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Abstract

This thesis introduces the language QML, a functional language for quantum

computations on finite types. QML exhibits quantum data and control structures,

and integrates reversible and irreversible quantum computations.

The design of QML is guided by the categorical semantics: QML programs are in-

terpreted by morphisms in the category FQC of finite quantum computations, which

provides a constructive operational semantics of irreversible quantum computations,

realisable as quantum circuits. The quantum circuit model is also given a formal

categorical definition via the category FQC.

QML integrates reversible and irreversible quantum computations in one language,

using first order strict linear logic to make weakenings, which may lead to the collapse

of the quantum wavefunction, explicit. Strict programs are free from measurement,

and hence preserve superpositions and entanglement.

A denotational semantics of QML programs is presented, which maps QML terms

into superoperators, via the operational semantics, made precise by the category Q.

Extensional equality for QML programs is also presented, via a mapping from FQC

morphisms into the category Q.
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Chapter 1

Introduction

This chapter details the principal reasons motivating much of the current research into

quantum computing, and provides a short history of quantum computation. There is

also a discussion of current research into the realisation of quantum computing devices

and quantum programming languages. The motivation of the work described by this

thesis, the development of a high-level functional quantum programming language,

its operational and denotational semantics, and equational theory, are also presented.

1.1 Introduction to quantum computation

A quantum computer is one which makes advantageous use of the non-classical nature

of quantum mechanics to compute algorithms in a fundamentally different way to tra-

ditional classical methods. Quantum methods give rise to unusual and non-intuitive

properties of computations, such as the ability of a computation existing in a quan-

tum superposition, i.e. in many states at once. The use of quantum computation

does not alter the notion of what is computable; rather the methods by which the

computational processes occur are fundamentally, different and rely on the quantum

nature of systems to gain efficiency over their classical counterparts.

The efficiency gains made possible by quantum computation were first demon-

strated on a computationally interesting problem in 1994, when Peter Shor of AT&T

developed a quantum algorithm for factorisation [73]. This algorithm is exponentially

faster than any currently known classical algorithm, and proved to be the catalyst
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for an explosion in the interest of quantum computers. Classically, factorisation is

computationally hard, with the best known classical algorithms having a complex-

ity that is super-polynomial. Factorisation is in the Non-deterministic Polynomial

(NP) complexity class, and is believed not to be in the Deterministic Polynomial (P)

class, and therefore thought to be of intractable difficulty by complexity theorists.

For this reason, factorisation, and related problems such as discrete logarithms and

order finding problems, have been the basis of many modern cryptosystems, including

the widely used RSA protocol [63]. Shor’s factoring result means that by exploiting

quantum mechanics, a quantum computer could decipher any secret message that

was encrypted using certain popular cryptographic methods in only polynomial time,

thus rendering the security of those algorithms void. This would have a huge impact

on the fields of computer science and cryptography, if sufficiently powerful quantum

computers are ever made available.

Two years later, in 1996, Lov Grover of Bell Labs discovered a quantum based

algorithm for the fast searching of an unsorted database [32]. Grover’s algorithm is

only polynomially faster than classical search algorithms, but it is provably better

than the best classical algorithm [58]. It does not, like Shor’s algorithm, rely upon

the unproven classical intractability of the factorisation problem. Grover’s quantum

database search algorithm offers a quadratic increase in speed over the best possible

classical search algorithm for this problem, which is an exhaustive search. Searching

forms the basis of many algorithms, such as solutions to problems in the NP complex-

ity class, and as such Grover’s algorithm could simply be ‘plugged into’ these existing

algorithms to immediately increase their efficiency, and hence allow them to remain

as feasible methods. Returning to cryptography, the searching of a Data Encryption

Standard (DES) key-space to find the key used to encrypt a message is one possible

application of Grover’s search. Classically, the search-space is huge; to discover a

56-bit DES key would require searching 255 possible keys. Applying Grover’s quan-

tum algorithm would afford a quadratic speed up, requiring only around 185 million

operations. This is over one hundred million times more efficient.

Both Shor’s and Grover’s algorithms demonstrate the scale of the increase in

efficiency offered by quantum computation, and Shor’s factorisation algorithm has
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been described as the quantum computer’s ‘killer app’. However, currently no physical

quantum computers exist that can operate with an input larger than a few bits. Still,

Grover’s quantum database search algorithm and Shor’s factorisation algorithm have

both been implemented on these small scale systems, and have been found to work,

but the technology as it presently exists does not scale to larger systems. Solving these

fabrication problems is an active area of research in experimental physics today, and

current experimental research is discussed briefly in section 1.2.

Several quantum programming languages also are currently under development.

These are mostly, at present, low level languages which rely on a semi-formal style.

This thesis focuses on the development of a functional language, QML (Quantum

Meta Language) for quantum computations on finite types, with integrated reversible

and irreversible quantum computation. A brief review of other languages and tech-

niques is presented in section 1.4.

1.2 Experimental quantum computers

There are several research groups worldwide attempting to develop physical quan-

tum computers, using different experimental arrangements. An active research area

in physics which is used in quantum computer fabrication is that of trapped atoms.

Atoms may be essentially trapped as an isolated species and then be controlled pre-

cisely. The atoms are held in ion traps consisting usually of an electromagnetic cage,

and the atom is held inside by using laser cooling to reduce the atom’s energy such

that it cannot escape [76]. These trapped atoms could then be used as quantum bits,

as described in section 3.1.1. The problem of quantum error correction in physical

systems is dealt with comprehensively by Steane [75] and Cory et al [18]. Optically

trapped atoms have been used as qubit registers, notably in the operation of a cnot

gate [50, 51]. Two qubits were stored in the internal and external degrees of free-

dom of an optically trapped atom. Grover’s quantum search algorithm was realised

in an optically trapped atom experiment [14]. A trapped atomic ion quantum bit

array was used, and following a single query of the search space, the required element

was found with an average probability of 60(2)%, exceeding the performance of any
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possible classical search algorithm, which can only succeed with a maximum average

probability of 50%.

Nuclear Magnetic Resonance, or NMR, is also a possible technique with which to

control the properties of individual qubits [45]. NMR makes use of the two spin states

of a spin-1
2

nucleus of an atom, which may be flipped to ±1
2

in a magnetic field. A

molecule is essentially a connected array of atoms, each with a nucleus, which may be

used as an array of qubits which may interact with each other. Radio frequency fields

may be used to identify and manipulate a single nucleus at a time. Chloroform [17]

and cytosine molecules [38] have been used experimentally as quantum computers. A

three qubit system has been developed by R. Laflamme and D. G. Cory [6, 44] based

on malonic acid.

Nanoscale architectures have also been considered as a possibility for fabricating a

register of quantum bits, as have quantum optical devices and many other nanoscale

constructed devices. Benjamin et al investigated many systems including excitons and

spins in quantum dots, using bulk magnets and constant Heisenberg coupling to switch

the qubits on and off [9]. Biolatti et al have created an array of quantum dots to act as

quantum data with the switching mechanism existing as interband optical transitions.

They achieved subpicosecond decoherence-free switching in nanostructures which can

be readily created [12]. Schenkel et al considered the use of the spins of electrons

and nuclei in P31 atoms embedded in silicon as a qubit register [66]. Turchette et al

used the birefringence of a single atom coupled to an optical resonator. The phase

shifts which resulted were used in a quantum phase gate, for which they report the

truth table, in reference [79]. Brune et al [20] demonstrated quantum teleportation

between two high Q cavities containing a superposition of microwave states. Quantum

teleportation has also been demonstrated by Bouwmeester et al [13]. The passage of

information has been shown to be more efficient in quantum matter than in classical

matter by Mattle et al [48] who coded information using two entangled particles and

performing functions on one only. They transmitted ASCII characters using 5 trits

(one of three messages) instead of the conventional 8 classical bits.

There is evidently much active research in various areas of physics in the realisation

of quantum computing devices. Currently, the number of quantum bits achieved
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experimentally is very small, and needs to increase by an order of magnitude before

useful algorithms can be run.

1.3 History of quantum computation

The idea that quantum computing is possible was first put forward, independently, in

1982 by Richard Feynman [25] and Paul Benioff [7, 8]. Feynman’s main motivation

was the simulation of other systems which are chiefly governed by quantum mechan-

ics. He theorised that a quantum system could more naturally and quickly simulate

quantum systems, such as chemical interactions, which can be modelled considering

the wavefunctions of the constituent atoms. To perform these kinds of calculations

on classical computers requires an exponentially large amount of time, relative to

the size of the system, but a quantum computer could efficiently simulate any quan-

tum system. Benioff’s premise centred on the continuing trend of miniaturisation in

electronic circuitry. Circuits have steadily been manufactured at increasingly smaller

scales until now, where they have reached the stage where quantum mechanical effects

are significant in the behaviour of the devices. Benioff argued that a computer which

makes use of these quantum effects may help the management of this hardware crisis,

and perhaps move beyond the miniaturisation barrier.

In 1985 David Deutsch, one of the pioneers in quantum computing following Feyn-

man, published a paper that is now considered to be a landmark in physics, although it

was largely ignored at the time. In this paper Deutsch [22] hypothesised that quantum

computers could perform some tasks much more efficiently than classical computers,

but the examples included in the paper were of limited use and application, and were

not guaranteed to work. The algorithms presented had to be rerun several times to

guarantee the correct answer, wiping out any potential efficiency gains. Nevertheless,

it was the ideas first presented in this article which allowed Shor to come up with

the quantum factorisation algorithm [73] almost ten years later. Deutsch’s idea can

be explained by examining the behaviour of superpositions. It is widely accepted

that matter has an associated wave–like nature, and, conversely, that waves exhibit

particulate behaviour. An isolated electron in a quantum superposition can travel
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along many different routes through a circuit simultaneously (according to quantum

theory), as though it were a propagating wave. Imagine a water channel that splits

into several branches; a boat could only travel down one branch at a time (classical),

whereas a wave in the water can travel along all branches simultaneously (quantum).

The essential idea proposed by Deutsch was that quantum computers could make

use of quantum effects by having their input in a quantum superposition before any

algorithm is applied. This would allow the computer to exist in multiple states si-

multaneously, calculating along all the different paths of the algorithm with just one

run-through. This is the idea of quantum parallelism, and is one of the two major

ideas underpinning all quantum algorithms. The concept of quantum parallelism is

different to probabilistic computation, as the quantum mechanical complex-valued su-

perpositions can interfere destructively, as waves can. A discussion of the differences

between probabilistic and quantum computation is included in section 3.1.1.

The Shor factorisation algorithm, discussed in section 1.1, offered compelling ev-

idence that quantum computers could exceed the capabilities of their classical coun-

terparts by utilising quantum parallelism. This seemed to be confirmed by Grover’s

quantum search algorithm, which was published with a proof of its superiority over

any classical algorithm [58]. Much research into quantum computation since Shor’s

discovery has been funded by governmental intelligence agencies, and for them the

desire is certainly in developing applications for cryptology. This reasoning is justi-

fied as commercial quantum cryptographic hardware, from companies such as MagiQ

and id Quantique, are now available on the open market. Additionally, there may

be undiscovered applications of quantum computing, such as simulations of chemical

interactions that could possibly lead to medical breakthroughs.

Shor’s and Grover’s algorithms provide evidence to challenge the (strong) Church-

Turing Hypothesis, which states:

“any algorithmic process can be simulated efficiently using a probabilistic
Turing machine”

Quantum computers apparently break this assertion: They can simulate themselves

(trivially) and classical computers (by the use of universal reversible circuits) effi-

ciently, but it is not possible for classical computers to efficiently simulate quantum
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devices. The number of bits required to store the state of a quantum computer

rises exponentially with the number of quantum-bits (“qubits”) used by the quan-

tum algorithm. This highlights the difficulty with quantum computer simulations,

and indeed any simulation of quantum mechanical processes; they are exponentially

more complex, both in terms of space efficiency and time required for execution than

classical analogues. This fact, in part, highlights the possible benefits of quantum

computation, and justifies further research into the theory and practise of quantum

computation.

The relatively counter–intuitive behaviour of quantum superpositions, quantum

entanglement, and quantum measurement provides one motivation for this thesis.

That is to provide a high level, functional, language for expressing these concepts.

Even Feynman noted, quoted in [34]:

“I think I can safely say that no one understands quantum mechanics”

1.4 Quantum programming

Quantum programming is now a firmly established field, with many introductory text

books available [33, 36, 53, 57], and Preskill’s online course notes [58]. However, quan-

tum programs are usually presented in a semi-formal style and on a very low level,

usually as families of quantum circuits. This is demonstrated by the presentation

of the Deutsch algorithm given in section 3.9. This thesis aims to show that func-

tional quantum programming languages can improve the presentation, further our

understanding of the power of quantum computing, and lead to new applications of

quantum computing – as they have done in conventional programming. Gay provides

a full overview of the current state of quantum programming languages in his review

paper [27].

One of the first proposals towards a quantum programming language were Knill’s

conventions for quantum pseudo-code [43]. Knill defines an imperative pseudocode

suitable for implementation on a quantum random access machine (QRAM), which

is also proposed in that research. The QRAM model is not formally defined, but it is

proposed that it consists of a register machine with the ability to perform quantum
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operations, including state preparation, unitary transformation and measurement,

on quantum registers. It is acknowledged by Knill that quantum pseudocode as pre-

sented is not precise enough to be an implementable quantum programming language.

However, it was an important step beyond the use of ad hoc narrative descriptions of

how quantum operators and measurements should be applied, as noted by Gay [27].

More recently, Ömer implemented an imperative language QCL with quantum

primitives and a syntax based on C [54]. This is considered to be the first real quantum

programming language with a full definition. Sanders and Zuliani [65] proposed

the language qGCL, which extends the probabilistic guarded command language by

quantum primitives. A promising avenue of research is the integration of quantum

programming with functional programming, [40, 52, 64]. Altenkirch, Vizotto and

Sabry [84] have shown that quantum programming can be modelled using Haskell’s

arrow library [37], presenting a high level, but constructive, view of quantum effects.

Van Tonder has proposed a quantum λ-calculus incorporating higher order pro-

grams [80, 81]; however, measurements are not considered as part of this language.

In [81] a semantics for a finitary, but higher order, calculus is suggested, based on

Hilbert bundles. It is currently not clear, however, how this calculus could be realised

operationally, e.g. using quantum circuits.

Selinger’s influential paper [69] introduces a single-assignment (essentially func-

tional) quantum programming language, which is based on the separation of classical

control and quantum data. The language proposed, QPL, is a simple quantum pro-

gramming language with some high-level features such as loops, recursive procedures,

and structured data types. The language is statically typed, free of run-time er-

rors, and has a clear denotational semantics presented in terms of complete partial

orders of superoperators, with loops and recursion interpreted as least fixed points,

following domain-theoretic semantic formalisms. The high-level structures of QPL

are classical, and can be combined with operations on quantum data. Quantum data

can be manipulated by using unitary operators or by measurement, which can affect

the classical control flow. In more recent work, Selinger and Valiron [72] presented

a functional language based on the classical control and quantum data paradigm.

The language is based on call-by-value λ-calculus, and includes both classical and
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quantum data, with an operational semantics allowing only classical control. The

language includes a type-system based on affine intuitionistic linear logic, and they

develop a type inference algorithm.

None of the approaches discussed so far introduce quantum control structures. In

other words, quantum data can only be processed using combinators corresponding

to quantum circuits or by measurement.

1.5 Research outline

The prevalent models of quantum computing at present are based on the idea that

a quantum algorithm can be reinterpreted as a unitary transformation on a finite

dimensional Hilbert space. This is a time reversible operation, which is followed by

measurement modelled as a projection; a so-called designer Hamiltonian. It is a well

know result that this is a sufficient model. However it remains to be shown whether

always deferring measurement to the final step is an optimal method. Indeed, more

recent low-level models of quantum computation make use of measurement as the

tool to progress the computation at each step, using a measurement calculus [19, 61].

Separating the reversible and irreversible components of a computation in this way is

unaccommodating to high level computational structures such as higher order types,

continuations, recursive algorithms, and primitive and recursive data structures, as

they are known from functional programming and the semantics of programming

languages.

This situation can be compared with taking the “billiard ball” model, based on

classical mechanics, as the primitive model of computation. Here a computation is

modelled as a reversible transformation on the state space followed by a projection,

which the reading of the result. The billiard ball model is discussed in section 2.1.2.

This is a Turing complete model of computation, and is also adequate in terms of

space complexity. However, it is not realistic to attempt to create algorithms using

this model, not least due to the lack of high level computational structures.

As noted in section 1.1, physical implementations of quantum computers are cur-

rently very small and unable to process complex algorithms. This is a hindrance to
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research into quantum algorithms as they cannot be developed in the same way that

classical programs are, with the simple testing of new ideas on computers. Nielson

and Chuang [53] observe that in order to be interesting, quantum algorithms must

not only be comparable to their classical counterparts, but they must also improve

upon the efficiency of the classical algorithms. Otherwise, it would be much sim-

pler, efficient and cost effective to use the classical algorithm on a classical computer.

Designing effective quantum algorithms is made harder by the fact that quantum

mechanics itself is counter-intuitive in the way it behaves and the results obtained.

In light of the above discussion, it could be added to Chuang’s assessment that the

absence of high level computational structures compounds the problem of coming up

with new and useful algorithms. The lack of high level computational structures may

be an even greater hindrance to the development of quantum algorithms than the non-

intuitive behaviour of quantum mechanics. Indeed, many computational paradigms

such as logic programming, relational programming and categorical programming,

have been mastered by many, and are quite far removed from any physical reality.

These paradigms have been successful mainly due to their accommodating a plethora

of high level structures. The lack of effective quantum algorithms has been referred

to as “the quantum software crisis”.

Selinger [69] suggests a quantum programming language which is not based on the

strict sequential separation of reversible and irreversible computational steps. His ap-

proach is based on the mantra “classical control, quantum data”, and demonstrates a

one-assignment procedural language that includes recursion. Recursion is interpreted

in the category of finite dimensional vector spaces with completely positive operators

as morphisms. This category incorporates both unitary transformations and projec-

tions, and their compositions as computations. Hence, Selinger shows that a higher

level structure such as recursion can be interpreted in a model of irreversible quan-

tum computation. He further suggests that other high level data structures could be

interpreted in this category.

The aim of this thesis is to use Selinger’s research as a starting point to develop

a new functional language for quantum algorithms that supports high level com-

putational constructs. This language is called QML, for Quantum-ML (after the
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functional language ML). The design of the language is inspired by taking a classical

reversible model of computation, and exploring where a similarly designed quantum

model differs. A semantics of QML is presented by interpreting terms as morphisms

in the category of finite quantum computations FQC. The FQC semantics gives

rise to a denotational semantics in terms of superoperators, the accepted domain of

irreversible quantum computation, and at the same time to a compiler into quantum

circuits, an accepted operational semantics for quantum programs.

In addition, QML features both basic quantum data structures and quantum

control structures. In particular QML includes a quantum if construct which analyses

quantum data without measuring, and hence without changing the data and therefore

preserving any superposition or entanglement. QML thus differs from other work in

quantum programming, as it allows both quantum data and quantum control.

1.6 Structure of this thesis

This chapter gives an introduction to this thesis and motivates the research presented.

It includes a presentation of quantum computation and from a historical, theoretical

and physical perspective. Current quantum programming languages are reviewed,

and the structure of this presentation is described.

Chapter 2 presents a framework for discussing and reasoning about reversible

classical computation. Physical models are discussed, and a model of computations as

finite, reversible, circuits operating on classical bits is presented. An implementation

of this model in Haskell is provided, and two important reversible universal gates are

discussed.

Chapter 3 introduces quantum reversible circuits. The theory and linear algebra

required to understand quantum computations is introduced, with a Haskell imple-

mentation, and a circuit model of reversible quantum computations is developed.

This model is compared with the development in chapter 2 of a reversible model. An

implementation of this model is provided, and two quantum algorithms are presented

as circuits.

Chapters 4 and 5 formalise and extend the models introduced in chapters 2 and
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3. Chapter 4 introduces the category FCC, of Finite Classical Computations. The

model of reversible classical computations is made precise by defining reversible quan-

tum circuits as the morphisms of a reversible subcategory of FCC, called FCC≃. The

notion of heap and garbage is then introduced to allow irreversible computations to

be defined. A denotational interpretation of FCC morphisms in the category of fi-

nite sets, FinSet, is also presented. Chapter 5 similarly gives a categorical model of

reversible and irreversible quantum computations. The reversible quantum circuits

introduced in chapter 3 give the morphisms in the category FQC≃, of reversible Fi-

nite Quantum computations. By introducing heap and garbage, in the same way as

is done classically in chapter 5, a categorical model of irreversible quantum compu-

tations is developed, the category FQC. Strict computations, those that produce no

garbage, are also introduced as morphisms of the category FQC◦. As in the classical

case, a mathematical denotation for each category is developed where FQC mor-

phisms are interpreted as superoperators. This leads to a categorical formalism of

the quantum circuit model, which is a contribution of this thesis.

Chapter 6 introduces the functional quantum programming language QML. The

design and motivations of QML are discussed, and the syntax and typing rules pre-

sented. Several examples of QML programs are discussed, and variations of two

important quantum algorithms are presented as QML programs. Discussions of quan-

tum branching and orthogonality, and limitations on garbage when quantum control

is used, are also presented. The language QML and it’s syntax and semantics is the

main contribution of this thesis.

In chapter 7, the operational semantics of QML is introduced, and is presented as

a function that for each QML term derives an appropriate quantum circuit, via the

category FQC, which is developed in chapter 5. A category of QML terms is also

introduced, and an implementation of the operational semantics is also presented.

There is also a discussion of how applying the mathematical interpretation of FQC

objects, defined in chapter 5, gives rise to a denotational semantics of QML terms

factored through the operational semantics.

Following the definition of the operational semantics of QML, chapter 8 discusses

further directions the research presented in this thesis could be continued and ad-
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vanced. This includes an outline of a denotational semantics for QML that is not

factored through the operational semantics, which can be used to show composition-

ality. The denotation function of QML is defined as giving for every morphism in the

category QML an equivalent morphism in the category Q of superoperators.

The last chapter of this thesis, chapter 9, summaries the contributions of this

thesis in a conclusion.

Finally, appendix A provides an extensive discussion and analysis of Shor’s algo-

rithm for efficient factoring on a quantum computer. Shor’s algorithm is important as

it is one of the prime motivations for research in quantum computation, and it makes

use of the quantum Fourier transform, which is used by many classes of quantum al-

gorithms to gain an efficiency advantage over classical algorithms. An example of the

QFT is implemented as a translation from the quantum circuit to a QML program.

1.7 Summary

Quantum computers are potentially very powerful tools which function in a fundamen-

tally different way to classical computers. Research into practical implementations

and the theory of quantum computing is of increasing interest, and quantum pro-

gramming language theory is itself a new and rapidly developing field. The study of

quantum computation is justified in its own right as a fundamentally different model

of computation, and is further justified by the possibility of computing some classes

of computations that are currently impractical using classical hardware.

In this thesis a functional quantum programming language, called QML, is pre-

sented, which has both quantum data and quantum control. This thesis includes the

details of the development of QML by analogy to classical reversible computation, its

categorical operational semantics as quantum circuits, and a denotational semantics

presented as an interpretation in the category of superoperators.
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Chapter 2

Reversible classical computation

The computers that we use currently are irreversible devices. They generate vast

quantities of heat and noise, and little of the energy consumed is used in carrying

out computations. The physical framework of computing devices is also inherently

irreversible. The basic building blocks of our ‘classical’ computing systems, Boolean

circuits, are irreversible. The universal nand gate, for example, is obviously irre-

versible, having two inputs and only a single output. In addition, high-level abstract

models of computation, such as λ-calculus and Cartesian closed categories, are based

on irreversible processes; indeed, Cartesian products induce projections which are

irreversible. This chapter serves to act as an answer to the question; are computers

necessarily irreversible devices?

In closed systems, fundamental physical notions of Newtonian mechanics,

Maxwellian electrodynamics, and quantum mechanics are time–reversible physical

theories (with particular assignments for boundary conditions), and computing de-

vices are physical objects. Open systems, which do allow for irreversible processes,

are a derived notion; a subsystem of a larger closed system.

Is there some constraint in the physics of computation that forces irreversibility?

Landauer [46] showed in 1961 that it is the act of erasing, or forgetting, information

in a physical system that incurs energy loss, and it is from this ‘entropy increase’

that irreversibility stems. This is called Landauer’s Principle, and is an answer to

the entropy problem of the “Maxwell’s Demon” thought experiment [42], presented

in the next section.
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2.0.1 Maxwell’s Demon

Maxwell imagined two containers, A and B, connected by a trapdoor, which is con-

trolled by a ‘demon’. The containers are both initially filled with gas molecules at

equal temperature. The demon observes the gas molecules on either side of the trap-

door, and when a molecule from container A approaches the trapdoor, the demon

allows it through only if it has more than the average energy of all the molecules in

container A. Conversely, only slower than average molecules are allowed to move from

B to A. This process would eventually result in the average energy of the molecules

in B increasing, while the average energy of the molecules in A decreases. Since the

temperature of a gas is a function of molecular speed, the temperature in A will have

decreased while that of B has increased. This seems to contradict the second law of

thermodynamics, which states:

“a closed system will tend towards maximum entropy”

In other words, when one part of an isolated system interacts with another part, en-

ergy tends to distribute equally among the accessible energy states of the system. As a

result, the system tends to approach thermal equilibrium, at which point the entropy

is at a maximum and the thermodynamic free energy is zero. However, the demon

has to be considered part of the system, as it is interacting directly with the gas, and

the demon has to store the information about the speed of the molecules of the gas.

Landauer realised that certain measurements need not increase thermodynamic en-

tropy as long as they are reversible. Due to the connection between thermodynamic

entropy and information entropy, this also meant that the information the demon

records must not be erased in order to not increase entropy. As the system is finite

the demon will eventually run out of information storage space and must begin to

erase the information that has been previously gathered. This erasing of the infor-

mation is an irreversible process which increases the entropy of the system. Hence

the entropy of the system, when the demon is included as part of the system, does

not decrease, and the second law of thermodynamics is not violated.
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2.0.2 Logically reversible computation

In the early 1970s, Bennett [10] discovered a way of breaking computation down into

reversible steps. A excellent summary of the importance of reversible computation is

given in [16], also quoted in Abramsky’s work [1]:

Reversible computation: Landauer [46] has demonstrated that it
is only the ‘logically irreversible’ operations in a physical computer that
necessarily dissipate energy by generating a corresponding amount of en-
tropy for every bit of information that gets irreversibly erased; the logi-
cally reversible operations can in principle be performed dissipation-free.
Currently, computations are commonly irreversible, even though the phys-
ical devices that execute them are fundamentally reversible . . . At the
basic level, however, matter is governed by classical mechanics and quan-
tum mechanics, which are reversible. This contrast is only possible at
the cost of efficiency loss by generating thermal entropy into the envi-
ronment. With computational device technology rapidly approaching the
elementary particle level it has been argued many times that this effect
gains in significance to the extent that efficient operation (or operation
at all) of future computers requires them to be reversible. The mismatch
of computing organisation and reality will express itself in friction: com-
puters will dissipate a lot of heat unless their mode of operation becomes
reversible, possibly quantum mechanical.

2.1 Physical models of computation

Various physical models of computation have been proposed that make use of the re-

versible nature of physics to explain computation. First proposed by Edward Fredkin

and Tommaso Toffoli, the billiard ball model of computing can be used as an ide-

alised system for modelling high-performance computational processes, and behaves

according to conservative logic [26], summarised here.

2.1.1 Conservative logic

“Conservative logic” obeys fundamental physical principles (including reversibility),

and as such provides a useful theoretical framework in which to consider high per-

formance computation, including efficiency and performance considerations. In par-

ticular, conservative logic predicts that sequential circuits may be constructed which
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dissipate zero net power, in contrast with the computation devices presently avail-

able. The name “conservative logic” derives from the fact that the logic is designed

to conserve the energy (and therefore mass, etc.) of the system throughout, thus

obeying fundamental principles of physics.

The Church-Turing hypothesis, which states:

“any algorithmic process can be simulated efficiently using a probabilistic
Turing machine”

assumes several physical principles, namely that information cannot travel faster than

a physical maximum, that the amount of information held in a system of finite size is

finite also, and that it is possible to construct physical devices which act in a manner

according to a set of physical laws and which can undergo and, not and fan-out

functions. However, the and function is inherently irreversible, and as such dissipates

energy. It essentially erases some information about the system’s evolution. The fact

that computers behave according to physical laws, which allow for the dissipation of

heat, leads to a theory of computation which mathematically can allow for a system

in which no energy is lost. Though this billiard-ball model is to some extent non-

physical at present, because it does not describe the systems which currently exist, it

still holds merit as a theory of energy-lossless efficient computation.

The billiard ball model of computing has as its central tenet that it is ideally

possible to build sequential circuits with zero internal power dissipation. This is

clearly not the situation at present with regards to physical experimental evidence,

due to the second law of thermodynamics, which has been written in many different

forms and which is often misinterpreted. It states that “a closed system will tend

towards maximum entropy.”

Conservative logic takes a different standpoint, and aims to bring the logic and

physics of computation together in a new theoretical framework. It is based on the

unit wire and the Fredkin gate. The unit wire allows for the storage and transmission

of information. The Fredkin gate, fully described later in section 2.4.2, provides a

conditional routing gate. Combinations of these two operations allow for information

processing in a heat-loss free manner. Essentially, it is theoretically possible to per-
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form energy loss-free computation. Following the principle of loss-free computation

the physical and reversible “billiard ball model” of computing can be developed.

2.1.2 Overview of the billiard ball model of computation

The billiard ball model is an implementation of conservative logic, based upon elastic

collisions of billiard balls, both with each other and with reflectors. A basic framework

for the model is a 2-D grid along which the balls can propagate and in which mirrors

are situated. This system can be arranged to act as any logic circuit. The presence

or absence of a ball at any grid point in the framework is equivalent to the binary

1 or 0 signal respectively, and the balls are indistinguishable from one another. The

Fredkin gate (see section 2.4.2) can be created in the billiard ball model by using a

series of five basic switch gates, shown in figure 2.1.

Figure 2.1: This ‘circuit’ acts as a simple switch operator. In the switch circuit, the
control ball c appears to switch the path of the other ball x . In fact, when both balls
enter the gate at the same time, they swap roles such that the target ball emerges
along the expected path of the control ball. Note that the balls are indistinguishable,
the lines denote mirrors, and the circles are snapshots of the balls at collusion instants.
If there is no ball at the control input c, a ball at x will go through undeflected and
emerge at c̄x; if a ball is present at c, a ball at x would collide with it (causing the
balls to exchange roles) and a ball would emerge at cx .
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The billiard ball model predicts that the energy of a computation is proportional

to the number of billiard balls involved, at the start and end points, and is not de-

pendant on the processes undergone between these two states, no matter how lengthy

or complicated. Thermal noise and quantisation issues must be considered as pos-

sible energy-loss mechanisms, and these are currently being debated concerning the

relevance of their contribution, if any.

Other reversible computing frameworks include the kinematical model proposed

by Toffoli [78], the microscopic theory of Bennett [11], the quantum mechanical theory

of Benioff [7, 8], and the structural approach of Abramsky [1].

2.2 Reversible computations as circuits

In this section an inductive definition for building reversible circuits will be given.

This will then be translated into a Haskell datatype, which will allow fairer compar-

isons between quantum computation (as circuits), which are by definition reversible,

and classical computation, using the reversible model given here.

Note that the arity of a function is the number of arguments it takes. Similarly,

the arity of a circuit is the number of bits, or wires, used throughout the circuit, and

is therefore a natural number. By definition, a reversible computation φ must have

an inverse, φ−1, such that together φ, φ−1 give an isomorphism.

Using these definitions, the set of reversible computations (or circuits) of arity

a ∈ N, can be defined inductively:

Negation The only non-trivial operation possible on one (classical) bit is the nega-

tion operator, also known as the bit-flip, not operator, ¬, or X. As a circuit

diagram this is denoted as:

N2 X

The notation X is traditionally used for negation in circuit diagrams, and N2

indicates that the wire carries a two-valued Boolean variable, a single classical

bit. In this case the wire corresponds to one physical wire, rather than a bundle,

hence the arity for this circuit is 1.
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Negation is trivially reversible as applying it twice recovers the original value:

¬¬x = x

Wires Any possible reordering (permutation) is a valid reversible computation, and

in a circuit is shown as a rewiring. This is represented as a bijection φ:[a ] ≃ [a ],

where [a ] is the initial segment of a: [a ] = {i ∈ N | i < a }. This describes any

rewiring, including the identity: ida = wires id, where no permutation takes

place. In a circuit diagram a rewiring is usually shown explicitly, for example:

x0
??

?? x1

x1

����
??

?? x2

x2

���� x0

with the bijection φ(0) = 2, φ(1) = 0, and φ(2) = 1.

Rewiring is again trivially reversible. The arity of the rewiring circuit is the

number of wires in the permutation; a in the bijection.

Sequential composition Given reversible circuits φ and ψ, of equal arity, a new

circuit can be constructed where the output of ψ is passed as the input to φ.

This is written φ ◦ ψ, and is shown diagrammatically as:

ψ φ

_ _ _ _ _�

�

�

�
_ _ _ _ _

The arity of the new circuit is equal to the arity of the sub-circuits. As both φ

and ψ are reversible, φ ◦ ψ can be reversed using ψ−1 and φ−1 by constructing

ψ−1 ◦ φ−1.

Parallel composition combines any two reversible circuits in parallel, and can be

thought of as the product of circuits. Given any reversible circuits φ and ψ,

φ× ψ can be constructed:

φ

ψ

_ _�
�
�
�
�

�
�
�
�
�

_ _

Although the operations φ and ψ operate on disjoint inputs, they combine in

φ × ψ to create a larger circuit which could now be applied to other circuits
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of equal size. The two sub-circuits are not required to have to have the same

arity; the arity of the new circuit is the sum of the sub-circuit arities.

The inverse can be constructed using ψ−1 and φ−1, to give φ−1 × ψ−1.

Conditional Given reversible circuits φ and ψ of equal arity, a, the conditional cir-

cuit φ|ψ can be constructed. It performs a basic if . . . then . . . else . . . operation:

If the control wire is True, then perform ψ on the remaining a wires, else apply

φ. The control wire is the first, or uppermost, wire, and gives this circuit an

arity of 1 + a; the 1 representing the control wire for the circuits of arity a.

The unary conditional is commonly used, which performs the identity if the

control is false. However, it is straightforward to reduce the binary conditional

to the unary:

N2 • X • X

a ψ φ

This representation can be further simplified by introducing a white dot on the

control wire to indicate that the controlled circuit is applied only if the control

wire is false:

N2 • ��
��	
�

a ψ φ

If either φ or ψ is the identity, then the diagram can again be simplified by

leaving out that branch.

The inverse is once again given using ψ−1 and φ−1, to construct φ−1|ψ−1.

2.3 Reversible circuits in Haskell

The implementation language used throughout this project is Haskell [55]. Haskell is

a purely functional programming language with polymorphic types and a non-strict

semantics. It is particularly suited to this research in its inclusion of pattern matching,

currying, list comprehensions, guards, and definable operators. The language also

supports recursive functions and algebraic data types, as well as lazy evaluation. It
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has built-in support for monads and type classes. Due to the mathematical nature of

the language it is also particularly well suited to the expression of mathematical and

categorical concepts, which are frequently used throughout this work. The language

QML, developed in this thesis, has been intentionally modelled to act as a Haskell–like

language.

The reversible circuits defined in section 2.2, can be directly translated into a

Haskell datatype. A function that translates each circuit into its matrix representation

(a compiler) can then be built using this datatype. Other useful functions, such as

an evaluator for matrices, can also be defined. The first step is to define a datatype

that represents circuits, called Circ:

data Circ = Not

| Wire [Int ]

| Par Circ Circ

| Seq Circ Circ

| Cond Circ Circ

In fact this datatype captures most of the information about reversible circuits

given in section 2.2. A circuit can be any of the following: a Not operation; a Wire,

which takes as an argument a list of integers describing the permutation (rewiring);

a Par (parallel) operation, which takes two sub-circuits as arguments; a Seq (sequen-

tial) operation, which also takes two sub-circuits as arguments; and finally a Cond

(conditional) operation, which takes the two possible circuits as arguments. Note that

Seq simulates the circuit diagrams, so the composition ψ ◦ φ becomes the sequence

Seq φ ψ in Haskell, as in the diagrammatic definition of circuits given previously.

The Circ datatype does not capture, due to Haskell type limitations, all the

constraints on what constitutes a valid circuit. For example, in the cases of Seq and

Cond there is the requirement that the arity (number of wires) in each sub-circuit is

the same, in order for them to be wired together correctly. In a dependently typed

language, such as Epigram [49], this could be enforced, but in Haskell these type

constraints have to be checked by an auxiliary function. This is because Haskell’s

type system does not allow data to appear in types; types can only be indexed by

other types. The arity of a circuit is data, hence cannot appear in the type. The
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arity ∈ Circ → Maybe Int

arity (Not) = Just 1

arity (Wire ~x) = do guard (chkPerm ~x)

return (length ~x)

arity (Par x y) = do m ← arity x

n ← arity y

return (m + n)

arity (Seq x y) = do m ← arity x

n ← arity y

guard (m ≡ n)

return (m)

arity (Cond x y) = do m ← arity x

n ← arity y

guard (m ≡ n)

return (1 + m)

chkPerm ∈ [Int ]→ N2

chkPerm ~x = (and [elem x ~x | x ← [0 . . length ~x− 1]])

Figure 2.2: The arity function

function arity , defined in figure 2.2, makes use of the Maybe monad and guards to

model and check for errors. A monad, in this context, is a way of linking together a

set of functions, such that there is a predefined order of execution. The Maybe monad

encapsulates the strategy of combining a chain of computations, that may each return

Nothing , by ending the chain early if any step produces Nothing as output. In this

case, the arity function must ensure that the input has certain properties before

the result can be calculated. The Maybe monad simply returns either “Just x” or

“Nothing ,” which would be the error state. The Maybe monad ensures any errors will

be correctly propagated throughout the program.

The Haskell code for the arity function is given in figure 2.2. With this function,

a circuit can be tested to see if it is valid by passing it as the argument. If Just x
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is returned, where x ∈ N, then the circuit is correct and its arity is x . If the error

value Nothing is returned, then there is a circuit arity mismatch, or there is an

invalid permutation. The error checking is performed by the guard commands in the

problematic cases, which will return Nothing if the error–checking predicates passed

to them evaluate to False, and will otherwise allow the computation to continue.

In the case of Wire ~x, the guard uses the auxiliary function chkPerm to ensure

the permutation (rewiring) is valid. In the case of Seq and Cond it simply ensures

that the size of each sub-circuit are equal. More informative error checking could be

employed, but at the expense of brevity. This will be expanded on in the case of

quantum circuits.

2.4 Reversible circuits: examples and theory

In this section some examples of circuits written in the Circ datatype are discussed, to

illustrate the use of the Circ datatype and some principles of reversible computation.

A simple controlled-not(cnot) circuit, which negates the second input if the first

is True, and does nothing otherwise, can be defined as the circuit

cnot = X |id1

where ida is the identity function on a bits. This circuit can be translated into the

Haskell type Circ as:

cnotC ∈ Circ

cnotC = Cond Not (Wire [0])

A schematic circuit of cnot, where X is the Not circuit and I is the identity on one

bit (wire id1), is shown in figure 2.3, along with the trivial simplification. Note that

the terms 0 and False, and 1 and True, are used interchangeably.

a ∈ N2 • ��
��	
� a

b ∈ N2 X I b ⊕ a

a ∈ N2 • a

b ∈ N2 X b ⊕ a

Figure 2.3: cnot circuit and simplification, where ⊕ denotes addition mod 2
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2.4.1 The Toffoli Gate

A useful circuit in reversible computation is the three-bit controlled-cnot, called the

Toffoli gate. This gate has three inputs, the first two of which are controls and the

third is the target. This gate acts as the identity on the target, unless both control

bits are set to True, in which case the value of the target bit is flipped. A circuit

diagram for the Toffoli gate is shown in figure 2.4. Note how the circuit appears to

a ∈ N2 • a

b ∈ N2 • b

c ∈ N2 X c ⊕ ab

Figure 2.4: Schematic circuit representation of the Toffoli gate, or controlled-cnot.

be an extension of the cnot circuit. This fact can be used to define the Toffoli gate

as

toffoli = cnot |id2

which in Haskell becomes:

toffoliC ∈ Circ

toffoliC = Cond cnotC (Wire [0, 1])

The Toffoli gate is self-inverse, as applying it twice has the effect (a, b, c) →
(a, b, c⊕ ab)→ (a, b, c). The Toffoli gate is also an important operation in reversible

computation, as it can be used to emulate the irreversible nand gate. Being able to

use this operation allows any (deterministic) irreversible operation to be implemented

reversibly, as the nand gate (with copying, using cnot) is universal ; it can be used

to generate any function f ∈ Cn → Cn. Figure 2.5 shows the circuit for implementing

the nand gate using a Toffoli gate. This assertion holds as long as extra heap input

is available, and a non-useful garbage output is allowed, both of which are required

for this reversible implementation of the nand gate.
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a ∈ N2 • a

b ∈ N2 • b

1 ∈ N2 X 1 ⊕ ab

Figure 2.5: Toffoli gate implementation of nand, where the third output gives the
nand of the first two; note 1⊕ ab = ¬(a&b).

2.4.2 The Fredkin Gate

Another example of a useful circuit is the three-bit controlled-swap gate, called the

Fredkin gate. This is a universal reversible gate, assuming that input can be initialised

in any way, and is used in the billiard-ball model of computation discussed in section

2.1.2. Its behaviour is such that if the control-bit (often the first wire, but sometimes

the third) is set to true, then the values of the other two inputs are exchanged. In

the circuit representation this can be written using a conditional that either performs

a permutation, or the identity:

fredkin = swap|id2

where swap = wires φ, and φ is the swap bijection. In Haskell the fredkin circuit can

be rendered as:

fredkinC ∈ Circ

fredkinC = Cond (Wire [1, 0]) (Wire [0, 1])

Schematically this is shown in figure 2.6, where a × on a wire denotes a swap oper-

ation. Again this operation is self-inverse, and is therefore fully reversible. Another

a ∈ N2 • a

b ∈ N2 ×

c ∈ N2 ×

Figure 2.6: The Fredkin gate, which swaps b and c, but only if a is True

interesting property of this gate, and a reason why it is useful for the billiard-ball

model of computation, is that the number of True and False values is conserved
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throughout. In the billiard-ball model, where balls represent True values, this is

equivalent to the number of balls going into the circuit being the same as the number

coming out. This corresponds to the physical phenomenon of conservation of energy

(and therefore mass). The two properties of reversibility and conservation make this

operation interesting to physicists as both can be motivated by fundamental physical

principles. The Fredkin gate can model the operation ‘x and y’ by setting a = x,

b = y and c = False. The outputs are, in the same order, x, ¬xy and the desired

xy. not can also be easily implemented by setting a = x, b = False and c = True,

giving x, x and finally ¬x. Both of these operations are shown in figure 2.7. These

x ∈ N2 • x

y ∈ N2 × ¬xy

0 ∈ N2 × xy

x ∈ N2 • x

0 ∈ N2 × x

1 ∈ N2 × ¬x

Figure 2.7: The Fredkin gate performing and (left) and not(right)

two operations can be wired together to perform the nand operation, and hence the

Fredkin gate is also universal. Again, this is assuming the availability of extra heap

input and garbage output, as required for reversibility.

2.5 Simulating a circuit

The Circ datatype allows reversible classical circuits to be represented in Haskell. To

run circuits a simulator is needed. In this section a compiler from circuits to functions

will be defined. Also described is an evaluator which will, given some input, return

the output that would be produced by applying that input to the circuit. The input

to a circuit is simply a Boolean valued vector with dimension equal to the arity of

the circuit. A compiled circuit is a function from (Boolean valued) vectors (possible

input vectors) to vectors (the output vector); in other words, a matrix. Vectors and

matrices can be simply modelled by the following Haskell type-synonyms:

type Vec = [N2 ]

type Mat = Vec → Vec
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2.5.1 Evaluating a circuit

It would be useful to be able to apply some input to a circuit and have the associated

output returned. This is achieved by an evaluation function,

eval ∈ Circ → Vec → Maybe Vec

This definition assuming there is a function

comp ∈ Circ → Maybe Mat

The functions are defined in this order to simplify the definition of comp, as comp

assumes that a circuit passed to it is well-formed. The eval function makes no such

assumption, first calling arity on the circuit, which guarantees it is well formed, or

produces the error state Nothing . This cannot be done so easily in the comp function

due to its recursive nature. The eval function is fairly simple. It ensures the circuit is

valid, via the arity function, then ensures the input is valid for the circuit, by checking

its length against the circuit arity, and finally compiles the circuit to a matrix, via

comp, to which the input vector is then applied. If the circuit, or input vector, are

invalid, then Nothing is returned. This is expressed in Haskell as:

eval ∈ Circ → Vec → Maybe Vec

eval c v = do a ← arity c

guard (a ≡ length v)

m ← comp c

return (m v)

2.5.2 Compiling a circuit

In order for the eval function to operate, a function comp ∈ Circ → Mat must

be defined, which transposes a circuit into its matrix representation. The function

to compile a circuit is defined using pattern matching. Not and Wire are the trivial

base cases, while Seq , Par , and Cond recursively call comp on each sub-circuit, before

doing the necessary computations. The behaviour in each case is fully explained by

the code, given in figure 2.8.
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comp ∈ Circ → Maybe Mat

comp (Not) = return (λv → case v of [True ] → [False ]

[False ]→ [True ])

comp (Wire ~p) = return (λvs → [vs !! p | p ← ~p ])

comp (Seq x y) = do m ← comp y

n ← comp x

return (m ◦ n)

comp (Par x y) = do ax ← arity x

m ← comp x

n ← comp y

return (λvs → let (a, b) = splitAt ax vs

in m a ++ n b)

comp (Cond x y) = do m ← comp x

n ← comp y

return (λ(v : vs)→ if v then True : (m vs)

else False : (n vs))

Figure 2.8: The comp compile function for classical reversible circuits

2.6 Summary

In this chapter the fundamental notion of how computations are modelled has been

explored. Abstract models of computation, such as λ-calculus and Cartesian-closed

categories are based on irreversible processes. However, more fundamental physical

notions describe processes in closed systems and here all processes are reversible.

This includes theories such as Newtonian mechanics, Maxwellian electrodynamics,

and quantum mechanics. Open systems, which do allow for irreversible processes, are

a derived notion; a subsystem of a larger closed system. This chapter followed the

physical notion that reversibility is the fundamental concept to model computation,

from which irreversibility may be derived. A framework for reversible computations

has been presented in this chapter, with an implementation given in Haskell, and the
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theory and practise of reversible computation was explored.
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Chapter 3

Reversible quantum computation

This chapter will introduce the fundamentals of quantum computing, including the

notation, mathematics, and theory. The quantum circuit model will be presented, us-

ing a development that follows the format used to describe reversible classical circuits

introduced in section 2.2. Throughout the development the differences and similari-

ties between classical reversible computation and quantum computing are highlighted

and discussed.

An implementation of quantum circuits in Haskell is developed, including a com-

piler. A discussion of Deutsch’s Algorithm and Quantum Teleportation is also in-

cluded, with a presentation of the algorithms as quantum circuits.

3.1 Fundamentals of quantum computation

To understand quantum algorithms, and how they can achieve the efficiency gains

they are theoretically capable of, it is first necessary to study the fundamental physics

and mathematics of quantum computers. The focus of this section is not how quantum

computers can be fabricated (though this is an active area of research, see section

1.2) but the how the behaviour of quantum computers can be modelled. This section

outlines the theory of how quantum computation is modelled mathematically, and

how quantum bits interact.
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3.1.1 Introduction to quantum bits (qubits)

The quantum bit, also called a qubit, is the fundamental unit of quantum information,

and is analogous to the classical bit. A qubit, like a classical bit, can exist in a state

which is either of the classical states 0 (False) or 1 (True). These states are represented

by |0〉 and |1〉, in the Dirac “Bra-ket” notation commonly used in quantum computing.

The notation used defines qubits using a Ket column vector, and its row vector

conjugate-transpose, the Bra. The Dirac vector notation is employed here because,

unlike classical bits, qubits can also be in linear combinations of the states |0〉 and

|1〉, which is called a superposition of states. A superpositions can be represented in

Dirac notation as:

|ψ〉 = α |0〉+ β |1〉 =

(
α

β

)
(3.1)

where |ψ〉 represents the qubit in a superposition. The state is represented by a

vector in two-dimensional complex vector space, where α and β are both complex

numbers representing the amplitudes of the two components of the quantum state. α

and β have the additional property that |α|2 is the probability of the qubit collapsing

to |0〉 when measured, and |β|2 is the probability of the qubit collapsing to |1〉.
The states |0〉 and |1〉 are known as the computational basis states, and form an

orthonormal basis for the vector space. When a qubit state is measured in the

computational basis, it will always collapse from its superposition into one of the

basis states, with a probability equal to the absolute-square of its amplitude of that

state prior to measurement. The probabilities sum to 1; |α|2 + |β|2 = 1. This is a

projective measurement, and is an irreversible process. Measurement is a key feature

of quantum physics, and some algorithms specify measurement in a basis other than

the computational basis; an example of which is a measurement in the diagonal basis.

Measurements in a different basis can be expressed by a unitary change of basis,

followed by a measurement with respect to the computational basis, followed by the

inverse of the basis change operation. As measurement is an irreversible process, a

full discussion is postponed until section 5.5.2, where measurement is formalised using

the notion of partial trace on superoperators.

The Ket vector |ϕ〉 =
(
α
β

)
, has an associated Bra vector 〈ϕ| = (α∗, β∗), where
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(x + y × i)∗ = x − y × i is the complex conjugate. The bra is, by definition, the

adjoint (conjugate transpose) of the ket:

|ϕ〉† =

(
α

β

)†
=

(
α∗

β∗

)T
= (α∗, β∗) = 〈ϕ|

The inner–product, discussed in section 3.1.3, is then given by 〈φ | ϕ〉; the “bracket”

of the Dirac notation.

Relationship to probabilistic computation

Quantum amplitudes initially seem to bear similarities to probabilistic computation,

where a computation can be in a mixed state such as p0[0] + p1[1], where p0 and

p1 are the probabilities of the computation being in either of the classical states 0

or 1, respectively. Here similarly p0 + p1 must sum to 1. However, there are two

fundamental differences between the probabilities in probabilistic mixed states and

the amplitudes of quantum states: The first difference is that probabilities can only

be positive numbers between 0 and 1, whereas quantum amplitudes can be negative

and can include an imaginary component (as they are complex–valued), with the

restriction that |α|2 + |β|2 = 1. As the amplitudes of quantum states can have

negative values (a negative phase), these would be subtracted from any probability

calculation. This means that quantum states may destructively interfere with each

other, thus decreasing the probabilities of other states from occurring. Classically,

there is no analogous idea of a negative probability.

The second difference is that, with a probabilistic computation, the probabilities

describe our lack of knowledge about the current state of the system. The system

itself is only ever in one of the possible states at any time, with the evolution of

the system being fully described by a probability chain. However, the amplitudes

of a quantum state do not describe imperfect knowledge of the system; rather they

describe the actual, though unknown, current state of the system. A quantum bit

can to some degree (prescribed by the amplitudes), be in both of the possible states

simultaneously; this is a superposition.

For example, a random classical bit can be understood by imagining a coin toss.

A tossed coin only ever lands to show heads or tails. If the coin is tossed and then
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covered, the coin is either showing heads or tails; it must be in one of those two

states. By looking the incorrect possibility is removed. A “quantum coin” is different

in that it can exist in a superposition of states between heads and tails while it is

covered, and only collapses to one state when observed, in a similar vein to the famous

Schrödinger’s Cat thought-experiment [67]. If the quantum coin is measured, but the

result not observed, it becomes a classical probabilistic coin. The quantum state has

collapsed and our lack of knowledge about which state it collapsed into is represented

by a probability.

Physical realisations

Often, in physics, a physical quantity which may be used experimentally as a qubit

is the spin of an electron. Spin is a quantum mechanical property of some subatomic

particles (fermions) which can exist in one of two opposing (orthogonal) states, which

physicists conventionally denote |+〉 and |−〉1. Note that fermions do not actually

spin about an axis.

The spin of an electron is a quantum property which can be denoted as a vector

from the centre to the surface of a unit sphere, and given a geometric interpretation:

the Bloch Sphere, shown in figure 3.1. Every point on the surface of the Bloch sphere

gives a possible value for the spin, with each point having different amplitudes; i.e.

different α and β.

Electron spin has the property that, although it can point in any direction, when

measured it will only ever be found to be up or down (hence |+〉 and |−〉), with a

probability proportional to the complex valued components of the original spin. The

quantum effect of electron spin was first demonstrated in the famous Stern–Gerlach

experiment [29].

Equation 3.1 for a qubit gives |ψ〉 = α |0〉+β |1〉. Since |α|2 + |β|2 = 1, by Euler’s

Formula [24], equation 3.1 can be rewritten as:

|ψ〉 = eiγ(cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉)

1The computer science convention of |0〉 and |1〉 will be used here, where |+〉 = 1
√

2
|0〉 + 1

√

2
|1〉

and |−〉 = 1
√

2
|0〉 − 1

√

2
|1〉.
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Figure 3.1: The Bloch Sphere: a geometric representation of a qubit

where θ, ϕ and γ are real numbers. The factor eiγ can be ignored in this case as it

has no observable effect; it is a normalisation factor of mathematical interest. This

leaves:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉

The variables θ and ϕ can now be interpreted as defining a point on the Bloch sphere,

with θ being the angle from the z axis, and ϕ the angle from the x axis. The Bloch

sphere can be used to visualise a quantum bit, and the spin of an electron is a

realisation of this geometric representation of a quantum bit.

3.1.2 Multiple qubit registers

A multiple qubit system is an array of single qubits, but they are not treated as

a simple collection of single bits, like bit–strings in a classical computer are. The

individual qubits in a quantum register can be entangled, due to their quantum me-

chanical nature, with the possibility of their amplitudes interfering. Interference is

the property that makes parallel quantum computing so potentially powerful.
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A two qubit system is denoted mathematically as:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =





α00

α01

α10

α11





where |αx|2 is the probability of state x being observed when the state is measured.

The sum of the probabilities must still equal 1;
∑

x |αx|
2 = 1.

Qubit registers can be made by grouping individual qubits together in some way.

The details of this vary according to the physical realisation, but conceptually if there

are two qubits, |x〉 and |y〉, then |xy〉 can be called a two-qubit register. The action of

combining the two qubits into a single register is modelled on the underlying vector

space as |xy〉 = |x〉 ⊗ |y〉, where ⊗ is the tensor product.

Although quantum registers can be constructed by combining individual qubits,

once grouped together and operated on, they can no longer be considered independent

of one another. For example, the two qubit state:

|epr〉 =
|00〉+ |11〉√

2
=

1√
2





1

0

0

1




(3.2)

cannot be described as the tensor of two individual qubits. The |epr〉 state is entan-

gled, which means that the two individual qubits are now correlated. This is actually

a well-known state, first formulated by Einstein, Podolsky, and Rosen as the “EPR

paradox” [23]. Measuring the first qubit of this state would result in either 0 (with

the resulting state |00〉) or 1 (|11〉), each with a probability of 1
2
. In either case, sub-

sequently measuring the second qubit gives a deterministic (non-probabilistic) result,

which is always equal to the first measurement. This correlation holds even if the two

qubits are separated in any way. Experiments have shown that this correlation exists

even when the two states are separated by over 10km [77]. This results demonstrates

a key difference between quantum and classical systems, in which an entangled state
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of two qubits cannot be expressed as the tensor product of single-qubit states. Clas-

sical systems, conversely, can always be decomposed into the Cartesian product of

single-bit states. The EPR state presented in this way is sometimes referred to as

the Bell state, with the EPR state then defined as an anti-correlated pair of qubits

instead, which is closer to the original statement of the EPR thought experiment.

In general, a system composed of n quantum bits can exist in 2n possible states.

Unfortunately there is no simple geometric interpretation, such as the Bloch sphere,

for more than one qubit, which makes them initially difficult to understand concep-

tually.

3.1.3 Operations on quantum states

The evolution of a quantum system can be described by a unitary transformation

(operator). If the state of a qubit is represented as a complex-valued column vector

(as above), then a unitary operator can be represented as a complex-valued matrix

U , such that U−1 = U †, where U † is the conjugate-transpose, or adjoint, of U , where

U is a unitary matrix:

U † =

(
u00 u01

u10 u11

)†

=

(
u∗00 u∗01

u∗10 u∗11

)T

=

(
u∗00 u∗10

u∗01 u∗11

)

The description of the behaviour of the operator U on a state is given by matrix

multiplication:

U |φ〉 =

(
u00 u01

u10 u11

)(
α

β

)
=

(
u00α+ u01β

u10α+ u11β

)

A common unitary operator used on quantum states is the Hadamard operator, H ,

which is sometimes called the “square-root of not” (despite the fact that H2 6= not).

The Hadamard operator’s action is given by the matrix:

H =
1√
2

(
1 1

1 −1

)
(3.3)

A unitary transformation can also be fully described by its action on the basis states,

which can extended linearly to the entire space the operator acts on. The Hadamard
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operator written in this way becomes:

H |0〉 =
1√
2
|0〉+ 1√

2
|1〉 = |+〉

H |1〉 =
1√
2
|0〉 − 1√

2
|1〉 = |−〉

The action of the Hadamard transformation is to, in each case, produce an equal

quantum superposition, but with a difference in phase. The negative phase in the

case of H |1〉 does not change the measurement probabilities, as these are given by the

absolute square of the amplitude. Note that it is clear from this representation that

the Hadamard operation maps the orthogonal spaces |0〉 and |1〉 to the orthogonal

spaces |+〉 and |−〉. Preserving orthogonality is a property of all unitary operations,

otherwise they would not be sufficient to model quantum computation. More gener-

ally, unitary operations preserve the inner-product:

〈v|w〉 = 〈Uv|Uw〉 ∈ C

and the inner-product can be thought of as a measure of orthogonality: if 〈v|w〉 = 0

then v and w are orthogonal (v ⊥ w).

The phase difference between the two possible outcomes formed on application

of the Hadamard transform to the two basis states means that applying the trans-

form again restores the original quantum state. This is evident from multiplying the

Hadamard matrix with itself, which gives the identity matrix:

H2 =

(
1√
2

(
1 1

1 −1

))2

=
1

2

(
2 0

0 2

)
=

(
1 0

0 1

)
= I

Four other common one-qubit unitary rotations, so called because they rotate a

vector about the Bloch sphere, are the Pauli matrices. These are:

I =

(
1 0

0 1

)
; X =

(
0 1

1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0

0 −1

)
(3.4)

Unitary transformations can be combined using the tensor product ⊗ to give a

single transform which acts on the state space spanned by both operators. With
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matrices the tensor product is sometimes called the Kronecker product, a term used

to make clear that the result has a particular block structure imposed upon it, in

which each element of the first matrix is replaced by the second matrix, scaled by

that element:

U ⊗ V =





u00V u01V · · ·
u10V u11V

...
. . .



 =





u00v00 u00v01 · · · u01v00 u01v01 · · ·
u00v10 u00v11 u01v10 u01v11

...

u12v00 u10v01
. . .

u12v10 u10v11

...





(3.5)

For example, given two qubits, the operation X ⊗ Y corresponds to the unitary

transform that would apply the X transform to the first qubit and the Y transform

to the second.

3.2 Linear algebra for quantum computation in Haskell

The aim of this section is to provide an overview of basic ideas used in linear algebra

which are used to mathematically model closed quantum systems, and to implement

the concepts presented in the functional programming language Haskell [55], see sec-

tion 2.3.

3.2.1 Pure quantum states as vectors

Linear algebra concerns the study of vector spaces and the linear operations on those

spaces. The vector space of interest in (finite) quantum computing is the space of all

(finite) n-tuples of complex numbers, denoted Cn: the space of qubit registers. These

can be thought of as a function from some basis A, which is a finite spanning set,

into a complex number, such that v ∈ A→ C. In the case of quantum computation

over the computational basis states, the base will be the spanning set of the Boolean

values of length n, since this spans all possible computational values of n-bits. For
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full introduction and development of vector spaces and linear algebra, see reference

[62].

The Haskell implementation of such a vector is:

data Vec = Vec{vSize ∈ Int , funV ∈ [N2 ]→ C}

vreturn ∈ [N2 ]→ Vec

vreturn ~b = Vec (length ~b) (λb → if b ≡ ~ba then 1 else 0)

where vSize is the size of the vector, and funV is the function defining the vector.

The function vreturn is a vector return function, which returns a vector with a 1 in

the index associated with the input, and 0s in all others, and N2 denotes the type of

Booleans. Note that as only vectors over the computational basis are considered, the

dimension of a vector denotes how many elements of the computational basis it can

represent. For example, a size of 1 means the vector can represent 1 qubit, and thus

has a dimension of 21. A size of 2 means the vector can represent a pair of qubits,

and thus has a dimension of 22. The EPR vector, discussed below, has a size of 2 in

this notation.

To illustrate how vectors can be defined using the Vec datatype, examples of

vectors are given below. The computational basis states of |0〉 and |1〉 (False and

True) are presented as the following vectors:

|0〉 =

(
0

1

)
|1〉 =

(
1

0

)

In Haskell, the basis states are defined as:

vF , vT ∈ Vec

vF = vreturn [False ]

vT = vreturn [True ]

A more interesting example is the EPR state vector shown in equation 3.2, and

discussed in section 3.1.2. This can be written in Haskell as:

vEPR ∈ Vec

vEPR = Vec 2 eprF

where eprF [False,False ] = 1/
√

2

eprF [True,True ] = 1/
√

2

eprF = 0
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where eprF is a function that defines the action of the EPR state vector: 1/
√

2 if

either |00〉 or |11〉 are input, and 0 otherwise.

The basis of a vector is a simple function of its size, and code for fully enumerating

the base is:

base ∈ Int → [ [N2 ] ]

base 0 = [[ ]]

base n = [True :~b | ~b← ~b′ ] ++ [False :~b | ~b← ~b′ ]

where ~b′ = base (n − 1)

The base n function can be thought of as producing a list of all possible indexes of a

vector of dimension 2n. For example, base 2 would produce the list below:

[[True,True ], [True,False ], [False,True ], [False,False ] ]

There are several standard operations on vectors defined in linear algebra that are

useful in quantum computation, and these are encapsulated in the VEC class:

class VEC a m | a → m where

adjoint ∈ a → a

(⊗) ∈ a → a → a -- Tensor Product: v ⊗ w
(〈·〉) ∈ a → a → C -- Inner Product: 〈v|w〉
(〉·〈) ∈ a → a → m -- Outer Product: |v〉 〈w|
($∗) ∈ C→ a → a -- Scalar Product: λ× v

where v ,w ∈ a, λ ∈ C, and a is a type for which this class has been instantiated.

The type Vec of vectors must by definition be able to have these operations defined

for it, and the class can be instantiated with the following definitions:

instance VEC Vec Mat where

adjoint (Vec a v) = Vec a v †

where f † x = (f x )∗

Vec a v ⊗ Vec a ′ w = Vec (a + a ′)

(λ~b→ let (b1, b2) = splitAt a ~b

in v b1 × w b2)

Vec a v〈·〉 Vec a ′ w | a ≡ a ′ = sum [(v ~a)∗ × w ~a | ~a← base a ]

| otherwise = error "Vec: |<.>| Outer Product"
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Vec a v〉·〈 Vec a ′ w = Mat a a ′ (λ~ba → λ~bb → v ~ba × (w ~bb)
∗
)

x $∗ Vec a v = Vec a (λb → x × (v b))

The instantiation of this class for Vec follows the standard linear algebra defini-

tions for vectors. This code also makes use of the type Mat of matrices, which are

defined in the following section.

3.2.2 Quantum operations as matrices

As a vector is represented as a function v ∈ A → C, a matrix is represented as a

function of type m ∈ A → B → C. Vectors denote quantum states, and unitary

matrices denote quantum operators (see section 3.1.3). This is encapsulated by the

Mat type:

data Mat = Mat{inS ∈ Int , outS ∈ Int , funM ∈ [N2 ]→ [N2 ]→ C}
where inS and outS return the size of the input and output vectors, respectively,

and funM defines the function that is the action of the linear operator. As with Vec,

the basis is of Mat restricted to the computational basis of Booleans, N2.

As an example, the matrix for negation (the Pauli-X matrix from equation 3.4),

can be defined in Haskell as:

mNot ∈ Mat

mNot = Mat 1 1 notF

where notF [x ] [y ] | x 6≡ y = 1

| otherwise = 0

notF = error "mNot Arity"

The code for mNot defines a linear operator between vectors of a single Boolean,

and the action of the operator is to map True to False, with a probability of 1, and

vice-versa.

The matrix for the Hadamard transform (see section 3.1.3) can be similarly en-

coded as:

mHad ∈ Mat

mHad = Mat 1 1 hadF

where hadF [True ] [True ] = −1/
√

2
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hadF [True ] [False ] = 1/
√

2

hadF [False ] [False ] = 1/
√

2

hadF [False ] [True ] = 1/
√

2

hadF = error "mHad Arity"

mHad is again a matrix between vectors representing a single qubit, and the action of

the function is fully enumerated and can be seen to be equal to that given in equation

3.3.

The useful operations encapsulated in the VEC class can also be instantiated for

the Mat type, using the standard definition of each operator for matrices:

instance VEC Mat Mat where

adjoint (Mat a b m) = Mat a b m†

where f † x y = (f y x )∗

Mat a b m ⊗ Mat a ′ b ′ n

= Mat (a + a ′) (b + b ′)

(λ~ba → λ~bb →
let (a1, a2) = splitAt a ~ba

(b1, b2) = splitAt b ~bb

in (m a1 b1)× (n a2 b2))

Mat a b m〈·〉 Mat n

= sum [(m ~b ~a)
∗ × (n ~a ~b)

| ~a← base a,~b← base b ]

m 〉·〈 n = m >>= adjoint n

x $∗ Mat a b m = Mat a b (λ~ba → λ~bb → x × (m ~ba ~bb))

The most complicated function is the tensor product, ⊗, which follows the definition

given in equation 3.5.

It now remains to define a method of composing matrices and vectors, and this is

done using the standard notion of matrix multiplication. This is defined as the >>=

operation (pronounced bind), as it has been shown that, although technically not a

monad [82], vectors and linear operators correspond to a Kleisli structure [4], which

is a more general notion, sometimes referred to as an indexed monad. The difference
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between monads and indexed monads is that the function is not required to be an

endofunctor; the function is only defined for a subset of the objects. This is exactly

the notion required to model quantum state vectors as monads: a function which

associates each element of the basis with a complex-valued probability amplitude. A

quantum vector can only act over types which are constituents of the basis [82]. The

three monad laws still apply.

A class of types with a >>= operator can be defined simply as:

class Bind a b where

(>>=) ∈ a → b → a

In the case of Vec the return operation is the function vreturn, defined previously,

and the >>= operator can be instantiated as shown in figure 3.2, which defines the

instance Bind Vec Mat where

Vec d vf >>= Mat m n mf

| d ≡ m = Vec n

(λ~b→ if length ~b ≡ n

then sum [vf ~a× (mf ~a ~b) | ~a← base d ]

else error "Size mismatch")

| otherwise = error ("Type error: |Vec @>>= Mat|")

Figure 3.2: The bind operation between a vector and a matrix

>>= ∈ Vec → Mat → Vec operation as simple matrix multiplication of a matrix with

a vector. In the case of >>= ∈ Mat → Mat → Mat , the instantiation is again matrix

multiplication, as shown in figure 3.3.

instance Bind Mat Mat where

Mat a b f >>= Mat a ′ b ′ f ′

| b ≡ a ′ = Mat a b ′ (λ~ba → funV ((Vec b (f ~ba))>>= Mat a ′ b ′ f ′))

| otherwise = error ("Type error: |Mat @>>= Mat|")

Figure 3.3: The bind operation between matrices
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The bind operation presented here, which is a matrix multiplication, gives a de-

scription of the evolution of a quantum system, and can be thought of as a way of

sequencing quantum computations. The return can be thought of as a way of ter-

minating computations. This fits the idea of a monad as a way of encapsulating

computation, and was originally noted by Bird and Mu [52] and developed by Al-

tekirch, Vizzotto and Sabry [84], where a full proof that the monad laws are satisfied

is presented. The three monad laws are:

(return x )>>= f = f x -- left-identity with respect to >>=

m >>= return = m -- right-identity with respect to >>=

(m >>= f )>>= g = m >>= (f >>= g) -- associativity law for >>=

and the proof that these hold follows exactly that presented in references [84, 82],

which is extended by Vizzotto in her PhD thesis [83]. Section 5.3.1 gives a categorical

review of the material presented in this section.

3.3 The quantum circuit model

In this section an inductive definition for building quantum circuits will be given. The

quantum circuit model is a standard way of expressing quantum algorithms [53]. The

presentation in this thesis will be slightly different than standard, in that it follows

the same format as the definition of reversible classical circuits given in section 2.2.

As with the classical circuit presentation, the quantum circuit definition will be

translated into a Haskell datatype, which can be compared with the classical imple-

mentation in section 2.3. An analysis of both the differences and similarities will then

follow. As shown previously, the arity of a circuit is number of qubits, or (quantum)

wires, used throughout the circuit, and is therefore a natural number. By definition,

a unitary computation φ must have an inverse, φ−1, such that together φ, φ−1 give an

isomorphism. The notation Q2 is now introduced to denote a single qubit.

The set of quantum computations (or circuits) of arity a ∈ N, can be defined

inductively:

Rotation In contrast to classical reversible computation, where there is only one non-

trivial operation possible on one bit (negation), when dealing with a quantum
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bit any one qubit unitary transformation, rot ϕ, is a valid operation. Denoted

as a matrix, ϕ must be unitary and of the form:

(
λ0 λ1

κ0 κ1

)

with λ∗0κ0 + λ∗1κ1 = 0. As a circuit diagram rot ϕ is denoted as:

Q2 ϕ

Negation is a particular rotation given by rot X where X is given by:

X =

(
0 1

1 0

)

As all rotations are unitary, the inverse is given by the adjoint of ϕ, ϕ†. The

inverse construction is rot ϕ−1, with:

ϕ−1 = ϕ† =

(
u00 u01

u10 u11

)†

=

(
u∗00 u∗10

u∗01 u∗11

)

Wires Any possible reordering (permutation) of qubits is a valid operation, and in

a circuit is shown as a rewiring. This is represented as a bijection φ : [a ] ≃ [a ],

where [a ] is the initial segment of a, defined as {i ∈ N | i < a }. This describes

any rewiring, including the identity ida = wires id, where no permutation takes

place. This is the same as in the classical case, and is shown the same way

schematically, except with the “wires” now carrying quantum data.

As before, rewiring is trivially reversible, and the arity of the rewiring circuit is

the number of wires in the permutation, which is a in the bijection.

Sequential composition Given quantum circuits φ and ψ, of equal arity, a new

circuit can be constructed where the output of ψ is passed as the input to φ.

This is written φ ◦ ψ, and is shown diagrammatically as:

ψ φ

_ _ _ _ _�

�

�

�
_ _ _ _ _
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The arity of the new circuit is equal to the arity of the sub-circuits. As both φ

and ψ are unitary, φ◦ψ can be reversed using ψ−1 and φ−1, and by constructing

ψ−1 ◦ φ−1.

This is exactly the same construction as for the classical case.

Parallel composition This combines any two circuits in parallel, and can be thought

of as the tensor product of circuits in the quantum case. Given any quantum

circuits φ and ψ, φ⊗ ψ can be constructed, shown diagrammatically as:

φ

ψ

_ _�
�
�
�
�

�
�
�
�
�

_ _

The arity of the new circuit is the sum of the sub-circuit arities, and the inverse

can be constructed using ψ−1 and φ−1, to give ψ−1 ⊗ φ−1.

This is the same construction as in the classical case, except that classically

the Cartesian product is used to build the product circuit. In the quantum

case the tensor product is used. The tensor product acts on the Hilbert space

representation, which is the Cartesian product on the underlying basis.

Conditional Given quantum circuits φ and ψ of equal arity, a, the conditional cir-

cuit φ|ψ can be constructed. It performs the same basic if . . . then . . . else . . .

operation as in the classical case, except now the control wire could be in a

quantum superposition. If the control wire is in a superposition then both φ

and ψ are applied to the appropriate components of their inputs.

The arity of the circuit is 1 + a and it is shown schematically as:

Q2 • ��
��	
�

a ψ φ

If either φ or ψ is the identity, then the diagram can be simplified by leaving

out the relevant branch, as in the classical case, and the inverse is once again

given using ψ−1 and φ−1, to construct φ−1|ψ−1.
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3.4 Comparing classical and quantum circuits

By comparing the definition of quantum circuits presented above, with the defini-

tion of classical circuits presented in section 2.2, it should be clear that there are

striking similarities. The main difference is that reversible classical computations are

bijections between finite sets, while reversible quantum computations are unitary op-

erations between finite dimensional Hilbert spaces; which seems to imply that these

notions are fundamentally unalike. However, the Hilbert spaces of quantum compu-

tations are generated by finite sets, and unitary operators on Hilbert spaces are the

quantum mechanical equivalent of bijections between finite sets.

Two further differences are evident from the inductive definitions of classical and

quantum circuits: the use of the tensor product rather than the Cartesian product in

the definition of sequential composition of circuits, and the general rotation operator

which replaces the classical negation operator. Both of these differences follow from

the move to Hilbert spaces in the quantum case. The tensor product is the Hilbert

space equivalent of the product operation, and is modelled as the Cartesian product on

the underlying finite set that generates the Hilbert space. Classically, negation is the

only non-trivial reversible operation on a single bit. In the quantum setting, because of

the move to Hilbert space, there are now an infinite number of one qubit operations,

as there are an infinite number of unitary operations on one qubit. The power of

quantum over classical computing is derived as consequence of these few differences.

Using an operation such as the Hadamard transform, a single qubit can be placed into

an equal superposition, and then used as the control qubit in a conditional operation.

From this, quantum entanglement can be produced, and quantum parallelism, which

together are the keys to the power of quantum algorithms.

These similarities have been made clear in this development as the definition of

quantum circuits proceeded by mapping each concept from the definition of reversible

classical circuits to the quantum mechanical equivalent, summarised in figure 3.4.
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Classical Case Quantum Case

Finite sets Finite dimensional Hilbert spaces

Cartesian product (×) Tensor product (⊗)

Bijections Unitary operators

Figure 3.4: Table showing the analogous concepts of reversible classical and quan-
tum computation. To give the quantum analogue, each classical concept is lifted to
finite dimensional Hilbert spaces.

3.5 Quantum circuits in Haskell

The quantum circuits defined in section 3.3 can be directly translated into a Haskell

datatype in the same way as the translation was performed on classical reversible

circuits in section 2.3. A compiler function can be built using this datatype, following

the classical development in chapter 2. Again, other useful functions, such as an

evaluator for the quantum circuits, can also be defined. The first step is to define a

datatype that represents circuits. This will also be called Circ, with quantum circuits

assumed unless stated from now on.

data Circ = Rot (C,C) (C,C)

| Wire [Int ]

| Par Circ Circ

| Seq Circ Circ

| Cond Circ Circ

Figure 3.5: A datatype for quantum circuits in Haskell

This definition of Circ allows for a quantum circuit to be any one of the following:

a Rotation operation; a Wire, which takes as an argument a list of integers describing

the permutation (rewiring); a Par (parallel) operation, which takes two sub-circuits

as arguments; a Seq (sequential) operation, which also takes two sub-circuits as ar-

guments; and finally a Cond (conditional) operation, which takes the two possible

circuits as arguments. The Circ datatype bears a striking resemblance to that devel-
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oped for classical circuits. Indeed, the only difference is that the Not circuit has been

replaced by a Rot . The rotation Rot takes two pairs of two complex numbers. These

are used to define the unitary matrix for the rotation:

Rot (λ, λ′) (κ, κ′) ≡ rot

(
λ λ′

κ κ′

)

As in the classical case this datatype does not capture all the constraints on what

constitutes a valid circuit, for the same reasons presented in section 2.3. This can

be overcome in precisely the same way: by defining the arity function for quantum

circuits, shown in figure 3.6. This function makes use of the Error monad rather

than the Maybe monad, which returns either OK x if the computation succeeds

(Just x in the Maybe monad), otherwise Error string where the string is a useful

error message, rather than the Maybe monads Nothing . As with the Maybe monad,

error results are propagated through the program, with the informative message.

The arity function makes use of eguard to simplify the use of this monad, which

takes as arguments boolexp and string . If the Boolean expression boolexp evaluates

to True then the computation can proceed, otherwise Error string is returned, with

string detailing the source of the error. It also makes use of two auxiliary functions,

chkPerm and orthTest . The function chkPerm ensures the permutation function is

valid, as previously, whereas orthTest ensures that the rotation passed to Rot is valid,

as defined in section 3.3.

3.6 Example quantum circuits

Using the Haskell Circ datatype it is straightforward to define examples of quantum

circuits. In the reversible circuit datatype of section 2.3, the single bit negation oper-

ator Not is a primitive circuit. However, in the quantum case 1-qubit rotations need

to be defined using the rot constructor, to which the unitary matrix that defines the

rotation has to be supplied as an argument. A negation circuit, notC , can therefore

be defined as:

notC ∈ Circ

notC = Rot (0, 1) (1, 0)
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arity ∈ Circ → Error Int

arity (Rot x y) = do eguard (orthTest x y)

("Orthogonality" ++ show (x , y))

return 1

arity (Wire ~x) = do eguard (chkPerm ~x)

("Wire: " ++ show ~x)

return (length ~x)

arity (Cond x y) = do m ← arity x

n ← arity y

eguard (m ≡ n)

("Cond: arity =" ++ show (m, n))

return (1 + m)

arity (Par x y) = do m ← arity x

n ← arity y

return (m + n)

arity (Seq x y) = do m ← arity x

n ← arity y

eguard (m ≡ n)

("Seq: arity =" ++ show (m, n))

return m

orthTest ∈ (C,C)→ (C,C)→ N2

orthTest (λ, λ′) (κ, κ′) = λ∗ × κ ≡ −λ′∗ × κ′

chkPerm ∈ [Int ]→ N2

chkPerm ~x = (and [elem x ~x | x ← [0 . . length ~x− 1]])

Figure 3.6: The quantum circuit arity function
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which follows the construction give in section 3.3.

Using this definition of negation, all the reversible classical circuits presented

previously can be translated into quantum circuits. These circuits have the same

action on the computational basis as in the classical case, but can now also accept

superpositions of the basis as input. For example, the cnot circuit, which negates

the second input if the first is True, and does nothing otherwise, is defined as before:

cnot = rot X |id1

which gives an an almost identical Haskell implementation as in the classical case:

cnotC ∈ Circ

cnotC = Cond notC (Wire [0])

with notC replacing the classically primitive Not operation. Both the notC and

cnotC circuits can be schematically represented in exactly the same way as in the

classical case, except the type of the wires has now changed from N2 to Q2, to denote

quantum data; shown in figure 3.7.

a ∈ Q2 • a

b ∈ Q2 X b ⊕ a

Figure 3.7: The simplified quantum cnot circuit, where ⊕ denotes addition mod 2

Similarly, the Toffoli gate from section 2.4.1, and the Fredkin gate from section

2.4.2, can be translated in exactly the same way, giving only the Haskell implemen-

tation for brevity:

toffoliC ∈ Circ

toffoliC = Cond cnotC (Wire [0, 1])

fredkinC ∈ Circ

fredkinC = Cond (Wire [1, 0]) (Wire [0, 1])

As both of these gates are classically universal, as discussed in section 2.4, it follows

that any classical function can be defined in this quantum setting: quantum circuits

subsume classical circuits. However, it is important to note that these gates alone are

not universal quantum gates. By universal quantum gates what is meant is a set of
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quantum gates from which any quantum circuit can be approximated. In the quantum

case, the cnot operation, plus a small set of one qubit rotations, are universal. In

reference [53] the single qubit rotations Hadamard (see section 3.1.3), Phase (S ), and

π/8 (T ) are used, but many other options are possible. The rotations S and T are

defined as:

S =

(
1 0

0 i

)
; T =

(
1 0

0 eiπ/4

)

S is know as the phase-gate, while T is sometimes called the π/8-gate.

The universal rotations had , rS , and rT , for the Hadamard transform, Phase

gate, and π/8 gate, are defined as simply rot x , where x is the appropriate matrix.

In Haskell these become:

hadC ∈ Circ

hadC = Rot (h, h) (h,−h) where h = 1/
√

2

rS ∈ Circ

rS = Rot (1, 0) (0, i)

rT ∈ Circ

rT = Rot (1, 0) (0, eiπ/4)

For completion, the remaining Pauli operators from section 3.1.3 are implemented

in Haskell as:

pI ∈ Circ

pI = Rot (1, 0) (0, 1)

pX ∈ Circ

pX = notC

pY ∈ Circ

pY = Rot (0,−i) (i , 0)

pZ ∈ Circ

pZ = Rot (1, 0) (1,−1)

For further examples, the Deutsch algorithm is implemented as a quantum circuit

in section 3.9, and the quantum teleport algorithm is implemented in section 3.10.
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3.7 Simulating a quantum circuit

The quantum Circ datatype allows quantum circuits to be represented in Haskell,

as the classical Circ datatype allowed classical circuits to be described. In order to

run classical circuits a simulator is defined in section 2.5. A simulator for quantum

circuits will now be defined, following the presentation given for classical circuits: a

compiler function from circuits to circuits will be defined, and an evaluator which will

apply a state to a circuit to generate a new state. Quantum states and operations

are compiled into vectors and linear operators, using the Vec and Mat types defined

in section 3.2.

3.7.1 Evaluating a quantum circuit

Performing the same function as in the classical case, the evaluation function uses the

yet to be defined compilation function, comp, to compile a circuit into a matrix, and

then applies an input vector to that matrix. This is done by simply multiplying the

matrix m with the vector v , using the monad bind notation from section 3.2: v>>=m.

The output is then a vector which represents the quantum state of the input after

applying the quantum circuit. The evaluation function is again called eval, and is

defined as:

eval ∈ Circ → Vec → Error Vec

eval c v = do a ← arity c

eguard (a ≡ size v)

("Input arity: " ++ show a)

m ← comp c

return (v >>= m)

Note that the output type of this function is Error Vec; the eval function does not

assume the circuit passed as an argument is well formed, and is compatible with the

input. If the size of the quantum state input is not equal to the arity of the circuit

passed, then an Error is returned with a informative error message - if the arity

function itself does not propagate an error. If the arity function, defined in figure

3.6, detects any orthogonality or permutation errors, or a malformed circuit, then the
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relevant error message is propagated and returned.

3.8 Compiling a quantum circuit

The comp function is where most of the work of simulating a quantum circuit takes

place, as it translates a circuit in the Circ datatype into a linear operator represented

in the Mat datatype. It works in the same way as the classical comp function, as a

recursive function with Rot and Wire as base cases. Seq , Par , and Cond recursively

call comp on their sub-circuits before doing the necessary computation. The code for

the comp function fully describes the behaviour, and is given in figure 3.8.

3.9 The Deutsch algorithm

The Deutsch algorithm was one of the first quantum algorithms developed to show

a clear advantage over the best possible classical algorithm. Although the algorithm

solves no practical problem, Gay [27] observes that it

“embodies what seem to be the essential aspects of an efficient [low-level]
quantum algorithm: preparation of a superposed state, then application
of unitary transformations in such a way as to take advantage of quantum
parallelism and then concentrate the resulting global information into a
single place, and finally an appropriate measurement.”

The Deutsch algorithm is an oracle problem, which assumes the existence of a

black-box which computes an unknown function f ∈ N2 → N2. The purpose of the

algorithm is to find out whether f is a constant function. Classically, the solution

is simple: compute f True and f False and compare the results. This requires two

queries of the oracle. The Deutsch Algorithm can produce an answer with only a

single query to the oracle, by exploiting the advantages of a quantum system.

To compute the Deutsch algorithm a quantum version of the oracle is required.

A lifting of f to a unitary transformation gives f̂ such that:

f̂ |xy〉 = |x〉 |y ⊕ (fx)〉
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comp ∈ Circ → Error Mat

comp (Wire ~p) = return (Mat dim dim permuteF )

where dim = length ~p

permuteF ~x ~y | ~y ≡ [~x !! p | p ← ~p ] = 1

| otherwise = 0

comp (Seq c1 c2) = do m1 ← comp c1

m2 ← comp c2

return (m1 >>=m2)

comp (Par c1 c2) = do m1 ← comp c1

m2 ← comp c2

return (m1 ⊗m2)

comp (Cond c1 c2) = do a ← arity c1

b ← arity c2

eguard (a ≡ b)

("Cond arity: " ++ show (a, b))

m1 ← comp c1

m2 ← comp c2

let cond (True : ~x) (True : ~y) = (funM m1) ~x ~y

cond (False : ~x) (False : ~y) = (funM m2) ~x ~y

cond = 0

return (Mat (1 + a) (1 + b) cond)

comp (Rot (λ, λ′) (κ, κ′)) = do let rotF [True ] [True ] = κ′

rotF [True ] [False ] = κ

rotF [False ] [True ] = λ′

rotF [False ] [False ] = λ

return (Mat 1 1 rotF )

Figure 3.8: The comp compile function from quantum circuits of type Circ into
linear operators of type Mat
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where ⊕ is exclusive-or. This can be reformulated as:

f̂ |x〉 |0〉 = |x〉 |fx〉 (3.6)

f̂ |x〉 |1〉 = |x〉 |1⊕ (fx)〉 (3.7)

by defining the action of f̂ over the space of the second qubit. Setting the second

qubit input into this oracle to 1√
2
|0〉 − 1√

2
|1〉, denoted |−〉, gives:

f̂ |x〉 |−〉 = (−1)(f x) |x〉 (|0〉 − |1〉)

since if f x = False then f̂ |x〉 |−〉 = 1√
2
|x〉 (|0〉 − |1〉) and if f x = True then

f̂ |x〉 |−〉 = 1√
2
|x〉 (|1〉 − |0〉).

Following the derivation of the algorithm as given in references [27, 53], the “trick”

is to apply the quantum black box function f̂ to qubits prepared in the following state:

|+〉 |−〉 =
1

2

(
|00〉 − |01〉+ |10〉 − |11〉

)

This can be prepared by applying H⊗H to the state |01〉. Applying this to the oracle

gives:

f̂ |+〉 |−〉 =
f̂ |0〉 |−〉+ f̂ |1〉 |−〉√

2

=

{
± |+〉 |−〉 if f False = f True

± |−〉 |−〉 otherwise

The difference between the two outcomes has now been encoded in the state of the

first qubit. If the first qubit is |+〉 then the function is constant, and if it is |−〉
then the function is balanced. Applying the Hadamard transform H to the first qubit

gives:

± |0〉 |−〉 if f False ≡ f True

± |1〉 |−〉 if f False 6≡ f True

as H |+〉 = |0〉 and H |−〉 = |1〉.
The algorithm can therefore determine a global property of the function f us-

ing only one query of the oracle. A quantum circuit implementation of Deutsch’s

algorithm is shown in figure 3.9.
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|0〉 H
oracle

H

|0〉 X H

Figure 3.9: Quantum circuit implementing the Deutsch algorithm

This circuit follows the convention that the input is always set to |0〉, and uses

the Pauli-X negation operator and two Hadamard transforms to prepare the state

|+〉 |−〉.
The circuit has been translated into the following Haskell circuit implementation,

deutschC , which takes as an argument another circuit that acts as the oracle:

deutschC ∈ Circ → Circ

deutschC oracle = (Seq (Seq (Seq (Par (Wire [0]) pX )

(Par hadC hadC ))

oracle)

(Par hadC (Wire [0])))

where hadC is the Hadamard rotation, and pI , pX are the Pauli rotations of iden-

tity and negation. The Deutsch algorithm circuit, written as defined in section 3.3,

becomes:

deutsch = (rot H ⊗ id1) ◦ oracle ◦ (rot H ⊗ rot H ) ◦ (id1 ⊗ rot X )

where H and X are the Hadamard matrix and negation, and oracle is some predefined

circuit. Note the sequential ordering of the Haskell circuit follows that of the diagram

in figure 3.9. As the definitions of circuits and their diagrams are equivalent, only the

most appropriate notation will be used in future.

There are four different possible definitions of the oracle f̂ , and in Haskell these

can be written as:

f1, f2, f3 , f4 ∈ Circ

f1 = cnotC -- f x = x , balanced

f2 = Seq (Seq (Par pX (Wire [0]) cnotC )

(Par pX (Wire [0]) -- f x = ¬ x , balanced

f3 = Par (Wire [0]) (Wire [0]) -- f x = 0, constant
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f4 = Par (Wire [0]) pX -- f x = 1, constant

A implementation of the Deutsch algorithm in the language QML is presented in

chapter 6, with the code given in figure 6.7.

3.10 Quantum teleportation

The quantum teleportation algorithm describes a way to transmit a qubit of informa-

tion using only two classical bits of data and an EPR pair. The two people (Alice and

Bob) who wish to communicate first have to share an EPR pair, with Alice taking

one and Bob the other. When Alice later wants to transmit the state of a qubit to

Bob she can do this by entangling the qubit she wishes to send with her half of the

entangled pair, and then she performs a Hadamard operation on the qubit to be trans-

mitted before measuring her qubit and her half of the EPR pair. The measurements

result in obtaining two classical bits of data, and since Alice’s half of the EPR pair

was entangled with Bob’s, this measurement causes an instant change to the state

of Bob’s half of the EPR pair. Transmitting the classical data to Bob allows him to

then perform a defined corrective operation to his qubit, which results in his half of

the EPR pair now being equal to Alice’s original qubit. The corrective operation Bob

has to perform is a not if Alice’s EPR half collapsed to |1〉, else nothing, followed

by a Pauli-Z operation if Alice’s qubit collapses to |1〉, else nothing. Note that the

measurement collapses Alice’s qubit, and it is necessary that this measurement be

performed in order for Bob to be able to perform the corrective operations to his

qubit. Thus this algorithm does not contradict the no-cloning theorem of quantum

mechanics.

In any quantum computation involving measurement, the measurement can al-

ways be deferred to the final step. Deferring the measurement allows the algorithm

to be expressed as the circuit shown in figure 3.10, which assumes a quantum com-

munication channel for the two bits of data.

In figure 3.10 the first qubit is the one Alice wishes to transmit, |a〉, the second

is Alice’s half of the EPR pair, epra, and the third is Bob’s half of the EPR pair,

eprb. At the end of the computation Bob’s qubit will contain the original value
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|a〉 • H • �

epra X • �

eprb X Z |a〉

Figure 3.10: Quantum circuit implementing the teleportation algorithm

of Alice’s qubit. Note that the teleportation algorithm makes use of measurement,

which is denoted in the circuit by the top two wires being terminated. Measurement

is an irreversible process, and is discussed in section 5.2 which develops irreversible

quantum computation.

3.10.1 The principle of deferred measurement

It should be noted that the circuit in figure 3.10 is different to the narrative descrip-

tion of the algorithm, as the description makes use of measurement and a classical

communication channel, whereas the circuit is entirely quantum and the measure-

ments occur at the end. It follows from the principle of deferred measurement, which

is defined by Nielsen and Chuang [53] as:

Measurements can always be moved from an intermediate stage of a quan-
tum circuit to the end of the circuit; if the measurement results are used
at any stage of the circuit then the classically controlled operations can
be replaced by conditional quantum operations.

that these two presentations of the algorithm give the same result. Measurements

are an irreversible process, and are hence formalised in section 5.5.2, which defines

measurement using the partial trace operation on superoperators. However, hav-

ing a quantum communication channel between Alice and Bob negates the need for

the quantum teleportation protocol entirely; Alice could simply transmit her qubit

through the channel.

The teleportation circuit of figure 3.10 can be translated into the Circ datatype

as shown:
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cpZ ∈ Circ

cpZ = Cond pZ (Wire [0])

teleportC ∈ Circ

teleportC = Seq (Seq (Seq (Seq (Seq (Par cnotC (Wire [0]))

(Par hadC (Wire [0, 1])))

(Par (Wire [0]) cnotC ))

(Wire [1, 0, 2]))

(Par (Wire [0]) cpZ ))

(Wire [1, 0, 2])

where cpZ defines the circuit for a controlled-Pauli-Z operation. Note that in order

for the control to be applied to the correct qubits they first need to be permuted.

The implementation of the quantum teleport algorithm as a quantum circuit shows

some of the failings of this model for expressing quantum algorithms, as it requires

some narration in order for the algorithm to be understood and performed correctly.

A full discussion of quantum teleportation can be found in section 1.3.7 of reference

[53], and an implementation of this algorithm in the language QML is included in

chapter 6, with the code presented in figure 6.6.2.

3.11 Other models of quantum computation

The quantum circuit model is not the only model of quantum computation. Another

model is the “one way quantum computer,” introduced by Raussendorf, Browne and

Briegel [59, 60] to address concerns about the scalability of quantum computational

systems. The one way model works by only performing a sequence of one-qubit

measurements on the cluster state, which is an Pauli-Z entangled multi-qubit state.

The model is “one way” as the entanglement in a cluster state is destroyed by the one-

qubit measurements, and therefore the cluster state can be used only once. The cluster

state is a resource for quantum computation. In the one way quantum computer, the

order and choices of measurements determine the algorithm computed.

It has been shown that any quantum circuit can be represented in the one way

model [59]; however, not all quantum information processing methods available in the



3. reversible quantum computation 62

one way model are available in the circuit model [60]. It is more expressive of how

the computation can take place, not requiring as much narration as the circuit model

(for example, see quantum teleportation above).

As every step in the one way model makes use of measurement, it seems at present

that this model may be closer to a realisable model of quantum computing. In the

quantum circuit model the quantum state has to be protected from decoherence all the

way through the computation, which is a major difficulty in the fabrication of actual

quantum computers. In this sense, decoherence means the unwanted interaction of

the quantum system with the environment, in such a thermodynamically irreversible

way that ensures different elements in the wavefunction of both the superposition of

the system and the environment can no longer interfere with each other. The one way

model, however, only has to be free from decoherence for each step of the computation,

after which a measurement takes place. There has recently been much work in moving

away from the circuit model as the realisable model, to measurement-based one-way

quantum computers, such as that in reference [85].

3.12 Further reading

Detailed introductions to the theory of quantum computation can be found in sev-

eral plenary texts: cf. [15, 36, 53, 58]. Nielsen and Chuang’s text [53] is currently

regarded as the definitive general publication on this subject. It is, according to the

authors, written assuming the reader has an understanding of mathematics, physics,

or computer science. Complimentary reading of a linear algebra text is recommended

for those unfamiliar with the mathematical techniques required. Hirvensalo’s book

[36] begins in an accessible manner for students of computer science or mathematics,

but assumes the reader to be very familiar with some advanced mathematical tech-

niques. However, the book does contain two very large appendices, taking almost a

third of the book, describing these mathematical techniques, and a compact history

and explanation of quantum physics. Brown’s book [15] is a popular–science history

of quantum computing, and gives a good overview of the field and how quantum

computers work, both theoretically and practically, and the gains they may give over
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classical computers. Finally, [58] is a set of lecture notes from university courses

on quantum computation, and is comprehensible and accessible, with Preskill’s work

being highly regarded in the field.

More information on the alternative one way quantum computer model of quan-

tum computations can be found in references [59, 60, 85].

3.13 Summary

This chapter serves as an introduction to quantum computation. It introduces the

concept of a qubit and qubit registers, and how these can be physically realised. The

focus of this chapter is the development of a circuit model of quantum computation,

which follows the development of the classical model in chapter 2. An implementa-

tion of the circuit model in Haskell is also provided, with a compiler and evaluator.

Deutsch’s algorithm – the prototypical quantum algorithm – is also discussed and

realised in the quantum circuit model developed in this chapter. Analogies between

quantum and reversible classical computation are also discussed.
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Chapter 4

FCC: Reversible & irreversible classical

computation

This chapter presents a categorical interpretation of classical reversible and irre-

versible computations, as developed in chapter 2. The notion of a category is ex-

plained, and the development of FCC, the category of Finite Classical Computations,

is given. The purpose of this development is expand the development of FCC given

here, to the analogous development of the category FQC, in chapter 5, which is used

to express the operational semantics of QML.

This chapter also gives a mathematical interpretation of the category FCC as

finite sets, which is a formal interpretation of the classical circuit compiler presented

in section 2.5. The mapping from FCC to FinSet is also shown to be functorial.

4.1 Finite Classical Computations

It is often stated that quantum computations have to be reversible due to the under-

lying unitary nature of quantum mechanics, which is a model of reversible processes.

However, this is also true for the classical case. Landauer’s principle, discussed in

chapter 2, sets no lower bound on energy dissipation in classical reversible computa-

tions, as no information need ever be erased [10], and the current understanding of the

classical physical laws is that they are inherently reversible, within certain boundary

conditions (see chapter 2).
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Given maximal knowledge of the terminal state of any closed physical process, the

laws of physics can be applied in reverse to calculate the initial state. This means that

even in the classical case the physical processes of ideal computation are reversible.

So, in order to explain irreversible computation classically, it should be embedded

in a reversible framework of computation. In this chapter a categorical notion of

what a computation is classically will be given, based on a reversible model of finite

computations, resulting in the category of Finite Classical Computations (FCC).

Indeed, the category FCC may be seen as a categorical interpretation of Bennet’s

work [10] on reversible computation.

A category of Finite Quantum Computations (FQC) will be developed in chapter

5 by analogy to the development of FCC here, allowing both the differences and

similarities of the two computational models to be highlighted. The analysis of these

two categories guides the design of QML, aiming to realise structures common to both

computational paradigms by syntactic constructs established in classical functional

programming.

4.2 Rudimentary category theory

There are many advanced concepts available in category theory, but these are mostly

unnecessary for the analysis here. Further information on category theory can be

found in references [47, 56].

A category, C, is a collection, or class, of objects (a, b, c, ...), with a collection

of unique morphisms, also called arrows, between them. For any two morphisms

f ∈ a → b, g ∈ b → c, there exists a unique composition morphism, g ◦ f ∈ a → c,

which is associative. There is also the additional constraint that a distinguished

identity morphism must exist for every object.

A monoidal category is a category, C, as above, equipped with a binary functor

⊗ ∈ C×C → C, called a tensor, with a unit object I . A monoidal category must have

three natural isomorphisms, which express the fact that the tensor operation must

be associative, have a left and right identity. Associativity is given by:

αa,b,c ∈ (a⊗ b)⊗ c→ a⊗ (b⊗ c)
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the left-identity by:

λa ∈ I ⊗ a→ a

and the right identity by:

ρa ∈ a⊗ I → a

Additionally, these three natural transformations are subject to certain coherence

conditions, which are given by Mac Lane [47].

A strict monoidal category is a monoidal category in which the three natural

transformations α, λ, and ρ are all the identity transformation.

Finally, a groupoid is a category in which every morphism is an isomorphism, i.e.

there exists an inverse for every morphism, such that the composition of a morphism

and its inverse gives the identity morphism.

4.3 Reversible computations in FCC≃

In this section the definitions of reversible circuits, given in section 2.2, will be re-

formulated in the category FCC≃; the category of reversible finite classical compu-

tations. For full details on each construction and the notation used, refer to section

2.2. The purpose of this reformulation is to make precise the informal construction

of reversible computations given in section 2.2.

Reversible computations are modelled here as a category, where for every mor-

phism φ ∈ FCC≃ a b there is an inverse φ−1 ∈ FCC≃ b a, such that φ and φ−1 are

isomorphisms, and a and b are finite sets. The morphisms represent computations,

and the requirement for the existence of an inverse computation, such that there is an

isomorphism, ensures the computation is reversible. As every morphism in FCC≃ is

an isomorphism, it follows that FCC≃ is in fact a groupoid. Any isomorphic objects

are assumed to be equal, i.e. FCC≃ is strict. It follows from this that FCC≃ a b = { }
if a 6= b, and consequently homsets of FCC≃ are denoted FCC≃ a = FCC≃ a a;

the source and target bit-vectors must be of the same size (have the same number of

wires) for the computation to be reversible. FCC≃ has a strict monoidal structure

(I ,⊗), where I = 0 and a ⊗ b = a + b. A special object of Booleans is defined as N2,
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with N2 = 1; the monoid of addition lifts to a strict monoidal structure on FCC.

As computations take place on bit-vectors, which are collections of Booleans, only

objects generated from (I = 0,N2 = 1,⊗ = +) are interesting; if N2 represents a wire,

then N2 ⊗ N2 is two wires, etc. Hence natural numbers a ∈ N can be used to denote

the object Na
2. This gives I = 0, N2 = 1, and a ⊗ b = a + b, as stated previously.

The objects of the category FCC≃ are therefore the initial segment of a, as defined

previously, [a] = {i ∈ N | i < a}. Note that FCC≃ is the free symmetric monoidal

category on one object: N2.

The morphisms of the category FCC≃ a are the circuits of arity a, defined in

section 2.2, which can be characterised inductively:

negation X ∈ FCC≃ 1 gives the only non-trivial one bit classical operation, where

X is the not function:

N2 X

wires wires φ ∈ FCC≃ a where φ : [a ] ≃ [a ] is a bijection. This represents any

rewiring, including the identity ida = wires id. For example, the bijection φ(0) =

2, φ(1) = 0, and φ(2) = 1 gives the following FCC≃ 3 morphism:

x0
??

?? x1

x1

����
??

?? x2

x2

���� x0

sequential composition Given φ ∈ FCC≃ a and ψ ∈ FCC≃ a, the composition

φ ◦ ψ ∈ FCC≃ a can be constructed:

ψ φ

_ _ _ _ _�

�

�

�
_ _ _ _ _

parallel composition Given φ ∈ FCC≃ a and ψ ∈ FCC≃ b, the parallel composi-

tion φ⊗ ψ : FCC≃ (a ⊗ b) can be constructed:

φ

ψ

_ _�
�
�
�
�

�
�
�
�
�

_ _
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conditional Given φ, ψ ∈ FCC≃ a, the conditional operation φ|ψ ∈ FCC≃ (1⊗ a)

can be constructed:

N2 • ��
��	
�

a ψ φ

The inverse of each construction is calculated in exactly the same way as for

classical reversible circuits, as described in section 2.2.

The requirement that (FCC≃, I , ◦, 1,⊗) is a strict monoidal category allows the

circuit diagrams, which are the morphisms, to be unambiguously interpreted. In

Haskell, the morphisms of FCC≃ are given exactly by the Circ datatype presented

in section 2.3.

4.4 Irreversible computations in FCC

In this section a notion of irreversible computations will be derived from the notion

of reversible computations given in the previous section, to give the category of all

possible finite classical computations; denoted FCC.

The category FCC describes classical operations as bijections (and are hence

reversible) on the elements of finite sets. The objects of the category are therefore

the finite sets, as in FCC≃. Every morphism in the category FCC represents an

irreversible computation, but is in fact of the form φ = (h, g , φ′), with h, g ∈ N

representing the number of ancillary heap inputs and garbage outputs required to

compute the underlying reversible computation φ′. A morphism (h, g , φ) ∈ FCC a b

can be transposed into the category FCC≃ as φ ∈ FCC≃ (a ⊗ h) (b ⊗ g), with the

requirement that a ⊗ h = b ⊗ g .

An irreversible computation (h, g , φ) ∈ FCC a b can be visualised diagrammati-

cally as the reversible computation φ, where heap and garbage have been explicitly

labelled (⊢ and ⊣, respectively) as shown in figure 4.1.

Using the heap and garbage, any irreversible computation φ ∈ FCC a b can be

interpreted as a reversible computation φ′ ∈ FCC≃ (a ⊗ b) (b ⊗ a), by φ′(x, 0b) =

(φx, x) where 0b denotes a heap register of length b initialised to 0. φ′ takes each

(x, 0b) to a distinct output, and is therefore a reversible function on the finite set



4. fcc: reversible & irreversible classical computation 69

a b

φ

h
� g�

Figure 4.1: Visualisation of a computation in FCC, where φ is a reversible FCC≃

morphism, and heap and garbage are explicit.

a ⊗ b, which requires a + b bits to be computed. Therefore, the maximum amount

of heap required to make a function reversible is bounded by the size of the output

of the irreversible function: h 6 b; and the maximum garbage required is bounded

by the size of the input to the irreversible function: g 6 a. The values given for

heap and garbage by this calculation are the maximum required, and are thus often

sub-optimal. For example, making the function f x = (x , x ) reversible, where a = 1

and b = 2, would give a function with h = b = 2 and g = a = 1. However, f can be

implemented using only a single bit of heap and no garbage; it is simply the cnot

operation.

It is also true that for any computation φ ∈ FCC≃ a there is an equivalent

computation φ̂ ∈ FCC a a. This is given by the rule:

φ ∈ FCC≃ a

φ̂ ∈ FCC a a
(4.1)

where φ̂ = (I , I , φ), with I = 0; there is no heap or garbage.

In summary, given finite sets a, b ∈ N, a finite classical computation φ ∈ FCC a b

is given by a triple φ = (h, g , φ′) where

h ∈ N is the size of the initial heap, initialised to 0

g ∈ N is the size of the garbage, to be disposed of at the end of the computation

φ′ ∈ FCC≃ c is a reversible computation, with c = a⊗ h = b⊗ g

It should be noted that this is different from the presentation of FCC in reference

[3]. Only finite sets of powers of 2 are considered (bit-vectors) in this development
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a

φα
b

φβ
c

hα
�

<<
<<

<<

99
99

99 gα
�

hβ
�

������

������ gβ
�

Figure 4.2: Sequential composition in FCC: φβ◦α

of FCC, and the heap is always initialised as a vector of 0s, so no extra information

about the heap is required.

In order to complete the category FCC, definitions of identity and composition

are required. Given a ∈ N, the identity morphism can be defined as ida = (I, I, ida).

Note that this is simply the lifting from FCC≃ of the reversible identity morphism.

Two computational systems can be composed by combining the heap and garbage to

each computation. The composition of computations α = (hα, gα, φα) ∈ FCC a b

and β = (hβ, gβ, φβ) ∈ FCC b c is β ◦ α = (h, g, φ) ∈ FCC a c where

h = hα ⊗ hβ
g = gα ⊗ gβ

φβ◦α = (idc ⊗ S) ◦ (φβ ⊗ idgα) ◦ (idb ⊗ S) ◦ (φα ⊗ idhβ)

S ∈ a ⊗ b ≃ b ⊗ a is a trivial symmetric swap operation. Diagrammatically, this

construction is shown in figure 4.2. To simplify the presentation, the isomorphic

swap operations can be omitted from the definition of φβ◦α to give:

h = hα ⊗ hβ
g = gα ⊗ gβ

φβ◦α = (φβ ⊗ idgα) ◦ (φα ⊗ idhβ)

This completes the definition of FCC as a category. In addition to the standard

notion of sequential composition, FCC inherits the monoidal structure of FCC≃,

and a parallel composition can be defined, in much the same way as the sequential

composition. For α ∈ FCC a b and β ∈ FCC c d, their parallel composition is
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Figure 4.3: Parallel composition in FCC: φα⊗β

defined as α⊗ β = (h, g, φ) ∈ FCC (a⊗ c) (b⊗ d) where

h = hα ⊗ hβ
g = gα ⊗ gβ

φα⊗β = φα ⊗ φβ

again omitting monoidal isomorphisms. These are shown in the diagrammatic repre-

sentation of parallel composition, which is given in figure 4.3.

The neutral element of parallel composition, the Cartesian product on FCC, can

be obtained by lifting I FCC≃ to I FCC.

4.5 Strict reversible computations

Another category of computations is that of strict computations α = (h, φ) ∈ FCC◦ a b.

FCC◦ computations can be defined as computations where there is no garbage, g = 0,

hence it is omitted. It is a monoidal subcategory of FCC, and is of no particular

interest in the classical case, but is important in the development of FQC.

From the definitions of FCC≃ (no heap or garbage), FCC◦ (no garbage but allows

heap) and FCC (allows heap and garbage), it follows that:

FCC≃ ⊂ FCC◦ ⊂ FCC

4.6 Modelling reversible classical computations in FinSet

The compiler function comp described in section 2.5.2 takes as input a classical re-

versible circuit, and outputs a bijection f ∈ [N2 ] → [N2 ]. The translation from
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morphisms in the category FCC≃ into bijections on bit-vectors will be formalised

in this section by defining a translation function that takes objects and morphisms

from FCC≃ into the category FinSet of finite sets, which will then be shown to be

functorial.

The objects of the category of finite sets FinSet are identical to the objects of

FCC≃ defined in section 4.3, as FCC≃ objects are finite sets. Finite sets are again

given by natural numbers, a ∈ N, which are identified with their initial segment, [a ].

The homsets of the category are given by FinSet a b = a → b, and are functions

between finite sets.

A functor, F , is a mapping between categories that assigns to all objects or mor-

phisms of the source category, A, an object or morphism of the target category, B ,

such that certain structural properties are preserved. Given a functor F ∈ A → B ,

the conditions that must be met are:

domains and codomains are preserved: given f ∈ A→ B , then Ff ∈ FA→ FB .

identities are preserved: ∀a ∈ A.F (IA) = IFA.

composition is preserved: if f ◦ g is computable in A, then F (f ◦ g) = Ff ◦ Fg ,

where the second composition is formed in B .

All circuits φ ∈ FCC≃ a can be interpreted as JφK ∈ FinSet a a, by induction

over the inductive definition of FCC≃ given in section 4.3. Because the morphisms of

FCC≃ are reversible, they correspond to bijections in the category FinSet, hence the

domain and codomain of the FinSet morphisms are the same as when interpreting

FCC≃ morphisms. The translation from φ ∈ FCC≃ a to JφK ∈ FinSet a a is defined

in this way as:

negation JX K = ¬

wires Jwires φK = f where f a b = if φ a ≡ b then 1 else 0.

sequential composition Jφ ◦ ψK = JφK ◦ JψK

parallel composition Jφ⊗ ψK = JφK + JψK
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conditional Jφ | ψK = JφK|JψK where

φ|ψ (0, a) (0, b) = φ a b

φ|ψ (1, a) (1, b) = ψ a b

φ|ψ = 0

Note that this functor corresponds to the Haskell comp function, which translated

circuits into matrices, given in section 2.5.2.

4.7 Modelling irreversible computations in FinSet

The interpretation of FCC≃ objects and morphisms in the category FinSet, given

in the previous section, will now be extended to an interpretation of the category

FCC of irreversible finite computations. The objects of FCC are the same as those

of FCC≃ and are thus interpreted in the same way. A morphism φ ∈ FCC a b is

actually given by a triple, φ = (h, g , φ′), where h, g ∈ N give the sizes of the heap

and garbage required to compute the reversible circuit φ′ ∈ FCC≃. By defining an

injection on finite sets that initialises the heap, 0h ,and using the projection operation

π to discard garbage at the end of a computation, an interpretation of φ ∈ FCC a b

can be defined. The interpretation of FCC is given by interpreting morphisms as

functions on finite sets, thus (h, g , φ) ∈ FCC a b is interpreted as :

πg ◦ JφK ◦ (−, 0h) ∈ [a]→ [b]

where JφK ∈ [a ⊗ h] → [b ⊗ g] is the associated permutation on finite sets, (−, 0h) ∈
[a] → [a ⊗ h] initialises the heap to False, and πg ∈ [b ⊗ g] → b projects away the

garbage. The “morphism as functions” interpretation can be shown as the following

commuting square:

a⊗ h JφK // b⊗ g
πg

��
a

f
//

(−,0h)

OO

b
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4.7.1 Extensional equality of FCC

Two morphisms f , g are extensionally equivalent if

∀x.fx = gx

where x is in the domain of f and g . Extensional equality for FCC is given by

interpreting morphisms as functions on finite sets, using the functor J·K ∈ FCC →
FinSet described in section 4.7.

4.7.2 FCC→ FinSet is functorial

The interpretation of FCC into FinSet via J·K given in the previous section fulfils

the definition of a functor. This follows from the fact that the identities, domains,

and composition are all preserved by the mapping J·K ∈ FCC a b → FinSet a b,

which is shown by the following proposition:

Proposition 1. J·K ∈ FCC→ FinSet is a strict monoidal functor, that is:

JidK = id

Jf ◦ gK = Jf K ◦ JgK

Jf ⊗ gK = Jf K + JgK

Proof. Both 1. and 3. follow directly from monoidal identities. The only interesting

case is 2. which follows from the fact that the diagram shown in figure 4.4 commutes.

4.8 FCC in Haskell

It is a straightforward task to implement FCC morphisms in Haskell. A morphism

is defined as (h, g , φ) ∈ FCC a b where a, b, h, g ∈ N and φ ∈ FCC≃. a and b

give the sizes of the input and the output to the morphism, and h and g give the

sizes of any heap and garbage required to compute φ. It is shown in section 4.3 that

FCC≃ morphisms are represented in Haskell by the classical Circ datatype presented



4. fcc: reversible & irreversible classical computation 75

a⊗ hf ⊗ hg
cφf⊗hg // b⊗ gf ⊗ hg

cφg⊗gf //

πgf

��:
::

::
::

::
::

::
::

:
c⊗ gf ⊗ gg

πgf gg
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πgg

��

a

(−,0f ,0g )
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(−,0f ) $$HHHHHHHHH c

a⊗ hf
cφf

//

(−,0g )

OO

b⊗ gf πgf
//

(−,0g )

BB����������������
b

(−,0g )
// b⊗ hg

cφg

// c⊗ gg

πgg
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Figure 4.4: Composition is preserved by lifting FCC to FinSet. The path along
the top of the diagram shows Jf ◦ gK, while the lower path shows Jf K ◦ JgK. This
diagram commutes.

in section 2.3. An FCC morphism can be encapsulated as a Haskell record datatype

with named fields as:

data FCC = FCC{a, b, h, g ∈ Int , φ ∈ Circ}
There are some requirements on this datatype which cannot be enforced by Haskell,

for example that φ ∈ Circ is a valid reversible circuit, so instead a function can be

written which validates a Haskell FCC object. This function, validFCC , makes use

of the classical circuit arity function from section 2.3, and returns Nothing if the

morphism is invalid:

validFCC ∈ FCC→ Maybe FCC

validFCC f = do let ah = Just (a f + h f )

bg = Just (b f + g f )

guard (arity (φ f ) ≡ ah ∧ (ah ≡ bg))

return f

This function ensures the validity of the morphism by checking that a ⊗ h = b ⊗ g,
and that the arity of the morphism agrees with a⊗ h.

There is no need to implement FCC≃ and FCC◦ separately, as FCC≃ morphisms

are those which have h, g = 0, and FCC◦ morphism are those which have g = 0.

An implementation of FinSet, and the J·K functor, has already been presented in

Haskell. In section 2.5 the types Vec and Mat model FinSet objects and the functions

between them as vectors and matrices, and the function comp ∈ Circ → Mat directly

implements the functor J·K ∈ FCC≃ a → FinSet a a.



4. fcc: reversible & irreversible classical computation 76

4.9 Summary

The category FCC of Finite Classical Computations has been presented, with the

development proceeding via the category FCC≃ of reversible classical computations,

following the presentation of reversible computation given in 2. The category FCC◦

of strict computations has also been introduced, as well as a mathematical interpre-

tation of FCC≃ and FCC in the category FinSet. An implementation of FCC

morphisms has been given in Haskell. It is also shown in this chapter that all ir-

reversible classical computations can be implemented in a reversible setting, by the

definition of FCC morphism (irreversible computations) as a FCC≃ morphism (re-

versible computations), with extra heap and garbage.
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Chapter 5

FQC: Reversible & irreversible quantum

computation

In this chapter three different categories of finite quantum computation will be de-

fined. First, the groupoid FQC≃ of reversible quantum computations will be defined,

following the definition of FCC≃ in section 4.3. From the definition of FQC≃ a def-

inition for the category of irreversible quantum computations, FQC, will be derived,

in the same way that FCC was derived from FCC≃ in section 4.4. A final category

of strict, or pure, finite quantum computations, FQC◦, will then be defined as a sub-

category of FQC. The categories FQC and FQC◦ form the basis of the operational

semantics for the language QML. The purpose of the parallel developments is to high-

light where quantum computing differs from classical computing, and, furthermore,

to highlight the similarities between the two cases.

This chapter also introduces the mathematical categories of unitary operations,

Q≃; isometric operations, Q◦; and superoperators, Q; which act as mathematical

interpretations of FQC≃, FQC◦ and FQC, respectively. Q is a very important

category that will form the basis of the denotational semantics of QML, discussed in

section 7.5 and also chapter 8. A definition of extensional equality for FQC is also

presented, which makes use of these mathematical formalisms, and implementations

of all six categories are provided in Haskell.
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5.1 Reversible quantum computations in FQC≃

As section 4.3 reformulates the definition of reversible circuits into the category FCC≃

of reversible finite classical computations, so this section reformulates the definition of

quantum circuits given in section 3.3 into the category FQC≃. The reformulation is

again done to make the informal definition of quantum computations, given in section

3.3, precise, which will provide the basis for an operational semantics of QML. The

developments presented in this chapter also provide a formal definition of the standard

quantum circuit model, which is a contribution of this thesis.

In the classical groupoid FCC≃, reversible computations are modelled as mor-

phisms φ ∈ FCC≃ a b such that an inverse φ−1 ∈ FCC≃ b a exists, and so that

together they form an isomorphism. The objects a, b of FCC≃ are finite sets, and

φ defines a bijection between finite sets. The reversible quantum computations in-

troduced in section 3.3 are formalised in the category FQC≃, in which reversible

quantum computations are modelled as morphisms φ ∈ FQC≃ a b, with an inverse

φ−1 ∈ FQC≃ b a. In the quantum case, FQC≃ objects are again finite sets, and φ is

a unitary quantum operation between the Hilbert spaces generated by those sets, by

taking the finite sets to be the basis of the Hilbert space. The inverse can be found

by taking the adjoint of the unitary operation φ: φ† = φ−1. Again, φ, φ−1 together

give an isomorphism. For details of these concepts, see section 3.2.

As in the classical reversible case, any isomorphic objects are assumed to be equal,

i.e. FQC≃ is strict, and as before it follows from this that FQC≃ a b = { } if a 6= b.

Thus, as with FCC≃, the homsets of FQC≃ are denoted FQC≃ a = FQC≃ a a.

FQC≃ also has a strict monoidal structure (I ,⊗), which in the quantum case is

interpreted as the tensor product ⊗ on vectors, rather than the Cartesian product ×
on finite sets used in FCC≃. As in FCC≃, the natural numbers a ∈ N can be used

to denote the object Qa2, giving in this case I = 0, Q2 = 1, and a ⊗ b = a + b,

where Q2 represents quantum bits. Quantum computations take place on qubit

registers, analogous to classical registers, which in this case are objects generated

from (I,Q2,⊗). The tensor product can be though of as adding wires to the quantum

circuit, as the Cartesian product adds classical wires in FCC≃. The definition of the
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initial segment of a is unchanged: [a] = {i ∈ N | i < a}.
As morphisms in FCC≃ are given inductively in section 4.3, morphisms in FQC≃ a,

which are the quantum circuits of arity a, can also be characterised inductively (with

the details of each construction given in section 3.3) as follows:

rotation rot u ∈ FQC≃ 1 denotes a rotation that acts on a single qubit, where u

defines a unitary operation. The inverse operation is given by the adjoint of

the unitary operation, φ−1 = rot u† ∈ FQC≃ 1. In FCC≃ there is only the

negation operation available on one bit.

wires wires φ ∈ FQC≃ a where φ : [a ] ≃ [a ] is a bijection, which can represent

any reordering of qubits, including the identity ida = wires id. Rewirings are

trivially reversible, and this is the same as in the case of FCC≃.

sequential composition Given φ ∈ FQC≃ a and ψ ∈ FQC≃ a, the composition

φ ◦ ψ ∈ FQC≃ a can be constructed.

ψ φ

_ _ _ _ _�

�

�

�
_ _ _ _ _

This is exactly the same construction as for the category FCC≃.

parallel composition Given φ ∈ FQC≃ a and ψ ∈ FQC≃ b, the parallel composi-

tion φ⊗ ψ : FQC≃ (a ⊗ b) can be constructed.

φ

ψ

_ _�
�
�
�
�

�
�
�
�
�

_ _

This is similar to the parallel construction from FCC≃, except here the tensor

product is used, as explained in section 3.3.

conditional Given φ, ψ ∈ FQC≃ a, the conditional operation φ|ψ ∈ FQC≃ (1⊗ a)

can be constructed.

N2 • ��
��	
�

a ψ φ

which is again the same construction as in the definition of the category FCC≃.



5. fqc: reversible & irreversible quantum computation 80

As with FCC≃, in order to allow the unambiguous interpretation of circuits, it

is required that (FQC≃, id, ◦, I ,⊗) is a strict monoidal category. The morphisms of

FQC≃, as defined above, are given in Haskell exactly by the quantum Circ datatype,

defined in section 3.5.

The development of FQC≃ above for reversible quantum computation is almost

identical to the development of FCC≃ presented in section 4.3. The main differ-

ences are that morphisms are now unitary maps between Hilbert spaces, although

the objects are still finite sets; parallel composition is modelled by the tensor prod-

uct, although this is still the Cartesian product on the underlying finite sets; and

while in the classical case there is only the negation operation on one bit, in the

quantum case any unitary operation on one qubit is possible.

5.2 Irreversible quantum computations in FQC

A notion of irreversible quantum computations will be developed in this section, in the

same way for the classical case in section 4.4. A category FQC of all finite quantum

computations will be derived from the category FQC≃, in the same way that FCC

was derived from FCC≃.

Objects of this category are the same as for the category FQC≃, i.e. the finite sets

that represent the computational basis states, and morphisms are quantum computa-

tions, which now may include heap and garbage. As in the definition of FCC, every

morphism in FQC is written as a triple φ = (h, g , φ′), where h, g ∈ N again represent

ancillary heap inputs and garbage outputs that are required to compute the reversible

operation φ′, which is again given as a circuit. As in the classical case, a morphism

(h, g , φ) ∈ FQC a b can be embedded into the category FQC≃ by explicitly adding

the heap and garbage, as φ ∈ FQC≃ (a⊗ h) (b⊗ g), with the same requirement that

a ⊗ h = b ⊗ g .

Figure 4.1 gives a visualisation of an FCC morphism, and the visualisation of a

quantum morphism (h, g , φ) ∈ FQC a b is identical:

a

φ
b

h
� g�
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All FQC≃ morphisms can be lifted into the category FQC: for any reversible

computation φ ∈ FQC≃ a there is an equivalent computation φ̂ ∈ FQC a a, as in

the classical case. The same rule as given in equation 4.1 holds for the quantum case,

suitably adjusted:
φ ∈ FQC≃ a

φ̂ ∈ FQC a a

where φ̂ = (I , I , φ) and I = 0; there is no heap or garbage.

To summarise, given the finite sets a, b ∈ N which represent the size of the input

and output quantum registers, the finite quantum computation φ ∈ FQC a b is given

by the triple φ = (h, g , φ′) where

h ∈ N is the size of the initial heap, initialised to 0

g ∈ N is the size of the garbage, to be disposed at the end of the computation

φ′ ∈ FQC≃ c is a reversible quantum computation, with c = a⊗ h = b⊗ g

As with the classical case of FCC, only finite sets of powers of 2 are consid-

ered (bit-vectors), and the heap is always initialised as a vector of 0s, so no extra

information about the heap is required.

To finalise the definition of FQC as a category, definitions of identity and compo-

sition are required. These definitions correspond exactly to the equivalent definitions

for FCC: given a ∈ N, the identity morphism can be defined as ida = (I, I, ida), as

in the case of FCC. This is a lifting of the identity morphism for FQC≃, in the same

way that the identity morphism for FCC is lifted from FCC≃.

Composition of two computations given as FQC morphisms is also defined in

the same way as for the category FCC: given α = (hα, gα, φα) ∈ FQC a b and

β = (hβ, gβ, φβ) ∈ FQC b c, the composition morphism is given by β ◦α = (h, g, φ) ∈
FQC a c, where

h = hα ⊗ hβ
g = gα ⊗ gβ

φβ◦α = (φβ ⊗ idgα) ◦ (φα ⊗ idhα)
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which is shown diagrammatically in figure 5.1. Note that some trivial monoidal swap

a

φα
b

φβ

c

hα
�

::
::

::
:

77
77

77
7 gα

�

hβ
�

�������

������� gβ
�

Figure 5.1: Sequential composition in FQC: φβ◦α. Compare with figure 4.2 showing
sequential composition in FCC.

isomorphisms have been omitted from this definition of φβ◦α given here, but are shown

in figure 5.1. The full definition is the same as that given in section 4.4 for the case

of FCC.

Parallel composition for FQC can also be defined following the pattern used

to define parallel composition for the category FCC, but replacing the Cartesian

product on sets with the tensor product on Hilbert spaces: given α ∈ FQC a b and

β ∈ FQC c d, α⊗ β = (h, g, φ) ∈ FQC (a⊗ c) (b⊗ d) where

h = hα ⊗ hβ
g = gα ⊗ gβ

φα⊗β = φα ⊗ φβ

Again, monoidal isomorphisms are omitted from the definition, but are shown in figure

5.2, which gives a diagrammatic interpretation of parallel composition in FQC.

a

φα
b

c

77
77

77

77
77

77 d

hα

�������

φβ

������ gα
�

hβ
� gβ

�

Figure 5.2: Parallel composition in FQC: φα⊗β. Compare with figure 4.3 showing
parallel composition in FCC

The neutral element of parallel composition, which is the tensor product on FQC,

can be obtained by lifting I FQC≃ to I FQC.
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This completes the definition of the category FQC, the category of irreversible

(and reversible) finite quantum computations, which formalises categorically the quan-

tum circuit model of quantum computations.

5.2.1 Strict and impure quantum computations

A category of quantum computations of particular interest is the category of strict,

or pure, computations α = (h, φ) ∈ FQC◦ a b, which formalises the notion of quan-

tum computations that do not involve measurement. FQC◦ computations are be

defined as computations where there is no garbage, g = 0, hence it is omitted from

the definition. It is a monoidal subcategory of FQC, and is of interest as it is the

category of all pure quantum computations. Strict computations are not simply re-

versible computations, since heap inputs are allowed. The lack of garbage output,

however, means that FQC◦ morphisms can be modelled as linear operations from

pure quantum states to pure quantum states. In general, FQC morphisms allow

garbage, which implies measurement. Measurement induces the decoherence of a

quantum state, leading to probabilistic results, and so irreversible quantum computa-

tions in FQC cannot be modelled as linear operations between pure states. It follows

that FQC◦ is the largest subset of FQC that can be modelled using linear unitary

mappings between pure quantum states. Mixed quantum states can be represented

as density matrices, and linear functions between density matrices are called superop-

erators, introduced in section 5.5.1. The use of superoperators gives a mathematical

model for understanding general FQC computations.

From the definitions of FQC≃ (no heap or garbage), FQC◦ (no garbage but allows

heap) and FQC (allows heap and garbage), it follows that:

FQC≃ ⊂ FQC◦ ⊂ FQC

While morphisms on FQC≃ and FQC◦ can be modelled as linear operators between

pure quantum states, the use of garbage in FQC means that FQC morphisms are

modelled as superoperators on density matrices, presented in section 5.5.1.
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5.3 Modelling reversible quantum computations in Q≃

FQC≃ can be understood mathematically as unitary operators between complex-

valued vectors, which model the morphisms and objects of FQC≃. As FQC≃ is

simply a categorical formalism of the quantum circuits presented in section 3.3, then

the mathematical interpretation is the same as that for quantum circuits. A brief

categorical reformulation of the linear algebra from section 3.2 will be presented here,

followed by an interpretation of FQC≃ objects in the category of unitary operators:

Q≃ (pronounced Unit, for unitary).

5.3.1 Categorical review of linear algebra

In section 3.2, definitions of general linear algebra concepts were presented with def-

initions provided in the functional language Haskell. In this section those definitions

will be reformulated as definitions in the category FinVec, of finite complex-valued

vectors, making use of the category of finite sets, FinSet.

The objects of the category of finite sets FinSet are again the natural numbers,

a ∈ N, which are identified with their initial segment, [a ]. The homsets of the

category are given by FinSet a b = a → b. Given a ∈ N, the function C a = a → C

can be defined. This function on objects C ∈ FinSet→ Set is monadic, i.e. it gives

rise to the Kleisli structure discussed in section 3.2.2. Monadic return and bind (>>=)

operations can be formulated in this category as:

return ∈ a → C a

return a = λb → if a ≡ b then 1 else 0

(>>=) ∈ (C a)→ (a → C b)→ C b

v >>= f = λb → Σ a . (v a)× (f a b)

The associated Kleisli category is the category of finite dimensional complex vector

spaces FinVec. The homsets of FinVec are given by FinVec a b = a → C b, where

a, b ∈ N, and hence correspond to a × b complex matrices. Since computations

over bit-vectors are being modelled, it is useful to define C2 a = C (N2 → a) and

FinVec2 a b = FinVec (N2 → a) (N2 → b). This category is the category of the

vectors and matrices discussed in section 3.2, and implemented in Haskell, with the
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monadic return and bind given by the functions vreturn and >>=, shown in figure 3.2.

Note that what is referred to here as a monad is actually a more general notion, which

is sometimes referred to as an indexed monad or a Kleisli structure; see section 3.2

for details.

The Cartesian product on finite sets gives the tensor product on FinVec: on

objects, a⊗b = ab; while on morphisms, given f ∈ FinVec a b and g ∈ FinVec c d ,

the tensor product is

f ⊗ g ∈ FinVec (a ⊗ c) (b ⊗ d)

f ⊗ g = λ(a, c)→ λ(b, d)→ (f a b)× (g c d)

The unit of the tensor is I = 1, and (FinVec,⊗, I ) is a strict monoidal category. The

tensor product in FinVec2 is given by + on the natural numbers, which are identified

with their initial segments.

Some useful operations defined in section 3.2 can also be reformulated into the

category FinVec. The inner-product 〈v|w〉 ∈ C of two vectors v ,w ∈ C a is defined

as

〈v|w〉 = Σa.(v a)∗ × (w a)

where (x +y×i)∗ = x−y×i is the complex conjugate. The norm of a vector |v| ∈ R+

is defined as |v| = 〈v|v〉, and is the inner-product of a vector with itself. Two vectors

are orthogonal, v ⊥ w, if 〈v|w〉 = 0. A base of a vector space is orthonormal if

every base vector is orthogonal to every other base vector. The adjoint of a vector

f ∈ FinVec a b is given by f † = λb a → (f a b)∗, with the defining property that

〈v|fw〉 =
〈
f †v|w

〉
.

By definition, a map u ∈ FinVec a b is unitary if its adjoint is its inverse:

u ◦ u† = I. This implies that u is an isomorphism, and hence also that a = b.

Unitary maps are isometric, i.e. they preserve the inner-product, 〈v|w〉 = 〈u v |u w〉.
However, not all isometric maps are unitary; for example, the diagonal maps given

by δσ ∈ FinVec σ (σ ⊗ σ), which are given by δσ a (b, c) = if a ≡ b & b ≡
c then 1 else 0, are isometric but not unitary.

A linear map f ∈ FinVec a a is self-adjoint, iff f = f †. A self-adjoint map has

only real eigenvalues; f v = λ×v implies λ ∈ R. The map is positive if all eigenvalues
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are positive, that is λ > 0. The trace of a map tr f is the sum of all eigenvalues,

which can be directly calculated as tr f = Σ a.f a a.

All basic linear algebra definitions required for the understanding the mathemat-

ical models of FQC have now been defined.

5.3.2 FQC≃ as unitary operations

In section 4.6, the category FCC≃ is given an interpretation in terms of the category

FinSet. In this section a parallel development giving an interpretation of FQC≃ in

the category Q≃ of unitary operators is presented.

The category FQC≃ models quantum circuits with no heap and no garbage, and

hence no measurement takes place. Therefore, reversible quantum computations can

be modelled by linear functions on pure quantum states, which are modelled as vectors

with norm 1.

The category Q≃ is introduced to model reversible computations. The objects of

the category Q≃ are the natural numbers, which correspond to the size of the quan-

tum register, or equivalently the number of wires used by the circuit. The homsets

Q≃ a b are the unitary maps u ∈ FinVec2 a b. As Q≃ is the category of reversible

computations, u ∈ Q≃ a b is only non-empty if a = b, hence Q≃ a a is abbreviated

to Q≃ a; as FQC≃ a = FQC≃ a a.

All circuits φ ∈ FQC≃ a can be interpreted as JφK ∈ Q≃ a, by induction over the

inductive definition of FQC≃ given in section 5.1:

rotation Jrot uK = u

wires Jwires φK = f where f a b = if φ a ≡ b then 1 else 0.

sequential composition Jφ ◦ ψK = JφK ◦ JψK

parallel composition Jφ⊗ ψK = JφK⊗ JψK, using the fact that 2a×b = 2a + 2b .

conditional Jφ | ψK = JφK|JψK where
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φ|ψ (0, a) (0, b) = φ a b

φ|ψ (1, a) (1, b) = ψ a b

φ|ψ = 0

Note that φ|ψ is unitary/isometric if both φ and ψ are also unitary/isometric.

This mapping from reversible circuits to unitary operators is in fact exactly the same

as the compilation function presented in section 3.8, which takes as input a reversible

quantum circuit and outputs a unitary matrix that models the circuit.

As Q≃ is a monoidal category, and wires extends to a monoidal functor, it follows

that J·K respects the equality on computations. However, it should be noted that it

identifies more computations than circuit equality, as it identifies circuits which have

the same behaviour; see section 5.5.4. This interpretation is full; every φ ∈ Q≃ a

can be generated by the appropriate reversible computation, which is a consequence

of the Solovay–Kitaev theorem [21], that describes an efficient classical algorithm for

creating an arbitrary single-qubit superposition.

5.4 Modelling strict quantum computations in Q◦

In this section a mathematical model for the category FQC◦, of strict quantum

computations, will be presented. The category FQC◦ is an extension of FQC≃, with

the addition of ancillary heap inputs, (h, φ′) ∈ FQC◦ a b such that b = a + h. As φ′

is a reversible quantum circuit then the computation can still be understood in terms

of unitary operators over a Hilbert space; however the notion of heap is lost in this

interpretation. A more natural setting for the mathematical interpretation of FQC◦

morphisms would allow the embedding of a Hilbert space a into a (possibly) larger

Hilbert space b, which models the addition of the heap to the computation. This can

be achieved by the use of isometries rather than unitary operators to model strict

computations with heap.
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5.4.1 FQC◦ as isometric operations

An isometry is a completely positive, distance preserving isomorphism between metric

spaces. In the case of strict quantum computations the mapping is between pure

quantum states, represented in the usual way as complex-valued vectors. The distance

function in quantum mechanics is given by the inner-product. Analogously to Q≃, the

category Q◦ (pronounced Isom, from isometry) is now introduced to mathematically

model strict computations. The objects of the category Q◦ are the natural numbers,

as in Q≃ (section 5.3.2), and the morphisms are the isometric operators between

objects: i ∈ FinVec2 a b, where i is an isometry from a register of size a to one of

size b, with a 6 b, hence an isometry can be written i ∈ Q◦ a b.

A method of interpreting heap is required to model FQC◦, and this is achieved

using a map which initialises the heap of a computation: given 0h ∈ C2 h, a heap

initialisation map ⊗0h ∈ FinVec2 a (a ⊗ h) , can be defined which initialises the

second part of the product, the heap. The heap initialisation is isometric: ⊗0h ∈
Q◦ a (a ⊗ h). Using the heap initialisation, FQC◦ objects can now be interpreted;

any (h, φ) ∈ FQC◦ a b with φ ∈ FQC≃ (a ⊗ h) b, is interpreted as Jh, φK ∈ Q◦ a b

by Jh, φK = φ (⊗0h), hence 0h ∈ C2 h is the constant zero vector; a collection of h

wires initialised to 0 in the circuit interpretation.

For orthogonal maps; that is maps f , g ∈ Q◦ a b such that for all ~a ∈ C2 a it is

the case that f ~a ⊥ g ~a (see section 5.3.1), another form of the conditional can be

defined, f |◦g ∈ Q◦ (Q2 ⊗ a) b, as:

f |◦g (0, a) b = f a b

f |◦g (1, a) b = g a b

It can be seen from the definitions that f |g = (0⊗ f )|◦(1⊗ g).

5.5 Modelling irreversible quantum computations in Q

In this section a mathematical model for the category FQC, of irreversible finite

quantum computations, is presented. FQC morphisms include the notion of garbage,

which are extra qubits required for the computation to be carried out, but which are
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discarded at the end. The garbage is removed by measuring it, which results in a

probabilistic state, called a mixed state. Mixed states and the ‘projection’ of garbage

out of a computation cannot be modelled using the concepts discussed so far, as

they only deal with pure states and with irreducible state spaces. To model FQC

in general, a mathematical formalism for mixed states and operations between them

has to be provided, and this is outlined in section 5.5.1.

5.5.1 Density matrices and superoperators

The usual canonical way of representing probabilistic quantum states is to use the

density matrix notation. Given a quantum system that can be in a number of possible

pure states |φi〉, with respective probabilities pi, the density matrix for this state is

given by the equation:

ρ ≡
∑

i

pi |φi〉 〈φi| (5.1)

From this it follows that a pure quantum state can be embedded into its density

matrix form by taking its outer product, defined in section 3.2. To interpret irre-

versible computations, mixed states have to be modelled, which arise as the result of

a measurement. This is achieved using density matrices. A mixed state of size a is

represented as a positive map ρ ∈ FinVec2 a a, such that ||ρ|| = 1, which is another

definition of a density matrix. The probability that a density matrix ρ is in state v is

λ, if ρ v = λ× v . In mathematical terms, v is an eigenvector of ρ with the eigenvalue

λ. The trace condition ensures that this is a probability distribution on the vectors,

in any orthonormal base.

Morphisms between density matrices are called superoperators. A superoperator

is a trace preserving, completely positive, linear operator between density matrices.

In the density matrix interpretation the trace of the matrix gives the sum of the prob-

abilities of each pure state, hence the requirement that morphisms between density

matrices are trace preserving. Formally, a linear map f ∈ FinVec2 (a⊗a) (b⊗b) can

be interpreted as an operator on density matrices by using FinVec2 a a ≃ C2 (a⊗a).

(Note that this is actually a slight simplification, as it should be C2(a⊗a⊥), however,

as the objects of this category are natural numbers, the two definitions are equivalent.)
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An operator defined in this way is positive if it preserves positivity, by definition. It

is completely positive if f ⊗ (c⊗c) ∈ FinVec2 ((a⊗c)⊗ (a⊗c)) ((b⊗c)⊗ (b⊗c)) is

positive for any c ∈ N. A completely positive operator is a superoperator if it is trace

preserving. The category of superoperators is defined as Q, (pronounced Super, for

superoperator), where the objects are again the natural numbers, and its morphisms

are superoperators. In other words s ∈ Q a b is given by s ∈ FinVec2 (a⊗a) (b⊗b),

which are completely positive and norm-preserving. The tensor product on superop-

erators is given by the tensor product of the underlying vector space, with a trivial

permutation.

An isometry f between pure states can be similarly be lifted to a superoperator

f̂ . Formally, given f ∈ Q◦ a b, a superoperator f̂ ∈ Q a b can be defined as follows:

given a density matrix ρ ∈ FinVec2 a a, the lifting given by

f̂ ρ = f ◦ ρ ◦ f † ∈ FinVec2 b b

is constructed using the isomorphism FinVec a a ≃ C (a ⊗ a). This gives rise to:

f̂ ∈ FinVec2 (a ⊗ a) (b ⊗ b)

which is completely positive and trace preserving.

5.5.2 Interpreting measurement as a superoperator

In contrast to the strict model of quantum computing, it is possible to define a

superoperator which “forgets” part of a quantum state. This can be thought of as a

form of projection, but is correctly termed a partial trace, as part of the computation

is traced out by measuring it and calculating the effect on the retained parts of the

computation. Using the partial trace allows garbage to be properly dealt with, by

removing it from the computation. Formally, measurements are interpreted as a

partial trace, defined as Tr(a,g) ∈ Q (a ⊗ g) a where

Tr(a,g) ∈ FinVec2 ((a ⊗ g)⊗ (a ⊗ g)) (a ⊗ a)

Tr(a,g) = λ(a, g) (a ′, g ′)→ if g ≡ g ′

then return (a, a ′)

else λ( , )→ 0
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Classically, the product space of a and g is given by the Cartesian product of the

finite sets a and g , (a, g) ∈ a × g , and the standard projection operation π0(a, g) can

be used to project out the garbage to give the reduced state a. The partial trace is

the quantum mechanical equivalent of this operation, which correctly interprets the

effects of measurement of a quantum state. It is clear from this definition that the

principle of deferred measurement (see section 3.10.1) holds. Thus garbage can be

measured and removed as soon as it is created (as soon as it becomes garbage), or

as a final step of the computation – as in the operational semantics of QML given in

chapter 7.

5.5.3 FQC as superoperators

Using superoperators, the partial trace defined above, and the interpretation of FQC◦

defined previously, (h, g , φ) ∈ FQC a b can be interpreted as J(h, g , φ)K ∈ Q a b using

J(h, φ)K ∈ Q◦ a (b ⊗ g), which is embedded into FQC as ̂J(h, φ)K ∈ Q a (b ⊗ g), and

finally the garbage is removed using the partial trace, giving:

J(h, g , φ)K ∈ Q a b

J(h, g , φ)K = Tr(b,g)
̂J(h, φ)K

The “morphisms as superoperators” interpretation can be shown as the following

commuting square:

a⊗ h JφK // b⊗ g
trg

��
a

f
//

(−,0h)

OO

b

This is the same picture as given for the classical “morphisms as functions” interpre-

tation, in section 4.7, except with the projection of the garbage (πg) replaced by a

partial trace (trg), and all functions replaced by superoperators.

It follows from the Kraus representation theorem [53] that this interpretation is

full, i.e. any superoperator can be realised as a morphism in FQC.
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5.5.4 Extensional equality of FQC

Analogously to the classical case, the extensional equality of FQC morphism is un-

derstood by interpreting them as superoperators. A morphism (h, g , φ) ∈ FQC a b

is interpreted as trg◦JφK◦ ⊗ 0h ∈ Q a b, where JφK∈ Q (h⊗ a) (g⊗ b) is the superop-

erator associated to the unitary operator, given by interpreting the reversible circuit

φ, where ⊗0h ∈ Q a (a ⊗ h) initialises the heap, and trg ∈ Q (g ⊗ b) b is a partial

trace, which traces out the garbage.

The definition of extensional equality for FQC follows from the above interpreta-

tion: two FQC morphisms are extensionally equivalent if this interpretation gives rise

to the same superoperator for both morphisms. This is the same picture as given for

classical extensional equality, in section 4.7.1, except using the “morphism as super-

operators” interpretation in the quantum case, rather than the classical “morphisms

as functions” interpretation.

The mapping FQC→ Q is functorial

The interpretation of FQC morphisms as morphisms in Q, given by J·K, is actually

functorial. The fact that J·K ∈ FQC a b → Q a b is functorial follows from the fact

the properties of a functor are satisfied, especially composition in FQC as defined in

section 5.2, are preserved by J·K. This is shown by the following proposition:

Proposition 2. J·K ∈ FQC→ Q is a strict monoidal functor, that is:

JidK = id

Jf ◦ gK = Jf K ◦ JgK

Jf ⊗ gK = Jf K⊗ JgK

Proof. Both 1. and 3. follow directly from monoidal identities. The only interesting

case is 2. which follows from the fact that the diagram shown in figure 5.3 commutes.
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a⊗ hf ⊗ hg
cφf⊗hg // b⊗ gf ⊗ hg

cφg⊗gf //

trgf

��:
::

::
::

::
::

::
::

:
c⊗ gf ⊗ gg

trgf gg

##GGGGGGGGG

trgg

��

a

(−,0f ,0g )
::vvvvvvvvv

(−,0f ) $$HHHHHHHHH c

a⊗ hf
cφf

//

(−,0g )

OO

b⊗ gf
trgf

//

(−,0g )

BB����������������
b

(−,0g )
// b⊗ hg

cφg

// c⊗ gg

trgg

;;wwwwwwwww

Figure 5.3: Composition is preserved by lifting FQC to Q. The path along the top
of the diagram shows Jf ◦ gK, while the lower path shows Jf K ◦ JgK, and this diagram
commutes.

The functor given by J·K here should be compared to that given in the case of

FCC, which maps FCC objects and morphisms into objects and morphisms of the

category FinSet, given in section 4.7. The J·K functors in both cases are very similar,

with the Cartesian product × on sets and the projection function in the classical case

being replaced by the tensor product ⊗ and the partial trace superoperator in the

quantum case above.

5.6 Comparing FCC with FQC

The development of FQC above follows directly the development of FCC given in

chapter 4. In each case the development begins by formalising the notions of circuits

as categories, presented in chapter 2 in the case of classical computing, and chapter

3 for quantum computing. The categories FCC≃ and FQC≃ are similar, as the

underlying circuits are similar, as discussed in section 3.4. The categories FCC≃

and FQC≃, and the derived categories FCC and FQC all have as their objects

natural numbers which represent the finite sets upon which the computations, which

are the categorical morphisms, are performed. These similarities lead to the similar

definitions of each category. The table in figure 5.4 shows how concepts from FCC

have been implemented in FQC, by lifting each concept into the quantum mechanical

notion of Hilbert spaces, and is an extension of the table given previously in figure

3.4.
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Classical Case (FCC) Quantum Case (FQC)

Finite sets Finite dimensional Hilbert spaces

Cartesian product (×) Tensor product (⊗)

Bijections Unitary operators

Functions Superoperators

Injective functions Isometries

Projections Partial trace

Figure 5.4: Table showing the analogous concepts of FCC and FQC

5.7 FQC in Haskell

The Haskell implementation of FQC is essentially identical to the implementation of

FCC given in section 4.8. An FQC morphism is defined as (h, g , φ) ∈ FQC a b where

a, b, h, g ∈ N and φ ∈ FQC≃. a and b give the size of the input and the output to the

morphism, and h and g give the size of any heap and garbage required to compute φ.

Using the quantum Circ datatype presented in section 3.5 to model FQC≃ objects

in Haskell, a datatype encapsulating morphisms of FQC can be defined as:

data FQC = FQC{a, b, h, g ∈ Int , φ ∈ Circ}
The only differences with the definition of FCC are the renaming of the type from

FCC to FQC, and the use of the quantum rather than classical Circ datatype.

As in the implementation of FCC, this datatype can be used to generate compu-

tations that are not in FQC, so a validation function, validFQC , is again required,

which is essentially identical to the FCC validation function validFCC :

validFQC ∈ FQC→ Error FQC

validFQC f = do let ah = OK (a f + h f )

bg = OK (b f + g f )

eguard (ah ≡ bg) "Input and output mismatch"

eguard (arity (φ f ) ≡ ah) "Circuit arity mismatch"

return f

If the circuit is invalid the appropriate error message will be propagated through the
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arity function by the Error monad. An FQC◦ morphism is an FQC morphism where

g = 0, and an FQC≃ morphism is an FQC◦ morphism where h = 0.

5.8 Q in Haskell

The categories Q≃, Q◦ and Q can all be defined in Haskell using the implementation

of basic linear algebra concepts presented in section 3.2. The category Q≃ of unitary

operations is already implemented as the datatype Mat , with the restriction that the

matrices have to be unitary; U †U = UU † = I. The unitary condition cannot be

enforced by the type, so must be ensured by the programmer. Therefore, u ∈ Q≃ a

is interpreted in Haskell as Mat a a u.

Haskell types of Q◦ and Q follow the definition Mat , as they are also modelled

as matrices. i ∈ Q◦ a b can be interpreted in Haskell as Isom{inI = a, outI =

b, funI = i }, where Isom is defined as:

data Isom = Isom{inI ∈ Int , outI ∈ Int , funI ∈ [N2 ]→ [N2 ]→ C}
which is essentially identical to the definition of Mat . The requirement that for all

vectors v ,w , 〈v|w〉 = 〈i v|i w〉 has to be checked manually, as again it cannot be

enforced. The function funI gives the action of the isometry i is a matrix, hence

the VEC class of operations (adjoint, tensor product, inner-product, outer-product,

and scalar-product) can be instantiated using the Mat instantiation, as can the bind

operation (>>=) which gives composition of isometries as matrix multiplication:

instance VEC Isom Isom where

adjoint (Isom a b i) = Isom a b i †

where f † x y = (f y x )∗

Isom a1 b1 i1 ⊗ Isom a2 b2 i2 = Isom a3 b3 i3

where Mat a3 b3 i3 = Mat a1 b1 i1 ⊗Mat a2 b2 i2

Isom a1 b1 i1〈·〉 Isom a2 b2 i2 = Mat a1 b1 i1〈·〉Mat a2 b2 i2

Isom a1 b1 i1〉·〈 Isom a2 b2 i2 = Isom a3 b3 i3

where Mat a3 b3 i3 = Mat a1 b1 i1〉·〈Mat a2 b2 i2

x $∗ Isom a b i = Isom a b (λ~ba → λ~bb → x × (i ~ba ~bb))

instance Bind Vec Isom where
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v >>= (Isom a b f ) = v >>= (Mat a b f )

instance Bind Isom Isom where

Isom a1 b1 f1 >>= Isom a2 b2 f2 = Isom a b f

where Mat a b f = Mat a1 b1 f1 >>= Mat a2 b2 f2

See section 3.2.2 for details of these implementations.

The category Q can be translated in a similar way with s ∈ Q a b becoming

Super a b s , where Super is interpreted in Haskell as:

data Super = Super{inS ∈ Int , outS ∈ Int , funS ∈ [N2 ]→ [N2 ]→ C}
An isometry i ∈ Q◦ a b can be lifted into a superoperator, as defined in section 5.5.1,

by the operation isom2super :

isom2super ∈ Isom→ Super

isom2super i = Super m n f where Isom m n f = i ⊗ (adjoint i)

The VEC class can be instantiated with reference to the instantiation of Isom, by

lifting each operation to Super. In the cases of all functions except the tensor product

⊗ this leads to the correct definition. The tensor product on Super, however, is not

the same as the definition for Isom; the input has to be rearranged as the type

of the tensor product on superoperators is: ⊗ ∈ FinVec2 (a ⊗ a ′) (b ⊗ b ′) →
FinVec2 (c⊗ c ′) (d ⊗ d ′)→ FinVec2 ((a ⊗ c)⊗ (a ′⊗ c ′)) ((b ⊗ d)⊗ (b ′⊗ d ′)). This

can be seen by lifting the definition of ⊗ on Isom to Super, and is implemented in

Haskell as:

Super at bt s1 ⊗ Super ct dt s2

= Super (at + ct) (bt + dt)

(λbac → λbbd →
let (a, c, a ′, c ′) = tyPerm at ct bac

(b, d , b ′, d ′) = tyPerm bt dt bbd

in (s1 (a ++ a ′) (b ++ b ′))× (s2 (c ++ c ′) (d ++ d ′)))

where the auxiliary function tyPerm performs the appropriate permutation of the

input. Composition of superoperators is defined as matrix multiplication, as the

lifting of the isometric bind leaves the definition unchanged:

instance Bind Dens Super where
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d >>= Super a b f = d >>= (Mat (a ⊗ a) (b ⊗ b) f )

instance Bind Super Super where

Super a1 b1 f1 >>= Super a2 b2 f2 = Super a b f

where Mat (a ⊗ a) (b ⊗ b) f = Mat (a1 ⊗ a1) (b1 ⊗ b1) f1

>>= Mat (a2 ⊗ a2) (b2 ⊗ b2) f2

The reason for the a ⊗ a and b ⊗ b that appear in these definitions, where ⊗ = +,

is that Super models the underlying FinVec2 object; recall from section 5.5.1 that

s ∈ Q a b is given by s ∈ FinVec2 (a ⊗ a) (b ⊗ b). Density matrices are simply

modelled as matrices, with the type synonym type Dens = Mat .

A superoperator for computing the partial trace, defined in section 5.5.2, can now

be implemented in Haskell. The function tr takes two integers as input, the size of

the output of the reversible computation, and the size of the garbage, and returns a

superoperator which traces out the garbage to give the reduced state:

tr ∈ Int → Int → Super

tr m n = Super m n

(λ~ba → let (ab1, ab2) = splitAt m ~ba

(a1, b1) = splitAt n ab1

(a2, b2) = splitAt n ab2

in if b1 ≡ b2 then funV (vreturn (a1 ++ a2))

else funV (vzero))

The use of this trace function, along with other functions defined in this section,

enables a function to be defined which converts FQC morphisms into superoperators

encoded in the Super datatype:

fqc2super ∈ FQC→ Super

fqc2super (FQC a b h g φ) = Super a b ((tr b g) ◦ superop ◦ (heap a h))

where superop = isom2super (comp φ)

The function fqc2super makes use of the quantum circuit compile function comp ∈
Circ → Isom, updated to Isom from section 3.8, and a simple function heap, which

initialises the heap to 0. Note this follows the definition given in section 5.5.3 of

the mapping from FQC to Q. If the morphism is a strict FQC◦ morphism, then a
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similar function, fqco2isom, can be used to generate a isometry, which must ensure

h = 0. The function fqco2isom is otherwise identical to fqc2super , but with the call

to isom2super removed.

5.9 Summary

This chapter makes precise the notion of a reversible quantum computation, infor-

mally described in chapter 3, as objects and morphisms of the category FQC≃. From

FQC≃, a category of irreversible quantum computations, Finite Quantum Compu-

tations (FQC) is derived, that interprets heap and garbage correctly. The category

FQC◦ of strict (no garbage) computations is also introduced. Though these categor-

ical definitions, this chapter presents a formalism of the standard model of quantum

computation – the quantum circuit model. Similarities and differences between FQC

constructions and its classical analogue FCC are also highlighted and discussed.

Each of the three categories FQC≃, FQC◦ and FQC are given mathematical

interpretations, via functors into the categories Q≃, Q◦, and Q, which are full. This

gives a denotation to the operational understanding of quantum computations pre-

sented in the category FQC and its subcategories, and allows a definition of exten-

sional equality to be defined for FQC morphisms, using the notions of partial trace

and superoperators.

The chapter closes with implementations of FQC and Q, and useful operations, in

Haskell. This follows from, and uses, the implementations of linear algebra constructs

and quantum circuits, presented in sections 3.2 and 3.5.
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Chapter 6

QML: A functional quantum

programming language

In this chapter the functional quantum programming language QML will be intro-

duced. The language QML features both quantum data structures, using the con-

nective ⊗, and quantum control structures, in particular a quantum conditional if◦.

The conditional if◦ analyses quantum data without measuring, and hence without

changing the data. This is a different approach to most other proposed quantum

languages discussed in section 1.4, which consider classical control structures only,

i.e. where quantum data can only be processed using combinators corresponding to

quantum circuits or by measurement. The motivations of the approach taken in this

thesis and other design details of QML are presented, followed by the syntax of the

language QML, and the structural and typing rules.

6.1 Quantum data and control

QML’s type system is based on strict linear logic; that is linear logic with contrac-

tion, but without implicit weakening. This is in contrast to Selinger and Valiron

[72], whose language has an affine type system, without implicit contraction. The

absence of contraction in their language is motivated by the no-cloning property of

quantum states. QML’s type system allows implicit contraction, which is possible

as contraction is not modelled by cloning, but by sharing as in classical functional
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Q2 • Q2

X
� Q2

Figure 6.1: φδ: Implementing sharing by cnot

programming languages. Indeed, on the level of reversible circuits, either classical or

quantum, sharing can be realised using a conditional-not circuit, φδ, with the sec-

ond input to the gate initialised with |0〉, as shown in figure 6.1. The circuit is, as

expected, the diagonal for classical states, as it maps |0〉 to |00〉 and |1〉 to |11〉. It

does not clone quantum states, such as 1√
2
|0〉+ 1√

2
|1〉, but shares them. The circuit

would output 1√
2
|00〉+ 1√

2
|11〉 and not 1√

2
((|0〉+ |1〉)(|0〉+ |1〉)), which corresponds to

cloning. The contraction as sharing interpretation has been independently suggested

by Arrighi and Dowek [5].

It should be noted that contraction is base dependant. For example, the function

δ, defined as cnot, does not commute with the Hadamard transform; i.e. δ is not

natural.

6.2 Controlling weakening

One of the fundamental concepts of the design of QML is that it is not contraction

which has to be carefully controlled, but weakening. The reason is that a quantum

bit cannot be forgotten without first measuring it, and the measurement may affect

other parts of the computation; for example, it will change qubits which are entangled

with the qubit being discarded.

As an example, consider the following simple program, which appears to swap two

qubits:

swap ∈ Q2 ⊗Q2 ⊸ Q2 ⊗Q2

swap p = let (x , y) = p

in (y , x )
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Figure 6.2: Interpreting variables as projections
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Figure 6.3: swap using projections

If a conventional type system is used, with rules such as

Γ ⊢ t : σ Γ ⊢ u : τ

Γ ⊢ (t, u) : σ ⊗ τ

Γ, x : σ ⊢ x : σ

where the variables x and y are interpreted by projections, as in figure 6.2, then swap

would be implemented as the circuit shown in figure 6.3, where the each variable is

copied before one of each is projected out. This is essentially how a conventional

functional language is implemented; the stack is used as temporary, easily disposable

data storage. However, in a quantum context this implementation does not result in

the desired state. Quantum states in the computational basis are properly swapped by

the circuit given in figure 6.3. For example, |01〉 is correctly mapped to |10〉. However,

a quantum superposition such as the state 1√
2
((|0〉− |1〉)(|0〉+ |1〉)) is mapped to one

of the basis states |00〉 , |01〉 , |10〉 , |11〉 with equal probability. The swap operation

has resulted in a completely random probabilistic state.

In order to remove these undesired effects, QML uses a strict linear type system,
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x
??

?? y

y
���� x

Figure 6.4: A quantum swap circuit that gives the desired behaviour

with the rules given previously substituted for the following:

Γ ⊢◦ t : σ ∆ ⊢◦ u : τ

Γ⊗∆ ⊢◦ (t, u) : σ ⊗ τ

x : σ ⊢ x : σ

where the operation Γ ⊗ ∆ allows the context to be split. As a consequence, the

program swap is now interpreted as the circuit given in figure 6.4 which behaves as

a swap operation would be expected to, even on quantum states. For example, the

state 1√
2
((|0〉 − |1〉)(|0〉+ |1〉)), is mapped to 1√

2
((|0〉+ |1〉)(|0〉 − |1〉)) using the new

interpretation.

Throughout this thesis simple normalisation factors, such as 1√
2
, will be omitted

to increase legibility.

6.3 Other sources of measurement

Weakening is not the only possible source of measurement in the context of quantum

computing. Consider, for example, the following definition of negation:

mnot ∈ Q2 ⊸ Q2

mnot x = if x then qfalse

else qtrue

If the classical control paradigm is followed, then branching over a qubit requires

measurement. As a consequence, the interpretation of mnot does not work on su-

perpositions as might reasonably be expected. For example, the input (|0〉 − |1〉) is

mapped to either |0〉 or |1〉 with equal probability, because the classical if collapses

the superposition, making it a probabilistic operation. What is meant by a reasonable
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expectation for a quantum negation operator would be that, given (|0〉−|1〉), it would

return (|1〉 − |0〉). Indeed, in QML this behaviour can be implemented by using if◦:

qnot ∈ Q2 ⊸ Q2

qnot x = if◦ x then qfalse

else qtrue

which is the quantum control structure that allows branching over quantum data,

without measuring the control data. However, the classical conditional if cannot

always simply be replaced by the quantum conditional if◦. Consider the conditional

swap program given by:

cswap ∈ Q2 ⊸ Q2 ⊗Q2 ⊸ Q2 ⊗Q2

cswap c p = if c then swap p

else p

If both components of p are the same then cswap effectively discards the control qubit.

However, discarding quantum data is not possible without measurement, hence if

cannot be replaced by if◦ in this fragment. The only way to avoid this is to include

the control qubit in the output:

cswap ∈ Q2 ⊸ Q2 ⊗Q2 ⊸ Q2 ⊗Q2 ⊗Q2

cswap c p = if◦ c then (qtrue, swap p)

else (qfalse, p)

6.4 The design of QML

The design of the language QML is based on the considerations given above: QML

has both quantum data and quantum control, QML allows contraction but controls

weakening and implicit measurement. QML uses a strict linear logic with an ex-

plicit weakening operator, but with implicit contractions. This is justified by the

fact that the meaning of a program can be affected by changing the weakenings,

but not by moving contractions. Two conditional operators are also introduced: if ,

which measures a qubit; and if◦, which does not measure, but which does require

that the branches are orthogonal. This requirement is reflected by introducing an
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orthogonality judgement on QML terms which invoke if◦.

The design of QML is also motivated by consideration of the operational semantics:

the category FQC. In the same way that the category FQC of quantum computations

was defined by analogy to the category FCC of classical computations, the language

QML is designed to be as close to classical formalisms as possible. Indeed, a classical

sublanguage of QML could be defined which uses FCC as its operational semantics,

rather than FQC.

6.5 Syntax and typing rules

The syntax and typing rules of QML are based on strict linear logic: contractions

are implicit, while weakenings are an explicit operation which correspond to measure-

ments. QML’s types are first order and finite. There are no recursive types, so, for

example, a type of quantum natural numbers cannot be defined.

QML’s type constructor is the tensor product, ⊗, which corresponds to a product

type. Qubits and superpositions of single qubits are primitive. QML has two if

constructs: if , which measures a qubit in the data it analyses (the classical–if);

and if◦, which does not measure, but requires that the results will always exist in

orthogonal subspaces (the quantum–if). The proofs of orthogonality can be inserted

automatically by the compiler, and hence do not feature in the syntax of terms.

The Greek symbols σ, τ, ρ are used to vary over QML types, which are given by

the following grammar:

σ = Q1 | Q2 | σ ⊗ τ
An infinite supply of concrete variable names is assumed, and x, y, z will be used to

vary over names. Typing contexts (Γ,∆) are given by:

Γ = • | Γ, x : σ

where • stands for the empty context, but is omitted if the context is non-empty.

For simplicity it is assumed that every variable appears at most once. Contexts

correspond to functions from a finite set of variables to types.

To define the syntax of expressions constants κ, ι ∈ C are also used, and function

variables are used to refer to previously defined QML programs. The terms of QML



6. qml: a functional quantum programming language 105

consist of those of a first-order functional language, extended with quantum data,

a quantum control structure, and a measurement operator. The grammar of QML

terms is defined as:

(Variables) x , y , ... ∈ Vars

(Prob. amplitudes) κ, ι, ... ∈ C

(Patterns) p, q ::= x | (x , y)

(Terms) t , u ::= x | x ~y

| () | (t , u)

| let p = t in u

| if t then u else u ′

| if◦ t then u else u ′

| qfalse~y | qtrue~y | 0
| κ× t | t + u

Here, the vector notation ~a is used for sequences of syntactic objects. Formally, it

corresponds to the following meta notation:

~a = ǫ | a ~a
Quantum data is modelled using the constructs κ × t, t + u, with the constant

0 forming terms with a probability amplitude of zero. The term κ × t, where κ is a

complex number, associates the probability amplitude κ with the term t. The term

t+u describes a quantum superposition of t and u. Quantum superpositions are first

class values, and can be used in a conditional to give quantum control. For example,

if◦ (qtrue + qfalse) then t else u

evaluates both t and u and combines the results in a quantum superposition.

As an example of forming superpositions, the term ( 1√
2
)× qfalse + ( 1√

2
)× qtrue

is an equal superposition of qfalse and qtrue. Normalisation factors that are equal

are sometimes omitted, and can then be inferred to be equal; the previous example

becoming simply qfalse + qtrue.

A QML program is a sequence of function definitions ~d, where a function definition

d is given by f Γ = t : τ . A Haskell style syntax will be used to present program

examples, using ⊸ instead of → in the definition, inspired by the notation for linear



6. qml: a functional quantum programming language 106

implication from linear logic. For example:

f : σ1 ⊸ σ2 . . ⊸ σn ⊸ τ

f x1 x2 . . xn = t

gives the following translation:

f (x1 : σ1, x2 : σ2, . . , xn : σn) = t : τ

The basic typing judgements are:

Typing of terms

~d; Γ ⊢ t : σ

Typing of strict terms

~d; Γ ⊢◦ t : σ

Orthogonality

t ⊥ u

Well-typed programs

⊢ ~d

Since all the typing rules presented above only pass ~d, this will be omitted from

rule definitions, writing Γ ⊢ t : σ (or Γ ⊢◦ t : σ) instead, with the exception of

the application rule (see section 6.6). To avoid repetition, the schematic judgements

Γ ⊢a t : σ will be used, where a ∈ {−, ◦}.
The term Γ ⊢ t : σ means that term t has type σ under context Γ, and the

term Γ ⊢◦ t : σ is used for measurement-free, i.e. strict, terms. Strict terms can be

embedded into non-strict terms, ⊢◦ into ⊢, by induction over the structure of the

derivations. This can be summarised by the following rule:

Γ ⊢◦ t : σ

Γ ⊢ t : σ

which is applicable, as an embedding for each strict term in QML to a non-strict can

easily be derived from application of the non-strict rule. The embedding rule above

is not formally introduced to reduce ambiguity in the derivations of terms. If the
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embedding rule was defined as above then multiple interpretations of a term could

be derived.

The operator ⊗ is introduced to map pairs of contexts to contexts:

Γ, x : σ ⊗∆, x : σ = (Γ⊗∆), x : σ

Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ if x /∈ dom ∆

• ⊗∆ = ∆

This operation is partial, as it is only well-defined if the two contexts do not assign

different types to the same variable. It will be implicitly assumed that whenever this

operation is used it is well-defined.

6.5.1 Structural rules

There are two rules for interpreting a variable in QML, a strict and a non-strict

version, which is the case for many QML typing rules. The strict variable rule requires

the context to contain only the variable being used, and is given by:

var◦
x : σ ⊢◦ x : σ

In contrast, the impure variable rule is marked by a set of variables over which it is

weakened, and the context must contain the variables to be weakened. The non-strict

variable rule is given by:

var
Γ, x : σ ⊢ xdomΓ : σ

where dom Γ is the set of variables defined in Γ, which corresponds to a functional

reading of contexts.

The strict variable rule can be simply embedded into the non-strict variable rule

by a simple translation, where the strict rule x : σ ⊢◦ x : σ becomes:

•, x : σ ⊢ xdom • : σ

which can be shown to hold once all rules have been defined.
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The let-rule can now be introduced, which gives the building blocks used to define

first-level programs:

Γ ⊢a t : σ

∆, x : σ ⊢a u : τ
let

Γ⊗∆ ⊢a letx = t inu : τ

which is strict if the terms t and u are strict, as denoted in the rule by the presence

of the strictness variable a ∈ {◦,−}. A strict let derivation can be embedded into

the non-strict case in the same was as for the variable rule.

By combining the let rule with the applicable embedding, a more convenient form

of the let rule can be defined as:

Γ ⊢a t : σ

∆, x : σ ⊢b u : τ

Γ⊗∆ ⊢a⊓b let x = t in u : τ

where ◦ ⊓ ◦ = ◦, and is non-strict otherwise.

Using the let rule and variable rules defined above, it can now be shown how

weakenings can affect the meaning of a program. Consider the program defined as:

y : Q2 ⊢ letx = y inx{} : Q2

which is interpreted as the identity, and is free from measurement. However, a similar

program, defined as:

y : Q2 ⊢ letx = y inx{y} : Q2

makes use of weakening, which is interpreted as a measurement, causing superposi-

tions to collapse; thus it is not the identity on superpositions.

6.5.2 Products (⊗)

The rules for the product ⊗ are the standard rules taken from linear logic. The unit

for the product, denoted Q1, carries no information, so instead of an elimination rule

an implicit weakening rule is allowed in this case. The Q1 introduction and weakening
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rules are defined as:

Q1 intro
• ⊢◦ () : Q1

Γ, x : Q1 ⊢a t : σ
Q1 weak

Γ ⊢a t : σ

Note that the weakening rule for Q1 preserves strictness, as no information is lost.

The product introduction rule follows the standard pattern, using pairs to denote

products, and is defined as:

Γ ⊢a t : σ ∆ ⊢a u : τ
⊗ intro

Γ⊗∆ ⊢a (t, u) : σ ⊗ τ

As with the let rule, the strict product introduction rule can be trivially embedded

into the non-strict form.

The elimination rule for the product is a pattern-matching variant of the let rule:

Γ ⊢a t : σ ⊗ τ
∆, x : σ, y : τ ⊢a u : ρ

⊗ elim
Γ⊗∆ ⊢a let (x, y) = t in u : ρ

which again admits embedding. Via the trivial embedding, the following variation of

the pair elimination rule can be defined:

Γ ⊢a t : σ ⊗ τ
∆, x : σ, y : τ ⊢b u : ρ

Γ⊗∆ ⊢a⊓b let (x, y) = t in u : ρ

The pair introduction and let-pair elimination rules can be used to implement the

swap operations discussed in section 6.2. The first presented approximation of swap

is based on multiplicative rules that measure the qubits whilst swapping them; this

can be implemented in QML as:

p : Q2 ⊗Q2 ⊢ let (x, y) = p in (y{p}, x{p}) : Q2 ⊗Q2

where the pair p is weakened, and hence its components are measured. The second

swap operation, which has the correct semantics of swapping without measurement,
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is given by the following QML program:

p : Q2 ⊗Q2 ⊢ let (x, y) = p in (y{ }, x{ }) : Q2 ⊗Q2

where there is no weakening, as the variables are marked with the empty set, and

hence there is no measurement.

6.5.3 Conditionals (if and if◦)

As already discussed, in QML there are two kinds of conditional operation, and both

are variations of the standard if. . . then. . . else. . . construct. The first, denoted if ,

measures the conditional qubit c, and hence performs classical control:

Γ ⊢ c : Q2

∆ ⊢ t, u : σ
if

Γ⊗∆ ⊢ if c then t else u : σ

The rule for the classical control operator if is similar to the usual rule for if, and

can be used to implement a form of negation:

mnot :Q2 ⊸ Q2

mnot x = if x then qfalse

else qtrue

As this program measures the qubit x it does not swap the probability amplitudes

of the qubit, as might be expected of a quantum negation operator, and only acts as

true negation on the computational basis states of either qtrue or qfalse. This is

termed the classical–if and gives classical control. To avoid the measurement, and

to implement a quantum negation operation, a measurement-free version of if must

be used. The measurement-free, or strict, if rule, called if◦, is introduced by the

following rule:

Γ ⊢◦ c : Q2

∆ ⊢◦ t, u : σ t ⊥ u
if◦

Γ⊗∆ ⊢◦ if◦ c then t else u : σ

The rule for if◦ relies upon the orthogonality judgement t ⊥ u, which is defined for

terms of the same type and context, Γ ⊢ t, u : α, and is fully discussed in section
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6.5.5. Intuitively, t ⊥ u holds if the outputs of t and u are always orthogonal. The if◦

operation is termed the quantum–if or strict–if, as it provides quantum control, and

produces no garbage (and hence there is no measurement). The strict if◦ derivation

given above can also be simply embedded into a non-strict derivation.

Using the measurement-free version if◦, standard reversible and hence quantum

operations such as qnot can be implemented:

qnot :Q2 ⊸ Q2

qnot x = if◦ x then qfalse

else qtrue

and the conditional-not cnot :

cnot :Q2 ⊸ Q2 ⊸ Q2 ⊗Q2

cnot c x = if◦ c then (qtrue, qnot x )

else (qfalse, x )

and finally the Toffoli operator, discussed in section 2.4.1, which is essentially a

conditional-cnot :

toff :Q2 ⊸ Q2 ⊸ Q2 ⊸ Q2 ⊗ (Q2 ⊗Q2)

toff c x y = if◦ c then (qtrue, cnot x y)

else (qfalse, (x , y))

6.5.4 Superpositions

In order to exploit quantum parallelism, it has to be possible to create superpositions

such as qtrue + qfalse, which is actually a shorthand for ( 1√
2
) × qtrue + ( 1√

2
) ×

qfalse. If one of the coefficients is zero then that term may be omitted, for example

(−1)× qtrue is shorthand for (−1)× qtrue + 0× qfalse, which constructs a qubit

which behaves like qtrue if measured, but has a different phase.

The rule for generating a superposition of terms is defined as:

Γ ⊢◦ t, u : σ

|λ|2 + |λ′|2 = 1 t ⊥ u
sup◦

Γ ⊢◦ (λ)× t+ (λ′)× u
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where λ, λ′ ∈ C and describe the complex-valued probability amplitudes of the su-

perposition. The condition |λ|2 + |λ′|2 = 1 ensures that the coefficients describe a

probability distribution.

The QML implementation of the Hadamard operator makes use of this rule in the

branches of its conditional:

had :Q2 ⊸ Q2

had x = if◦ x then (−1)× qtrue + qfalse

else qtrue + qfalse

which, as already noted, omits simple normalisation factors that can be inferred.

Section 6.5.5 discusses the orthogonality judgement t ⊥ u, and in this case it is clear

that qtrue ⊥ qfalse, hence the use of if◦ is permitted.

The binary rule for superpositions presented above is sufficient to produce any

n-ary superposition. Superpositions of more than two terms are created by nesting of

the superposition rule, for example (t + u + v) would become (1
3
× t + (2

3
× (u + v))).

The constants qtrue and qfalse can also allow weakening to occur, in a similar

manner to the method by which the non-strict variable rule allows weakening, defined

in section 6.5.1. If the constants are not marked with a set of variables to be weakened

over, then it is assumed that the set is empty. This rule also allows weakening over

single qubit superpositions, interpreting qfalse~x + qtrue~y as (qfalse + qtrue)~x+~y.

The non-strict qubit introduction rule is given as:

|λ|2 + |λ′|2 = 1
sup

Γ ⊢ (λ× qfalse + λ′ × qtrue)domΓ : Q2

where dom Γ is the set of variables defined in Γ. The embedding rule is also applicable

in this case, as the strict rule, restricted to qubits, can be embedded into the non-strict

rule by a simple application of the non-strict rule, as in the case of var.

6.5.5 Orthogonality (⊥)

The type system presented so far correctly tracks the use of variables and prevents

variables from being weakened inappropriately; yet the situation is more subtle. It

turns out that the type system accepts terms which implicitly perform measurements
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and as a consequence accepts programs which are not realisable as quantum compu-

tations.

Consider the expression

if◦ x then qtrue else qtrue

This expression appears, syntactically at least, to use the variable x . However, given

the semantics of if◦, which returns a superposition of the branches, the expression in

this case returns qtrue without using any information about x . In order to maintain

the invariant that all measurements are explicit, the type system should reject the

above expression. More precisely, the expression if◦ x then t else u should only be

accepted if t and u are orthogonal quantum values; t ⊥ u. This notion intuitively en-

sures that the conditional operator does not implicitly discard any information about

x during the evaluation. The branches of a superposition should also be orthogonal

for similar reasons, and this is why the typing rules for superpositions (sup) and the

quantum conditional (if◦) include the judgement t ⊥ u.

Mathematically, two terms, t , u, are orthogonal if their inner-product is equal to

zero, 〈t |u〉 = 0. If this is the case then the judgement t ⊥ u is true, but if the inner-

product yields any other value then t is not orthogonal to u. In the presentation

of an equational theory for (the pure fragment of) QML [2] (published in QPL 2005

[71]), the orthogonality judgements are replaced by an inner-product judgement on

terms, to much the same effect. However, the inner-product approach appears to be

more informative and flexible, and gives a method of reasoning about orthogonality,

hence in future versions of QML this method may be adopted for all terms. Two

QML terms are orthogonal if their inner-product, defined on terms in figure 6.5, is

equal to zero. If the inner-product is greater than zero, or undefined, then the terms

are defined to be non-orthogonal.

The inner-product judgements defined over QML terms in figure 6.5 can be ap-

proximated by the following rules:

qtrue ⊥ qfalse qfalse ⊥ qtrue
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〈t|t〉 = 1 if t6= 0

〈qfalse|qtrue〉 = 0

〈qtrue|qfalse〉 = 0

〈0|qtrue〉 = 0 = 〈qtrue|0〉
〈0|qfalse〉 = 0 = 〈qfalse|0〉

〈0|x〉 = 0 = 〈x|0〉

〈(t, t′) | (u, u′)〉 = 〈t|u〉 × 〈t′|u′〉

〈λ× t + λ′ × t′ | u〉 = λ∗ × 〈t|u〉+ λ′∗ × 〈t′|u〉
〈t | κ× u + κ′ × u′〉 = κ× 〈t|u〉+ κ′ × 〈t|u′〉

〈λ× t|u〉 = λ∗ 〈t|u〉
〈t|λ× u〉 = λ 〈t|u〉
〈t + t′|u〉 = 〈t|u〉+ 〈t′|u〉
〈t|u + u′〉 = 〈t|u〉+ 〈t|u′〉

〈t|u〉 = undefined otherwise

Figure 6.5: Inner-products and orthogonality of terms

t ⊥ u
⊥ pair0

(t , v) ⊥ (u,w)

t ⊥ u
⊥ pair1

(v , t) ⊥ (w , u)

t ⊥ u λ∗0κ0 = −λ∗1κ1 ⊥ sup
λ0 × t + λ1 × u ⊥ κ0 × t + κ1 × u

The first two axioms above state that the basic states of qtrue and qfalse are or-

thogonal. The third and fourth rule state that pairs of terms can be orthogonal, so

long as one component of the pair is orthogonal to the corresponding component in

the other pair. The final rule defines when superpositions of terms can be orthogonal.

As an example, these rules are used in the typing of the Hadamard operation

discussed earlier. The use of if◦ in QML programs is valid only if the two branches

are orthogonal, hence, for the Hadamard operation, it is required that:

((−1)× qtrue + qfalse) ⊥ (qtrue + qfalse)

which, with normalisation factors reintroduced, is shorthand for the term:

((− 1√
2
)× qtrue +

1√
2
× qfalse) ⊥ (

1√
2
× qtrue +

1√
2
× qfalse)

This can be found to be orthogonal by application of the ⊥ sup rule.

The rules for orthogonality given so far are incomplete, as is shown by the final

undefined case in figure 6.5. For example, conditional expressions are not allowed to be
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orthogonal, even though semantically this may be the case. Orthogonality judgements

for strict conditionals can be added by considering the extra inner-product rules

shown in figure 6.6, which can be approximated by the following (less informative)

〈t|if◦ (α× qfalse + β × qtrue) then u else u ′〉 = β 〈t|u〉+ α 〈t|u′〉
〈if◦ (α× qfalse + β × qtrue) then u else u ′|t〉 = β 〈u|t〉+ α 〈u′|t〉

Figure 6.6: Inner-products and orthogonality of if◦ terms

orthogonality judgements:

t ⊥ u t ′ ⊥ u ′

⊥ if◦0
t ⊥ if◦ c then u else u ′

t ⊥ u t ′ ⊥ u ′

⊥ if◦1
if◦ c then u else u ′ ⊥ t

The orthogonality judgements may be extended in this, and other, ways by adding

rules in future.

6.6 QML Programs

In QML, programs are definitions of terms in contexts. Passing the programs explic-

itly through the rules has been omitted, as discussed in section 6.5. The axioms also

require that the program is well-typed. Well-typed programs can be constructed by

the following rule:

⊢ ~d ~d; Γ ⊢ t : σ

⊢ ~d, f Γ = t : σ

Note that recursion is not allowed, unlike Selinger’s QPL [69]. See section 8.3 for a

brief discussion of how recursion could be interpreted in QML.

Previously defined functions can be used via the application rule:

~d = ~d′, f (x1 : σ1, .., xn : σn) = t : τ ~d; Γ ⊢ t1 : σ1, . . . tn : σn
app

~d; Γ ⊢ f ~t : τ

Two QML programs will now be presented as examples: a variant of the Deutsch

algorithm, and an encoding of quantum teleportation in QML.
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6.6.1 The Deutsch Algorithm in QML

The Deutsch algorithm is presented in section 3.9 as an method of discovering whether

a classical function on Booleans is constant, by querying that function only once. To

avoid having to resort to higher-order oracles, the algorithm presented here solves the

analogous problem of deciding whether two qubits, which are assumed to be classical,

are equal, with the property that each branch of the program only queries one of the

input bits. This non-oracle variation of the Deutsch algorithm can be implemented

in QML as the following program:

deutsch :Q2 ⊸ Q2 ⊸ Q2

deutsch a b = let (x , y) =

if◦ qfalse + qtrue

then (qtrue, if◦ a

then (qfalse + (−1)× qtrue, (qtrue, b))

else ((−1)× qfalse + qtrue, (qfalse, b)))

else (qfalse, if◦ b

then ((−1)× qfalse + qtrue, (a,qtrue))

else (qfalse + (−1)× qtrue, (a,qfalse)))

in had x

where had x is the previously defined Hadamard operator.

The program above is complicated by the need to store both input qubits in

a temporary structure computed by if◦, which is actually unnecessary; it can be

assumed that these bits are classical, and hence they can be used without further

measurement. If QML was extended to include classical data, this program could be

simplified as shown in figure 6.7. Classical bits could be incorporated into QML using

structures similar to those used in Selinger’s QPL [69]. Extensions to QML such as

these are discussed in chapter 9.

The Deutsch algorithm is in fact related to the Shor algorithm, by the quantum

Fourier transform (QFT). The Hadamard operations that prepare the necessary su-

perpositions in the Deutsch algorithm are an example of the QFT. The Shor algorithm

makes use of the QFT (actually the inverse: QFT†) in a more complicated manner.
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deutsch : N2 ⊸ N2 ⊸ Q2

deutsch a b = let (x , y) = if◦ qfalse + qtrue

then (qtrue, if a

then qfalse + (−1)× qtrue

else (−1)× qfalse + qtrue)

else (qfalse, if b

then (−1)× qfalse + qtrue

else qfalse + (−1)× qtrue)

in had x

Figure 6.7: The Deutsch Algorithm implemented in QML, extended with classical
data

Shor’s algorithm and the QFT are presented in appendix A, with a detailed analysis

of both of these techniques, and an implementation of the QFT in QML is defined.

6.6.2 Quantum teleportation

The quantum teleport protocol, described in section 3.10, allows a qubit to be tele-

ported to a partner with whom an EPR pair has previously been shared, using only

two bits of classical information. The separation of the partners and the classical

computation cannot currently be formalised in QML, but a function tel , which en-

codes what happens to the teleported qubit, can be implemented. The correctness of

the teleport protocol can be verified by showing that tel is extensionally equivalent

to the identity function.

As an auxiliary, the Pauli-Z operation is implemented in QML as:

z :Q2 ⊸ Q2

z x = if x then (−1)× qtrue

else qfalse

Making use of this auxiliary function, the QML program tel can be implemented as:

tel :Q2 ⊸ Q2

tel x = let (a, b) = (qfalse,qfalse) + (qtrue,qtrue)



6. qml: a functional quantum programming language 118

(a ′, x ′) = cnot a x

b ′ = if a ′ then qnot b else b

b ′′ = if had x ′ then z b ′ else b ′

in b ′′

This is a QML implementation of the circuit given for the teleportation algorithm in

section 3.10. The language CQP of Communicating Quantum Processes [28] allows

the modelling of channels, and the separation of the two components of the EPR pair,

in an implementation of the teleportation algorithm.

6.7 Coproducts in QML

In a previous version of QML (presented in reference [3], referred to as QML⊕ for the

remainder of this section) the language included the notion of a tensorial coproduct,

denoted by ⊕. The types of QML⊕ were generated by Q1, σ ⊗ τ , and σ ⊕ τ , where

σ and τ quantify types. Qubits were not primitive, but defined as Q2 = Q1 ⊕ Q1.

The coproduct allows any finite type to be directly represented in this way; not just

limited to Q2. The introduction rules used for ⊕ were the usual coproduct rules, a

left and a right injection:

Γ ⊢a s : σ
⊕introl

Γ ⊢a inl s : σ ⊕ τ
Γ ⊢a t : τ

⊕intror
Γ ⊢a inr t : σ ⊕ τ

The coproduct type was interpreted as σ ⊕ τ = Q2 ⊗ |σ ⊔ τ |, where |σ ⊔ τ | could

store a value of either |σ| or |τ |, by padding the smaller type. Using the coproduct

and injection rules, qfalse and qtrue were defined in QML⊕ as:

qtrue = inl() : Q2 qfalse = inr() : Q2

omitting the weakening property of QML⊕.

Instead of primitive if and if◦ rules, QML⊕ implemented two ⊕-elimination rules:

case, which provided classical-control and is a generalisation of if ; and a quantum-

control operation case◦, which generalised if◦. The measuring ⊕-elimination rule is
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similar to the standard coproduct elimination rule, and is given as:

Γ ⊢ c : σ ⊕ τ
∆, x : σ ⊢ t : ρ

∆, y : τ ⊢ u : ρ
⊕elim

Γ⊗∆ ⊢ case c of {inl x ⇒ t | inr y ⇒ u} : ρ

The if rule would then be derived from this as:

if b then t else u = case b of {inl ⇒ t | inr ⇒ u }
The strict case is introduced by:

Γ ⊢a c : σ ⊕ τ
∆, x : σ ⊢◦ t : ρ

∆, y : τ ⊢◦ u : ρ t ⊥ u
⊕elim◦

Γ⊗∆ ⊢a case◦ c of {inl x ⇒ t | inr y ⇒ u} : ρ

and from this the measurement-free if◦ can be derived:

if◦ b then t else u = case◦ b of {inl ⇒ t | inr ⇒ u }
The problem with coproducts, and hence QML⊕, is that the branches of a case◦

operation can be of different size, and this was dealt with in the semantics of QML⊕

by padding the type of the smaller branch. The padding of one type in this way

could lead the garbage becoming entangled with the useful output in some way. This

could happen, for example, by branching over Q1 ⊗ Q2. The garbage, which is

created by padding, may indirectly measure the qubit which is being branched over.

Consequently, this approach is not compositional, and is therefore rejected.

In the version of QML presented in this thesis, this problem does not occur as

the coproduct has been removed, with qubits now primitive types, and case and

case◦ have been replaced by their simpler derivations of if and if◦, and the strict if◦

does admit for any garbage to be produced. In future versions of QML coproducts

may be reintroduced, possibly limited to classical types to remove the problem of the

unexpected decoherence; refer to the future work section 8.4.
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6.8 Summary

This chapter has introduced the functional quantum programming language QML.

The design and motivation for the language is first explored, followed by the defini-

tions of the syntax of QML, and QML functions and programs. The structural and

typing rules of QML terms are also presented, including the rules governing the quan-

tum conditional if◦, which requires an orthogonality judgement that guarantees the

branches are observably different. This chapter includes two QML implementations

of quantum algorithms that have been discussed in earlier chapters, and closes with

a discussion of a variation of QML that included coproducts, and why they are not

included in this presentation.
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Chapter 7

Operational semantics of QML

An operational semantics of a programming language such as QML describes how a

program is interpreted as a sequence of computational steps. In the case of QML, the

operational semantics presented here is defined by presenting a translation of QML

derivations to morphisms in the category FQC. Morphisms in the category FQC

are expressed as quantum circuits, which gives the computational steps required to

compute a QML program. This is achieved by introducing a category of QML terms,

and then defining a mapping from the category QML to the category FQC for each

QML term. In this way the operational semantics of QML provides an implementation

of the language in the well understood physical model of quantum circuits. This is

slightly different from the usual view of an operational semantics as a form of term

rewriting system; in this thesis the term operational semantics is understood to mean

a (theoretically) realisable semantics, describing a system which can be physically

executed to produce an output: a sequence of quantum gates.

A denotational semantics for QML, factored through the operational semantics, is

also presented. For every QML term, the denotational semantics gives a superoperator

in the category Q, via the FQC morphism produced by the operational semantics.

The denotational semantics allows mathematical tools to be used to reason about

programs and optimisations, and allows a definition of extensional equality of QML

terms.

A Haskell implementation of the operational semantics is also discussed, which
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acts as a compiler for QML programs. A current implementation1 of the compiler

can be found at the project website [30].

7.1 The category of QML terms

The set of typed QML terms can be organised in a categorical structure. The objects

of this category are contexts, and the homset between the objects Γ and ∆, denoted

QML Γ ∆, consists of all the terms t such that Γ ⊢ t : ∆, where the operation · on

contexts views the context as a type. The mapping from context to types is naturally

defined as:
• = Q1

Γ, x : σ = Γ⊗ σ
For every context Γ, the identity morphism IΓ∈ QML Γ Γ is defined as:

I• = ()

IΓ,x:σ = (IΓ, x)

In order to express composition in the category QML, the following auxiliary defini-

tion is required:

let∗ • = u in t ≡ t

let∗ Γ, x : σ = u in t ≡ let (xr, x ) = u in let∗ Γ = xr in t

Using the definition of let∗, given u ∈ QML Γ ∆ and t ∈ QML ∆ Θ, the composition

t ◦ u ∈ QML Γ Θ is given by the term let∗ Γ = u in t .

The category QML◦ is defined as a subcategory of QML, and consists of all the

strict terms t ; QML◦ Γ ∆ = {t |Γ ⊢◦ t : ∆}
The structure of the category QML is used extensively by Altenkirch, Grattage,

Vizzotto and Sabry in the development of a sound and complete equational theory

for a pure fragment of QML [2].

1The code for the compiler is currently under development, as both QML and the operational
semantics are active areas of research. Refer to section 8.4.
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7.2 Interpretation of judgements

In order to be able to interpret judgements, the sizes of types and contexts must first

be defined. The function |·| gives the size of a type:

|Q1| = 0

|Q2| = 1

|σ ⊗ τ | = |σ| ⊗ |τ |

= |σ|+ |τ |

Contexts correspond to the tensor product of their component types, hence:

|Γ| = |Γ|

where · maps context to types, as defined in section 7.1. The size function |·| will be

frequently omitted, and just Γ will be written for |Γ|, and σ written for |σ|. It is clear

from the context which is intended. The interpretations of a context Γ and a type σ

are therefore given by:

JΓK = |Γ|

JσK = |σ|

There are two kinds of derivations in QML: strict programs in QML◦, and non-

strict, or impure programs in QML. These can both be given an operational seman-

tics by translating derivations into the appropriate category of quantum computa-

tions: FQC◦ in the strict case, and otherwise FQC. Strict QML derivations d
Γ⊢◦t:σ

are interpreted by the semantic function given by:

JdK◦Op ∈ QML◦ Γ σ → FQC◦ Γ σ

and non-strict QML derivations d
Γ⊢◦t:σ

are interpreted by:

JdKOp ∈ QML Γ σ → FQC Γ σ.

Given Γ ⊢◦ t : σ and Γ′ ⊢◦ u : σ a derivation d
t⊥u is interpreted as a structure

JdK⊥Op = (c, l , r , ψ), where:
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c ∈ N

l ∈ FQC◦ Γ c

r ∈ FQC◦ Γ′ c

ψ ∈ FQC≃ σ (Q2 ⊗ c)

The semantics of programs ⊢ ~d is given by an assignment of circuits to function

names, following the standard interpretation. What is interesting is the interpretation

of terms, and operations on the contexts of terms.

7.3 Interpreting operations on contexts

Interpreting the operation ⊗ on contexts is not as straightforward as it may fist

appear. Using Γ⊗∆ allows a variable to be used several times, allowing contraction.

This is interpreted using

δ = (Q2, φδ) ∈ FQC◦ Q2 (Q2 ⊗Q2)

where φδ = id|qnot , which is the conditional-not operation. The operation δ can be

iterated to contract registers of any size: given a ∈ N, the operation δa ∈ FQC◦ a (a⊗
a) is defined in the base case as δ0 = wires id. Otherwise, δa⊗Q2 is constructed from

δa by the following circuit:

Q2 • Q2

a

--
--

- X
--

--
- a������

φδa

����� Q2

�
a

Given Γ,∆ such that Γ⊗∆ is well-defined, the context-splitting operation C can be

constructed as:

C(Γ,∆) ∈ FQC◦ |Γ⊗∆| (|Γ| ⊗ |∆|)

by induction over the definition of Γ ⊗ ∆. The explicit use of |·| in this formula is

essential, as the definition of ⊗ is different depending on whether it acts on contexts

or on their sizes. The action of C is defined by the following case analysis:
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Γ, x : σ ⊗∆, x : σ = (Γ⊗∆), x : σ

Γ⊗∆
φC(Γ,∆)

Γ

σ
99

99
99

99 σ�����

φδ σ

���� ∆
�

σ

Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ, if x /∈ dom∆

Γ⊗∆
φC(Γ,∆)

Γ

σ
99

99
99

99 σ�����
���� ∆

• ⊗∆ = ∆

•⊗∆ ∆

7.4 Interpreting QML rules in FQC

The compilation of rules into FQC morphisms is presented using the circuit diagrams

defined in section 5.2. The interpretation of the embedding of strict terms into non

strict terms is invisible as a circuit, as FQC◦ a b ⊆ FQC a b. Explicit references

to the heap, h, and garbage, g , are omitted for clarity, and the circuits refer to the

reversible circuit φt arising from the interpretation of d
Γ⊢t:σ , JdKOp ∈ FQC Γ σ. These

conventions will be followed in all interpretations and their diagrams.

7.4.1 Interpreting the structural rules

The structural rules of QML are given in section 6.5.1, and the circuits arising from

these rules are presented now. The strict variable rule is interpreted in FQC as the

identity morphism:
var◦

x : σ ⊢◦ x : σ

σ σ

Note that this interpretation gives a strict morphism. The non-strict variable rule

has a similar interpretation, with the variable passing straight through, but with
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all the variables in the context being moved into the garbage, which is the FQC

interpretation of weakening:

var
Γ, x : σ ⊢ xdomΓ : σ

Γ
??

?? σ

σ
���� �

The operational semantics of the variable rules are therefore given as the FQC

morphisms var◦
Op and varOp, where Jx : σ ⊢◦ x : σK◦Op is given by var◦

Op ∈ FQC◦ σ σ,

defined as (0, 0, φ), where φ is the first circuit above (var◦), and where JΓ, x : σ ⊢ xdomΓ : σKOp

is given by varOp ∈ FQC (Γ, σ) σ, defined as (0, |Γ|, ψ) where ψ is the second circuit

above (var).

The let-rule is actually a scheme of two rules depending on value of the strictness

variable a ∈ {◦,−}, given by:

Γ ⊢a t : σ

∆, x : σ ⊢a u : τ
let

Γ⊗∆ ⊢a letx = t inu : τ

The operational semantics for the let-rule, JΓ⊗∆ ⊢a letx = t inu : τKaOp is given by:

t ∈ FQCa Γ σ

u ∈ FQCa (∆⊗ σ) τ

letaOp t u ∈ FQCa (Γ⊗∆) τ

letaOp t u = (hC + ht + hu, gt + gu, φ)

where JtKaOp = t and JuKaOp = u, which are the interpretations of the sub-terms as

FQC morphisms, ht, gt and hu, gu are the heap and garbage required by t and u,

respectively, and hC is the heap used by the context operation C. φ, the circuit

given by the FQC morphism letaOp, makes use of the context operation C, defined

in section 7.3, to create the appropriate contexts for each sub-circuit:

Γ⊗∆
φC

Γ

::
::

: ∆

φu
�

∆

�����

φt
σ τ

�

::
::

:

44
44

4 �

�
�����






 �
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The operational semantics given by letaOp is uniform in a, and the circuit generated

is strict if both sub-derivations of the original rule are strict. This can be seen in the

diagram as φt and φu are the only sources of garbage; if t is strict then φt produces no

garbage, and if u is strict then φu produces no garbage. Hence, if neither sub-circuit

produces any garbage, then the entire circuit is strict.

7.4.2 Interpreting products (⊗)

The QML product rules are explained in section 6.5.2, with rules for Q1 introduction

and weakening, and ⊗ introduction and elimination. As the rules for Q1 carry no

information, their interpretation as circuits in FQC is invisible; they are modelled by

no wires and the empty circuit.

The interpretation of ⊗ introduction is only slightly more interesting, as it simply

merges the components of the pairing using parallel composition:

Γ ⊢a t : σ ∆ ⊢a u : τ
⊗ intro

Γ⊗∆ ⊢a (t, u) : σ ⊗ τ

Γ⊗∆
φC

Γ

φt
σ

�
∆

::
::

:
44

44
4 τ

�
�����

φu






 �

� �

As with the let-rule interpretation above, the contexts for the sub-circuits are prepared

using the C operation. Note also how the circuit preserves strictness if both sub-

derivations are strict, again like the let-rule interpretation. The operational semantics

of strict and non-strict pairing, JΓ⊗∆ ⊢a (t, u) : σ ⊗ τKaOp = pairaOp, is given by the

following rule:

t ∈ FQCa Γ σ

u ∈ FQCa ∆ τ

pairaOp t u ∈ FQCa (Γ⊗∆) (σ ⊗ τ)
pairaOp t u = (hC + ht + hu, gt + gu, φ)

where JtKaOp = t, JuKaOp = u, heap and garbage are interpreted as before, and φ is

given by the circuit above.
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The circuit interpretation of the ⊗ elimination rule is almost identical to the

interpretation of the let-rule, due to the fact that σ⊗τ is interpreted as concatenation

of wires:
Γ ⊢a t : σ ⊗ τ
∆, x : σ, y : τ ⊢a u : ρ

⊗ elim
Γ⊗∆ ⊢a let (x, y) = t in u : ρ

The operational semantics of ⊗ elimination is given by letpaOp, which interprets

JΓ⊗∆ ⊢a let (x, y) = t in u : ρKaOp by the following rule:

t ∈ FQCa Γ (σ ⊗ τ)
u ∈ FQCa (∆⊗ σ ⊗ τ) ρ

letpaOp t u ∈ FQCa (Γ⊗∆) ρ

letpaOp t u = (hC + ht + hu, gt + gu, φ)

where JtKaOp = t, JuKaOp = u, heap and garbage are interpreted as usual, and φ is

given by the following circuit:

Γ⊗∆
φC

Γ

::
::

: ∆

φu

�
∆

�����

φt

σ

τ ρ

�

::
::

:

44
44

4 �

�
�����






 �

7.4.3 Interpreting conditionals (if and if◦)

The rules for the classical conditional, if , and the quantum conditional, if◦, are

introduced in section 6.5.3. In this section the interpretation of these rules as circuits

will be presented, starting with the classical if rule:

Γ ⊢ c : Q2

∆ ⊢ t, u : σ
if

Γ⊗∆ ⊢ if c then t else u : σ
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The operational semantics of JΓ⊗∆ ⊢ if c then t else u : σKOp is given by ifOp,

which is interpreted using the quantum circuit conditional primitive:

t|u = (ht|u, 0, φt|φu) ∈ FQC (Q2 ⊗∆) (Q2 ⊗ σ)

where the output from the derivation of c is used as the control qubit, to give the

following circuit, ψ:

Γ⊗∆
φC

Γ

::
::

:
44

44
4

φt|φu�
∆

�����

φc
Q2








44
44

4 σ

�

==
==

=






 Q2
�

�
����� �

Note how the control qubit c is moved to the top of the conditional circuit, and that

after the conditional circuit, the qubit c is placed into the garbage. Placing c into the

garbage induces the measurement, and the use of the if rule always induces at least

one qubit of garbage. Therefore a program using if can never be strict. Note that

this circuit implicitly makes use of the principle of deferred measurement (see section

3.10.1) to allow garbage, which is measured, to be passed through the computation,

without altering the meaning. The interpretation of ifOp is given by:

c ∈ FQC Γ Q2

t ∈ FQC ∆ σ

u ∈ FQC ∆ σ

ifOp c t u ∈ FQC (Γ⊗∆) σ

ifOp c t u = (hC + hc + ht|u, gc + 1, φ)

where JcKOp = c, JtKOp = t, JuKOp = u, and φ is the circuit given above. hC is the

heap required by the context operation C, used to copy any variables used by both

sub-circuits, and ht|u is the maximum of the heap of t and u.

The operational interpretation of the quantum control if◦ rule is more compli-

cated, due to the requirement that the two branches must be orthogonal. Recall the

if◦ rule is defined as:

Γ ⊢◦ c : Q2

∆ ⊢◦ t, u : σ t ⊥ u
if◦

Γ⊗∆ ⊢◦ if◦ c then t else u : σ
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In order to compile this rule, the orthogonality judgement t ⊥ u first has to be in-

terpreted, which yields the data (d, l, r, ψt⊥u). How to interpret orthogonality judge-

ments is described in section 7.4.4. The interpretation of if◦ follows the same pattern

as the interpretation of if , but makes use of φl, φr∈ FQC≃ d and the orthogonal-

ity circuit ψt⊥u in the final stages. The orthogonality judgement circuit ψt⊥u allows

the two branches of the quantum conditional to be distinguished, ensuring that the

computation is reversible, thus guaranteeing the orthogonality of the branches. The

interpretation JΓ⊗∆ ⊢◦ if◦ c then t else u : σK◦Op is therefore given by the following

rule:
c ∈ FQC◦ Γ Q2

t ∈ FQC◦ ∆ σ

u ∈ FQC◦ ∆ σ

if◦
Op c t u ∈ FQCa (Γ⊗∆) σ

if◦
Op c t u = (hC + hl|r, 0, φ)

where JcK◦Op = c, JtK◦Op = t, JuKOp = u, hl|r is the heap required by φl|φr, and with

the FQC≃ circuit φ given by:

Γ⊗∆
φC

Γ

88
88

22
22

φl|φr
�

∆

����

φc
Q2





 Q2

22
22

ψt⊥u
σ

�
d






�

The use of the data from the orthogonality judgement allows this circuit to preserve

strictness, as the qubit c used as the conditional control qubit is now utilised by ψt⊥u,

and no component produces any garbage output. Hence, the interpretation of if◦ is

free from measurement and the associated wavefunction collapse.

7.4.4 Interpreting superpositions

In order to compile the superposition rule sup◦, introduced in section 6.5.4, it is first

reduced by a simple syntactic translation to the problem of generating an arbitrary

single qubit state. The if◦ rule is used to generate superpositions of terms, as in the



7. operational semantics of qml 131

following rule:

Γ ⊢◦ t, u : σ

|λ|2 + |λ′|2 = 1 t ⊥ u

Γ ⊢◦ (λ)× t+ (λ′)× u ≡ if◦ (λ× qtrue + λ′ × qfalse) then t else u

The quantum circuit rotation primitive rot is used to generate an arbitrary single

qubit superposition by rotating 0, the heap initialisation, to the required value. This

is achieved by applying the unitary matrix given by:

U =

(
λ λ′

λ′ −λ

)

to the rotation primitive, rot U , giving the following circuit:

Q2 U
� Q2

The rotation given by the matrix U is only one possible rotation, but as this acts

on the heap, initialised to 0, this choice is as good as any other. The operational se-

mantics for the evaluation of JΓ ⊢◦ λ× qtrue + λ′ × qfalse : Q2K
◦
Op is therefore given

as:
sup◦

Op λ λ
′ ∈ FQC◦ 0 Q2

sup◦
Op λ λ

′ = (1, rot U )

where U is the unitary transform defined above.

The non-strict constant weakening rule, sup:

|λ|2 + |λ′|2 = 1
sup

Γ ⊢ (λ× qfalse + λ′ × qtrue)domΓ : Q2

is interpreted in a similar manner to the non-strict variable rule, and the matrix U

is generated in the same way as for the strict case sup. Hence the interpretation of

JΓ ⊢ (λ× qfalse + λ′ × qtrue)domΓ : Q2KOp is given by the morphism:

supOp λ λ
′ ∈ FQC Γ Q2

supOp λ λ
′ = (1, |Γ|, φ)
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where φ is given by the following circuit:

Γ
77

77 U Q2

Q2

����� �

which generates the appropriate superposition using a single heap qubit and places

the variables of Γ into the garbage, which is how weakening is modelled.

7.4.5 Interpreting orthogonality (⊥)

The interpretation of the orthogonality judgement t ⊥ u is the most complicated

translation from QML to FQC. The intention is to derive a circuit which can tell

the two orthogonal terms apart. Given Γ ⊢◦ t, u : ρ, the derivation d
t⊥u

is given by

JdK⊥Op = (c, l , r , ψ), where:

c ∈ N

l ∈ FQC◦ Γ c

r ∈ FQC◦ Γ′ c

ψ ∈ FQC≃ σ (Q2 ⊗ c)

by induction over the derivation. Each case is defined below:

Orthogonality of pure qubits:

qfalse ⊥ qtrue qtrue ⊥ qfalse

The axioms above state that qtrue ⊥ qfalse, and vice-versa. To interpret both

of these cases, c = 0, and l , r both are the empty FQC morphism: FQC 0 0.

The definition of the circuit ψ, is the only difference between these cases:

Q2 Q2 X

with qfalse ⊥ qtrue on the left, and qtrue ⊥ qfalse on the right.
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Orthogonality of pairs:

t ⊥ u
⊥ pair0

(t , v) ⊥ (u,w)

t ⊥ u
⊥ pair1

(v , t) ⊥ (w , u)

To interpret the orthogonality of pairs, let Γ ⊢◦ (t, v), (u,w) : σ ⊗ τ and let

(c, l, r, ψ) be the interpretation of t ⊥ u. From this, the interpretation of (t, v) ⊥
(u,w) as (c′, l′, r′, ψ′) can be constructed. In this case, the value c ′ = c ⊗ |τ |,
and l ′, r ′ are constructed by semantically pairing l , r with v ,w :

Γ⊗∆
φC

Γ

ψl
c

�
∆

::
::

:

�
�����

ψv
τ

�

Γ⊗∆
φC

Γ

ψr
c

�
∆

::
::

:

�
�����

ψw
τ

�

The definition of ψ′ in both cases is given by the following diagram:

c
ψc′

τ
55

55
5 σ

Q2

					 τ
ρ


 



Orthogonality of superpositions:

t ⊥ u λ∗0κ0 = −λ∗1κ1

λ0 × t + λ1 × u ⊥ κ0 × t + κ1 × u

Given the interpretation of t ⊥ u as (c, l , r , ψ), the interpretation of this rule is

(c, l , r , ψ′), where the definition of ψ′ relies on φ ∈ FQC≃ Q2, which is defined

as:

φ = rot U

where U is given by the unitary matrix:

U =

(
λ0 λ1

κ0 κ1

)

Using this rotation, the circuit ψ′ is defined as:

c

ψ

ρ

Q2 U
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where ρ is the output type of the derivation t ⊥ u.

Recall from the discussion of the orthogonality judgement in section 6.5.5 that

the definition of orthogonality given here is not complete, and that other rules may

be added. This is indeed an area of ongoing research (see section 8.4).

7.5 A denotational semantics for QML

The purpose of a denotational semantics is to provide a formal interpretation of a

program, by assigning a mathematical object (called a denotation) to each term in

a language. The key difference between denotational semantics and operational se-

mantics is that while the latter is primarily concerned with how a computation is

realised, the denotational semantics is concerned with the meaning of the computa-

tion. The denotational semantics of QML gives a mathematical framework to QML

that supports reasoning and allows optimisation principles to be applied, and there-

fore facilitates the expression and analysis of proofs and theorems.

The operational semantics for QML is presented as a translation from QML terms

into FQC morphisms, in section 7.4. A denotational semantics for QML is written

as a translation of QML terms into superoperators in the category Q, which is in-

troduced in section 5.5.1. The translation from QML terms to the category Q uses

the operational semantics to first translate a QML term into an FQC morphism.

The FQC morphism produced by the semantic function J·KOp is then translated to

a superoperator using the functor defined in section 5.5. This mapping, denoted J·K,
maps FQC◦ morphisms into isometries in Q◦, and FQC morphisms into superoper-

ators in Q. Therefore, strict QML terms, which are mapped to FQC◦ morphisms

by the operational semantics, are mapped to isometries in Q◦ by the denotational

semantics, and non-strict QML terms are mapped to superoperators in Q. Non-strict

terms produce garbage, and in the denotational semantics garbage is managed using

the partial trace superoperator, hence the interpretation of non-strict terms is given

in the category Q of superoperators, which allows garbage to be modelled. Strict

terms produce no garbage, and can be interpreted in the category Q◦ of isometries.

An isometry, f , can be lifted to a superoperator, f̂ , as defined in section 5.5.1.
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Following from this interpretation, strict QML derivations d
Γ⊢◦t:σ

are therefore

interpreted by the semantic function:

JdK◦D ∈ QML◦ Γ σ → Q◦ Γ σ

JdK◦D = JJdK◦OpK

which gives an isometry, while non-strict QML derivations d
Γ⊢t:σ are interpreted by:

JdKD ∈ QML Γ σ → Q Γ σ

JdKD = JJdKOpK

which results in a superoperator. The action of the denotational semantics is sum-

marised in figure 7.1, which shows the relationships between QML, QML◦, FQC,

FQC◦, Q◦ and Q. The embeddings shown in figure 7.1 between QML and QML◦

QML◦ Γ σ
J·K◦Op

wwooooooooooo

�

� // QML Γ σ
J·KOp

&&MMMMMMMMMMM

FQC◦ Γ σ

J·K ''OOOOOOOOOOO
�

� // FQC Γ σ

J·Kxxqqqqqqqqqqq

Q◦ Γ σ // b. // Q Γ σ

Figure 7.1: This diagram shows how the denotational semantics of QML is de-
fined: by first applying the operational semantics and then interpreting the resulting
morphism as either an isometry or a superoperator.

and between FQC and FQC◦ are trivial, as QML◦ ⊂ QML (see section 7.1) and

FQC◦ ⊂ FQC (see section 5.2.1). Full details of the functor J·K ∈ FQC → Q are

given in sections 5.3 through to 5.5.4.

7.5.1 Extensional equality

The definition of the denotational semantics presented in this section also leads to a

definition of extensional equality for QML programs. Two QML programs are defined

as extensionally equivalent if the interpretation of the programs by the denotational

semantics gives rise to equal superoperators. This is the same as the definition of

extensional equality for FQC morphisms, as it this definition which is being exploited,

which is discussed in section 5.5.4.
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An alternative definition of the denotational semantics, outlined in section 8.1,

gives a direct interpretation of QML terms in the category Q, without factoring

through the operational semantics. A direct denotational semantics can be defined

in the same way as the operational semantics, by defining for each term in QML a

mapping directly to Q. The direct denotational semantics can then be used to show

compositionality, which is also discussed in section 8.1.

7.5.2 Implementing the denotational semantics in Haskell

In section 5.8 the Haskell function fqc2super ∈ FQC → Super is defined, which

translates FQC morphisms into superoperators. The composition of this function

with the Haskell implementation of the operational semantics, which is given in section

7.6, gives an implementation of the denotational semantics presented in section 7.5.

If the QML term is strict, then the function fqco2isom ∈ FQC◦ → Isom should be

used, as the operational semantics will produce a strict morphism. This could be

lifted to a superoperator by use of the isom2super function, also defined in section

5.8.

7.6 Compiling QML in Haskell

This section will explore how QML, and a compiler from QML into FQC (or more

accurately, into typed quantum circuits), can be implemented in Haskell. The first

step will be to define the terms of the language QML in Haskell, and to introduce

the notion of a typed circuit, which extends the implementation of FQC in Haskell

with contexts and types. A compiler function from the Haskell QML syntax to typed

quantum circuits is then defined, which follows the derivation of circuits given in

section 7.4. Code for the QML compiler outlined here will be made available from

the project website [30].
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7.6.1 Typed quantum circuits

Before typed QML terms and typed quantum circuits in Haskell can be introduced, a

Haskell implementation of types and contexts is required. These follow the definition

of types and contexts given in section 6.5, and are implemented as the following

Haskell datatypes:

data Ty = Q1 | Q2 | Ty ⊗ Ty

type TCon = [Ty ]R

type Con = [(String ,Ty)]R

where [·]R denotes a reverse-list. TCon is the type of type-contexts, while Con gives

the type of named-type contexts. Ty ,TCon and Con have a function size, which

returns in each case the size of the type, and the sum of the type sizes, as defined in

section 7.2.

A typed quantum circuit is essentially a Haskell FQC morphism, as defined in

section 5.7. In FQC the input a and output b are defined as natural numbers.

However, in a typed quantum circuit the full context input to a program is stored,

which has a size equal to a, and the output size is replaced by its type, which has a

size equal to b. Typed quantum circuits are implemented simply as:

data TCirc = TCirc{inT ∈ TCon, outT ∈ Ty , hpS , gbS ∈ Int , circ ∈ Circ}
where Circ denotes the quantum circuit datatype defined in section 3.5. Storing the

context and type information used by a circuit simplifies the design of the compiler.

A typed circuit can be translated into an FQC morphism by the following func-

tion:

tyc2fqc ∈ TCirc → FQC

tyc2fqc (TCirc a b h g φ) = FQC |a| |b| h g φ

where |·| is the context/type size function. Composing the function tyc2fqc with

the validFQC function, defined in section 5.7, gives a new function which tests the

validity of a typed circuit, given by the Haskell function:

validTCirc ∈ TCirc → Error TCirc

validTCirc tc = do (validFQC ◦ tyc2fqc) tc

return tc
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7.6.2 QML syntax in Haskell

QML programs are written using the syntax given in section 6.5. An example is the

familiar Hadamard function that has been used several times, which is given as:

had :Q2 ⊸ Q2

had x = if◦ x then (−1)× qtrue + qfalse

else qtrue + qfalse

A QML parser, which is not defined here, would take this code and translate it into a

Haskell representation of the QML syntax. The Haskell version of the syntax is based

on the (simplified) QML typing rules used to define the operational semantics of

QML, given in section 7.4. QML terms are given in Haskell by the datatype shown in

figure 7.2, which includes comments explaining the mapping to the QML operational

semantics.

data Tm = Atom At [Name]R -- Atomic weakening

| Pair Tm Tm -- pairaOp

| Let Name Tm Tm -- letaOp

| LetP Name Name Tm Tm -- letpaOp

| If Tm Tm Tm -- ifOp

| If ◦ Tm Tm Tm Orth -- if◦
Op

data At = Var Name -- var◦
Op and varOp

| Sup C C -- sup◦
Op λ λ

′ and supOp λ λ
′

Figure 7.2: The syntax of QML terms, rendered as a Haskell datatype. The com-
ments give the mapping from each Haskell type to the operational semantics.

The atomic terms Var and Sup in figure 7.2 represent QML terms that can be

weakened. If the list of variable names passed to the Atom constructor is empty,

then no weakening takes place and the strict form of the rule is used. Otherwise the

appropriate weakening rule is used, with the variables in the list used to represent

the set of variables to be weakened. The If ◦ term includes an Orth type, which is

the type of the orthogonality judgement discussed in section 7.6.9. The Var term

includes a Name argument, which refers to a type in the context of the program.
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Finally, the Sup term represents a single qubit superposition, and takes two complex

numbers as arguments. The translation from a superposition into Sup is defined as:

λ× qfalse + λ′ × qtrue ≡ Sup λ λ′

Returning to the Hadamard operation example, passing the function had to a

parser returns the following Haskell representation of QML terms:

If ◦ (Atom (Var "x") [·]R) (Sup ( 1√
2
) (− 1√

2
))

(Sup ( 1√
2
) ( 1√

2
)) (OSup OBit0)

where (OSup OBit0) is an orthogonality judgement, which is required whenever If ◦

is used; see section 7.6.9.

7.6.3 Defining the compiler input and output

The output of the Haskell QML compiler is an FQC object represented as a typed

quantum circuit, along with a list of all the variables used by the circuit. This is

represented by the output type Comp, defined as:

data Comp = Comp{uVar ∈ [Name]R, fqc ∈ TCirc}
The list of variables used, uVar , is kept to ensure type correctness; a computation is

not correct unless every variable passed to it in the program context has been used.

If a variable is not used it could interfere with the computation, possibly inducing a

measurement. Hence the type system must ensure that all variables that are defined

are actually used. Since a program may contain multiple function definitions, the

final output type of the compiler is given by the type Code:

type Code = Env Comp

where Env is the type of named environments, given by:

data Env a = Env{unEnv ∈ [(Name, a)]R}

elookup ∈ Eq a ⇒ Name → (Env a)→ Error a

elookup n (Env ~x) = slookup n ~x

where elookup is the Env lookup function, which uses slookup, which is the lookup

function on [·]R.

The input to the compiler is a QML program, represented by the type Prog , which

is an environment of function definitions, FDef . In turn, a function definition is a
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function signature, FSig , which contains the required context with the return type

of the function, and the QML term that defines the action of the function. This is

encapsulated by the following Haskell types:

type Prog = Env FDef

data FDef = FDef FSig Tm

data FSig = FSig Con Ty

As an example of a QML program rendered in Haskell, consider the QML quantum

negation function qnot :

qnot :Q2 ⊸ Q2

qnot x = if◦ x then qfalse

else qtrue

This would be realised by a suitable parser in Haskell as:

ex1 ∈ Prog

ex1 = Env [ ("qnot",FDef (FSig [("x",Q2)] Q2)

(If ◦ (Atom (Var "x") [·]R)

(Sup 1 0)

(Sup 0 1) OBit0)) ]R

Applying the QML to FQC compiler to this program would produce the following

output:

Code [ Comp{uVar = [ "x" ]R,

fqc = TCirc [ Q2 ]R Q2 0 0 Not }]R
These definitions provide enough structure to build the definition of the Haskell

QML compiler.

7.6.4 Implementing the operational semantics in Haskell

A compiler for QML programs expressed in the Haskell data types defined in section

7.6.3 is defined by the function compileProg . This function makes use of an auxiliary

function compileTm to compile each QML term, and a function checkCompProg which

ensures the type correctness of the compiled program. The function compileProg is a

recursive function which takes as input a QML program implemented in Haskell, and
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is defined as:

compileProg ∈ Prog → Error (Env Comp)

compileProg (Env [·]R) = OK (Env [·]R)

compileProg (Env (p : (f , (FDef (FSig Γ σ) cmp)))) =

do c ← compileProg (Env p)

cmp ′ ← compileTm c Γ cmp (Just σ)

checkCompProg cmp ′ Γ σ

return (Env ((unEnv c) : (f , cmp ′)))

This function is mainly concerned with error checking and preparing the input for the

compileTm function, which is where the actual work of the compilation takes place.

The function checkCompProg checks that the output from the compileTm function

uses all the variables in the context Γ, and that the output type of the typed circuit

produced by the compilation matches the output type expected, σ.

The function that performs the majority of the compilation, compileTm, has the

type:

compileTm ∈ Code → Con → Tm → Maybe Ty → Error Comp

The type Code contains the functions that have already been compiled by previous

calls of compileProg , and are available for use by the compiler. compileTm also takes

as input the current context, the term to be compiled, and the expected type (if

known, hence the use of the Maybe type) of the term, and it returns either an error

or a Comp object. The function is defined using pattern matching over the type of

terms, Tm, so there is a separate function for each of the term forms given by the

grammar for QML. For each term in the grammar of QML, the compileTm function

constructs a typed circuit following the interpretation presented in section 7.4. The

definitions of a sample of these interpretations in Haskell shall now be explored.

7.6.5 Compiling the structural rules in Haskell

The interpretations of the variable rules in Haskell are straightforward translations of

the circuits shown in section 7.4.1. The operational semantics of the strict variable

rule, given by var◦
Op, is interpreted by the compileTm function as:
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compileTm Γ (Atom (Var x ) [·]R) mTy =

do σ ← slookup x Γ

treturn mTy (Comp [x ]R (TCirc [σ]R σ 0 0 (Wire [0 . . |σ| − 1])))

To compile a strict variable, first the type of the variable x is looked up in the context

Γ, and is called σ (to match the circuit of varOp). The [·]R lookup function, slookup,

returns an Error type if the variable does not exist. The interpretation of the strict

variable rule is the identity morphism on the type σ, and this is exactly the typed

circuit produced: it has no heap or garbage, takes a context containing only σ as

input, and outputs the type σ, with the reversible quantum circuit defined as idσ.

This exactly matches var◦
Op given in section 7.4.1, which is:

σ σ

with no heap or garbage.

The only variable used is x ∈ σ, and this is the only content of the uVar parameter

of the Comp type. The monadic return function treturn is a small extension of the

usual return function, which confirms the type returned by the compilation matches

the expected type mTy passed to the compileTm function:

treturn ∈ Maybe Ty → Comp → Error Comp

treturn mT cmp | mT ≡ Nothing = return cmp

| |mT | ≡ |(outT ◦ fqc) cmp| = return cmp

| otherwise = Error ("Type error: " ++ cmp)

The non-strict variable rule compilation, varOp, is implemented in much the same

way as the implementation of var◦
Op above, where dom is the list of variables to be

weakened:

compileTm Γ (Atom (Var x ) dom) mTy =

do σ ← slookup x Γ

tdom ← populate Γ dom

let ld = length dom

iTy = tdom : σ

~p = permFromTy iTy ([ ld ] ++ [0 . . ld − 1])

treturn mTy (Comp (dom : x ) (TCirc iTy σ 0 |tdom| (Wires ~p)))
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The value of x is again looked up in the context Γ, and called σ. The function

populate then creates the context of the variables to be weakened, given by the list

dom, by looking up the types in Γ. The input type is calculated to be the variables

to be weakened, tdom, plus the variable σ, while the output type is only σ, with the

context tdom being placed in the garbage. This is achieved with the permutation

Wires ~p, where ~p is defined by the function permFromTy , which calculates the bijec-

tion required to move the wires representing σ from the bottom of the circuit to the

top. Diagrammatically, this is shown as:

tdom
??

?? σ

σ
���� �

which follows the circuit varOp presented in section 7.4.1, where tdom = Γ.

The final structural rule to be compiled in Haskell is the let-rule, given by letaOp.

The compilation of a let term proceeds by first compiling the subterms t and u.

The contexts required by these terms is then calculated, and from this the circuit

for context operation, C, is calculated. The circuits are then all wired together as

prescribed by the circuit definition, and the result is returned along with the list of

used variables, which are all the variables of t and u, minus the variable x , which is

only locally declared. Each line of the Haskell code for this compilation is explained

by the following comment:

compileTm c Γ (Let x t u) mTy =

do ct ← compileTm c Γ t Nothing -- Compile term t

let Γ′ = Γ : (x , (outT ◦ fqc) ct) -- Add x ∈ σ to context

cu ← compileTm c Γ′ u mTy -- Compile term u, using Γ′

(tC , uC )← pSubCon Γ (uVar ct) (sfilter (6≡ x ) (uVar cu))

-- Calculate contexts for subterms, removing x

let fdC = deltaCon tC uC -- Calculate deltaCon (C)

(ft , fu) = (fqc ct , fqc cu) -- Get t and u circuits

(ht, hu) = (hpS ft , hpS fu) -- Get heap sizes

(gt, gu) = (gbS ft , gbS fu) -- Get garbage sizes

(sg , sd) = (size tC , size uC ) -- Get context sizes

(bt , bu) = ((size ◦ outT ) ft , (size ◦ outT ) fu)
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-- Get output sizes

(hS , gS ) = (ht + hu + hpS fdC , gbS ft + gbS fu)

-- Calculate full heap and garbage sizes

φ = Seq (Seq (Seq (Seq (Seq (Par (circ fdC )

(Wire [0 . . ht + hu − 1]))

(permN 0 sg sd (ht + hu)))

(Par (Par (idC sd) (circ ft))

(idC hu)))

(permN (sd + bt) gt hu 0))

(permN bu gu gt 0))

(Par (circ fu) (idC gt))

-- Generate the letaOp circuit

treturn mTy (Comp (uniqueVars (uVar ct) (sfilter (6≡ x ) (uVar cu)))

(TCirc (inT fdC ) (outT fu) hS gS φ))

The majority of the code used to compile a let rule is concerned with calculating the

sizes of various types and contexts in order to correctly wire the circuit φ. The actual

quantum circuit φ corresponds directly to the definition given in section 7.4.1 of the

letaOp, which is given as the circuit below:

Γ⊗∆
φC

Γ

88
88 ∆

φu
�

∆

����

φt
σ τ

�

88
88

22
22

�

�
����





 �

The compile function for the let rule makes use of several auxiliary functions. The

function pSubCon takes the lists of variables used by the two subcircuits and the con-

text Γ, and from this information generates the contexts required for the subcircuits,

by looking up the types in Γ. The function deltaCon generates the circuit for the

C operation on the context, and is explored in section 7.6.7. uniqueVars is a simple

function that lists which variables have been used at least once in the entire compu-

tation, excepting the variable x which is filtered out, as x is only in scope inside this

let-block. Lastly, permN a b c d generates a permutation which swaps two groups of

wires, and is best explained with a diagram, where a ∈ N represents the first a wires
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as a group, b ∈ N is the next b wires, c ∈ N is the next c wires, and d ∈ N is the

final group of d wires. The action is given as:

a a

b
??

?? c

c
���� b

d d

For example, permN 1 2 3 1 = Wire [0, 3, 4, 5, 1, 2, 6]; the action essentially swaps

the b and c wire groups. It is computing these permutations which gives rise to most

of the calculations required to implement the QML operational semantics.

7.6.6 Compiling the superposition rules in Haskell

The rules sup and sup◦ are essential to QML, as without them there is no data,

and no superpositions can be expressed. The interpretations of the operational se-

mantics of these rules for superpositions, given by sup◦
Op and supOp in section 7.4.4,

are very similar to the interpretation of variables given in section 7.6.5. The strict

superposition rule, sup, is interpreted by:

JΓ ⊢◦ λ× qtrue + λ′ × qfalse : Q2K
◦
Op = sup◦

Op λ λ
′ ∈ FQC◦ 0 Q2

as the circuit:

Q2 U
� Q2 where U =

(
λ λ′

λ′ −λ

)

In Haskell, this is translated into the following compileTm definition:

compileTm (Atom (Sup λ λ′) [·]R) mTy =

treturn mTy (Comp [·]R (TCirc [·]R Q2 1 0 (Rot (λ, λ′) (λ, (−λ′)))))
which simply performs the rotation U , taking the input qubit from the heap.

The non-strict variable rule is given the interpretation:

JΓ ⊢ (λ× qfalse + λ′ × qtrue)domΓ : Q2KOp = supOp λ λ
′ ∈ FQC Γ Q2

where supOp is given by the following circuit:

Γ
77

77 U Q2

Q2

���� �
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The supOp morphism has an interpretation in Haskell similar to that of the varOp

morphism, and is given as:

compileTm Γ (Atom (Sup λ λ′) dom) mTy =

do tdom ← populate Γ dom

let ld = length dom

~p = permFromTy (tdom :Q2) ([ ld ] ++ [0 . . ld − 1])

φ = Seq (Par (idC |tdom|)
(Rot (λ, λ′) (λ′,−λ)))

(Wire ~p)

treturn mTy (Comp dom (TCirc tdom Q2 1 |tdom| φ))

This code follows the pattern of the varOp implementation to weaken the variables

of dom (by moving them to the garbage), and also performs the rotation given by

U , to implement the supOp circuit given above. Note that idC x , where x ∈ N, is

shorthand for the identity circuit on x qubits: Wires [0 . . (x − 1)].

All of the QML terms compiled so far have not made use of the ⊗ operation on

contexts. In order to implement any more of the operational semantics of QML in

Haskell, the action of this function must be defined as a circuit, as outlined in section

7.6.7.

7.6.7 Haskell operations on contexts

In this section the operations on contexts described in section 7.3 will be implemented

in Haskell. The first function considered will be the deltaTy function, which is im-

plemented in Haskell as a circuit which takes as input a QML type, and outputs a

circuit which creates a copy of that type by repeated use of the controlled-not oper-

ation (cnotC ). The function deltaTy is presented by pattern matching on the QML

type parameter, and is defined as:

deltaTy ∈ Ty → TCirc

deltaTy Q1 = TCirc [Q1]R (Q1 ⊗Q1) 0 0 (Wires [ ])

deltaTy Q2 = TCirc [Q2]R (Q2 ⊗Q2) 1 0 cnotC

deltaTy i@(σ ⊗ τ) = TCirc [i ]R (i ⊗ i) |i | 0 φ
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where φ = (Seq (Seq (Wires ~p)

(Par ((circ ◦ deltaTy) σ)

((circ ◦ deltaTy) τ)))

(Wires ~p))

~p = permFromTy [(σ : τ : σ : τ)]R [0, 2, 1, 3]

The first case is trivial, as Q1 and Q1 ⊗ Q1 carry no information. The second case

is simply the controlled not operation on a single qubit, defined as cnotC = id|qnot .

The final case makes two recursive calls to the deltaTy function, in order to create

copies of the types σ and τ , and pairs the copies in the following circuit:

σ
δσ

σ

τ
22

22
22

22 τ

�
����
δτ

���� σ

�
τ

which uses |σ ⊗ τ | heap qubits.

From this definition a function that copies lists of types can be developed, which

is useful in the definition of the compiler. Lists of QML types are given the Haskell

type TCon ∈ [Ty ]R, and the function which performs the copying is called deltaTCon.

This is defined as:

deltaTCon ∈ TCon → TCirc

deltaTCon [·]R = TCirc [·]R [·]R 0 0 (Wires [ ])

deltaTCon [σ]R = deltaTy t

deltaTCon tc@(~t : τ) = TCirc tc oTc |tc| 0 φ
where φ = (Seq (Seq (Wire ~p)

(Par ((circ ◦ deltaTCon) ~t)

((circ ◦ deltaTy) τ)))

(Wire ~p))

oTc = (tcon2ty tc)⊗ (tcon2ty tc)

~p = permFromTy (tc ⊗ tc) shuf

shuf = [0 . . st − 1] ++ [st + 1 . . 2× st ] ++ [st , 2× st + 1]

st = slength ~t
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This function works in a similar way to deltaTy . If the type context is empty, then

the empty typed circuit is returned. If the type context contains only one type then

deltaTy is used to generate the typed circuit that copies that type. Otherwise, deltaTy

is used to copy the type at the end of the list, τ , and a recursive call to deltaTCon is

used to copy the remainder of the list, ~t. These are then paired up correctly by the

circuit φ, as in the case of deltaTy .

The final operation is a Haskell implementation of the C operation on contexts,

called deltaCon, and implements the ⊗ operation on contexts, which is defined as:

Γ, x : σ ⊗∆, x : σ = (Γ⊗∆), x : σ

Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ, if x /∈ dom ∆

• ⊗∆ = ∆

The deltaCon function takes two contexts as its arguments, Γ and ∆, and returns the

typed circuit C(Γ,∆) ∈ FQC◦ |Γ⊗∆| (|Γ| ⊗ |∆|), as defined in section 7.3. deltaCon

has three base cases which shall be looked at first:

deltaCon ∈ Con → Con → TCirc

deltaCon [·]R [·]R = TCirc [·]R [·]R 0 0 (Wires [ ])

deltaCon [·]R ~y = TCirc (con2tcon ~y) (con2ty ~y) 0 0 (idC |~y|)
deltaCon ~y [·]R = TCirc (con2tcon ~y) (con2ty ~y) 0 0 (idC |~y|)

These cases state that if one context is empty then the circuit is simply the identity on

the non-empty context. If both are empty, the empty circuit is returned. con2tcon is

an auxiliary function that converts a list of variable name and type pairs (Con), into

a list of types (TCon), and con2ty converts a context into a single type by tensoring

all the types in the context together. The final case is given as:

deltaCon ~x (~y : (y , s)) =

case splitAtN (y , s) ~x of

Nothing → TCirc (a : s) (b ⊗ s) h 0 (Seq (Wire ~p)

(Par sub (id [s ]R)))

where TCirc a b h sub = deltaCon ~x ~y

iTy = (a : s)⊗mkHeap h

sa = slength a
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~p = permFromTy iTy

([0 . . sa − 1] ++ [sa + 1 . . sa + h, sa ])

Just (~xl, ~xr)→ TCirc (a : s) oTy (h + size s) 0

(Seq (Seq (Wire ~p)

(Par sub

(circ (deltaTy s))))

(Wire ~p′))

where TCirc a h sub = deltaCon (~xl ⊗ ~xr) ~y
iTy = (a : s)⊗mkHeap (h + 1)

oTy = tcon2ty (dCout ~xl ~xr ~y s)

(~p, ~p′) = dCPerms iTy ~xl ~xr ~y s

If both contexts passed to the deltaCon contain types, then the fourth and final

pattern is matched. This pattern examines the last name and type of the second

context, and performs case analysis on the contexts using the auxiliary splitAtN

function, which attempts to find the variable in the first context, Γ. If the variable

is not found in Γ then the Nothing case is entered, which calls the deltaCon function

on Γ and the remainder of ∆, and correctly wires up the subcircuit generated by this

call. If the splitAtN function does find the variable y in the context Γ, then Γ is split

at this point. The variable y : s is then copied, using deltaTy , and the remainder of Γ

and ∆ are passed to deltaCon to generate the subcircuit δC , and the circuits are all

then wired together as shown in the following circuit:

~x′
l

δC
~x′r ~xl

~y

??
??

?? σ

σ

??
??

??

??
??

??

������ ~xr�������

δσ

������ ~y

�
σ

which correctly implements ⊗ on contexts. The auxiliary function mkHeap x , where

x ∈ N, simply generates a typed context of x qubits, for use as heap, while the func-

tion dCPerms calculates the permutations required to implement the circuit above.

Finally, dCout calculates the output type of the deltaCon function.
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7.6.8 Compiling the conditional and product rules in Haskell

The Haskell implementation of the classical conditional given by ifOp follows the

same pattern as the implementation of the letaOp operation given in section 7.6.5.

The compilation of an if term begins by compiling the subcircuits, as given by the

rule for JΓ⊗∆ ⊢ if c then t else u : σKOp:

c ∈ FQCa Γ Q2

t ∈ FQCa ∆ σ

u ∈ FQCa ∆ σ

ifOp c t u ∈ FQCa (Γ⊗∆) σ

The subcircuits t and u are then combined using a conditional circuit, by the aux-

iliary function condOp, to give t|u The context operation C is performed by the

deltaCon function. The results of these calculations are then combined to give the

FQC morphism shown in the circuit below:

Γ⊗∆
φC

Γ

::
::

:
44

44
4

φt|φu�
∆

�����

φc
Q2








44
44

4 σ

�

==
==

=






 Q2
�

�
����� �

The interpretation of ifOp in Haskell is therefore given by the following commented

code:

compileTm c Γ (If b t u) mTy =

do cb ← compileTm c Γ b (Just Q2) -- Compile b

ct ← compileTm c Γ t mTy -- Compile t

cu ← compileTm c Γ u mTy -- Compile u

(bC , tuC )← pSubCon Γ (uVar cb) (uVar ct)

-- Calculate context

-- for subterms

ftu ← condOp (fqc ct) (fqc cu) -- Compiles the circuit

-- t |u ∈ σ ⊗Q2

let fdC = deltaCon bC tuC -- Calculate deltaCon (C)
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fb = fqc cb -- Typed circuit for b

gb = gbS fb -- Size of garbage for b

uCb = uVar cb -- Context used

-- in conditional

(uCt , uCu) = (uVar ct , uVar cu) -- Context used in branches

(hb, ht|u) = (hpS fb, hpS ftu) -- Heap sizes

(sg , sd) = (|bC |, |tuC |) -- Context sizes

hS = hb + ht|u + hpS fdC -- Total heap

φ = Seq (Seq (Seq (Seq (Par (circ fdC )

(Wire [0 . . hb + ht|u − 1]))

(permN 0 sg sd (hb + ht|u)))

(Par (Par (idC sd) (circ fb)) (idC ht|u)))

(permN (sd + 1) gb ht|u 0))

(Par (circ ftu) (idC hb))

treturn mTy (Comp (uniqueCon uCb (uCt ++ uCu))

(TCirc (inT fdC ) (outT ftu) hS 1 φ))

The auxiliary function condOp calculates t|u, and performs rudimentary type

checking on the branches:

condOp ∈ TCirc → TCirc → Error TCirc

condOp tTC uTC

= do let (sit , siu) = (|inT tTC |, |inT uTC |) -- t , u input sizes

(sot , sou) = (|outT tTC |, |outT uTC |) -- t , u output sizes

(ht, hu) = (hpS tTC , hpS uTC ) -- t , u heap sizes

gt = gbS tTC -- garbage size

φa|b = Seq (Seq (permN 0 sit 1 ht)

(Cond (circ tTC ) (circ uTC )))

(permN 0 1 sot 0) -- conditional circuit

eguard (sot ≡ sou) "If: Branch output"

eguard (sit + ht ≡ siu + hu) "If: Branch input"

eguard (gt ≡ 0) "If: Garbage"
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return (TCirc ((inT tTC ) :Q2)

(outT tTC ) ht 1 φa|b)

The implementation in Haskell of the operational semantics of if◦, given by if◦
Op,

is almost identical to that given for ifOp above. The differences are that the if◦ term

also contains an orthogonality judgement, described in section 7.4.5. Interpreting the

orthogonality judgement gives the tuple (c, l , r , ψ), where c ∈ N, l ∈ FQC◦ Γ c,

r ∈ FQC◦ Γ′ c, and ψ ∈ FQC≃ σ (Q2 ⊗ c). These are used to create the following

circuit, which is an extension of the interpretation of the if circuit:

Γ⊗∆
φC

Γ

88
88

22
22

φl|φr
�

∆

����

φc
Q2





 Q2

22
22

ψt⊥u
σ

�
d






�

The Haskell code for compiling if◦, compileTm c Γ (If ◦ b t u o) mTy , is not

included here, and the reader is directed to the similar code for the comparable

if implementation. The Haskell implementation of the product rules will also be

omitted, as they follow exactly the circuits presented in 7.4.2, and are translated into

Haskell using the same concepts as presented for VAR, SUP ,LET and IF . Code for

interpreting the product rules, and for the auxiliary functions used above, will be

made available from the QML project website [30].

7.6.9 Interpreting orthogonality in Haskell

Whenever an operation that requires an orthogonality is used, it is marked with an

orthogonality judgement. These judgements are given by the datatype Orth, which

follows the cases developed in section 7.4.5:

data Orth = OBit0 | OBit1

| OPair 0 Orth | OPair 1 Orth

| OSup Orth

where OBit0 denotes the judgement qfalse ⊥ qtrue, OBit1 denotes the judgement

qtrue ⊥ qfalse, OSup denotes an orthogonal superposition, and OPair denotes a

product judgement that is orthogonal in either the left components or the right. There
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is scope for this type to be extended in future with further orthogonality rules, such

as the ⊥if◦ rule suggested in section 6.5.5.

The only term which uses the orthogonality judgement in the simplified QML

syntax used in this section is the If ◦ term, IFo Tm Tm Tm Orth. The QML

parser would generate the orthogonality judgement by examining the then and else

branches of the conditional; t and u in the term if◦ c then t else u. It compares t

and u to try and apply one of the rules presented in section 6.5.5. For example, if the

term t = (qtrue, x ) and u = (qfalse, y), where x , y are some undefined QML terms,

then these would be judged orthogonal with the judgement Orth = OPair 0 OBit1,

as the pairs t , u are have left components that are orthogonal by the OBit rule.

The Haskell interpretation of the orthogonality judgements follows the develop-

ment presented in section 7.4.5. The function that interprets an orthogonality judge-

ment Orth returns a tuple (c, l , r , ψ) where c ∈ N, l ∈ FQC◦ Γ c, r ∈ FQC◦ Γ′ c,

and ψ ∈ FQC≃ σ (Q2 ⊗ c). The derivation of this data is detailed in the following

case analysis:

Orthogonality of pure qubits (OBit):

OBit0
qfalse ⊥ qtrue

OBit1
qtrue ⊥ qfalse

The interpretation of the above rules, discussed in section 7.4.5, is (0,−,−, ψ),

where − denotes the empty circuit, which can be implemented as Wires [ ] in

Haskell. In the OBit0 case the interpretation of qfalse ⊥ qtrue is the identity

circuit on one qubit, ψ = Wires [0]; and in the case of OBit1, the interpretation

of qtrue ⊥ qfalse is negation, ψ = Rot (0, 1) (1, 0).

Orthogonality of pairs (OPair 0):

t ⊥ u
OPair 0

(t, v) ⊥ (u,w)

The interpretation of the orthogonality of OPair 0 x proceeds by first inter-

preting the orthogonality of the Orth judgement x , which gives Jt ⊥ uK⊥Op =



7. operational semantics of qml 154

(c, l , r , ψ). Using this derivation, the interpretation of (t , v) ⊥ (u,w) can be

given as (c ′, l ′, r ′, ψ′). The terms l ′ and r ′ are given as:

l ′ = Pair l v and r ′ = Pair r w

using Haskell QML notation, which, when interpreted using compileTm, gives

the circuits shown in section 7.4.5. The value c ′, which is defined as c ⊗ |τ |, is

the output type of l ′ (and also r ′), and can be extracted from the output of the

compilation of l ′ (or r ′).

Finally, the interpretation of ψ′ is given by the circuit:

c
ψc′

τ
55

55
5 σ

Q2

					 τ
ρ


 



which can be translated directly into a Haskell quantum circuit.

In the case of OPair 1, the values of c and ψ are calculated in exactly the same

way, but the interpretation of the products l ′ and r ′ components are swapped:

l ′ becomes Pair v l , and r ′ is interpreted as Pair w r .

Orthogonality of superpositions (OSup):

t ⊥ u λ∗0κ0 = −λ∗1κ1
OSup

λ0 × t + λ1 × u ⊥ κ0 × t + κ1 × u

The interpretation of the OSup x rule above proceeds by first interpreting the

orthogonality of the Orth judgement t ⊥ u, given as x , to derive Jt ⊥ uK⊥Op =

(c, l , r , ψ′). The evaluation of OSup x uses the c, l and r derived from this

judgement directly to return (c, l , r , ψ). The circuit ψ′ is used to define ψ, with

the auxiliary circuit φ = rot U ∈ FQC≃ Q2, where U is given by the unitary

matrix:

U =

(
λ0 λ1

κ0 κ1

)

Translated into Haskell circuit notation, ψ is given by:
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Seq (Par (idC c)

(Rot (λ0, λ1) (κ0, κ1)))

ψ′

which is given by the following circuit diagram:

c

ψ

ρ

Q2 U

which matches the circuit and definitions given in section 7.4.5.

7.7 Summary

This chapter presents an operational semantics for the quantum functional program-

ming language QML. A category of QML terms is introduced, and for each term

in QML a mapping into the category FQC is defined. As each QML term can be

mapped into an FQC morphism, and each FQC morphism defines a quantum circuit,

this mapping gives an operational semantics to QML terms and programs. The inter-

pretation of context operations is also discussed, as is the quantum control operator

if◦ and the interpretation of the orthogonality judgements.

An interpretation of the QML term syntax is then presented in Haskell. From this

a compiler for QML programs is implemented. The compiler works by mapping each

Haskell QML term into a typed circuit representation of FQC morphisms, using the

interpretations developed earlier in the chapter and implementing them using Haskell.
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Chapter 8

Further research

This chapter presents some possible extensions to the research presented in this thesis.

Both active areas of research and outlines of new concepts and ideas are explored. An

outline of the compositionality of QML is presented in section 8.1. This is achieved by

directly giving an interpretation of QML programs in the category Q of superopera-

tors, then by showing that this interpretation agrees with the denotational semantics

given in section 7.5, which factors through the operational semantics.

8.1 Compositionality of QML

The principle of compositionality states that the denotation of each expression in

a language can be defined purely in terms of the denotations of its subexpressions.

Compositionality for QML can be demonstrated by defining a direct denotational

semantics for QML, which translates QML terms into superoperators without first

calculating the operational semantics. It can then be shown that this agrees with the

denotational semantics presented in section 7.5. This is summarised by the diagram in

figure 8.1, which should be compared with figure 7.1 (in section 7.5), which shows how

the denotational semantics is defined via the operational semantics. The definition

of the direct denotational semantics will now be summarised.
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QML◦ Γ σ

J·K′◦D

��

J·K◦Op

''OOOOOOOOOOO
�

� // QML Γ σ
J·KOp

xxqqqqqqqqqqq

J·K′D

��

FQC◦ Γ σ

J·Kwwooooooooooo

�

� // FQC Γ σ

J·K &&MMMMMMMMMMM

Q◦ Γ σ //
b.

// Q Γ σ

Figure 8.1: If this diagram commutes then QML is compositional, as outlined in
section 8.2.5

8.2 A direct denotational semantics for QML

A definition of a direct denotational semantics for QML would proceed in a very

similar way as the definition of the (direct) operational semantics, presented in chapter

7. The interpretation of types and contexts must again be defined before the QML

judgements can be interpreted. This is achieved using the same functions defined in

section 7.2 for the operational semantics, which interpret types and contexts by their

sizes. The size of a type σ is given by |σ|, and the size of a context Γ is given by

|Γ| = |Γ|. The size function will again be omitted for clarity, when it is clear from

the context that the size of the type is intended. Types and contexts are therefore

interpreted in the denotational semantics thus:

JΓK = |Γ|

JσK = |σ|

Both strict and non-strict QML programs are given interpretations by the direct

denotational semantics. Strict QML◦ program derivations are interpreted in the

category Q◦ of isometries, while non-strict QML programs are interpreted in the

category Q of superoperators. Strict QML derivations d
Γ⊢◦t:σ

are interpreted by the

semantic function:

JdK′◦D ∈ QML◦ Γ σ → Q◦ Γ σ

and non-strict QML derivations d
Γ⊢t:σ are interpreted by:

JdK′D ∈ QML Γ σ → Q Γ σ.
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The denotational semantics of programs is defined in the same way as for the opera-

tional semantics.

8.2.1 Interpreting operations on contexts

There are at least two possible interpretations of the context operation ⊗. A direct

interpretation of the operation ⊗, defined in section 6.5, could be developed. Alterna-

tively, the language could be simplified by no longer allowing the implicit contraction

of variables by the ⊗ operation on contexts. This simplification of QML, called

QML−, defines QML without implicit contraction. The operation ⊗ on contexts in

QML− is given by:

Γ, x : σ ⊗∆ = (Γ⊗∆), x : σ if x /∈ dom ∆

• ⊗∆ = ∆

The use of QML− simplifies the denotational semantics, as it is now the case that

the following rule holds:

JΓ⊗∆K′D = JΓK′D ⊗ J∆K′D

which is not true with the standard QML interpretation, as Γ and ∆ may each contain

a variable which will only appear once in the standard QML interpretation of Γ⊗∆.

Using QML− it is still possible to represent any terms which can be defined in

QML, but now all contractions must be made explicit. For example, the contraction

of a single qubit can be made explicit, as shown in the following example QML−

program:

δQ2 :Q2 ⊸ Q2 ⊗Q2

δQ2 x = if◦ x then (qtrue,qtrue)

else (qfalse,qfalse)

Larger types can be explicitly copied by a QML− program such as the following,

which uses pattern matching:

δσ : σ ⊸ σ ⊗ σ
δσ x = δQ2 x

δσ (x , y) = let (x0, x1) = δσ x
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(y0, y1) = δσ y

in ((x0, y0), (x1, y1))

In this way it is possible to define a translation from QML into QML−, which

would then allow the direct denotational semantics for QML− to be applied to QML

programs.

8.2.2 The denotational semantics of QML rules

In chapter 7, the operational semantics is presented by interpreting each rule in QML

by a different FQC morphism. The direct denotational semantics can be defined in

a similar way; by defining, for each strict term in QML, an associated isometry in

Q◦, and for each non-strict term, a superoperator in Q. Non-strict terms produce

garbage, and in the denotational semantics garbage is managed using the partial trace

superoperator, hence the interpretation of non-strict terms is given in the category

Q of superoperators. Strict terms produce no garbage, and can be interpreted in the

category Q◦ of isometries.

Unlike with the operational semantics, presented in section 7.4, the embedding

of strict terms into non-strict terms in the denotational semantics is not invisible.

The embedding of the denotation of a strict term f ∈ Q◦ a b is achieved by the

lifting operation from isometries to superoperators, defined in section 5.5.1, giving

f̂ ∈ Q a b. Each QML term initialises its own heap, and traces out its own garbage.

Heap initialisation is achieved using the isometry 0h introduced in section 5.4.1, and

the removal of garbage is managed by use of the partial trace superoperator Tr ,

introduced in section 5.5.2.

The direct denotational semantics of several rules will now be considered, with

the full definition, including a detailed analysis of orthogonality in the denotational

semantics, left to future work. In this presentation the semantics of the ⊗ operation

on contexts will be omitted, see section 8.2.1.
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8.2.3 Interpreting the structural rules

The structural rules of QML are defined in section 6.5.1. The strict variable rule,

var◦, is interpreted by Jx : σ ⊢◦ x : σK′◦D as var◦
D, which is defined as the following

isometry:

var◦
D ∈ Q◦ σ σ

var◦
D = idσ

This is the identity morphism, defined as idσ a = a ∈ σ → σ.

The non-strict variable rule, var, is interpreted by JΓ, x : σ ⊢ xdomΓ : σK′D as varD,

which is defined as the following superoperator:

varD ∈ Q (Γ, σ) σ

varD = TrΓ

which uses the partial trace operator defined in section 5.5.2 to trace out Γ, which is

the method by which garbage is dealt with in the operational semantics.

As both strict and non-strict terms are interpreted in different categories, based

on the schematic variable a ∈ {◦,−}, the leta rule has two interpretations based on

a. The rule leta is given as:

Γ ⊢a t : σ

∆, x : σ ⊢a u : τ
let◦

Γ⊗∆ ⊢a letx = t inu : τ

This rule is interpreted by the denotation function JΓ⊗∆ ⊢a letx = t inu : τK′aD as

letaD, given by:

t ∈ Qa Γ σ

u ∈ Qa (∆⊗ σ) τ

let◦
D t u ∈ Qa (Γ⊗∆) τ

let◦
D t u = u ◦ (t⊗ id∆)

where t = JtK′aD and u = JuK′aD, and each is either an isometry or a superoperator

depending on the schematic variable a.
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8.2.4 Interpreting products (⊗)

The QML product rules have been introduced in section 6.5.2, with the operational

semantics given in section 7.4.2. In the operational semantics, the interpretation of

the Q1 introduction and weakening rules were invisible, as they were modelled by

zero wires in the circuit model. In the denotational semantics the Q1 introduction is

interpreted by J• ⊢◦ () : Q1K
′◦
D as unit◦

D, where:

unit◦
D ∈ Q◦ 0 Q1

unit◦
D = idQ1

Weakening of the tensor unit Q1 is interpreted in the same way.

The rule for ⊗ introduction, or pairing, is given as:

Γ ⊢a t : σ ∆ ⊢a u : τ
⊗ intro

Γ⊗∆ ⊢a (t, u) : σ ⊗ τ

The denotational interpretation of ⊗ introduction merges the components of the pair-

ing using the appropriate tensor product to produce an isometry if the pairing is strict,

and otherwise gives a superoperator. The evaluation of JΓ⊗∆ ⊢a (t, u) : σ ⊗ τK′aD is

given by pairaD as follows:

t ∈ Qa Γ σ

u ∈ Qa ∆ τ

pairaD t u ∈ Qa (Γ⊗∆) (σ ⊗ τ)
pairaD t u = t⊗ u

where JtK′aD = t and JuK′aD = u. If both t and u are isometries, and are therefore strict,

then so is pairaD, as given by the schematic variable a. Otherwise, pairaD is modelled

by a superoperator.

As in the operational semantics, the denotational semantics of the ⊗ elimination

rule is similar to the denotational interpretation of the let-rule. The ⊗ elimination

rule is given as:

Γ ⊢a t : σ ⊗ τ
∆, x : σ, y : τ ⊢a u : ρ

⊗ elim
Γ⊗∆ ⊢a let (x, y) = t in u : ρ
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This rule is interpreted in the denotational semantics as

JΓ⊗∆ ⊢a let (x, y) = t in u : ρK′aD by letpaD:

t ∈ Qa Γ (σ ⊗ τ)
u ∈ Qa (∆⊗ σ ⊗ τ) ρ

letpaD t u ∈ Qa (Γ⊗∆) ρ

letpaD t u = u ◦ (t⊗ id∆)

where JtK′aD = t and JuK′aD = u. As with the introduction rule, if both t and u are

isometries (strict) then so is pairaD; otherwise pairaD is modelled by a superoperator,

again given by the schematic variable a.

The rules for superpositions and conditionals, and an interpretation of orthogo-

nality judgements, can be defined in the same way.

8.2.5 Showing compositionality for QML

Compositionality is an important feature of any denotational semantics. The princi-

ple of compositionality, applied to programming languages, is that the denotation of

a program can be constructed from the denotation of its parts. For example, given

some expression such as term1⊕ term2, compositionality would be shown by giving a

meaning for the entire expression, in terms of the meaning of term1 and term2, where

⊕ is some operator in the language. In QML, this corresponds to showing that the

direct denotational semantics outlined in section 8.2 agrees with the interpretation

presented in section 7.5, which uses the operational semantics to generate FQC mor-

phisms and then interprets these in the category Q of superoperators. This can be

summarised as:

JdK′D = JJdKOpK

where JJdKOpK is the denotational semantics J·KD presented in section 7.5, which uses

the operational semantics given by J·KOp. This can be shown by proving that it holds

for each element of the operational and denotational semantics. This is achieved by

showing the equations such as the following hold for each object in the denotational
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semantics:
varD = JvarOpK

var◦
D = Jvar◦

OpK

letaD t u = JJletaOp t uKOpK

pairaD t u = JJpairaOp t uKOpK

letpaD t u = JJletpaOp t uKOpK

· · ·
In many of these cases compositionality follows directly from proposition 2 in section

5.5.4, and the observation that only horizontal (◦) and vertical (⊗) composition are

used in the definition of the interpretation of terms from their components. It also

must be shown that the partial trace, which is only used at the end of the computation

when interpreting via the operational semantics, commutes. This is an area of further

research, as the full direct denotational semantics of QML has not yet been finalised.

8.3 Infinite data structures and recursion in QML

The version of QML defined in this thesis is finite dimensional, but future revisions

could be extended to allow infinite dimensional constructions. Infinite data struc-

tures could be interpreted in infinite-dimensional vector spaces using the standard

approaches taken from mathematical physics. An alternative, which is closer to po-

tential practical implementations of quantum computational devices, is to allow quan-

tum programs to be indexed by classical structures in a way akin to that proposed in

the language Dependent ML (DML) [86]. DML is a language with dependent types

where index expressions and actual programs are clearly separated. In the case of

DML, this separation is required to deal with impurities in the actual programs, such

as non-termination. In a dependently typed version of QML, the same approach may

be used to separate the classical structure of the computation from quantum effects.

Recursion could be implemented in QML by indexing types by a classical structure

(the natural numbers, for example). Recursive QML programs could then be written

by recurring over the size of these structures, such as in classical circuit complexity.

These structures could be generalised by other types, but would be compiled to qubits
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at runtime. A scheme such as this would allow recursion over the structure of the

data, which covers most forms of recursion, but is not sufficient for programs using

recursion as a quantum control structure. For example, using this scheme a while-

loop over a quantum data structure could not be implemented. It is as yet unknown

whether this kind of recursion is required for completeness, and how to understand

conditional quantum recursion is an active area of research [35].

8.4 Other areas of further research

The extension of QML to support higher-order programming is a possibly fruitful area

of research. Higher-order programs could more accurately reflect how many quantum

algorithms are presented. For example, the Quantum Fourier Transform (discussed

in appendix A) can be parameterised by a function on quantum words. Selinger

investigated this problem [70] and found that there is currently no known canonical

higher-order structure on Q. However, it may prove interesting to investigate whether

the category of presheaves over Q would provide a sound denotational model for

higher-order quantum computations. Tensor products could be interpreted by Day’s

construction, which is automatically closed with respect to this tensor product. There

is no clear candidate for coproducts, ⊕, and since it is not obvious how a coproduct

of higher order quantum functions may be implemented, the best choice may be not

to allow this and limit ⊕ to first order types. These topics are worthy of further

consideration.

A further possible addition includes making QML basis independent, which is

useful for the expression of many algorithms, and is used in other models of quantum

computation such as the one-way quantum computer. This could be achieved using

a notion of views, such as that used by McBride and McKinna in the dependently

typed language Epigram [49].

There is also scope to develop a new operational semantics for QML using the

one-way quantum computer (measurement calculus) model, and for the further de-

velopment of the orthogonality judgement, in order to make it complete with respect

to the denotational semantics. As discussed in section 6.5.5, the direct use of an
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inner-product judgement on terms would be a step towards achieving this.

Green and Altenkirch have sketched the first steps towards a theory of irreversible

computation based on reversible computation [31]. Several laws are proposed for

translating morphisms in the categories FCC and FQC, and it is shown that these

laws are sufficient to derive van Neumann’s measurement postulate. Research is

ongoing in this area to try and establish a more abstract presentation of the laws and

to discover whether they are in fact complete for quantum computation, i.e. whether

the three laws presented can characterise equality of definable, irreversible quantum

circuits.

Finally, in collaboration with Altenkirch, Vizzotto, and Sabry, an equational the-

ory for a pure fragment of QML has been developed [2]. This work introduces high-

level reasoning principles which could be expressed as an algebra of quantum pro-

gramming. This algebra allows mathematically clear, formal correctness proofs of

pure QML programs, and also introduces a normalisation algorithm for QML. In fu-

ture this work could be extended to cover the full language, including measurement,

to provide a normalisation function and equational reasoning principles for the entire

language.

8.5 Summary

This chapter outlines topics in this thesis which could be possibly improved or ex-

tended. Included here is an outline of a direct denotational semantics for QML,

directly into superoperators, and a possible method by which this semantics could

be used to prove compositionality. The chapter concludes with a brief discussion of

other possible areas of future research, including recursion and infinite dimensions,

basis independence, a possible coproduct structure, and higher–order types.
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Chapter 9

Summary and conclusions

This thesis introduces the finite quantum programming language QML, which features

both quantum control and quantum data. Weakenings affect the behaviour of a

quantum program, and this is identified as one of the main structural differences

between quantum and classical programming. Consequently QML uses a strict linear

type system where weakenings have to be made explicit. Forgetting information may

affect other parts of the computation, and this necessitates the use of an orthogonality

judgement. This judgement ensures that the quantum control operator if◦ does not

irreversibly dispose of information by providing a witness to orthogonality.

The thesis begins with a review of reversible classical and reversible quantum com-

puting, providing background information about quantum computing, and includes a

description of basic linear algebra. These topics are presented in a progression from

simple classical systems through to irreversible quantum computations modelled by

superoperators in the category Q, with each development explained and accompanied

by an implementation in the functional programming language Haskell [55]. Chap-

ter 2 gives a presentation of reversible classical computation, including both theory

and implementations. Chapter 3 extends chapter 2 with a discussion of reversible

quantum computation, again including presentations of both the theory of quantum

computation and an implementation given in terms of the quantum circuit model,

which highlights the similarities and differences between classical and quantum re-

versible computation. The developments in these two chapters are given categorical

interpretations in chapters 4 and 5, and both are extended with the concept of ir-
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reversible computations based on the appropriate reversible framework. Chapter 4

gives a categorical interpretation of classical computation as morphisms in the cate-

gory FCC (Finite Classical Computation). A mathematical interpretation of FCC

morphisms is also presented, by defining a functor from FCC to the category FinSet

of finite sets. By analogy with this interpretation of classical computation, chapter

5 presents the categorical interpretation of quantum computations as morphisms in

the category FQC (Finite Quantum Computation), and includes a development of a

mathematical interpretation of this category in terms of isometries and superopera-

tors, which is also functorial. Using these categorical interpretations, a formalisation

of the quantum circuit model is defined, which is a contribution of this thesis.

The language QML is defined in chapter 6. This chapter presents a discussion

of possible interpretations of weakening and contraction in quantum programming

languages, and the motivations of the design choices made in defining QML. Quantum

data and quantum control as features of a language are also presented. The grammar

of the language is defined, and the structural rules are stated. This chapter also

includes implementations of several quantum algorithms as QML programs.

An operational semantics of QML, presented in terms of reversible quantum cir-

cuits, is given in chapter 7. These circuits model irreversible computation by using

initialised heap registers at the start of the computation, and a notion of garbage

which allows ancillary data to be disposed of at the end. The operational semantics

has been implemented in Haskell, and is given by the category FQC. A denotational

semantics for QML is also presented by factoring through the operational semantics,

and using the translation from FQC morphisms to superoperators in Q. This fol-

lows the ideas of Selinger’s denotational semantics for QPL [69]. An implementation

of the operational semantics and denotational semantics of QML is also discussed,

developed in Haskell.

The presentation in this thesis clearly separates the operational semantics from

the denotational semantics. FQC morphisms (computations) are identified up to

monoidal identities (in other words, isomorphic circuit diagrams), and the extensional

equality of QML terms is defined in the denotational model in the category Q. It is

also shown that the denotational semantics is derivation independent, i.e. different
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typing derivations of the same term do not effect the interpretation up to extensional

equality.

In chapter 8 a brief outline of how compositionality can be shown for QML is

presented. This is achieved by defining a direct denotational semantics, and shows

that replacing extensionally equivalent sub-terms results in extensionally equivalent

programs. Chapter 8 also includes a discussion of other possibly interesting exten-

sions to QML, such as introducing higher–order types and making the language basis

independent.

This thesis has contributed the functional quantum programming language QML

which features both basic quantum data structures and quantum control structures.

In particular QML includes a quantum if construct which analyses quantum data

without measuring, and hence without changing the data and therefore preserving

any superposition or entanglement. QML thus differs from other work in quantum

programming, as it allows both quantum data and quantum control.

The design of the language was inspired by taking a classical reversible model of

computation, and exploring where a similarly designed quantum model differs. A

categorical semantics of QML is presented by interpreting terms as morphisms in

the category FQC of finite quantum computations. The FQC semantics gives rise

to a denotational semantics in terms of superoperators, in the category Q, which is

the accepted domain of irreversible quantum computation. The FQC semantics also

gives rise to a compiler into quantum circuits, an accepted operational semantics for

quantum programs, which is given a formal interpretation in chapter 5 The denota-

tional semantics supports reasoning and allows optimisation principles to be applied,

and therefore facilitates the expression and analysis of proofs and theorems.

9.1 List of publications

T. Altenkirch and J. Grattage. A functional quantum programming language

[3]. In 20th Annual IEEE Symposium on Logic in Computer Science, 2005. Also

arXiv:quant-ph/0409065.
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quantum programming [2]. In P. Selinger, editor. Proceedings of the 3rd Inter-

national Workshop on Quantum Programming Languages [71], Electronic Notes

in Theoretical Computer Science. Elsevier Science, 2005.

T. Altenkirch and J. Grattage. QML: Quantum data and control. In prepara-

tion for publication in January 2007. http://sneezy.cs.nott.ac.uk/qml



170

References

[1] Samson Abramsky. A structural approach to reversible computation. Theoretical

Computer Science, 347(3):441–464, 2005.

[2] T. Altenkirch, J. Grattage, J. K. Vizzotto, and A. Sabry. An algebra of pure

quantum programming. In Selinger [71].

[3] T. Altenkirch and J. J. Grattage. A functional quantum programming language.

In 20th Annual IEEE Symposium on Logic in Computer Science, 2005. Also

arXiv:quant-ph/0409065.

[4] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using gener-

alized inductive types. In Computer Science Logic, number 1683 in LNCS, pages

453–468, 1999.

[5] P. Arrighi and G. Dowek. Operational semantics for a formal tensorial cal-

culus. Proceedings of the International Workshop on Quantum Programming

Languages, pages 21–38, 2004.

[6] J. Baugh, O. Moussa, C. A. Ryan, R. Laflamme, C. Ramanathan, T. F.Havel,

and D. G. Cory. Solid-state NMR three-qubit homonuclear system for quantum-

information processing: Control and characterization. Physical Review A,

73(2):art. 022305, 2006.

[7] P. Benioff. The computer as a physical system: a microscopic quantum mechani-

cal model of computers as represented by Turing Machines. Journal of Statistical

Physics, 22(5):563–591, 1980.



REFERENCES 171

[8] P. Benioff. Quantum mechanical Hamiltonian models of Turing Machines that

dissaipate no energy. Physics Review Letters, 48:1581–1585, 1982.

[9] S. C. Benjamin and S. Bose. Quantum computing with an always-on Heisenberg

interaction. Physical Review Letters, 90(24):art. 247901, 2003.

[10] C. H. Bennett. Logical Reversibility of Computation. IBM Journal of Research

and Development, 17(6):525–532, 1973.

[11] C. H. Bennett. Dissipation-error tradeoff in proofreading. BioSystems, 11:85–91,

1979.

[12] E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi. Quantum information process-

ing with semiconductor macroatoms. Physical Review Letters, 85(26):5647–5650,

2000.

[13] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger.

Experimental quantum teleportation. Nature, 390(6660):575–579, 1997.

[14] K. A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Mon-

roe. Implementation of Grover’s Quantum Search Algorithm in a Scalable Sys-

tem, 2006. http://arxiv.org/abs/quant-ph/0510066.

[15] J. Brown. Quest for the Quantum Computer. Simon and Schuster, first touch-

stone edition edition, 2001.
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Appendix A

Shor’s algorithm and the Quantum

Fourier Transform

This appendix will give an overview of one of the main theoretical applications of

quantum computation: factoring large numbers efficiently. Shor’s Algorithm will be

presented, along with a mathematical description of how it works. This will include

a discussion of the period-finding algorithm and the Quantum Fourier Transform.

There is also a proof that the algorithm can find the prime factors of number using

polynomially bounded resources with certainty.

An implementation of the classical portion of Shor’s algorithm in Haskell is pre-

sented, and a QML implementation of a quantum Fourier transform is discussed.

A.1 Efficient factoring: Shor’s algorithm

The publication of what is now know as Shor’s algorithm [73] was responsible for

a huge increase in interest in quantum computing, especially from cryptanalysts.

This is because Shor’s algorithm gives a method for finding the prime factors of a

large composite integer, the classical intractability of which is the key to public-

key cryptosystems such as RSA [63]. Although it is often presented as such, Shor’s

algorithm isn’t actually a factoring algorithm; it is a quantum computer algorithm

that computes the period of a real valued function. As such, it is also useful in other

contexts.
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A periodic function is one that repeats itself; i.e.

f(x) = f(x+mp) (A.1)

where p is the period of the function, and mp is an integer multiple of the period,

for all values of x in the domain of f . The reason that it is often presented as

a factoring algorithm is that there is a well-known reduction of period finding to

factoring, presented later in this section, and this use of the algorithm has generated

the most interest (and funding).

Finding the period of any given periodic function, i.e. calculating p, is hard classi-

cally. The best known classical algorithms for finding the period of a periodic function

takes a time that grows faster than any power of the number of bits representing p.

However, Shor’s algorithm can find the period in a time proportional to only a poly-

nomial function of n, with an arbitrarily high probability of success.

A.2 From period finding to factoring

This is a presentation of a randomised reduction of the factoring problem to the

period finding problem. This argument assumes there is an efficient algorithm for

finding the period of a function. Also it makes use of the Euclidean algorithm,

which efficiently computes the greatest common divisor (gcd) of two numbers, and

the Chinese Remainder Theorem. The Euclidean algorithm is a well known example of

a problem in the P (polynomial) complexity class, whose time complexity is bounded

by a quadratic function of the length of the input values. The Euclidean algorithm

can therefore be efficiently computed classically, and the algorithm can be found in

any elementary number theory text, such as [74].

The goal of the reduction of period finding to factoring is to find the non-trivial

factors of a number N , which can be represented by n bits. It will be assumed that N

is the product of two distinct primes, p and q; this will later be shown to be the worst

case. The reduction also assumes there is available an efficient way of computing

the period of a function, namely Shor’s algorithm. Throughout the reduction the
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complexity (efficiency) of each step will be noted, since for the reduction to be useful

it must be more efficient than classical factoring techniques.

The first step is to pseudo-randomly select a number a < N , assuming N is

odd; otherwise 2 is a non-trivial factor. The greatest common divisor of a and N is

then calculated, gcd(a,N). This calculation, as noted previously, can be computed

efficiently by the Euclidean algorithm, with complexity O(n3).

If gcd(a,N) > 1, then a is itself a non-trivial factor of N , and can be returned as

the result. However, if a is coprime to N (shares no common factor, and therefore

the gcd(a,N) = 1), then further calculation is required.

It is important to note here that the numbers a < N coprime to N , denoted Z∗
N ,

form a finite group, with the group operation being multiplication mod N . This

follows as each element of Z∗
N has an inverse, as each element of Z∗

N is distinct, which

itself follows from the fact that N |x(a − b) ⇒ N |(a − b). Note that ‘a|b’ reads ‘a

divides b’; i.e. ∃c ∈ Z.b = ac

Each element x of this group must, by the definition of a group, have an order r,

which is the least positive integer such that

xr ≡ 1 mod N, (A.2)

It is shown below that the order of a mod N is also the period of the function

f(x) = ax mod N. (A.3)

Recalling the definition of a periodic function (A.1), it can be shown that this

is true by substituting p with r, and using function (A.3) above. This can then be

rearranged to give (A.2).

An initial assumption was that there is an efficient way of finding the period of

a function. Applying this method to (A.3) therefore also gives the order r of a, as

the order of a is the period of this function. However, it is required that the function

f(x) = ax mod N can be computed efficiently. This is not at all obvious as x could

be very large, requiring O(x) expensive multiplication operations. Fortunately, the

well known computer science technique of repeated squaring (modulo N) allows the
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function to be calculated with a complexity of O(log x), or O(m) where m is the

number of bits required to represent x in binary form. This is much better than the

O(2m) complexity of the näive method for large values of x.

Using the above and the assumption that the period of a function can be efficiently

calculated, the order r of a mod N can be calculated. If r happens to be an odd

number, then this method cannot find a non-trivial factor, and the algorithm must

be restarted, this time selecting a different value of a from Z∗
N . Suppose then that r

is indeed even. In this case we since we know ar ≡ 1 mod N , then it is known that:

ar − 1 ≡ 0 mod N (A.4)

and therefore that:

N |(ar − 1). (A.5)

As (by assumption) r is even, ar − 1 can be factored to give

N |(ar/2 − 1)(ar/2 + 1) (A.6)

It can immediately be seen that N ∤ (ar/2− 1), as this would imply that the order

of a would be less than r. If it is also the case that N ∤ (ar/2 + 1); i.e. , that

ar/2 6= −1 mod N

then N must share a non-trivial common factor with both (ar/2 − 1) or (ar/2 +

1). Therefore one of gcd(ar/2 ± 1, N) is a non-trivial factor of N . As has already

been shown, the greatest common divisor can be calculated efficiently using O(n3)

operations.

Therefore, once r is calculated, N can be factored efficiently, assuming that r is

even and that ar/2 6= −1 mod N . It now remains to calculate the probability of

success and show that it is acceptable, and then to present a quantum algorithm for

efficiently calculating the period of a function.
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A.3 Probability Analysis

There are two cases in which the reduction given above will fail. The first is if the

order, r, of the randomly selected number a < N is odd. The second is if the value

r is even, but that ar/2 = −1 mod N . It will be shown in this section that the

probability of either of these two cases occurring is at most 1
2
. Recall that N = pq,

which was earlier asserted to be the worst case.

From the Chinese Remainder Theorem, explained in figure A.1, it is known that

choosing a value a from ZN is equivalent to choosing two values ap and aq, such that

a = ap mod p

a = aq mod q (A.7)

Also, this pair is unique, and has the same statistical distribution as choosing two

numbers randomly from Zp and Zq. Each of these two new values, ap and aq also

have an associated order, rp and rq, in the groups Zp and Zq, respectively.

It will now be shown that for each possible choice of a, from ZN , the order r of

a is the least common multiple (lcm) of the orders rp and rq of ap and aq. This is

because, from the definitions of order and N ,

ar ≡ 1 mod N ≡ 1 mod pq (A.8)

which implies that ar ≡ 1 mod p, and ar ≡ 1 mod q. Therefore r must be an

integer multiple of rp and rq. It can further be shown that ax ≡ 1 mod pq where x

is any integer multiple of rp and rq. Therefore, because r is (by definition) the least

integer with the property that ar ≡ 1 mod pq, and since r must be common (integer)

multiple of rp and rq, then r must be the least common multiple of rp and rq. This

result tells us that r can only be odd if both rp and rq are odd, and even if either one

of rp or rq is even. Note that rp and rq cannot both be even, as this would imply that

ar/2 ≡ 1 mod pq, which contradicts the definition of r as the order of a.

If r is even then the reduction will only fail if ar/2 ≡ −1 mod pq. By application

of the CRT it can be seen that this can only be the case if both ar/2 ≡ −1 mod p and
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The Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) is used frequently in this discussion, so it is

explained here with a concise proof. The CRT essentially states that working in mod-

ulo N , where N = pq, is the same as working modulo p and modulo q simultaneously,

where p and q are distinct primes.

Conjecture

Let p 6= q be two primes, and let N = pq. For every a ∈ Zp, b ∈ Zq, there is a unique

c such that 0 6 c 6 N , and c ≡ a mod p and c ≡ b mod q.

Proof

Let u = p−1 mod q and v = q−1 mod p, and let c′ = upb+ vqa. Then

c′ ≡ upb+ vqa ≡ u · 0 · b+ 1 · a ≡ a mod p

and equivalently

c′ ≡ upb+ vqa ≡ 1 · b+ v · 0 · a ≡ b mod q

Let c = c′ mod N . ThenN |(c−c′), which means p|(c−c′) so c ≡ c′ mod p. Similarly,

c ≡ c′ mod q. Therefore c ≡ c′ ≡ a mod p and c ≡ c′ ≡ b mod q.

Hence c satisfies all the conditions of the conjecture; 0 6 c 6 N , and c ≡ a mod p,

and c ≡ b mod q.

This shows that for every pair a and b, as defined, there exists a exactly one value of

c; c is unique.

Figure A.1: Definition and proof of the Chinese Remainder Theorem
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ar/2 ≡ −1 mod q. Now, suppose 2cp and 2cq are the largest powers of 2 that divide

rp and rq, respectively, and also that 2c is the largest power of 2 that divides r. It will

now be shown that to have either r as odd valued, or to have r even and xr/2 ≡ −1

mod pq, it is necessary that cp = cq. It will be then shown that the probability cp = cq

for a randomly selected value of a is 1
2
.

As has already been stated, for r to be odd, rp and rq must both be odd. This

follows from the dual facts that rp|r, and rq|r. Therefore, if r is odd then the values

cp and cq must both be 0, and are therefore equal.

In the case where either one of rp or rq is even, then it must follow that ar/2 6= −1

mod pq, unless rp and rq are both odd multiples of the same power of 2; cp = cq. This

is because, if cp > cq then, as r is an integer multiple of rp and rq, then r must equal

2 · rq · x, where x is some integer. It must then follow that ar/2 ≡ 1 mod q, which

means the algorithm must succeed as r is even and, as was stated previously, ar/2

cannot in this case be equivalent to −1 mod pq (by the CRT). By a similar chain of

reasoning it can be seen that cp < cq implies ar/2 ≡ 1 mod p; which also rules out

ar/2 ≡ −1 mod pq for the same reason.

The analysis in the preceding paragraphs shows that the reduction will only fail

if cp = cq. It now remains to calculate the upper bound of the probability of this

happening for a random value a. This result follows from the fact that for any given

prime p, a randomly selected element from the group Zp has a probability of exactly

1
2

that it will be an odd multiple of any power of 2. The proof of this is presented

below.

First, note that ϕ(p) = p − 1 is even, as p is odd, and therefore cp > 1 (recall

2cp = rp). ϕ(p) is the Euler Phi Function, or Totient function, defined as the number

of positive integers 6 p that are coprime to p. An elementary result from number

theory states that the group Z∗
p is cyclic, and therefore there exists a generator g for

Z∗
p, with an order equal to ϕ(p) = (p−1). This means that any element from Z∗

p may

be written in the form gk mod p, for some k such that 1 6 k 6 (p− 1). Now let rg

be the order of gk mod p and consider the two following cases:

Firstly, if k is odd then from the fact that gkrg ≡ 1 mod p it can be deduced

that krg is a multiple of ϕ(p). Therefore 2cp |rg, since k is odd, and rg has the same
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number of powers of 2 as does the order of g, ϕ(p).

Secondly, if k is even, then

gkϕ(p)/2 = (gϕ(p))k/2 = 1k/2 = 1 mod p (A.9)

thus rg must divide ϕ(p)/2, and therefore rg must contain at least one less power of

2 than ϕ(p) does.

To summarise, the group Z∗
p can be split into two sets of equal size: those that

may be written gk with k odd, for which 2cp |rg; and those written gk with k even,

for which 2cp ∤ rg. Therefore, with a probability of exactly 1
2
, the integer 2cp divides

the order rg of any random element from Z∗
p. Given this, the probability of both ap

and aq having orders rp and rq, that are an odd multiple of the same power of 2, i.e.

cp = cq, is at most 1
2
. Note these are independent events.

Recall the earlier assertions that N being the product of two distinct primes was

the worst case. If N is the product of n primes, then

P (success) > 1− 1

2n−1
(A.10)

The probability of failure decreases by a factor of 1/2 for every extra prime making

up N , thus the probability of success in factoring N increases. This can seen by

generalising the discussion above to n primes (given fully in [53]), and finding that

in order for the algorithm to fail now, it must be the case that cp1 = cp2 = . . . = cpn ,

where 2cpx is the largest power of 2 which divides the order rpx of apx . Thus, following

the same reasoning as for just two primes, the probability of this occurring is 1
2
· 1
2
·. . .· 1

2
,

a total of n− 1 times;

P (fail) 6
1

2n−1
(A.11)

In conclusion, the probability of the reduction succeeding, in the worst case, is at

least half; P (success) >
1
2
. This is a constant value, not relying on the size of N , and

this means that the algorithm has to be repeated only a small number of times to get

a high probability of success. Therefore, the algorithm is efficient.
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A.4 Haskell implementation of Shor’s algorithm

Presented in this section are some Haskell functions that perform the classical parts

of the reduction algorithm given in section A.1 in order to factor a number N . Haskell

is a pure functional programming language that is well suited to tasks of this kind.

Before implementing a function to perform the reduction, it helps to define auxiliary

functions that may be used by other functions. Firstly, a function is required that,

when given two integers, a and n, returns the order of a mod n. This function will

be inefficient as it will be computed classically; however it will be shown in section

A.5 that this computation can be done efficiently by a quantum computer.

order ∈ Int → Int → Int

order a n = find a

where find b = if mod b n ≡ 1

then 1

else 1 + (find (mod (a × b) n))

The algorithm used by the order function is a very inefficient implementation, but

serves as an understandable definition. More efficient classical algorithms, though

less efficient than that presented for quantum computers, can be used, such as the

Baby step – Giant step technique in number theory.

An efficient way of calculating the function f(x) = ax mod N is also required.

This is implemented using the method of repeated squaring modulo N , and is based

on the built-in Haskell library function a ↑ x = ax. This function returns ax mod n.

pow a 0 n = 1

pow a x n | x > 0 = f a (x − 1) a

where f 0 y = y

f a x y = g a x where

g a x | even x = g (mod (a × a) n) (x ‘quot ‘ 2)

| otherwise = f x (x − 1) (mod (a × y) n)

pow | error "pow: negative exponent"

A function to efficiently perform factorisation can now be defined; excepting that

calculating order a n is inefficient in this instance. This function makes use of the
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built-in Haskell function for calculating the greatest common divisor, which is known

to be efficient. The first step in implementing the function to perform the reduction

algorithm is to define a new data type which covers all possible outputs:

data Shor = FailOdd | FailEvenMod | Trivial Int | Factor Int

A data type is a set of values from which a function may take its value. This

line of Haskell code defines a new data type called Shor , which can take one of four

possible values. Each is separated by a vertical bar, which can be read as or.

Using this new data type a function can now be defined that returns a value of

type Shor, which is the result of the reduction algorithm.

shor ∈ Int → Int → Shor

shor a n | even n = Trivial 2

| triv 6≡ 1 = Trivial triv

| odd r = FailOdd

| ar ≡ (n − 1) = FailEvenMod

| otherwise = Factor (gcd n (ar + 1))

where triv = gcd a n

r = order a n

ar = pow a (r ‘div ‘ 2) n

The first line of this function gives its name and type signature. This function

takes two integers, and returns one of the Shor data types. The second line is the

start of the actual algorithm, and the inputs to this function, a and n, represent the

values a and N in the discussion above – n is the number to be factored, and a < n.

This function treats the reduction algorithm as an analysis of five cases.

The first case simply checks whether the number n to be factored is even. This

can be computed efficiently by reading the least significant bit of the numbers binary

expansion. If the number is even then the Shor data type Trivial is returned with 2

as a non-trivial factor of n. If n is odd then the next case is examined, which asks if

triv 6= 1, where triv is an auxiliary function that is defined as the greatest common

divisor (gcd) of a and n. If this is the case then the function returns Trivial along

with the value of triv , the gcd, as a non-trivial factor of n. The value returned in

this second case is called Trivial not because the factor is trivial (it is by definition
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non-trivial), but because the non-trivial factor can be computed without recourse to

the period finding algorithm; what is meant is that it is computationally trivial.

The next case tests a value r, which is defined as the order of a with respect to

n, to determine if it is odd. If it is odd, then a factor cannot be found using this

method. The Shor value FailOdd is therefore returned with no factor. It is important

to note that the calculation of r is the only part of this algorithm that cannot be done

efficiently on a classical computer; however, the reduction given previously explains

how this can be done efficiently using the quantum computer order-finding algorithm,

presented in section A.5.

The fourth case also results in a failure if the Boolean expression evaluates to

true. This case examines the value ar, which is defined as ar/2 mod n, and returns

FailEvenMod if ar = n− 1. Recall that the reduction will only work if ar/2 6= n− 1

mod n. This calculation is done efficiently using the pow function.

The final case, if reached, will return the greatest common divisor of a and ar/2−1,

which was shown in the reduction to be a non-trivial factor of a and n. This value

is then returned with the Shor data type Factor . This uses only the Euclidean

algorithm again, and ar which has already been calculated, and therefore this step

can be calculated efficiently.

Note that the value a < n input to this function should be randomly selected;

however, a simple additional function, shor ′, will calculate the output of the shor

function for all possible values of a. This function makes use of the Haskell list

comprehension syntax, and returns a list of pairs. The first element in each pair is

the value of a used, and the second is the returned Shor value.

shor ′ ∈ Int → [(Int , Shor)]

shor ′ n = [(x , shor x n) | x ← [2 . . (n − 1)]]

The Haskell function shor presented here will succeed to factor N given a with

a probability of at least one half, as shown in section A.3. The function is efficient,

except for the order-finding auxiliary function order . The next section, A.5, explains

how a quantum computer can perform the order-finding function efficiently.
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A.5 Order-finding by phase estimation

There is no known algorithm, at the current time, that can solve the order-finding

problem using resources polynomial to the number of bits required to specify it.

It is believed to be computationally hard, using classical methods. The quantum

order-finding algorithm can, however, find the order of an element in a group using

polynomially bounded resources. Recall that the goal of order-finding is to find the

least value r such that

ar ≡ 1 mod N

for a ∈ Z∗
N , i.e. a 6 N with a coprime to N , as previously. The quantum order-

finding algorithm can complete this task with a complexity of only O(n3), where n is

the number of bits in the binary expansion of N .

The algorithm used to perform order-finding efficiently on a quantum computer is

actually a specific example of a more general quantum algorithm, called Phase Esti-

mation. In turn, the phase estimation technique makes use of the quantum equivalent

of the Fourier transform. Both of these techniques, and how they are used to solve

the order finding problem will be described here.

A.5.1 The phase estimation algorithm

Given a unitary operator U , with some eigenvector |u〉 and associated eigenvalue

λ = e2πiϕ, the phase estimation algorithm, due to Kitaev [41], returns an estimate of

ϕ, and therefore also estimates the eigenvalue λ of U . In the case of the order-finding

algorithm the unitary operator is

Ua|x〉 = |ax mod N〉 (A.12)

where x ∈ {0, 1}n, i.e. takes values in the range 0 to N − 1. Note that if x > N

then Ua returns x; the operator only acts non-trivially when x 6 N . This operation

is unitary because a is coprime to N , and therefore multiplication by a mod N is

invertible.

Following from the fact that r is the order of a mod N , multiplying the operator
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Ua by itself r times will result in the identity matrix:

U r
a ≡ 1 (A.13)

From this it follows that the eigenvalues of Ua are rth roots of unity:

λs = e2πi(s/r) (A.14)

where s ∈ {0, 1, · · · , r−1}. This is the same as the formula for λ given above, except

with the phase, ϕ, substituted by s/r. The corresponding eigenvectors are:

|us〉 =
1√
r

r−1∑

k=0

e2πik(s/r)|ak mod N〉 (A.15)

as:

Ua|us〉 =
1√
r

r−1∑

k=0

e2πik(s/r)|ak+1 mod N〉 = e2πi(s/r)|us〉

Applying the phase estimation procedure to Ua should give an estimate of the

phase, ϕ = s/r. From this it is then possible to obtain the order r itself, completing

the algorithm.

The phase estimation procedure makes use of two registers of quantum bits. The

first registers qubits are all initially in the state |0〉, and the second register initially

set to be in one of the eigenvectors of U , |us〉. The second register need only contain

enough qubits to represent |us〉, but the number of qubits in the first register is

dependant on two factors: the accuracy of the estimate of s/r required, and the

probability of the algorithm being successful. These factors will be discussed later in

this section.

Before discussing the phase estimation procedure proper, it may be instructional

to look at a simpler algorithm. Suppose the registers are prepared as above, with the

second register containing |us〉, and with the first containing only one qubit in the

state |0〉. Suppose this is the input into the circuit given in Figure A.2. The quantum

circuit metaphor is fully explained in section 3.3, but a detailed understanding is not

required for this analysis. The action of each operation in this circuit on the input

will now be explained. Only the first register will be considered, as from this it is

easy to see that the second register remains unchanged throughout the computation.
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|0〉 H • H |ψ〉

|us〉 U |us〉

Figure A.2: Example phase estimation circuit

Firstly, the application of the initial Hadamard transform has the following action:

|ψ1〉 =
|0〉+ |1〉√

2
(A.16)

placing the control qubit into a superposition. Next, the application of the controlled-

U gate produces the state:

|ψ2〉 =
|0〉+ Ua|1〉√

2
=
|0〉+ λs|1〉√

2
(A.17)

as Ua|us〉 = λs|us〉. The action of the final Hadamard transform then causes the state

to become:

|ψ3〉 =
|0〉+ |1〉

2
+
λs|0〉 − λs|1〉

2
=

(1 + λs)|0〉
2

+
(1− λs)|1〉

2
(A.18)

If the first register is now measured the outcome would have the following probability

distribution:

P (0) = |1
2
(1 + λs)|2

P (1) = |1
2
(1− λs)|2

Preskill [58] notes that this distribution can be rewritten as:

P (0) = cos2(πϕ)

P (1) = sin2(πϕ)

because λs = e2πiϕ, which allows two eigenvalues to be distinguished with absolute

certainty: if ϕ = 0 then λs = 1, and if ϕ = 1/2 then λs = −1. Unfortunately, other

values of λs cannot be extracted with such a high probability. In order to obtain
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a sufficiently accurate estimate of the phase an exponential number of controlled-U

operations, such as that above, would be required.

However, if computing large powers of U , such as U2x , could be achieved efficiently,

then applying the circuit given in figure A.2 would allow

e2πi2
xϕ (A.19)

to be determined. This circuit therefore allows the xth bit of λs to be calculated.

Extending this circuit for a larger number of qubits in the first register, discarding

the final Hadamard transform, gives us the circuit shown in figure A.3. This circuit

|0〉 H • |0〉+e2πi(2t−1ψ)

...

|0〉 H • . . . |0〉+e2πi(21ψ)

|0〉 H • . . . |0〉+e2πi(20ψ)

|us〉 U20
U21 . . . U2t−1 |us〉

Figure A.3: First stage of phase estimation, where |us〉 denotes the second register.
Normalisation factors are missing from output states.

gives the first stage of the phase estimation algorithm. It starts by applying the

Hadamard transform to the first register, and then applying controlled-Ua operations

to the second register; each raised to a successive power of 2, and controlled by

a different qubit from the first register. The state of the second register remains

unchanged throughout, while the state of the first register becomes:

1√
2t

(
|0〉+ e2πi2

t−1ϕ|1〉
)
⊗
(
|0〉+ e2πi2

t−2ϕ|1〉
)

⊗ · · · ⊗
(
|0〉+ e2πi2

0ϕ|1〉
)

=
1√
2t

2t−1∑

k=0

e2πiϕk|k〉 (A.20)
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where t is the number of qubits in the first register.

Suppose that the phase, ϕ, in the formula above can be represented by the fol-

lowing binary fraction exactly :

ϕ = .ϕ0ϕ1 · · ·ϕt−1 =
ϕ0

21
+
ϕ1

22
+ · · ·+ ϕt−1

2t

where t is the number of bits in the first register, and ϕx ∈ {0, 1}. This notation can

be used to rewrite equation A.5.1 above, the output from this first stage of the phase

estimation algorithm, as:

1√
2t

(
|0〉+ e2πi.ϕt−1|1〉

)
⊗
(
|0〉+ e2πi.ϕt−2ϕt−1 |1〉

)

⊗ · · · ⊗
(
|0〉+ e2πi.ϕ0···ϕt−2ϕt−1|1〉

)
(A.21)

The second and final stage of the phase estimation algorithm is now to apply the

inverse quantum Fourier transform (QFT ) to the first register. After performing this

operation measuring the first register will result in the state |.ϕ0 · · ·ϕt−2ϕt−1〉 – from

which ϕ = s/r can now be calculated. It is now a simple task to extract the order, r.

How the QFT performs this operation will be explained in section A.5.2.

In order to execute the phase estimation procedure two prerequisites must be

met. Firstly, it must be possible to efficiently compute the controlled-U2x operations,

for any integer value x. Secondly, the phase estimation procedure requires that an

eigenvector of U be placed in the second register, and it cannot be prepared using

the formula for |us〉 given previously, as this requires knowledge of the order, r.

The first prerequisite can be met using a method called modular exponentiation,

which is similar to the repeated squaring algorithm for calculating integer powers. A

full explanation is given is given on page 228 of [53]. The procedure works as follows:

First, calculate U2|x〉 = |x2 mod N〉 by applying U twice. U4|x〉 can then calculated

by applying U2 twice, and then continuing in this way until the required power of U

is reached. This results in a complexity of O(n3), where n is the number of bits used

to represent N .

Unfortunately, preparing an eigenvector of U without knowledge of r is more

difficult, if not impossible. However, a simple observation allows this problem to be
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avoided. Recall the definition of the eigenvector (equation A.15):

|us〉 =
1√
r

r−1∑

k=0

e2πik(s/r)|ak mod N〉

From this it can be shown that

1√
r

r−1∑

s=0

|us〉 = |1〉 (A.22)

which means |1〉 is an equally weighted superposition of the r eigenvectors of Ua.

So in order to perform the phase estimation algorithm the second register needs

only to be initialised to the state |1〉, which is trivial to construct. If r < 2n then

setting the size of the first register, t, to 2n+1 allows an estimate of s/r to be obtained

that is accurate to 2n+ 1 bits.

The final step in calculating the order is to now extract a good estimate for r from

this information, and from the fact that s and r are integers. From this information

it follows that ϕ is itself a rational number; the ratio of two bounded integers. It

is now possible to use the continued fractions [74] method in order to calculate the

nearest such fraction to ϕ; in which r will be the denominator. To paraphrase, the

continued fractions algorithm can produce a pair s′ and r′ efficiently, that have no

common factors such that s′/r′ = s/r. All that remains is to confirm that r′ is indeed

the order by calculating ar
′

mod N , obtaining the result 1.

There are now two possible scenarios to consider which cause the order-finding

algorithm to fail. The first is if the phase estimation section results in a bad estimate

of the phase, and thus s/r. The chances of this occurring can be reduced greatly by

negligible increases in the size of the first register, as shown in [53], and is already

very small if t = 2n+ 1. Reducing the number of qubits only increases the chance of

failure logarithmically, above 2n+ 1.

The second scenario is that if the pair s and r share a common factor, then the

value of r′ returned by the continued fraction algorithm may be a factor of r, and not

r itself. It should be noted that the probability of s and r not sharing any common

factors is significant as when s is selected randomly from Zr−1; the probability of

s being coprime to r is in fact φ(r)/r. However, only repeating the order-finding
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algorithm a constant number of times allows us to extract r with certainty. To

calculate r with certainty first requires performing the order-finding procedure twice,

giving two estimates of s and r; s′1,r
′
1 and s′2,r

′
2 respectively. If s′1 and s′2 are coprime

then r can be calculated by finding the least common multiple of r′1 and r′2. Otherwise,

perform the order-finding algorithm until two coprime values of s′ are obtained. The

probability that s′1 is coprime to s′2 is given by

1−
∑

p

P (p|s′1)P (p|s′2) (A.23)

where P (p|s) is the probability that p divides s, and the sum is over all prime numbers

less than r. Note that all possible values of s,s′ are bounded by r. Now, if p|s′1 then

it is also the case that p divides the actual value s1 (= s), so finding an upper bound

for P (p|s1) suffices. The probability of p|s1 for a random s1 < r is easily seen to be at

most p−1, and therefore P (p|s′1) 6 p−1. The same argument can be applied to show

P (p|s′2) 6 p−1, and the probability that s′1 and s′2 are coprime can now be written as

1−
∑

p

P (p|s′1)P (p|s′2) 6 1−
∑

p

p−2 (A.24)

The right-hand side of equation A.24 can be bounded by noting that

∑

p

p−2
6

3

2

∫ ∞

2

y−2dy =
3

4
(A.25)

thus giving:

1−
∑

p

P (p|s′1)P (p|s′2) 6
1

4
(A.26)

Therefore, the probability of success is at least 1/4.

Summarising, the order-finding algorithm can calculate the order r with a small

constant number of repetitions. It makes use of the phase estimation technique with

the quantum Fourier transform to estimate s/r, and then uses the continued fractions

algorithm to extract r. The phase estimation algorithm uses O(n) Hadamard trans-

forms, followed by O(n3) transforms to calculate the controlled unitary transforms,

giving a total cost of O(n3). The inverse quantum Fourier transform requires a fur-

ther O(n2) gates, while the continued fraction algorithm consumes O(n3) operations
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|0〉 H • iQFT |ψ〉

|us〉 Ux |us〉

Figure A.4: Schematic representation of order-finding algorithm. The top two wires
represent the first register of t qubits, and iQFT is the inverse quantum Fourier
transform

to give an overall complexity O(n3). Lastly, to ensure the output from the continued

fractions algorithm is the order the order-finding algorithm must be repeated a con-

stant number of times, for a total final cost of O(n3). A schematic representation of

the order-finding algorithm, using phase estimation, is shown in figure A.4.

A.5.2 The Quantum Fourier Transform

The Fourier transform is a very useful tool that is used a lot in maths, physics and

computer science. It provides a representation of functions defined over some inter-

val, with possibly no particular periodicity, in terms of a superposition of sinusoidal

functions. It can be viewed as a generalisation of the Fourier series representation of

periodic functions.

The classical discreet Fourier transform (DFT) take as its input a vector of com-

plex numbers |x〉 = x0, x1, · · · , xN−1, where N is the size of the vector, and returns

the transformed vector |y〉 = y0, y1, · · · , yN−1. The action of the DFT can be given

as:

∑

x

f(x)|x〉 →
∑

y

(
1√
N
e2πixy/Nf(x)

)
|y〉 (A.27)

This can be considered to be a definition of an N ×N unitary matrix, where each

element m indexed by x and y is given by:

mxy =
(
e2πi/N

)xy

A naive implementation of this transform would require O(2n
2
) operations; however

this can be simplified to O(n2n) without recourse to a quantum computer, using the

Fast Fourier Transform (FFT).
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The Quantum Fourier Transform (QFT) has exactly the same action, except that

the input is a quantum state, and it makes use of quantum parallelism to give an

even more efficient computation than the FFT. The QFT is a linear operation that

has the following action on the computational basis state:

QFT : |x〉 → 1√
N

∑

y

e2πixy/N |y〉 (A.28)

Assuming that N = 2n, |x〉 and |y〉 can be expressed as the following binary

expansions:

|y〉 = y02
n−1 + y12

n−2 + · · ·+ yn−12
0

|x〉 = x02
n−1 + x12

n−2 + · · ·+ xn−12
0 (A.29)

Using this binary expansion notation a more useful version of the definition of the

QFT (equation A.28) can be derived, as shown in [53], called the product represen-

tation:

|x〉 → 1√
2n

2n−1∑

y=0

e2πixy/2
n |y〉 (A.30)

=
1√
2n

1∑

y0=0

· · ·
1∑

yn−1=0

e2πix(
Pn
j=1 yj2

−j) |y0 · · · yn−1〉 (A.31)

=
1√
2n

1∑

y0=0

· · ·
1∑

yn−1=0

n−1⊗

j=0

e2πixyj2
−j |yj〉 (A.32)

=
1√
2n

n−1⊗

j=0

(∑1
yj=0 e

2πixyj2
−j |yj〉

)
(A.33)

=
1√
2n

n−1⊗

j=0

(
|0〉+ 22πixy2−j |1〉

)
(A.34)

=
1√
2n

(
|0〉+ e2πi(.xn−1) |1〉

)
⊗
(
|0〉+ e2πi(.xn−2xn−1) |1〉

)
⊗

· · · ⊗
(
|0〉+ e2πi(.x0···xn−2xn−1) |1〉

)
(A.35)
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This product representation has two useful properties: firstly, it makes it straight-

forward to derive an efficient circuit to perform the procedure; and secondly, it shows

how the second stage of the phase estimation algorithm works. By comparing the

product representation given in equation A.35 with the output from the initial phase

of the order-finding algorithm, given in equation A.5.1, shows that performing the

inverse of the quantum Fourier transform on this state would produce the product

state |.ϕ0ϕ1 · · ·ϕt−1〉, thus completing the phase estimation part of the algorithm.

If there is a circuit that performs the QFT, then the inverse QFT can simply be

performed by reversing the order of the operations. Figure A.5 shows a circuit that

performs the QFT efficiently, given a rotation Rd defined as:

Rd =

(
1 0

0 eiπ/2
d

)
(A.36)

where d is the ‘distance’ between the R gate and its control qubit; i.e. d is the number

of wires separating R from the corresponding control wire.

|x0〉 H R1
. . . Rn−2 Rn−1 |0〉+e2πi.ψ0...ψn−1 |1〉

|x1〉 • . . . H . . . Rn−2 Rn−1 |0〉+e2πi.ψ1...ψn−1 |1〉

...
...

...
|xn−2〉 • • H R1 |0〉+e2πi.ψn−2ψn−1 |1〉

|xn−1〉 • • • H |0〉+e2πi.ψn−1 |1〉

Figure A.5: An efficient circuit for the quantum Fourier transform. Normalisation
factors of 1/

√
2 are missing from output. Note the order of qubits has been reversed

in the output

From the circuit given for the QFT, the complexity can be calculated to be O(n2),

and a full analysis of this is provided on page 219 of [53]. This initially seems to be

much better than the complexity of the DFT or FFT, and näıvely one would assume

that using the QFT instead of these would incur large efficiency gains. Unfortunately,

the output from the QFT is a quantum superposition, and measuring it would col-

lapse the superposition – erasing all values of the Fourier transform except for one,
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determined at random. Additionally, there is no general algorithm for efficiently

preparing the state to be input into the QFT. This makes finding uses for the QFT

much harder, but the phase estimation algorithm, and specifically the order-finding

algorithm, is an excellent example of an algorithm that outperforms classical com-

putations by making use of the quantum Fourier transform. In addition, Jozsa [39],

has shown how all the main quantum algorithms rely to some extent on the quantum

Fourier transform in order to work efficiently.

A.6 Implementing the three qubit Quantum Fourier Trans-

form

The three qubit quantum Fourier transform can be implemented as the circuit shown

in figure A.6, using the quantum circuits defined in section 3.3. The rotations S and

H S T

..
..

..

..
..

..

• H S

������

..
..

..

������

• • H

������

Figure A.6: A circuit implementing the 3-qubit quantum Fourier Transform, where
S is the phase-gate and T is the π/8-gate

T used in this definition are defined as:

S =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)

S is know as the phase-gate, while T is sometimes called the π/8-gate (for historical

reasons). H is the standard Hadamard transform defined in section 3.1.3.

This circuit can be translated into a small QML program that mimics the action of

the circuit, and this is shown in figure A.7. The language QML is defined in chapter 6.

In the QML implementation, cS is the controlled-S transformation, defined as:

cS :Q2 ⊸ Q2 ⊸ Q2 ⊗Q2

cS c x = if◦ c then (qtrue, i × qtrue)
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qft3 :Q2 ⊸ Q2 ⊸ Q2 ⊸ Q2 ⊗Q2 ⊗Q2

qft3 x y z = let (b, a, c) = (cS y (had x ), z )

(c′, a ′, b ′) = (cT c a, b)

(c ′′, b ′′, a ′′) = (cS c′ (had b ′), a ′)

in (had c′′, b ′′, a ′′)

Figure A.7: The 3-qubit QFT circuit implemented in the quantum programming
language QML

else (qfalse,qfalse)

and cT is the controlled-T transformation, defined as:

cT :Q2 ⊸ Q2 ⊸ Q2 ⊗Q2

cT c x = if◦ c then (qtrue, (e iπ/4)× qtrue)

else (qfalse,qfalse)

Finally, the Hadamard transformation can be defined in QML as

had :Q2 ⊸ Q2

had x = if◦ x then (−1)× qtrue + qfalse

else qtrue + qfalse

In QML, simple normalisation factors are inferred by the compiler and can there-

fore be omitted. The program qft3 is a direct translation of the circuit implementation

of the 3-qubit quantum Fourier Transform into QML, and as such has a similar struc-

ture to the circuit. It is left for future work to develop a natural QML implementation

of the QFT, and then Shor’s algorithms. Other example QML programs are given in

chapter 6.

A.7 Summary

This appendix has presented a well known problem that can be solved more efficiently

using quantum computation than is known possible classically. This problem is of

both great theoretical and practical interest due to the reliance of some cryptographic

protocols on the computational difficulty of factorisation.

This appendix shows how Shor’s algorithm actually solves the problem of period
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finding, which can then be reduced to factoring. The useful Phase–estimation and

Quantum Fourier Transform algorithms are also presented. A detailed analysis of

efficiency of the algorithms is also presented, which prove that Shor’s algorithm can

solve the factoring problem using only polynomially bounded resources with certainty.

In addition, an implementation of the classical parts of Shor’s algorithm is presented

in Haskell, and an implementation of a 3 qubit quantum Fourier transform is given

in both the circuit model and QML.
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