverse shear

effects and rotary inertia. This is important for higher modes where contributions from

shear and rotary inertia can be significant [R4]. Thus an appropriate method for modelling

the rotor system is by ‘finite element’ (FE) modelling. FE modelling also allows the

addition of discs to the rotor system. The discs inertias are added at the appropriate

shaft nodes to take account of their contribution to the system dynamics.

An FE model of the rotor system is derived by discretising the system into a finite

number of elements and describing the behaviour of each individual element. The cumu-

lative effects of these elements are then taken into consideration by combining them into

the system matrices. The books by Rao [R3] and Lalanne and Ferraris [L1] describe the

discretisation of the system into components for the shaft, mass unbalance, bearings and

discs. The model used for this project is based on the work by these authors. The results

for simple and cantilever beams, clamped-clamped beams and free-free beams compare

favourably with other analytical models as found in [B6].

The FE model results in second order equations of motion

MA q̈A(t) + (Dg + Ω Gg) q̇A(t) + KA qA(t) = SA uA(t) = fA(t) (2.1)
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2.1 Rotating Machine Modelling

with Ω denoting the shaft angular velocity in rad/s and fA(t) is used to denote the full

length vector of forces. The subscript A denotes the original system matrices.

The inclusion of the gyroscopic matrix Gg is due to the rotary inertia of the system.

As apparent from equation (2.1) the significance of the effect increases with shaft speed.

This has direct effect on the natural frequencies of the system which alter with shaft

speed. For the purposes of this chapter it is assumed that shaft speed Ω is constant.

Thus the damping matrix may be taken as fixed and the equations of motion simplified

to

MA q̈A(t) + DA q̇A(t) + KA qA(t) = fA(t) (2.2)

where DA := Dg + Ω Gg.

2.1.1 First Order System Representation

For many applications related to control and model reduction methods it is necessary to

transform the second order equations of motion into a first order so called linearised form

as defined by [G10]. Recognising the definition qA1(t) = qA(t) and qA2(t) = q̇A1(t) one

may form a first order state space representation of the equations of motion


 q̇A1(t)

q̇A2(t)


 =


 0 I

−M−1
A KA −M−1

A DA




 qA1(t)

qA2(t)


+


 0

M−1
A


 fA(t) (2.3)

yA(t) =
[

PA1 PA2

]

 qA1(t)

qA2(t)


 (2.4)

where yA(t) represents a vector of observed outputs comprising of displacement and ve-

locity components PA1,PA2 ∈ R
p×n. The underline notation is used to differentiate the

2n-dimensional quantities from the n-dimensional quantities. The first order state space

equation may be simplified to

q̇A(t) = AA qA(t) + BA fA(t) (2.5)

yA(t) = CA qA(t) (2.6)
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2.2 Lancaster Augmented Matrices

where the definitions are apparent. AA is referred to as the state space companion matrix,

BA is referred to as the state space input matrix and CA is referred to as the state space

output matrix.

The state space companion matrix, AA, is considered to be the right form of the

conventional state space form. One may also consider the left state space companion

matrix which is equally valid and has the form

AA, left =


 0 −KA M−1

A

I −DA M−1
A


 (2.7)

2.2 Lancaster Augmented Matrices

The state space form illustrated by equation (2.3) is the most common form utilised

when transforming systems of equations into first order form. However, there exists

many equally valid state space forms such as those obtained from using the ‘Lancaster

Augmented Matrices’ (LAMs).

For a second order system there exists three LAMs which can be produced by inspec-

tion to be,

A0 =


 −DA −MA

−MA 0


 , A1 =


 KA 0

0 −MA


 , A2 =


 0 KA

KA DA


 (2.8)

The LAMs allow the second order system to be represented in a reduced form as

defined by Garvey et al. [G5]

Ak qA(t) − Ak−1 q̇A(t) = fAk(t) k = 1, 2 (2.9)

where

qA(t) :=


 qA(t)

q̇A(t)


 , fA1(t) :=


 fA(t)

0


 , fA2(t) :=


 0

fA(t)


 (2.10)

The form of the equations of motion as illustrated by equation (2.9) represents a strict

linearisation of the second order system as defined by Gohberg et al. [G10]. The first

form of the state space equations of motion in equation (2.9) is also known as Duncan’s

form.
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2.3 Proportional and Classical Damping

2.3 Proportional and Classical Damping

The concept of proportional or classically damped systems is central to this project. The

notion of whether or not the system is proportionally or classically damped is important if

one wishes to diagonalise the system mass, damping and stiffness matrices. Simultaneous

diagonalisation of the three mass, damping and stiffness matrices is usually attempted

by pre- and post-multiplying the system matrices by the mass normalised left and right

eigenvectors of the undamped system. One now explains the definition of these two terms.

One considers the situation where the damping can be defined as a proportion of the

stiffness and/or mass matrices to be proportionally damped [R4]. This is simply where

only linear proportions of the stiffness and mass contribute to the definition of the system

damping as defined by

DA = αKA + βMA (2.11)

Proportional damping is often assumed in structural vibrations in simplify the analysis,

see for example [G7]. However this type of simplification is inappropriate for rotating

machines.

The definition of proportionally damped systems is very restrictive and there exists

many situations where one may simultaneously diagonalise the system matrices where the

definition outlined in equation (2.11) does not hold. This is when the system is classically

damped.

Classically damped systems may be fully diagonalised only when the necessary re-

quirement [C1]

KA M−1
A DA = DA M−1

A KA (2.12)

is satisfied. The satisfaction of this constraint means that the system is classically damped

although it is possible to quantify the extent to which the system is non-classically damped

as shown for example by Prells and Friswell [P1].

The author considers proportional damping to be a specific, restrictive subset of clas-

sically damped system and therefore proportional damping is not mentioned further. The

term classical damping is used to refer to the restriction on the structure of the damping
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matrix outlined in equation (2.12) and not with reference to the types of physical dampers

used in the system itself.

2.4 Co-ordinate Transformations

Given a governing set of equations one may transform the system using mathematical

techniques to obtain a more desirable form. Three possibilities exist of interest to this

project: similarity transformations, congruence transformations and linear transforma-

tions [S5].

A similarity transformation is used to post- and pre-multiply a matrix by a transfor-

mation matrix TA and its inverse T−1
A

A′ = T−1
A A TA (2.13)

Here the superscript ′ denotes a new matrix obtained through the transformation applied

and not an Hermitian transpose.

From equation (2.13), matrices A and A′ are said to be similar. In essence the

eigenvalues of the matrix are preserved such that

det (A − λI) = det (A′ − λI) ∀λ (2.14)

and all eigenvalues of the two matrices coincide. Similarity transformations can be applied

to a system of equations preserving both the eigenvalues of the matrices themselves and

the eigenvalues of the system as well. For example a similarity transformation can be

applied to the un-forced second order equations of motion by making the substitution

qA(t) = TB qB(t) and pre-multiplying by T−1
B

T−1
B MA TB q̈B(t) + T−1

B DA TB q̇B(t) + T−1
B KA TB qB(t) (2.15)

to give

MB q̈B(t) + DB q̇B(t) + KB qB(t) (2.16)
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2.4 Co-ordinate Transformations

Using Θ to denote the spectrum of the matrices, one finds that Θ(MA) = Θ(MB),

Θ(DA) = Θ(DB), Θ(KA) = Θ(KB) and Θ(KA,DA,MA) = Θ(KB,DB,MB). Exam-

ples of similarity transformations may be found in the balanced reduction method.

Congruence transformations are similar in application to the similarity transformations

except that the matrices are pre-multiplied by the transpose rather than the inverse of

the transformation matrix

A′′ = TT
C A TC (2.17)

Thus applying the congruence transformations to the un-forced second order equations

of motion as before one has

TT
C MA TC q̈C(t) + TT

C DA TC q̇C(t) + TT
C KA TC qC(t) (2.18)

to give

MC q̈C(t) + DC q̇C(t) + KC qC(t) (2.19)

One finds that the congruence transformations make no attempt to preserve the eigen-

values of the individual system matrices but preserve only the eigenvalues of the system it-

self. Thus retaining the definition of Θ to denote the spectrum one has Θ(MA) 6= Θ(MC),

Θ(DA) 6= Θ(DC), Θ(KA) 6= Θ(KC) but Θ(KA,DA,MA) = Θ(KC ,DC ,MC). One also

finds that the definiteness and symmetry, where appropriate, is retained through congru-

ence transformations. This is known as Sylvester’s law.

Linear transformations, by comparison, operate by pre- and post-multiplying the ma-

trices by a left and right independent transformation such that

A′′′ = TT
L A TR (2.20)

Again like the congruence transformations no attempt is made to preserve the eigenval-

ues of the individual matrices but instead only the eigenvalues of the system of equations.

One may apply the linear transformations by making the substitution qA(t) = TR qD

using the right transformation and pre-multiplying by the transpose of the left transfor-

mation TT
L.

TT
L MA TR q̈D(t) + TT

L DA TR q̇D(t) + TT
L KA TR qD(t) (2.21)
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to give

MD q̈D(t) + DD q̇D(t) + KD qD(t) (2.22)

2.5 Model Reduction

The dimension of the system generated by finite element modelling is generally fairly large.

This can create problems when dealing with control systems due to the computational

constraints imposed by computers. It is therefore evident that the dimension of the system

must be reduced in size, and at the same time the reduced model must retain the dynamic

frequency characteristics for the frequency range of interest. The user must therefore

determine the range of interest for the reduced model and the characteristics beyond

this range can be considered unimportant. An in-depth collection of papers concerning

modern techniques such as the second order balanced truncation method described in

section 2.5.4 and bench-mark tests to validate the methods may be found in reference

[B3].

2.5.1 Static Reduction Methods

The most common model reduction method is that proposed by Guyan [G12]. Guyan

reduction is the simplest method of model reduction reproducing the system flexibility

exactly at zero frequency. Guyan reduction is a process of reducing the mass and stiffness

matrices by eliminating the stiffness coordinates. Arranging the structural equations

fA(t) = KA qA(t) one may partitioned the stiffness matrix KA into master (m) and slave

(s) coordinates


 fAm(t)

fAs(t)


 =


 KAmm KAms

KAsm KAss




 qAm(t)

qAs(t)


 (2.23)

Setting fAs(t) = 0 one may see that qAs(t) = K−1
Ass KAsm qAm(t) from the lower half of

equation (2.23). Thus one may back substitute this result into equation (2.23) to find the
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2.5 Model Reduction

transformation 
 qAm(t)

qAs(t)


 =


 I

K−1
Ass KAsm


 qAm(t) (2.24)

Thus the slave coordinates are removed. For the case where fAs(t) 6= 0 one may make

appropriate substitution such that the master co-ordinates qAm(t) are in terms of fAm(t)

and fAs(t).

The effect of the Guyan reduction process is to decouple a single degree of freedom in

the structural equations. The decoupled degree of freedom is subsequently removed. One

may observe that the damping and inertial effects are ignored in this process. Redefining

the transformation in equation (2.24) to be

Tguy =


 I 0

K−1
Ass KAsm 1


 (2.25)

such that the degree of freedom which was previously discarded is retained one finds that

application of the transformation matrix to the stiffness matrix results in the structure

TT
guyKA Tguy =


 K̂A 0

0 k̂


 (2.26)

where k̂ is the decoupled degree of freedom which may be subsequently removed. The

same structure does not result in the mass or damping matrix in general.

One drawback of the conventional Guyan reduction method is that it is unclear which

co-ordinates to keep if the user requires to keep more ‘degrees of freedom’ (DOF) in the

system than the number of forces applied. This problem is identified by Henshell and

Ong [H1] who proposed a method to identify the master and slave co-ordinates. They

proposed to remove the co-ordinates with the lowest kinetic energy. Inertial energy for

each co-ordinate was calculated by dividing the diagonal entries of the stiffness and mass

matrices. They proposed to remove one degree of freedom at a time and repeat the process

until the desired dimension of the system is attained. This enables the process of model

reduction to become automated.
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The raw Guyan reduction method has two significant flaws. The first of them is

that currently no account is taken of the damping contributions in the reduction process.

Indeed no knowledge of the damping is used in the construction of the reduction trans-

formation meaning for example that rotating systems such as the ones of interest in this

project lose vital information having undergone the reduction process.

The second significant flaw posed by the Guyan reduction method is that the reduced

model is exact only at zero frequency. Indeed as presented in equation (2.1) the system

is speed dependent via the gyroscopic matrix. As already stated this project considers

rotating systems at a constant speed thus on is interested in the system operation at a

specific frequency which is typically a long way from zero frequency.

O’Callaghan [O1] developed the ‘improved reduction system’ (IRS) in which an extra

term is added to the static reduction model to make some allowance for the inertial terms.

Thus the reduction transformation Tirs is created which comprises of the static reduction

part (Tstatic), obtained from Guyan reduction, and an inertial term (Tinertial) to give

Tirs = Tstatic + Tinertial (2.27)

The original IRS method developed by O’Callaghan [O1] resulted in a stiffer stiffness

matrix than that obtained from using Guyan reduction. Friswell et al. [F2, F3] presented

an extension to the IRS method by proposing to use an iterative method in which a

corrective term is generated iteratively using the current best model of the reduced model.

If one continues the iterative process to a high degree of accuracy one starts to converge

the full reduction model given by SEREP defined in reference [O2]. This allows the

natural frequencies of the reduced model to converge to those of the full system.

The IRS methods still do not take into account damping but do allow the determina-

tion of a non-zero frequency window of operation where the accuracy is acceptable. This

represents an improvement on the original Guyan reduction model.

An alternative method to the Guyan reduction is that proposed by Craig and Bampton

[C5]. In the method presented they propose to decompose the system into boundary DOFs

and internal DOFs. The boundary DOFs are retained and the internal DOFs are discarded
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or a smaller subset retained. Utilising the subscript m notation for the retained (master)

co-ordinates and s for discarded (slave) co-ordinates the Craig-Bampton transformation

is found to be 
 qAm(t)

qAs(t)


 =


 I 0

Φext Φint


 qAm(t) (2.28)

where Φext is the Guyan reduction transformation defined previously (K−1
Ass KAsm) corre-

sponding to the external DOFs and Φint is the eigenvectors associated with the internal

DOFs retained. As may be observed from the transformation matrix if no internal DOFs

are retained then the Craig-Bampton method is identical to the Guyan reduction method.

The Craig-Bampton method mirrors the Guyan reduction closely but allows the system

response to model exactly over the reduced system degrees of freedom. Indeed the method

is accurate over a much larger range of frequencies than the Guyan reduction method and

is not accurate solely at zero frequency. The Craig-Bampton method still does not resolve

the issue associated with the damping.

2.5.2 System Deflation

Garvey et al. [G4] propose to use the ‘structure preserving transformations’ (SPTs) to de-

flate the system matrices. The second order matrices are contained within the ‘Lancaster

Augmented matrices’ (LAMs) (introduced in section 2.2) allowing two distinct state space

representations. The SPTs are real transformations used to transform the second order

system matrices contained within the LAMs whilst retaining the block structure of the

LAMs. The SPTs decouple a single mode from the system matrices at each stage such
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that the system matrices within the LAMs have the form

KB =




K̃A

0

...

0

0 · · · 0 k




, DB =




D̃A

0

...

0

0 · · · 0 d




MB =




M̃A

0

...

0

0 · · · 0 m




(2.29)

The decoupled single degree of freedom systems represented by k, d, m may be removed

from the transformed system matrices KB,DB,MB. Evidently the decoupled single de-

gree of freedom systems must correspond to a pair of eigenvalues of the system thus their

removal does not effect the eigenvalues of the retained subset. The second order ma-

trices are deflated by a dimension of one at each turn. This process may be repeated

as many times as required. The method can be applied to general second order system

without ignoring the damping and retaining the second order structure of the system

matrices. However it is currently unknown how to determine the transformation which

yields the second order matrix structure given in equation (2.29) without one first solving

the generalised eigenvalue problem.

2.5.3 First Order State Space Model Reduction

First order model reduction involves the transformation of the system into first order form

as illustrated by equation (2.5). Perhaps, due to the intuitive appeal and relative ease of

being applied to large order systems, the most widely utilised first order model reduction

method is the balanced state space method. Gawronski discusses the balanced reduction

method at length in the text [G7].

The balanced method works on the concept of determining how controllable or observ-

able each individual mode of vibration is and then removing the modes which influence
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the system response the least. Grammians are derived to explore the relative energies

required to control or observe a respective mode of vibration. The controllability (Pc)

and observability (Po) Grammians are defined to be [Z2]

Pc =

∫ ∞

0

exp
(
AA t

)
BA BA

T exp
(
AA

T t
)
dt (2.30)

Po =

∫ ∞

0

exp
(
AA

T t
)

CA
T CA exp

(
AA t

)
dt (2.31)

Equation (2.30) and (2.31) yield the solutions to the Lyaponuv equations

Ṗc = AA Pc + Pc AA
T + BA BA

T (2.32)

Ṗo = AA
T Po + Po AA + CA

T CA (2.33)

The solutions are invariant under linear transformation thus the similarity transfor-

mation Tb may be applied to the system

Tb
−1 AA Tb → Ab , Tb

−1 BA → Bb , CA Tb → Cb (2.34)

Through appropriate manipulation the transformation Tb can be chosen such that the

controllability and observability Grammians can be found equal and diagonal

Pcb = Pob = Γb (2.35)

This state is referred to as balanced and the new balanced Grammians Γb represent

the eigenvalues of the product of the original Grammians. For any one diagonal entry, the

higher this Grammian value, the less energy is required to control or observe the mode

in question hence the more controllable or observable a mode is. The less observable and

controllable modes represented by smaller Grammian values are typically discarded.

Two methods are available to reduce the balanced forms, balanced realisation and

balanced truncation methods [S4]. The balanced system may be compartmentalised into

retained (qbr(t)) and discarded degrees of freedom (qbd(t)).

 q̇br(t)

q̇bd(t)


 =


 Abrr Abrd

Abdr Abdd




 qbr(t)

qbd(t)


+


 Bbr

Bbd


 fb(t) (2.36)

yb(t) =
[

Cbr Cbd

]

 qbr(t)

qbd(t)


 (2.37)
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The balanced realisation method is accurate at zero frequencies and operates by cre-

ating a transformation between the discarded degrees of freedom and the retained degrees

of freedom. Knowledge of the discarded part of the system is retained within the reduced

model. The balanced truncation method is accurate at infinite frequency and operates by

simply ignoring the discarded degrees of freedom completely.

Two problems arise with the balanced reduction methods: 1.) The destruction of

the second order properties of the reduced system. 2.) It is not clear which Grammian

corresponds to which pairs of eigenvalues?

The first problem arises due to the balanced form of the state space equations. Whilst

the matrices corresponding to a second order system may be extracted from the balanced

state using the inverse transformation Tb
−1, once the model has been reduced in dimension

this relationship has been lost. It is not entirely obvious what order the reduced system

is [M8].

One possible method to overcome this problem is to re-establish the zeros and ones in

the appropriate locations in the companion and forcing matrices yielding the notion of a

second order system. The methods presented by Friswell et al. [F4], further simplified by

Houlston [H2] for the multi-input case, propose a definition of a transformation to yield

the appropriate form of the state space companion and forcing matrices. This allows the

extraction of the mass normalised second order matrices

I q̈C(t) + DC q̇C(t) + KC qC(t) = fC(t) (2.38)

yC(t) = PC1 qC(t) + PC2 q̇C(t) (2.39)

However one may note that the system output matrix yC(t) is still in terms of qC(t)

and q̇C(t) meaning that full second order form has not been achieved. Indeed one may

determine the structure of either the Ab and Bb matrices or the Ab and Cb matrices but

not all three due to constraints on the number of variables available for manipulation.

Thus one may not be able to re-establish the full second order form such that PC2 = 0.

The second problem associated with the method is that it is not entirely apparent

which Grammian applies to which pairs of eigenvalues. Work by Gawronski [G8] shows
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that the 2 × 2 block-diagonal entries of the balanced state space companion matrix Ab

are approximately equal to a specific modal form of the equations of motion defined by

q̇m = Am qm + Bm fm (2.40)

where Am is block-diagonal comprising of 2 × 2 matrices

Amj =


 −γj ωj ωj

−ωj −γj ωj


 , j = 1, 2, . . . , n (2.41)

ωj is the modal natural frequency and γj is the damping ratio of the specific modes of

interest. This form is referred to as the modal type 2 form as defined by Gawronski [G8].

Thus it is apparent that the individual modes may be paired from the balanced state with

their respective balanced controllability/observability Grammian.

2.5.4 Second Order Balanced Truncation

For the context of this project it is preferable to preserve the second order form of the

equations of motion. The first order reduction has several distinct disadvantages [M8]:

1.) The new positional coordinates are a combination of both the old velocities and

displacements thus obscuring physical intuition of the system; 2.) The procedure for

establishing the second order form from the first order form is computationally intensive;

3.) The first order form does not exploit any elements of the second order structure.

Meyer and Srinivasan [M8] proposed a method of calculating the controllability and

observability Grammians for second order systems where it is shown that the second order

system results in four Grammians rather than the two Grammians in the first order form.

These Grammians represent the controllability and observability for displacements and

velocities respectively. The Grammians are obtained from the first order response of the

system.

Chahlaoui et al. [C2] expanded on the work of Meyer and Srinivasan to balance the

second order system such that the four Grammians for the velocities and displacements are

equal and diagonal. This is obtained through balancing the individual pairs of Grammians
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to give balancing transformations for the displacements and velocities, Tb, disp and Tb, vel

respectively. Thus one may form the balancing transformation Tb,2nd

Tb, 2nd =


 Tb, disp 0

0 Tb, vel


 (2.42)

The second order equations of motion are represented in first order state space form and

the balancing transformation Tb,2nd is applied to yield the state space matrix containing

the balanced second order equations of motion within

(Tb, 2nd)
−1 AA Tb, 2nd =


 0 I

−Kb −Db


 (2.43)

(Tb, 2nd)
−1 BA =


 0

Sb


 (2.44)

CA Tb, 2nd =
[

Cb, disp Cb, vel

]
(2.45)

The second order structure of the state space matrix Ab is retained as shown in

equations (2.43) such that the balanced second order equations of motion can be extracted

accordingly.

The balanced truncation method can be applied directly to the balanced second order

equations as outlined. Chahlaoui et al. state in the conclusions of their paper [C2]

that it is not necessarily known whether or not the reduced model will always be stable

when utilising the second order balanced truncation. This contrasts with the first order

reduction method which always guarantees stability for the reduced order system. Indeed

Gawronski and Williams not only proves the robustness of the first order reduction method

but shows that the first order balanced reduction method is near optimal [G6].

2.6 Structure Preserving Transformations

The structure preserving transformation (SPTs) developed by Garvey et al. [G2, G3] are

a set of transformations representing a bijective mapping between one linear system and

another of the same Jordan form. For the context of this project all the eigenvalues are
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assumed to occur distinctly thus reference to the SPTs retaining the Jordan form of the

system is somewhat excessive. Although this is a property of the SPTs from here onwards

one refers to the SPTs retaining the same set of distinct eigenvalues.

A more mathematically precise name for the SPTs would perhaps be structure pre-

serving equivalences but for the context of this project the SPT label is retained. The

SPTs consist of left and right transformation matrices TL,TR ∈ R
2n×2n respectively, such

that they may be used to pre- and post-multiply the original ‘Lancaster Augmented Ma-

trices’ (LAMs) introduced in section 2.2 to yield a new set of LAMs corresponding to a

new system whilst preserving the structure within the LAMs themselves. This allows the

definition

TL
T Ak TR = Bk , k = 0, 1, 2 (2.46)

The effect of a SPT is to transform the state space equations obtained from (2.9) for

the original system into the form


 KB 0

0 −MB




 qB1(t)

qB2(t)


−


 −DB −MB

−MB 0




 q̇B1(t)

q̇B2(t)


 = TL

T


 fA(t)

0


 (2.47)


 0 KB

KB DB




 qB1(t)

qB2(t)


−


 KB 0

0 −MB




 q̇B1(t)

q̇B2(t)


 = TL

T


 0

fA(t)


 (2.48)

One may directly extract the new system matrices MB,DB,KB from the new set of

LAMs Bk (k = 0, 1, 2). However one may observe that the lower half of the state vector

qB is no longer the derivative of the top half, qB2(t) 6= q̇B1(t) and that the structure of

the forcing vector in general is not preserved.

The SPTs have the advantage of being able to transform the coordinates of a system as

desired whilst being able to preserve the order of the structure being transformed. Indeed

the SPTs exist for systems of any order and are not restricted to second order equations.

It is equally possible to change a system of order l into another system of order m where

l 6= m which shares identical eigenvalues. These notions are further discussed in later

subsections.
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2.6.1 Higher Order Systems

As stated the SPTs are not limited to second order systems and one may use the SPTs

to transform any order system. Consider the lth order system

(
τ l Al + τ l−1 Al−1 + τ l−2 Al−2 + · · · + τ 0 A0

)
qA(τ) = fA(τ) (2.49)

The operator τ ≡ d
dt

is used to denote derivative with respect to time and the matrices

Ak represent the system matrices.

There exist (l + 1) LAMs for an lth order system which one again denotes Ak where

k = 0, 1, · · · , l. For higher order cases it is not possible to identify the structure of the

LAMs easily as for the second order case. Correspondingly one uses the definition from

[P3] such that

Ak = A0 (CRA)k , k = 1, 2, · · · , l (2.50)

Here CRA defines the right companion matrix defined by Gohberg et al. [G10] to be

CRA =




0 I 0 · · · 0

0 0 I · · · I

...
...

0 0 0 · · · I

−A−1
l A0 −A−1

l A1 −A−1
l A2 · · · −A−1

l Al−1




(2.51)

and A0 defines the base LAM which has the upper triangular structure

A0 =




−A1 −A2 −A3 · · · −Al−1 −Al

−A2 −A3 −A4 · · · −Al 0

...
...

...
...

...

−Al−1 −Al 0 · · · 0 0

−Al 0 0 · · · 0 0




(2.52)

Evidently the above definition of the LAMs is only valid when Al is non-singular although

other definitions do exist which do not rely on this constraint.
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2.6 Structure Preserving Transformations

Equation (2.9) is still used to describe the system of equations although the definitions

of qA need to be expanded to encompass the increased dimension of the system. The

definition of fAk can be found to be from

fAk(t) = A0 (CRA)k−1 fA1(t) , k = 2, 3, · · · , l (2.53)

2.6.2 Order Changing Structure Preserving Transformations

As briefly mentioned the SPTs can be used to transform an lth order system into a mth

order system containing the same eigenvalues where l 6= m. Defining the lth order system

given in equation (2.49) one may change this to an mth order system which is defined to

be
(
τm Bm + τm−1 Bm−1 + τm−2 Bm−2 + · · ·+ τ 0 B0

)
qB(τ) = fB(τ) (2.54)

Again τ ≡ d
dt

is used here to act as an operator for derivative with respect to time.

The necessary question now arises as to how to calculate the order changing SPTs.

Prells [P4] introduced the Krylov structure of the right SPT to be

TR =




XA

XA CRA

XA CRA
2

...

XA CRA
m−1




−1

(2.55)

CRA denotes the right companion matrix given in equation (2.51) of the original system

defined by equation (2.49). The matrix XA may be chosen to be any real arbitrary matrix

for which the inverse shown in equation (2.55) is permitted.

By constructing the right transformation matrix TR one may form the right companion

matrix of the mth system such that

CRB = TR
−1 CRA TR (2.56)

Assuming that the new system is monic (Bm = I) one may directly extract the matrices

Bk (k = 0, 1, · · · , m−1) from CRB to form the base LAM B0 for the transformed system.
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2.6 Structure Preserving Transformations

One may define TL to be [P4]

TL =
[

YA CRB YA

]T
B0

T (2.57)

where

YA = TR
−1


 0

−M−1
A


 (2.58)

Thus the LAMs Ak corresponding to the second order system can be converted to the

mth order system through the standard transformation given by equation (2.46).

Numerical Example 2.1

For the purpose of this numerical example one has an un-forced arbitrary 4 degree of

freedom second order system with positive-definite matrices

MA =




164 82 158 150

82 95 106 126

158 106 227 220

150 126 220 242




,DA =




15 8 18 6

−8 6 11 2

−18 −11 23 6

−6 −2 −6 4




(2.59)

KA =




171 111 134 153

111 94 116 109

134 116 155 139

153 109 139 145




The dimension and order of the given system permit two possible higher order changes

to either order 4th or 8th order.

Consider the 4th order conversion first with arbitrary XA matrix to be

XA =


 61 31 18 25 51 54 34 31

7 61 62 59 46 94 40 41


 (2.60)
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2.6 Structure Preserving Transformations

Correspondingly applying the SPS one extracts the 4th matrices to be

B0 =


 10.862 −20.586

4.0833 −8.7217


 , B1 =


 28.721 −27.16

14.732 −12.415




B2 =


 −17.11 −14.921

−8.1046 −7.1338


 , B3 =


 −3.0679 −1.4562

−1.4705 −0.69865




(2.61)

yielding the 4th order system

τ 4 I + τ 3 B3 + τ 2 B2 + τ B1 + B0 (2.62)

Consider now the 8th order system. One defines matrix XA to be

XA =
[

29 39 50 72 31 11 44 47

]
(2.63)

This definition of XA permits a non-singular TR and correspondingly yields the charac-

teristic polynomial

τ 8+0.0021171τ 7+0.096314τ 6+0.66267τ 5+2.072τ 4+5.5908τ 3+4.574τ 2+5.6257τ+2.1407

(2.64)

This numerical example has demonstrated how to change the second order system into

another system of higher order whilst retaining the same eigenvalues.

2.6.3 Structure Preserving Similarities

The family of structural transformations may be further expanded to encompass the

‘Structure Preserving Similarities’ (SPSs). The SPSs are a set of non-unique similarity

transformations which transform the original state space system defined by equation (2.5)

into a new state space system whilst retaining the appropriate structure in the right com-

panion matrix CRA. The origin of the SPSs become clearer when one redefines equation

(2.9) to be

q̇A(t) = −(Ak−1)
−1 Ak qA(t) + (Ak−1)

−1 fAk(t) k = 1, 2 (2.65)

31



2.6 Structure Preserving Transformations

The result −(Ak−1)
−1 Ak and (Ak−1)

−1 fAk(t) gives identical composition to the CRA

(≡ AA) and BA matrices defined in equation (2.5).

If one applies the SPTs to equation (2.65) then it becomes apparent that this is

equivalent to pre- and post-multiplying the state space CRA (≡ AA) and BA matrices

given in equation (2.5).

(
TR

−1 (Ak−1)
−1 TL

−T
) (

TL
T Ak TR

)
= TR

−1 (Ak−1)
−1 Ak TR (2.66)

≡ TR
−1 CRA TR (2.67)

Thus the origin of the SPSs becomes apparent and one may transform the state space

companion matrix CRA to the transformed companion matrix CRB.

The notion of the SPSs introduced above utilises only the right companion matrix

form as defined by Gohberg [G10]. There also exists a left companion matrix of the form

CLA =




0 0 0 · · · 0 −A0 A−1
l

I 0 0 · · · 0 −A1 A−1
l

0 I 0 · · · 0 −A2 A−1
l

...
...

...
...

...

0 0 0 · · · I −Al−1 A−1
l




(2.68)

The left transformation matrix TL can be used as an SPS to the left companion matrix

CLB = TL
T CLA TL

−T (2.69)

For a specific example of the applications of the SPSs see [H2].

2.6.4 Diagonalising Transformations

It was stated in section 2.3 that only classically or proportionally damped second order

systems maybe diagonalised using the eigenvectors of the undamped system. For the

situation where this constraint is not satisfied one may utilise the SPTs to diagonalise the

system matrices by transforming the second order system matrices into state space form.
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2.6 Structure Preserving Transformations

The SPTs enable all non-defective [F5] systems to be diagonalised [G1] without the ne-

cessity of fulfilling constraint (2.12). The left and right diagonalising SPT transformations

also yield the diagonalising SPSs for the left and right companion matrices respectively.

For classically damped systems the SPTs may become simply block-diagonal containing

the eigenvectors although it is possible to have a diagonalising SPT for classically damped

systems which is fully populated.

The conventional diagonalising transformation for systems satisfying (2.12) is accepted

to represent the undamped physical modes of the system [G7]. Thus one may ask the

question as to what the SPT diagonalised system matrices represent for non-proportionally

damped systems? The diagonalised system matrices relate directly to the eigenvalues of

the system and thus contain the necessary information to describe the system response

fully. The diagonalised system may be thought of as a special modal representation of

the damped modes of the system and although the modes have no physical accepted

meaning they do comprise of physically-meaningful data. The SPTs do not require that

the eigenvalues of the system occur only in conjugate pairs thus real eigenvalue pairs may

be paired together as is appropriate. The mass-normalised diagonal matrices KB,DB,MB

have the relationship to the eigenvalues Λa with Λb representing the grouped pairs

MB = I , DB = −(Λa + Λb) , KB = Λa Λb (2.70)

The derivation of this result is found in appendix B and is analogous to that found by

Datta et al. [D1] for a symmetric definite system.

Thus the SPT diagonalised system matrices are referred to as a modal form of equa-

tions.

Numerical Example 2.2

Consider the second order system matrices

MA =




1 0 0

0 1 0

0 0 1


 , DA =




4.2 6.8 6.9

−6.8 13.6 11

−6.9 −11 11.4


 , KA =




116 92 76

92 137 139

76 139 197




(2.71)
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2.6 Structure Preserving Transformations

The skew-symmetry in the damping matrix ensures that the system is non-classically

damped thus it cannot be diagonalised using the mass-normalised eigenvectors of the

undamped system. One finds the eigenvalue pairs of the system to be

Λa Λb

-7.3989 + 23.091i -7.3989 - 23.091i

-3.1042 + 7.2936i -3.1042 - 7.2936i

-1.5190 -6.6747

Utilising equation (2.70) one finds the diagonal system matrices

MB = diag




1

1

1


 , DB = diag




8.1937

6.2085

14.798


 , KB = diag




10.139

62.832

587.93


 (2.72)

Thus one may form the LAMs for the original and diagonalised systems. Following the

diagonalising process outlined in Chapter 3 one may form the diagonalising SPTs

TL =




−0.67282 −0.8854 0.0021283 −0.19728 −0.033503 0.026871

1.1181 0.30609 −0.72329 0.28719 −0.0044738 0.008126

−0.47817 0.13576 −0.76367 −0.10162 0.03399 −0.018322

2.0002 2.1051 −15.798 0.94359 −0.6774 −0.3955

−2.9119 0.2811 −4.7775 −1.2351 0.33387 −0.84354

1.0303 −2.1357 10.772 0.35444 −0.075272 −0.49254




(2.73)

TR =




−0.294 −0.67768 −0.45789 −0.05125 0.036303 −0.011506

1.0742 0.064154 −0.66684 0.2583 0.023218 −0.010055

−0.85762 −0.20633 −0.50495 −0.24817 −0.11798 0.020922

0.51962 −2.281 6.7645 0.12592 −0.90307 −0.28763

−2.6189 −1.4588 5.9115 −1.0422 −0.079992 −0.51806

2.5162 7.4128 −12.3 1.1758 0.52613 −0.81454




(2.74)
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2.7 Control Methods

2.7 Control Methods

Control is a generic term for the process of using some means to alter the characteristics of

a system. The characteristics may be altered in two conceivable ways. The first is through

passive modification by addition of physical mass, damping or stiffness to the system

and the second is through active control in which one may add artificial mass, damping

and stiffness via actuators applying forces proportional to acceleration, velocity and/or

displacement. The passive option requires permanent change to the physical system which

will not allow for perturbations and changes in system parameters. The active control is

traditionally more versatile allowing the control to be altered fairly simply. Mottershead

and Ram [M10] provide a useful analysis of the two methods and the concept of structural

vibrations in general.

Active control may be broken down into two broad approaches, open loop and closed

loop control. Open loop control implies altering the system somehow with knowledge of

only the current input and no knowledge of the current system state. This compares with

closed loop control which has access to at least some of the current state of the system and

thus has the potential to adapt to unforeseen circumstances. This project is concerned

only with closed loop control and as such open loop control is not discussed further.

For the context of this project the notion of closed loop control is specified to mean

altering the dynamic characteristics of a physical system utilising the knowledge of the

current physical state of the system to allow the construction of a feedback force. The

first order system introduced in equation (2.5)

q̇A(t) = AA qA(t) + BA fA(t) (2.75)

may be subjected to a feedback force proportional to the system state. This is represented

pictorially in figure 2.1 where G represents the feedback gains matrix to determine the

feedback force.

The methods considered in this project to determine the control of the feedback system

fall into two general categories. The first category is concerned only with moving the

unstable poles of a system thus paying no attention to the mode shapes of the system and
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the second category is concerned with moving the poles whilst preserving the mode shapes

of the system. These methods represent pole placement and modal control techniques

respectively. A subset of control problems exists within these methods such as optimal

control which allow the quantification of the cost of moving the respective poles of the

system.

The requirement for stabilising control is to move all the real components of the system

poles into the left half of the complex plane [D4]. This is illustrated by considering the

un-forced response of a linear system to an arbitrary initial condition qA(0)

qA(t) = ΦR exp (Λ t) ΦR
−1 qA(0) (2.76)

where Λ represents a diagonal matrix containing the system complex poles, ΦR contains

the eigenvectors corresponding to Λ [D4].

Any diagonal entries in Λ having a positive real part will not permit the decay of the

system state to zero as time advances. If there exists positive real parts on the diagonal

matrix Λ then the response of the system qA(t) will increase even if the initial conditions

are zero due to inevitable disturbance.

When one transforms the second order system into a first order form as illustrated

by equation (2.3) one solves the general eigenvalue problem to find the system eigenval-

ues. However the second order equations of motion require the solution of the quadratic

eigenvalue problem which has been shown to yield different solutions to the generalised

problem [T1]. This creates a disparity between the notion of stability defined by the eigen-

values. Necessary and sufficient conditions for system stability of a first order system are

readily available [M7]. Diwekar and Yedavalli [D3] extend the necessary and sufficient

conditions for the stability of second order matrix systems under various loading types

such as conservative and non-conservative forces.

The concept of the system decaying to zero state leads to the question about whether or

not it is possible to control a given system thus giving rise to the notion of controllability.

Controllability is defined as the ability to achieve any arbitrary required state in a finite

time from any initial starting point. This may be more simply defined as whether or not
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it is possible to place a pole of a system at any arbitrary location on the complex plane

[F6]. This definition may be expanded more formally such that if matrix Ccon is full rank

then the system is controllable.

Ccon =
[

BA AA BA AA
2 BA · · · AA

2n−1 BA

]
(2.77)

One may think of the system being controllable if one is able to excite all the modes of

vibration using the available force inputs.

The concept of controllability presented here is depicted as merely as yes or no. This

pays no attention as to the degree of uncontrollability of a system. For uncontrollable

systems one may not be able to arbitrarily place a pole of a system but the regions of un-

controllability on the complex plane may not overlap with the desired locations where one

wishes to place the pole. Thus one may only desire to move the poles of the system within

the regions on the complex plane which are fully controllable. This essentially means that

one may not be able to control all modes of vibration but often one does not require to

control all modes of vibration. Often the higher order modes are left uncontrolled and

are considered not to have a significant influence on the system performance. Thus the

concept of the controllability Grammians introduced (see section 2.5.3) for the balanced

representation of the state space system are more useful for quantifying how controllable

or uncontrollable an individual pole is.

Parallel to the notion of controllability, observability of a system is defined based on

whether every mode of vibration of a system may be observed. One formal criterion for

a system to be a observable is for the matrix Cobs to be full rank where

Cobs =
[

CA CA AA CA AA
2 · · · CA AA

2n−1
]T

(2.78)

Once again this definition of observability is merely yes or no. The observability Grammi-

ans already introduced are a more useful means of quantifying the required observability

as one does not always wish to observe the contributions of all the modes.

At this point it is necessary to elaborate why closed loop active control is so essential.

The addition of active control to a system allows the introduction of artificial stiffness and
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damping. This has particular importance in space and aeronautical applications where the

cost associated with operations is highly dependent on system weight. Applied physical

damping in these applications is very costly due to the excessive weight associated with

physical dampers [S3]. By contrast many lightweight smart materials are emerging which

enable active control to change their physical properties allowing the addition of damping

to the system for a fraction of the weight [I2].

Another example of the potential of active control is the development of self-levitating

electrical motors [K3]. These essentially act as electro-magnetic bearings and allow access

to apply forces to the rotor of a rotating machine so that vibrations in the machine can

be cut substantially.

It remains to discuss the main control techniques in detail.

2.8 Pole Placement

Pole placement is the process by which the eigenvalues (poles) of a closed-loop system are

moved to pre-determined locations [D4]. The closed loop poles are altered by utilising

a feedback force proportional to the state such that artificial stiffness and damping are

added to the system.

This concept can be defined more thoroughly through mathematical representation.

Recalling the first order state space form from equation (2.5)

q̇A(t) = AA qA(t) + BA fA(t) (2.79)

For linear systems not subjected to external excitation the applied feedback force

is traditionally proportional to the state through the relationship fA(t) = −G qA(t).

Substituting this relationship into the first order equations of motion yields the result

q̇A(t) =
(
AA − BA G

)
qA(t) = Acon qA(t) (2.80)

Thus the response of the system is now determined by the eigenvalues of closed loop matrix

Acon rather than AA. Through appropriate calculation of the feedback gains matrix G
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2.8 Pole Placement

one may arbitrarily place the eigenvalues of a fully controllable system where desired.

Examples of pole placement methods may be found in references [K1], [M9] and [N1].

The pole placement method like most other control methods requires full state feed-

back. Full state feedback requires knowledge of all system states which is not realistic

in many applications. Statistical means of reforming the unobserved states can be made

using methods such as Kalman filters [B8] which provide estimates of the system state.

Obviously these estimates are not exact and will introduce uncertainty into the system.

The pole placement method has two distinct disadvantages: 1.) There is no apprecia-

tion of the cost of moving the poles to their locations; 2.) The eigenvectors of the original

system are destroyed.

Point one may be addressed by using a cost function to quantify the cost of moving

a pole to its location. Typically the cost takes into account the response of the system

and the control effort applied. One may use the same cost function to successive control

designs to quantify which gives the most desirable result.

The second point associated with pole placement is rather more subjective. Pole

placement methods make no attempt to preserve the eigenvectors of the controlled system

thus intuition regarding the physical modes is lost. Preservation of the eigenvectors forms

the basis of modal control which is discussed in section 2.9.

Pole placement does offer the possibility of moving a pole to coincide with a zero

[M10]. This has the effect of eliminating a resonance of a system in at least one output

from that system. This may prove to be more cost effective solution for poles which

are reluctant to move towards more stable regions although this does depend on how

controllable the particular pole to be moved is. However pole-zero cancellation is very

sensitive to external excitation but perhaps more importantly an unstable system with

the unstable poles eliminated using zeros is still unstable.

For single input systems pole placement may achieve arbitrary placement of the poles

for a controllable system from a theoretical point of view. However there arise many

practical problems [R2] such as sensitivity to perturbations and unrealistic magnitude

of control forces. The multi-input case allows more choice over the way the poles are
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moved to a location, and hence the control may be more robust and control forces may

be reduced in magnitude than for the single input case.

2.8.1 Placement of Poles for Second Order Systems

The conventional method as already outlined involves casting the second order equations

of motion into first order state space form. This has the effect of increasing the dimension

of the required system as well as destroying symmetry and definiteness of the system ma-

trices. Kim et al. [K5] proposed a method to assign the poles of a system whilst retaining

the second order nature of the system through the use of the Sylvester’s equation. How-

ever the method requires the system to be classically damped such that the eigenvectors

of the undamped system diagonalise all three system matrices. This is not appropriate

for this project.

Ram and Elhay [R2] proposed a pole placement method for the second order system

which placed a required subset of poles whilst retaining the remaining original poles.

For the single-input case they determined the control gains to be

gk = −KA Φ h , gd = MA Φ Λ h (2.81)

where gk and gd are the proportional and derivative controller components respectively, h

is a vector defined by the eigenvalues of the open-loop system and the desired eigenvalues,

Φ is the matrix of eigenvectors and Λ is a diagonal matrix containing the eigenvalues on

the diagonal. Thus the single-input controller is applied

MA q̈A(t) + DA q̇A(t) + KA qA(t) = SA [ gk qA(t) + gd q̇A(t) ] (2.82)

where the number of actuator forces, r, is equal to 1 for this specific case.

For the multi-input case where r 6= 1 Ram and Elhay proposed to progressively move

the pole location by solving r single-input pole placement problems. Thus one may move

the pole to the desired location in r steps. This may be summarised by equation (2.83).

MA q̈A(t) + DA q̇A(t) + KA qA(t) =
r∑

i=1

SAi [ gki qA(t) + gdi q̇A(t) ] (2.83)

40



2.9 Optimal Control

The effect of progressively changing the pole location in r steps rather than all at

once is to reduce magnitude of the control forces and hence reduce the associated control

burden.

2.9 Optimal Control

To discuss optimal control properly, one must first elaborate on the definition of optimal.

In the context of this project optimal is defined as being the best possible cause of action

subject to user supplied definition of some cost function and user defined constraints. In

terms of optimal control this can be simplified further through the mathematical descrip-

tion [B8]

J(qA
∗, f∗A) ≤ J(qA

∗ + δqA, f∗A + δfA) ∀ δqA, δfA (2.84)

Here J is the result of a cost function and qA
∗, f∗A are the optimal state and force. The

δ represents a perturbation added to the optimal quantities. This equation simply states

that any arbitrary perturbation to the system parameters will result in a cost function

greater than or equal to the optimal cost.

As already stated optimal control finds the minimum cost of applying control when

the user defines the relative importance of the state (or state error) and applied forces

[Z2]. Many possible cost functions exist to define the optimal problem but for this project

one defines the cost function to be

J =

∫ ∞

0

qA(t)T
Q qA(t) + fA(t)T

R fA(t) dt (2.85)

where Q represents a positive semi-definite weighting matrix placed on the system state

qA(t) and R represents a positive definite weighting matrix placed on the control force

fA(t). This form of the quadratic cost is used by the ‘Linear Quadratic Regulator’ (LQR)

problem [B8].

The quadratic cost function illustrated in equation (2.85) has threefold implications:

◦ the positive and negative errors are weighted equally.
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◦ the larger errors are penalised more harshly than smaller errors.

◦ The integral penalises the more persistent error more harshly than shorter term

ones.

Optimal control has the direct benefit of quantifying the cost of moving the poles

to a particular location. This can simplify the trial and error approach often resulting

from pole placement. However it is often unclear how to select the optimal weighting

matrices Q and R. Gawronski [G7] presents tools for calculating the optimal control

gains, although the method is restricted to collocated sensors and actuators.

A distinct problem associated with optimal control is the requirement to find the

solution to the non-linear Riccati equation [B7]. For systems of large dimension this may

represent a serious numerical problem [M2]. However for the context of modal control in

this project, single degree of freedom systems obtained from the modal equations are of

concern. As shown by Meirovitch [M7], the decoupled equations of motion give rise to

closed form solutions to the Riccati equation. Indeed for second order single degree of

freedom systems the optimal feedback gain is found to be

Gopt =

[
−kj +

(
k2

j + Q11

) 1

2 , −dj +
(
d2

j + Q22 − 2 kj + 2
(
k2

j + Q11

) 1

2

) 1

2

]
(2.86)

where Q is the 2 × 2 diagonal state weighting matrix, R was set equal to 1 and the

second order single degree of freedom system is monic with stiffness k and damping d.

The derivation for this result may be found in the appendix A.

One particular difference between pole placement and optimal control is the method

by which each pole is relocated. Indeed, different pole placement methods yield different

costs for the same pole locations. Optimal control offers the optimal allocation of the

poles thus always beats or equals the pole placement methods in terms of cost for the

same pole locations. This conclusion is supported by Saif [S1] who developed a pole

placement method utilising the optimal control method. Saif proposed a method to

calculate the optimal control weighting matrices Q and R corresponding to user specified

pole locations. The weighting matrices are then utilised in the optimal control problem

to yield the optimal feedback gains matrix.
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For this specific project it is desired to control directly the second order system. It

would thus be beneficial to be able to calculate directly the optimal controller gains

without resorting to the first order state space form as the conventional optimal control

problem does. Ram and Inman [R1] achieve this for the single-input control problem. The

method utilises the Euler-Lagrange equations to develop a linear fourth-order differential

equation such that the minimisation of the cost function depends on second derivatives.

Zhang [Z1] extends Ram and Inman’s method to the multi-input system using a method

in which the complex eigenvectors of the second order Hamiltonian equations are used to

solve the optimal problem. Zhang finds that proportional and derivative controller gains,

Gk and Gd respectively, to be


 GT

k

GT
d


 =

1

2

[
ΦT Λ ΦT

1

]−1

ΓT R−1 (2.87)

The eigenvalues of the Hamiltonian matrix are symmetric about the real axis [B8] such

that half the roots are stable and half are unstable. Only the stable half are dealt with such

that one extracts Φ and Γ from the right eigenvectors of the second order Hamiltonian

matrix and Λ is a diagonal matrix containing the stable half the Hamiltonian eigenvalues.

The results from this method compare favourably with the first order results.

A notable feature of conventional optimal control problem is that no emphasis is

placed on the rate at which control forces may be applied. Control forces cannot be

instantaneously applied and indeed several applications exist where this can exert signif-

icant difficulties. One such example is electro-magnetic bearings. Houlston et al. [H3]

have addressed this problem using an approach to augment the system state to include

the force allowing the rate of change of force to be fed directly to the system and subse-

quently integrated. This allows the optimal problem to take account of the rate of change

of control force but does have the drawback that integration of the force is required and

the system has to be in first order form.

An alternative method of penalising the rate at which the control forces are applied

is the ‘model predicted control’ (MPC) method as outlined by Maciejowski [M1]. The

MPC method deals with the first order state space equations of motion in discrete time.
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2.9 Optimal Control

The MPC method determines the change in control force at each time step which is

subsequently added to the current control action at such that

fAd(k) = fAd(k − 1) + ∆fAd(k) (2.88)

where fAd(k) is the discrete time forcing vector, k is the index for the current time step

and k − 1 is the previous time step. As is apparent from equation (2.88) the new control

action at time sample k is the previous control action plus the calculated change in control

action where ∆ denotes change. Equation (2.88) may be combined with the discrete time

state space equations to form the augmented first order system

 qAd(k + 1)

fAd(k)


 =


 Ad Bd

0 I




 qAd(k)

fAd(k − 1)


+


 Bd

I


 ∆fAd(k) (2.89)

where qAd(k) is the 2n-dimensional discrete time state vector and Ad, Bd are the discrete

time state space companion and forcing matrices respectively.

The MPC method uses knowledge of the system dynamics and current state and

forcing values to create a future prediction of the system state at time k +N . This future

prediction can be used in a cost function in an attempt to determine the effect of the

control parameters on the future behaviour of the system. This process is repeated at

each time step and for the standard predictive control case one attempts to minimise the

cost function

JMPC =

N∑

k=0

qAd(k)T Q(k) qAd(k) + ∆fAd(k)T R(k) ∆fAd(k) (2.90)

The cost function in equation (2.90) is similar to the cost function given in equation

(2.85) for the LQR problem. Here the discrete state and force weighting matrices are

depicted as time dependent although one may fix the weighting matrices to be constant.

Cole et al. [C4] show that the MPC control method which minimises the cost function

(2.90) at each time step for a suitable value of N yields a comparable result to the conven-

tional infinite horizon LQR optimal control problem. Indeed the process of obtaining the

minimum to the cost function in equation (2.90) is similar to that used in dynamic pro-

gramming which is used to obtain optimal solutions to particular optimisation problems.

A detailed account of dynamic programming may be found in references [B4, B5].
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The predictive control method can be used to place physical limits on the rate of

change of control force. These can take the form of soft or hard constraints where soft

constraints allow the limit to be violated to a moderate degree and hard constraints

represent an absolute limit. Both soft and hard MPC controllers result in a non-linear

control action being applied to the system. Implementation of the limits placed on the

rate of change of forcing require that the controller gains are time invariant and calculated

at each time sample as a function of current state and force and predicted future state

and force.

The MPC was originally developed for process control where the time samples are very

slow. This raises the possibility of computational problems with systems requiring fast

time samples such as rotating machines although this may be overcome using a method

such as a lookup table. For relatively small dimensional systems requiring control or

controllers such as the single degree of freedom controllers associated with modal control,

significant computational problem will not arise.

2.10 Modal Control

The physical response of any linear second order system can be shown to comprise the

sum of a number of independent modal responses [G8]. One may relate the displacements

qA(t) to the modes of the system for free vibration through the relationship

qA(t) =

n∑

j=1

ΦRj exp (iλjt) , j = 1, 2, · · · , 2n (2.91)

where ΦRj is the jth right complex eigenvector corresponding to jth complex eigenvalue

λj and i =
√
−1.

For the specific case where the second order system is undamped one finds that the

eigenvectors in equation (2.91) are real. Correspondingly one finds that there are only n

distinct eigenvectors corresponding to n modes of vibration. However for the case when the

system is damped one finds that there are 2n distinct complex eigenvectors corresponding

to the 2n complex roots. One must accordingly group the 2n complex roots into mode-

pairs. Due to this pairing one finds that it is impossible to excite only one half of the
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mode pairs and that the mode-pairs must be excited jointly. Correspondingly for control

of damped systems one seeks to control sets of mode-pairs.

The relationship between the physical and modal properties of the system illustrated

in equation (2.91) raises the question as to whether or not an independent mode-pair itself

can be targeted. It transpires that it can and this is the essence of modal control.

Modal control is a particular type of control method in which the physical response of a

system is divided into mode-pairs associated with their corresponding natural frequencies.

A standard control approach is to move the natural frequencies and damping factors, or

poles as they are collectively known, into a stable region. The essence of modal control is

that since the eigenvectors of a system do not contribute to the asymptotic stability of a

system then any effort expended on altering them represents wasted effort. This idea is

supported by a study of conventional control versus modal control [M4].

The ambition of modal control is to design a controller that independently controls

each mode-pair without influencing any other modes. For modal control each actuator is

designated to control an individual mode-pair thus in general for second order modal con-

trol methods as many mode-pairs can be controlled independently as actuators available.

For the first order modal control methods only half as many modes can be controlled as

actuators available since the number of modes doubles due to representation in first order

state space form. This presents the possibility of control spillover in which the uncon-

trolled modes are excited by the control forces [B1]. This area is explored later in more

in section 2.10.3.

One finds that the modal transformations decouple the un-forced equations of motion.

This form is referred to as internally decoupled since the internal degrees of freedom when

not subjected to external excitation are entirely independent as may be observed from

equation (2.92)

mj q̈Bj + dj q̇Bj + kj qBj = 0 (2.92)

where mj , dj and kj correspond to the jth single degree of freedom (SDOF) system

matrices obtained from the diagonalised matrices MB, DB and KB, and qBj is the jth

modal co-ordinate.
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However when control forces are present one finds that in general the internally de-

coupled equations of motion are now coupled by the external control forces. As may be

observed from equation (2.93) the external forces cannot independently affect only one

SDOF system without necessarily affecting other co-ordinates.

mj q̈Bj + dj q̇Bj + kj qBj =

n∑

k=1

fBk (2.93)

This is referred to as externally coupled since the right-hand side of equation (2.93) couples

the internally decoupled system on the left hand side.

Modal control overcomes this problem by designing the control forces in the modal

space ensuring that the system equations of motion are completely decoupled both inter-

nally and externally. A process to convert the modal forces into the physical domain is

then utilised allowing the physical forces to be applied to the system. This is represented

pictorially in figure 2.2

Very little literature is available on modal control of systems containing gyroscopic

terms, see for example Meirovitch and Baruh [M2]. Lee and Chen [L3] proposed a method

to create a feedback force to counteract the gyroscopic forces such that conventional second

order modal control could be applied. This method seems counter-intuitive because the

gyroscopic forces may prove stabilising in regions of interest. Indeed in their paper Lee

and Chen state that if the stiffness matrix is positive definite and the damping matrix at

least positive semi-definite then the gyroscopic terms cannot destabilise the system but

can shift the eigenvalues in the complex plane. The method thus appears to yield little

in direct benefit other than to permit the use of the conventional modal control methods.

Sawicki and Genta [S2] proposed to use the modal data to transform the gyroscopic

system into decoupled ‘single degree of freedom’ (SDOF) systems. The method proposed

placing the second order system into the state space form illustrated in equation (2.3).

The modal data is manipulated to preserve the structure of the state space companion

matrix to yield the complex decoupled form

Am =


 0 I

−
(
Dm − i ωGm

)
−
(
Km − i ωCmr

)


 (2.94)
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2.10 Modal Control

where i =
√
−1, ω is the spin-speed and the matrices Dm, Gm, Km and Cmr represent the

real and imaginary components of the Sawicki and Genta’s modal damping and stiffness

matrices definitions.

As may be seen from equation (2.94) the SDOF systems are indeed decoupled but

result in a complex-valued form. The complex valued-form of the modal equations of

motion require complex controllers thus do not readily yield themselves to conventional

control methods. An additional constraint is placed on the value of the eigenvalues which

are assumed to occur in conjugate pairs. For systems such as highly damped systems or

systems with hydrodynamic bearings this assumption is invalid thus the method fails.

The vast majority of modal control literature is applicable to structural vibration

problems which are reviewed here.

2.10.1 First Order Modal Control

Meirovitch and Baruh introduced a first order modal control method using a state space

representation of system for non-classically damped systems [M2]. The first order rep-

resentation of the equations of motion seen in equation (2.5) may be transformed into

decoupled equations of motion by using the manipulated left and right eigenvectors, ΨL

and ΨR. The manipulated left and right eigenvectors , ΨL and ΨR, are formed from the

original left and right eigenvectors, ΦL and ΦR. The eigenvalues are assumed to occur

in n complex pairs such that there are n pairs of corresponding complex eigenvectors.

Appropriate ordering ensures that the original complex left and right eigenvectors have

the structure

ΦL =
[

R (ΦL1) ± I (ΦL1) R (ΦL2) ± I (ΦL2) · · · R (ΦLn) ± I (ΦLn)

]
(2.95)

ΦR =
[

R (ΦR1) ± I (ΦR1) R (ΦR2) ± I (ΦR2) · · · R (ΦRn) ± I (ΦRn)

]
(2.96)

Here R denotes the real components and I denotes the imaginary components.

One may realise only n columns of each of the eigenvectors in equations (2.95) and

(2.96) contain distinct information. Consequently Meirovitch and Baruh propose to utilise
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2.10 Modal Control

only half of the complex eigenvectors to form the manipulated left and right eigenvectors

ΨL and ΨR. One finds the manipulated eigenvectors to have the structure

ΨL =
[

R (ΨL1) I (ΨL1) R (ΨL2) I (ΨL2) · · · R (ΨLn) I (ΨLn)

]
(2.97)

ΨR =
[

R (ΨR1) I (ΨR1) R (ΨR2) I (ΨR2) · · · R (ΨRn) I (ΨRn)

]
(2.98)

such that they fulfil the necessary scaling

ΨL
T ΨR = I (2.99)

Using the co-ordinate transformation qA(t) = ΨR qB(t) and pre-multiplying the state

space equations of motion given in equation (2.5) by ΨL
T , one has

ΨL
T ΨR q̇B(t) = ΨL

T AA ΨR qB(t) + ΨL
T BA fA(t) (2.100)

to give

q̇B(t) = Λm qB(t) + W(t) (2.101)

where Λm is assumed to be block diagonal with 2 × 2 block entries Λmj defined by

Λmj =


 αj −βj

βj αj


 (2.102)

j = 1, 2, · · · , n

Here λj(1,2) = αj ± iβj represents the jth complex conjugate eigenvalue pair and n the

dimension of the second order system. An immediate observation may be seen that the

eigenvalues are assumed to exist in conjugate pairs. As already stated for some gyroscopic

systems and some systems with very high damping this is not the case. Thus for systems

with only pairs of eigenvalues consisting of only real values which are different then the

there are more than n distinct eigenvectors and the decoupling process outlined above

will fail.

The modal contributions are extracted from the physical quantities using modal filters

[M6] but the method does not derive an inverse modal filter to revert the modal quantities
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back to the physical domain. A backward transformation is defined which allows at most

only half of the modelled modes to be controlled as illustrated by equation (2.103).

fA(t) = MA

(
ΨL, lower

T
)†

W(t) (2.103)

where ΨL, lower represents the lower half of the manipulated left 2n-dimensional eigenvec-

tors ΨL and the symbol † defines the pseudo-inverse.

One finds that an inverse rather than a pseudo-inverse can be used in the backward

transformation if only half the modelled modes are controlled. Thus if only half the

modelled modes are available for control it was proposed to control the lower frequency

modelled modes and ignore the higher modes. This was justified through reasoning that

the higher frequency modes are more difficult to excite hence do not contribute signifi-

cantly to the system response [G8]. Indeed further support is given to this statement by

acknowledging that the accuracy of finite element models wanes as one departs from the

first few modes [L1]. This is again especially true for models reduced in dimension using

Guyan reduction [G12] or related methods since these guarantee accuracy only at zero

frequency.

An advantage of the first order modal control method is that a closed-form solution for

the optimal control problem for high order systems can be obtained. This offers massive

computational savings compared to traditional optimal control of the full 2n × 2n state

space models. This means that one has the opportunity to alter the controller gains real-

time to soften or harden the control action if required. For some systems altering the

gains real time can increase the effectiveness of the control action [P6], [K2].

For classically damped and undamped systems the use of one actuator to control

one mode is shown to result in robust and effective control [M3]. The effect of control

spillover in these problems is assumed to be non-destabilising due to not altering the

closed loop eigenvalues of the controlled system [M5]. However for control of generally

damped systems the first order method is shown by Lin and Chu [L4] to be potentially

unstable and the assumption that r actuators can control r modes of interest is invalid.

Thus the first order method is inappropriate for control of rotating systems.
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Gawronski [G8] showed a method of utilising the first order modal control in his

book which resulted in all modes accessible for control. Similar to Meirovitch he utilised

first order state space control but used the eigenvectors of the un-forced second order

equations of motion to ensure the decoupling of the modal states. The damping matrix

was assumed classically damped in that the un-forced eigenvectors would diagonalise the

damping matrix. However this method had the shortcoming that the damping matrix is

rarely classically damped resulting in off-diagonal coupling terms in the modal damping

matrix.

2.10.2 Second Order Modal Control

The second order IMSC technique stems from the paper [M6] in which the modal filters

are introduced in depth. The left and right mass-normalised eigenvectors, ΦL and ΦR

respectively, of the un-forced system are used to decouple the equations of motion. They

are utilised by making the substitution to the second order equations of motion qA(t) =

ΦR qB(t) and pre-multiplying by ΦT
L

ΦL
T MA ΦR q̈B(t) + ΦL

T DA ΦR q̇B(t) + ΦL
T KA ΦR qB(t) = ΦL

T fA(t) (2.104)

to yield monic system

I q̈B(t) + Γ q̇B(t) + Λ2 qB(t) = ΦL
T fA(t) (2.105)

here qB(t) represents the modal coordinates of the system.

The new damping matrix Γ is assumed diagonal with any remaining off-diagonal

terms in the modal damping matrix traditionally discarded [G7]. However, for rotating

systems involving substantial gyroscopic terms ignoring these terms is in effect ignoring

the gyroscopic terms themselves [S2].

Sawicki and Genta [S2] introduced a variation to the second order modal control

method in which second order systems containing gyroscopic terms in the damping ma-

trix are cast into first order state space form. The notion of the second order structure
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within the state space form is retained similar to that obtained using the structural pre-

serving equivalences already introduced. They proposed to use the modal data to decouple

the gyroscopic system as the second order IMSC technique does for classically damped

systems. However the decoupled equations of motion are left in complex-valued form

which destroys the real representation of the system thus requiring a complex controller.

The form of Sawicki and Genta’s decoupled system may be seen in equation (2.94).

2.10.3 Control Spillover

As already stated modal control techniques design the control forces independently in the

modal space before transforming the forces into the physical domain. Typically modal

control only allows as many modes to be controlled as there are actuators available. This

presents the problem of control spillover in which the un-modelled or residual (uncon-

trolled) modes are excited by the control forces. The concept is best illustrated by con-

sidering the right-hand side of the second order IMSC control method given by equation

(2.104).

 fBc(t)

fBr(t)


 =


 ΦL

T
cc ΦL

T
rc

ΦL
T
cr ΦL

T
rr




 fA(t)

0


 (2.106)

fB(t) is the modal force, fA(t) is the available physical force and ΦL represents the matrix

of left eigenvectors used to transform the system into the modal state. The c and r

subscripts denote controlled and residual portions respectively. One may see that for this

particular problem making the substitution

ΦL
−T = Z =


 Zcc Zcr

Zrc Zrr


 (2.107)

one has

 fA(t)

0


 =


 Zcc Zcr

Zrc Zrr




 fBc(t)

fBr(t)


 (2.108)

which yields the relationship between physical and modal forces to be

fA(t) = Zcc fBc(t) (2.109)
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However one may also see from equation (2.108) that the uncontrolled modal forces are

excited such that

fBr(t) = ΦL
T
cr fA(t) (2.110)

Thus for the second order IMSC method control spillover exists in the form illustrated by

the above equation. Meirovitch and Baruh [M5] showed that the control spillover forces

exciting the uncontrolled modes will not destabilise the system for classically damped

systems. Consider that the second order modal equations of motion are obtained as

illustrated in equation (2.105). The contributions of the controlled, residual (uncontrolled)

and un-modelled modes, denoted by subscripts c, r and u respectively, are partitioned

such that from equation (2.105) one has




(s2Ic + sΓc + Λc) 0 0

0 (s2Ir + sΓr + Λr) 0

0 0 (s2Iu + sΓu + Λu)







qc(s)

qr(s)

qu(s)


 =




fc

fr

fu




(2.111)

where s is the Laplace variable.

Simplifying the right hand side of equation (2.105) one may define

fc = BcFm (2.112)

fr = BrFm (2.113)

fu = BuFm (2.114)

where Fm is the modal controller defined to be

Fm = Gkqc + Gdq̇c (2.115)

Substituting equation (2.115) into equation (2.111) one obtains




(
s2Ic + s (Γc − BcGd) + (Λc − BcGk)

)
0 0

− (sBrGd + BrGk)
(
s2Ir + sΓr + Λr

)
0

− (sBuGd + BuGk) 0
(
s2Iu + sΓu + Λu

)







qc(s)

qr(s)

qu(s)


 = 0

(2.116)
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One may observe from equation (2.116) that the determinant of the system remains

unchanged thus the closed-loop poles of the uncontrolled and un-modelled modes remain

unchanged. Therefore one may conclude that control spillover for the conventional second

order IMSC cannot destabilise these modes.

Baz et al. [B1], exploit the possibility of sharing an actuator to control more than

one mode. Their proposed method does not eliminate control spillover but does seek to

control it. The method proposes to control the r modes with the highest energy resulting

in switching between modes as uncontrolled modes become excited and controlled mode

energy decreases. Indeed in reference [B2] it was demonstrated that the method could be

practically applied.

Fang et al. [F1] proposed a method of designing the controller gains such that the

modal control force is truly decoupled allowing the explicit control of r modes. The

method presented creates a transformation such that the modal controller couples the

modes in the modal domain but subsequent reversion to the physical domain using the

backward filter decouples the modes. Recalling that one has

fB(t) = ΦL
T fA(t) (2.117)

where ΦL is the matrix of left eigenvectors one wishes to design a decoupled modal

controller of the form

ΦL
T Gk =




gk1 0 · · · 0

0 gk2 · · · 0

0 0 · · · gkr

0 0 · · · 0

...
...

0 0 · · · 0




, ΦL
T Gd =




gd1 0 · · · 0

0 gd2 · · · 0

0 0 · · · gdr

0 0 · · · 0

...
...

0 0 · · · 0




(2.118)

Fang et al. make the definition

Gk = MA ΦR Fk and Gd = MA ΦR Fd (2.119)

Pre-multiplying equation (2.119) by ΦL
T one recognises that the mass-normalised eigen-

vectors yield the identity matrix and correspondingly one may conclude that the con-
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trollers gains having the form

Gk = MA ΦR




gk1 0 · · · 0

0 gk2 · · · 0

0 0 · · · gkr

0 0 · · · 0

...
...

0 0 · · · 0




, Gd = MA ΦR




gd1 0 · · · 0

0 gd2 · · · 0

0 0 · · · gdr

0 0 · · · 0

...
...

0 0 · · · 0




(2.120)

will yield diagonal controller matrices where gdi, gki are required modal controller gains.

However one may also question whether the modal controller is actually providing the

control action required because now part of the modal control action is used to eliminate

the contributions to non-controlled modes. This method does not prevent control spillover

in the un-modelled modes.

Perhaps a combination of the two methods proposed by Baz et al. and Fang et al.

would allow the complete control across all the modelled modes.

2.11 Conclusions

This chapter has reviewed related areas of interest to this project and highlighted some of

the pitfalls facing conventional techniques. This project attempts to address these pitfalls,

notably modal control of non-classically damped systems and eliminate the reliance on

first order linearisation for control techniques in which the second order notion of systems

is destroyed.
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2.11 Conclusions

Figure 2.1: Negative Feedback System

Figure 2.2: Modal Control Outline
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Chapter 3

Modal Control of Vibration in

Rotating Machines

Traditional control approaches, such as pole placement methods [K1], deal with the phys-

ical system in first order state space form. The ambitions of this project are to control

the physical system in second order form. Very little literature is available in regards

to direct second order control, see for example [D2]. Many obvious advantages over first

order control are available [M8]: 1.) Physical insight of the system is preserved. 2.)

Computational efficiency, since the dimension of the second order system is smaller than

that of the state space form. 3.) Symmetry and structure of the systems can be preserved

where desired.

Many structural and dynamic systems are described by the second order equations of

motion

MA q̈A(t) + DA q̇A(t) + KA qA(t) = SA uA(t) = fA(t) (3.1)

where MA,DA,KA ∈ R
n×n are the system mass, damping and stiffness matrices respec-

tively, qA(t) ∈ R
n is the vector of physical coordinates, SA ∈ R

n×r is a selection matrix

describing the locations of applied forces and uA(t) ∈ R
r is the vector of applied forces.

fA(t) ∈ R
n×r is used to denote the full vector of applied forces. For the sake of brevity here

it is assumed that forces are available at all coordinate locations (r = n). This constraint

is later removed.
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Modal control is a particular control method in which the physical response of a

system is divided into mode-pairs associated with corresponding natural frequencies. A

standard control approach is to move the system eigenvalues into a stable region. The

essence of modal control is that since the eigenvectors of a system do not contribute to

the asymptotic stability of a system then any effort expended on altering them represents

wasted effort [M7]. More detail on the modal control method may be found in section

2.10.

Meirovitch and Baruh introduced a first order modal control method using a state

space representation of system containing skew-symmetry in the damping matrix [M2].

The modal contributions are extracted from the physical quantities using modal filters

[M6] but the method does not derive an inverse modal filter to revert the modal quantities

back to the physical domain. A backward transformation is defined which allows only

one half of the modelled modes to be controlled. Meirovitch and Baruh proposed to

control only the lower order modelled modes with justification for this being that the

higher order modes are more difficult to excite hence do not contribute significantly to

the system response. The method proposed in this paper removes this constraint by

defining an inverse filter making it possible to control all the modelled modes.

Modern computers have enough computational capacity such that worries concerning

the expansion of the control problem to 2n rather than an n-dimensional problem is not an

issue for moderate values of n. However, redefining the second order equations of motion

into a first order realisation has the disadvantage of destroying some properties such as

symmetry and definiteness of the matrices describing the motion [R1]. Here, direct second

order techniques allow the retention of the natural form of dynamic systems arising from

Newtonian mechanics.

Traditional modal control for second order systems such as the ‘Independent Modal

Space Control’ (IMSC) method used by Baz et al. [B1] utilise the mass normalised left

and right eigenvectors, ΦL and ΦR, of the undamped system to diagonalise the system

matrices. Although the method outlined is developed for self-adjoint systems the same

method is applicable when this criterion is relaxed. The difference is that for the non-self-
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3.1 Structure Preserving Transformations

adjoint one uses distinct left and right eigenvectors of the undamped system to attempt the

diagonalisation process. For the self-adjoint case one finds that ΦL = ΦR. The coordinate

transformation qA(t) = ΦR qB(t) is applied and the system matrices pre-multiplied by

the transpose of the left eigenvectors, ΦL
T

From

ΦL
T MA ΦR q̈B + ΦL

T DA ΦR q̇B + ΦL
T KA ΦR qB = ΦL

T fA (3.2)

one assumes to have the diagonalised system matrices (for classical damping)

I q̈B + Γ q̇B + Λ2 qB = ΦL
T fA (3.3)

where qB(t) represents the modal coordinates of the system. For ease of reading the

notation defining the dependence on time has been removed.

The new damping matrix Γ is assumed diagonal with any remaining off-diagonal

terms in the modal damping matrix traditionally discarded [G7]. However, for rotating

systems involving substantial gyroscopic terms ignoring these terms is in effect ignoring

the gyroscopic terms themselves. Thus, it is proposed here to use the ‘Structure Preserving

Transformations’ (SPTs) developed by Garvey et al. [G2, G3] to diagonalise the second

order system matrices and decouple the system equations of motion without need to

discard any terms involved in the description of the system.

The purpose of this chapter is present a detailed derivation of the SPT based modal

control. One shows that general damped systems may be decoupled into equivalent single

degree of freedom systems and each system independently controlled. For the case where

one does not have sufficient actuators to control all the model modes it is shown that the

effects of control spillover are non-destabilising. Numerical examples are used throughout

to illustrate the methods.

3.1 Structure Preserving Transformations

The notion of the ‘Lancaster Augmented Matrices’ (LAMs) [G5] are now re-introduced

here from section 2.2. The LAMs are used such that the second order system may be
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3.1 Structure Preserving Transformations

represented in state space form. For initially symmetric second order systems the LAMs

permit two distinct symmetry-preserving linearisations. For a second order system there

exist three LAMs which can be produced by inspection to be,

A0 =


 −DA −MA

−MA 0


 , A1 =


 KA 0

0 −MA


 , A2 =


 0 KA

KA DA


 (3.4)

The underline used in the notation of the LAMs is adopted to differentiate the 2n-

dimensional matrices from the n dimensional matrices.

The LAMs allow the second order system to be represented in a reduced form

 KA 0

0 −MA




 qA1

qA2


−


 −DA −MA

−MA 0




 q̇A1

q̇A2


 =


 fA

0


 (3.5)


 0 KA

KA DA




 qA1

qA2


−


 KA 0

0 −MA




 q̇A1

q̇A2


 =


 0

fA


 (3.6)

where qA1 = qA and qA2 = q̇A1. Equations (3.5) and (3.6) may generalised to

Ak qA −Ak−1 q̇A = fAk (3.7)

k = 1, 2

A ‘Structure Preserving Transformation’ (SPT) is a coordinate transformation applied

to the LAMs representing a bijective mapping between linear systems. The specific nature

of the transformation allows the preservation of the appropriate structure within the

LAMs. The SPTs are defined by left and right 2n× 2n transformation matrices, TL and

TR respectively, through

TL
T Ak TR = Bk (3.8)

k = 0, 1, 2

The effect of applying an SPT is to transform equations (3.5) and (3.6) for the original

system into the form

 KB 0

0 −MB




 qB1

qB2


−


 −DB −MB

−MB 0




 q̇B1

q̇B2


 = TL

T


 fA

0


 (3.9)


 0 KB

KB DB




 qB1

qB2


−


 KB 0

0 −MB




 q̇B1

q̇B2


 = TL

T


 0

fA


 (3.10)
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3.2 Diagonalising Transformations

One may directly extract the new real system matrices MB,DB,KB from the new set of

LAMs Bk (k = 0, 1, 2). However the lower half of the state vector qB is no longer the

time derivative of the top half, qB2 6= q̇B1. This fact necessitates the introduction of the

SPT-modal filters which are presented in section 3.3.

The structure of the transformation matrices can be shown to have the following form

TL =


 FL − 1

2
GL DT

A −GL MT
A

GL KT
A FL + 1

2
GL DT

A



−1

(3.11)

TR =


 FR − 1

2
GR DA −GR MA

GR KA FR + 1
2
GR DA



−1

(3.12)

where FL,FR,GL,GR ∈ R
n×n are arbitrary pre-defined matrices subject to the necessary

constraint

FR GT
L + GR FT

L = 0 (3.13)

3.2 Diagonalising Transformations

The SPT is said to be diagonalising if matrices of the transformed system, MB,DB,KB,

are all diagonal. This diagonal system is not unique and equation (3.8) is not independent.

For systems where MA is invertible and where the transformation matrices are invertible,

any two of the equations [H4] are sufficient to ensure that the third is also satisfied. The

eigenvalues of the original system, KA,DA,MA, can be computed by solving the gener-

alised eigenvalue problem involving either A0,A1 or A1,A2 . Evidently, the eigenvalues

of the new system KB,DB,MB will be identical provided that TL,TR are both invertible.

It is now shown how to obtain diagonalising transformation matrices TL,TR from the

complex modal data such that KB,DB and MB are real and diagonal. A 4-step process

for calculating the diagonalising SPT is presented.

1. Calculate the left (ΦL) and right (ΦR) eigenvectors of reduced system

A1 − λA0
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3.3 Modal Filters

2. Calculate the n monic ‘single degree of freedom’ (SDOF) systems corresponding to

conjugate eigenvalue pairs, λj(1,2) = α ± iβ, found in part 1. For systems with real

pairs of roots the same method applies through appropriate pairing

dj = λj1 + λj2 , kj = λj1 λj2 , mj = 1 (3.14)

j = 1, · · · , n.

The derivation of this result may be found in appendix B and is analogous to that

found by Datta et al. [D1] for a symmetric definite system.

3. Knowing the new diagonal system matrices form the new LAMs B0 and B1 rep-

resenting the new diagonal system and calculate their corresponding left (ΨL) and

right (ΨR) eigenvectors.

4. Since the two reduced systems have identical eigenvalues, appropriate scaling of the

eigenvectors yields the following equality

ΦT
L A1 ΦR = Λ = ΨT

L B1 ΨR (3.15)

ΦT
L A0 ΦR = I = ΨT

L B0 ΨR (3.16)

where Λ is the diagonal matrix of corresponding eigenvalues and I is the identity

matrix. Thus one may recognise that to get from the original LAM to the new LAM

the following condition must be satisfied

(
ΨL

−T ΦL
T
)

Ak

(
ΦR ΨR

−1
)

= Bk (3.17)

thus TR = ΦR ΨR
−1 and TL = ΦL ΨL

−1.

It may be noted that the above process for finding the diagonalising SPT requires only

one eigenvalue solution problem. The eigenvectors of the diagonal LAMs, ΨL and ΨR,

have a sparse form such that their calculation is trivial.

3.3 Modal Filters

The premise of this chapter is to develop direct second order control of the equations of

motion. In order to fully utilise modal control one needs to extract the modal quantities
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3.3 Modal Filters

from the physical; this requires modal filters. The purpose of this section is to briefly

summarise the modal filters developed in chapter 4.

It has been shown that from the original equations of motion

MA q̈A + DA q̇A + KA qA = fA (3.18)

one may use the notion of the LAMs and diagonalising SPTs to find the new second order

equations of motion

MB q̈B + DB q̇B + KB qB = fB (3.19)

The vectors qB and fB are referred to as modal quantities since they comprise of physical

meaningful modal data. Thus the necessary question is how to extract the second order

modal contributions from the state space system. One may find the relationship between

the old (qA, fA) and the new coordinate sets (qB, fB) as

qB = U0 qA + U1 q̇A (3.20)

fB = V0 fA + V1 ḟA (3.21)

with definitions

[
VT

0 VT
1

]
=

[
I 0

]
TL (3.22)

[
U0 U1

]
=

[
I 0

]
TR

−1 (3.23)

The matrices V0,V1 and U0,U1 are the SPT filter matrices corresponding to the left and

right filters respectively.

This definition of the filters is based on [L2] and the full derivation may be found in

chapter 4. An alternative derivation of the filters may be found in appendix C. Equation

(3.20) is referred to as the right filter and equation (3.21) is referred to as the left filter.

One finds that the filters allow the any SPT (whether it is a diagonalising SPT or not)

to be interpreted in the Laplace frequency domain as follows [P2]

(V0 + sV1)
(
s2MA + sDA + KA

)
=
(
s2MB + sDB + KB

)
(U0 + sU1) (3.24)

63



3.3 Modal Filters

with s defining the Laplace variable and

det (V0 + sV1) = 0 ⇔ det (U0 + sU1) = 0 (3.25)

With knowledge of the physical accelerations one may additionally obtain the modal

velocities

q̇B = U0 q̇A + U1 q̈A (3.26)

One may find an equally valid definition of the SPT filters using the lower half of the

transformation matrices. Only the given definition of the filters is considered in this thesis

although all methods not presented herein are equally valid.

The filters used to extract the modal quantities are first order thus a necessary con-

straint is that the real parts of the eigenvalues of the left and right filters must be in the

stable region. Due to the definition of the filter the left and right filters contain the same

eigenvalues, thus V−1
1 V0 = U−1

1 U0 > 0 must be true for a stable filter.

One may appropriately point out at this juncture that the diagonalising SPT is non-

unique containing 2n independent parameters thus spanning a 2n-dimensional space. It is

possible to define a “reflexive” SPT SL,SR ∈ R
2n×2n for which maps the diagonal system

directly back onto itself such that

SL
T Bk SR = Bk (3.27)

k = 0, 1, 2

The non-uniqueness of the diagonalising SPT may be exploited to find a region in

which the SPT-based filters are stable. The space spanned by the modal filters is not a

linear vector (sub) space thus the search for a stable filter is not straight forward. When

utilising the reflexive SPTs, numerical experiments suggest that it is always possible to

find a stable filter. This remains to be proved formally but the author is content with the

results from the numerical trials.

The concept of reflexive SPTs is dealt with in more detail in chapter 4 in which a

technique is presented which progressively flows the filter eigenvalues into a more stable

region.
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3.4 True Independent Modal Control

3.4 True Independent Modal Control

To facilitate true independent modal control the modal equations of motion must be

decoupled both internally for the un-forced system and externally when control forces are

present [M7]. It has already been shown that the un-forced system may be decoupled

using the diagonalising SPTs. However one finds that the decoupled internal degrees of

freedom become coupled by the forcing parts.


s2m1 + s d1 + k1 0 · · · 0

0 s2m2 + s d2 + k2 · · · 0

...
. . .

0 s2mn + s dn + kn




qB = · · ·

· · · =




V0,11 + sV1,11 V0,12 + sV1,12 · · · V0,1r + sV1,1r

V0,21 + sV1,21 V0,22 + sV1,22 · · · V0,1r + sV1,2r

...
...

...

V0,n1 + sV1,n1 V0,n2 + sV1,n2 · · · V0,nr + sV1,nr




fA (3.28)

where s is the Laplace variable.

This means that to design a practical decoupled controller one must design the con-

troller in the modal space. The modal equations of motion can thus be defined

MB q̈B + DB q̇B + KB qB = fB (3.29)

with KB,DB,MB the diagonal modal system matrices and qB ∈ R
n the modal coordi-

nates.

Equation (3.29) represents n SDOF systems with each one corresponding to a pair of

modes of vibration. It is possible to use proportional-derivative control to affect directly

the modal stiffness and damping properties of these modes. A controller of this form is

introduced

fB = Gk qB + Gd q̇B (3.30)

Gk,Gd ∈ R
r×n represent the diagonal modal stiffness and damping gains matrices. Direct

addition to the modal damping and stiffness matrices represents direct pole placement

and has the advantage of being able to affect the poles of the system directly.
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3.5 Numerical Example 3.1

For modal control each actuator is designated to control an individual mode-pair thus

in general for second order modal control methods as many mode-pairs can be controlled

independently as actuators available. For conventional second order control the modal

force can be typically converted back into the physical domain fairly easily as illustrated

by Baz and Poh [B1]. For the SPT approach the left filter has already been defined and

from equation (3.21) one can see that the physical and modal forces are related by the

relationship

fB = V0 fA + V1 ḟA (3.31)

Rearrangement of equation (3.31) give the physical force in regards to the modal force

ḟA = V1
−1 (fB −V0 fA) (3.32)

Equation (3.32) constitutes a first order system. Consequently the real parts of the

eigenvalues of
(
V1

−1V0

)
must be positive to ensure stability of the filter. Stability ensures

that the response of the filter does not rapidly tend to infinity. The stability of the filter

is further discussed in chapter 4.

3.5 Numerical Example 3.1

At this point it is appropriate to use a numerical example to highlight the benefits of

the SPT-based method over the conventional second order modal control method which

assume classical damping. Thus, consider the deliberate non-classically damped second

order system with matrices

KA = diag




50

70

90

10




, DA = diag




11 −2 0 3

−2 16 5 −1

0 5 11 2

3 −1 2 14




, MA = diag




1

1

1

1




(3.33)

subjected to initial displacements qA(0) =
[

3 9 0 0
]T

and zero initial velocities.

Forces may be applied at all locations and all the physical displacements are available for

observation.
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3.5 Numerical Example 3.1

One finds the SPT-modal equations of motion to be

q̈B1 spt + 9.4823 q̇B1 spt + 47.478 qB1 spt = fB1 spt

q̈B2 spt + 7.4889 q̇B2 spt + 82.711 qB2 spt = fB2 spt

q̈B3 spt + 14.434 q̇B3 spt + 10.168 qB3 spt = fB3 spt

q̈B4 spt + 20.595 q̇B4 spt + 78.887 qB4 spt = fB4 spt

(3.34)

and the IMSC modal equations of motion to be

q̈B1 imsc + 14 q̇B1 imsc + 10 qB1 imsc = fB1 imsc

q̈B2 imsc + 11 q̇B2 imsc + 50 qB2 imsc = fB2 imsc

q̈B3 imsc + 16 q̇B3 imsc + 70 qB3 imsc = fB3 imsc

q̈B4 imsc + 11 q̇B4 imsc + 90 qB4 imsc = fB4 imsc

(3.35)

It is decided for illustrative purposes to remove the modal damping of the third mode-

pair, qB3 spt and qB3 imsc, and set the natural frequency of this mode-pair to 10 Hz. The

SPT method is compared directly with the conventional IMSC method and conclusions

drawn. For the respective methods one finds the modal controller matrices to be

fB3 spt = −14.434 q̇B3 spt + 3937.7 qB3 spt (3.36)

fB3 imsc = −16 q̇B3 imsc + 3877.8 qB3 imsc (3.37)

Figures 3.1 and 3.2 illustrate the physical and modal displacements of the system

when the SPT-modal controller is off and on respectively. As may be observed from the

comparison between the modal responses in figures 3.1 and 3.2 the third mode-pair is

successfully made undamped with a natural frequency of 10 Hz. The modes are com-

pletely decoupled and the controller only effects mode-pair 3 and leaves the remaining

modes unaltered. The physical effect of the controller may be observed from the physical

displacements illustrated in these figures and the obvious effect is to make the system

borderline stable, i.e. neither stable nor unstable.

Figures 3.3 and 3.4 illustrates the IMSC controller applied to the non-classically

damped system. As may be observed the third mode-pair is again made undamped
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3.6 Numerical Example 3.2: Rotor System

with a natural frequency of 10 Hz. However as may be observed the modal responses of

the other modes is also effected. This is due to the coupling in the damping matrix which

cannot be made diagonal using the undamped eigenvectors of the system. Thus the IMSC

method does not allow the decoupling of the system matrices.

This numerical example may be simple but it does illustrate the advantage of the

SPT method over the conventional IMSC method due to the fact that all three system

matrices may be decoupled regardless of the structure of the damping. One may also

observe that this results in different mode-shapes. The mode-shapes of the SPT method

no longer match the undamped mode-shapes of the system as the IMSC modes do. How-

ever the SPT-modes do represent physically meaningful quantities and this is observed

immediately in the physical response of the system in figure 3.2 when the SPT controller

is on.

3.6 Numerical Example 3.2: Rotor System

A finite element model of a rotor-disc system is considered with four degrees of freedom

at each node (2 translational, 2 torsional) and the limitation that r = n is now lifted.

The rotor-disc system is illustrated in Fig. 3.5.

The system is constructed from steel with Young’s modulus, E = 200 GPa and density

ρ = 7800 kg/m3. The model is split into 13 equal-length elements of 0.1m and the discs

have dimensions given in table 3.1.

The bearings at each end of the rotor system are deliberately anisotropic with stiffness

and damping properties given in table 3.2.

Control forces can be applied at node 8 in the x and y-directions and similarly the

displacements in the x-direction at this node are observed. For computational ease Guyan

reduction [G12] is used to reduce the model to 6 degrees of freedom. The system is

operated at 2,500 rpm and the uncontrolled response is illustrated in figure 3.6.

Modal control dictates that each actuator controls individual mode-pairs of vibration

resulting in the number of mode-pairs to be controlled the same as the number of actuators
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3.7 Control Spillover

available. The model allows for 2 mode-pairs to be controlled. It is decided to control the

first two mode-pairs of vibration since these dominate the system response.

The single degree of freedom systems corresponding to the first two mode-pairs in

modal space are

q̈B1 + 0.37850 q̇B1 + 1.4467 × 105 qB1 = fB1 (3.38)

q̈B2 + 0.32708 q̇B2 + 1.5772 × 105 qB2 = fB2 (3.39)

Optimal control is used to minimise the modal kinetic and potential energies such that

controller gains are

Gk =


 4.999913 0 0 · · · 0

0 4.999921 0 · · · 0


 (3.40)

Gd =


 4.1096 0 0 · · · 0

0 4.1570 0 · · · 0


 (3.41)

The response of the system with the controller on is illustrated in Fig. 3.7.

As expected the response of the system decays much faster than that for the uncon-

trolled system with the displacement converging to zero much more rapidly. This is due to

targeting the first two mode-pairs of vibration of the system which dominate the system

response. The modal control technique is indeed successfully applied to bring the system

under control.

3.7 Control Spillover

The SPT-based modal control method has been introduced with the restriction that the

forcing vector fA has been assumed to be a n-dimensional vector. This describes a system

in which actuators are available at all modelled locations and consequently all modelled

modes of vibration may be controlled. For practical reasons this is unrealistic for real

world situations due to restrictions on where actuators may be located.

An infinity of modes exists for any real structure although only a finite number are

ever modelled. As stated, usually only a subset of the modelled modes are controlled due
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3.7 Control Spillover

to restrictions on the number of actuators available for control. This raises the possibility

of control spillover in which the un-modelled and uncontrolled modes are excited by the

control forces. This phenomenon is introduced here for the SPT-based modal control

method.

Recalling the inverse filter from equation (3.32) one may separate the filter into con-

trolled, residual (uncontrolled) and un-modelled segments denoted by the subscripts c, r, u

respectively.




fBc

fBr

fBu


 =




V0cc + sV1cc V0cr + sV1cr V0cu + sV1cu

V0rc + sV1rc V0rr + sV1rr V0ru + sV1ru

V0uc + sV1uc V0ur + sV1ur V0uu + sV1uu







fc

fr

fu


 (3.42)

where s is the Laplace variable.

One must now realise the physical constraint fr = fu = 0 must necessarily be true such

that equation (3.42) becomes

fBc = V0cc fA + V1cc ḟA (3.43)

fBr = V0rc fA + V1rc ḟA (3.44)

fBu = V0uc fA + V1uc ḟA (3.45)

From equation (3.43) one now finds the physical force to be

ḟA = V−1
1cc ( fBc −V0cc fA ) (3.46)

From analysis of equations (3.44) and (3.45) one may observe that a relationship

exists between the physical force and the residual and un-modelled modal forces. Thus it

may be seen that the applied physical force generates modal forces applied to excite the

uncontrolled and un-modelled modes. This defines what the control spillover problem is.

Meirovitch and Baruh [M5] showed that control spillover for the conventional second

order modal control method does not cause instability in the un-modelled and uncontrolled

modes (see section 2.10.3). One may follow the same process for the SPT modal control

method to show that the effects of control spillover are non-destabilising for the closed

loop uncontrolled and un-modelled poles.
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Recalling that for the second order equations of motion one may decouple the equations

of motion using the diagonalising SPT-filters such that from

(V0 + s V1)
(
s2MA + s DA + KA

)
(U0 + s U1)

−1
qB(s) = (V0 + s V1) fA(s) (3.47)

one obtains the diagonalised system which may be compartmentalised into controlled,

residual and un-modelled components




(s2MBc + s DBc + KBc) 0 · · ·

0 (s2MBr + s DBr + KBr) · · ·

0 0 · · ·

· · · 0

· · · 0

· · · (s2MBu + s DBu + KBu)







qBc

qBr

qBu


 =




fBc

fBr

fBu


 (3.48)

A modal controller is used that is dependent only on the controlled degrees of freedom

such that the modal controller is of the form

fBc = (Gk + s Gd) qBc (3.49)

Recalling equations (3.43)-(3.45) one may substitute the definition of the modal controller

into equation (3.48) to give




s2 (MBc −V1ccGd) + s (DBc −V1ccGk −V0ccGd) + (KBc − V0ccGk) · · ·

− (s2V1rcGd + s (V1rcGk + V0rcGd) + V0rcGk) · · ·

− (s2V1ucGd + s (VurcGk + V0ucGd) + V0ucGk) · · ·

· · · 0 0

· · · s2MBr + sDBr + KBr 0

· · · 0 s2MBu + sDBu + KBu







qBc

qBr

qBu


 = 0 (3.50)

The determinant of a triangular matrix is equal to product of the diagonal entries.

Thus one may observe from equation (3.50) that the effects of the control spillover on the

uncontrolled and un-modelled modes does not alter the diagonal entries on the system

matrices hence their closed loop poles remain unaltered. Therefore one can conclude that
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the effect of control spillover cannot destabilise these modes. This is a analogous result to

that obtained by Meirovitch and Baruh for the conventional modal control problem [M5].

The control spillover problem for the conventional second order IMSC technique has

been tackled by several authors such as Baz et al. [B1] and Fang et al. [F1]. The approach

described by Fang et al. is inappropriate for the first order form of the filters presented

for the SPT method. The approach introduced by Baz et al. illustrates the ability to

control several mode-pairs through a sharing strategy in which the actuators can switch

between the mode-pairs they control. This offers a potential solution for control spillover

in the SPT modal control approach although initial investigations report that the strategy

destabilises the SPT filters.

The effect of control spillover may degrade the performance of the controlled system

and it is difficult to immediately quantify the effect control spillover has on a system. A

numerical example now demonstrates the effects of control spillover.

3.8 Numerical Example 3.3: Spillover

Consider a simple, non-classically damped 2 × 2 system with equations of motion


 1 0

0 1


 q̈A +


 3 −1

−1 4


 q̇A +


 20 −10

−10 20


qA =


 1

0


 fA (3.51)

The modal controller gains applied to the first mode of vibration are arbitrarily decided

to be

Gk =
[

20 0

]
, Gd =

[
7.5 0

]
(3.52)

Figure 3.8 illustrates the response of the system to initial conditions and Figure 3.9

illustrates the response of the system when the controller is applied. The intent of the

controller was to bring the response of mode 1 under control and leave mode 2 uncon-

trolled. As may be seen from Figure 3.9 the response of mode 1 is successfully brought

under control as it settles to zero much faster than in Figure 3.8. However, comparing the

response of mode 2 in Figures 3.8 and 3.9 respectively shows that the response of mode
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2 is actually greater in the controlled case than the uncontrolled case. Thus it may be

concluded that the response of mode 2 is actually excited by spillover.

3.9 Discrete Force Smoothing

The modal control method described in this chapter is implemented using continuous time.

For practical systems the control methods must necessarily be implemented discretely thus

resulting in instantaneous incremental changes in the applied control forces. The concept

of independent modal control is that the control forces are designed in the modal space

before being converted into the physical domain. The SPT-based modal filter used to

convert the modal force to the physical force results in both the control force and time

derivative of control force being extracted from the modal force as may be observed from

the definition of the left filter

ḟA = V1
−1 (fB −V0 fA) (3.53)

Since one obtains the rate of control force as well as the control force from the left

filter it yields the possibility to smooth out the applied physical force through interpola-

tion. Indeed through using knowledge of the rate of change of force one may construct a

projected path over the finite increment at which no controller action is calculated. This

is demonstrated numerically.

3.10 Numerical Example 3.4 - Smoothing Discrete

Force

The previous numerical example is used such that the system is described by equation

(3.51) and the modal controller gains defined by equation (3.52). A coarse time step of

0.05s is used by the controller where the minimum required time constant as defined by

the Nyquist criterion [G8] is 0.63410s. Whilst this choice of time step is too coarse for
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practical application it serves well to illustrate the method. A cost function of the form

J =

∫ tf

0

qT
A qA + q̇T

A q̇A + fT
A fA dt (3.54)

is adopted to measure the expense of the discrete and smoothed controllers from zero

time to final time tf . The cost function measures the system displacement and velocity

responses as well as the applied control. The applied forces of the two controllers are

shown in Figure 3.10. The discrete controller yields a cost of 1903 versus 1349 for the

smoothed controller. Thus the smoothed controller cost is approximately 71% of the

discrete controller representing a massive saving in cost.

3.11 Summary

Theoretical application of structure preserving transformation based modal control has

been presented in this chapter. The SPT modal control method is not subjected to

constraints on the structure of the damping matrix as conventional second order modal

control methods are. This means that one may independently control modes of vibration

for non-classically damped systems. This chapter has provided numerical examples to

justify this assertion.

The SPT modal control method has its origins in utilising the SPTs to simultaneously

diagonalise the second order system mass, damping and stiffness matrices. As demon-

strated one may use knowledge of the system eigenvalues to construct the diagonalised

system matrices. One may then use the eigenvectors of the original and diagonalised state

space systems to construct the diagonalising SPTs.

Because the diagonalising SPTs are applied to state space representations of the second

order system one must use first order modal filters to extract the modal co-ordinates from

the physical co-ordinates. Conversely one must use an inverse modal filter to revert the

modal force into a physical force and consequently true independent control of the system

modes is realised.

The inverse modal filter used to transform the modal force into physical force results

in both the force and time derivative of the force being available. For practical application
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of control methods one must implement the control system in discrete time. Thus one

has the opportunity to smooth the discrete force though interpolation using knowledge

of the rate of change of force. A numerical example was used to illustrate that this may

actually result in a more efficient controller with a lower associated cost of implementing

the control. This is an advantage of the SPT modal control method over the conventional

modal control methods.

One unfortunate consequence of any modal control method is that one can only control

as many pairs of modes as actuators available. This is because each actuator is designated

to control one pair of modes. This means that the system is subjected to control spillover

in which the applied control forces may excite the uncontrolled and un-modelled modes.

It has been shown in this chapter that control spillover cannot destabilise the system

for the SPT modal control method but may degrade the system performance adversely.

Control spillover is an unfortunate side effect of the conventional modal control method

as well as the SPT based method.

3.12 Conclusions

This chapter has presented a method to apply modal control to a general non-defective

second order system of no specific structure. More specifically the method presented does

not insist that the system be ‘classically damped’ such that the undamped eigenvectors

of the system be used to simultaneously diagonalise all three system matrices. It has

been demonstrated how the SPTs may be used to diagonalise the system matrices of a

generally damped system. Direct application of the diagonalising SPTs decouples the un-

forced equations of motion. However, the diagonalised system is still coupled externally

via the forcing. Utilising the notion of independent modal space control permits the

determination of the control force independently in the modal space before reverting the

modal force back into the physical domain. This permits one to target individual mode-

pairs of vibration for controlled obtained from non-classically damped systems.

SPT-based modal filters have been presented to show the relationship between the
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physical and modal systems. This allows the extraction of the modal displacements from

the physical displacements and velocities. The modal velocities may be correspondingly

obtained through knowledge of the physical velocities and accelerations. Frequently one

does not possess knowledge of all the system states or physical accelerations. Corre-

spondingly one must use techniques such as Kalman filters [B8] to reconstruct the system

state (displacements and velocities). However one may not directly reform the system

accelerations required for SPT-modal velocities which may potentially pose a problem for

practical application.

The potential implications of control spillover in which the uncontrolled modes of

vibration are excited by the applied control forces has been highlighted. It has been

demonstrated through numerical example that the phenomenon does indeed exist and

has the potential to detract from the performance of the control system. This is indeed

something that requires further study.

Utilising the SPT-based filters to revert from the modal force back into the physical

domain results in the both the control force and rate of control force being obtained. This

presents the opportunity to smooth the physical force through interpolation if the modal

control method is implemented in discrete time. Practical applications require discrete

time implementation using digital equipment thus the opportunity arises to exploit the

smoothing potential of the SPT-based filters. Numerical example has shown that the

smoothing of the force can actually decrease a cost function which measures the effect

of applied control and system response. Thus SPT-modal control may offer additional

benefits over conventional modal control methods.
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Disc Disc 1 Disc 2 Disc 3

Node 3 6 11

Thickness (m) 0.05 0.05 0.06

Inner diameter (m) 0.10 0.10 0.10

Outer diameter (m) 0.24 0.40 0.40

Table 3.1: Numerical Example 3.2 Disc Properties

.

Bearing Bearing 1 Bearing 2

Stiffness Kxx (MN/m) 50 50

Stiffness Kyy (MN/m) 70 70

Damping Dxx (N/m/s) 500 500

Damping Dyy (N/m/s) 700 700

Table 3.2: Numerical Example 3.2 Bearing Properties

.
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Figure 3.1: Numerical example 3.1 - Uncontrolled physical and modal responses, SPT

method
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Figure 3.2: Numerical example 3.1 - Controlled physical and modal responses, SPT

method
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Figure 3.3: Numerical example 3.1 - Uncontrolled physical and modal responses, IMSC

method
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Figure 3.4: Numerical example 3.1 - Controlled physical and modal responses, IMSC

method

79



3.12 Conclusions

Figure 3.5: Numerical example 3.2 - Rotor-Disc system

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

time, s

ph
y 

di
sp

la
ce

m
en

t

Figure 3.6: Numerical example 3.2 - SPT response to initial conditions: control off
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Figure 3.7: Numerical example 3.2 - SPT response to initial conditions: control on
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Figure 3.8: Numerical example 3.3 - Modal response of 2 × 2 system - controller off
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Figure 3.9: Numerical example 3.3 - Modal response of 2 × 2 system - controller on

0  0.5 1.0 1.5 2.0 2.5
−50

0

50

100

150

200

250

time, s

di
sc

re
te

 p
hy

si
ca

l f
or

ce

0  0.5 1.0 1.5 2.0 2.5
−50

0

50

100

150

200

250

time, s

sm
oo

th
ed

 p
hy

si
ca

l f
or

ce

(a) (b) 

Figure 3.10: Numerical example 3.4 - (a) Smoothed and (b) discrete force

82



Chapter 4

Reflexive SPTs and Stable Filters

Consider the general second order equations of motion of a dynamic system

MA q̈A(t) + DA q̇A(t) + KA qA(t) = SA uA(t) = fA(t) (4.1)

Here the vector qA(t) ∈ R
n represents the generalised displacements of the system and the

dot above represents derivative with respect to time. The matrices MA,DA,KA ∈ R
n×n

represent the system mass, damping and stiffness matrices respectively with the subscript

A representing the original untransformed matrices. The vector uA(t) ∈ R
r represents

the short vector of applied physical forces and SA ∈ R
n×r represents a matrix defining

the locations of the applied forces. The generalised forcing is denoted by the long vector

fA(t) ∈ R
n×r for simplicity.

For many practical problems such as model reduction or control it is often preferable

to transform the original equations of motion into a more desirable form. Conventional

transformations available to second order systems consist of linear transformations in

which the system matrices are pre and post-multiplied by left (TL) and right (TR) trans-

formations such that new transformed equations of motion are obtained. Thus for the

second order system already introduced one may make the substitution qA(t) = TR qB(t)

and pre-multiply by TT
L such that from

TT
L MA TR q̈B + TT

L DA TR q̇B + TT
L KA TR qB = TT

L fA (4.2)
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ones finds the transformed system

MB q̈B + DB q̇B + KB qB = fB (4.3)

Thus the original co-ordinate basis qA, fA is transformed into qB, fB. For ease of reading

the notation showing the variables as a function of time has been removed.

Conventional transformations as illustrated above have the limitation that the 3n2

space spanned by the independent system matrices exceeds the 2n2 space available for

manipulation by the transformations. Thus one may not fully manipulate the system

matrices as desired. A notable example of this is the inability to diagonalise all three

system matrices when the system is non-classically damped [P1]. This pitfall may be

overcome by making special use of certain state space representations of the second order

system such that one may fully manipulate all three system matrices. This is the notion

of ‘structure preserving transformations’ (SPTs) [G2, G3].

For the conventional transformations illustrated in equation (4.2) one may readily

discover the relationship between the the original and transformed co-ordinates vectors.

However for the state space representations used by the SPTs this becomes less obvious

and indeed one finds that first order filters are involved where constant matrices had

previously served. This raises fundamental questions regarding stability of these filters.

Thus one may summarise the ambitions of the chapter to be derivation of SPT-based

filters and introduction of a method by which one may stabilise initially unstable filters.

4.1 Structure Preserving Transformations

As stated before it is possible to introduce two unique state-space representations of the

second order equations of motion introduced in equation (4.1) such that


 KA 0

0 −MA




 qA1

qA2


−


 −DA −MA

−MA 0




 q̇A1

q̇A2


 =


 fA

0


 (4.4)


 0 KA

KA DA




 qA1

qA2


−


 KA 0

0 −MA




 q̇A1

q̇A2


 =


 0

fA


 (4.5)
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where qA1 = qA and qA2 = q̇A1.

One may simplify equations (4.4) and (4.5) such that one has

A1 qA − A0 q̇A = fA1 (4.6)

A2 qA − A1 q̇A = fA2 (4.7)

The matrices A0, A1 and A2 are referred to as the Lancaster Augmented Matrices (LAMs)

as introduced in section 2.2 and the underlined notation is used again here to differentiate

the 2n-dimensional quantities from the n-dimensional quantities. Equations (4.6) and

(4.7) may be generalised to

Ak qA − Ak−1 q̇A = fAk k = 1, 2 (4.8)

The ‘structure preserving transformations’ (SPTs) [G2, G3] developed by Garvey et

al. are a real set of co-ordinate transformations applied to the LAMs such that the

eigenvalues contained of the LAMs and the structure within the LAMs is preserved. The

SPTs consist of a left (TL) and right (TR) transformation applied such that

Bk = TL
T Ak TR k = 0, 1, 2 (4.9)

The SPTs can be shown to have the structure

TL =


 FL − 1

2
GL DT

A −GL MT
A

GL KT
A FL + 1

2
GL DT

A




−1

· (4.10)

TR =


 FR − 1

2
GR DA −GR MA

GR KA FR + 1
2
GR DA




−1

(4.11)

where FL,FR,GL,GR ∈ R
n×n are arbitrary pre-defined matrices subject to the necessary

constraint

FR GT
L + GR FT

L = 0 (4.12)

The effect of an SPT is to transform equations (4.4) and (4.5) for the original system
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into the form
 KB 0

0 −MB




 qB1

qB2


−


 −DB −MB

−MB 0




 q̇B1

q̇B2


 = TL

T


 fA

0


 (4.13)


 0 KB

KB DB




 qB1

qB2


−


 KB 0

0 −MB




 q̇B1

q̇B2


 = TL

T


 0

fA


 (4.14)

One may directly extract the new real system matrices MB,DB,KB from the new set

of LAMs Bk (k = 0, 1, 2) to form the new second order equations of motion

MB q̈B + DB q̇B + KB qB = fB (4.15)

However one may note that the lower half of the state vector qB is no longer the derivative

of the top half, qB2 6= q̇B1.

The SPT is said to be diagonalising if matrices of the transformed system, MB, DB,

KB, are all diagonal. This diagonal system is not unique. For systems where MA is

invertible and where the transformation matrices are invertible, any two of the equa-

tions [H4] are sufficient to ensure that the third is also satisfied. The eigenvalues of

the original system, KA,DA,MA, can be computed by solving the generalised eigenvalue

problem involving either A0,A1 or A1,A2 . Evidently, the eigenvalues of the new system

KB,DB,MB will be identical provided that TL,TR are both invertible. Houlston et al.

[H5] have shown how to obtain diagonalising transformation matrices TL,TR from the

complex modal data.

Due to the now diagonal nature of equation (4.15) one refers to the new vectors qB and

fB as the modal displacements and forces respectively since they comprise of the system

modal data. It now becomes necessary to define how one obtains the modal quantities

qB, fB from qA, fA? For this modal filters are required and their derivation is given in the

next section.

4.2 Modal Filters

This section shows how the modal contributions may be extracted from the state space

system given in equation (4.8). The derivation of the SPT-based modal filters is pre-
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sented now [L2]. For an alternative mechanical derivation of the SPT-based filters please

see appendix C. Correspondingly the un-forced second order equations of motion from

equation (4.1) may be written as a matrix polynomial in operator form

LA(τ) = τ 2MA + τ DA + KA (4.16)

where the definition τ ≡ d

dt
is made.

For the case k = 1 equation (4.8) yields the two forms

(
A1 − τA0

)

 I

τI


 =


 LA(τ)

0


 (4.17)

[
I τI

] (
A1 − τA0

)
=

[
LA(τ) 0

]
(4.18)

where I ∈ R
n×n is the identity operator.

The SPTs are used to transform the original LAMs Ak to the new block diagonalised

LAMs Bk. Thus the matrix polynomial for the diagonalised system may be given as

LB(τ) = τ 2MB + τDB + KB (4.19)

It may be observed that equation (4.9) produces the result

TL
T
(
A1 − τA0

)
=
(
B1 − τB0

)
TR

−1 (4.20)

Thus one may form

[
I τI

]
TL

T
(
A1 − τA0

)

 I

τI


 =

[
I τI

] (
B1 − τB0

)
TR

−1


 I

τI


 (4.21)

and substituting using equations (4.17) and (4.18) gives

[
I τI

]
TL

T


 LA(τ)

0


 =

[
LB(τ) 0

]
TR

−1


 I

τI


 (4.22)

The left and right polynomials, HL(τ) and HR(τ) respectively, may be accordingly defined

HL(τ) =
[

I τI
]
TL

T


 I

0


 (4.23)

HR(τ) =
[

I 0

]
TR

−1


 I

τI


 (4.24)
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such that

HL(τ) L0(τ) = L1(τ) HR(τ) (4.25)

One may simplify equations (4.23) and (4.24) to

HL(τ) = V0 + τV1 (4.26)

HR(τ) = U0 + τU1 (4.27)

with obvious definitions

[
VT

0 VT
1

]
=

[
I 0

]
TL (4.28)

[
U0 U1

]
=

[
I 0

]
TR

−1 (4.29)

Returning to equation (4.1) one may observe that the left and right polynomials may

be used to transform the equations of motion. Letting qA = (U0 + τU1)
−1

qB and pre-

multiplying by (V0 + τV1) yields

(V0 + τV1)
(
τ 2MA + τDA + KA

)
(U0 + τU1)

−1
qB = (V0 + τV1) fA (4.30)

to give
(
τ 2MB + τDB + KB

)
qB = fB (4.31)

The relationship between the old (qA, fA) and the new coordinate sets (qB, fB) may

thus be defined

qB = ( U0 + τU1 ) qA (4.32)

fB = ( V0 + τV1 ) fA (4.33)

One also finds that the filter matrices have the property

det ( U0 + τ U1 ) = 0 ⇔ det ( V0 + τ V1 ) = 0 (4.34)

With knowledge of the physical accelerations one may additionally obtain the modal

velocities

τqB =
(

τU0 + τ 2U1

)
qA (4.35)
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From the definition of the filters presented one may observe that only half the infor-

mation contained within the transformation matrices need be used.


 VT

0 VT
1

::: :::




︸ ︷︷ ︸
TL

,


 U0 U1

::: :::




︸ ︷︷ ︸
T

−1

R

(4.36)

One may find an equally valid definition of the SPT filters using the lower half of the

transformation matrices. Only the given definition of the filters is considered in this

thesis although all possible definitions are equally valid.

4.2.1 Stability of Filters

The previous section derived the relationship between original and transformed co-ordinate

basis through the use of filters. From the definitions of the filters given in equations (4.32)

and (4.33) one must realise a necessary requirement for usage of the filters is for them to

be stable. Accordingly one may state that the real components of the eigenvalues of the

filters must be stable. Since the SPT-based filters preserve the eigenvalues of the second

order system then it is apparent that the left and right SPT-filters must have the same

spectrum. This may be observed by recalling equation (4.25)

(V0 + τV1)
(
τ 2MA + τDA + KA

)
=
(
τ 2MA + τDA + KA

)
(U0 + τU1) (4.37)

where τ ≡ d
dt

.

The eigenvalues of the left and right sides of equation (4.37) are equal hence the

contributions of the filters must cancel. Thus U−1
1 U0 = V−1

1 V0 > 0 must be necessarily

true in order that the filters will be stable. Since the diagonalising SPTs introduced are

non-unique an infinity of different SPTs may be used to diagonalise the system matrices.

A subset of this infinity of diagonalising SPTs may yield pairs of stable filters; one may

use the concept of reflexive SPTs to exploit this possibility.
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4.3 Reflexive Transformations

One now introduces the concept of reflexive SPTs to exploit the non-uniqueness of the

diagonalising SPTs. A reflexive SPT is a non-trivial SPT which maps any LAM back

onto itself such that one has

Ak = SL
TAk SR (4.38)

The matrices SL,SR ∈ R
2n×2n correspond to the left and right reflexive SPTs respec-

tively. The section shows how to construct the reflexive SPTs for diagonal systems such

that one may effectively change the original diagonalising SPT non-trivially.

It is found that the ‘single degree of freedom’ (SDOF) systems generated from the

diagonalising SPTs may be mapped back precisely onto themselves by a reflexive SPT

which is not the identity. Establishing the LAMs for a SDOF system

a0 =


 0 kj

kj dj


 , a1 =


 kj 0

0 −mj


 , a2 =


 −dj −mj

−mj 0


 (4.39)

one may define the 2 × 2 reflexive SPT for the SDOF system from equations (4.10) and

(4.11) to be

sL =


 f + 1

2
g dj g mj

−g kj f − 1
2
g dj


 (4.40)

sR =


 f − 1

2
g dj −g mj

g kj f + 1
2
g dj


 (4.41)

j = 1, 2, · · · , n.

kj, dj and mj are the jth SDOF stiffness, damping and mass values obtained from the

diagonal system matrices KB,DB and MB and f, g are arbitrary scalars subject to the

constraint

det(sL) = det(sR) = 1 (4.42)

or equivalently

f 2 + g2

(
kj mj −

1

4
d2

j

)
= 1 (4.43)
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Constraint (4.43) ensures that a one to one mapping is retained for the scalar system

values. If the constraint is not upheld then although equations (4.40) and (4.41) still

define a valid SPT the scaling of the values contained within the SDOF LAMs are not

retained. Ensuring that the constraint is upheld ensures that the values within the SDOF

LAMs are identical before and after the SDOF SPTs are applied.

It is worth noting that the structure of the SDOF reflexive SPTs defined in equations

(4.40) and (4.41) do not involve an inverse as was required for the conventional SPT

structure. One may realise that the inverse is unnecessary because one may define the

SPTs equally valid as

sL
−Tbj sR

−1 = aj (4.44)

since aj = bj .

If any one diagonalising SPT has been found for a system having n degrees of freedom

it is clear that this actually represents a space of diagonalising SPTs of dimension 2n since

a further reflexive SPT may be applied independently to each SDOF system individually

after diagonalisation. Thus one may form the 2n-dimensional reflexive SPT, SL,SR ∈

R
2n×2n, such that

SL
T Bk SR = Bk (4.45)

The reflexive SPTs are applied to change the diagonalising SPTs such that

TL
′ = TL SL , TR

′ = TR SR (4.46)

(The superscript ′ represents a change to the original matrix and not a (conjugate) trans-

pose.)

Only the left filter is dealt with from this point onwards since ensuring stability of

the left filter necessarily ensures stability of the right filter. Using equation (4.46) and

recalling the definition of the left filter from equation (4.28) one may find the new left
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4.4 Eigenvalue Derivative

filter matrices to be

V0
′ =

[
I 0

]
SL

T


 V0

V1


 (4.47)

V1
′ =

[
0 I

]
SL

T


 V0

V1


 (4.48)

4.3.1 Structure of Reflexive SPTs

The purpose of the reflexive SPTs is to alter the eigenvalues of the pair of filter matri-

ces {V0,V1}. However the utilisation of the reflexive SPTs causes the eigenvalues to

change non-linearly. By operating over a small range one may linearise the change in

filter eigenvalues to find the change of the eigenvalues with respect to the reflexive SPT

parameters.

Referring to the structure of the SDOF reflexive SPTs defined in equations (4.40) and

(4.41) one may define the left and right 2n-dimensional reflexive SPTs to be

SL =


 (I + σN) + 1

2
σL DB σL MB

−σL KB (I + σN) − 1
2
σL DB


 (4.49)

SR =


 (I + σN) − 1

2
σL DB −σL MB

σL KB (I + σN) + 1
2
σL DB


 (4.50)

N,L ∈ R
n×n are diagonal matrices specified by the user to transform the SPTs and the

parameter σ determines the magnitude of change made.

4.4 Eigenvalue Derivative

The eigenvalues of the pair of SPT-filter matrices vary non-linear with respect to the

construction parameters. Thus the relationship between the construction parameters

of the reflexive SPTs and the eigenvalues of the transformed filter matrices become very

complicated. One possible solution to this predicament is to assume that the eigenvalues of

the filter matrices alter linearly over a finite range such that one may move the eigenvalues
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4.4 Eigenvalue Derivative

into a more stable region. This process may be continued until all the eigenvalues of the

diagonalising filters become stable.

One may find the change of the jth eigenvalue λj of the pair of filter matrices {V0,V1}

with respect to parameter σ. The subscript notation , σ is used to denote differentiation

with respect to parameter σ, for example, ∂V1

∂σ
≡ V1,σ. The standard eigenvalue derivative

equation is then

λj,σ = −vT
j (V0,σ + λjV1,σ)uj j = 1, · · · , n (4.51)

Here, vj,uj represent the left and right eigenvectors corresponding to eigenvalue λj of the

filter matrices scaled such that vT
j V1 uj = 1. The derivation of equation (4.51) may be

found in appendix D and is based on the paper by Adhikari and Friswell [A1].

Equation (4.51) may be generalised for all n eigenvalues to give

e, σ = diag
(
ΦT

L V0,σ ΦR + ΦT
L V1,σ ΦR e

)
(4.52)

where

ΦL =
[

v1 v2 · · · vn

]
, e = diag

[
λ1 λ2 · · · λn

]

ΦR =
[

u1 u2 · · · un

]
, e, σ = diag

[
∂λ1

∂σ

∂λ2

∂σ
· · · ∂λn

∂σ

] (4.53)

One may substitute knowledge from equations (4.47) and (4.48) into equation (4.52)

to yield

e, σ = diag



[

ΦT
L 0

]
SL, σ

T


 V0

V1


ΦR +

[
0 ΦT

L

]
SL, σ

T


 V0

V1


ΦR e


 (4.54)

Taking the transpose of equation (4.54) and grouping together terms yields

eT
, σ = e, σ = diag


ΦT

R

[
VT

0 VT
1

]
SL, σ


 ΦL

ΦL e




 (4.55)

Thus one may form

e, σ = diag
(
W SL, σ X

)
(4.56)
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where the definitions for W and X are obvious from (4.55). One may readily show that

the derivative of the reflexive SPT with respect to σ must be

SL, σ =


 N + 1

2
L DB L MB

−L KB N − 1
2
L DB


 (4.57)

Extracting the definition of SL, σ one may redefine equation (4.56) as

e, σ =
[

Y Z

]

 diag(N)

diag(L)


 (4.58)

with Y and Z constructed element-wise as

Y(j, k) = W(j, k)X(k, j) + W(j, k + n)X(k + n, j) (4.59)

Z(j, k) =

(
1

2
DB(k, k)W(j, k) − KB(k, k)W(j, k + n)

)
X(k, j)

−
(

1

2
DB(k, k)W(j, k + n) −MB(k, k)W(j, k)

)
X(k + n, j) (4.60)

4.4.1 Linear Flows

So far the eigenvalue derivative technique has been presented in a discrete, iterative con-

text. This means that one specifies the magnitude of travel using σ and direction of travel

using N and L. One may consider the situation where the magnitude of travel tends to

zero (σ → 0) such that a continuous process emerges. This represents the notion of flows

where the filter eigenvalues are ‘flowed’ into the desired location rather than discontinu-

ously pushed. An example of using flows may be found in the notion of isospectral flows

by Garvey et al. [G5] where one flows the parameters of the original SPT to alter the

structure of the second order matrices towards a desired form.

Thus one may flow the reflexive SPTs, and correspondingly the SPT-filters, through

integrating the derivative of the reflexive SPTs

SL(σ) =

∫
SL, σ(σ) dσ (4.61)

Equation (4.61) allows one to integrate the filter matrices over a specified time period

representing a smooth, continuous flow of the eigenvalues of the filter.
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4.4.2 Limitations of the Eigenvalue Derivative

Before one approaches the task of determining the reflexive parameters N and L it is

appropriate to highlight some of the limitations of the eigenvalue derivative method.

The eigenvalue derivative method assumes that the eigenvalues change approximately

linearly over a finite range. This approximation introduces inaccuracies when moving the

eigenvalues potentially leading to significant errors should one choose an inappropriate

range over which to move the eigenvalues. Fortunately the method utilised in this project

uses the integration functions provided in Matlab to move the eigenvalues. The functions

used automatically adjust the integration step in accordance with the linearised range.

A further assumption made is that the eigenvectors remain unaltered over this finite

range. Indeed this is only an approximation and the eigenvectors do change over the finite

linearised range adding further. The paper by Adhikari and Friswell [A1] present eigen-

vector derivatives as well the eigenvalue derivatives already introduced. However it was

found during the implementation of the method that calculating the eigenvector deriv-

atives required more computational effort than actually solving the eigenvector problem

using the inbuilt Matlab functions. This is a constraint with the Matlab programming

environment rather than the code developed by the author.

4.5 Choosing the Reflexive Parameters

Numerical trials suggest that one is much more likely to obtain an unstable filter than a

stable one from a diagonalising transformation. This means that one will probably start

with an initially unstable filter and attempt to move the eigenvalues into a stable region.

The previous section has shown how the eigenvalues of the filter varied with respect to

the diagonalised reflexive parameters N and L. One now considers how to select the

parameters N,L such that the reflexive SPT has the effect of making the diagonalising

SPT more stable.

Simplifying equation (4.58) gives

p = C z (4.62)
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where the definitions of C and z are apparent and p = e, σ.

There exist two obvious methods by which one may move the eigenvalues into more

stable regions. The first method is to solve equation (4.62) to give the N and L parameters

assuming one knows how they wish to alter the eigenvalues such that p is known. The

second method is to determine the direction of travel in which the eigenvalues move in

the stable direction

C z > 0 (4.63)

where > 0 means that the 2n entries in the vector result on the left hand side of equation

(4.63) are greater than zero in this instance. The stability criterion of the SPT-based

filters utilises reverse convention when using the eigenvalues to define stability. In the

case of the SPT-filters one defines the real parts of the eigenvalues to be positive rather

than negative for stability to be ensured. This reverse convention arises from the definition

of the left inverse SPT-filter. Rearranging equation (4.33) one finds the left inverse filter

to be

ḟA = −V−1
1 (V0 fA − fB) (4.64)

One may observe that the eigenvalues of the inverse filter in equation (4.64) are defined

by −V−1
1 V0. However the negative sign has been neglected to define that stability is

determined when talking about V−1
1 V0 thus the sign of the eigenvalues is reversed and

positive real parts in the system eigenvalues are required such that the response will decay

to zero.

The two methods outlined in this thesis to determine parameters N and L are referred

to as the direct and gradient methods respectively. One can consider both methods to

have relative strengths and weaknesses and the choice of the method depends on which

the user feels will provide the best solution.

The direct solution has the advantage that over an appropriately defined linear range

one can specify the the change of eigenvalues, e, σ, and find the reflexive parameters which

will give this change. The disadvantage is how to optimise the choice of e, σ such that one

stays within the linear range whilst maximising the change at each stage.
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The gradient method does not require the user to specify the change in eigenvalues

required thus one less parameter is required. The determination of the parameters is

numerically less intensive than the direct solution which for larger values n may offer a

computational advantage. However the gradient solution by itself does not determine the

optimum direction in which to change the eigenvalues only the direction in which the

eigenvalues will definitely result in more stable filter. Thus one requires to determine the

steepest gradient which may require relatively many more iterations to achieve the same

eigenvalue locations as the direct solution. Therefore the computation cost saving of the

gradient method may not be realised.

Both methods are now presented.

4.5.1 Direct Solution

Recalling the definition of equation (4.62) one may make the substitution

z = CTg (4.65)

such that one has

p = C CTg (4.66)

Correspondingly one may solve for g.

g =
(
C CT

)−1
p (4.67)

Substituting the value of g back into equation (4.65) one finds

z = CT
(
C CT

)−1
p (4.68)

Recalling the definitions of C, z and p one finds


 diag (N)

diag (L)


 =


 YT

ZT


 (Y YT + Z ZT

)−1
e, σ (4.69)

A necessary requirement is for the matrix
[

Y Z

]
to be full rank.
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4.5.2 Steepest Gradient Solution

Recalling equation (4.63) one may make the substitution

z = CT
(
C CT

)−1
g (4.70)

such that one has the new inequality

C CT
(
C CT

)−1
g > 0 (4.71)

g > 0 (4.72)

Thus for any positive g will permit the equality in equation (4.72) to be satisfied. Corre-

spondingly, solving for equation (4.70) gives the required solution.

It would advantageous if one could determine the direction of the steepest gradient

such as to maximise the change of eigenvalues at each stage. Thus one would be able to

move in the direction in which the rate of change of eigenvalues with respect to σ was

greatest. This would have the obvious effect of maximising the change at each step.

Defining a quadratic cost function which is determined by the distance of the filter

eigenvalues from a desired location

Je = (e − δ )H (e − δ ) (4.73)

Here the vector δ ∈ R
n×1 is occupied by a constant real user specified value such that all

entries are identical and the superscript H defines the hermitian (conjugate) transpose

One may differentiate the cost function (4.73) with respect to the reflexive movement

parameter σ to obtain

∂Je

∂σ
= 2 (e − δ )H ∂ (e − δ )

∂σ
(4.74)

Realising that δ is constant and reverting to existing notation one has

Je, σ = 2 (e − δ )H
e, σ (4.75)

Thus substituting the definition of e, σ from equation (4.58) into equation (4.75) yields

Je, σ = 2 (e − δ )H
C z = ET z (4.76)
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where the definition of E is apparent.

One wishes to maximise the extent of each change to the filter eigenvalues using the

reflexive parameters. It is therefore required to find and move in the direction of steepest

gradient with regards to the eigenvalue derivative. This requires that one maximises

X =
ETz√
zTz

(4.77)

Maximising X is obtained by differentiating with respect to z and setting X, z = 0. From

this one finds that the steepest gradient is obtained when z = E. This gives the N and

L parameters as

N = diag ( E(1) ) (4.78)

L = diag ( E(2) ) (4.79)

where the brackets refer to n × 1 segment of vector E.

4.6 Numerical Examples

The preceding sections have demonstrated how to determine the parameters N and L of

the reflexive SPT such that one may flow the eigenvalues of the filter in a stable direction.

It has been shown that one may always make the eigenvalues more stable over a finite

range. However one should consider the possibility that the change in eigenvalues may

go asymptotic such that the change in eigenvalues tends towards zero. This means that

the eigenvalues will never cross into a stable region even though they are being made

increasingly stable. Numerical experimentation suggests that this is not the case but this

remains to be proved formally.

One now introduces numerical examples to demonstrate the methods presented in this

chapter.
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4.6.1 Numerical Example 4.1 - Direct Method

A non-classically damped second order system is generated with mass, damping and

stiffness matrices

MA = diag




1

1

1


 , DA =




5.0 3.0 6.8

−3.0 1.9 3.0

−6.8 −3.0 5.4


 , KA = diag




50

70

90


 (4.80)

The left and right diagonalising SPT transformations are found which yield unstable

filters. The starting eigenvalues of the SPT-filters are given in table 4.1 and the SPT

transformations matrices may be reported to be

TL =




−0.31222 0.18625 0.7055 −0.11608 −0.014316 0.023817

−0.21191 −0.34496 0.36451 −0.027467 0.094153 0.024569

−0.31124 0.27861 −0.29911 0.020399 −0.038622 0.057803

2.8801 1.001 −4.3248 0.0075105 0.22459 0.54194

0.68146 −6.5833 −4.4613 −0.13626 −0.59716 0.1958

−0.5061 2.7005 −10.496 −0.36743 0.38206 −0.69605




(4.81)

and

TR =




0.038836 0.35321 0.5673 0.13975 0.037269 −0.024664

−0.2861 −0.57954 −0.12697 −0.0088132 −0.092151 −0.032701

−0.38832 0.20464 −0.68062 −0.036465 0.013133 −0.052799

−3.4672 −2.6059 4.4786 −0.34608 0.25338 0.73666

0.21866 6.4433 5.9379 −0.26183 −0.33271 0.09759

0.90471 −0.91829 9.5874 −0.28788 0.16946 −0.31805




(4.82)

These SPTs yield the diagonal system matrices

MB = diag




1

1

1


 , DB = diag




2.7543

2.6786

6.8671


 , KB = diag




24.8101

69.9209

181.5830


 (4.83)

The starting eigenvalues of the first order SPT-filter are unstable thus it is necessary

to integrate the flow of the reflexive SPTs to stabilise the filters. Using the direct method
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one may set the change of eigenvalues to be equal one if the roots are unstable and zero

if roots are already stable. This means that one attempts to move only the unstable

eigenvalues. Thus,

e, σ = sign
(

real(e)
)

< 0 (4.84)

The integration process is implemented using the MATLAB integrator function ‘ode45.’

The choice of integrator is dependent on the condition number of the filters. The ‘ode45’

function is an integrator for non-stiff systems.

The integrator determines the necessary step size σ at each time step. Thus one only

need determine the sign of the vector e, σ rather than the magnitude because the integrator

will determine the step size σ accordingly. The results of the integration process for this

numerical example are illustrated in figure 4.1 and the finishing eigenvalues may be found

in table 4.1. The finishing left reflexive SPT may be reported to be

SL =




0.98171 0 0 −0.012069 0 0

0 0.82175 0 0 −0.054202 0

0 0 0.4458 0 0 −0.058531

0.29943 0 0 1.015 0 0

0 3.7899 0 0 0.96694 0

0 0 10.628 0 0 0.84774




(4.85)

with the structure of the right reflexive SPT having the form

SR =


 TLr, 22 −TLr, 12

−TLr, 21 TLr, 11


 (4.86)

Figure 4.1 illustrates the integration process used to flow the eigenvalues of the filter

into stable region for this numerical example. Once all the eigenvalues are flowed into the

stable region it may be observed that the process suspends because the required change

in eigenvalues, e, σ, becomes zero. The interesting point to observe from figure 4.1 is that

although the required change for the stable third eigenvalue is zero the process still moves

the eigenvalue into the stable region. This illustrates that it is highly difficult to isolate

one eigenvalue of the filter matrices for change without necessarily affecting the other
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eigenvalues. This concept is precisely why the stabilisation of the SPT-filters becomes

quite complicated and may prove to be highly non-linear is various regions. However this

numerical example has demonstrated that one may flow the eigenvalues into the stable

region using the methods outlined in this chapter.

4.6.2 Numerical Example 4.2 - Steepest Gradient

One now uses the steepest gradient method outlined in section 4.5.2 to stabilise the

initially unstable filters obtained from diagonalising SPTs in (4.81) and (4.82). The

desired location for the eigenvalues is decided to be 1 such that

δ =
[

1 1 1

]T
(4.87)

The integration process is again implemented using the MATLAB integrator function

‘ode45’ and the integration process is illustrated in figure 4.2. The starting and final filter

eigenvalues are given in table 4.2.

From the flow process one obtains the stabilising reflexive SPTs

SL =




0.56192 0 0 −0.13778 0 0

0 0.81035 0 0 −0.05625 0

0 0 0.34118 0 0 −0.063604

3.4184 0 0 0.94142 0 0

0 3.9331 0 0 0.96102 0

0 0 11.549 0 0 0.77795




(4.88)

with the SR structured as shown in equation (4.86)

As may be observed from figure 4.2 the integration time required for the steepest

gradient integration process to stabilise is much greater than that required for the direct

method. However the computational burden required at each integration point for the

steepest gradient method is less hence negating some of the burden of requiring a longer

integration horizon for stabilisation to occur.
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4.7 Summary

The structure preserving transformations enable one to simultaneously diagonalise the

matrices of a generally damped second order system. This is performed by transform-

ing the second order equations of motion into a specific state space representation. By

applying a set of left and right transformations to the state space system one obtains a

new state space containing diagonal matrices corresponding to a new second order sys-

tem. One can extract these real, diagonal second order matrices from the state space

system which contain identical eigenvalues to the original system. However one must use

first order filters to obtain the modal co-ordinates from the physical displacements and

velocities. A necessary requirement is that these filters must be stable.

Because the filters are determined by the structure of the SPTs one may exploit the

non-uniqueness of the SPTs using reflexive SPTs. The reflexive SPTs represent a non-

trivial transformations such that one may map any diagonal system back onto itself. The

reflexive SPTs are highly structured with 2n parameters available for manipulation. Ap-

plication of the reflexive SPT results in a new diagonalising SPT which may or may not

provide a stable filter. One can exploit this possibility to try and move the filter eigen-

values into the stable half region by appropriately selecting the construction parameters

of the reflexive SPT.

This chapter has demonstrated a method by which one can flow the eigenvalues of the

filter towards the stable half plane. Two methods have been presented by which one can

determine the parameters with which to move the eigenvalues; the direct method where

one selects the change to be made to the eigenvalues, and the gradient method where one

moves in the largest stable change of direction of the eigenvalues. Numerical examples

have demonstrated the two methods and one finds that both have respective merits and

disadvantages. The direct solution enables one to specify the the change of eigenvalues

and find the corresponding reflexive parameters to give the change. The disadvantage is

that one does not know to what extent the eigenvalues may be altered to stay within a

linear range whilst maximising the change at each stage. The gradient method does not

require one to specify the change in eigenvalues and correspondingly the determination of
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the parameters is numerically less intensive than the direct solution. However the gradient

solution does not determine the optimum direction in which to change the eigenvalues only

the direction in which the eigenvalues will become more stable.

4.8 Conclusion

The SPTs may be used to transform any second order system into another second order

system whilst retaining the same eigenvalues. This chapter has demonstrated how to

extract the new displacements and velocities from the original physical co-ordinates by the

use of SPT-based filters. The SPT-based filters are first order in nature and consequently

a necessary requirement is that their eigenvalues reside on the stable half plane.

For the specific case when the transformed system matrices are real and diagonal, a

method has been developed in which one may flow the eigenvalues towards the stable

region through the use of reflexive SPTs. Consequently one may always make a filter

increasingly stable. A numerical example has successfully demonstrated the method for a

non-classically damped 3 degree of freedom model with initially unstable filters. However

for the general case it is currently unknown whether the change in eigenvalues may go

asymptotic, in which case the eigenvalues may never cross into the stable half. Numerical

experimentation suggests that this is not the case and that it is always possible to find a

stable filter. This remains to be proved formally.
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4.8 Conclusion

Eigenvalue Initial Final

λ1 6.8345 16.558

λ2 -3.8693 0.01077 + 0.042692i

λ3 -7.1993 0.01077 - 0.042692i

Table 4.1: Numerical example 4.1 - Eigenvalues of filter, direct method

Eigenvalue Initial Final

λ1 6.8345 55.124

λ2 -3.8693 2.7591

λ3 -7.1993 0.20493

Table 4.2: Numerical example 4.2 - Eigenvalues of filter, steepest gradient method
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Figure 4.1: Num. example 4.1, Eig.val. variation during integration, direct method
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Figure 4.2: Num. example 4.2, Eig.val. variation during integration, steepest gradient
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Chapter 5

Optimal Controller Designs for

Rotating Machines

Consider a second order system with the equations of motion

MA q̈A(t) + DA q̇A(t) + KA qA(t) = SA uA(t) (5.1)

where MA,DA,KA ∈ R
n×n are the system mass, damping and stiffness matrices, qA(t) ∈

R
n is the vector of displacements, uA(t) ∈ R

r the vector of applied forces and SA ∈ R
n×r is

a selection matrix describing the locations of applied forces. The dot above qA(t) denotes

its derivative with respect to time.

In the context of active control of rotating machines, standard optimal controller

methods enable a trade-off to be made between weighted mean-square vibrations and

weighted mean-square control force. A major drawback of the traditional approach to

optimal control is that no emphasis is placed on the rate at which the control effort can

be applied when designing the controller. Control forces cannot be applied instantaneously

and indeed several applications exist where the rate at which control forces can be applied

is sufficiently important to warrant this work. One such area is in the field of magnetic

bearings.

Consider magnetic bearings as a representative contemporary example of a control

actuator for a dynamic system [C3]. It is usual to operate these bearings with a bias cur-
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rent such that the net force produced by the bearing in a direction is linearly proportional

to the control current injected into the bearing. The maximum force achievable by the

bearing is dependent on the maximum control current which can be injected and could

be identified as control input, uA(t). The role of conventional optimal control in trying to

keep uA(t) small is obvious here. Large currents require thick conductors in the bearing

and a higher current-rating in the power-amplifiers.

However, the maximum rate of change of force in a magnetic bearing is dependent on

the rate of change of current. All magnetic bearings have some inductance and thus a

finite rate of change of current requires a finite voltage additional to the voltage required

to drive a steady current. In many practical applications, the voltages associated with

the rates of change of current are many times greater than the steady “IR” voltages.

If the controller requires the magnetic bearing to produce very high rates of change of

force then the power-amplifiers will require large internal voltages and the insulation

around the windings in the magnetic bearing will have to be thick. Hence, for magnetic

bearings, it is actually highly desirable to be able to develop controllers which minimise

some cost function that is determined by both control input and rate of control input.

Thus conventional optimal control does not provide adequate controller design.

The purpose of this chapter is to explore and present new methods by which one can

extend the conventional optimal control method to include penalising the rate of change

of force in addition to penalising the state response and applied force. One presents a

method which utilises the conventional optimal control applied to an augmented system

and a sub-optimal control solution in which one deals directly with the second order

system. One also considers the inclusion of the actuator dynamics in the equations of

motion such that the standard optimal control problem may be sufficient. Numerical

examples are used throughout the chapter where appropriate.
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5.1 Conventional Optimal Control

The second order equations of motion may be represented in first order state space form

such that

 q̇A1(t)

q̇A2(t)


 =


 0 I

−M−1
A KA −M−1

A DA




 qA1(t)

qA2(t)


+


 0

M−1
A SA


uA(t) (5.2)

with qA1(t) = qA(t) and qA2(t) = q̇A1(t). Equation (5.2) may be simplified to

q̇A(t) = AA qA(t) + BA uA(t) (5.3)

where the definitions are apparent. For ease of reading the notation denoting dependence

on time is removed from here onwards.

A feedback gain, G, may be calculated such that more desirable system properties

can be found. This is represented pictorially in figure 5.1.

One approach to determining the feedback gains matrix, G, is to utilise so-called

optimal control methods. Optimal control is best summarised by calculating an optimal

feedback force which minimises a quadratic form defined by

J =
1

2

∫ ∞

0

(
qA

T Q qA + uT
A Ru uA

)
dt (5.4)

where Q ∈ R
2n×2n represents a symmetric semi-definite weighting matrix governing the

relative importance of the system state at time, t, and similarly Ru ∈ R
r×r represents a

symmetric positive definite matrix to weight the control effort.

The quadratic expression of equation (5.4) has threefold implication:

◦ The positive and negative errors are weighted equally.

◦ The larger errors are penalised more harshly than smaller errors.

◦ The integral penalises the more persistent error more harshly.

The standard approach to solving the optimal control problem is well understood and

a great deal of literature is available for the problem. The usual procedure is to solve the
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5.1 Conventional Optimal Control

Riccati equation [Z2] but methods exist to calculate the optimal control for second order

systems [Z1] without the need to deal with the state space approach. The optimal control

method described here is frequently referred to as the Linear Quadratic Regulator (LQR)

control as it applies to linear problems and involves a quadratic cost function.

One may use a second order state-space representation of the second order equations

of motion such that one has


 0 KA

KA DA




 qA1

qA2


−


 −DA −MA

−MA 0




 q̈A1

q̈A2


 =


 SA 0

0 SA




 u̇A

uA


 (5.5)

with qA1(t) = qA(t) and qA2(t) = q̇A1(t).

The state space representation of equation (5.5) utilises the ‘Lancaster Augmented

Matrices’ (LAMs) first introduced in section 2.2. Using the notation given in section 2.6

one simplifies equation (5.5) to be

A2 qA − A0 q̈A = SA uA (5.6)

where the definitions of A0, A2 and SA are apparent and the augmented forcing vector

is defined as uA ≡
[

u̇A uA

]T
.

As apparent from equation (5.5), the equations of motion contain both the control

vector uA and time derivative of control vector u̇A. The description of the system by the

LAMs raises the possibility of controlling the force rate in addition to the forces applied

to a vibrating system.

It is proposed in this chapter to design a controller to minimise the extended cost

function of the form

Jext =
1

2

∫ ∞

0

(
qA

T Q qA + uT
A Ru uA + u̇T

A Rv u̇A

)
dt (5.7)

where Rv ∈ R
r×r is a symmetric positive-definite weighting matrix to penalise rate of

change of control. It is assumed that full state feedback is available.

A possible method to penalise the rate of change of control is to find numerically the

optimal force which minimises the extended cost function when the system is subjected
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5.2 Optimal Eigenvalue Locations

to a known initial condition qA(0). The forcing function, uA, used to minimise the

cost function (5.7) is constructed using a summation of forcing wavelets. Appendix E

presents the numerical penalisation method and a numerical example is presented. The

example compares the numerical penalisation method against the standard LQR method

and illustrates that it is indeed possible to penalise the rate of change of control whilst

bringing the response of the system under control.

The numerical penalisation method shows that it is possible to construct an optimal

feedback force subjected to constraints on the state of the system and the force and rate of

change of force applied to the system. The numerical idea presented utilises the fact that

the cost functional is quadratic and contains only a single minimum. Whilst this method

is usable to identify an appropriate feedback force for a particular initial condition it is

neither numerically efficient nor general enough for use in an active control system. The

method identifies that a solution to the minimisation problem exists and the obvious next

stage is to present an analytical solution.

5.2 Optimal Eigenvalue Locations

The original idea concerning the penalisation of the control rate arose through the descrip-

tion of the second order system using the LAMs. Two immediate necessary constraints

become obvious from equation (5.5): the top half of the augmented control vector uA is

equal to the time derivative of the bottom half, and the bottom half of the state vector

qA is equal to the time derivative of the top half. This may be represented

[
0 I

]
qA −

[
I 0

]
q̇A = 0 (5.8)

[
I 0

]
uA −

[
0 I

]
u̇A = 0 (5.9)

In addition knowledge of the physical system must be introduced

A2 qA − A0 q̈A − SA uA = 0 (5.10)

Thus the constrained optimisation problem of equation (5.6) may be transformed
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5.2 Optimal Eigenvalue Locations

into an unconstrained optimisation problem through incorporating the three system con-

straints.

A desirable result for this project is to retain the second order structure of the system

where possible. Rather than dealing with the optimal control problem by the first order

state space approach it is possible to utilise the second order problem. Recalling the

definition of the second order system

MA q̈A + DA q̇A + KA qA = SA uA (5.11)

The extended quadratic cost function defined in equation (5.7) may be found equiva-

lent to

Jext 2nd =
1

2

∫ ∞

0

{
qT

A Qd qA + q̇T
A Qv q̇A + uT

A Ru uA + vT
A Rv vA

}
dt (5.12)

where vA = u̇A and Qd,Qv ∈ R
n×n are the positive semi-definite weighting matrices

placed on the physical displacements and velocities respectively. Equation (5.12) presup-

poses that there exist no cross terms involving q and q̇.

Defining H =
dJ

dt
and introducing the time dependent Lagrange multiplier vectors µ

and γ into H in order to create an unconstrained optimisation problem

H1 =
1

2

[
qT

A Qd qA + q̇T
A Qv q̇A + uT

A Ru uA + vT
A Rv vA

]
(5.13)

+ µT
[
MA q̈A + DA q̇A + KA qA − SA uA

]

+ γT
[
vA − u̇A

]

H1 contains the information necessary to find the minimum of function (5.12). The

Euler-Lagrange equations [G11] may be used to derive the necessary conditions for the

global minimum

∂H1

∂q
− d

dt

(
∂H1

∂q̇

)
+

d2

dt2

(
∂H1

∂q̈

)
= 0 (5.14)

∂H1

∂u
− d

dt

(
∂H1

∂u̇

)
= 0 (5.15)

∂H1

∂v
= 0 (5.16)
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Equations (5.14) to (5.16) yield the results

0 =
(
MT

A µ̈ − DT
A µ̇ + KT

A µ
)
− (Qv q̈A −Qd qA) (5.17)

uA = R−1
u ST

A µ −R−1
u γ̇ (5.18)

vA = −R−1
v γ (5.19)

The results obtained from the Euler-Lagrange equations may also be obtained from

other approaches to optimal control, notably calculus of variations [Y1] or dynamic pro-

gramming [B4, B5]. Combining the results above with the constraint equations it is

possible to form the system




−Qv MT
A 0

MA 0 0

0 0 R−1
u







q̈A

µ̈

γ̈


+




0 −DT
A 0

DA 0 SA R−1
u

0 −R−1
u ST

A 0







q̇A

µ̇

γ̇


+ · · ·

· · · +




Qd KT
A 0

KA −SA R−1
u ST

A 0

0 0 −R−1
v







qA

µ

γ


 = 0 (5.20)

This set of equations may be simplified to

H2 ẍH + H1 ẋH + H0 xH = 0 (5.21)

where the definitions of Hj (j = 0, 1, 2) and xH are apparent.

The system illustrated by equation (5.20) is referred to as a Hamiltonian system be-

cause it contains a set of differential equations which may be written in the form of

Hamilton’s equations [G11]. Hamilton’s equation are derived from investigating how the

Lagrangian equations change with respect to time.

One may notice that the H2 and H0 matrices in equation (5.21) are symmetric and

the H1 matrix is skew-symmetric. The result of this structure is that the eigenvalues of

this Hamiltonian system are symmetric about the imaginary axis [B8] and Hamiltonian

system contains the optimal eigenvalues for the control problem. The stable half of the

eigenvalues represent the pole locations for the optimal control problem defined by the cost

function. However, there are 2n + r stable eigenvalues associated with the Hamiltonian
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matrix. This is dissimilar to the 2n eigenvalues associated with the system equations of

motion. Thus there is a disparity of dimension r. The dissimilarity in dimension can be

explained from the inclusion of the additional constraint to account for the rate of change

of control. Thus it seems apparent that the system must be extended by dimension r

to accommodate the additional constraints imposed on the time derivative of the control

force. The question arises how to do this practically? Indeed a very novel and practical

way presents itself as discussed in the next section.

5.3 A Tangent to Conventional Optimal Control

The approach pursued in this chapter is to re-think the pictorial representation of the

system illustrated by figure 5.1. Suppose that an augmented plant can be constructed

such that the input to this augmented plant is the time derivative of control rather than the

normal control vector. A feedback gains matrix could be calculated to find the optimal rate

of change of control force applied to the system. This concept is represented pictorially

in figure 5.2.

As illustrated by figure 5.2 an augmented state qaug can be formed including the

control vector which is defined as,

qaug =


 uA

qA


 (5.22)

Thus the augmented plant can be shown to have the following equations of motion


 u̇A

q̇A


 =


 0 0

BA AA




 uA

qA


+


 I

0


 vA (5.23)

This may be simplified to

q̇aug = ÃA qaug + B̃A vA (5.24)

where the definitions of ÃA, B̃A are obvious. One may observe that in addition to the

initial state the initial force is required for the integration of the system equations of

motion.
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The extended quadratic cost illustrated by equation (5.7) is equivalent to

Jaug =
1

2

∫ ∞

0

qaug
T Qaug qaug + vT

A Rv vA dt (5.25)

Here the new definition of Qaug can be seen clearly to be,

Qaug =


 Ru 0

0 Q


 (5.26)

5.3.1 Calculating the Optimal Control Gain

Equation (5.24) represents the dynamics of a first order system subjected to the constraint

that the cost function given by equation (5.25) must be minimal over an infinite time

horizon. This situation represents a constrained variational problem. In order to solve

the optimal control problem the system must first be converted into an unconstrained

control problem using the introduction of the co-state vector, µ ∈ R
n. The function Haug

may be defined,

Haug

(
qaug,uA, µ

)
=

1

2
qaug

T Qaug qaug +
1

2
vT

A Rv vA

+ µT
{
ÃA qaug + B̃A vA − q̇aug

}
(5.27)

As already introduced, the necessary conditions to produce a minimum for the optimal

problem are given by the Euler-Lagrange equations [G11]

∂Haug

∂qaug

− d

dt

(
∂Haug

∂q̇aug

)
= 0 (5.28)

∂Haug

∂v
= 0 (5.29)

Substituting the definition of Haug into equations (5.28) and (5.29) yields the results

µ̇ = −Qaug qaug − ÃA µ (5.30)

vA = −Rv B̃A

T
µ (5.31)

It is worth reminding the reader here that the matrices Qaug and Rv are symmetric

hence equations (5.30) and (5.31) are simplified further by recognising that Qaug and Rv

equal their own transposes.
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Equation (5.31) is substituted into the equations of motion represented by equation

(5.24) and then combined with equation (5.30) to form the Hamiltonian system


 q̇aug

µ̇


 =


 ÃA −B̃A R−1

v B̃A

T

−Qaug −ÃA

T




 qaug

µ


 = Haug


 qaug

µ


 (5.32)

Conventional optimal control asserts that the co-state vector µ is related to the aug-

mented state qaug of the system through the linear relationship [B8]

µ = P qaug (5.33)

where P is referred to as the co-state matrix.

This chapter deals with the specific infinite horizon problem where the desired end

condition is assumed to be equal to zero so that the final conditions may be µ(∞) . It is

relatively simple to subject the system to a final settling state but this is not addressed

here. Therefore knowing the initial and final states of the system it is possible to solve

the Hamiltonian by utilising equation (5.33).

5.3.2 The Riccati Equation

A more robust method of finding the optimal control is to form the Riccati equation which

may be solved backwards through time to give the matrix P. The relationship between

the co-state vector and control vector can be combined to yield the feedback control

vA = −R−1
v B̃A

T
µ = −Rv B̃A

T
P qaug = −Gaug qaug (5.34)

The Riccati equation may be formed by differentiating equation (5.33)

µ̇ = Ṗ qaug + P q̇aug (5.35)

Substituting in equation (5.30) for µ̇ and the equations of motion for q̇aug yields

(
Ṗ + P ÃA + ÃA

T
P + Qaug −P B̃A R−1

v B̃A

T
P
)

qaug = 0 (5.36)
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Equation (5.36) holds for any arbitrary state qaug starting with known initial condi-

tions. Therefore the dependence of the state qaug can be removed which implies that P

must satisfy

Ṗ = −P ÃA − ÃA

T
P− Qaug + P B̃A R−1

v B̃A

T
P (5.37)

This result is known as the Riccati equation and may be solved backwards through

time [Z2] knowing the desired final conditions for P.

5.3.3 Numerical Example 5.1

A spring-mass system with no damping is constructed such that equations of motion are

governed by

MA q̈ + KA q = SA uA (5.38)

with matrices

MA =




1 0 0

0 1 0

0 0 1


 , KA =




2 −1 0

−1 2 −1

0 −1 1


 , SA =




1 0

0 1

0 0


 (5.39)

subjected to initial conditions qA(0) =
[

1 −1 0

]T
and q̇A(0) =

[
0 0 0

]T
. The

un-forced response to the initial conditions of mass 3 is illustrated in figure 5.3.

The second order system can be converted into first order state space form such that

AA =


 0 I

−M−1
A KA 0


 , BA =


 0

M−1
A SA


 (5.40)

The weighting matrices are chosen to minimise the kinetic and potential energies of

the system. The control and rate of control vectors are chosen arbitrarily

Q =


 KA 0

0 MA


 , Ru = 10−1 I , Rv = 102 I (5.41)

where I is the identity matrix of appropriate dimension.
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5.3 A Tangent to Conventional Optimal Control

The augmented plant is constructed utilising the form shown by equation (5.24) and

the new weighting matrices satisfy equation (5.25). Solving the Riccati equation and

substituting the result into equation (5.34) one finds the optimal controller gain for the

augmented system to be,

Gaug =


 0.23965 0.11317 −0.2171 0.051166 0.022016 0.034619 0.027036 0.014187

0.11317 0.33345 0.054257 −0.19381 0.069238 0.037823 0.0615 0.029084


(5.42)

The response to the initial conditions of mass 3 is illustrated in figure 5.4. This gives

the quadratic cost, Jaug = 161.

The LQR optimal control gain for the first order system illustrated by equation (5.40)

is

Glqr =


 2.8722 −0.26984 −0.74947 3.9676 −0.046734 −0.14134

−0.12322 4.8708 −3.0562 −0.046734 4.4429 1.9914


 (5.43)

Subjecting the traditional optimal controller to the same quadratic cost function il-

lustrated by equation (5.25) yields the cost Jlqr = 24,835. The response is illustrated in

figure 5.5.

As is apparent from figures 5.4 and 5.5, the LQR approach provides no weighting to

the rate at which the force is applied so the force is applied more quickly bringing the state

of the system under control much quicker than that of the augmented plant method. But

examination of the costs defined from equation (5.25) of the two systems alone illustrates

the expense of doing so. The LQR cost is approximately 154 times larger than that of

the augmented system.

The assertion was made that the Hamiltonian system of equation (5.20) is optimal

therefore the eigenvalues of the controlled augmented system must yield the same values

if the augmented system represents the optimal problem. This is indeed the case and the

values are illustrated in table 5.1.
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5.3 A Tangent to Conventional Optimal Control

5.3.4 Numerical Example 5.2

A rotor dynamic system illustrated by figure 5.6 is modelled using finite elements with

4 degrees of freedom at each nodal point representing rotational and displacement coor-

dinates. The system model is reduced in size using Guyan reduction [G12] to 6 degrees

of freedom and the optimal control system outlined in this document is applied. All di-

mensions marked on the figure are in millimetres (mm) and each element is 10 mm in

length. The steel shaft is of diameter 30 mm and the diameters of the aluminium discs

illustrated at points Out 1 and Out 2 are of diameter 150 mm. Bearings 1 and 2 constrain

the system such that the rotor displacements at these points are zero.

The initial conditions are such that the rotor system has an initial velocity for the

entire system being equal to 10 m/s. The control forces are applied at the location of

the arrow as indicated. The output displacements are calculated at the centre of the two

discs.

The weighting matrices are chosen to penalise the displacements of the system at the

locations of the discs more harshly than other locations. Thus the Q-matrix is set equal

to the identity matrix except for nodes 1, 2, 3, 31, 32, 33, 34, 35 and 36, corresponding

to the disc locations, and are weighted such that they are equal to 100. The weighting

on the force and force rate are given values 102I and 10−2I, respectively, where I is the

identity matrix of appropriate dimension. The eigenvalues of the optimal augmented

system versus the second order Hamiltonian system are given in table 5.2. It may be

observed that a few rounding errors exist although these are deemed minor.

The quadratic costs for the augmented and LQR control approaches are 4.4580× 1010

(69.2%) and 6.4463×1010 (100%) respectively. This means that the augmented approach

represents a sizeable reduction, approximately 30%, in cost compared with the LQR

problem. Much of this reduction in cost is due to the peak time derivative control rate

vector for the augmented system being approximately 40% of the peak time derivative

control rate for the LQR system as illustrated in figure 5.7. This has immediate relevance

to the magnitude of the force applied to the system resulting in a sizeable reduction in

the magnitude of peak force again contributing to the reduction in quadratic cost.
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5.4 Second Order Analytical Solution

5.4 Second Order Analytical Solution

The ambitions sought in this chapter was to identify a method which yields the optimal

controller which incorporates the rate of change of forcing into the standard optimal

cost function. Through numerical examples and analysis of the system eigenvalues, this

ambition has been shown to have been achieved. However, the intent of this thesis is

to extend the literature in regards to direct second order control techniques and it is

desirable to obtain a controller of the form

uA = Gk qA + Gd q̇A (5.44)

Following the approach given by Zhang [Z1] where the solution to the optimal con-

trol problem for the second order system is discussed one may establish a solution to

the optimal control problem which incorporates the rate of change of force. Recalling

the Hamiltonian system from equation (5.20) the associated eigenvalue problem may be

expressed



−( λ2Qv − Qd ) ( λ2MT
A − λDT

A + KT
A ) 0

( λ2MA + λDA + KA ) −SA R−1

u
ST

A λSA R−1

u

0 −λR−1

u
ST

A ( λ2R−1

u
− R−1

v
)







XqA

Xµ

Xγ


 = 0 (5.45)

where XqA
, Xµ and Xγ are the associated sub-vectors of the eigenvector related to eigen-

value λ.

It can be shown from [I1] that equation (5.45) has general solution in terms of the

eigenvalues and eigenvectors by the modal expansion theorem

qA =

4n+2r∑

i=1

ai eλitXqAi
(5.46)

µ =
4n+2r∑

i=1

ai eλitXµi
(5.47)

γ =
4n+2r∑

i=1

ai eλitXγi
(5.48)

with coefficients ai determined by the initial conditions.

As stated previously the roots of the Hamiltonian system are symmetric about the

imaginary axis. One may thus consider only the stable 2n + r eigenvalues. Equations
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5.4 Second Order Analytical Solution

(5.46) - (5.48) may be accordingly rewritten

qA =
2n+r∑

j=1

aj eλitXqAj
= d E Φs (5.49)

µ =

2n+r∑

j=1

aj eλitXµj
= d E Ψs (5.50)

γ =
2n+r∑

j=1

aj eλitXγj
= d E Θs (5.51)

with the definitions

d =
[

a1 a2 · · · a2n+r

]T
, E = diag

[
eλ1t eλ2t · · · eλ2n+rt

]

Φs =
[

XqA1
XqA2

· · · XqA,2n+r

]
, Ψs =

[
Xµ1

Xµ2
· · · Xµ2n+r

]

Θs =
[

Xγ1
Xγ2

· · · Xγ2n+r

]

λj , (j = 1, 2, . . . , 2n + r) are the 2n + r stable eigenvalues and Φs, Ψs and Θs are the

corresponding sub-vectors of the eigenvectors.

Recalling the definition of uA from equation (5.18) and the desired controller feedback

form from equation (5.44) one may equate these two equations such that

uA = R−1
u ST

A µ − R−1
u γ̇ = Gk qA + Gd q̇A (5.52)

Recognising that

q̇A = d E Φs1 , Φ1 =
[

λ1 XqA1
λ2 XqA2

· · · λ2n+r XqA,2n+r

]
(5.53)

γ̇ = d E Θs1 , Θ1 =
[

λ1 Xγ1
λ2 Xγ2

· · · λ2n+r Xγ2n+r

]
(5.54)

one may introduce these results and the general solutions of qA, µ and γ into equation

(5.52) such that

uA = R−1
u ST

A d E Ψs −R−1
u d E Θs1 = Gk d E Φs + Gd d E Φs1 (5.55)

Rearranging yields the result

[
Gk Gd

]
= R−1

u

[
ST

A Ψs − Θs1

]

 Φs

Φs1



†

(5.56)
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where † denotes a pseudo-inverse.

It may be observed that equation (5.56) does not yield a unique solution due to the

pseudo-inverse thus one may conclude that the method cannot yield the optimal solution.

The method does however retain the second order structure and the author has observed

from numerical trials that for the single degree of freedom system the method does obtain

satisfactory results compared to the augmented and LQR approaches. This observation is

particularly pleasing because the modal control part of this thesis deals with single degree

of freedom systems. A numerical example now highlights this assertion.

5.5 Numerical Example 5.3

A single degree of freedom system is considered with the equations of motion

q̈A + 0.81q̇A + 9qA = uA (5.57)

The single degree of freedom systems are the form of equation typically dealt with during

modal control analysis.

It is desired to minimise the potential and kinetic energies of the system and to place

a large weighting on the rate of change of control compared with the control. The corre-

sponding weighting matrices are given by

Q =


 9 0

0 1


 , Ru = 10−3 , Rv = 10−1 (5.58)

The system is subjected to initial conditions qA(0) = 1 and q̇A(0) = 0. The response

of the displacement qA is observed.

The response of the system to the initial conditions is plotted for three optimal con-

trollers: (1) Pseudo-Inverse (second order) method. (2) Augmented method. (3) Standard

LQR placing no emphasis on rate of change of control. The responses, force and force

rates are illustrated in figures 5.8 to 5.10.

The respective costs for the three methods are: Augmented Approach, 7.6335; Pseudo-

Inverse Approach, 9.0784; and LQR Approach, 5.0968 ×104.
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5.6 Numerical Example 5.4

As may be observed from these costs the augmented and pseudo-inverse methods yield

similar costs which are substantially lower than the LQR cost. One may see from figures

5.8 to 5.10 the response of the augmented and pseudo-inverse methods are similar in

magnitude and behaviour but not identical hence yielding slightly different costs. The

LQR method yields a substantially different controller and attempts no penalisation of the

rate of change of control hence the sizeable difference in cost. Due to the non-uniqueness

of the pseudo-inverse, the pseudo-inverse method can only ever match the augmented

system in terms of performance and can never exceed it due to the augmented approach

representing the optimal controller.

5.6 Numerical Example 5.4

The pseudo-inverse second order analytical method is now applied to the system presented

in numerical example 5.1. One may observe the un-forced response of the third mass in

figure 5.3. Recalling that the weighting matrices were chosen to be

Qd = KA, Qv = MA, Ru = 10−2I, Rv = 102I (5.59)

One may solve for equation (5.56) such that the controller gains are found to be

Gk =


 1.5173 −0.87023 0.078398

−0.80025 0.95397 −0.25301


 (5.60)

Gd =


 −0.15566 −0.028823 −0.029775

−0.12628 −0.26609 −0.070203


 (5.61)

Applying the pseudo-inverse controller to the system described by equation (5.39)

one obtains the response given in figure 5.11. This may be directly compared to the

augmented optimal control approach and conventional LQR approach given in figures 5.4

and 5.5 respectively. Utilising the extended cost function described by equation (5.12) one

finds that quadratic cost of the pseudo-inverse controller is Jpi = 1031.2. This compares

to Jaug = 161 for the augmented approach and Jlqr = 24, 835 for the LQR approach.

The cost from the pseudo-inverse method is 6.4 times larger than the augmented optimal
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5.7 Modelling of the Actuator Dynamics

approach but 24 times smaller than the associated LQR cost. Correspondingly one may

observe that the pseudo-inverse method has successfully penalised the time derivative

of the control force in addition to the conventional parameters. Although one has not

strictly obtained the optimal control as may be found for the augmented method, the

pseudo-inverse method has retained the second order structure of the control problem

whilst providing more suitable control than the LQR method in this instance.

5.7 Modelling of the Actuator Dynamics

So far this chapter has presented new methods in which one tries to weight relative

importance of the rate of change of control force against system response and control

action. One may ask if the same can be achieved through conventional optimal control if

one includes the actuator dynamics in the system equations of motion.

Consider magnetic bearings as a representative contemporary example of a control

actuator for a dynamic system. Figure 5.12 shows the schematic of an 8 pole ‘active

magnetic bearing’ (AMB) [C3]. It is usual to operate these bearings with a bias current,

Ib such that the net force produced by the bearing in a direction is linearly proportional

to the control currents (i) injected into the bearing. Thus, for the 8 pole AMB given

in figure 5.12 one finds the linearised force equations in horizontal (x) and vertical (y)

directions to be

ux =
2 L0,13

g
cos(α) Ib13 i13 (5.62)

uy =
2 L0,24

g
sin(α) Ib24 i24 (5.63)

where g is the air gap, α is the angle angular position of the poles and the subscripts 13

and 24 refer to the magnet pairs 1 and 3, and 2 and 4 illustrated in figure 5.12. L0 is the

induction of the coil defined as

L0 =
N2µ0wl

2(g − x)
(5.64)

N is the number of turns of the coil, µ0 is permeability of free space (4π × 10−7 H/m), w

and l is the width and length of the of the air gap and x is the deviation of the air gap
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5.7 Modelling of the Actuator Dynamics

from g.

Assuming constant mechanical values one may simplify equations (5.62) and (5.63)

such that

uamb =


 ux

uy


 =

2

g


 L0,13 cos(α) Ib13 0

0 L0,24 cos(α) Ib24




 i13

i24


 = K i (5.65)

As stated AMBs have some inductance thus the change of current requires additional

voltage on top of the voltage required to drive a steady current. Thus one finds that the

current is related to the applied voltage in the windings as

Vdc =
d

dt
(i − i0)L0 + r i (5.66)

where r is the resistance of the coil and i0 is the initial current. Rearranging equation

(5.66) and realising d
dt

i0 = 0 yields

d

dt
i =

1

L0

Vdc −
r

L0

i (5.67)

Recalling figure 5.12 one may combine the equations for magnet pairs 13 and 24 to give




d
dt
i13

d
dt
i24


 =




1
L0,13

0

0 1
L0,24




 Vdc13

Vdc24


−




1
L0,13

0

0 1
L0,24




 r13 0

0 r24




 i13

i24


 (5.68)

which may be simplified to

d

dt
i = L−1

0 Vdc − L−1
0 Rr i (5.69)

Equations (5.65) and (5.69) contain the necessary information which describes the

actuator equations of motion. One may incorporate these equations with the state space

equations of motion given in equation (5.2) such that one has




d
dt
i

q̇A1

q̇A2


 =




−Rr L−1
0 0 0

0 0 I

M−1
A SA K −M−1

A KA −M−1
A DA







i

qA1

qA2


+




L−1
0

0

0


 Vdc (5.70)

One may further simplify the mechanical-electrical equations of motion to give

q̇me = A qme + B Vdc (5.71)
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5.7 Modelling of the Actuator Dynamics

One may notice that the combined system and actuator equations of motion are similar

to those obtained for the augmented first order system obtained in equation (5.23).

The model illustrated by equation (5.70) contains all the necessary information of the

mechanical and electrical system. Since the rate of change of force is directly dependent

on the rate of change of current which in turn is directly dependent of the finite voltage

Vdc supplied to the windings, one may penalise the rate of change of control force by

penalising the voltage applied. Likewise one may also penalise the control force by placing

appropriate weighting on the current which is augmented in the new system state vector,

qme. Thus one finds that the cost function outlined in equation (5.7) is equivalent to

J =

∫ ∞

0

1

2
qme

TQme qme +
1

2
Vdc

TRme Vdc dt (5.72)

for the combined mechanical-electrical system.

The obvious question now arises concerning the relevance of previous sections when

one may potentially achieve the same result through including the actuator dynamics in

the equations of motion? This question may be addressed by considering some of the

necessary requirements imposed on AMBs.

The coil resistance of the magnetic bearings is often very small resulting in the com-

bined equations of motion of equation (5.70) becoming stiff. For example in numerical

example 5.2 of the book by Chiba et al. [C3] an AMB with a copper coil is presented

in which the coil resistance is calculated to be r = 0.38Ω. Thus magnetic bearing con-

trollers are often used to overcome this problem to provide better frequency bandwidth,

disturbance rejection and increased stability for the bearings. This further complicates

the combined equations of motion and requires one to know in advance the controller

chosen for the AMBs.

The main argument for the preceding sections is that one does not require knowledge of

the actuator dynamics to provide adequate control. As has been shown in this section the

combined mechanical-electrical equations of motion is almost equivalent to that obtained

from the augmented approach outlined in section 5.3. Thus there may be no advantage

to modelling the actuator dynamics, indeed by not including the actuator dynamics in
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5.8 Summary

the model negates the requirement of knowing the exact properties of the AMB and the

bearing controller action applied to it.

5.8 Summary

Conventional optimal control enables a trade off to be made between the applied control

force and the response of the system subjected to arbitrary initial conditions. This enables

one to judge the relative importance of each variable. However there may exist limitations

on how quickly the control forces may be altered meaning that conventional optimal

control may not provide the optimal response if one tries to exceed these limitations. For

certain applications such as electro-magnetic bearings this represents a real constraint and

thus it becomes essential to account for this limitation in the formulation of the optimal

control problem. This chapter has achieved this.

This chapter has approached this limitation of the optimal control problem by first

extending the conventional first order optimal control problem to augment the system

state with the control force. This requires that one feeds back the rate of change of

control force and subsequently integrate it. One obtains a conventional first order state

space system for which the conventional optimal control method may be applied to the

augmented system. One may consequently penalise the rate of change of control force

by augmenting the state weighting matrix to include the weighting placed on the control

force and use the conventional weighting matrix used to weight the control force to weight

the importance of the rate of change of control force instead. Numerical example has

demonstrated that this method successfully penalises the rate at which control forces are

applied to the system.

The purpose of this thesis has been to extend direct second order control techniques.

A sub-optimal control method has been presented by which one can approach the ex-

tended optimal control problem using the second order matrices. One uses a non-unique

pseudo-inverse to generate the feedback controller matrices meaning that the method pre-

sented does not provide the optimal solution. Despite the non-uniqueness of the solution,
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numerical example has shown that the controller provide a means to penalise the rate of

change of control force in addition to the displacements, velocities and control forces of

the system. One does indeed manage to provide substantial improvement to limiting the

time derivative of the control force.

This chapter has considered the possibility of incorporating the actuator dynamics into

the equations of motion. Through inclusion of the actuator dynamics one may apply the

conventional optimal control problem and place appropriate weighting on the components

which are directly responsible for imposing the physical limitations on the actuators. This

would make the need to extend the optimal control problem obsolete but one would require

exact knowledge of the actuator properties. This chapter has shown that although this

can be achieved through great effort, a more convenient (and almost equivalent) method

would be to use one of the extended optimal control method presented in this chapter.

This would negate the need to accurately model the actuator dynamics in the equations

of motion.

5.9 Conclusions

In this chapter an extension to the optimal control problem has been presented in which

the time derivative of the control vector has been incorporated. Numerical examples have

been presented and compared with the traditional LQR approach.

For the first numerical example presented it could be argued that the weighting placed

on the rate of change of force is substantially larger than the weighting placed on the force

so the LQR approach is immediately disadvantaged due to no inclusion of the rate to the

control problem. This is precisely the key message that the author is trying to present

because there exist applications where the weighting on the rate at which the force can

be applied will be much higher than the weighting placed on the force itself. The second

numerical example illustrates that the method yields itself to practical situations and

again appropriately penalises the time derivative of force as required.

As already stated the eigenvalues of the Hamiltonian system are symmetric about the
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5.9 Conclusions

imaginary axis and contain the eigenvalues of the final optimal system. Thus solving the

optimal control problem to yield a feedback controller, the eigenvalues of the closed loop

system must match that of the Hamiltonian system. In addition one may conclude that

the Hamiltonian system illustrated by equation (5.20) and the Hamiltonian Haug of the

augmented system must have the same eigenvalues since they represent the same optimal

control problem. Indeed for the numerical examples presented, this assertion has been

shown to be correct.
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Augmented System Second Order System

-0.069231 -0.069231

-0.14455 -0.14455

-0.097087 ± 0.46466i -0.097087 ± 0.46466i

-0.045546 ± 1.2486i -0.045546 ± 1.2486i

-0.037027 ± 1.8027i -0.037027 ± 1.8027i

Table 5.1: Numerical example 5.2 - Eigenvalues of augmented versus second order Hamil-

tonian system

Augmented System Second Order System

-0.0038066 ± 348.12i -0.003807 ± 348.12i

-0.0079546 ± 269.68i -0.0079547 ± 269.68i

-0.0084182 ± 191.43i -0.0084181 ± 191.43i

-0.019247 ± 63.613i -0.019247 ± 63.613i

-0.018714 ± 54.194i -0.018714 ± 54.194i

-100 ± 0i -100 ± 0i

Table 5.2: Numerical example 5.3 - Eigenvalues of augmented versus second order Hamil-

tonian system
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Figure 5.1: Pictorial representation of control system

Figure 5.2: Augmented plant
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Figure 5.3: Numerical Example 5.1 un-forced response to initial conditions

0 50 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time, s

D
is

pl
ac

em
en

t

0 50 100
−3

−2

−1

0

1

2

3

time, s

C
on

tr
ol

le
r 

1 
−

 F
or

ce

0 50 100
−3

−2

−1

0

1

2

3

time, s

C
on

tr
ol

le
r 

2 
−

 F
or

ce

0 50 100
−5

0

5

time, s

C
on

tr
ol

le
r 

1 
−

 F
or

ce
 R

at
e

0 50 100
−5

0

5

time, s

C
on

tr
ol

le
r 

2 
−

 F
or

ce
 R

at
e

Figure 5.4: Optimal augmented system response to initial conditions
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Figure 5.5: LQR system response to initial conditions

Figure 5.6: Rotor-dynamic model
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Figure 5.8: Pseudo-Inverse Controller: (a) response, (b) force, (c) force rate
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Figure 5.9: Augmented Controller: (a) response, (b) force, (c) force rate
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Figure 5.10: LQR Controller: (a) response, (b) force, (c) force rate
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Figure 5.11: Numerical Example 5.4 Pseudo Inverse Control On

Figure 5.12: Schematic of 8 pole active magnetic bearing
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Chapter 6

Theoretical Case Study

The purpose of this chapter is to present a detailed case study of a rotor-dynamic control

problem. A rotor-system is presented to which the ‘structure preserving transformation’

(SPT) based modal control technique is used to bring the vibrations of the system under

control. The controlled and uncontrolled responses are compared to show the effect of the

control applied to the system.

The SPT-based method is compared with the conventional ‘independent modal space

control’ (IMSC) method. Although the two methods are not directly comparable due to

differences in the definition of the modes the comparison shows the advantages of the SPT

method over the IMSC method.

6.1 Rotor Model

Consider the over-hung rotor system shown in figure 6.1. The rotor comprises 6 equal

length elements of length 0.2 m with 4 modelled ‘degrees of freedom’ (DOF) at each

node (2 translational, 2 rotational). The shaft of the rotor has diameter 0.05 m and is

constructed from steel with Young’s modulus, E = 200 GPa and density, ρ = 7800 kg/m3.

The shaft of the rotor is supported by bearings at nodes 1 and 5. The bearings are

chosen deliberately to be orthotropic with properties shown in table 6.5.
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6.1 Rotor Model

At node 7 a disc of diameter 0.3 m and axial thickness 0.04 m is situated. The disc is

made from the same material as the shaft. The nature of the disc compared to the bearings

ensures that the modes are well coupled due to the Coriollis effects. This essentially means

that the modes of the system are dependent on the spin speed of the rotor. This may

be represented using the Campbell diagram [G9] shown in figure 6.2. The Campbell

diagram shows how the imaginary parts of the eigenvalues vary with respect to shaft

speed. As may be seen in figure 6.2 the natural frequencies split representing the forward

and backward whirl modes. The splitting of the forward and backward modes is due to

the spin-dependent gyroscopic forces which are proportional to velocity. Correspondingly

these cross-coupling forces are represented by skew-symmetric components residing in the

system damping matrix. This structure of the damping matrix ensures that the over-hung

rotor system in this case study is very non-classically damped.

The rotor is assumed to be driven by a motor situated at node 3. The motor has weight

of 10.4 kg and acts as point mass on the rotor. It is assumed that parallel windings are

added to the motor such that lateral forces can be applied using the motor as described

by Khoo et al, [K4]. Thus the motor can be used to apply lateral forces in the x− and y-

directions respectively and the motor is assumed to act as a self-sensing magnetic bearing

such that displacements at this location may also be observed.

Finite element (FE) modelling is used to generate a suitable description of the rotor

system. A 28-dimensional FE model is obtained requiring the necessary step of dimen-

sional reduction to a more manageable dimension. The rotor is thus reduced in dimension

to 6 DOFs using the Guyan reduction [G12]. The degrees of freedom retained are de-

termined by the automated process described by Henshell and Ong [H1] and are found

to correspond to the 4 translation degrees of freedom at the actuator location and disc

location and the rotational degrees of freedom at the disc.

Analysis of the Bode magnitude plots of the full and reduced systems, found in figures

6.3 and 6.4, show that the response is dominated by the lower order mode-pairs and less

influenced by the higher order mode-pairs. The reduced order model retains the lower

order modes of significance. Further justification for the order of the reduced model can
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6.2 SPT-Control

be found from comparing the impulse responses of the full and reduced systems found

in figures 6.5 and 6.6. As may be observed from figures 6.5 and 6.6 the reduced system

exhibits the characteristics of the full system quite accurately.

The initial displacements of the rotor are assumed to be identical to the first mass-

normalised undamped mode shape in the x-direction for a rotor speed of 5, 000 rpm.

The initial velocities are zero. The physical response to these initial conditions may be

observed in figure 6.7. As may be observed from figure 6.7 the rotor response is not

heavily damped and the response is not noticeably decaying, thus it could be brought

under control quickly using control techniques.

6.2 SPT-Control

An SPT based controller is designed to control the rotor system. One finds that for the

SPT diagonalising transformation one finds the modal equations of motion to be

q̈m1 spt + 0.0081577 q̇m1 spt + 28834 qm1 spt = um1 spt

q̈m2 spt + 0.016809 q̇m2 spt + 44516 qm2 spt = um2 spt

q̈m3 spt + 0.60207 q̇m3 spt + 4.8788 × 105qm3 spt = um3 spt

q̈m4 spt + 0.55289 q̇m4 spt + 5.1457 × 105qm4 spt = um4 spt

q̈m5 spt + 2.6745 q̇m5 spt + 2.0422 × 106qm5 spt = um5 spt

q̈m6 spt + 3.7297 q̇m6 spt + 5.138 × 106qm6 spt = um6 spt

(6.1)

If one considers single degree of freedom (SDOF) modal equations to have the classical

form

q̈mj spt + 2γjωjq̇mj spt + ω2
jqmj spt (6.2)

where qmj spt is the displacement of the jth mode (j = 1, 2, . . . , n) and γj and ωj are

damping ratio and natural frequency of the jth mode, then one may find the damping

ratios for the modal equations as shown in table 6.5.

From table 6.5 one may see that the damping ratio of the first two pairs of modes is

significantly less than the other modelled modes meaning that the response from these
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6.2 SPT-Control

mode-pairs will take much longer to decay. The Bode magnitude plot in figure 6.4 shows

that the physical response of the system is dominated by these first two modes of vibration

and it is decided to control these mode-pairs.

The controller for the mode-pairs is designed using optimal control so as to minimise

the kinetic and potential modal energies of the system. One chooses the weighting matrix

on the modal forces is to be 10−3 for both mode-pairs. It was found that this level

of weighting on the modal force ensured that the modal responses were brought under

control sufficiently quickly without requiring a very large control burden due to the force.

The resulting modal controllers for the first and second mode-pairs are found to be (see

section 3.4 for further details)

um1 spt = − (495.74 qm1 spt + 44.618 q̇m1 spt) (6.3)

um2 spt = − (497.22 qm2 spt + 44.642 q̇m2 spt) (6.4)

The physical response of the system when the SPT-modal controller is on may be

observed in figure 6.8. As expected, the physical response of the system is affected by the

SPT controller. The initial displacements are rapidly reduced to a value of approximately

0.018 where the physical response proceeds to decay much more slowly. The reasons for

this response may be found in the modal responses of the uncontrolled and controlled

modal responses found in figures 6.10 and 6.11 respectively. One observes that the first

two mode-pairs are rapidly brought under control and the remaining modes are not con-

trolled. Consequently, the physical effects of the first two mode-pairs are removed from

the physical response and the remaining modal responses dictate the longer term physical

response shown in figure 6.8.

The modal responses of the system for the uncontrolled and controlled cases are per-

haps more useful in the analysis of the controller. The ambition of the SPT-controller

was to bring the first two mode-pairs under control and leave the remaining modes un-

controlled. By comparing the modal responses for mode-pairs 1 and 2 in figures 6.10 and

6.11 one can readily see that these mode-pairs are brought under control. As may be ob-

served the remaining uncontrolled modes are excited by control spillover effects although

the effects are not significant. The important observation is to note that modes do not
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6.3 IMSC Control

excite or couple with each other meaning that full, independent modal control has been

obtained.

6.3 IMSC Control

To fully appreciate the advantages of the SPT-modal control method one must contrast

the SPT method with the conventional IMSC method [B1]. The IMSC method uses the

eigenvectors of the undamped system to diagonalise the system matrices. Any remaining

off-diagonal terms in the damping matrix are stripped away such that they are discarded.

This has the unfortunate consequence of ignoring any notion of gyroscopic coupling in

the system model. The modal equations of motion for the IMSC method are found to be

q̈m1 imsc + 0.013806 q̇m1 imsc + 36042 qm1 imsc = um1 imsc

q̈m2 imsc + 0.010035 q̇m2 imsc + 36448 qm2 imsc = um2 imsc

q̈m3 imsc + 0.66172 q̇m3 imsc + 4.909 × 105 qm3 imsc = um3 imsc

q̈m4 imsc + 0.51071 q̇m4 imsc + 5.1367 × 105 qm4 imsc = um4 imsc

q̈m5 imsc + 3.4203 q̇m5 imsc + 3.1096 × 106 qm5 imsc = um5 imsc

q̈m6 imsc + 2.9676 q̇m6 imsc + 3.2826 × 106 qm6 imsc = um6 imsc

(6.5)

From the modal equations of motion given in equation (6.5) one may observe the

effect of stripping the modal damping matrix in table 6.3 by comparing the original

system eigenvalues with those of the diagonalised IMSC eigenvalues.

As may be observed from table 6.3 the eigenvalues are substantially altered by dis-

carding the off-diagonal terms in the modal damping matrix. Additionally any concept

of coupling the modes by the damping matrix is ignored. Ignoring the coupling in the

damping modal matrix cannot be justified in many cases and the coupling of the modes

generated by the IMSC method can have significant effect as will be shown for this ex-

ample.

One now designs the equivalent optimal IMSC modal controller so as to minimise

the kinetic and potential modal energies. Because the IMSC method generates different
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definitions of the mode-pairs due to discarding the off-diagonal and skew-symmetry in

the damping matrix, the IMSC diagonalised system matrices are different from the SPT

diagonalised matrices. Correspondingly different optimal modal controllers are obtained

and for the first two pairs of modes these are found to be

um1 imsc = − (496.58 qm1 imsc + 44.631 q̇m1 imsc) (6.6)

um2 imsc = − (496.62 qm2 imsc + 44.636 q̇m2 imsc) (6.7)

The physical effect of the IMSC controller may be observed in figure 6.9. The physical

response of the system is not dissimilar to that of the SPT-method. The physical response

of the system rapidly descends to an approximate value of 0.018 before decaying more

slowly as a consequence of the remaining modal responses belonging to the uncontrolled

modes. The differences between the SPT and IMSC methods become more apparent when

one looks at the IMSC modal responses of the uncontrolled and controlled cases.

One now examines the modal responses to the uncontrolled and controlled systems

represented in figures 6.12 and 6.13 respectively. The response of the first two mode-pairs

are brought under control as was the case for the SPT-method. However when the uncon-

trolled modes are examined it becomes obvious that they are affected by the modal control

force. This is particularly apparent when one examines the responses of mode-pairs 3 and

4. Thus the proficiency of the controller can be questioned because it is apparent from

the modal response to the controller that the modes cannot be independently controlled

for the IMSC method.

6.4 Summary

This chapter has presented a case study of a rotor system subjected to initial conditions.

This rotor was modelled using the finite element method and the mathematical model

generated was reduced in dimension using Guyan reduction. The initial conditions applied

to the reduced model caused a vibrational response which decayed over a period of time.

It was shown that the physical response was dominated by the first two modes of vibration

and the SPT and IMSC methods were applied to reduce the first two modal responses to
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zero and consequently bringing the physical response of the system to minimum energy

state more quickly.

Application of the SPT method enabled one to fully decouple the rotor system into

decoupled systems whilst retaining the same eigenvalues of the system. This contrasts

to the IMSC method where the undamped eigenvectors were used to create a pseudo-

diagonalised system in which the remaining off-diagonal terms in the damping matrix

(corresponding to the rotational nature of the system) were discarded as convention dic-

tates. The effects of ignoring these off-diagonal damping terms was first demonstrated by

comparing the eigenvalues of the IMSC and original system; substantial alteration of the

system eigenvalues was observed. Perhaps more importantly the application of the IMSC

modal controller showed that one could not control the modes independently resulting in

the controlled modes exciting the uncontrolled modes. Both methods suffered from the

effects of control spillover.

6.5 Conclusions

The purpose of this chapter was to present a detailed case study of a rotor-dynamic control

problem. A rotor system has been presented in which the vibrations caused by initial

conditions have been controlled using an SPT-based modal controller. The example has

shown that the response of the system has been successfully teased apart into independent

decoupled systems. The SPT-method has been directly contrasted to the conventional

IMSC method in which true independent control was not achieved because of the non-

classical damping associated with the skew-symmetry in the damping matrix. Although

the two methods are not directly comparable due to differences in the definition of the

modes the comparison shows that the SPT-method holds distinct advantage over the

IMSC method.
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Bearing Bearing 1 Bearing 2

Stiffness Kxx (MN/m) 50 50

Stiffness Kyy (MN/m) 70 70

Damping Dxx (Ns/m) 500 500

Damping Dyy (Ns/m) 700 700

Table 6.1: Rotor system bearing properties

mode damping ratio (γ)

1 0.000024021

2 0.000039834

3 0.000430983

4 0.000385378

5 0.002959126

6 0.002601638

Table 6.2: Damping ratios of SPT modes
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Original IMSC

-0.0040788 ± 169.8i -0.006903 ± 189.85i

-0.0084045 ± 210.99i -0.0050176 ± 190.91i

-0.30104 ± 698.48i -0.33086 ± 700.64i

-0.27644 ± 717.34i -0.25535 ± 716.71i

-1.3373 ± 1429.1i -1.7102 ± 1763.4i

-1.8648 ± 2266.7i -1.4838 ± 1811.8i

Table 6.3: Case study, comparison of original and IMSC eigenvalues

Figure 6.1: Schematic of over-hung rotor system
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Figure 6.3: Bode magnitude plot of the full order system
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Figure 6.4: Bode magnitude plot of the reduced order system
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Figure 6.5: Impulse applied to full system
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Figure 6.6: Impulse applied to Guyan reduced system
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Figure 6.7: Free response of rotor to initial conditions
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Figure 6.8: SPT-modal controlled response of rotor to initial conditions
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Figure 6.9: IMSC-modal controlled response of rotor to initial conditions
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Figure 6.10: SPT modal response, control off
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Figure 6.11: SPT modal response, control on

150



6.5 Conclusions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

m
od

e 
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

m
od

e 
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

0

0.1

m
od

e 
3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

0

0.1

m
od

e 
4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

m
od

e 
5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

m
od

e 
6

time, s

Figure 6.12: IMSC modal response, control off
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Figure 6.13: IMSC modal response, control on
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Chapter 7

Conclusions and Further Work

The ambition of this project was to extend knowledge in the field of control of rotating

machinery. Two new methods have been presented - modal control of generally damped

systems and optimal control incorporating the rate of change of force. The origins of

both methods reside in the study of the structure preserving transformations. Numerical

examples have illustrated the two methods successfully and they have shown that the

methods result in superior control than conventional techniques permit. The two methods

are now concluded in detail.

7.1 Structure Preserving Based Modal Control

The modal control method presented in this thesis involves the use of the ‘structure

preserving transformations’ (SPTs) to diagonalise the system matrices. Specifically the

method presented does not insist that the system be ‘classically damped’ such that the

eigenvectors of the undamped system be used to diagonalise simultaneously all three

system matrices. It has been shown how to form a diagonalising SPT such that one

may diagonalise the system matrices of a generally damped system. One may use the

diagonalising SPTs to decouple the un-forced equations of motion but the diagonalised

system is still coupled externally via the forcing matrix.

The applied control is designed independently in the modal space before being trans-
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7.1 Structure Preserving Based Modal Control

formed back into the physical domain. This allows decoupling of the second order equa-

tions of motion of the system both internally for the un-forced system and externally

when control forces are present. The SPT-method does not constrain the system damp-

ing to be ‘classically damped’ as conventional second order modal control does. Theory

and numerical examples have shown that the SPT-based modal control method provides

superior control for rotating systems.

The SPTs are used to transform any second order system into another second or-

der system whilst retaining the same Jordan form. This thesis has demonstrated how

to extract the new displacements and velocities from the original physical co-ordinates

through the use of SPT-based filters. Convention dictates that the modes obtained for

control through modal filtering should match the real physical modes of vibration. For

the SPT-modal control approach this wisdom is dismissed and the modes obtained are no

longer the undamped modes of vibration formed by the mass and stiffness matrices. How-

ever, the modal form utilised in this project does indeed contain physically meaningful

data enabling the application of the SPT modal method to systems for which traditional

modal control methods would yield inadequate control.

The SPT-based filters are dynamic (first order systems) and consequently a necessary

requirement is that their eigenvalues reside on the stable half-plane. For the specific

case when the transformed system matrices are real and diagonal a method has been

developed in which one may flow the eigenvalues towards the stable region through the

use of reflexive SPTs. The transformed system matrices remain unaltered and numerical

experiments suggest that one may always make a filter increasingly stable. Numerical

example has successfully demonstrated the method for non-classically damped systems

with initially unstable filters. However for the general case it is currently unknown whether

the change in eigenvalues may go asymptotic, in which case the eigenvalues may never

cross into the stable half-plane. Numerical experimentation suggests that this is not the

case and that it is always possible to find a stable filter. This remains to be proved

formally.

Utilising the SPT-based filters to transform the modal force into the physical domain

153



7.1 Structure Preserving Based Modal Control

results in the both the force and rate of change of force being obtained. This presents

the opportunity to smooth the physical force through interpolation if the modal control

method is implemented in discrete time. For theoretical problems in which the method

can be implemented continuously, this is not an issue but practical application of any

control system requires discrete implementation through the use of digital equipment.

This thesis has shown the potential improvement in performance through smoothing the

control force using the rate of change of control force. Thus SPT-modal control may offer

additional benefits over conventional modal control methods. This is something in need

of further investigation.

7.1.1 Further Work

Analysis of the SPT-modal control method presented in the thesis raises several subtleties

which remain to be addressed. The method may be directly compared to results from the

conventional techniques as found in the literature and potential areas of development can

be highlighted.

Like all modal control methods the SPT-method theoretically requires knowledge of

all system states to be utilised. It has not been the intent of this project to extend the

concept of state reconstruction and the author has relied upon existing techniques such

as Kalman filters [B8] or Luenberger observers [M7] to satisfy this requirement. In the

literature Oz and Meirovitch [O3] developed modal state reconstruction filters for the first

order IMSC technique such that the modal state could be directly reconstructed given

discrete observations of the system state.

The first order state space approach favoured by Oz and Meirovitch uses a 0th order

modal “filter” to obtain the modal state from the physical state. The SPT-approach

however requires that in addition to the state the derivative of the state is used as well

in the definition of the SPT-modal parameters. This results in a much more complex

definition of the modal state parameters and consequently the modal Kalman filters de-

veloped by Oz and Meirovitch are much simpler than the first order filters required for

the SPT-modal approach. It is suggested that something similar to the modal Kalman
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7.1 Structure Preserving Based Modal Control

filters could be developed for the SPT modal control and this is an area where further

work should be considered.

The SPT modal control technique suffers from the effects of control spillover in which

the physical force causes excitation of the uncontrolled and un-modelled modes. This

problem is not unique to the SPT-modal control method. The control spillover problem

has the potential to cause significant degradation to the control applied to the system

and hence the control objectives may not be met. It was shown in chapter 3 that the

control spillover problem for the SPT modal control method is non-destabilising since the

eigenvalues of the open loop uncontrolled mode-pairs remain unaltered. The significance

of the control spillover to degrade the system performance has not been investigated.

The control spillover problem for the conventional second order IMSC technique has

been tackled by several authors such as Baz et al., [B1] and Fang et al., [F1]. The approach

described by Fang et al., is inappropriate for the first order form of the filters presented

for the SPT method. The approach introduced by Baz et al., illustrates the ability to

control several mode-pairs through a sharing strategy in which the actuators can switch

between the mode-pairs they control. This offers a potential solution for control spillover

in the SPT modal control approach although initial investigations report that the strategy

destabilises the SPT filters. For the long term establishment of the SPT modal control

method it is advised that the control spillover problem is something that is in need of

refinement.

The predominant difference between the modal control method presented in this

project and other control methods is due to the first order nature of the modal filters. The

modal filters introduce an additional dimension of work into the modal control problem

due to the necessity that they must be stable. Unstable filters will not permit the conver-

sion of the modal force into the physical domain and the physical control force indicated

will rapidly tend to infinity. This project has illustrated a method by which the filters

can be ‘flowed’ into a more stable region through the use of reflexive SPTs exploiting the

non-uniqueness of the diagonalising SPTs. This allows the filters to be made progressively

more stable. It has not yet been formally proven that a stable filter is always available
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7.2 Extended Optimal Control

for a diagonalising SPT. Indeed it seems statistically more probable to obtain an unsta-

ble filter rather than a stable filter although numerical experimentation suggests that a

stable filter always exist. This problem seems an obvious point to address and indeed the

author has spent much time trying to formally prove the existence of stable filters for all

diagonalising transformations.

7.1.2 Summary of Further Work

Following the various issues highlighted above the future areas for development for the

SPT modal control method may be hereby summarised:

◦ Development of modal Kalman filters to reconstruct complete modal state from

discrete sensor measurements.

◦ The development of control spillover strategies to minimise the effects of exciting

uncontrolled modes.

◦ Development of a formal proof verifying that there exists stable SPT filters for all

diagonalising SPTs.

◦ Investigation of the benefits of smoothing the applied force using the obtained rate

of change of control force for digital controllers.

7.2 Extended Optimal Control

In this thesis an extension to the optimal control problem has been presented in which

the rate of change of control has been incorporated into the cost function. Numerical

examples have been successfully demonstrated to show the implementation of the method

and comparison drawn with the conventional LQR approach. The rationale behind the

extended optimal control method was to establish an analytical method by which weight-

ing could be placed on the system response, applied control force and corresponding rate

of change of control force. Justification of this ambition has been made from the use
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7.2 Extended Optimal Control

of electro-magnetic bearings as a contemporary example. The extended optimal control

method outlined in this thesis makes use of optimal control theory to impose a limit

on the rate at which forces can be applied to a system. The method presented in this

project yields a usable analytical solution to the extended optimal control problem and

the usability of the method has been demonstrated through the use of example.

7.2.1 Further Work

The analytical method obtained in this thesis augments the system state to include the

control force. This requires that the rate of change of force be fed back and subsequently

integrated. This raises various questions concerning the stability and robustness of the

system which have not been addressed in this project. It would thus be beneficial to

transform the problem such that the input to the system is in a more conventional form.

The only other method of penalising the rate at which the control forces of which the

author is aware is predictive control [M1]. The predictive control method uses a first order

discrete time representation of the dynamic system and calculates the required change of

force at each time sample. In order to deal with the required change in the discrete force

vector one must augment the system state through the addition of the force vector. This is

analogous to the continuous time augmented state used in the augmented optimal control

method presented in chapter 5.

The predictive control method uses knowledge of the system and current state to

create a prediction of how the system is going to react in the future. The predictive

control method then attempts to minimise a quadratic cost function, equivalent to the

quadratic cost function used in the ‘linear quadratic regulator’ (LQR) problem, spanning

a finite number of time samples in the future. Cole et al. [C4] showed that the predictive

control method yields a comparable result to the conventional optimal control problem.

The possibility arises to extend the predictive control problem to solve the problem

of optimally penalising system state, forcing and rate of change of forcing. However

implementation of the predictive control method requires that the controller gains are time

variant and calculated at each time sample as a function of current state and force and
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predicted future state and force. Predictive control was originally developed for process

control where the time samples are very slow. This raises the possibility of computational

problems for systems represented by larger dimensional models requiring fast time samples

such as rotating machines. This problem may be overcome using a solution such as

a lookup table such that the controller action is selected from pre-computed controller

gains.

The predictive control method can also be used to place physical limits on the rate

of change of control force. These can take the form of soft or hard constraints where

soft constraints allow the limit to be violated to a moderate degree and hard constraints

represent an absolute limit. Both soft and hard predictive control controllers result in a

non-linear controller when the control action nears the physical limits designed into the

controller.

A useful comparison would be to compare the results from the predictive control

method to the continuous time augmented method presented in this thesis.

The theme of this project has been to extend the notion of direct second order control.

For the conventional optimal control Zhang [Z1] has shown that it is possible to solve the

optimal control problem for second order systems through utilising the eigenvalue and

eigenvectors of the Hamiltonian system. This raises the valid assumption that the same

may be possible for the extended optimal control problem if the system is presented in an

appropriate form. The second order process illustrated in chapter 5 results requires the

use of a pseudo-inverse. This is undesirable due to the non-uniqueness of the solution.

Thus one suggests that it may be possible to solve the method to yield a unique solution

that is applicable to the second order system directly. The results for the augmented

system suggest that an optimal solution does indeed exist for the first order system, thus

it may be possible to find an analytical solution for the second order system.

7.2.2 Summary of Further Work

From the areas highlighted above the areas of future work for the extended optimal control

method may be accordingly summarised:
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7.3 Final Remark

◦ Removal of necessity to feed-back rate of change of control force.

◦ Extension of the extended optimal control problem to second order form.

◦ Perform an assessment of the predictive control method usefulness in penalising the

rate of change of force.

7.3 Final Remark

It is the author’s opinion that the areas highlighted for future areas of development rep-

resent the significant remaining areas of interest and potential weaknesses of this project.

The areas for development are drawn from immediate comparison to existing techniques

that this project seeks to extend. Despite these weaknesses the author believes that a

usable and exciting contribution has been made to the field of control of rotating machines.
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Appendix A

Closed Form Optimal Modal

Controller Gains

For the context of this project the aim to design a controller to give adequate dynamic

response. The question of how to balance design needs versus practicalities obviously

arises. Pole placement methods yield direct consequence to the system response but the

effect of the pole placement is not known prior to application. It is possible to measure

the cost of applying the controller and then a decision made as to whether or not the

controller is appropriate. However working backwards one may decide how to measure

the cost and correspondingly how to generate a controller to minimise it. This approach

generally defines what the optimal control method is.

Optimal control may be defined as the design of a controller which yields the minimum

cost subjected to user-defined constraints. Typically the cost function is a function of

system state (qA(t)) and applied force (uA(t)) and is quadratic in nature. The cost

function utilised in this section may be defined as

J =
1

2

∫ ∞

0

qA
T (t) Q qA(t) + uT

A(t) R uA(t) dt (A.1)

where Q ∈ R
2n×2n represents a positive semi-definitive weighting matrix to determine

the relative importance of the system state at time t and R ∈ R
r×r is a positive definite

weighting matrix to determine the relative importance of the applied force at time t.
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The quadratic nature ensures equal weighting between positive and negative values and

the integral ensures that the more persistent error is penalised more harshly [B8]. The

underlined notation denoting the 2n × 2n dimensional matrices is relaxed here.

The optimal control law is sought such that a linear combination of the system state

may be used to minimise the cost function illustrated by equation (A.1). A controller of

this form is defined

uA = Gopt qA(t) (A.2)

It is well established that the solution to the optimal control problem may be found by

solving the Riccati equation [Z2] backward through time to yield time dependent matrix

P(t)

Ṗ(t) = −Q −P(t) AA −AA
T P(t) + P(t) BA R−1BA

T P(t) (A.3)

Here the matrices AA and BA are the state space system companion and forcing

matrices respectively.

The system in question is assumed to be controllable. As a consequence of this the

system state at infinite time is assumed to have reached steady state resulting with the

matrix Ṗ(∞) = 0. This is referred to as the infinite horizon problem and allows a solution

to yield a constant matrix P. Thus a relationship between the infinite horizon solution

to the Riccati equation and the controller matrix Gopt may be established.

Gopt = R−1 BA
T P (A.4)

As shown the modal control method resorts to controlling r monic SDOF systems.

Meirovitch showed that it was possible to yield r-closed form optimal controller gains for

the first order IMSC technique [M2]. The method presented by Meirovitch is extended to

find a closed form solution to the optimal control problem for the monic single degree of

freedom systems. Defining the state space system for the single degree of freedom system

to be


 q̇B1j(t)

q̇B2j(t)


 =


 0 1

−kj −dj




 qB1j(t)

qB2j(t)


+


 0

1


 u(t) (A.5)
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where qB1j(t) = qBj(t) and qB2j(t) = q̇B1j(t). Equation (A.5) may be simplified to

q̇Bj(t) = ABj qBj(t) + BBj uBj(t) (A.6)

The interest is in finding the 2 × 2 Riccati matrix Pj which may be partitioned

Pj =


 p11 p12

p21 p22


 (A.7)

The problem may be further simplified by first noting that the solution to the Riccati

equation Pj is symmetric hence p12 = p21 and setting the scalar value Rj = 1 without

loss of generality since this represents only a relative relationship with the matrix Qj . So

that there is no coupling between the modal state variables qB1j(t) and qB2j(t) the 2× 2

matrix Qj is assumed to have diagonal form

Qj =


 q11 0

0 q22


 (A.8)

One may thus acknowledge the infinite horizon problem to solve the Riccati equation

−Qj −Pj ABj − ABj
T Pj + Pj BBj R−1

j BBj
T Pj = 0 (A.9)

Algebraic manipulation of equation (A.9) yields three equations which may be used

to give the 2 × 2 Riccati matrix Pj.

p21 = p12 = −kj +
√

k2
j + q11

p22 = −dj +
√

d2
j + q22 + 2p21

p11 = kj p22 + dj p21 + p21p22

(A.10)

Recognising the form of the control problem and one may separate the optimal con-

troller gains matrix Gopt j into its two constitute parts to give

Gopt j =
[

Gkj Gdj

]
(A.11)

where Gkj and Gdj were introduced in the previous section such that the may add contri-

butions to the modal stiffness and damping matrices respectively. Using the definitions
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A.1 Numerical Example: Closed Form Optimal Gains

from equations (A.4) and (A.5) and recalling that we set R = 1, the closed form solutions

are found to be

Gkj = −kj +
√

k2
j + q11 (A.12)

Gdj = −dj +

√
d2

j + q22 − 2 kj + 2
√

k2
j + q11 (A.13)

A.1 Numerical Example: Closed Form Optimal Gains

Utilising the spring-mass system from the numerical example presented in section 3.5

the closed form optimal control gains are used to calculated such to minimise the modal

potential and kinetic energies of the system. The modal weighting matrices may thus be

shown to be

Qj =


 kj 0

0 mj


 , Rj = 1 (A.14)

j = 1, 2, · · · , n

Accordingly, from the closed loop method the optimal modal controller gains are found

to be

Gk =




0.49988 0 0

0 0.49995 0

0 0 0.49998


 , Gd =




0.30459 0 0

0 0.09965 0

0 0 0.080481


(A.15)

These results may be compared to the conventional results obtained from solving the

Riccati equation. The norm of the difference between the gains obtained for two methods

is 3.7228 × 10−13. This illustrates that the solutions obtained through the closed loop

equations give adequate accuracy and the advantage of avoiding the need to solve the

Riccati equation for the modal system.

A.2 Conclusions

A necessary requirement of any control method is the determination of the feedback

controller. It has been chosen to use optimal control for this project because it yields
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A.2 Conclusions

direct comparison to the original IMSC method [M2] and enables the determination of

closed loop solutions to the feedback controller gains. Traditional pole placement methods

do not necessary yield an intuitive sense of what direct addition to the modal stiffness

and damping will yield. The closed loop solution optimal control method removes this

question through a relative inexpensive computation.
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Appendix B

Constructing a Diagonal System

from System Eigenvalues

The purpose of this chapter is to show how to obtain the diagonal second order system

matrices from the original second order system matrices. A 3 step process is followed.

1. Calculate the 2n eigenvalues λi (i = 1, 2, · · · , 2n) of the original second order systems

KA,DA,MA.

2. Group the 2n eigenvalues into n appropriate pairings. Thus one now wishes to find

the parameters kj, dj, mj which correspond to the roots of the quadratic equation.

3. One may use the quadratic formula z1,2 = −b±
√

b2−4ac
2a

to find the roots of a quadratic

equation. Thus assuming a monic equation such that mj = 1

λj =
1

2

(
−dj +

√
d2

j − 4kj

)
(B.1)

λj+1 =
1

2

(
−dj −

√
d2

j − 4kj

)
(B.2)

Solving for the unknowns in equations (B.1) and (B.2) one finds

mj = 1, dj = (λj + λj+1), kj = λj λj+1, j = 1, 3, 5, · · · , 2n − 1 (B.3)
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Appendix C

Alternative Derivation of SPT

Modal Filters

Many structural and dynamic systems are described by the second order equations of

motion

MA q̈A(t) + DA q̇A(t) + KA qA(t) = fA(t) (C.1)

where MA,DA,KA ∈ R
n×n are the system mass, damping and stiffness matrices respec-

tively, qA(t) ∈ R
n the vector of physical coordinates and fA(t) ∈ R

r is the generalised

vector of applied forces. For the sake of brevity this paper assumes that forces are avail-

able at all locations and as a consequence r = n and the notation depicting dependence

on time has been removed.

The notion of the ‘Lancaster Augmented Matrices’ (LAMs) are introduced here such

that the system may be represented in state space form. For a second order system there

exists three LAMs which can be produced by inspection to be,

A0 =


 −DA −MA

−MA 0


 , A1 =


 KA 0

0 −MA


 , A2 =


 0 KA

KA DA


 (C.2)

The LAMs allow the second order system to be represented in a reduced form

Ak qA − Ak−1 q̇A = fAk k = 1, 2 (C.3)
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C.1 Modal Filters

The vectors qA and fAk may be defined

qA :=


 qA

q̇A


 fA1 :=


 fA

0


 fA2 :=


 0

fA


 (C.4)

A ‘Structure Preserving Transformation’ (SPT) is a coordinate transformation applied

to the LAMs representing a bijective mapping between linear systems. The specific nature

of the transformation allows the preservation of the appropriate structure within the

LAMs. The SPTs are defined simply by left and right 2n × 2n transformation matrices,

TL and TR respectively, allowing the definition

TL
T Ak TR = Bk ∀ k = 0, 1, 2 · (C.5)

Thus the new LAMs are represented by Bk containing the new second order system

matrices KB,DB,MB. The structure of the SPTs can be shown to have the following

form

TL =


 FL − 1

2
GL DT

A −GL MT
A

GL KT
A FL + 1

2
GL DT

A




−1

TR =


 FR − 1

2
GR DA −GR MA

GR KA FR + 1
2
GR DA




−1

·(C.6)

where FL,FR,GL,GR ∈ R
n×n are arbitrary pre-defined matrices subject to the necessary

constraint

FR GT
L + GR FT

L = 0 · (C.7)

C.1 Modal Filters

The premise of this paper is to develop direct second order control of the equations of mo-

tion. Thus the necessary question is how to extract the second order modal contributions

from the state space system. The derivation of the modal filters for SPT-based control is

presented here. For the purpose of this section one creates the definition τ ≡ ∂
∂t

.

Introducing the partitioning

qA =:


 qA(1)

qA(2)


 , fA1 =:


 fA1(1)

fA1(2)


 , fA2 =:


 fA2(1)

fA2(2)


 (C.8)
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C.1 Modal Filters

it is possible to extract a definition of the original second order system from the state

space representation.

qA = qA(1) , fA = fA1(1) + τ fA1(2) (C.9)

Equation (C.9) has been generalised such that it is assumed that the forcing part of

the state space representation, fA1, is fully populated. Whilst for the original system this

is clearly not the case, the definition allows the extension to the transformed problem

which fB1 in general is fully populated. Equation (C.9) can be proved mechanistically for

the second system. Expanding equation (C.3) for k = 1 and k = 2 yields

KA

(
qA(2) − τ qA(1)

)
= fA2(1) (C.10)

DA

(
qA(2) − τ qA(1)

)
= fA2(2) − fA1(1) (C.11)

MA

(
qA(2) − τ qA(1)

)
= −fA1(2) (C.12)

By substituting fA2(2) from equation (C.3) into equation (C.11) and subtracting τ

multiplied by equation (C.12) yields

(KA + τ DA + τ 2 MA) qA(1) = fA1(1) + τ fA1(2) (C.13)

Hence equations (C.9) are proved. It is prudent at this juncture to point out that

following similar methodology the equations of motion may also be represented in terms

of qA(2).

By applying the SPTs one has the new transformed equations of motion

(
Bk − τBk−1

)
qB = TL

T fAk = fBk (C.14)

Thus one may extract the new second order system of equations in terms of partitions

of the new state variable qB.

(
KB + τ DB + τ 2 MB

)
qB = fB (C.15)

Knowing the definition from equation (C.9) the following are defined

qB = qB(1) , fB = fB1(1) + τ fB1(2) (C.16)
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C.1 Modal Filters

The obvious question now arises, what is the relationship between the old and new

coordinate sets? Acknowledging that the system coordinates are transformed using the

definition qB = ZR qA where ZR = TR
−1 one has


 qB(1)

qB(2)


 =


 ZR11

ZR12

ZR21
ZR22




 qA(1)

qA(2)


 =


 ZR11

qA(1) + ZR12
qA(2)

ZR21
qA(1) + ZR22

qA(2)


 (C.17)

The definition of qB from equation (C.16) is used to see that the new coordinate set

has the relationship to the old through the definition

qB =
[

I 0

]
ZR

−1 qA (C.18)

This result allows the introduction of a right filter of the form

qB =
(
ZR11

+ τ ZR12

)
qA (C.19)

The vector qB represents the modal displacement obtained through the right filter

using knowledge of physical displacements and velocities. For SPT modal control one

also requires the modal velocities τqB . However the lower half of the state vector qB is in

general not the derivative of the top half as was the case before the SPTs were applied.

Thus the modal velocity cannot be extracted directly from the lower half of the state

vector the way the modal displacement was extracted from the top half. Thus realising

the relationship for the modal velocity τqB = τ qB(1) one may rearrange equation (C.12)

to find that the modal velocities are related to the modal displacements through

τ qB = τ qB(1) = qB(2) + M−1
B fB1(2) (C.20)

Introducing the known structure of the original untransformed equations of motion one

has

τ qB =
(
ZR21

+ τ ZR22

)
qA + M−1

B TL
T

12
fA (C.21)

Accordingly the modal velocities are obtained so long as MB is non-singular.

As may be observed from equation (C.21) one requires knowledge of the forces applied

to the system. For a real system one can only know the control forces applied to the
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C.2 Conclusions

system and one cannot know the forces due to external influences. If a linear proportional-

derivative modal controller is used of the form

fB = (Gk + τ Gd) qB (C.22)

then one may determine the modal control forces to be

fB =
[(

Gk ZR11
+ Gd ZR21

)
+ τ
(
Gk ZR12

+ Gd ZR22

) ]
qA + M−1

B TL
T

12
fA (C.23)

Thus one may determine that the influence from fA may reduce the effectiveness of the

modal controller but will not alter closed loop stability of the controlled system. A

possible course of action is to treat the external forces and noise applied to the system as

an uncertainty.

It is now necessary to introduce the left filter to allow the relationship between new

and old forcing vectors to be established.

From the result of equation (C.14) it is clear that the vector fB1 = TL
T fA1. Knowing

from definition given in equation (C.4) that fA1(1) = fA and fA1(2) = 0 it can be deduced

that

 fB1(1)

fB1(2)


 =


 TL

T

11
TL

T

21

TL
T

12
TL

T

22




 fA

0


 =


 TL

T

11
fA1(1)

TL
T

12
fA1(1)


 (C.24)

Thus we may see define the left filter

fB =
(
TL

T

11
+ τ TL

T

12

)
fA (C.25)

C.2 Conclusions

It has been presented how to relate the modal displacements, velocities and forces with

their physical counterparts. The definitions presented equate to a specific definition but it

should be highlighted that other definitions of the filters can be found such as extracting

the modal velocities from the state vector and subsequently find a relationship to form

the modal displacements. The definitions presented here within are retained for the SPT-

modal control method and other definitions of the modal filters are not considered further.
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Appendix D

Eigenvalue Derivative

From reference [L2] one may find the left SPT-based filter to be

V(λ, σ) = V0 + λV1 (D.1)

with V0,V1 defined as

[
VT

0 VT
1

]
=
[

I 0

]
TL (D.2)

The right and left eigenvalue problems are defined

V(λ, σ) uj = 0 (D.3)

vT
j V(λ, σ) = 0 (D.4)

where vj ,uj are the left and right eigenvectors corresponding to eigenvalue λj. vj and uj

are normalised such to give

vT
j V1uj = 1 (D.5)

One may differentiate equation (D.3) to yield

∂V(λ, σ)

∂σ
uj + V(λ, σ)

∂uj

∂σ
= 0 (D.6)

Differentiating equation (D.1) with respect to σ

∂V(λ, σ)

∂σ
= λj

∂V1

∂σ
+

∂V0

∂σ
+

∂λ

∂σ
V1 (D.7)
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Pre-multiplying equation (D.6) by vT
j one yields

vT
j

∂V(λ, σ)

∂σ
uj = 0 (D.8)

since from equation (D.4) one has vT
j V(λ, σ) = 0. Substituting the result of equation

(D.7) into this and rearranging yields

∂λj

∂σ
= −vT

j

(
λj

∂V1

∂σ
+

∂V0

∂σ

)
uj (D.9)

Thus one finds the derivative of eigenvalue λj with respect to parameter σ.
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Appendix E

Numerical Penalisation of Control

Rate

Consider a second order system with the equations of motion

MA q̈A(t) + DA q̇A(t) + KA qA(t) = SA uA(t) (E.1)

where MA,DA,KA ∈ R
n×n are the system mass, damping and stiffness matrices, qA(t) ∈

R
n is the vector of displacements, uA(t) ∈ R

r the vector of applied forces and SA ∈ R
n×r

is a selection matrix describing the locations of applied forces. The dot above qA(t)

denotes derivative with respect to time. From this point onwards the notation showing

the dependence on time is removed.

Equation (E.1) may be converted into first-order state space form such that


 q̇A1

q̇A2


 =


 0 I

−M−1
A KA −M−1

A DA




 qA1

qA2


+


 0

M−1
A SA


uA (E.2)

with qA1 = qA and qA2 = q̇A1. Equation (E.2) may be simplified to

q̇A = AA qA + BA uA (E.3)

where the definitions are apparent. The underline notation depicts 2n-dimensional quan-

tities rather than n-dimensional quantities.
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In the context of active control of rotating machines, standard optimal controller

methods enable a trade-off to be made between weighted mean-square vibrations and

weighted mean-square control force. A major drawback of the traditional approach to

optimal control is that no emphasis is placed on the rate at which the control effort

can be applied when designing the controller. Control forces cannot be instantaneously

applied and indeed several applications exist where the rate at which control forces can

be applied is sufficiently important to warrant this work.

It is thus desired to find the minimum of a quadratic cost function of the form

Jext =
1

2

∫ ∞

0

{
qA

T Q qA + uT
A Ru uA + u̇T

A Rv u̇A

}
dt (E.4)

where Q ∈ R
2n×2n represents a symmetric semi-definite weighting matrix governing the

relative importance of the system state at time, t, and similarly Ru ∈ R
r×r and Rv ∈ R

r×r

represents a symmetric positive definite matrix to weight the control force and control

force rate respectively. It is assumed that full state feedback is available.

A possible method to find the minimum of cost function (E.4) is to find numerically the

optimal force which minimises the extended cost function when the system is subjected

to a known initial condition qA(0). The forcing function, uA, used to minimise the cost

function (E.4) is assumed to be constructed using a summation of forcing wavelets. The

collection of wavelets allows a smooth function to be constructed which has a user-specified

frequency content. This allows a sufficient freedom of choice to construct a suitable forcing

function. The forcing function can be defined as

uA =
m∑

i=1

n∑

j=1

αij

sin[βi(t − sj)]

(t − sj)
= Fp Θp (E.5)
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where

Fp =




sin[β1(t−s1)]
(t−s1)

...

sin[β1(t−sm)]
(t−sm)

sin[β2(t−s1)]
(t−s1)

...

sin[β2(t−sm)]
(t−sm)

...

sin[βn(t−sm)]
(t−sm)




Θp =




α11

...

α1m

α21

...

α2m

...

αnm




i = 1, 2, ..., m

j = 1, 2, ..., n
(E.6)

Here βi represents the frequency content of the wavelet and sj represents an offset in time.

An illustrative example of the forcing function where m = n = 1 may be found in figure

E.1.

The motivation for choosing a forcing function of this type is that the time offset and

frequency content of the expression can be readily controlled. This allows an expression

to be tailored to the specific system in question and it creates a suitably large basis for

minimisation. Additionally, the expression for the force in equation (E.5) readily yields

the expression for the rate of force

u̇A = Gp Θp (E.7)

where

Gp =




β1 cos[β1(t−s1)]
(t−s1)

− sin[β1(t−s1)]
(t−s1)2

...

β1 cos[β1(t−sm)]
(t−sm)

− sin[β1(t−sm)]
(t−sm)2

β2 cos[β2(t−s1)]
(t−s1)

− sin[β2(t−s1)]
(t−s1)2

...

β2 cos[β2(t−sm)]
(t−sm)

− sin[β2(t−sm)]
(t−sm)2

...

βn cos[βn(t−sm)]
(t−sm)

− sin[βn(t−sm)]
(t−sm)2




i = 1, 2, ..., m

j = 1, 2, ..., n
(E.8)
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βi and sj are fixed prior to optimisation and do not represent variables in the minimi-

sation process. Only Θp is available for alteration which represents the set of coefficients

of the individual wavelets.

The cost functional of equation (E.4) is a quadratic form and variation of Θp is per-

mitted. Thus, a sufficient criteria to find the global minimum of a quadratic function

is

dJext

dΘp

= 0 (E.9)

The extended quadratic cost function of equation (E.4) may be compartmentalised

into individual components relating to state, force and force rate

Jext := JqA
+ JuA

+ Ju̇A
(E.10)

The individual parts illustrated in the compartmentalised form of the cost function

(E.10) from initial time t = 0 can be differentiated with respect to Θp and combined.

JuA
=

1

2

∫ ∞

0

uT
A Ru uA dt (E.11)

=
1

2

∫ ∞

0

ΘT
p FT

p Ru Fp Θp dt (E.12)

dJuA

dΘp

= ΘT
p

∫ ∞

0

FT
p Ru Fp dt (E.13)

The component containing the derivative of force rate similarly yields

dJu̇A

dΘp

= ΘT
p

∫ ∞

0

GT
p Rv Gp dt (E.14)

The component of the cost function constructed using the system state is a little more

complicated. The state can be obtained using a form of the convolution integral [M7]

where qA(0) represents the initial state of the system, and AA and BA represent the first

order system state space companion and forcing matrices respectively

qA = expAAt qA(0) +

∫ ∞

0

expAA(t−τ) BA uA(τ) dτ

= expAAt qA(0) +

∫ ∞

0

expAA(t−τ) BA Fp(τ) Θp dτ (E.15)
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Thus it is found

d

dΘp

∫ ∞

0
qA

T Q qA dt =

∫ ∞

0

(
qA(0)T expAA

T t Q

∫ t

0

[
expAA (t−τ) BA Fp(τ)

]
dτ

)
dt +

· · · + ΘT
p

∫ ∞

0

(∫ t

0

[
Fp(τ)T BA

T expAA
T (t−τ) Q expAA (t−τ) BA Fp(τ)

]
dτ

)
dt(E.16)

The differentiated components of the cost function can be grouped to satisfy the

constraint for a global minimum and give an equation of the form

X + Y Θp = 0 (E.17)

Thus equation (E.17) is fully determined and one may solve Θp accordingly.

E.1 Numerical Example 1

Consider an undamped spring-mass system as illustrated in figure E.2. Masses are inter-

connected by springs and can only move horizontally. The displacement response of mass

1 is observed.

This example has the equation of motion

MA q̈A + KA qA = SA uA (E.18)

and the system matrices are assumed to be

MA = diag




1

1

2


 , KA = 103




4 −2 0

−2 3 −1

0 −1 4


 , SA =




1

0

0


 (E.19)

The system is initially at rest and subjected to initial displacements qA(0) =
[

0 0 2.5

]T
.

The response q1 from the initial conditions for the uncontrolled system yields the response

shown in figure E.3.

30 (n = 30) values of βi and 30 (m = 30) values of sj are chosen to provide a suitably

large basis for the numerical penalisation process. The βi and sj values are given through
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the relationship

βi =
3π

max t

[
2 4 · · · 2n

]T
(E.20)

sj =
max t

3m

[
0 1 · · · m − 1

]T
(E.21)

Using the given values of βi and sj one may solve Θp in equation (E.17) to give the

appropriate values of αij. Using the results obtained for the numerical solution one may

plot the response of the system to the initial conditions when the numerically obtained

force is applied. The response is shown in figure E.4.

As may be observed from figure E.4 the displacement is decaying and a measurable

decrease in the amplitude may be observed from the unforced response to the initial con-

ditions as illustrated in figure E.3. The important comparison is made to the conventional

LQR solution which is plotted in figure E.5. As is apparent the LQR response decays

much quicker than the response from the numerically obtained force but the control force

and control force rate are significantly greater. Thus the penalisation of the control force

rate has indeed been obtained.
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Figure E.1: Forcing function

Figure E.2: Spring Mass System
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Figure E.3: Unforced response of system to initial conditions
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Figure E.4: Response of system to initial conditions - Numerical penalisation method
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Figure E.5: Response of system to initial conditions - LQR controlled
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