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Abstract

Based on a number of experimentally verified physical observations, it is argued that

the standard principles of quantum mechanics should be applied to the Universe as a

whole. Thus, a paradigm is proposed in which the entire Universe is represented by a pure

state wavefunction contained in a factorisable Hilbert space of enormous dimension, and

where this statevector is developed by successive applications of operators that correspond

to unitary rotations and Hermitian tests. Moreover, because by definition the Universe

contains everything, it is argued that these operators must be chosen self-referentially; the

overall dynamics of the system is envisaged to be analogous to a gigantic, self-governing,

quantum computation. The issue of how the Universe could choose these operators with-

out requiring or referring to a fictitious external observer is addressed, and this in turn

rephrases and removes the traditional Measurement Problem inherent in the Copenhagen

interpretation of quantum mechanics.

The processes by which conventional physics might be recovered from this fundamental,

mathematical and global description of reality are particularly investigated. Specifically,

it is demonstrated that by considering the changing properties, separabilities and factori-

sations of both the state and the operators as the Universe proceeds though a sequence of

discrete computations, familiar notions such as classical distinguishability, particle physics,

space, time, special relativity and endo-physical experiments can all begin to emerge from

the proposed picture. A pregeometric vision of cosmology is therefore discussed, with all

of physics ultimately arising from the relationships occurring between the elements of the

underlying mathematical structure. The possible origins of observable physics, including

physical objects positioned at definite locations in an arena of apparently continuous space

and time, are consequently investigated for a Universe that incorporates quantum theory

as a fundamental feature.

Overall, a framework for quantum cosmology is introduced and explored which at-

tempts to account for the existence of time, space, matter and, eventually, everything else

in the Universe, from a physically consistent perspective.

Keywords: Quantum cosmology, Quantum computation, Pregeometry, Emergence, Fac-

torisation and Entanglement, Qubit field theory, Quantum Causal sets, Dis-

crete time, Information Exchange, Subregisters, Endo-physics, Self-Referential

Quantum automata.
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1 Introduction

Time permeates just about every sphere of life. Indeed, human civilisations are dominated

by regularising and synchronising the events in the surrounding World, and it is easy to

argue that without agreeing on a common standard of time, society would be unable to

function in the way that it does.

In fact, time has played a crucial role in all of Mankind’s development. From agri-

cultural dependencies on the cyclicity of the Sun, to the machine timings that structured

the Industrial Revolution; from the variable ‘t’ present in most of the equations used in

science and engineering, to the parameter vital in rationalising the study of history; from

the timetables essential for efficient national and global travel, to the Time Machines of

literature and imagination; from the rhythms governing the lives of animals and plants,

to the cadences of music and speech; from the measurements necessary for road safety

laws, to the quantity specified with pinpoint accuracy when coordinating extraterrestrial

exploration; time plays a role in everything.

Moreover, human life often appears obsessed with the passage of time. Modern society

frequently revolves around questions such as “When is...?”, “What time did...?”, “How long

until...?”, and so on, and the ever present threat of mortality seems to heighten the sense

that time is a precious commodity to be ‘saved’ or ‘made the most of’ wherever possible.

Time is something that employers buy, and the cautious bide. Time is something that

‘waits for no man’, but can appear to ‘fly’, drag’ or ‘stand still’. Time is even something

whose effects medical research attempts to ‘hold back’.

Even primitive Man recognised the importance of the nature of time for his continued

existence. Basic subsistence and the quest for food relied heavily upon an understand-

ing of the temporal durations of the seasons, and many archaeologists now believe that

ancient monuments such as Stongehenge and the Egyptian Pyramids were used partly as

astronomical calendars. Furthermore, the mystical significance often attached to the lunar

cycle, and the magical rituals associated with mid-summer and mid-winter in, amongst

others, druid and pagan cultures, indicate just how important the continual ‘re-birth’ of

time was taken to be in early society. Indeed, over 3000 years ago Greek mythology talked

of Chronos, the personification of time and father to all Olympian gods. In fact, time still

plays crucial roles in the sacred texts of the current major World religions: the Creation

story of the Judaic texts is told to take place over a period of seven days, whilst the East-

ern religions featured in the Hindu and Buddhist scriptures describe the eternal, cyclic

nature of existence. Indeed, the act of Creation itself concerns the very origins of time;

the Bible even starts with the words “In the beginning...”.

The actual quantification of time is also something that has proved essential in the
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development of society. Its accurate measurement has therefore keenly concerned inventors

and engineers since ancient civilisation, from the historical use of sundials, waterclocks,

hour glasses and candles, through to the mechanical world of clockwork gears and springs,

and finally ending up in the modern age of digital chronographs and precision atomic

clocks. Indeed, the second is considered one of the most important units of science, and

its definition is given as one of the seven base quantities provided in the International

System of physical standards.

In human development, too, are time and temporality important. Some psychologists

believe that young children, for example, have very little temporal awareness, and it is not

until about the age of two before a key stage in their cognitive growth occurs and they can

appreciate the abstract concepts involved in ‘today’, ‘tomorrow’ and ‘yesterday’. Indeed,

even the development of language, a skill that has given humans a unique advantage over

every other organism on Earth and is a central milestone in a child’s progression towards

maturity, is intrinsically linked with temporality, and whole sets of tenses are required in

order for people to express events, ideas and plans that have happened, had happened,

were happening, are happening, and will happen.

Overall, the concepts and measurements of time, rate and duration seem vital in

humans’ understanding, description and control of the reality in which they live.

Despite this, however, still nobody really knows what time actually is.

One ultimate aim of this thesis is to investigate the nature and origin of time in

the physical Universe. In particular, a direction is taken that is based entirely upon

empirical evidence, and is hence fully consistent with the experimentally verified principles

of standard quantum mechanics.

To this end, it actually turns out that in attempting the above goal, a paradigm is

proposed and developed that describes the entire Universe according to quantum princi-

ples. As will become apparent, the vision is of a fully quantum universe free from external

observers, represented by a complex statevector in an enormous, but finite, factorisable

Hilbert space, and developed by the successive applications of quantum operators.

Now, physicists do not of course perceive the Universe to be a single, complex vec-

tor in a Hilbert space. Instead, the Universe generally appears to contain an enormous

number of classically distinct looking objects, consisting of molecules, atoms and, ulti-

mately, elementary particles. Moreover, these objects appear to interact with one another

in particular ways, and appear to exist at unique locations in a background of apparently

continuous and classical space and time. The question immediately faced therefore asks

how all of these features could arise from the proposed quantum state description, and

it is by attempting to address this issue that a possible origin for a variety of physically
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observed phenomena is provided.

So, from the initial aim of describing the possible mechanisms responsible for the

existence of time in physics, a framework is proposed from which every feature of physical

reality is hoped to emerge. Overall, the suggestion is that by adopting a fully quantum

view of the Universe, the origins of time, space, matter and classicity in physics might be

accounted for from a certain fundamental perspective.

Exactly how this could be achieved is the subject of this work.

The structure of this thesis is as follows. In Chapter 2, a number of the different

traditional interpretations of time are introduced. Historical perspectives on the subject,

including the role of time in various scientific disciplines, are briefly mentioned first, and

this is then followed by a discussion of the nature of time in conventional physics.

In Chapter 3, the framework for the paradigm featured throughout this work is intro-

duced, justified and discussed. The Universe is argued to be represented by a quantum

state, and the constraints placed on this by physics are considered; the necessary features

required for its dynamics are then defined. The paradigm was originally proposed in [1],

and was also developed in [2].

In Chapter 4, the issue of obtaining classically distinguishable objects from the perspec-

tive of the fully quantum Universe is discussed. Specifically, the mathematical properties

of factorisable Hilbert spaces and entangled/separable states are investigated; these ideas

will form the basis for much of the work featured in the following chapters. Most of Chap-

ter 4 was developed with G. Jaroszkiewicz, and is strongly similar to the work presented

in [3].

In Chapter 5, the emergence of spatial degrees of freedom from the quantum universe

paradigm is discussed. In particular, it is shown how quantum causal sets may be generated

as the Universe proceeds through a sequence of stages, from considerations of both the

changes in separability of the state, and from the changes in factorisability of the operators

used to develop this state. The possibility of obtaining continuous, classical spacetime

from such a treatment is suggested. As with Chapter 4, this work was developed with G.

Jaroszkiewicz, and is congruent in content to [4].

Chapter 6 is split into two parts. First, a discussion of the development of low di-

mensional bit and qubit systems using CNOT operators is given; the parallels between

computation, quantum computation and the quantum universe paradigm proposed in this

thesis are then drawn. The second part of Chapter 6 addresses the issue of informa-

tion flow in self-contained quantum systems, thereby defining the concepts of information

change and information exchange. The definition of endo-physical measurements is then

given, with the goal being to investigate quantum experiments in the circumstance where

the observer is part of the subject under observation. Such a discussion is mandatory
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for the proposed fully quantum paradigm, because physicists are by definition part of the

Universe they attempt to measure. Much of Chapter 6 was developed in collaboration

with G. Jaroszkiewicz, with the second part related to [5]. Chapter 6 is also supported

by Appendix A, in which conventional (exo-physical) classical and quantum computation

are discussed for completeness and comparison.

In Chapter 7, the possible emergence of quantum field theoretic concepts from the

proposed paradigm is discussed; the generation of particle physics in a fully quantum

Universe is hence suggested. Specifically, the Dirac field is investigated, and it is shown

how the corresponding ladder, Hamiltonian, momentum and charge operators used in

traditional collider physics may arise from the conjectured vision. The potential links

between quantum computation, quantum field theory, and the quantum universe paradigm

are thus explored. Much of this research was completed with G. Jaroszkiewicz, and will

feature in a forthcoming article currently being prepared for publication. Chapter 7 is

accompanied by Appendix B, which derives from first principles the conventional (phase

space) Hamiltonian, momentum and charge operators for the relativistic Dirac equation.

Finally, in Chapter 8 the dynamics of developing quantum universes are discussed. On

the basis that its state is developed by applying a quantum operator, and that there is

no external physicist present to choose such an object, the various types of method that

the Universe might employ to select this operator are first classified. Then, some of these

types are investigated more thoroughly, with the aim being to discuss how the actual next

operator used in a universe’s development could depend on its current state. The physical

results and limitations of the suggested ‘self-referential’ mechanisms are duly considered

in turn, with the conclusion drawn that only certain types of method are able to provide

valid dynamics for a universe’s development. Lastly, a particular type of mechanism is

proposed that appears able to automatically examine the current state, and then develop

it according to what it is and what properties it might have; the application of this to the

issue of endo-physical experimentation is discussed. Summarising, in Chapter 8 a number

of algorithms are defined for the development of the quantum universe, and these are

effectively seen as analogous to self-referential versions of the rules used in conventional

physics to govern quantum computations.

A self-contained, developing, fully quantum Universe is thus proposed in the following,

and the possible ways in which time, space, physics and matter could emerge from this

paradigm are demonstrated.
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2 History and Background

It is almost impossible to even attempt to provide a complete account of the background

of the study of time. Indeed, time’s ‘ultimate nature’ is a question that has concerned

scientists and philosophers alike for many thousands of years. Moreover, because time

pervades almost every aspect of human nature, it is perhaps not surprising that its study

has drawn from a number of academic disciplines, and that many of these consider its

definition in many different ways.

It is therefore beyond the scope of this thesis to detail every idea from such a wide

range of sources. However, whilst this may be the case, in this chapter a number of the

conventional perspectives on time are briefly introduced.

2.1 Time in Mathematics, Philosophy and Biology

In mathematics, time is generally just the ‘parameter t’ that is used simply as a suitable

variable when describing the changes of a developing system. So, from absolute Newtonian

time to proper time in relativity, temporality is normally only employed merely as a

convenient label to distinguish events. In Newton’s Principia Mathematica, for example,

time is barely mentioned apart from as the t in the equations, and is regarded as an almost

ethereal notion without further discussion or justification; to quote: “Absolute time flows

equably, without regard to anything else”.

Time in mathematics is therefore most often used simply as a coordinate reference,

that is, as a linear, real axis stretching from −∞ (the past) to +∞ (the future) via the

origin (now). Although this idea may be extended to cover imaginary time as well (for

example, in the path integral approach in quantum field theory, where time t is mapped to

iτ in order to prevent divergences [6]), the linearity of the coordinate axis is normally still

preserved. In fact, by reversing this line of thinking, since time is often interpreted as a

linear sequence of moments, which it generally is despite the possibility of some Zeno-type

paradoxes, it is easy to see why it is so frequently linked to the number-line. Indeed, Kant

even thought that time and number were inseparable.

A mathematical construction of continuous time may be built up from some fairly basic,

logical arguments. One particular method is given in [7]; if T is a ‘temporal continuum’,

and if p, q, and r are ‘instants’ or ‘moments’ defined to be members of this set, then the

following statements are assumed to hold true:

1. Mutual exclusivity: either p and q are simultaneous, or p precedes q, or q precedes

p.
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2. If q precedes r and p precedes q, then p precedes r.

3. T is a dense set; if p precedes r, there exists at least one event q between p and r.

4. If T contains non-empty subsets T1 and T2, where T ≡ T1∪T2 and all elements of T1

precede all elements of T2, there exists at least one ‘instant’ t for which any instant

preceding t is in T1, but any instant after t is in T2.

5. Between any two members of T there is at least one instant which is a member of

a denumerable subset of T ; the relation between time and the number line is again

drawn.

From a set of axioms such as these, the suggestion is that a mathematical framework

for past, present and future may be derived; a linear temporal parameter may consequently

be generated. The logical framework, however, does not actually begin to describe what

this time might actually be.

The logical approach to time may be argued to have its roots in philosophy. Indeed,

the definition of time has naturally been a subject pertinent to many philosophers, too

numerous to mention, since at least the World of Ancient Greece. Plato, for example,

thought that time could not actually be described by mathematics, because he believed

that only things that exist eternally were real, and time, unlike numbers, is transient. His

student Aristotle, on the other hand, thought that time was just “a measure of motion”.

Historically downstream, William of Alnwick suggested in the Fourteenth century the

idea of a discrete time, referring to an “indivisible of motion”. One hundred and fifty

years later, Leonardo Da Vinci contended that: “an instant has no time. Time is made

of movements of the instant, and instants are the boundaries of time”. Later still,

Immanuel Kant believed that time can neither have a beginning nor be eternal, and that

Mankind’s understanding of what time might be will always, ultimately, be inadequate.

Some of the great Eighteenth and Nineteenth century mathematicians and physicists

also contributed to the philosophical interpretation of time. Hamilton, for example, linked

time with algebra in an analogous way to how space is linked with geometry. Conversely,

Leibniz and Laplace lived in a deterministic world, so effectively ‘removed’ the need for

time because they believed that everything could be determined from initial conditions.

Leibniz and Laplace’s opinions are not reconciled from every modern perspective, par-

ticularly from the current belief that the universe incorporates stochastic quantum laws

and so is not strictly and classically determined. Indeed, Penrose, for example, even argues

that classical determinism is broken by quantum mechanical effects in the brain, and this

has profound implications for discussions of time. This ‘consciousness debate’ is moreover

congruent to the belief of Hobbes, who contended that time is a decay of the Before and
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After in the mind. In fact in many ways, this type of interpretation may be summarised

by the words of Einstein: “Objective reality is and does not happen. Only by con-

sciousness does the world come to be as an image in space continuously changing

in time”.

It is by invoking such notions of consciousness that provides a bridge between philo-

sophical discussions of time, and those present in the biological sciences.

Time in biology splits broadly into two categories: on the one hand, there exists the

temporal rhythms of nature; on the other, there is the subjective, conscious experience.

Temporal rhythms are generally governed by the responses to external time stimuli,

and imply that living organisms often appear to possess inbuilt ‘biological clocks’. Such

bio-clocks are often synchronised to well regulated outside ‘cues’: these may be variations

in light intensity, length of daylight, average temperature, lunar cycles, tidal effects, etc.

So, examples include diurnal rhythms (e.g. differences in day/night mental activity),

monthly rhythms (e.g. menstrual cycle), annual rhythms (e.g. in perennial plants), and

so on. As a consequence of these periodic patterns, human beings are often able to get

the false impression that time, ultimately, is cyclic in nature.

‘Conscious time’ is more complicated, partly perhaps because it is uncertain exactly

what consciousness is, and hence partly also because scientists cannot easily ascertain its

existence in other organisms. Moreover, it is also experienced in different ways that are

subject to context; a human’s perception of duration, simultaneity and time elapse are all

highly dependent on the particular individual, her state of mind, her age, her memory,

and the physical stimulus itself, etc.

There is also, of course, clearly a fine line between scientific evaluation of psychological

and neurophysiological time, and the philosophical question of mind itself.

2.2 Time in Physics

Despite the appearance of time in mathematics, philosophy and biology, it is perhaps the

physical sciences that should be most concerned with providing a definition for what time

actually is. After all, time evidently seems to be a physical phenomenon.

In addition to this, it is also noted that time is present in most of the equations of

physics. Indeed, some might argue that it is the purpose of physics to either predict the

future outcome of an experiment from a given set of initial conditions, or to reconstruct

the past from results that exist in the present. The question, then, of what past, present

and future actually are should consequently be taken to be of prime importance. In fact,

given that time is surely one of the most fundamental physical phenomena there is, its
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ultimate origin and definition would have to be explained by any law that pertains to be

a Theory of Everything in order for such a suggestion be accepted as truly satisfactory.

So, having mentioned these points, it is perhaps surprising to consider just how little

physicists seem to understand about the true nature of time. Going further, it is perhaps

equally surprising to observe just how seldom this issue is even addressed. In only a few

areas of physics, for example, is time actually viewed as a fundamental quantity, instead

of just as a convenient ‘yardstick’ to measure against or label events. Rarely does physics

really consider what this yardstick might actually be, or what this label might mean.

One possible reason for this lack of definition might be because it does not normally

appear to matter what time actually is, as long as its effects may be accounted for. New-

ton’s laws, for example, are entirely symmetric with respect to a reversal of time: a ball

rolling without friction from A to B and back to A appears exactly equivalent in ‘reverse’;

so, in this situation time is reduced to a mere coordinate that provides a convenient pa-

rameter useful in defining dynamics. In short, as long as the continuous variable ‘t’ may

be employed in the equations of motion with accurate results, the issues concerning what

it might actually be are often ignored.

However, not every phenomenon of science is time symmetric. Thus, time might most

interestingly be discussed in situations where its direction does seem to play a distin-

guishing part. As examples, cosmology, particle theory, thermodynamics and quantum

mechanics each contain such asymmetries, and each of these appears to introduce impor-

tant comments regarding the role of time. So, it is these issues that are discussed in turn

now.

The cosmological development of the Universe is intrisically linked to a number of

questions regarding time. Indeed for a start, its evolution as a whole is manifestly time

asymmetric.

Specifically, current thinking is that the Universe began as a Big Bang about 12 billion

years ago, and has been expanding ever since; indeed, most relativistic cosmologists believe

that the Big Bang actually marked the very beginning of time. Now, this scenario has

two implications for the present discussion. The first point concernes the Universe’s fate

and future: either it will stay expanded forever, or else it will collapse back to a Big

Crunch, depending on its density. If the former is true, there is an immediate asymmetry

associated with a finite past but an infinite future, and the question is provoked as to how

and why the Universe actually began. Moreover, given that this question might naturally

be rephrased as “what was it that changed and caused the Universe?”, it is remarked both

that the notion of ‘change’ itself implies a reference to an external time, and that the

concepts of cause and effect rely on a sense of before and after, whereas none of these are
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defined at the Big Bang.

Conversely, if the latter situation is true and the Universe will eventually collapse

back on itself, the conclusion may be drawn that either the Big Crunch is different to the

Big Bang, leading to another asymmetry, or that time is somehow reversed during the

contraction phase of the Universe. This second point is immediately undesirable, because

it could imply that entropy might decrease, stars would ‘suck in’ light, particles should

disappear from event horizons, etc.

The remaining implication of an expanding Universe scenario is that the frame of

reference in which it is expanding may be considered to be ‘preferred’. In this case, such a

frame’s time component could then naturally be linked with an absolute or universal time,

and this appears at odds with the generally accepted principles of relativity. Furthermore,

although such a hypothetical frame is often taken in the literature to be the frame in which

the Cosmic Microwave Background Radiation (CMBR) is isotropic, it is still debateable

as to whether this really provides a genuinely preferred frame; it is hence unclear as to

what the consequences of this might mean.

As discussed above, problems concerning time exist on the largest scales of physics.

However, difficulties also arise at some of the smallest scales.

As an example, it is noted that the equations describing elementary particles are

expected to be invariant under the combined operations of Charge conjugation, Parity

reversal and Time reversal (CPT). It appears to be an empirical fact, however, that the

decay of the electrically neutral kaons K0 and K
0
via the weak interaction appears to

violate Charge-Parity (CP) conservation, and so this decay is also expected to violate

time reversal if the overall CPT operation is to remain invariant. There is currently no

satisfactory explanation for this effect, and it is therefore believed by some physicists that

its investigation might shed light on the true nature of time.

Discussions of time, however, are not just limited to the scales of cosmology or fun-

damental particles. In fact, one important area of ‘everyday’ physics that exhibits time

asymmetry occurs in thermodynamics. Indeed, even from the outset, the equations of

thermodynamics do not obviously appear reversible: heat always flows from a hot body

to a cooler one.

Of course, the above observation may be phrased more precisely by stating that the

entropy of a system always increases with time. In other words, a system that is initially

macroscopically heterogeneous becomes microscopically heterogeneous (or, equivalently,

macroscopically homogeneous) over time. Moreover, the converse of this is not in general

true, and this has lead some authors to conject that it is such an effect that defines the

arrow of time. Thus, the ‘direction’ of increasing entropy is consequently taken to define
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the ‘direction’ of the increase in time.

Others authors [8], however, contend that classical entropy is, in fact, really reversible

(at least in principle), because its microscopic scale is still governed by deterministic kinetic

theory, and hence time symmetric laws. The argument is then that real irreversibility

only comes from quantum effects, by introducing a random ‘ingredient’ into an observer’s

knowledge of the kinematics. In short, because the particles’ positions and velocities are

ultimately indefinite in the quantum case, the argument is that they can no longer develop

deterministically. An irreversibility is therefore introduced into the dynamics, and it is

this that is eventually taken to provide a direction for the ‘flow’ of time.

So, the suggestion here is that it is quantum mechanics that ultimately provides an

explanation for the origin of asymmetric time.

The above comment introduces perhaps the most important conflict in the history of

the study of time.

Without exaggeration, much of fundamental physics in the Twentieth century was

founded on two great pillars, namely, relativity and quantum mechanics. Each of these

tremendous theories says something profound about the nature of time, and, moreover,

each is ultimately incompatible with the other.

Special and General relativity are based on the notion of coordinate time. In other

words, time is assumed to be a dimension, as real and linear as length, breadth and width.

In fact, the temporal parameter is placed on a completely equal footing to the spatial

coordinates, and this has led to a vision of physics existing in a four dimensional spacetime.

So, in the relativistic approach, spacetime is imagined to be a four dimensional ‘fabric’

which is then curved and distorted by the presence of matter. Moreover, the resulting

‘shape’ of this fabric may be described by a metric, and this is a continuous function of

the temporal and spatial coordinates. Physical objects consequently describe trajectories,

or worldlines, through this background arena of spacetime.

Thus, relativity adopts a ‘Block universe ’ perspective: time and space are effectively

equivalent, extended dimensions. It appears, moreover, to just be a ‘biological accident’

that humans appear to perceive a three dimensional space evolving temporally; according

to relativity, each of the temporal and spatial dimensions is just as special as the others,

with metric signatures providing the only difference.

Of course, this interpretation leaves a number of questions unanswered. Why does time

appear to be special for humans? Why can objects move back and forth in space with

complete freedom, but appear unable to travel backwards in time at all? Why can humans

only ‘go forwards’ in time at an apparently fixed rate? Indeed, why can an object not

remain at one position in time, just as it appears able to rest at a single spatial location?
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As an outcome of the association of time with dimension, in the Block universe ap-

proach past, present and future all exist in an equal way. The only distinction between

them, in fact, arises from the point of view of a particular observer: two observers in differ-

ent frames of reference witnessing the same set of events cannot necessarily agree on their

order. Specifically, an event that lies in the future of one observer (or more technically,

in the future lightcone of one observer) could be the present for a second observer, but

could lie in the past (lightcone) of a third observer. Thus, two events that may appear

simultaneous in one frame of reference may be temporally separated in a second

Moreover, this analysis then implies that the relativistic universe is effectively deter-

ministic: any object in such a universe has its future ‘mapped out’, because future events

on its worldline might be in the past of an observer in a different frame of reference. For

any given moment in the Block universe approach, the past exists just as much as the

present does, and a pre-determined future is already ‘out there’ waiting to be discovered.

In quantum mechanics, however, the situation is a little different.

In classical mechanics, on which relativity is based, it is acceptable to observe an object

and expect it to remain unchanged. Thus, two observers can not only measure the same

event, but they can also measure it simultaneously, confident in the knowledge that neither

is affecting or altering it.

In quantum mechanics, however, the same is not true: the act of measurement gen-

erally destroys the state under observation, and replaces it with a new state that is an

eigenvector of whichever operator is used to represent the test. Thus, quantum mechanics

provides another example of a situation in which physics behaves time asymmetrically.

Specifically, although in the absence of observation the evolution of a quantum state is

deterministic and time reversible according to the Schrödinger equation, the state vec-

tor reduction (or ‘collapse’) occurring at the act of measurement is time asymmetric: the

wavefunction discontinuously, randomly and irreversibly ‘jumps’ into one of the eigenstates

of the Hermitian operator used to test the state.

As a consequence of state collapse, quantum theory introduces a problem into the

earlier discussion on relativity. Namely, since by measuring a quantum object its state

is irrevocably changed, this act automatically specifies a definite ‘time of observation’.

Certainly, it could not be observed again in its original state by a second observer after it

has been altered. The temporal order of other events can then be compared to this known

moment, thereby implying a strict causal order.

Herein lies the problem. Consider two spacelike separated observers, Alice, A, and

Bob, B, and consider an ‘object’ initially prepared in a state O (which could, for the sake

of illustration, be imagined to be an entangled state extended across a large region of
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space). Consider also the point of view of Alice, and assume that if she were to measure

O, she would randomly change its state to Oa, which is one of the eigenvectors of some

test.

Now consider Bob’s point of view. To start, assume that the event representing the

measurement of the object by Alice is later than the event representing the measurement

of the object by Bob, from the perspective of a particular extended frame of reference (and

as given in the standard literature on relativity). Then, Bob would be able to measure

the state O, a course of action that could cause it to collapse to Ob. However, this would

then mean that Alice would be unable to observe the object in its original form O, and

would instead only be able to measure the changed state Ob.

Moreover, and by applying again the usual relativistic arguments, it could be the case

that in a different frame of reference, Alice and Bob are such that the event representing

the measurement of the object by B is later than the event representing the measurement

of the object by A. So, the conclusion would consequently be that Alice is able to measure

the object first, thereby changing its state from O to Oa, such that Bob cannot therefore

measure the object in its original form O.

The point is that each of Alice and Bob could believe that the event representing the

measurement of the object by the other observer is in their own personal future, from the

point of view of different frames of reference. Each would therefore believe that they could

measure O, consequently changing it, such that the other observer could only measure the

changed state. Clearly, this reasoning leads to a paradox1.

Now, the above problem would obviously not arise in classical physics. In classical

mechanics, the measurement of the object O by either A or B leaves it in the same

state O, such that the other observer may then also measure it in its original form. In

quantum physics, however, this is no longer the case, because only one of Alice or Bob may

measure the original state; the act of observation destroys the state, thereby enforcing a

strict, absolute and global causal order for the observation events. So, although classical,

relativistic arguments might suggest that neither of the spacelike separated observers can

fundamentally be said to measure a classical object first (because the order of such events

may be different in different frames of reference), such a symmetry is broken when quantum

effects are included. By incorporating quantum theory, a frame independent causal order

must be placed upon the events that represent the measurements of the object by the

1Relativity theory is in fact riddled with potential contradictions, the ‘Grandfather Paradox’ of closed

timelike curves in general relativity being a famous example. Perhaps these difficulties are themselves

sufficient to suggest that relativity does not provide a completely consistent paradigm for physics, and

highlights the general principle that just because something is mathematically possible, it does not make

it physical reality. Introducing ad hoc caveats such as Hawking’s Chronology Protection Theory do little

to avail these conclusions.
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spacelike separated observers, and this appears contrary to the standard principles of

special relativity.

In a Universe containing quantum mechanics, there cannot be a situation in which

in some frames A measures O and B measures Oa whilst in others B measures O and

A measures Ob; in reality, only one of A or B actually measures O, and this reality

is independent of the choice of frame. A conclusion, then, is that a relativistic, Block

universe approach to physics does not seem immediately compatible with the accepted

principles of quantum measurement.

A second difficulty faced by attempts to reconcile the principles of quantum theory

with those of relativity is that the existence of a ‘concrete’ past, present and future is

disputed in quantum mechanics.

The results of the Kochen-Specker theorem and the violation of the Bell inequality

(discussed in the next chapter), for example, conclusively demonstrate that prior to any

measurement, a quantum object cannot be described as possessing any fixed set of pre-

existing physical characteristics, such as those featuring in theories of classical Hidden

Variables. In physics, a quantum state does not have any pre-existing attributes just

waiting to be discovered by observers.

The point is that if a quantum object does not exist in any definite form prior to an

observation, its present cannot be given any real, concrete, definite existence. In particular,

if the Universe contains quantum objects, which it certainly appears to, it is not possible

to know everything about the moment of the present.

It is consequently difficult to imagine how the future could be granted such a status

either, because it is difficult to accept that the future is somehow ‘more real’ than the

present.

Specifically, then, if Charlie is a quantum object in the Universe, and if the Block

universe approach to physics were to be accepted, he would have to conclude that even

though according to the empirically verified laws of quantum mechanics his present is unde-

fined, unknown and unknowable, his future is somehow fixed, definite and pre-determined.

Clearly, this would be a strange position. Moreover, to accept such a conclusion would

also imply that the result of a measurement on a quantum object is deterministic, and not

the random, probabilistic outcome it is experimentally known to be.

Of course, it is perhaps not surprising that standard relativity runs into difficulties

when attempting to describe a Universe incorporating quantum principles. After all, his-

torically, Einstein’s theory of special relativity pre-dates Schrödinger’s quantum mechanics

by about twenty years.

The theory of relativity is based upon, and generally framed in terms of, the relation-
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ships arising between sets of classical observers as they witness classical events. But, the

overriding lesson learnt from quantum mechanics is that physicists’ notions of observation

must be radically redefined: measurements cannot be performed non-invasively, and sets of

observers cannot observe the same object in the same way. It consequently seems difficult

to believe how any theory based upon classical observation could really be taken to provide

a truly fundamental picture of a quantum reality, and this therefore obviously raises the

question as to whether the results and conclusions of classical relativity should ever be

accepted as completely reliable, at least as far as constraints on the ultimate physics of

the Universe are concerned.

Quantum theory taught physicists that, fundamentally, reality does not quite behave

as they thought it did. So, any theory originating from the pre-quantum era of science

can really only be an incomplete vision of a better, quantum perspective of physics, and

this includes any classical view or comment regarding the nature of time.

A Block universe interpretation of time is unable to account for quantum principles,

because such an approach assumes the presence of an ‘eternal’, pre-existing and fixed

past, present and future. The conclusion, then, is that the standard, Block universe vision

of physics that arises from relativity is fundamentally incompatible with the standard

principles of quantum theory. Consequently, if quantum mechanics cannot support such

notions, it is suggested that a Block universe model is not the correct way to analyse a

Universe that undoubtedly contains quantum objects. This perhaps explains why attempts

at deriving theories of quantum gravity by directly quantising classical general relativity

have predominantly been so unsuccessful.

In quantum theory only the moment of the present can be granted any real existence,

and even this is limited. Thus, instead of adopting a Block universe approach to physics,

quantum theory suggests that a ‘Process ’ interpretation of time is required; only ‘Now’

may be given any physical significance.

Moreover, in fact, any attempt to describe time and physics from a point of view that is

compatible with the empirically verified priciples of quantum mechanics must consequently

also assume this interpretation. It is therefore such a perspective that is adopted in this

thesis.

14



3 The Quantum Universe

One aim of this thesis is to investigate how the observed physics of the Universe, espe-

cially including the concept of a continuous time parameter, might arise from a certain

fundamental perspective of reality.

The obvious starting point is therefore to specify what this fundamental perspective

might be. In fact, the viewpoint discussed in this thesis will itself be shown to follow

quite naturally from considering a set of observations regarding the actual nature of the

Universe.

To this end, the intention of this chapter is to define, describe and, where necessary,

justify the observations, assumptions, consequences and conjectures present in the follow-

ing work.

3.1 Quantum Mechanics

The first observation is summed up by the following statement:

Quantum Mechanics is a valid theory.

In other words, the argument is that the ‘standard’ quantum theory of Bohr, Heisen-

berg, Schrödinger, Dirac et al is the correct theory to use when describing certain physical,

microscopic systems. Specifically, the implication is that a physical system may indeed be

represented by a complex, linearly superposed statefunction, that this state may undergo

unitary evolution in some sense, and that by measuring the state it is ‘collapsed’ into an

eigenvector of an observable represented by an Hermitian operator.

The evidence cited to justify such a statement is the overwhelmingly universal success

of quantum theory in science. In chemistry and biology, for example, quantum equations

have allowed scientists to confidently model the properties and reactions of many types

of molecule and atom. In high energy physics, the development of quantum field theory

has allowed physicists to accurately predict the characteristics of particles that may not

have existed since the era of the Big Bang. Even in the everyday world, the essential

21st Century technologies behind optical telecommunication and computer science would

not work if it were not for an understanding of the quantum laws governing the laser and

silicon chips.

A mathematical demonstration of the validity of quantum mechanics was provided by

J. S. Bell [9], based on an analysis of the correlations produced in a system similar to that

described in the thought experiment proposed by Einstein, Podolsky and Rosen [11]. A
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number of derivations of Bell’s result are available in the literature; the approach outlined

below roughly follows the treatment given in [12] and [13].

Consider the decay of a spinless, neutral pion into an electron-positron pair π0 −→ e−+

e+. Electrons and positrons possess spin components of ±1
2 (denoted by ‘up’ and ‘down’,

or equivalently ‘+’ and ‘-’, in some frame), so by conservation of angular momentum, a

spin-up electron is partnered by a spin-down positron, and vice versa. Consider also a

frame of reference F parameterised by Cartesian coordinates (x, y, z). With the aid of a

suitably orientated Stern-Gerlach apparatus, it is possible to measure the component of

angular momentum of either electron or positron in any direction in F .

Bell’s argument is the following. If the system ultimately obeyed classical instead of

quantum mechanics, the assertion would be that after the decay of the pion the electron

and positron would each have definite and independently measurable angular momenta,

pointing in the general directions n and −n respectively. It would also be possible to

non-invasively measure the same particle many times to obtain its component of angular

momentum in any direction.

Consider measuring the spin of such a ‘classical electron’ in three different directions

a, b and c, noting that a, b and c need not be perpendicular. If, without loss of generality,

it may be assumed that n is not orthogonal to any of a, b or c, the component of n in

each direction will either be +ve or −ve. So, by measuring the electron’s spin first in

the a-direction, then the b-direction, then the c-direction, the overall result will be one

of eight possibilities: {a result, b result, c result} = {+,+,+} or {+,+,−} or {+,−,+}
or {+,−,−} or {−,+,+} or {−,+,−} or {−,−,+} or {−,−,−}. If the orientation of n

is random and may point in any direction, then depending on the choice of a, b and c,

each of these eight results has a certain probability P{±,±,±} of occurring, with total

probability summing to unity.

Consider now a measurement of the electron by a Stern-Gerlach apparatus orientated

along one of the directions a, b or c, followed by a measurement of the positron by a second

Stern-Gerlach orientated along a different one of the directions a, b or c. If Pc(+a,+b) is

defined as the classical probability that the component of the electron’s spin along a is

found to be +ve and that the component of the positron’s spin along b is also found to

be +ve, then by conservation of angular momentum Pc(+a, +b) is equally defined as the

probability that the component of the electron’s spin along a is +ve but its component if

measured along b would be −ve. Note that this is clearly a classical result, as expected,

because the implication is that two spin components of the electron have been measured

even though it is only disturbed once.
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By considering the eight possibilities given above, Pc(+a,+b) is given by the sum

Pc(+a,+b) = P{+,−,+}+ P{+,−,−}, (3.1)

which reflects the experimenter’s ignorance of the spin component of the electron (or

positron) in the direction of c. Similarly the relations Pc(+a,+c) = P{+,−,−}+P{+,+,−}
and Pc(+b,+c) = P{+,+,−}+ P{−,+,−} are readily obtained.

The results may be summed,

Pc(+a,+b) + Pc(+b,+c) = {+,−,+}+ {+,−,−}+ {+,+,−}+ {−,+,−} (3.2)

= {+,−,+}+ Pc(+a,+c) + {−,+,−},

such that, since all probabilities are positive, it is possible to produce the classical inequal-

ity

Pc(+a,+b) + Pc(+b,+c) ≥ Pc(+a,+c). (3.3)

So, if the system is governed fully by classical mechanics, i.e. if prior to any measure-

ment the electron definitely possesses angular momentum in the direction of n, then any

set of measurements must necessarily satisfy this relation. That is, if the spin components

of the correlated electrons and positrons in a large number of identically prepared systems

are measured along any set of directions a, b and c, the classical probabilities evaluated

from the statistics of the results would obey the inequality (3.3).

However, it may be shown that if the electron-positron pair instead obey the laws of

quantum mechanics, the probabilities of obtaining certain results may violate this inequal-

ity.

In quantum theory, a system does not have any pre-existing or definite properties prior

to an observation. Before a measurement, a particle’s component of angular momentum

only has the potential to be either +ve or −ve in some direction, and it is the measurement

itself that forces the system to ‘choose’ one of these states to collapse into. In this sense,

therefore, it may be said that prior to an observation each particle is in both potential spin

states simultaneously, and the system is represented by an entangled state |ψ〉 described
in obvious notation by the antisymmetric linear superposition

|ψ〉 = 1√
2
(|↑〉e⊗ |↓〉p− |↓〉e⊗ |↑〉p) (3.4)

where, for example, |↓〉p represents the state of a positron that is spin-down in some

direction.

Now, a measurement of the spin of either the electron or positron destroys the en-

tanglement. If, for example, the electron is measured and found to be in the state |↑〉e,
it can obviously no longer be described as potentially being in the state |↓〉e, and the
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wavefunction of the electron-positron system collapses to |φ↑〉 =|↑〉e⊗ |↓〉p. Subsequent
measurements of the spin of the positron in this direction, with its state now prepared as

part of this new state |φ↑〉, must then produce the result |↓〉p.
Alternatively, if the first measurement had instead found the electron to be in the

state |↓〉e, it would imply a collapse of the initial entangled state into the product state

|φ↓〉 = |↓〉e⊗ |↑〉p, and later observations of the positron would find it to be spin-up in this

direction, |↑〉p.

Consider now the quantum probability P (+a,+b), defined analogously to the classical

probability Pc(+a,+b). In quantum mechanics, the evaluation of this requires two mea-

surements to be performed on each of a statistical number of identically prepared systems:

firstly the electron’s spin is measured in the direction of a, and secondly the positron’s

spin is then measured in the direction of b. Consequently, this process necessarily involves

a collapse of the initial entangled state |ψ〉 into a product state |φ〉 when the electron

is measured, followed by a projection of the ‘positron part’ of this new state |φ〉 in the

direction of b when the positron is measured. The overall result P (+a,+b) is then given

by the products of the probabilities obtained from these two measurements.

To illustrate how this may be achieved, consider a particular choice of the vectors a

and b. For simplicity, and without loss of generality, a may be chosen to lie in the direction

of the z-axis, and b may be chosen to be a vector in the x−z plane that subtends an angle

θab to a (or z). When the electron is measured, and its spin component in the direction of

a is found to be either +ve or −ve, the entangled state2 ψ collapses into either the state

|a+〉 = |+〉e ⊗ |−〉p or the state |a−〉 = |−〉e ⊗ |+〉p. Clearly, the probability that the spin

of the electron is found to be +ve in the a direction is 1
2 , because both the states |a+〉 and

|a−〉 are equally likely, as is evident from the initial entangled state.

For later convenience, note that |+〉 may alternatively be written in the matrix form
(
1
0

)
, whilst |−〉 may be written as

(
0
1

)
.

The operator Ŝθab representing the subsequent measurement of the positron by the

Stern-Gerlach apparatus orientated along the direction b, i.e. at an angle θab to the z-

axis, is given by

Ŝθab = Ŝz cos θab + Ŝx sin θab (3.5)

where Ŝz = 1
2~σ̂z, Ŝx = 1

2~σ̂x and σ̂z and σ̂x are the Pauli spin matrices in the z and x

directions with matrix representations

σ̂z =

(
1 0

0 −1

)
and σ̂x =

(
0 1

1 0

)
. (3.6)

2Where no confusion is likely to occur, the notation for vectors, such as ψ, and quantum states, such

as |ψ〉, will be used interchangeably throughout this thesis, i.e. ψ ⇔ |ψ〉.
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So, Ŝθab is given by

Ŝθab =
~
2

(
cos θab sin θab

sin θab − cos θab

)
, (3.7)

which has eigenvalues +~/2 and −~/2 corresponding to eigenvectors |b+〉 =
(cos(θab/2)
sin(θab/2)

)

and |b−〉 =
(− sin(θab/2)

cos(θab/2)

)
respectively. The eigenstate |b+〉 is parallel to b, i.e. has a +ve

component in the direction of b, whereas |b−〉 is anti-parallel with a −ve component.

The overall process may now be summarised. An initial entangled state ψ is collapsed

into either the state |a+〉 or the state |a−〉 when the spin of the electron is measured in

the direction a. If the electron’s spin component is found to be +ve, corresponding to

the state |a+〉, then the subsequent measurement of the positron will leave the electron-

positron system in either the state |+〉e ⊗ |b+〉 or the state |+〉e ⊗ |b−〉. Alternatively, if
the electron’s spin component is found to be −ve, corresponding to the state |a−〉, then
after the measurement of the positron the electron-positron system will be in either of the

states |−〉e ⊗ |b+〉 or |−〉e ⊗ |b−〉.
With the above in mind, it is possible to rewrite P (+a,+b) as the probability of

obtaining the state |a+〉 when the electron is measured, given that before this measurement

the system is in an entangled state of the form ψ,multiplied by the probability of obtaining

the state |b+〉 when the positron is subsequently measured, given that its state before this

second measurement is now |−〉p. This latter probability is

|〈b+|−〉p|2 =
∣∣∣∣(cos(θab/2) , sin(θab/2))

(
0

1

)∣∣∣∣
2

= sin2
(
θab
2

)
(3.8)

which leads to an overall probability P (+a,+b) = 1
2 sin

2(θab/2).

By a similar argument, it can be shown that P (+a,+c) = 1
2 sin

2(θac/2) and P (+b,+c) =
1
2 sin

2(θbc/2), where θac is the angle between a and c, and θbc is the angle between b and

c.

Now, if quantum theory is really a disguised version of classical mechanics, the proba-

bilities derived from treating the electron-positron system according to quantum principles

should obey the same constraints (3.3) as those derived from a classical treatment of the

system. However, whilst the classical inequality (3.3) holds, the relation

sin2
(
θab
2

)
+ sin2

(
θbc
2

)
≥ sin2

(
θac
2

)
(3.9)

formed by substituting the above quantum probabilities into (3.3) generally does not. For

example, if a, b and c lie in a plane with θab = π/3, θbc = π/3 and θac = 2π/3, then (3.9)

becomes 1
4 + 1

4 ≥ 3
4 , which is clearly false. So, for quantum systems

P (+a,+b) + P (+b,+c) £ P (+a,+c) (3.10)
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Thus, it may be argued that quantum and classical mechanics are fundamentally in-

equivalent in that they predict different results. The constraints placed by classical me-

chanics on a system, calculated by scientists as relationships between sets of probabilities

of obtaining particular sets of results, are not present if the system is instead governed by

quantum theory.

Importantly, it has also been empirically shown that such violations of the classical

Bell inequalities occur in physics. Experiments with entangled pairs of photons [14] have

yielded results that agree with quantum mechanics to better than 1%, but violate the Bell

predictions of classical mechanics by 35%.

Summarising, the work of [9] and [14] has demonstrated that quantum theory is not

equivalent to classical mechanics, but that physics obeys quantum principles. From such

an viewpoint, all theories that suggest that quantum mechanics is simply a disguised

theory of classical probability are ruled out, as are any theories pertaining to classical

Hidden Variables. Such mechanisms will not be discussed further in this work.

The conclusion of this sub-section is that in order to describe certain physical, micro-

scopic systems, it is quantum mechanics, and not classical, that is the correct and valid

theory to use.

3.2 Quantum Cosmology

The second observation regarding the empirical nature of the Universe is the following:

There is no ‘Heisenberg Cut’ in physics.

There is no rigid dividing line that segregates the quantum experiment being observed

with the scientist doing the observing. There is equally no dividing line setting a scale

beyond which quantum mechanics is no longer valid. Whilst most physicists readily accept

that every microscopic sub-system in the Universe obeys the rules of quantum mechanics,

there has never been demonstrated a definite macroscopic size or scale where quantum

laws cease to be the correct theory of dynamics in favour of more fundamental classical

laws.

As an example of this, it has even been shown that huge macroscopic objects such as

quasars can give rise to observable quantum effects [15]. If on the line of sight between

a distant quasar and the Earth is some sort of massive body, such as a galaxy, the grav-

itational lensing of the quasar’s light induced by this body may give rise to interference

patterns analogous to those arising in a Young’s double-slit type device. Even if the quasar

is sufficiently distant and dim such that a telescope on Earth only registers one photon
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at a time, the interference fringes still arise, implying that the entire Earth-body-quasar

system is behaving like a huge quantum ‘Which-path’ experiment.

So, if the Universe that physicists observe appears to be an enormous collection of

microscopic sub-systems, i.e. is composed of protons, electrons etc., and if each of these

microscopic sub-systems obeys quantum mechanics, and if there is no Heisenberg Cut

directly separating these sub-systems from each other or the observer, and if the size

of a system does not fundamentally affect whether it runs according to quantum laws,

the conclusion drawn is that the entire Universe is itself a giant quantum system. The

conjecture, therefore, is that the principles of quantum mechanics may be applied to the

Universe as a whole3.

If this conjecture is true, it should then be possible to write down a unique quantum

wavefunction Ψ for the Universe that describes its large scale properties and evolution as

a whole (c.f. [16][17][18][19]). This quantum state must be complicated enough to not

only model a vast, intricate and expanding cosmos, but also to describe a universe that

appears to be comprised of an enormous number of microscopic quantum sub-systems.

Further, it must also allow physical observers, who believe themselves to be isolated clas-

sical states that are inside the Universe they are trying to understand, to experience and

measure an apparently classical reality. Classical physics must therefore be a emergent

phenomenon which is somehow borne from the quantum theory as an approximation on

certain, presumably macroscopic, scales. The true quantum nature of reality should al-

ways be present, but will only demonstrate itself in complicated experiments designed

to investigate very refined circumstances. Any formulation of the wavefunction of the

Universe must somehow take account of this.

Further, every large scale characteristic of the Universe, and every physical property of

every sub-system it contains, must be accounted for in any formulation of Ψ. If the wave-

function of the Universe describes everything, then space, time, energy, particle physics,

and even semi-classical human observers must all emerge somehow from considerations of

the properties of this quantum state.

It is therefore a job for physicists to attempt to discover what the Universe’s state-

function might be like. Now, whilst this task may appear overwhelmingly daunting, by

extending the principles of standard quantum mechanics, a number of inferences can be

drawn about the nature of a fully quantum universe.

3As an aside, note that there is also no known evidence for what could analogously be called a “Heisen-

berg TimeÔ in astronomy: many cosmologists conjecture that just after the Big Bang the entire Universe

should be represented by a quantum state, but no explanation is generally given as to exactly when the

Universe should then stop being treated according to quantum principles.

The assertion proposed here is that it should not.
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Firstly like all states in conventional quantum theory, the wavefunction Ψ must be a

vector in a Hilbert space H.

Secondly, given that by definition there is only one Universe, there can be no classical

confusion as to which state it is in. Thus Ψ cannot be a mixed state of a classical en-

semble of Universes, because such a concept is obviously contradictory. Consequently the

wavefunction Ψ must always be a pure state.

Thirdly, the Hilbert space H containing the statevector representing the Universe must

be of truly enormous dimension. One justification here is that classical physics has been

ascribed to be an emergent approximation to quantum physics on certain scales, and the

physical classical Universe seems to possess an almost uncountable number of degrees of

freedom.

In fact, as a näive lowest estimate of this dimension, consider the suggestion of many

authors that there exists a certain minimum unit of spatial separation beyond which

it is meaningless to discuss notions of classical distance. This resolutional limit is often

assumed to be of the order of the Planck length, lP =
√

~G/c3 ∼ 10−35 metres, and marks

the boundary of where space is assumed to no longer behave classically and continuously.

Thus, given an empty universe of age τU = 15 × 109 years expanding spherically at the

speed of light, c, the current number, n, of Planck volumes in the physical universe is

given by

n =
4
3π (cτU )

3

(lP )
3 ≈ 10184. (3.11)

Now, if with each of these minimum spatial volumes is associated just a single two-

dimensional degree of freedom, then the total number of accessible classical states for

the universe is clearly 210
184

. So, even in the simplest quantum model, the state vector

representing the universe must have a dimension of at least 210
184

if the classical degrees of

freedom are expected to emerge somehow from a more fundamental quantum description.

Whilst the dimension of the Hilbert space H must be huge, it is still assumed in this

work to be finite. This assumption is based, in part, from a desire to free the dynamics

from some of the problems inherent in infinite dimensional models of physics. In quantum

field theory, for example, the ultraviolet and infrared divergences occur specifically because

the momentum space is unbounded. In addition, this infinite dimensional theory presents

conceptual difficulties when confronted with the underlying physics: a scientist performing

a calculation in quantum field theory should perhaps ask exactly what the notion of a

particle of, say, infinite momentum may mean in a physical universe of bounded size and

energy. This strongly echoes the ideas of Feynman [20], who questioned the validity of

any infinite theory contained in a Universe of finite volume.

From this point of view, it therefore makes sense to remedy the problem at the outset

by limiting the size of the Hilbert space to a finite dimension. Realistically, this should
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not prove to be a problem so long as it is still sufficiently large such that every possible

physically observed phenomena may be accounted for.

The fourth inference that may be drawn from an extension of the standard principles

of quantum mechanics for the state of the Universe concerns its dynamics.

In the Schrödinger picture of conventional quantum theory, a given statevector ψ may

be developed in two different types of way. The first way is evolution by an unitary

operator û, which may be thought of as a length preserving ‘rotation’ of the vector in its

Hilbert space, i.e. ψ → ψ′ = ûψ for |ψ| =
∣∣ψ′∣∣ = 1. The second way is by state reduction,

in which the wavefunction is ‘tested’ in some sense by an Hermitian operator ô. The initial

state then ‘collapses’ or ‘jumps’ to a new state, which is one of the eigenstates of ô.

In fact, in the conventional, semi-classical treatment of the Universe, a physical sub-

system described by quantum mechanics often develops through a series of evolutions

and state reductions. Consider, for instance, a possible “day in the life” of a single elec-

tron. A free electron may be created and subsequently allowed to evolve according to the

Schrödinger equation. The electron may propagate as a wave, until a later time when it

is measured by some sort of apparatus and observer. As an example, if the apparatus

involves a Stern-Gerlach device, the measurement process will lead to a collapse of the

electron’s wavefunction into one of the spin eigenstates associated with the Stern-Gerlach’s

orientation. Whichever of these two eigenstates the electron collapses into is then taken

to represent the new state of the electron. The measurement is hence equivalent to a

preparation of an electron in either a spin-up or spin-down state, in a particular direction.

The electron, now in a definite spin eigenstate, may then be allowed to evolve for

another length of time until a further measurement occurs. As an example, the scientist

controlling the experiment may decide that this second measurement also involves a Stern-

Gerlach apparatus. Of course, if this second apparatus is orientated in the same direction

as the first, the result will certainly leave the electron in the same eigenstate as before.

In this case, the second measurement is equivalent to a null test on the electron because

the state is left unchanged and no new information has been extracted from the system.

Alternatively however, if the second apparatus is instead orientated at some angle to the

first, then when the electron is measured it will collapse into a different spin eigenstate,

with a probability dependent on the relative angle between the axes of the two Stern-

Gerlach devices.

Summarising, then, in this example a state representing a free electron has evolved,

before collapsing to a state with a definite spin component, which has then itself been

evolved, before collapsing into another state with a different spin component. Obviously,

the electron may then subsequently go on to be involved in any number of further tests.

Or course, the development of a single electron state may appear to be a particularly
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specialised or contrived example. However in the real Universe, this sort of sequence goes

on all the time. As an illustration, it should be recalled that whenever somebody switches

on a light-bulb they are effectively starting a long chain of quantum processes, the outcome

of which is the preparation of an ensemble of quantum states that propagate until their

eventual measurement by the person’s eye. In fact, this measurement itself usually goes

on to cause many different subsequent chains.

The above process may consequently be generalised: a quantum system initially pre-

pared by a physicist in a state ψn may proceed through a series of evolutions ûn and

tests ôn+1, for n = 0, 1, 2, ... . The unitary operators ûn that evolve the state are generally

governed by the Schrödinger equation and may be of the form ûn = e−i Hnt, where Ĥn

is the Hamiltonian and t is a continuous time parameter as measured by the observer.

The exact forms of the Hermitian operators ôn+1 are chosen by the physicist depending

on what she hopes to investigate, for instance in the above example by which particular

component of spin is of interest. The system thus develops through a series of distinct

steps: a state ψn may be evolved into a state ψn → ψ′
n = ûnψn, which is tested by an

operator ôn+1, and therefore collapses into the next state ψn+1 which is one of the eigen-

states of ôn+1. This new state ψn+1 may then be evolved by the operator ûn+1 to the state

ψn+1 → ψ′
n+1 = ûn+1ψn+1, which is then tested by an operator ôn+2, thereby collapsing

it into the next state ψn+2 which is one of the eigenstates of ôn+2. And so on.

Any quantum experiment necessarily involves the concepts of state preparation, evo-

lution, and measurement. However it is only the state reductions that are physically

observed, and so it is only these collapses that can, in any real sense, be given a physical

significance. This is in agreement with the conclusions of the Kochen-Specker theorem

[21] (see also [22] for a review) and the results of Bell, which both demonstrate that before

a quantum state is measured it cannot be said to have any physical attributes, such as a

definite position or momentum. The observed properties of a state do not have pre-existing

values waiting to be discovered, rather it is the actual measurement procedure and the

collapse of the state that allows physicists to discuss them. This stance was summed up by

Wheeler [15]: “No elementary phenomenon is a phenomenon until it is a registered

(observed) phenomenon”.

The collapse of the wavefunction necessarily involves an element of change, which in

turn implies an extraction of information about the state. This, after all, is the purpose of

experimentation. Certainly, for example, the measurement of a system does not decrease

the physicist’s knowledge of it, and it is only by performing a null test on the state of

the type described earlier that the physicist’s knowledge remains the same. An important
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point to gain from the above example is therefore that the electron’s development may, in

some sense, be parameterised in terms of information extraction.

Two conclusions may be drawn from this. Firstly, because state reduction is manifestly

a discrete process, the information is similarly extracted in discrete manner. It is this fact

that justifies the subscript n on the state ψn (and hence on the operators ûn and ôn+1),

because it is possible to directly associate the state ψn with the result of the nth collapse.

Secondly, it is noted that the ‘direction’ of state reduction and information extraction

is equivalent to the observed ‘direction’ of time in physics. This follows immediately

from the logic that the state ψn−1, resulting from the (n − 1)th test represented by the

operator ôn−1, must certainly have existed after the state ψn−2 but prior to the state ψn.

Consequently, the sub-script n may also be seen as a type of discrete temporal label. Thus

from the point of view of the state, time is a marker of the process of state reduction

associated with information extraction. This point will be discussed to a great extent

later.

By extending the standard principles of quantum theory to the Universe as a whole,

the dynamics of the quantum universe are assumed to closely follow the above analogy of

the dynamics of the developing electron. One important difference, however, is that any

choice of test and any measurement of the Universe’s state must be made by the Universe

itself, and not by some external physicist. This is a consequence of the fact that if, by

definition, the Universe does indeed contain everything, the conclusion is that there can

be nothing ‘outside’. Thus, if it is ‘closed’ in this way there can be no notion of any sort of

external observer engaged in the process of evolving or measuring its state. The Universe

must hence be the perfect example of a self-developing system.

As in the case of the electron sub-system, the development of the state Ψ of the

Universe is a discrete process due to the discontinuous nature of the collapse mechanism.

It is permissible, therefore, to label the state immediately after the nth collapse as the nth

state Ψn. Further, it is the ability to label the state in this way that will be shown to be

the origin of time in the quantum Universe. For now, however, it is noted that time is

ultimately a discrete phenomenon in a universe running on quantum principles, providing

perhaps a natural starting point for future theories of quantised gravity.

The quantum dynamics of the Universe is the way its state changes from Ψn → Ψn+1 →
Ψn+2 → Ψn+3 → ... Moreover, and as with the above electron example, the mechanism

governing this dynamics is, at least in principle, fairly simple.

First, note that for the sake of clarity, it is possible to imagine describing the system

from the hypothetical point of view of an observer outside of the Universe, watching the

state change. Although such a point of view is fundamentally unphysical, it is adopted for
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convenience, and justified by the condition that the external observer does not interact

with the Universe’s state in any way. Thus, such a privileged witness is allowed to observe

the Universe in a completely non-invasive way.

At the nth stage of the Universe’s development, its state may be represented by the

unique vector Ψn. This wavefunction may then be evolved with some sort of unitary oper-

ator Ûn, i.e. Ψn → Ψ′
n = ÛnΨn, before being ‘tested’ by an Hermitian operator Σ̂n+1. The

‘testing’ process is irreversible and the state Ψ′
n collapses into one of the eigenstates Φi

n+1

of Σ̂n+1. In fact in general, the operator Σ̂n+1 will possess D orthonormal eigenvectors,

labelled Φi
n+1 for i = 1, ..., D, where D is the dimension of the Hilbert space H of Ψn,

∀n. From this it follows that Σ̂n+1, and indeed Ûn, may both be represented by D × D

matrices for all n.

The relationship between Φi
n+1 and Σ̂n+1 obeys the usual eigenvector equation, viz.,

Σ̂n+1Φ
i
n+1 = λiΦi

n+1, (3.12)

where λi is the eigenvalue of the ith eigenvector Φi
n+1 of Σ̂n+1.

Further, given a state Ψ′
n, the probability P (Ψn+1 = Φj

n+1|Ψ′
n) that the next state

Ψn+1 will be a particular eigenvector Φj
n+1 of Σ̂n+1 is determined in the usual way as the

square of the modulus of the probability amplitude, i.e.

P (Ψn+1 = Φj
n+1|Ψ′

n) =
∣∣∣〈Φj

n+1|Ψ′
n〉
∣∣∣
2
. (3.13)

The forms of the operators Ûn and Σ̂n+1 are discussed later.

The result Φj
n+1 of the test Σ̂n+1 is now associated with the preparation of a new state

Ψn+1, which is subsequently evolved by an operator Ûn+1 to the state Ψ′
n+1 = Ûn+1Ψn+1,

before being tested by an operator Σ̂n+2 and collapsing to one of its D orthonormal

eigenvectors Φi
n+2, i = 1, .., D. And so on.

Summarising, the Universe runs as an automatic process of state preparation, evolution

and collapse. To this end, the Universe is envisaged to be a completely self-contained

quantum automaton.

As noted earlier, if the Universe contains everything, there can be no notion of any

sort of external observer engaged in the process of developing or measuring its state. At

first glance, therefore, this may appear at odds with the traditional quantum mechanical

tenets of state preparation and testing, and this has prompted some authors to criticise

the possibility of a completely quantum universe. In fact, there are three obvious points

that need addressing in any attempt to treat the Universe as a closed quantum system.

Firstly, if there are no external observers, then, as argued by Fink and Leschke [23],

how can the Universe be measured? In what sense, therefore, can it be described as a

quantum system?
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Secondly, and again from [23], if there is only one Universe and it only ‘runs’ once,

what is the meaning of statistically derived probabilities of the form (3.13)? In particular,

by definition a description of the Universe’s state must involve a description of everything

contained within it. Moreover, any measurement of the state of the Universe by some sort

of detection apparatus necessarily changes the detector’s state. But, since this apparatus

is part of the Universe, such a measurement immediately implies that the state of the Uni-

verse is itself changed during this procedure. It is consequently impossible to measure the

same state of the Universe twice. So, from the point of view that quantum mechanics deals

with the probability distributions of the results of repeated measurements of observables

(either the same state measured a number of times, or a number of identical states each

measured once) the argument of Fink and Leschke is that the rules of quantum mechanics

are not applicable to the universe as a whole.

It is also noted that in conventional quantum theory, states evolve according to the

time dependent Schrödinger equation. Thirdly, then, if there are no external parameters

such as time, how does the Universe evolve as a quantum state?

These points will be discussed briefly here, though their explanations will become

clearer throughout the course of this work, and particularly in Chapter 8. In general,

the lesson learnt is that care is needed when directly applying the quantum mechanics of

states in the laboratory to the special case where the state in question is the state of the

entire Universe.

The standard principles of quantum mechanics were discovered by physicists based on

laboratory observations of relatively tiny sub-systems of the universe, for example from

the photoelectric effect induced in a small lump of metal, or the measurement of the spin

of a single electron. The typical approach to an experiment involving quantum principles

is to draw a dividing line between the observer and the observed: the scientist produces

an isolated quantum state, allows it to evolve, and then chooses an Hermitian operator

with which to test it. Whilst this is manifestly a semi-classical construction, it is normally

a fairly accurate analysis because the scientist is sufficiently large such that classical

mechanics provides a good approximation, and it is not always difficult in practice to

produce a quantum state that is effectively isolated from the rest of the universe.

However, any semi-classical treatment can only ever be just an approximation to a

reality that is fully quantum in nature. After all, recall that the quantum state under

investigation can be arbitrarily large. From this point of view it is in principle possible

to segregate the universe into two parts: the observer sub-system, and the sub-system

comprising everything else. Given that it is possible to treat the ‘everything else’ sub-

system as a quantum state, it seems unreasonable to expect that the Universe is really a

semi-classical product of an enormous quantum sub-system containing everything apart
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from a single classical observer.

Be that as it may, such an approach of an observer standing outside of the experiment

being observed could be described as exo-physical. It is from this context that the usual

rules of quantum mechanics were determined, including in particular those contributing

to the conventional ‘Measurement Problem’.

However, what this approach does not take into account is the fact that the physicists

performing the experiments are themselves an integral part of the Universe they are trying

to analyse. From this perspective, a laboratory experiment is actually equivalent to one

part of the Universe measuring another part. Consequently, whether the true nature of

the Universe is fundamentally quantum, classical or anything else, it must be an example

of a system that is able to examine itself. This is therefore an endo-physical perspective,

in which the observer is part of the system being observed.

The point is that what a physicist may conventionally believe to be an exo-physical

measurement of a quantum sub-system of the Universe by an apparently external semi-

classical observer, should perhaps really be viewed as an endo-physical measurement of

one part of the Universe appearing to observe another part of itself. Thus, such a self-

referential quantum system may not necessarily be restricted to quantum dynamics relying

on external observers, because the dependence of the standard laws of quantum mechanics

on external observers was only ever derived from the potentially incomplete viewpoint of

exo-physical analyses of physical phenomena. These laws may therefore not be directly

applicable to the Universe as whole. If the dynamics of the state should instead be

described from an endo-physical point of view, the Universe must be a quantum system

that relies on internal observations; there is hence neither a need nor a place for an external

observer to measure and collapse the state.

Of course exactly how a quantum universe observed from the inside by endo-physical

observers may give rise to internal Measurement problem type phenomena, such as emer-

gent semi-classical physicists believing they are observing an external quantum reality, is

a difficult question to be addressed. In fact, the endo-physical measurement problem is

discussed more fully in Chapter 6, whilst in Chapter 8 some simple toy-models are given

that describe how a simple endo-physical dynamics may be achieved.

For now, however, note that in answer to the criticism of a fully quantum universe

given in [23], an analogy is drawn with the argument of Gödel [24] (see also [25][26]) that

it is impossible to determine whether a given set of mathematical rules is self-consistent

using just those rules alone. Whilst this may be the case, it does not imply that the rules

themselves are wrong, merely that it is problematical to demonstrate their validity from

the ‘inside’.

Overall, if the Universe must be described by quantum principles, yet cannot support
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any external observers, the conclusion must be that it is somehow able to prepare, evolve

and test itself. Further, these measurements are made by different sub-systems inside the

Universe, and indicate a relative change between them. This point will be discussed in

due course.

Fink and Leschke’s second argument is philosophically identical to asking about the

meaning of the probability of obtaining a particular random result from a set of possibilities

if an experiment is only ever performed once.

Consider as an example a classical coin toss experiment, noting that similar restrictions

apply to any other physical situation, from atomic decays to measuring the spin of an

electron. Ignoring the possibility of the coin landing on its edge, it may be generally

accepted that the probability of getting a ‘heads’ result is equal to the probability of getting

‘tails’, that is 1
2 . This probability, however, only arises from a mathematical abstraction.

To actually be empirically sure of the probability either requires the same coin to be tossed

an infinite number of times, or an infinite number of coins to be tossed once. Of course,

this in unphysical. In the first instance, it would take an infinite length of time to get the

result. Additionally, each flip would undergo slightly alternative conditions, from different

initial forces, to miniscule air currents, or even the possibility of being deflected slightly by

a stray photon. It is even debateable as to what condition the coin would be in after it had

been struck a million times. In the second instance, it could not be ensured that all the

coins were identical or flipped under the same conditions. Equally, an infinite number of

coins would require an infinite space and would possess an infinite mass, and so, according

to general relativity, would curve infinite space infinitely.

Nevertheless, such an incomplete knowledge does not prevent a probability measure

being placed on any result. Instead, the probability is defined relative to obtaining a

particular result from a certain number of given conditions. It may be asked, for example,

what the probability is of obtaining a head, given that there are two potential outcomes and

that the system is not biased towards either one of them. In this sense, the probability is

defined as 1
2 . The corresponding unphysical situation is consequently imagined implicitly,

by assuming that if an infinite number of coins were tossed under identical conditions,

then 1
2of them would come up heads. If, however, a coin is only ever flipped once and

gives a heads result, it is not immediately concluded that the result was deterministic, and

that probability may not be used.

The same is true in quantum cosmology. In the case of the Universe represented by

the state Ψn, the probability is defined relative to the set of D potential future states

Ψn+1 = Φi
n+1, for i = 1, ..., D, that are the D normed eigenvectors of the operator Σ̂n+1.

Again, it is possible to devise hypothetical situations in which if an infinite number of

identical universes in the state Ψn were measured, then a fraction |〈Φj
n+1|Ψn〉|2 of them
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would give the particular result Φj
n+1, but this is just an attempt to attach empiricism onto

a mathematical definition. Probability in the Universe is synonymous with potentiality;

the fact that only one of these eigenstates is actually realised as the next state Ψn+1

does not mean that the universe proceeds deterministically, any more than if the spin

component of just one electron is measured and found to be ‘up’ it implies that the

electron must be described using classical hidden variables. Indeed if the Universe is not a

random, quantum system, the question would remain as to how it could therefore evolve

deterministically given that the component quantum sub-systems of which it is comprised

are clearly stochastic.

As will be expanded upon in the following chapters (particularly in Chapters 5 and 8),

continuous time is taken to be a phenomenon that emerges in a fully quantum universe

as its state proceeds through a long series of evolutions and collapses. Physical space,

and the momenta and energies etc. of particular sub-systems, will also be shown to

originate from considerations of the properties of this state Ψ, which is assumed to obey

the laws of conventional quantum dynamics. However, whilst conventional quantum states

in the laboratory evolve according to the continuous time Schrödinger equation in a way

dependent upon their Hamiltonians, if the Universe is taken to possess no intrinsic concepts

such as time or energy, exactly what role the Schrödinger equation plays in its evolution

becomes an important question.

In response to this third criticism of quantum cosmology, it should be recalled that

the nth state Ψn of the Universe as discussed so far is simply defined as nothing but a

vector in a Hilbert space H. Its development is consequently only meaningful in terms of

mathematical mappings of this vector, for example by norm preserving ‘rotations’ due to

unitary evolutions, or by discontinuous jumps into another vector in H that is one of the

eigenstates of an Hermitian operator. Care must be taken, therefore, not to attach to this

state too many of the notions normally associated with emergent physical concepts, such

as direct questions of how ‘spatially long’ this vector might be or how much ‘mass’ it has.

In fact, exactly how the state could ultimately give rise to physics is a central theme of

this thesis.

Recalling the discussion of exo-physics given above, it should be remembered that

the Schrödinger equation is something scientists have discovered that appears to describe

the evolution of physical quantum sub-systems. However, physical phenomena tend only

to be witnessed by observers in the emergent, semi-classical regime. Consequently, the

Schrödinger equation has only been defined as an emergent construct used to describe other

emergent phenomena evolving in emergent time, namely, physical states in the laboratory.

So, since the continuous time Schrödinger equation was discovered in the emergent

limit, it cannot automatically be expected to describe the fundamental, pre-emergent
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dynamics of the state Ψn; its emergent definition does not necessarily imply that it has to

be held as a fundamental law that describes the development of the Universe as a whole. In

fact, the only constraint placed on whatever laws are chosen to evolve Ψn is that they must

correctly reproduce every physically observed phenomenon in the semi-classical limit. The

laws of emergent physics may themselves emerge from more fundamental laws governing

the mathematical transformations of the state.

So, the state Ψn of the Universe described in this work is ‘quantum’ in the sense that it

is a vector in a Hilbert space, and is subject to unitary transformation and to wavefunction

collapse by Hermitian operators. This will be elaborated upon throughout the following.

3.3 The Stages Paradigm

The stages paradigm was proposed in [1] in an attempt to draw together the observations

and conclusions of the previous two sub-sections into a mathematical framework that de-

scribes the properties and dynamical evolution of a fully quantum universe. The proposal

represents a certain minimum number of parameters required to describe the development

of the quantum Universe, and follows from the fact that a specification of the state Ψn

alone cannot fully define its dynamics.

To illustrate the idea, an analogy is drawn as before with the conventional, semi-

classical treatment of the single electron experiment introduced in the previous sub-section.

A full description of such an experiment necessarily contains a number of features. Firstly

there is the quantum state of the electron itself, represented by a vector ψ in a Hilbert

space. Secondly, with the experiment is associated some sort of ‘information content’. This

information may, for example, include details of the Hamiltonian of the free electron, the

choice of the experiment to be performed on the state (e.g. the possible orientations of the

Stern-Gerlach apparatus), or even a memory of where the particular state came from or

how it was prepared. Lastly a set of rules are required in order to describe exactly how the

system develops, for example how the Schrödinger equation may govern the propagation

of the electron as a wave, or a statement of how the inhomogeneous magnetic field of

the Stern-Gerlach apparatus will perturb the Hamiltonian according to the spin of the

electron. The rules are hence equivalent to the laws of physics relevant to the current

situation.

As the experiment develops it progresses through a number of distinct stages. The

initial stage, for example, might be defined as the one containing the newly created free

electron. The next stage, then, might be defined as the period in which the electron

has been measured by the first Stern-Gerlach apparatus, but has not yet encountered the
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second. Finally, in the third stage of the experiment’s development the electron has passed

through the second apparatus also. In such a picture it is the measurement of the state of

the electron that marks the end of one stage and the beginning of the next; each collapse

of a state in one stage is equivalent to the preparation of the state for the next stage. This

is another manifestation of the principle that only when information is actually extracted

from a state can it be given any real, physical significance.

Each stage of the experiment’s development is clearly associated with its own unique

state, an information content and a set of rules describing the system. Moreover, some or

all of these will change as the system progresses from one stage to the next. For instance,

the state of the newly created electron in the first stage is clearly different from the state

representing the electron in the third stage, because in the latter case the electron has

been prepared in a particular spin eigenstate. Similarly the information regarding the

actual choice of the next test is different from the first stage to the second, because the

orientations of the Stern-Gerlach apparatuses are not the same. Equally, any information

regarding the previous test is different from the first stage to the second, because the

states in the first and second stages are prepared in different ways. Thus, each stage of

the experiment’s development may be said to be completely parameterised by the current

state, information and rules of the system, and changes in these, when the wavefunction

collapses, define the development of the system from one stage to the next.

By extending the above argument, the conjecture is that the Universe also progresses

through a series of distinct stages, with the divide between one stage and the next occurring

as the Universe’s state collapses due to its self-measurement. Given that the state in each

stage is necessarily different from the state contained in the previous stage, it is permissible

to extend the label n defining the nth state Ψn to the stage itself. It is hence possible to

define the nth stage Ωn by

Ωn ≡ Ω(Ψn, In, Rn) (3.14)

that is, each stage is a function of the current state, Ψn, Information content, In, and the

Rules Rn. These are explained in turn.

As described previously, the wavefunction Ψn is a pure state represented by a complex

vector in a Hilbert space of enormous, but finite, dimension D. From the dynamics of this

state is expected to emerge classical physics and all of the features in the physical Universe

associated with this, including for example time, space, and particle physics. The state

Ψn is assumed to represent the product of the sub-states of every quantum sub-system

contained in the Universe (as will be expanded upon in Chapter 4). Thus a change of

just one of these sub-states, for example a tiny part representing a physicist measuring a

tinier part representing an electron, implies a change in the overall state of the Universe.
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Consequently, the change of just one sub-state constitutes a progression of the Universe

from one stage to the next, even though nearly all of the other sub-systems might appear

unaffected by the jump.

In practice, it is expected that very many sub-states might change as the real Universe

jumps from the state Ψn to the state Ψn+1 6= Ψn, corresponding to very many physical

sub-systems appearing to simultaneously observe other physical sub-systems. In general,

one, some, or all of the sub-systems might change as the stage develops from Ωn to Ωn+1.

In contains the necessary information required for the state’s development. Specifically,

In could incorporate a set of A unitary operators {Ûa
n : a = 1, ..., A}, one of which might

be chosen to ‘rotate’ the state Ψn, and also a set of B potential Hermitian operators

{Ôb
n : b = 1, ..., B} that represent the different possible ways that Ψn could be tested;

one of the set {Ôb
n} which will hence become Σ̂n+1. Equivalently, then, because with each

of the Ôb
n is associated a basis set of D orthonormal eigenvectors, In also defines the

set of possible next states Ψn+1. Paraphrasing, if only one of the B operators may be

selected, and because each of these has D eigenstates due to the dimensionality of Ψn, the

Information content In dictates that the next state Ψn+1 will be one of a set of (B ×D)

members, though there may be a great deal of degeneracy in this set because some (but

not all) of the eigenstates of Ôi
n might be the same as some of the eigenstates of Ôj

n. Of

course, until one of the operators Ôi
n is chosen to be Σ̂n+1, and until the state reduction

actually occurs, it is completely unknowable as to which of this set the subsequent state

Ψn+1 will be.

It is further possible that In may also include information about the properties of pre-

vious stages. It might, for example, contain a record of what the previous state Ψn−1 was

like; or possibly the two previous states Ψn−1 and Ψn−2, or even the states Ψn−1, ...,Ψn−x

for some large x. Likewise, some sort of list might be present in In that details the chain

of operators, Ûn−y and Σ̂n+1−z for y, z ≥ 1, that were used as the Universe progressed

through the chain of stages. In this sense, the current Information In may be seen as a

form of memory of earlier stages, and might be used to track correlations from one stage

to the next. An analogy here is with the human memory, in which the current ‘state’ of

the brain often includes a recollection of its past ‘states’, or with a computer that is able

to store information about past steps of a calculation for later use.

Information about the past may be used in the dynamics to enforce constraints on fu-

ture states of the Universe. It might, for example, influence which of the set of B operators

{Ôb
n} is actually selected to be the next test Σ̂n+1. Of course, this type of development

is really no different from how an experiment is often conducted in the laboratory: given

that a physicist knows that she has just tested a sample with X and Y and obtained

a certain state ψXY , she may decide that it must next be investigated with Z, thereby
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selecting just one test out of a number of possibilities.

Using the past to influence how the present could develop into one of a set of possible

futures has the potential to introduce an element of order into the dynamics of the Uni-

verse. As an illustration, imagine a universe that chooses a particular operator Σ̂n+1 = Ôj
n

to test its state Ψn for the sole reason that Ôj
n has eigenstates ‘similar’, in some sense, to

the previous operator Σ̂n that prepared Ψn. This would perhaps ensure that Ψn+1 resem-

bles Ψn to some extent, and if the process continued it might lead to a situation in which

features of the universe appeared to persist from one stage to the next. If physical states

did indeed develop in this manner, with the present incorporating information about the

past, the mechanism might be speculated to be a root of why the real Universe appears

to look so similar over certain scales.

Generalising the above, it is possible to re-parameterise the nth stage of the Universe

as (3.15), where a = 1, ..., A, b = 1, ..., B, and x, y, z ≥ 0.

Ωn ≡ Ω

(
Ψn, [{Ûa

n}, {Ôb
n}, {{Ψn−1, ...,Ψn−x}, {Ûn−1, ..., Ûn−y},

{Σ̂n+1−1, ..., Σ̂n+1−z}}], Rn

)
(3.15)

The Rules Rn are the laws dictating the dynamics obeyed by the Universe. The Rules

specify that, given a state Ψn, it will be evolved with an operator Ûn and tested with a

particular operator Σ̂n+1. Equivalently the Rules are used to select, to act on Ψn, one of

the A possible unitary operators Ûa
n , a = 1, ..., A, and one of the B possible Hermitian

operators Ôb
n, b = 1, ..., B, out of the set of all possible operators contained by In.

Exactly how a particular operator is selected, i.e. what mechanism the Rules use to

determine which member of the A or B possibilities is chosen, remains a difficult question

for the future. Indeed whether this choice is deterministic, or itself the result of some

random quantum process, is an important issue to be addressed. It is even possible that

the Rules make reference to additional factors included in the Information In, such that

perhaps the presence of a particular Ψn−r, Ûn−s or Σ̂n+1−t in In might lead to the selection

of a particular Ûa
n or Σ̂n+1. This possibility will be addressed many times throughout this

work, and especially in Chapter 8, and may be necessary to account for many of the

features present in the physically observed Universe.

In fact, it is also conceivable that the Rules Rn−1 used to choose the operator Σ̂n are

not the same as the Rules Rn used to choose the operator Σ̂n+1. In other words, the Rules

themselves may be subject to dynamical development according to some higher order set

of “Rules of the Rules” [27], and in this case such an additional ‘Meta-Rule’ would also

need to be incorporated into the definition (3.15) of a stage. In Chapter 8 an attempt has

been made to find simple Rules that reproduce certain required features of dynamics.
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All of physics is expected to emerge from the fundamental quantum picture of the

Universe described in this Chapter. It is reasonable to assume, therefore, that the Rules

Rn at each stage must be very carefully refined in order to produce a classical looking

Universe that appears to run according to ordered and well defined laws of physics. The

Rules must ensure that every phenomenon that physicists experience on the emergent

scale is accounted for from the fundamental quantum level as the Universe jumps from one

stage to the next. For example, if from a particular state Ψn appears to emerge a physical

Universe of enormous spatial size that appears to be describable by 3 + 1 dimensional

general relativity and appears to contain very many distinct protons, electrons, neutrons

etc. that have clumped together in huge lumps resembling galaxies, stars and planets,

and if further, on one of these planets, plants, animals, and humans have appeared and

evolved, and that some of these humans have constructed giant buildings and complicated

machinery in order to measure the Universe they believe they exist in as semi-classical

observers, then it is reasonable to hope that from the next state Ψn+1 all of these features

will also emerge, instead of, say, something totally different or even just complete disorder.

Since it seems to be an observational fact that the physical Universe appears to change very

little from one stage to the next (it will be shown in Chapter 4 that this is itself perhaps

unexpected), it may be conjectured that the Rules, and consequently the dynamics, must

be very finely tuned in order to choose an operator Σ̂n+1 with an eigenvector so similar to

Ψn. In a quantum universe approximated by continuous and emergent classical laws there

must be some sort of underlying ‘similarity theorem’ that ensures that Ψn+1 is not too

different from Ψn.

The standard laws of physics discovered in the laboratory are also presumably emergent

from the Rules Rn describing the dynamics of the Universe. As an example, consider a

stage of the Universe in which, at one instant, it appears that from an emergent, classical

and large scale point of view, part of the state Ψn may be considered to describe two

electron sub-systems. Further assume that, from this emergent, classical and large scale

point of view, scientists have defined a measure of distance and observed that the two

electrons are in close proximity4. Whatever the dynamics may be that actually govern the

Universe on the fundamental level, they might be expected to ensure that from the next

state Ψn+1 would emerge a picture in which the two electrons appear slightly farther away

from each other, again from the classical and large scale point of view of a scientist inside

the Universe. Continuing, in the state Ψn+2 following this the two electrons might be even

farther apart. Thus, by observing the way in which the state of the Universe appears to

change from one stage to the next, emergent physicists are able to derive emergent laws

to describe emergent phenomena, such as “Like charges repel”.

4The emergence of space and the emergence of particles are investigated in Chapters 5 and 7 respectively.
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Conversely, by studying these emergent laws of physics governing the physically ob-

served Universe, it might be able to place certain constraints of the actual Rules Rn

governing the development of the underlying state from stage to stage.

With the above considerations in mind, it is possible to speculate now on the necessary

sequence of events that might define the dynamical development of the Universe. Consider

a fully quantum Universe, completely specified at the nth step of its development by a

stage Ωn ≡ Ω(Ψn, In, Rn). The Information content, In, contains a set of possible unitary

operators, {Ûa
n : a = 1, ..., A}, and a set of possible Hermitian operators, {Ôb

n : b =

1, ..., B}, each of which is associated with a basis set of D orthonormal eigenvectors, Φb,k
n+1

for k = 1, ..., D, as well perhaps as some sort of ‘record’ of previous stages.

According to the specific Rules Rn governing the Universe, and possibly making ref-

erence to the current Information In, one of the operators Û i
n is chosen to act on the

wavefunction, and the state undergoes unitary evolution. This evolution is effectively a

rotation of the D dimensional vector Ψn in its Hilbert space H, viz. Ψn → Ψ′
n = Û i

nΨn.

Note however that depending on the dynamics, the chosen operator Û i
n may be equal to

the identity operation Î such that

Ψn → Ψ′
n = Û i

nΨn = ÎΨn = Ψn. (3.16)

Next the Rules select, from the set {Ôb
n} defined in In, one of the Hermitian operators;

say, Ôj
n. This is equivalent to the Universe choosing a test to perform on its state. The state

consequently collapses into one of the eigenvectors of Σ̂n+1 = Ôj
n, effectively preparing

the next state Ψn+1. The probability that the new state Ψn+1 will be the particular lth

eigenstate Φj,l
n+1 of Σ̂n+1 is given by P (Ψn+1 = Φj,l

n+1|Ψ′
n) = |〈Φj,l

n+1|Ψ′
n〉|2.

Details about the particular choice of operators Û i
n and Σ̂n+1 = Ôj

n may then be

included in the new Information content In+1, which may also provide a record of the

previous state Ψn. In fact, some of the ‘old’ Information content In may also be subsumed

into the new In+1. This inclusion may be whole, In ⊂ In+1, partial In∩ In+1 6≡ In, or even

not at all In ∩ In+1 = ∅, where in the last instance the new stage could be said to contain

no knowledge whatsoever of its ‘history’.

In fact, the cases in which In+1 does not completely encompass In necessarily imply an

irreversible loss of information. Evidently, the ‘direction’ of the loss of information as the

Universe develops from one stage to the next is the same as the ‘direction’ of time in the

model, because both are based on the ‘direction’ of the state collapsing, i.e. from Ψn to

Ψn+1. It is noted, moreover, that the idea of an irreversible loss of information is strongly

analogous to the notion of an increasing entropy, and in this case it is recalled that the

‘direction’ of increasing entropy (which is equivalent to the ‘direction’ of the irreversible
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increase in disorder of a system as it evolves) defines the arrow of time in thermodynamics.

From these viewpoints, the direction of time in the Universe is seen as identical to the

direction of increasing ignorance of exactly how the Universe came to have the state it

has.

A second point about partial inclusions of information is the fact that no observer in the

present can ever be sure of just how complete or reliable their information is regarding what

past stages might have been like. Since past states can only ever be reconstructed based

on whatever information about them has survived into the present, if this information

survival is incomplete then the reconstruction of the past can, at best, only be partial.

This conclusion reinforces the idea that physicists can only ever be truly certain of the

current stage of the universe. As is consistent with the idea of Process time, only the

present can be given any real existence.

The new information content In+1 will contain a new set of possible operators {Ûa′
n+1},

{Ôb′
n+1}, where a′ = 1, ..., A′ and b′ = 1, ..., B′. The actual members of these sets may be

based somehow upon the random choice of the new state Ψn+1, or on parts of previous

operators or states, and will go on to provide the dynamics for the next stage. This

next stage is clearly parameterised as Ωn+1 = Ω(Ψn+1, In+1, Rn+1), where the Rules Rn+1

governing the Universe may also have changed, Rn+1 6≡ Rn, according to any Rules of the

Rules.

Overall, the Universe has developed in a discrete quantum manner from one stage

Ωn to the next Ωn+1. This process is expected to continue indefinitely in a completely

self-contained and automatic way. All of physics, including the dynamics of microscopic

and macroscopic sub-systems evolving against a backdrop of continuous space and time

in an apparently classical looking Universe, is expected to emerge from the dynamics of

this self-referentially developing series of stages.

Exactly how this might occur will form the basis of the remaining chapters of this

work.
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4 Classicity from Quantum

Given that the physical Universe appears to look like an enormous collection of semi-

classical sub-systems, yet the conclusion of the previous chapter is that it is fundamentally

quantum in nature, an immediate question to be addressed is: how does apparent classical

physics emerge from the fully quantum reality? If the Universe is described by a complex

statevector Ψ, what properties of this state might give rise to semi-classical looking degrees

of freedom?

In an attempt to understand this issue, it is beneficial to reverse part of the question and

define what is meant by classicity. To this end, it is observed that classicity is in some sense

synonymous with distinguishability; if a set of objects {A,B,C} are described as classical,

it implies that it is possible to make distinctions between them. These distinctions may, for

example, be in terms of an observer’s ability to determine that the objects have different

physical properties or that they are positioned at different spatial locations.

If A, B and C can be distinguished, it follows that they may each be assumed to

possess an isolated existence, and may be discussed independently of one another. From

this viewpoint, classicity is therefore a way of expressing the observation that this object

with these qualities is here, whereas that object with those properties is there. Certainly

this is a criterion met by all macroscopic semi-classical states in physics, where for example

a particular large scale apparatus is always assumed to be separate from the quantum state

it is measuring, and does always have an independent existence and a well defined position.

As a consequence of the above, a state in classical mechanics representing a set of

classical objects can always be separated into the distinct sub-states of which it is com-

prised. The same is not true in quantum theory, because the phenomenon of entanglement

represents a breakdown of this ability to separate a system into independent and distinct

physical sub-systems. When two (or more) quantum states become entangled they can no

longer be given any independent existence, and instead it is only by taking the entire state

as a whole that the system can be given any physical significance. The EPR experiment

[11] provides a famous example of this.

It is, however, an important fact that a class of states exist in quantum mechanics that

are not entangled. Separable states (to be defined below) represent situations in which it

is permissible to segregate the quantum state into a set of sub-states. Further, because

it is possible to develop and measure the factor sub-states of these vectors independently

of each other, such sub-states may be distinguished. Thus, separable states in quantum

mechanics allow physicists to discuss their constituent parts, because the factors of a

separable state possess a degree of individuality. Since this is one of the requirements for
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classicity, the conjecture is that it is separable states that provide a necessary starting

point for the emergence of semi-classical degrees of freedom.

As a simple illustration, consider two Hilbert spaces Hφ and Hϕ. Consider also a third

Hilbert space H[φϕ] formed by taking the tensor product of Hφ and Hϕ, i.e. H[φϕ] =

Hφ ⊗Hϕ. This third vector space H[φϕ] may be described as factorisable, with the sub-

spaces Hφ and Hϕ being its factors.

Now define two states ψa and ψb,

|ψa〉φϕ = |φ1〉φ ⊗ |ϕ2〉ϕ (4.1)

|ψb〉φϕ = |φ1〉φ ⊗ |ϕ2〉ϕ + |φ2〉φ ⊗ |ϕ1〉ϕ,

where ψa and ψb are vectors in the product space H[φϕ], i.e. ψa, ψb ∈ H[φϕ], but φi ∈ Hφ

and ϕj ∈ Hϕ for i, j = 1, 2.

Clearly, the state ψa is separable into a product of factors, one of which, φ1, is in

the Hilbert space Hφ and the other, ϕ2, is in Hϕ. However, if it is assumed that φ1 is

not a linear multiple of φ2, and similarly that ϕ2 is not a linear multiple of ϕ1, no such

separation is possible for the entangled state ψb.

Now, if a quantum system is prepared in the separable state ψa, it is possible to measure

one factor of it whilst leaving the other factor unchanged. The state ψa may, for instance,

be tested by an operator Ô which has an eigenstate of the form |χ〉φ⊗|ϕ2〉ϕ, where |χ〉φ ∈
Hφ, such that the factor |ϕ2〉ϕ ∈ Hϕ appears unaffected by this measurement. In other

words, a physicist may ‘ask a question’ about the sub-state φ1 in the factor space Hφ

without necessarily changing every part of the state ψa. It is, for example, permissible to

determine whether the component of ψa in the Hilbert space Hφ is indeed φ1, without

destroying ψa. In fact, because it is separable, it is generally possible to determine the

component of ψa in the Hilbert space Hφ, without in any way affecting the component of

ψa in the Hilbert space Hϕ.

However, the same is not true for the entangled state ψb. Any attempt to measure the

component of ψb in either of the factor Hilbert spacesHφ or Hφ destroys the entanglement,

and irreversibly collapses the wavefunction of the system into a different state, i.e. into a

product form.

This difference between ψa and ψb may be rephrased in terms of the role of information.

For the entangled state ψb it is possible to learn something about the component of

the vector in Hϕ by performing a measurement on the component of the vector in Hφ.

However, if during the measurement the entangled state ψb collapses into the product

state ψa, no new information is gained about the factor state ϕ2 in Hϕ by performing a

subsequent measurement on φ1 in Hφ. In fact this will always remain the case, with the
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two factors leading independent existences, unless the dynamics conspire in such a way as

to re-entangle the system.

The testing of the EPR state of the electron-positron system of Section 3.1 provides

a physical example of these principles. The initial entangled state |ψ〉 = 1√
2
(|↑〉e⊗ |↓〉p−

|↓〉e⊗ |↑〉p) of equation (3.4) is destroyed by a measurement of the spin of the electron,

and, depending on the result of this, the system after collapse may be represented by one

of two possible product states |↑〉e⊗ |↓〉p or |↓〉e⊗ |↑〉p.
Each factor of these product states consequently represents either an isolated electron

or an isolated positron, with a known component of spin. Any subsequent measurement

of the spin of either the electron or positron in this direction leaves this new product

state unaltered (as this is simply a null test), but additionally, any further measurement

in any direction involving just the positron (by using, say, an operator of the form Ŝθab =

Ŝz cos θab + Ŝx sin θab defined previously) will not affect the state of the electron, and vice

versa. Unlike the initial entangled state, the product state represents a system comprising

of an electron and a positron that are isolated and independent from each other.

The conclusion of the above discussion is that a quantum state separable into a product

of factors is in some sense equivalent to a system comprising of a number of distinct semi-

classical sub-systems. Because it is possible to examine just one of these factors without

affecting the rest of the state, these sub-states appear isolated and distinguished from each

other, and can be discussed as separate from the rest of the system, exactly as required

for a semi-classical description of physics to begin to emerge.

The reciprocal of this should also be true. Every sub-system that appears isolated and

distinct from the others may be associated with one of the factors of the state representing

the entire quantum system.

Further, by extending this argument to the case of a fully quantum Universe described

by a wavefunction Ψn, the conjecture is that every individual, semi-classical sub-system

within it is represented by a unique factor of this state.

Exactly how this may be achieved is a difficult question, and it is noted that the

above statement may contain an element of idealisation. Being a factor of a state only

guarantees that the sub-system it represents may be granted a degree of individuality.

The individual factors still represent sub-systems governed by the laws and constraints

of quantum mechanics, as is obvious, for example, for the single electron and positron

factors of the earlier EPR product states, |↑〉e⊗ |↓〉p and |↓〉e⊗ |↑〉p, which must of course

be treated quantum mechanically. This, after all, is the origin of the lack of a Heisenberg

Cut in the Universe.
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The method for achieving ‘real’ classicity, in the traditional sense of the word, in large

macroscopic sub-systems of the Universe is part of the difficult question of emergence to

be addressed in the future. It is here that statistical theories such as decoherence may

play a part, as will be discussed in Section 4.3.

Suffice to say, however, that even semi-classical, macroscopic sub-systems must need to

be associated with factor sub-states of the Universe’s wavefunction. The alternative, that

they are actually entangled with their surroundings, would imply that they cannot be given

any sense of individuality, and this would lead to the absurd and unsupported suggestion

that conventional semi-classical systems are actually entangled with each other, contrary

to empirical evidence. A classically distinct and isolated sub-system must be represented

by a factor of the Universe’s state, but if the state of the Universe can be separated it

does not automatically imply that every factor may be treated according to the laws of

classical mechanics, even as an approximation. Separability is a necessary condition for

classicity to arise, in that it implies distinguishability, but it is unclear at this stage as to

whether it is also sufficient.

It is possible that one or some of the factor sub-states may themselves be entangled

within their own Hilbert sub-spaces. For example, consider a ‘toy-universe’ initially in

the state Ψ0 = |Z0〉 that contains nothing but a single Z0 boson. Also, assume that the

dynamics selects a particular operator, Σ̂1, to test Ψ0, thereby causing the universe to

jump to the state Ψ1 = |π̄0〉⊗ |π0〉 representing a pion/anti-pion pair. Such a dynamics is

analogous to a particle physics experiment in which the high energy boson spontaneously

decays into a neutral pion and anti-pion.

If the pion itself then goes on to decay to an entangled electron/positron pair (i.e.

an EPR-like state), the state of the universe, Ψ2, after this decay may be given by Ψ2 =

|π̄0〉⊗|ψ〉, where |π̄0〉 represents the sub-state of the anti-pion, and |ψ〉 the sub-state of the
entangled electron and positron (3.4). Clearly, the overall state Ψ2 is a separable product

of two factors, one of which is entangled.

The current example shows how the separability of the state representing a simple

system changes as it develops. In fact, if subsequently an operator Σ̂3 is selected that

is equivalent to a measurement of the spin component of the electron (in a particular

direction), and if the result is that it is found to be spin ‘up’, the next state, Ψ3, will be of

the product form Ψ3 = |π̄0〉⊗ |↑〉e⊗ |↓〉p. Note that the dimensions of the Hilbert spaces

of the states Ψ0,Ψ1,Ψ2 and Ψ3 must be the same, and that for example the sub-state |ψ〉
of Ψ2 is in the same factor Hilbert space as the product of the sub-states |↑〉e⊗ |↓〉p in

Ψ3. In this universe, it is evident that the separability of the system changes during the

transition from Ψ2 to Ψ3; this will be an important feature in the following.
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It is now possible to reinterpret the idea of a physical experiment from the point of view

of a universe described fully by quantummechanics. Recall that the standard semi-classical

treatment of physics is to segregate the system into the subject under investigation, the

various bits of apparatus, the physicist conducting the experiment, and everything else

in the Universe (the ‘Environment’). Indeed, it does not seem possible to perform an

experiment on a quantum subject if it cannot be isolated from everything else.

This semi-classical approach can be incorporated into the quantum picture of the

Universe by assuming that each of these semi-classical and distinct parts may now be

represented by separate factors of the state Ψ of the Universe. This is inevitable from the

viewpoint asserted in this thesis: if they are classically distinct, it follows that they cannot

be entangled with each other. Hence, the state may be written as

|Ψ〉 = |ψ〉 ⊗ |A〉 ⊗ |O〉 ⊗ |R〉 (4.2)

where |ψ〉 represents the sub-state of the subject under investigation, |A〉 the sub-state of

the apparatus, |O〉 the sub-state of the observer, and |R〉 is the sub-state representing the

rest of the Universe.

Of course, |R〉 will itself be a product of an enormous number of sub-states, some of

which may themselves be entangled. However, for the sake of studying the tiny sub-state

of interest, i.e. |ψ〉, the conventional procedure is then to ignore all of the factors of Ψ that

do not contribute to the running of the experiment and focus attention on changes in |ψ〉.
This is really an exo-physical approach, where the physicist falsely believes himself to be

excluded from the Universe being measured, and is therefore potentially misleading, but

it is a natural procedure borne from the physicists subjective experience of the ‘outside’

world. The ‘real’ situation of endo-physical measurements will be addressed in Section

6.2, and also briefly in Section 4.3.3.

As with the pion experiment described above, the separability of the state representing

the Universe may change as it develops through a series of stages. Moreover, it is these

changes in separability that are ultimately responsible for the generation of certain classical

effects in the Universe, for example the emergence of continuous space. This will be

expanded upon in the following chapters, but it is remarked here that even in the simplest

quantum model hypothesised earlier, in which the Universe is represented by a state in

a Hilbert space of dimension greater than 210
184

, the number of ways in which this state

may be separated into a product of factors, some of which may or may not be entangled

themselves within their factor sub-spaces, is enormous.

Summarising, the separability of a state allows a classical distinction to be made be-

tween its constituent factors. The conjecture, then, is that classicity in a fully quantum

Universe emerges somehow from considerations of the separability of its state Ψ. In ad-
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dition, if separability is required for classicity, and since it is an observational fact that

the Universe appears to be comprised of a vast number of classically distinct sub-systems,

the conclusion must be that the current state of the Universe is highly separable. It is

therefore a task to investigate how this might have occurred.

4.1 Factorisation and Entanglement

When is an arbitrary state Ψ in a Hilbert space H separable? What rules determine

whether a given vector Ψ can be written as a product of factor sub-states?

Before answering these questions, it must first be noted that the concept of a separable

state necessarily implies the existence of a factorisable Hilbert space. By definition, the

property that a state Ψ ∈ H is separable in the form Ψ = φ1 ⊗ ϕ2, for example, where

φ1 ∈ H1 and ϕ2 ∈ H2, explicitly requires that H can be factorised in the form H ≡ H[12] =

H1 ⊗H2. It is therefore a natural starting point for any discussion of the separability and

entanglement properties of vectors to define what is meant by the factorisability of their

vector spaces.

A Hilbert space H(d) ≡ H of dimension d is factorisable into N factors if it can be

written in the tensor product form

H(d) = H(d1)
1 ⊗H(d2)

2 ⊗ ...⊗H(da)
a ⊗ ...⊗H(dN )

N (4.3)

where H(da)
a for a = 1, ..., N is called the ath factor Hilbert space and is of dimension da.

Clearly, d = d1d2...dN . Such a factorisation represents a particular ‘split ’ of the Hilbert

space H(d) into N given factors.

For convenience and clarity, note that here and elsewhere a Hilbert space H(d) factoris-

able into N factors in the form of (4.3) can be written using the square bracket notation

H(d) ≡ H(d)
[(1)(2)(3)...(N)] ≡ H(d)

[123...N ] ≡ H(d)
[1...N ]. (4.4)

Note also that, in general, Hilbert spaces may be referred to as ‘factorisable’, whereas

the states they contain may be referred to as ‘separable’. A Hilbert space could also be

described as ‘separable’, but in conventional texts on vector spaces this name is taken to

imply that a countable basis can be found for it; any vector in a separable Hilbert space

may be written as a discrete sum of basis vectors.

It is possible now to define the factorisability, ζ, of H(d) written in the form (4.3) as

ζ = N/d, that is, the ratio between the number of factors and the overall dimension of

the vector space. Consequently, the case in which di ∈ P ∀i, where P is the set of prime

numbers, represents the maximum factorisability of H(d) for a given d; such a split will be
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called a ‘fundamental ’ or ‘natural ’ factorisation, and the factor Hilbert spaces will be

called ‘elementary ’. Obviously, for a Hilbert space of even dimension, the factorisability

ζ is clearly maximised if the dimension of each factor space is two, in which instance ζ is

given by ζ = N/2N .

Two dimensional Hilbert spaces are of great interest to many authors, partly because

they are the simplest, and partly because of an analogy with computational physics. An

orthonormal basis set for a Hilbert space H(2) may be given by {|0〉, |1〉}, for 〈i|j〉 = δij

with i, j = 0, 1, and these two vectors may be likened to any set of ‘opposite’ states in

elementary binary logic: |0〉 may for example represent ‘off’, ‘no’, ‘left-polarised’, ‘spin-

down’, or ‘false’, whereas |1〉 may represent the reverse, i.e. ‘on’, ‘yes’, ‘right-polarised’,

‘spin-up’ or ‘true’. It is this analogy to classical ‘bit’ logic that earns the quantum space

H(2) the title of a qubit Hilbert space, and a vector in this space may be called a qubit

state. Qubit states will be discussed a number of times throughout this thesis.

It is important to note that the left-right ordering of the factor Hilbert spaces is

not taken to be significant in this work. Specifically, this implies that the factorisation

(4.3) is invariant to any permutation i −→ ji of its factors H(di)
i , such that for example

H(4) = H(2)
1 ⊗H(2)

2 ≡ H(2)
2 ⊗H(2)

1 .

Similarly, the same is taken to hold true for the states contained within these Hilbert

spaces; for example, if φ1 ∈ H(2)
1 and ϕ2 ∈ H(2)

2 , the product state Ψ = φ1⊗ϕ2 ∈ H(2)
1 ⊗H(2)

2

is defined as equivalent to the re-ordered state Ψ′ = ϕ2 ⊗ φ1 ∈ H(2)
2 ⊗H(2)

1 .

If the dimension of a Hilbert space is large, but not prime, the number of different

ways in which it can be factorised might also be large.

For example, consider a four dimensional Hilbert space H(4); the only non-trivial fac-

torisation of H(4) splits the Hilbert space into a product of two sub-spaces, i.e. H(4) =

H(2)
1 ⊗H(2)

2 , where as above the sub-script is a convenient label and the super-script denotes

dimension. Such a split may be called a bi-partite factorisation.

Alternatively consider an eight dimensional Hilbert space H(8); this space may poten-

tially be split into a tri-partite factorisation of three two-dimensional Hilbert spaces, or

a bi-partite factorisation of one two-dimensional Hilbert space and one four-dimensional

Hilbert space.

Obviously for higher dimensional cases such as H(24), the number of ways in which the

Hilbert space might be factorisable in this simple manner is even greater, schematically

because 24 = 2× 12 = 2× 2× 6 = 2× 2× 2× 3 = 2× 4× 3 = 3× 8 = 4× 6. In fact, as will

be shown in Chapter 5, the actual number of ways of splitting a Hilbert spaces is much

more complicated than this elementary ‘dimensional’ argument suggests. There are, for

example, a number of different ways of factorising a 24 dimensional Hilbert space into a
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product of a two dimensional factor and a twelve dimensional factor.

In a similar vein, the vectors contained in these Hilbert spaces will also possess different

degrees of separability. An arbitrary vector Ψ in H(4), for example, is either separable in

the form Ψ = φ1 ⊗ ϕ2, where φ1 ∈ H(2)
1 and ϕ2 ∈ H(2)

2 , or not, in which case it is said to

be entangled relative to the factorisation H(4) = H(2)
1 ⊗H(2)

2 . Similarly, for the case of an

arbitrary vector Φ inH(8), the state might either be separable into three factors, or into two

factors, or into one giant entangled ‘factor’. In the case in which Φ can only be separated

into two factors relative to a tri-partite factorisation of H(8), H(8) = H(2)
1 ⊗H(2)

2 ⊗H(2)
3 , it

is clear that the state is the product of two sub-states, one of which is entangled. Again,

arbitrary states in higher dimensional Hilbert spaces might potentially be separable into

products of many sub-states of differing dimension; this will be discussed more thoroughly

in Chapter 5.

Although a Hilbert space H(d) ≡ H might potentially be split into the N -partite fac-

torisation of equation (4.3), it is only whether a state is separable relative to a particular

bi-partite split that is of most interest. Indeed, without loss of generality, only the separa-

tions of vectors relative to bi-partite factorisations need be investigated, and so in reality,

only the possible rules governing this need be sought. This conclusion follows because it

is a feature of Hilbert space mathematics that when a state is separable into a product

of vectors in different factor Hilbert spaces, the factor sub-states are effectively indepen-

dent. It can then be implicitly assumed that any method used to determine whether a

given state Ψ is separable into two sub-states may be applied again to determine whether

one of these sub-states is itself separable into a product of two sub-sub-states, because

the only difference between the two cases is that the vectors investigated are of different

dimensions.

In other words, any method used to separate the d dimensional vector Ψ into a product

φ1 ⊗ ϕ2 of a d1 dimensional vector, φ1, and a d2 dimensional vector, ϕ2, where d = d1d2,

is effectively the same as that used to separate a d1 dimensional vector φ1 into a product

φ1 = α1a ⊗ β1b
of a d1a dimensional vector, α1a , and a d1b dimensional vector, β1b

, where

α1a ∈ H(d1a )
1a

, β12 ∈ H(d1b )

1b
and H(d1)

1 = H(d1)
[1a1b]

= H(d1a )
1a

⊗H(d1b )

1b
.

So, a given state Ψ may be separated into a product of N factors by a process of first

separating it into two factors, followed by independently separating each of these factors

into two factors, followed then by independently separating each of these four factors into

two factors, and so on until each of the individual factors can no longer be separated.

Assuming it is known whether it is possible to separate a given vector into a product of

two factors, then by repeated iteration the separation of the overall state into N sub-states

can be found.
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As an example, consider the tri-partite factorisation of the eight-dimensional Hilbert

space H(8)
[1...3] = H(2)

1 ⊗H(2)
2 ⊗H(2)

3 , and also a state Φ in H(8) that is known to be separable

into three factors, i.e. can be written in the form Φ = φ1 ⊗ ϕ2 ⊗ ψ3, where φ1 ∈ H(2)
1 ,

ϕ2 ∈ H(2)
2 and ψ3 ∈ H(2)

3 . It follows that Φ must also be separable into two factors,

Φ = φ1 ⊗ (ϕ2 ⊗ ψ3) (4.5)

= φ1 ⊗ χ23

where χ23 ≡ (ϕ2 ⊗ ψ3) is an element of H(4)
[23] ≡ H(2)

2 ⊗H(2)
3 .

This argument can be reversed. In order to show that Φ is separable into three factors,

it is only necessary to first show that Φ is separable into two factors, φ1 and χ23, relative

to the bi-partite factorisation of the Hilbert space H(8) = H(2)
1 ⊗H(4)

[23], and then to show

that φ1 is not separable whilst χ23 may be written as a product of two factors, ϕ2 and ψ3,

relative to the bi-partite factorisation of the Hilbert sub-space H(4) = H(2)
2 ⊗ H(2)

3 . It is

at this point that the procedure would terminate, because the factors ϕ2 and ψ3 cannot

further be separated; the state Φ can be separated into a product of no more that three

factors.

Of course, in this illustration φ1, ϕ2 and ψ3 cannot be separated further because they

are contained in two-dimensional Hilbert spaces, but in principle the above method could

be used even if they were entangled sub-states of arbitrary dimension. As an example, if

it could be found that a different vector Φ′ in H(8) is separable as Φ′ = φ′
1 ⊗ χ′

23, with

φ′
1 ∈ H(2)

1 and χ′
23 ∈ H(4)

[23], but that χ
′
23 is entangled relative to H(4)

[23] = H(2)
2 ⊗H(2)

3 , this

result would be sufficient to prove that Φ′ cannot be separated into three factors relative

to this split.

As an aside, note that analogously to the fundamental splitting of the Hilbert space

described earlier, a fundamental separation of a state Ψ in H(d) may be defined as that

which contains the maximum number of factors relative to a given factorisation of the

Hilbert space. For example, the state Φ in H(8) = H(2)
1 ⊗H(2)

2 ⊗H(2)
3 written in the form

Φ = φ1 ⊗ ϕ2 ⊗ ψ3, where φ1 ∈ H(2)
1 , ϕ2 ∈ H(2)

2 and ψ3 ∈ H(2)
3 , is clearly fundamentally

separated, whereas the same state written as Φ = φ1 ⊗ χ23, where χ23 is an element of

H(4)
[23] ≡ H(2)

2 ⊗ H(2)
3 , is not. Conversely, the state Φ′ written in the form Φ′ = φ′

1 ⊗ χ′
23

defined above is fundamentally separated relative to this factorisation of H(8).

The conclusion of the above few paragraphs is that it is only necessary to investigate

whether or not a given state Ψ ∈ H(d) is separable into a product Ψ = φ1 ⊗ ϕ2 of two

sub-states φ1 ∈ H(d1)
1 and ϕ2 ∈ H(d2)

2 , relative to some bi-partite factorisation H(d) =

H(d1)
1 ⊗ H(d2)

2 of the d-dimensional Hilbert space. A test is hence sought to determine

whether an arbitrary state can be separated into two factors, relative to such a bi-partite

split.
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Consider a Hilbert space H ≡ H(d) of dimension d that is factorisable into the bi-

partite split H(d) = H(d1)
1 ⊗H(d2)

2 , where da is dimension of the ath factor Hilbert space,

a = 1, 2, and d = d1d2. It is a standard theorem of vector spaces [22] that a Hilbert space

of dimension D is spanned by a set of D orthonormal basis vectors. Thus, a basis set Ba

for the Hilbert space H(da)
a may be given by

Ba ≡ {|i〉a : i = 0, 1, ..., (da − 1), a = 1, 2}, (4.6)

where 〈i|j〉 = δij . Moreover, it follows from (4.6) that an orthonormal basis set B = B12

for the product Hilbert space H(d) is given by

B ≡ {|i〉1 ⊗ |j〉2 : i = 0, 1, ..., (d1 − 1), j = 0, 1, ..., (d2 − 1)} (4.7)

So, any vector Ψ in H is composed of a complex linear superposition of the members

of this set, viz.

|Ψ〉 =
∑d1−1

i=0

∑d2−1

j=0
Cij |i〉1 ⊗ |j〉2 (4.8)

where the Cij ∈ C form a d1 × d2 complex coefficient matrix.

Depending on the set of values of Cij for i = 0, 1, ..., (d1 − 1) and j = 0, 1, ..., (d2 − 1),

the state Ψ will be either separable or entangled relative to the factorisation H(d) =

H(d1)
1 ⊗ H(d2)

2 . For example, if Cij = 1 for i = j = 0, but Cij = 0 otherwise, then

|Ψ〉 = |0〉1 ⊗ |0〉2, which is clearly separable.

In fact:

Theorem 4.1 A state |Ψ〉 ∈ H(d) is separable relative to the factorisable Hilbert

space basis B iff its coefficient matrix satisfies the ‘microsingularity’ condition

CijCkl = CilCkj (4.9)

for all 0 6 i, k,6 (d1 − 1) and 0 6 j, l,6 (d2 − 1).

The proof of (4.9) is given below, noting that a similar result is provided by Albeverio

et al [28] based on the idea of ‘concurrency’.

Proof. ⇒ If CijCkl = CilCkj and |Ψ〉 = ∑d1−1
i=0

∑d2−1
j=0 Cij |i〉1 ⊗ |j〉2 :

Suppose, without loss of generality, Cuv 6= 0 for some u, v. Then multiplying (4.8) by

this gives

Cuv|Ψ〉 =
∑d1−1

i=0

∑d2−1

j=0
CuvCij |i〉1 ⊗ |j〉2 (4.10)

=
∑d1−1

i=0

∑d2−1

j=0
CujCiv|i〉1 ⊗ |j〉2

=
∑d1−1

i=0
Civ|i〉1 ⊗

∑d2−1

j=0
Cuj |j〉2

and the state is separable.
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⇐ If |Ψ〉 is separable relative to H(d) = H(d1)
1 ⊗H(d2)

2 :

|Ψ〉 =

(∑d1−1

i=0
ai|i〉1

)
⊗
(∑d2−1

j=0
bj |j〉2

)
, ai, bj ∈ C (4.11)

=
∑d1−1

i=0

∑d2−1

j=0
aibj |i〉1 ⊗ |j〉2

So aibj = Cij from (4.8). It follows that

CijCkl = aibjakbl = aiblakbj = CilCkj (4.12)

As an example, the two qubit state Θ ∈ H(4)
[12] given by

Θ = α|0〉1 ⊗ |0〉2 + β|0〉1 ⊗ |1〉2 + γ|1〉1 ⊗ |0〉2 + δ|1〉1 ⊗ |1〉2 (4.13)

with α, β, γ, δ ∈ C and orthonormal basis set Ba ≡ {|i〉a : i = 0, 1} for H(2)
a and a = 1, 2,

can be written as a separable state of the form

Θ = (a|0〉1 + b|1〉1)⊗ (c|0〉2 + d|1〉2) (4.14)

for a, b, c, d ∈ C if, and only if, αδ = βγ.

Note that the separability of a state Ψ in H = H(d1)
1 ⊗ H(d2)

2 is independent of the

choice of basis for the individual factor spaces H(d1)
1 and H(d2)

2 . For example, if H(da)
a has

a basis Ba ≡ {|i〉a : i = 0, 1, ..., (da − 1)} for a = 1, 2, the separability of Ψ is invariant to

any relabelling i −→ ji of the individual elements |i〉a. Similarly, Ψ will not be affected

by any ‘rotation’ of the members of this basis set by local unitary operators ûa, i.e.

|i〉a −→ |i′〉a = ûa|i〉a.

In general, for a state Ψ to be separable relative to the bi-partite factorisation of the

Hilbert space H(d) = H(d1)
1 ⊗H(d2)

2 , the number Nc of microsingularity equalities that need

to be satisfied is given by

Nc =
1

4
[d1(d1 − 1)d2(d2 − 1)] (4.15)

or Nc ∼ d2/4 for d = d1d2 ≫ 1. In addition, the set of separable states is a set of measure

zero relative to the set of all possible states; the set of separable states effectively form a

hypersurface in the hypervolume representing every set of values of Cij .

It might be surprising, therefore, that there is any separability in the Universe at all.

From the earlier ‘minimum guess’ that the dimensionality of the Hilbert space of the state

Ψn of the Universe is greater than 210
184

, the number of microsingularity conditions that

are required to ensure that Ψn is not entangled is at least 2(2×10184−2). It might therefore

be expected that if a vector is chosen at random from a Hilbert space of dimension 210
184

,
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the probability that it is separable, relative to a given bi-partite factorisation of the Hilbert

space, is zero. From this argument, the probability that the statevector representing the

Universe is separable might also be expected to be approximately zero. Further, if the

Universe jumps through a series of states Ψn−1 −→ Ψn −→ Ψn+1 as it develops, it might

be expected that the Universe should almost always proceed from one entangled state to

the next.

This, however, does not appear to be what is actually observed in the physical Universe.

If separability is a necessary prerequisite for classicity, and given that the Universe does

seem to look like a giant collection of classical objects, the state of the Universe must

be highly separable. Given that it appears overwhelmingly likely that a quantum state

chosen at random from the set of states of dimension 210
184

is entangled, the question

must remain as to how there can ever be any classicity in a Universe running according

to quantum principles.

So in response to this, the conclusion must therefore be that the operator Σ̂n used

to prepare the state Ψn must be very carefully constrained in order to ensure that its

eigenvectors are almost universally separable. Equally, the Rules Rn themselves must be

very finely tuned to arrange that an operator Σ̂n+1 with highly separable eigenvectors is

selected to form the basis for the next state Ψn+1. Quite plainly, the operators that the

Universe chooses to test itself must force Ψn to jump from one highly separable state to

the next. This is analogous to the conclusion presented at the end of Section 3.3, in which

Rules are discussed that guarantee that the state Ψn+1 appears so similar to Ψn, and is a

point that will be returned to many times throughout this thesis.

An important feature of the present discussion is that states that are separable relative

to a particular factorisation of a Hilbert space may be entangled relative to a different one.

Consider, for example, a Hilbert space H(8) that is the product of three qubit sub-spaces,

that is H(8) = H(8)
[123] = H(2)

1 ⊗H(2)
2 ⊗H(2)

3 .

Now define a bi-partite split of H(8) of the form H(8)
[A3] = H(4)

A ⊗ H(2)
3 , where H(4)

A =

H(4)
[12] = H(2)

1 ⊗H(2)
2 , with a suitable basis set BA3 given by BA3 ≡ {|ij〉A⊗|k〉3 : i, j, k = 0, 1}

for |ij〉A ∈ H(4)
A and |k〉3 ∈ H(2)

3 . Consider also a state Φ ∈ H(8) defined as (4.16) for

a, b, c, d, α, β ∈ C.

Φ = (a|00〉A + b|01〉A + c|10〉A + d|11〉A)⊗ (α|0〉3 + β|1〉3) (4.16)

where for convenience here and in the following, the product state |i〉1 ⊗ |j〉2 has been

abbreviated by omitting the tensor symbol and writing

|i〉1 ⊗ |j〉2 ≡ |i〉1|j〉2 ≡ |ij〉12 = |ij〉. (4.17)

Note that because in this contracted form the sub-script denoting the factor Hilbert

space is dropped, the left-right ordering of the products must be preserved, i.e. |ij〉 6= |ji〉.
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According to equation (4.8), Φ is equivalently specified by the coefficient matrix Cij

given by

⊗ |0〉3 |1〉3
|00〉A aα aβ

|01〉A bα bβ

|10〉A cα cβ

|11〉A dα dβ

Table 4.1

where the first column and first row represent the basis vectors for the bi-partite factorisa-

tion H(8) = H(4)
A ⊗H(2)

3 , and the remaining values represent the coefficients of their tensor

products (1 st column ⊗ 1 st row). Obviously Φ is separable relative to this factorisation,

and the coefficient matrix clearly obeys the microsingularity condition.

Consider now a different bi-partite factorisation of the Hilbert space defined as H(8)
[1B] =

H(2)
1 ⊗ H(4)

B , where H(4)
B = H(4)

[23] = H(2)
2 ⊗ H(2)

3 . Such a factorisation is spanned by an

orthonormal basis B1B given by B1B ≡ {|i〉1 ⊗ |jk〉B : i, j, k = 0, 1}, where |i〉1 ∈ H(2)
1 and

|jk〉B ∈ H(4)
B .

Now, by expanding (4.16), the vector Φ may equally be written as

Φ = aα|0〉1 ⊗ |0〉2 ⊗ |0〉3 + aβ|0〉1 ⊗ |0〉2 ⊗ |1〉3 (4.18)

+bα|0〉1 ⊗ |1〉2 ⊗ |0〉3 + ...+ dβ|1〉1 ⊗ |1〉2 ⊗ |1〉3
= aα|0〉1 ⊗ |00〉B + aβ|0〉1 ⊗ |01〉B + bα|0〉1 ⊗ |10〉B + ...+ dβ|1〉1 ⊗ |11〉B

with the coefficient matrix

⊗ |00〉B |01〉B |10〉B |11〉B
|0〉1 aα aβ bα bβ

|1〉1 cα cβ dα dβ

Table 4.2

which clearly might not satisfy each of the six microsingularity equalities. Evidently,

although the state Φ is separable relative to the first factorisation ofH(8), i.e. H(8) = H(8)
[A3],

it is entangled relative to the second factorisation of H(8), i.e. H(8) = H(8)
[1B].

This result highlights the conclusion that it is simply not enough to say that a particular

state is separable, but that it must be qualified by the statement that it is separable

relative to a given factorisation of the Hilbert space. More precisely, if a state Ψ ∈ H may

be written in the form Ψ = φ ⊗ ϕ, where φ ∈ H1 and ϕ ∈ H2 for H = H1 ⊗H2, then it

may be said that Ψ is separable relative to (H1,H2). Alternatively, if Ψ is not separable

in this way, it is said that Ψ is entangled relative to (H1,H2).

The above result has an important consequence. If any state is only separable relative

to a given factorisation of the Hilbert space, then the assertion that the Universe’s state is
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highly separable, because the Universe appears classical, is only meaningful given a certain

factorisation of the Hilbert space H containing the Universe’s state.

In order to discuss consistent physics, it might therefore be suggested that a preferred

split for H exists, and that the Universe’s state may only be described as separable,

entangled, or a separable product of entangled factor sub-states, relative to this preferred

factorisation. As a conjecture, the fundamental factorisation of H, in which each factor

sub-space is of prime dimension, might perhaps be a possible candidate for such a preferred

split, but such a ‘natural’ assumption requires a great deal of future work.

4.2 Basis Sets and Operators

Whilst much of the discussion in this section has involved the properties of the states, it

is important to remember that the operators themselves also play a necessary part in the

dynamics. After all, it is the Hermitian operators used to test the state that provide, as

their eigenvectors, the basis set of next possible states.

Recall that every operator Σ̂n+1 acting in a d dimensional Hilbert space H = H(d)

and ‘testing’ a state Ψn (or Ψ′
n = ÛΨn, where Û is unitary) is associated with a basis

set B = {|φi〉 : i = 1, .., d} of d orthonormal eigenvectors5. Further, as the Universe

develops, its state jumps from Ψn to Ψn+1, and this effectively involves a process of

randomly selecting one of these d orthonormal eigenvectors to be the next state Ψn+1,

with the probability that a particular eigenstate |φi〉 is chosen given by the usual Born

rule |〈φi|Ψn〉|2.
Now, each member |φi〉 of B could be either entangled or separable, relative to some

bi-partite factorisation of H = H(d1)
1 ⊗H(d2)

2 . In fact, the overall basis set B may contain

p entangled states, and consequently q = d− p separable members; such a set could hence

be labelled a type (p, q) basis. A basis set of type (0, d) may therefore be called completely

separable, whereas a type (d, 0) may be described as a completely entangled basis. All

other types may be called partially separable, or equivalently, partially entangled.

As an extension to the above, note that it would be necessary to introduce a third

parameter, r, in order to describe basis sets that may contain states that are separable

relative to a tri-partite factorisation of the Hilbert space, H = H(d1)
1 ⊗ H(d2)

2 ⊗ H(d3)
3 for

d = d1d2d3. These sets would be described as a (p, r, q) type, because they contain p

5Note that throughout this work, the calligraphic symbol B will be used to denote the particular basis

set of a Hilbert space represented by {|0〉, |1〉, |2〉, ...} (i.e. the ‘natural’ basis set), whereas the fraktur

symbol B will denote basis sets of orthonormal eigenvectors {|φ1〉, {|φ2〉, {|φ3〉, ...} of operators. This is

really just a convenience, since a basis set of eigenstates is also a basis set for the Hilbert space, and vice

versa.
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entangled members, q members that are separable into three factors, and r members that

can be separated into just two factors, one of which a entangled relative to two of the

factor Hilbert spaces.

Equivalently, a label (p, r, q) clearly indicates that the set incorporates p states that

are separable into a product of one factors (totally entangled vectors), r states that are

separable into a product of two factors (the partially entangled vectors), and q states

that are separable into a product of three factors (the fundamentally separated vectors).

Obviously, the extension generalises in a natural way, such that basis sets discussed relative

to an N -partite factorisation require N parameters.

It is interesting to note that not every type of (p, q) basis set exists.

Consider a four dimensional Hilbert space factorisable into a product of two qubit

factor sub-spaces, that is H(4) = H(2)
1 ⊗ H(2)

2 . Let Ba = {|i〉a : i = 0, 1} for a = 1, 2 be

an orthonormal basis set for the factor Hilbert space H(2)
a , and turn attention to finding

orthonormal basis sets spanning the total Hilbert space H(4).

Firstly, it is possible to find basis sets of vectors that are completely separable relative

to the given bi-partite factorisation of H(4). An example of such a type (0, 4) basis is B(0,4),

defined as

B(0,4) = {|00〉, |01〉, |10〉, |11〉}, (4.19)

with 〈kl|ij〉 = δikδjl and |ij〉 ≡ |i〉1 ⊗ |j〉2 for i, j = 0, 1.

Using the same notation, it is also possible to find type (2, 2) basis sets for H(4). One

example, B(2,2), may be defined as

B(2,2) =

{
|00〉, |11〉, 1√

2
(|01〉+ |10〉), 1√

2
(|01〉 − |10〉)

}
. (4.20)

Similarly, it is possible to find an example, B(3,1), of a type (3, 1) basis,

B(3,1) =





|00〉, 1√
2
|11〉+ 1

2(|01〉+ |10〉),
1√
2
|11〉 − 1

2(|01〉+ |10〉), 1√
2
(|01〉 − |10〉)



 , (4.21)

and an example, B(4,0), of a completely entangled, type (4, 0) basis,

B(4,0) =





1√
2
(|00〉+ |11〉), 1√

2
(|00〉 − |11〉),

1√
2
(|01〉+ |10〉), 1√

2
(|01〉 − |10〉)



 . (4.22)

However, despite the existence of type (0, 4), (2, 2), (3, 1), and (4, 0) basis sets, no

example of a type (1, 3) basis set can be found. This leads to the following:

Theorem 4.2 No type (1, 3) basis set exists for a four dimensional Hilbert space,

relative to the factorisation of H(4) into a product of two qubit sub-spaces.
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Proof. Let η1, η2, and η3 be three orthonormal vectors in H(4) that are separable

relative to the factorisation H(4) = H(2)
1 ⊗H(2)

2 . Each vector ηi, i = 1, 2, 3, is of the form

ηi = φi ⊗ ϕi, where φi ∈ H(2)
1 and ϕi ∈ H(2)

2 .

From the condition that |ηi| = 1,

(〈φi| ⊗ 〈ϕi|) (|φi〉 ⊗ |ϕi〉) = 〈φi|φi〉〈ϕi|ϕi〉 > 0 (4.23)

=⇒ None of the factors φi or ϕi can be zero for i = 1, 2, 3.

Moreover, mutual orthogonality, 〈ηi|ηj〉 = 0 for i 6= j, gives

〈φ1|φ2〉〈ϕ1|ϕ2〉 = 0 (4.24)

〈φ1|φ3〉〈ϕ1|ϕ3〉 = 0

〈φ2|φ3〉〈ϕ2|ϕ3〉 = 0.

For brevity, the product 〈φi|φj〉 shall be defined Aij , and the product 〈ϕi|ϕj〉 ≡ Bij ,

for 1 6 i < j 6 3. For the above equalities AijBij = 0 to hold, Aij and/or Bij must be

zero.

It is firstly evident that not all three of the Aij can be zero. If this were the case, i.e.

A12 = A13 = A23 = 0, then

A12 = 0 =⇒ 〈φ1|φ2〉 = 0, (4.25)

which would imply, since φi 6= 0 for i = 1, 2, 3, and since φi ∈ H(2)
1 and H(2)

1 is two

dimensional, that φ1 and φ2 form an orthogonal basis for H(2)
1 . In this case, therefore,

φ3 = aφ1 + bφ2 (4.26)

where a, b ∈ C and

|a|2 + |b|2 = 1. (4.27)

Then,

A13 = 0 =⇒ 〈φ1|φ3〉 = 0 =⇒ a = 0 (4.28)

A23 = 0 =⇒ 〈φ2|φ3〉 = 0 =⇒ b = 0.

But (4.28) with (4.26) contradicts φi 6= 0, leading to the conclusion that not all A12, A13

and A23 can be zero. Similarly, not all three Bij may be zero.

One way of satisfying the mutual orthogonality conditions, 〈ηi|ηj〉 = 0 for i 6= j, is to

assume A12 = A13 = B23 = 0 and A23 6= 0, though by symmetry any other combination

for i < j and (k 6= i)&(l 6= j) of two Aij and one Bkl being zero, or two Bij and one Akl,

would also work.
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As before, (4.25) may be used to deduce that φ3 = aφ1 + bφ2, such that φ1 and φ2

form an orthogonal basis for H(2)
1 . From the condition A13 = 0, it is clear that a = 0, and

so because A23 6= 0 the conclusion is that b 6= 0.

Similarly to (4.25), the condition B23 = 0 with ϕi ∈ H(2)
2 implies that ϕ2 and ϕ3 form

an orthogonal basis for H(2)
2 . Hence

ϕ1 = cϕ2 + dϕ3 (4.29)

for c, d ∈ C and |c|2 + |d|2 = 1. Collecting these results gives

η1 = φ1 ⊗ (cϕ2 + dϕ3) (4.30)

η2 = φ2 ⊗ ϕ2

η3 = bφ2 ⊗ ϕ3.

which are clearly mutually orthogonal, as required.

Consider now a fourth non-zero vector η4 ∈ H(4). Given that φ1 and φ2 form an

orthogonal basis for H(2)
1 , and ϕ2 and ϕ3 form an orthogonal basis for H(2)

2 , this new

vector may be written as

η4 = αφ1 ⊗ ϕ2 + βφ1 ⊗ ϕ3 + γφ2 ⊗ ϕ2 + δφ2 ⊗ ϕ3, (4.31)

with α, β, γ, δ ∈ C and |α|2+ |β|2+ |γ|2+ |δ|2 = 1. Now, if η1, η2, η3, and η4 are to form an

orthonormal, type (1, 3) basis for H(4), then because η1, η2 and η3 are clearly separable,

η4 must be entangled relative to the bi-partite factorisation H(4) = H(2)
1 ⊗H(2)

2 . So, from

the microsingularity condition (4.9) given earlier, the condition

αδ 6= βγ (4.32)

must therefore hold for η4. However, from orthogonality

〈η2|η4〉 = 0 =⇒ γ = 0 (4.33)

〈η3|η4〉 = 0 =⇒ bδ = 0,

but since b 6= 0, the last equality implies δ is zero. So,

αδ = βγ = 0, (4.34)

which is inconsistent with (4.9). Hence, η4 cannot be entangled.

Thus, if three mutually orthogonal vectors in H(4) are separable relative to the factori-

sation H(4) = H(2)
1 ⊗H(2)

2 , then a fourth orthogonal vector must also be separable. There

can be no type (1, 3) basis set for H(4).
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It is interesting as to whether such a theorem can be extended to bases in higher

dimensional Hilbert spaces. Whilst no proof has been demonstrated, no type (1, 5) basis

set has been found that spans the six dimensional Hilbert space H(6) factorised as H(6) =

H(3)
1 ⊗ H(2)

2 . If it is actually the case that no such basis set does exist, it may lead to a

conjecture that in a d = d1d2 dimensional Hilbert space there is no type (1, d−1) basis set

relative to any bi-partite factorisation H(d) = H(d1)
1 ⊗H(d2)

2 . This in addition also provokes

the question as to which, if any, types of basis sets (p, r, q) are forbidden relative to a

tri-partite factorisation of a d dimensional Hilbert space. Consequently, which types are

allowed in an N -partite split of H(d)?

The theorem described above also holds an interesting implication for physics. As

discussed previously, every Hermitian operator, Σ̂, in a four dimensional Hilbert space

H(4) is associated with a spectrum of four orthonormal eigenvectors. Further, these four

eigenstates effectively form one possible orthonormal basis set for H(4). So, since each basis

set may be labelled as type (p, q) relative to the fundamental factorisation of the Hilbert

space H(4) = H(2)
1 ⊗ H(2)

2 , reciprocality implies that the operators themselves may also

adopt this label. It is hence possible to discuss a type (p, q) Hermitian operator, Σ̂(p,q),

based on the separability of its eigenstates relative to this factorisation.

The conclusion of the above work is therefore that there exists no type (1, 3) Hermitian

operator acting on a two qubit system. There is no observable that may be represented by

an operator possessing one entangled and three separable eigenstates, relative to H(4) =

H(2)
1 ⊗H(2)

2 .

What makes this result particularly important regards the earlier problem of separa-

bility in the Universe. Even in a two qubit system, the number of separable states form

a set of measure zero in comparison to the number of all possible states. So, as was re-

marked in the previous sub-section, the fact that separability does seem to be a common

feature of physically observed quantum states is ascribed to be due to a careful choice of

the operators that act upon the system. The point that can be learnt from the present

discussion is that mathematics itself appears to enforce certain constraints on the way in

which a system develops. For example, if a hypothetical mini-universe is imagined with

a state Ψn existing in a Hilbert space of four dimensions, it is certain that its next state

Ψn+1 will not be one of the eigenstates of a type (1, 3) operator. Mathematics ensures

that such universes can only ever be developed with Σ̂(0,4), Σ̂(2,2), Σ̂(3,1) or Σ̂(4,0) type

Hermitian operators.

Whilst two qubit universes are of, course, trivial compared to a state of dimension

greater than 210
184

, the result highlights the assertion that the mathematics of operators

places important restrictions on the development of the state. It may readily be speculated,

then, on what other constraints might naturally be enforced by the operators, especially as
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the dimensionality of the Hilbert space increases. Specifically, similar such constraints may

ensure that the possibility of obtaining a highly separable state for the Universe is actually

much more likely than might be expected. Apparent classicity may be an unavoidable and

inevitable feature in a fully quantum Universe because of tight limitations fixed on its

dynamics by mathematics.

4.3 Decoherence

Exactly how quantum mechanics gives way to the classical reality that scientists observe

and measure has been one of the great problems of physics since the earliest days of the

theory. In essence, the difficulty has been in explaining why states on the macroscopic

‘everyday’ scale never appear to exhibit the properties associated with quantum states.

For example, large semi-classical states in the laboratory always seem to have well de-

fined spatial locations, and are never found entangled with one other or existing in linear

superpositions.

Although a number of schemes have been proposed to account for this phenomenon,

by far the current most popular ‘explanation’ is the theory of decoherence. Since the

purpose of this chapter has been to investigate some of the necessary conditions required

for apparent classicity to begin to emerge from a fully quantum description of the Universe,

no such study would therefore be complete without a discussion of this conventional theory.

4.3.1 The Theory of Decoherence

The main thrust of decoherence theory is that a quantum state is driven to classicality by

continual interactions with its environment (see [29] [30][31], amongst others).

As an example, consider a quantum subject in the laboratory that is represented by

the state ψ in a two dimensional Hilbert space Hψ spanned by an arbitrary orthonormal

basis Bψ = {| ↓〉, | ↑〉}. For illustration, it may be imagined that ψ represents the state of

a single electron, whereas Bψ represents the set of possible outcomes of a measurement of

the electron’s spin component in a particular direction.

Consider also the laboratory detection apparatus used to measure the electron. This is

also described by a unique quantum state, and may in this simple example be represented

by a vector Φ in the two-dimensional Hilbert space HΦ spanned by an orthonormal basis

BΦ = {|Φ↓〉, |Φ↑〉}.
Now, in order for the apparatus to behave as a detector of ψ, its state Φ must somehow

be correlated with the spin states of the electron. To this end, the basis BΦ may be chosen
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such that if the detector is found to be in the state |Φ↓〉, it is taken be imply that the

electron is in a spin down state, whereas if it is found to be in the state |Φ↑〉 then the

electron is assumed to be spin up. In such a system, the basis vectors |Φ↓〉 and |Φ↑〉 are

defined as ‘pointer states’, and are ultimately hoped to give rise to the classical results of

the measurements, i.e. what the physicist actually sees.

Let the detector initially be in the ‘ground’ state |Φ↓〉. If it is to work correctly, it may

be assumed that an encounter with a spin up electron induces a transition in the detector

from the state |Φ↓〉 to the state |Φ↑〉, whereas a spin down electron leaves the apparatus’

state unaffected. In other words, if the electron is initially in one of the eigenstates | ↓〉 or
| ↑〉, the overall system evolves according to either (4.35) or (4.36),

| ↓ 〉 ⊗ |Φ↓〉 → | ↓〉 ⊗ |Φ↓〉 (4.35)

| ↑ 〉 ⊗ |Φ↓〉 → | ↑〉 ⊗ |Φ↑〉. (4.36)

Such a process implicitly assumes that there is some sort of coupling between the

electron and detector. This generates an interaction term in the Hamiltonian governing

the system’s dynamics, which leads to a unitary and deterministic evolution of the overall

state into one of the products | ↓〉 ⊗ |Φ↓〉 or | ↑〉 ⊗ |Φ↑〉, depending on the state of the

electron.

Now, the above mechanism provides the correct basis for the classically expected results

if the electron is initially in one of the spin eigenstates | ↓〉 or | ↑〉. A problem arises,

however, if the initial electron state is in a linear superposition of the form ψ = α| ↓〉+β| ↑〉,
where α, β ∈ C and |α|2 + |β|2 = 1. From (4.35) and (4.36), the electron-detector system

is then evolved into the state

(α| ↓〉+ β| ↑〉)⊗ |Φ↓〉 → α| ↓〉 ⊗ |Φ↓〉+ β| ↑〉 ⊗ |Φ↑〉, (4.37)

which is clearly an entangled linear superposition of two orthogonal electron-detector

product states. But, such an entangled state is undesirable if it is hoped that the simple

two-level apparatus may be extended to represent a classical detector, because classical

objects are never seen in linear superpositions. So, if decoherence is to be an answer to

the question of how classicity emerges from quantum theory, it must provide a mechanism

for removing the entanglement of (4.37).

The method proposed in decoherence theory incorporates an extension of the above

‘von Neumann chain’ of correlated systems to an inclusion of the environment as well,

which is also assumed to be a quantum state. Consider two particular states of the

environment |Ξ↓〉 and |Ξ↑〉 contained in an enormous Hilbert space HΞ. These two vectors

are taken to be the result of an interaction between the pointer states of the detector with
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its surroundings; that is, if the detector is in the state |Φ↓〉 then the environment will be

in the state |Ξ↓〉, whereas if the detector is in the state |Φ↑〉 then the environment will be

in the state |Ξ↑〉.
With this condition in place, then if the environment is initially in some ground state

|Ξ0〉, it is assumed that the detector-environment system is evolved into one of the following

two correlations

|Φ↓〉 ⊗ |Ξ0〉 → |Φ↓〉 ⊗ |Ξ↓〉 (4.38)

|Φ↑〉 ⊗ |Ξ0〉 → |Φ↑〉 ⊗ |Ξ↑〉.

Overall, then, an initial electron-detector-environment system Ψi ≡ ψ⊗Φ↓⊗Ξ0, where

ψ = (α| ↓〉+ β| ↑〉), will develop into a final entangled state Ψf , such that

|Ψi〉 = |ψ〉 ⊗ |Φ↓〉 ⊗ |Ξ0〉 → α| ↓〉 ⊗ |Φ↓〉 ⊗ |Ξ↓〉+ β| ↑〉 ⊗ |Φ↑〉 ⊗ |Ξ↑〉 = |Ψf 〉. (4.39)

If the experiment is repeated identically a large number of times, or alternatively if

a large number of hypothetical identical universes are simultaneously developed in the

same way, the ensemble of final states could be described in terms of the density matrix

ρ defined as ρ = |Ψf 〉〈Ψf |. Clearly, then,

ρ =
α∗α| ↓〉〈↓ | ⊗ |Φ↓〉〈Φ↓| ⊗ |Ξ↓〉〈Ξ↓|+ αβ∗| ↓〉〈↑ | ⊗ |Φ↓〉〈Φ↑| ⊗ |Ξ↓〉〈Ξ↑|
+α∗β| ↑〉〈↓ | ⊗ |Φ↑〉〈Φ↓| ⊗ |Ξ↑〉〈Ξ↓|+ β∗β| ↑〉〈↑ | ⊗ |Φ↑〉〈Φ↑| ⊗ |Ξ↑〉〈Ξ↑|

. (4.40)

The central argument of the decoherence theorists is that if the environment is suffi-

ciently large and possesses a large number of energy eigenstates, and if it is never carefully

prepared or probed, then it may be ignored. In this case, it is possible to trace over all the

states of the environment to obtain the reduced density matrix, ρs, of the electron-detector

system of interest. Specifically,

ρs = TrΞ[ρ] =
∑

γ

〈Ξγ |ρ|Ξγ〉 (4.41)

where the index γ implies a sum over every possible normalised state of the environment,

including of course |Ξ0〉, |Ξ↓〉 and |Ξ↑〉.
The result of (4.41) may be split into a sum ρs = ρd + ρod of ‘diagonal’ elements, ρd,

given by

ρd = α∗α| ↓〉〈↓ | ⊗ |Φ↓〉〈Φ↓|+ β∗β| ↑〉〈↑ | ⊗ |Φ↑〉〈Φ↑| (4.42)

and ‘off-diagonal’ elements, ρod, of the form

ρod = αβ∗| ↓〉〈↑ | ⊗ |Φ↓〉〈Φ↑| ⊗ 〈Ξ↓|Ξ↑〉+ ... (4.43)
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In this case, the diagonal elements are equivalent to the states predicted by classical

mechanics, whereas the off-diagonal elements represent the quantum coherences. Evi-

dently, the environment has no effect on the diagonal elements, but does influence the

off-diagonal terms.

However, if the environmental states are assumed to be orthonormal, 〈Ξi|Ξj〉 = δij

for all i and j, then the off-diagonal elements clearly become zero. The resulting reduced

density matrix, ρs = ρd, takes the form of a classical ensemble of states, with no quantum

entanglement.

Overall, then, the superposed electron state ψ = (α| ↓〉 + β| ↑〉) has been unitarily

driven to one of its classically observed basis states | ↓〉 or | ↑〉 by an interaction with its

environment, and which of these two states is now actually observed is simply a matter of

classical probability. That is, when an observation is eventually made there is a probability

of α2 that the electron is already in the state | ↓〉, and a probability of β2 that the electron

is already in the state | ↑〉. Compare this with the pre-decoherence case ψ = (α| ↓〉+β| ↑〉),
in which there is a probability of α2 that the electron might subsequently be found in

the state | ↓〉 if it is tested by some operator B̂ with orthonormal basis Bψ = {| ↓〉, | ↑〉},
and a probability of β2 that the electron might similarly be found in the state | ↑〉, but is
really in neither of these states until the actual observation is made.

4.3.2 Problems with Decoherence

It is difficult to predict exactly how the theory of decoherence may fit with the paradigm

proposed in this thesis. As is evident from the brief summary given above, decoherence

is assumed to be a macroscopic phenomenon that would only arise from a consideration

of the interactions and dynamics of an overall system of very large dimension. In this

sense, decoherence may be viewed as an emergent theory that might therefore potentially

be used to describe how classical physics arises as an approximation to quantum theory

in the large scale limit of systems with very many degrees of freedom. From this point

of view, the ideas of decoherence may well play an important part in the discussion of a

quantum system represented by a state of dimension greater that 210
184

.

On the other hand, it is still difficult to see how decoherence theory could be applied

directly to the Universe as a whole. The main point of decoherence is that a (usually

microscopic) quantum system is evolved into a classical looking system by continual inter-

actions with its external surroundings. No similar argument can be applied, however, to

the case in which the quantum state in question is the Universe itself, because by definition

the Universe is not contained in any sort of ‘background’. In essence, there is no external

environment with which the state of the Universe is able to decohere.
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This observation leads, perhaps, to one of three conclusions: either i) decoherence

is a valid theory to describe states inside the Universe, but not the overall state of the

Universe itself; ii) the individual sub-systems of the Universe decohere each other, such

that the overall state of the Universe is driven to classicity; or iii) decoherence is not really

a fundamental theory of physics. The first of these conclusions seems a little paradoxical,

and leaves the question as to where the ‘line’ can be drawn that specifies the validity of

decoherence. The third conclusion is quite negative, though still, of course, possibly true.

The remaining possibility is more interesting, and might presumably lead to a situation of

the type in which quantum sub-state A is acting as the environment for quantum sub-state

B, whereas the quantum sub-state B is acting as the environment for quantum sub-state

C, but perhaps quantum sub-state C is acting as the environment for quantum sub-state

A. Such a picture would immediately be in keeping with the assumed self-referential nature

of the Universe, but a great deal of further investigation is required in order to discover

how, or indeed if, such a hypothetical mechanism might work.

One problem that still exists in decoherence theory is the issue of probability. Using

the electron experiment described earlier as an example, the mathematics of decoherence

still provides no explanation of how one of the basis states | ↓〉 or | ↑〉 actually gets selected,

and therefore why a particular one of these two is actually observed in the laboratory.

During decoherence, the interplay between an initial quantum state and its environ-

ment gives rise to a well specified interaction term in the Hamiltonian. The system then

undergoes unitary evolution according to the Schrödinger equation, which forces the state

into a classical looking state. The Schrödinger equation, however, is a deterministic for-

mula, and as such the drive of the state from quantum to classical must also be deter-

ministic. Whilst this not only gives philosophical problems, such as the possibility of a

Laplacian style ‘clockwork’ Universe, it also raises the question as to how the state can

deterministically evolve to only one out of a set of possibilities. Indeed, as remarked by

Erich Joos, one of the proponents of decoherence, “Decoherence can not explain quan-

tum probabilities without (a) introducing a novel definition of observer systems in

quantum mechanical terms (this is usually done tacitly in classical terms), and (b)

postulating the required probability measure (according to the Hilbert space norm)”.

The probability measure is normally introduced into conventional quantum mechanics

by the state reduction process. According to this postulate, then at the point of mea-

surement of a quantum system, the wavefunction discontinuously jumps into one of the

eigenstates of the Hermitian operator representing the observation. Moreover, it is this

process that abruptly selects, irreversibly and probabilistically, the next state of the sys-

tem out of a set of possibilities. Decoherence, however, contains no such mechanism, so

a question must remain as to how similar selections can be made if the system is always
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constrained to evolve reversibly, unitarily, and deterministically.

To give an illustration, in quantum mechanics the famous paradox of Schrödinger’s

Cat [32] relies on which of a set of possibilities a quantum state develops into. Adapting

the earlier electron example to Schrödinger’s thought experiment, it might be the case

that if the electron is in the spin down state, then a gun is fired and the Cat in the sealed

box is killed. If conversely the electron develops into the spin up state, then a gun is not

fired and the Cat is spared.

In the conventional Copenhagen interpretation of quantum mechanics, until an ob-

servation collapses the quantum wavefunction, the state of the system is in an entangled

superposition of products of a spin-down electron and a fired gun with a spin-up electron

and an un-fired gun. Consequently, and taking the conclusion to absurdity, it might then

be argued that the Cat is simultaneously both dead and alive. So, the question has there-

fore always been: at what point along the chain is the observation made? If the state

reduction relies on a human observation, is the conclusion to be accepted that the Cat is

able to keep one paw in both life and death until physicists decide to look inside the box?

In decoherence theory, the linear superposition is destroyed by the environment, so

the electron’s spin state is definitely either up or down, with the inevitable consequences.

As such, the corresponding reduced density matrix for the electron-gun-Cat system only

reflects an external observer’s classical ignorance as to what has already happened. Para-

phrasing, the ‘decision’ has already been made by the Universe as to what has gone on

in the box, but until the physicist investigates, only classical probabilities of obtaining

certain results can be discussed. This is obviously like tossing a coin: the coin definitely

lands either heads or tails, but until it is uncovered it is not known which of these two

possibilities has occurred.

But, in decoherence theory the question remains: how does the Universe decide whether

or not the electron evolves to a spin-up or a spin-down state? How does the Universe decide

if the Cat lives?

The lack of randomness is not the only problem caused by a removal of the state

reduction postulate from quantum mechanics. Assuming the principle of cause and effect

is to be believed, any physical state in the universe is the result of some earlier process.

If further it is accepted that every system in the Universe is fundamentally quantum in

nature, then every physical quantum state in the Universe must therefore be the result of

some earlier quantum process.

However, if these quantum processes appear to ensure that quantum interferences are

eradicated, as the decoherence paradigm suggests, it is unclear as to how any coherent

quantum state might be produced in the first place. In other words, if quantum systems
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are only able to develop through a process of unitary evolution, and if these evolutions

effectively remove quantum coherences and superpositions, what unitary process in the

decoherence paradigm can give rise to entangled states? Specifically, in the example

described above, how is it ever possible to create an initially superposed state of the form

ψ = (α| ↓〉+ β| ↑〉) using only processes constrained to destroy such features?

Presumably the conclusion to be drawn is that either decoherence theory requires an

additional mechanism in order to produce such superpositions and entanglements, or else

it must be asserted that every such quantum state currently in existence has come from

some sort of ‘partial decohering’ of an earlier state that was even more entangled and

superposed. In this latter case, not only would it be necessary to specify how this partial

decohering might work, but also the question would remain as to why, if the Universe has

been continuously and smoothly evolving for a period of about 15 billion years, are there

any quantum effects left in the current epoch at all?

Of course, if the state reduction postulate is included into the formalism, this problem

is not encountered because the preparation of a superposed or entangled quantum state

is simply seen as the outcome of a quantum test. Moreover, because these outcomes are

associated with the eigenstates of Hermitian operators, they are not constrained to be the

result of a continuous unitary process. Thus with the introduction of Hermitian operators

and state reduction into the dynamics, it is possible to generate superposed entangled

states, and these can then go on to be developed in subsequent ways, for example to

collapse and consequently cause or prevent guns from firing.

As discussed previously, such a viewpoint forms the basis of the paradigm proposed in

this thesis, in which the test Σ̂n simultaneously collapses the ‘old’ state of the Universe

Ψn−1 to prepare and produce the ‘new’ state Ψn. In this proposal, the state of the Uni-

verse develops through a long chain consisting of a state reduction, followed by evolution,

followed by a state reduction, and so on.

In addition to these theoretical difficulties, recent experiments reviewed in [33] seem

to indicate that discontinuous wavefunction jumps are an observed feature of physical

quantum systems. If these investigations prove conclusive, it is natural to wonder as to

how such an empirical result might be reconciled by a theory of decoherence based on

continuous, unitary evolution.

4.3.3 Schrodinger’s Cat’s Stages

As a final comment to complete this discussion, it might briefly be mentioned as to how

the paradigm proposed in this work views the Schrödinger’s Cat paradox, noting that a

fuller and more technical account is evident from Chapter 6.
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In the schematic picture given here, an initial state Ψn is imagined that is separable

into a huge number of factors. Simplifying this, however, Ψn may be written in the form

Ψn = |ψ〉 ⊗ |Gu〉 ⊗ |Cl〉 ⊗ |R〉 (4.44)

where |ψ〉 ∈ Hψ represents the superposed electron state ψ = (α| ↓〉 + β| ↑〉), with

|Gu〉 ∈ HG the un-fired gun, |Cl〉 ∈ HC the living Cat, and |R〉 ∈ HR the rest of the

Universe.

Obviously, Ψn is a vector in the total Hilbert space HΨ = Hψ ⊗HG ⊗HC ⊗HR.

The next test Σ̂n+1 acting on Ψn has a basis set of orthonormal eigenvectors. If two

of these eigenvectors are Φ and Θ, defined by

Φ = | ↑〉 ⊗ |Gu〉 ⊗ |Cl〉 ⊗ |R〉 (4.45)

Θ = | ↓〉 ⊗ |Gu〉 ⊗ |Cl〉 ⊗ |R〉

then the next state of the Universe Ψn+1 may be either Φ or Θ, with relative probabilities

|〈Ψn+1 = Φ|Ψn〉|2 = |〈↑ |ψ〉|2 and |〈Ψn+1 = Θ|Ψn〉|2 = |〈↓ |ψ〉|2 respectively.

Now, assume that Ψn+1 = Φ. Moreover, assume also that under this circumstance,

the Rules governing the Universe conspire such that the subsequent states Ψn+1+j will

‘resemble’ Ψn+1 for a large but finite number J of further evolutions Ûn+1+j and tests

Σ̂n+1+j , for J ≫ 0 and 0 ≤ j ≤ J. That is, assume that these subsequent tests Σ̂n+1+j for

1 ≤ j ≤ J have eigenstates that are separable in the form Φn+1+j = | ↑′〉⊗|G′
u〉⊗|C ′

l〉⊗|R′〉,
where |ψ′〉 ∈ Hψ, |G′

u〉 ∈ HG, |C ′
l〉 ∈ HC and |R′〉 ∈ HR represent, for example, living cats

and un-fired guns that have changed slightly in their own Hilbert spaces as the Universe

has developed.

The point is that during these J developments the electron, the gun, the Cat and

the rest of the Universe have not interacted with each other in any way. Specifically, the

electron has not interacted with the gun, and so the Cat lives.

Alternatively, consider the case where Ψn+1 = Θ, and assume that the Rules now

conspire so that subsequent states Ψn+1+m−1 resemble Ψn+1 for 1 ≤ m ≪ J, but that at

time (n+1+m) a test Σ̂n+1+m is chosen which has eigenstates of the form Θn+1+m = | ↓
〉 ⊗ |Gf 〉 ⊗ |C ′

l〉 ⊗ |R′〉, where |Gf 〉 ∈ HG represents the state of the fired gun, |C ′
l〉 ∈ HC

the living Cat that has evolved slightly and independently since its earlier state |Cl〉, and
|R′〉 ∈ HR the rest of the Universe which has also undergone many developments during

the m preceding evolutions and tests.

Moreover, if the experiment is sound, it is further assumed that this eigenstate Θn+1+m

occurs with very high probability. In this case, it is further assumed that an even later

time (n+ 1 +m+ p), the Rules conspire to choose a test Σ̂n+1+m+p, for 1 ≤ p ≪ J, that
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has an eigenstate of the form Θn+1+m+p = | ↓〉 ⊗ |G′
f 〉 ⊗ |Cd〉 ⊗ |R′′〉, where |G′

f 〉 ∈ HG

represents the state of the gun that has changed slightly since it was fired, |Cd〉 ∈ HC the

Cat that has now been shot dead, and |R′′〉 ∈ HR the rest of the Universe which has also

developed further in the p evolutions and tests since it was represented by the state |R′〉.
As before, assuming the experiment is consistent and the gun well aimed, it is accepted

that the eigenstate Φn+1+m+p will also occur with a very high probability.

Thus, the two possible outcomes for the initial collapse of the electron sub-state from

|ψ〉 to | ↑〉 or | ↓〉 lead to two different ‘histories’ for the Universe’s development. In neither,

however, is there any ambiguity in the fate of the Cat.

Obviously, the example given here is described only (highly) schematically. In reality

cats and guns are complicated macroscopic states that will undergo a series of ‘inter-

nal’ transitions as the Universe develops, and will interact with their surroundings in a

multitude of different physical ways. Indeed, it is a fundamental philosophical question

regarding the nature of persistence to ask what it means to describe an object that is

undergoing tiny changes from moment to moment as ‘the same cat’. In fact, some of the

ideas of decoherence theory may contribute an important part to this particular discussion.

In principle, however, the main point from the above treatment of the Schrödinger’s

Cat paradox should be evident. The conjecture is that the Universe automatically and

self-referentially selects an operator Σ̂n+1 to test itself, and it is this self-measurement that

collapses the electron sub-state into one of its basis vectors | ↓〉 or | ↑〉, without the need

for a conscious observer.

Perhaps it is this combination of self-referential testing with discontinuous state re-

duction, and maybe even macroscopic decoherence effects, that might save the Cat’s life

and give it a classical identity.
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5 A Quantum Origin of Space

As discussed at the beginning of the previous chapter, one qualification for the presence

of classicity follows from the observation that “this object with these qualities is here,

whereas that object with those properties is thereÔ. Whilst the main of the last chapter

focused on the issue of when it is possible to specify ‘this’ or ‘that’ object, it did not

examine how the properties of the complex vector representing the Universe might give

rise to the spacetime concepts of ‘here’ and ‘there’. This question is addressed now.

5.1 Background

When attempting to develop theories to account for the presence of space, time and matter

in the Universe, physicists often adopt one of two opposing viewpoints. These methods

may be described as either bottom-up or top-down, and reflect the basic difference be-

tween reductionist and holistic physics. This difference is itself perhaps predictable in a

Universe containing remarkably successful principles such as quantum field theory, which

exhibits both local and global features.

Many of the bottom-up approaches proceed generally from the assertion that, at its

most basic level, the Universe can be represented by a vast collection of discrete events

existing in some sort of mathematical space. Time and space are introduced as arising

from the relations between these events, such that (classical) reality as we understand it

emerges on a macroscopic scale due to the complex connections between these fundamen-

tal, microscopic entities. Wheeler was one of the earliest proponents of this idea [34], by

envisaging a Universe full of a pre-geometric “dust” from which spatial degrees of freedom

emerge. These ‘ultimate’ notions of pre-geometry have been developed more recently by

Stuckey [35].

On the other hand, many of quantum cosmology’s top-down approaches hold that the

entire Universe should be treated as a single system. Top-down theorists often seek to

write down a unique state description for the Universe, before evolving it according to a

given set of laws or conditions. From this point of view, the apparent classical reality that

physicists perceive is just an approximation to that part of the Universe under investigation

whenever a fully quantum mechanical description can be neglected.

A selection of some of the contemporary bottom-up and top-down approaches are

reviewed below in Sub-sections 5.1.1 and 5.1.2. Throughout the rest of this chapter it

will then be shown how some of the general points of these two approaches might be

reconciled as being different aspects of the same theory. That is, in the paradigm proposed
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in this thesis, the discrete events postulated on the microscopic pre-geometric scale may

be associated somehow with the factor sub-states of the single state representing the

completely quantum Universe. Thus, such a viewpoint may be labelled a type of ‘top-

down pregeometry’. It will be argued that it is from the dynamics of these changing

sub-states that familial relations may arise, and that these relations could be seen as the

origin of spatial degrees of freedom in the appropriate limit.

5.1.1 Bottom-Up Approaches

One of the bottom-up theories of the Universe is the Causal Set Hypothesis [36]-[40], which

states that (quoting [38]): “...spacetime, ultimately, is discrete and ... its underlying

structure is that of a locally finite, partially ordered set (a causal set)Ô. In this

model it is postulated that classical, discrete “events” are generated at random, though

it is made clear that they are not embedded into any sort of physical background space.

Spacetime may then be recovered as an emergent consequence of the ordering that results

from imposing certain logical relations between the members of these sets of events.

Overall, actual physical space in this paradigm manifestly consists of a causal set (or

“causet”) of points which yield a metric structure in the continuum limit [37]. Additionally

it may be shown that the dimension of this spacetime can be a scale dependent quantity,

making the model equally compatible with notions of four dimensional general relativ-

ity and higher dimensional Kaluza-Klein theories, including modern string and m-brane

physics. The exact details of classical causal set theory are elaborated upon in Section

5.2.

A related idea is that of Cellular Networks (CN) [41][42], which argues that, on the

microscopic scale, the geometry of space may be represented by a mesh of primordial cells

or ‘nodes’ interacting with each other via a series of interconnecting ‘bonds’. These nodes

are assumed to contain physical information by way of internal state structures. The bonds

themselves may be in one of a number of ‘bond states’, allowing the strength and types

of interaction to be controlled. The evolution of the Cellular Network is similar to that

of a cellular automaton in that the Universe proceeds as a giant machine, but differs in

the respect that the number and type of bonds in the network may change with time. For

example, one change might be that two cells unconnected in one instance may be joined

by a certain type of bond in the next. The vision is of a self-organising topology that

is ever changing and depends on the physics of the situation being modelled. As before,

metric structures are recovered as a continuum concept.

Zizzi [43][44] continues the machine principle of Cellular Networks with the analogy
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that the Universe behaves in a way similar to computational information theory, in what

she defines as a “Quantum Growing Network” (QGN). The state of the Universe is pos-

tulated to be a tensor product of a vast number of elementary, two-dimensional quantum

degrees of freedom (qubits) which are connected and processed by a set of quantum logic

gates. Further, as time goes by, the number of qubits increases, and hence so does the

dimensionality of the Universe’s Hilbert space. Overall, Zizzi argues that the Quantum

Growing Network system forms a ‘proto-spacetime’ which may give rise to physical space-

time in a manner similar to Requardt’s.

In the Spin Network (or ‘Spinnet’) approach proposed by Penrose [45], spacetime is

generated from the relations between combinations of fundamental “units”, where each

unit may be likened to an elementary particle that possesses no characteristics apart

from total angular momentum. The units may interact with one other, and a system

of interacting units may be represented by a graph. Each edge of the graph denotes a

unit coming into or arising from an interaction, whereas the vertices are the interactions

themselves. Penrose restricts his analysis to tri-valent graphs, which may be thought of as

describing two units joining to form a third or one unit splitting into two. Note, however,

that because there is no ‘direction’ inherent to the graphs, each is assumed to represent all

of the allowed interactions between the three units. The only constraint imposed is that

the vertices conserve angular momentum, such that whichever particles are chosen to be

the ones ‘entering’ the interaction, the sum of their angular momenta must equal the sum

of angular momenta of the remaining units (see [46] for a review).

Given a large number of units, a large number of graphs may be obtained. Further,

if one of the edges of one graph has the same value of angular momentum as the edge

of another graph, they may be joined and the two graphs connected. By continuing

this process, it is possible to create a network of graphs where lines represent angular

momentum carrying particles and vertices represent their interactions. Penrose shows

how an emergent geometry may arise by considering this network of relations.

Markopoulou and Smolin [47] investigated the causal evolution of such spin networks

by combining the Causal Set approach of chains of events with the Spin Network notion

of geometry. Given the set of edges and vertices comprising a spin network, rules are

suggested for generating a new set from their particular relations. In fact, a number

of possible new networks may be produced by exploiting the fact that each graph may

represent a number of possible interactions. If the rules are repeated a series of times, a

chain of networks may be created with a definite causal structure existing between them.

By considering, in the manner of Causal Sets, the sums over histories of these chains

of spinnets, Markopoulou et al were able to generate amplitudes of transmission from

an initial to a final topology. The model leads to the production of a series of timelike
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surfaces, analogous to an evolving spacetime.

5.1.2 Top-Down Approaches

One search for a top-down model of the Universe has been the search for a consistent

theory of quantum cosmology. On the basis that the large scale structure of the Universe

is described by general relativity, some cosmologists [16] have attempted to canonically

quantise the solutions of the Einstein field equations. Given canonical variables, the La-

grangian and action functional can be defined, and quantum fields can be introduced;

overall a quantum state function Ψ of the Universe is generated. This method of quan-

tum cosmology involves an investigation of the evolution of the Universe’s wavefunction

according to the Wheeler-deWitt equation, but is associated with the notorious “Problem

of Time”.

Hartle and Hawking [17] progressed quantum cosmology by adding appropriate con-

straint conditions to the dynamics, such that the Universe could appear to be ‘created

from nothing’ by a manner analogous to a quantum fluctuation or tunnelling process.

Further developments have also been made [48][49] by adding inflationary terms to the

Lagrangian in order to account for the observed isotropy, homogeneity and flatness of the

Cosmos in the current epoch. These approaches again assert that the Universe is described

by a single quantum state.

Given that the Universe is observed currently to be expanding, many cosmologists

extrapolate back to conclude that it must have begun from a spacetime singularity. This,

however, causes problems in relativity theory because regions of very high curvature require

a theory of quantum gravity, and the search for a consistent model of this has proved

elusive. So, a proposed alternative to the inevitable Big Bang singularity has been the

Ekpyrotic Universe model [50].

The approach begins with the hypothesis that every point in our four dimensional

Universe is mapped to a point on part of a hypersurface called a “D-Brane”, which may

be thought of as a ‘thin wall’ or membrane existing in part of a higher dimensional reality.

This D-brane, containing the entirety of our Universe, is separated by some sort of ‘Bulk’

volume from a second D-brane which may itself contain a second, ‘hidden’ universe.

Time had no beginning in the Ekpyrotic Universe model. In an era that conventional

cosmologists may refer to as pre-Big Bang, i.e. at times greater than ∼ 15 billion years

ago, our 4-dimensional universe within its D-brane was cold and empty. It is postulated

that at some time during this period, a light (compared to the two D-branes) ‘bulk-brane’

peeled away from the D-brane containing the hidden universe, and travelled across the
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bulk volume towards our D-brane. When they collided, it is proposed that the bulk-brane’s

kinetic energy was transferred into heat and excitations of the various force and matter

fields contained within our D-brane. This marked the start of what appeared to be a hot

big bang in our Universe, which proceeded to expand and evolve in the way understood

by standard astronomy.

The Ekpyrotic model hopes to provide a mechanism for generating the observed

isotropy, flatness and homogeneity of the universe, without appealing to any artificial

inflation fields, and without containing an initial singularity. Additionally, it may in-

clude an explanation for why gravity is weaker than the other three fundamental forces.

Brane (and string) theory, however, is still a long way from being generally or empirically

accepted, and is itself riddled with unanswered or unaddressed questions.

5.2 Classical Causal Sets

As mentioned above, a number of authors have introduced the possibility that continuous

spacetime might emerge from a consideration of the relationships between the members

of a causal set. In this paradigm, the Universe is envisaged to consist ultimately of an

enormous number of ‘events’, where each event is assumed to be a separate, discrete,

mathematical object of some sort.

By definition [36], a causal set (or “causet”) C is a locally finite, partially ordered

set (or “poset”) of objects C = {x, y, ...}. Each member of a partially ordered set either

shares, or does not share, a unique binary relationship with every other member of the set.

Denoting this relationship by the symbol ≺, which may be seen as a type of comparison,

two members x and y of a poset are hence connected as x ≺ y or y ≺ x, or else x and y

are said to be incomparable.

The relationship ≺ consequently introduces an order between the members of the set,

and this is made consistent by ensuring that it is transitive (T) and asymmetric (A). In

addition, it is conventionally assumed that ≺ is also irreflexive (I). So, for x, y, z ∈ C the

following constraints are imposed:

(T) : x ≺ y and y ≺ z =⇒ x ≺ z (5.1)

(A) : x ≺ y =⇒ y ⊀ x

(I) : x ⊀ x

A poset may be described as locally finite if, between any two members x and y, where

x ≺ y, there are a finite number of events a, b, c, ... such that x ≺ a ≺ b ≺ ... ≺ y. In other

words, only a limited number of events “mediate” [51] between the event x and the event

y. A causal set is defined to be such a locally finite, partially ordered set.
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One method of generating a causal set is via a process of ‘sequential growth’ [38]. At

each step of the growth process a new element is created at random, and the causal set

is developed by considering the relations between this new event and those already in

existence. Specifically, the new event y may either be related to each of the other events

x as x ≺ y, or else x and y are said to be unrelated. Thus the ordering of the events in

the causal set is as defined by the symbol ≺, and it is by a succession of these orderings,

i.e. the growth of the causet, that is ultimately ascribed to constitute the passage of time.

The relation x ≺ y is hence interpreted as the statement: “y is to the future of x".

As a consequence of this interpretation, the asymmetric condition may now be seen as a

removal of the possibility that the causet will contain anything resembling closed time-like

curves.

The above association highlights the similarity between the relations ≺ in causal set

theory, and the idea of lightcones in relativity. In a causal set C, the set of elements

yi, related to an event x by the relation x ≺ yi, represent the causal future of x. This

relationship is analogous to the volume VX contained within the future lightcone of a

point X in a theory of continuous spacetime, examples of which being general and special

relativity. Conversely, an event z ∈ C that is incomparable to x may be said to be causally

disconnected from x, and this is similar to the set of points outside of the lightcone of X.

In classical physics, events outside of this region VX are not affected by changes inside the

lightcone, for example at X, and are hence causally independent. This places an important

physical constraint on the members of C, since continuous spacetime is eventually hoped

to emerge from a causal set description.

Of course, similar associations exist for points in the past lightcone of X, and the

objects yj in C related to x by yj ≺ x.

A causal set may be represented by a Hasse diagram. Further, the set of causal sets

that may be constructed from a growing number of events can be represented by a Hasse

diagram of Hasse diagrams.

In each Hasse diagram, the events are shown as spots and the relations as solid lines

or links between the events; emergent time runs from bottom to top, and the direction of

the growth process from one causal set to the next is consequently denoted by the arrowed

lines. A typical such set of diagrams is given in Figure 5.1, which contains the set of

causets of less that four elements (and features as part of Fig. 1 in [38]), where each large

circle represents an individual Hasse diagram, and hence a particular causal set.

In the example in hand, the initial causal set has just one event, as shown in the lowest

of the large circles. The next event to be born may or may not share a temporal relation

with the first; that is, it may either lie to the future of the first, or not. Thus, one of two

possible causal sets may be created, as shown by the two Hasse diagrams represented by
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Figure 5.1: The Hasse diagram of Hasse diagrams featuring those Causal Sets containing

up to three members.

the large circles labelled A (temporal relation) and B (no temporal relation). The third

event to be produced may share a temporal relation with all, some, or none of the previous

events, leading to the generation of five possible causal sets, and hence five possible Hasse

diagrams. Figure 5.1 hence represents the sets of possible causets at three successive times.

The process may obviously be extended indefinitely to create increasingly longer causets

of events, and these may be represented by a growing number of Hasse diagrams of in-

creasing complexity.

With the above in mind, it is possible to introduce familial concepts into the se-

quentially growing causal set. Consider as an example a causal set Cnwith n mem-

bers, Cn = {a1, a2, ..., an}. Consider also a second causal set Cn+1with n + 1 members,

Cn+1 = {a1, a2, ..., an, an+1}, ‘grown’ from Cn by adding the (n + 1)th member an+1. If

an+1 is not in the past of any of the elements ai, for i = 1, ..., n, then it is said to be a

“maximal element”. In this case, the causet Cn+1 may be called a “child” of Cn, which in

turn may be named its “parent”.

In general, a particular causet Cn+1 grown from Cn could have a number of different

topologies, because there are often very many ways of adding a maximal element an+1

to Cn such that it is to the future of none, one, some or all of the n elements already

in existence. Paraphrasing, there are a number of different Hasse diagrams that may be

drawn by adding just one maximal element to Cn, depending on ‘where’ it is added. The

members of this set of possible causal sets are hence called “siblings” of one another,

because they are all children of a common parent. Such sets of parents and children may

be called “families”.

This concept can be extended in the obvious way to include, for example, definitions
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of grandchildren and great-grandchildren etc. As a simple illustration of these ideas, the

causal sets labelled A and B in Figure 5.1 are clearly siblings, because they are children of

the initial parent causet containing just one member. Similarly, the causal set C is one of

the three children of B, and therefore also one of the grandchildren of the original (single

member) causet.

The crux of causal set theory is that (to quote [36]): “...a classical space-time’s

causal structure comes very close to determining its entire geometryÔ. Thus, in the

large scale limit of very many events the causal sets are hoped to yield the properties of

continuous spacetimes. To this end, metrics, distances and dimension should all be ready

features of the topology.

It is an important feature of causal sets that the events are not taken to be embedded

in any sort of physical background space. The objects themselves exist in nothing but

a mathematical manifold, and it is only by taking account of the network of relations

between a large number of such events that the actual geometry of the manifold, and

hence the spatial relations familiar to physics, begins to emerge.

The basic methodology employed to generate space from these very large causal sets is

to use the causal order of the set to determine the topology of the manifold into which it is

embedded. This is converse to the standard procedure employed in continuous geometry

in which the properties of the manifold and metric are used to determine the lightcones

of the spacetime, and from these the causal order of events may in turn be inferred.

Concepts such as timelike geodesics and distances may be introduced into the analysis

of causal sets by considering the length of paths between events [37].

Consider first a ‘chain’, E, of events in a causal set, i.e. an ordered group of elements

E = {p, q, ...} in C in which every two elements of E are somehow related by ≺ . By analogy

with special relativity, a chain evidently possesses the causal structure of a spacetime

manifold: each event r ∈ E is either to the past or future of every other event s ∈ E.

Moreover, it is possible to define the ‘path length’ of a given chain between two events x

and y in terms of the number of links in the chain separating these two elements.

Of course depending on the topology of C there may be a number of different possible

chains ‘linking’ any two events x and y, for x, y ∈ C.
However, from this observation it is possible to define a ‘maximal chain’ M, where M

⊂ C, as a subset of elements M = {a1, a2, ..., am} contained in C such that ai ≺ ai+1, for

1 ≤ i ≤ m− 1, and where there is no other element b ∈ C for which ai ≺ b ≺ ai+1. Clearly,

M specifies a unique path of events between a1 and am, and this is extremal in C. Thus,
it is immediately possible to define the path length of a maximal chain a1 ≺ a2 ≺ ... ≺ am

in terms of the number of links between a1 and am. In this case, the path length of M is
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clearly given by m− 1.

It is from this discussion of path lengths that a notion of timelike ‘distance’ can arise.

Given any two comparable events x ≺ ... ≺ y in a causal set, the timelike distance d(x, y)

may be defined as the maximum length of path between them, i.e. the ‘longest route’

allowed by the topology of the causet to get from x to y.

A number of issues arise from this definition. Firstly, it implies that (timelike) distance

is, at root, manifestly a counting process. As observed by [36], this is in accordance with

Riemann’s suggestion regarding the measurement of spatial size.

Secondly, the connection between distance and extremal chains is analogous to the use

of geodesics as extremal path lengths in relativity; recall that in continuum mechanics a

geodesic is defined as the extremal length between two points, and the distance between

them is that length. The proposed mechanism makes use of the maximal number of objects

causally separating two events, and as such the extremal distances defined in this way are

associated with geodesics in continuous spacetime.

Thirdly, Brightwell et al [37] remark that the above definition of distance satisfies a

relationship similar to the conventional ‘Triangle Inequality’. For example, consider three

events x, y, z ∈ C such that x ≺ y ≺ z. If the distance d(x, z) is given by the path length

of the maximal chain between x and z, then by definition this distance cannot be shorter

than the path length between x and z via any other possible chain. Specifically, if an

alternative route is via y, then this conclusion implies that d(x, z) ≥ d(x, y)+d(y, z), with

the equality holding only when y is part of the maximal chain.

Note, however, that such a relationship differs from the standard triangle inequality of

distances, given in obvious notation in the form D(X,Y )+D(Y, Z) ≥ D(X,Z). Moreover,

it is also unclear how the above theorists would balance this ‘reversed’ result with the

conventional case, an issue made especially pertinent by the fact that the standard version

is generally taken as a pre-requisite for a metric to exist. The physical basis behind such a

reversed inequality relationship needs therefore to be fully defined by the authors if it is to

be used to generate metric-like structures, and careful physical and mathematical consid-

erations are first required in order to generate relativistic spacetimes from the underlying

classical causal set ideas.

The above definition of timelike distances applies to when quantifying the separation

between comparable events, i.e. between those events x and y in C for which x ≺ ... ≺ y.

For incomparable events, on the other hand, no such timelike definition is possible, be-

cause incomparable events instead share the characteristics typically exhibited by spacelike

separated objects in conventional physics.

However, by exploiting this similarity between the incomparable events of causal set
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theory and the causally disconnected features of spacelike separated points in continuous

spacetime, it is possible to introduce an analogous definition of spacelike distances into the

causal set description. Following the lead of [37], it is argued that a method of measuring

spatial distances using light beams and clocks should be employed, in which the distance

between two objects is determined by sending a light signal from one of these to the other

and measuring the time elapsed before it is returned.

Consider a timelike geodesic G in C, where G is defined as a1 ≺ a2 ≺ ... ≺ am. From

the earlier discussion, G is a maximal chain. Consider also another element x ∈ C that is

not in G. If ak is the highest member of G that is below x, then there is no other element

ai in G for which ak ≺ ai ≺ ... ≺ x. Similarly, if al is the lowest member of G that is above

x, then there is no other element aj in G for which x ≺ ... ≺ aj ≺ al. Then, the spacelike

distance d(x,G) between x and G may be defined as d(x,G) = d(ak, al)/2.

Overall, then, a measure of spacelike separation between members in C is recovered by

considering the topology of the temporal relations over the causal set, analogous to how

lightcone structures may be used in special relativity to determine spatial distances.

With the above definitions of timelike and spacelike distances in place, it is possible to

begin a discussion on concepts of velocity [37]. Specifically, such velocities have meaning

in terms of the ratios between average spatial distances encountered in given lengths of

temporal duration. Since these spatial distances intrinsically involve concepts of geodesics

and basic lightcone structure, it is here that embryonic ideas of special relativity are

expected to emerge from causal set theory.

Also, once a measure of distance has been introduced into the model, it is possible to

discuss concepts of ‘volume’ and ‘area’. To this end, the (hyper)volume of the emergent

spacetime may be defined in terms of numbers of events, where a certain quantity of events

may specify a certain volume. As with the definition of a distance in terms of path lengths,

volume is also seen here simply as a counting process. This is perhaps to be expected,

since measurements of distances are in many ways nothing but measurements of the ‘size’

of a one dimensional volume.

Continuing this logic, the dimension, d, of the causal set may consequently be obtained

in a similar way by considering average lengths of path, l, in a given volume, v. It may

hence be possible to introduce relational rules of the form v ∼ ld, in keeping with ideas

of Hausdorff dimension [52]. It is from arguments of this type that the inhomogeneous

topology of causal sets may allow different physical dimensions to emerge at different

locations and on different physical scales.

Whilst the classical causal set hypothesis summarised above is a promising approach to
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the origin of space, a number of unresolved questions, problems and conceptual difficulties

arise if it is assumed to provide a complete and consistent description of the observed

Universe. These will be expressed in turn.

The first of these questions regards the physical basis behind the model: what actually

are the postulated events that comprise the causal set? Are they to be taken as some sort

of ‘pregeometric particle’, analogous to the momentum carrying “units” peculiar to spin

networks? If this is the case, would it be possible to physically observe them, for example

in a futuristic accelerator-detector experiment? Alternatively, if they are simply just

mathematical objects, by what process is a physical Universe comprising of fundamental

fields and forces expected to emerge?

On a related issue, what exactly is the physical mechanism that is responsible for the

events’ creation? How do these events, be they physical objects or mathematical abstracts,

suddenly come into existence? Do they appear from nothing, or are they removed from

some sort of giant ‘reservoir’ of pre-existing events before they are added to the causal set

representing the Universe? If this latter supposition is correct then where is this reservoir,

what is its physical basis, and what is it like? If not, and instead events just constantly

appear at random, then what does this imply for physics in the Universe? Specifically,

if the events are hoped to be the correct ‘building-blocks’ for a Universe that possesses

certain physical properties and characteristics, is it to be accepted that, for example, the

total energy or momentum of the Universe is increasing as more building blocks are added?

If this is not the case, then a paradoxical situation occurs in which principles such as the

conservation of energy, which appears fundamental for the Universe as a whole, cannot be

held as fundamental for the objects representing the Universe’s ultimate description.

Also, is there a physical interpretation for the apparent external time parameter used

to govern when events are created?

A second problem with the classical causal sets produced is that they are not quantum.

This is obviously not ideal if they are to form the ultimate description of a physical

Universe that does contain quantum theory as a fundamental ingredient. However, the

objection here is not that the model has simply not yet been extended to the case where,

for example, the events are quantum variables instead of classical objects. Rather, as it

stands the classical causal set description goes against some of the principles present at

the very heart of quantum theory.

As an illustration of why this is so, consider three particular events x, y, z ∈ C related

by x ≺ y ≺ z. This relational statement seems to imply that the events x, y and z each

possess an existence independent of each other and of everything else in the causal set. In

other words, in classical causal sets every event is granted just as much physical significance
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as every other; in C the events x, y, z all exist to exactly the same extent. Once created

an event exists forever, such that for example z is always in the future of y ‘for all time’,

and x is always in the past of y. Indeed, in order for two events to be directly compared

as y ≺ z, it must presumably be accepted that both y and z exist, at least in some sense.

The binary comparisons ≺ are therefore taken to relate pre-existing relationships between

the events in the causet, and as such are assumed to reflect pre-existing attributes of the

objects.

Such a viewpoint is manifestly a classical ‘Block Universe’ approach. This is perhaps

why classical causal sets are expected to generate continuous spacetime general relativity

so successfully in the emergent limit, because relativity’s overall vision is of a Universe

existing in a 3+ 1 dimensional arena in which the temporal parameter is given an equally

‘eternal’ dimensional footing as the other three.

However, as suggested in Section 2.2, it may be partly because conventional general

relativity relies on Block Universe models of physics that is preventing its unification with

quantum theory.

According to the conclusions of the Kochen-Specker theorem, the results of the work

of Bell discussed in Chapter 3, and the view of Bohr that the quantum analogues of

classical values (such as position and momentum) do not possess any reality independent

of observation, then it is the Process time approach that is necessary for a consistent

description of quantum mechanics. Assuming, then, that quantum theory is a foundational

feature of the Universe, if the event x exists in the past of the event y, and the event z

exists in the future of the event y, then x, y and z cannot be given equivalent existence.

Only one of these, i.e. the ‘present’ event, can have any physical existence, and even this

does not exist in the sense traditionally assumed by classical physics.

In quantum theory, only the present can be known with any degree of certainty. It is not

possible to discuss the future, because no such concept physically exists, but only potential

futures in terms of conditional probabilities. Similarly, the past only has significance in

terms of what observers in the present can recall about where they came from.

It is unclear how this conclusion may be incorporated into a classical causal set de-

scription of physics relying on the equivalence of the existence of x, y and z across time.

A further criticism of causal sets (from the point of view of quantum theory) comes

from an interpretation of what the Hasse diagrams actually represent. In the growth

process from a parent Hasse diagram to one of its child causets, a new event may be

incorporated that is to the future of two (or more) incomparable events. The problem

associated with this is that without any sort of external agent building the causet, how

does this event ‘know’ that it is to the future of these incomparable events, given that

no information can be exchanged between them? Without a god-like observer, how are
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the temporal relations ≺ decided? Since time is a phenomenon expected to emerge from

the model, what is the mechanism for deciding how one event is related to another, so

that time can indeed emerge? Indeed, given that the whole point of causal set theory is

that the events are not embedded in any sort of physical background spacetime, how is

any locational memory contained in the dynamics at all? In the diagram labelled C in

Figure 5.1, for example, it is not clear how the event created last ‘knows’ which way it is

related to the other two: if the first and second events exist independently of one another,

how can they communicate in such a way to ‘inform’ the third of its temporal position?

Is it necessary to postulate some sort of external source of information, so far ignored in

classical causal set theory, that stores the location of each of the events?

On a related note, since the addition of a maximal element to a parent causet may give

rise to very many possible child sets, how is it that just one of these new causets actually

gets selected to form the basis for the single reality experienced by the Universe?

Overall, it is argued that the ideas of classical causal sets provide a good starting point

for a discussion of the emergence of space. They do, however, lack a firm physical basis,

and it is unclear how they could be ‘quantised,’ at least directly.

But, as will be shown in the remainder of this chapter, it is possible to naturally gen-

erate structures resembling causal sets from the fully quantum description of the Universe

proposed in this thesis. Moreover, the ‘objects’ forming these structures will be shown

to have identifiable physical grounding, and so the quantum causal sets introduced in the

following are not restricted by the problems inherent in their classical counterparts. Thus,

they are ascribed to potentially address the issue of how continuous space and time may

emerge in a fully quantum universe.

Further, it will be shown that many of the Hasse diagrams generated in classical causal

set theory may also be recreated in the proposed quantum model. However, whilst it may

be mathematically possible to produce any configuration of elements in a classical Hasse

diagram, it is argued that not all types are permissible in physics. So, in the proposed

model only those parts of the Hasse diagrams that are allowed by quantum mechanics,

and are hence physically meaningful, are generated.

5.3 Splits and Partitions

In classical causal set theory, continuous spacetime is generated from the relations be-

tween collections of classical objects. Since the intention is now to investigate how similar

relations might arise from a quantum perspective, an obvious starting point is to examine

how the classical objects of the classical theory might have analogues existing as features

of the quantum paradigm.
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As discussed in Chapter 4, classicity is associated with separability of the quantum

state Ψn representing the Universe. In a state that is separable relative to a given fac-

torisation of the total Hilbert space, each factor sub-state may be considered classically

isolated from every other sub-state, in the sense that a measurement of a factor sub-state

contained in one particular factor Hilbert space does not necessarily affect any of the other

factor sub-states contained in other factor Hilbert spaces. This is unlike the case of entan-

gled states, because their individual components cannot be measured without destroying

the entire state. Therefore, as concluded previously, factor sub-states may consequently

be given a form of classical identity.

It is asserted, then, that it is the factors of separable states that may be associated with

the classical ‘events’ of conventional causal set theory, and it is hence from the relations

between these factors that physical spacetime might be generated. The alternative, that

continuous space instead emerges from considerations of entangled states, is contrary to

what would be expected based on empirical observations: entangled states in quantum

theory exhibit characteristics of spatial non-locality. Physical space is in many ways a

classical construct, as expected from the observation that this object is here, relative to

that object there.

Thus, the conjecture that will be discussed in the following is how structures analogous

to those occurring in classical causal sets might arise naturally by considering the way in

which the state of the Universe changes its separability as it develops through a series of

stages, i.e. from Ψn to Ψn+1 to Ψn+2 ... and so on.

Since classical causal set theory operates in the regime of large numbers of events, and

that in the proposed paradigm these classical events are assumed to be analogous to the

factors of the overall quantum state, it is expected that quantum causal sets will require

highly separable states in order to yield a picture of continuous spacetime. It is therefore

necessary to go beyond the simple bi- and tri-partite factorisations of the total Hilbert

space discussed previously, and generalise to the case in which large numbers of factors

may be present. So, before a full discussion of quantum causal sets can properly begin, it

is necessary to introduce a precise notation in order to describe highly separable states in

highly factorisable Hilbert spaces.

As before, the situation of interest contains a state Ψ in a Hilbert space H of finite

dimension. In anticipation of a discussion of quantum computation in subsequent chapters

of this work, it is alternatively possible to call such a Hilbert space a ‘quantum register’.

Factor Hilbert sub-spaces of H may hence be labelled ‘subregisters’.

If H ≡ H[1...N ] is defined as a Hilbert space that may be written as a product of N
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subregisters, then H[1...N ] is clearly given by the tensor product

H[1...N ] ≡ H1 ⊗H2 ⊗H3 ⊗ ...⊗HN (5.2)

where Hi is called the ith factor Hilbert space or quantum subregister, and 1 ≤ i ≤ N. By

choice, the notationH[1...N ] will generally be used to imply the Hilbert space’s fundamental

factorisation, that is, each factor Hilbert space Hi is an ‘elementary subregister’ of prime

dimension, di. This choice will henceforth be assumed from now on, unless stated otherwise.

Note that in order for H to contain the state Ψn representing the Universe, its dimen-

sion d must be huge. The number of factors N may therefore be in principle very large,

with the condition that d =
∏N

i=1 di.

As before, it is remarked that the ordering of the factor spaces is not important in

the above use of the tensor product symbol. The mathematics is invariant to any rear-

rangement of the individual subregisters, such that for example H1 ⊗H2 ≡ H2 ⊗H1 etc.

Indeed, if this were not the case the problem would arise that there are no obvious physi-

cal criteria for suggesting why some factors spaces should either be placed ‘further away’

than others from a particular subregister, or be given any special position in the tensor

product ordering. In other words, in the factorisable register H[1..3] ≡ H1 ⊗H2 ⊗H3 it is

meaningless to say that H1 is ‘nearer’ to H2 than it is to H3 simply because of the way the

tensor product is written; H[1..3] may equally well be expanded as H[1..3] ≡ H1⊗H3⊗H2.

The factor Hilbert spaces are just vector spaces, and should therefore not be thought of

as embedded in any sort of physical background space with any pre-existing distance or

locational relationships.

As before, this property is taken to hold for the states in the Hilbert spaces as well,

and is an important feature of their non-locality. After all, a state such as Φ in H[1..3] ≡
H1⊗H2⊗H3 may be separable in the form Φ = φ2⊗ϕ13, where φ2 ∈ H2 with ϕ13 ∈ H[13] ≡
H1 ⊗H3, but ϕ13 might be entangled relative to H[13]. In other words, the entanglements

can ‘stretch across’ factor Hilbert spaces.

In general, factorisable Hilbert spacesH[1...N ] in quantum mechanics may contain states

that are completely separable, completely entangled, or a separable product of factors, at

least one of which is entangled relative to the fundamental split of the overall Hilbert space

into its elementary subregisters. It is therefore convenient to define a notation in order to

describe what ‘type’ of fundamental separation an arbitrary state in H[1..N ] may have.

Consider first a Hilbert space H[12] factorisable into two subregisters, H[12] = H1⊗H2.

By axiom, the overall space H[12] defines the total set of vectors contained in H1 ⊗H2.

The separation H12, then, is defined as the subset of states contained in H[12] that

are separable relative to H[12] = H1 ⊗H2. That is,

H12 ≡ {|φ〉1 ⊗ |ϕ〉2 : |φ〉1 ∈ H1 , |ϕ〉2 ∈ H2}. (5.3)
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Note that as mentioned in Chapter 4, the subset H12 is a set of measure zero relative

to the set H[12].

For obvious reasons, H12 may be labelled a ‘rank-2’ separation, and this definition may

be extended in a natural way. Specifically, the rank-k separation Hi1i2...ik is defined as the

subset of vectors contained in the Hilbert space H[i1i2...ik] = Hi1 ⊗Hi2 ⊗ ...⊗Hik that are

separable into k factors, i.e.

Hi1i2...ik ≡ {|ψ1〉i1 ⊗ |ψ2〉i2 ⊗ ...⊗ |ψk〉ik : |ψa〉ia ∈ Hia , 1 ≤ a ≤ k}. (5.4)

For convenience, it is also possible to allow the zero vector 0 to be a member ofHi1i2...ik ,

because this vector can always be written in the form

0 = 0i1 ⊗ 0i2 ⊗ ...⊗ 0ik , (5.5)

where 0ia is the zero vector in Hia . Note, however, that since any vector multiplied by

zero is zero, then although 0 could at first glance also appear entangled, for example

0 = (χi1 ⊗ 0i2 ⊗ ...⊗ 0ik) + (0i1 ⊗ χi2 ⊗ ...⊗ 0ik) + ... (5.6)

where χia ∈ Hia , it could always be rewritten in the form

0 = (0i1 ⊗ 0i2 ⊗ ...⊗ 0ik) + (0i1 ⊗ 0i2 ⊗ ...⊗ 0ik) + ... (5.7)

= C(0i1 ⊗ 0i2 ⊗ ...⊗ 0ik) = (0i1 ⊗ 0i2 ⊗ ...⊗ 0ik)

where C is a constant, so is in fact separable. In other words, the zero vector never

contributes to entanglements in a non-trivial way.

From the above discussion of separations, the convention is adopted from now on that

lower indices on Hilbert spaces denote the subset of H containing separable states, i.e.

the separations, whereas lower indices within square brackets on Hilbert spaces denote, as

before, the overall set of states, i.e. the tensor product of subregisters.

This leaves free the use of upper indices for a discussion of the entanglements, which

may be defined in terms of the complements of the separations. For example, in the

simplest case in which the Hilbert space H[12] is factorisable into two subregisters, H[12] =

H1⊗H2, the rank-2 entanglement H12 is defined as the subset of vectors in H[12] that are

entangled relative to this split. Moreover, since every state in H[12] is either separable into

two factors or else completely entangled, H12 contains all the states that are not separable,

and so may be defined as

H12 = H[12] −H12 (5.8)

such that H[12] = H12 ∪H12. By definition, H12 ∩H12 = ∅.
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Before the above ideas can be generalised to higher order entanglements it is necessary

to introduce the concept of separation product. Consider a Hilbert space H[1...N ] factoris-

able in the form H[1...N ] = Ha ⊗Hb; clearly, if N > 2 then this bi-partite factorisation is

not fundamental and the dimension of at least one of Ha or Hb is not prime. If H′
a and

H′
b are arbitrary subsets of Ha and Hb respectively, then the separation product H′

a • H′
b

is defined as the subset of states in H[1...N ] that may be written as a product of factors,

one of which is contained in H′
a and the other in H′

b. Thus, H′
a • H′

b defines the subset

H′
a • H′

b ≡ {|φ〉′a ⊗ |ϕ〉′b : |φ〉′a ∈ H′
a ⊆ Ha , |ϕ〉′b ∈ H′

b ⊆ Hb}. (5.9)

It is clear that the separation H12 described previously is just a simple case of this,

i.e. H12 = H1 • H2.

The separation product is associative, commutative and cumulative, i.e.

(Hi • Hj) • Hk = Hi • (Hj • Hk) (5.10)

(Hi • Hj) • Hk = (Hj • Hi) • Hk

(Hi • Hj) • Hk = Hij • Hk = Hijk.

The definition of separation product can be used to specify subsets of the total Hilbert

space that contain a product of factors, one or more of which is entangled. As an example,

the separation product Hij • Hk labels the subset of H[ijk] containing states that are a

product of two factors, one of which is entangled relative to Hi ⊗Hj . Specifically,

Hij • Hk ≡ {|φ〉 ⊗ |ϕ〉 : |φ〉 ∈ Hij , |ϕ〉 ∈ Hk}. (5.11)

This definition can be extended to higher orders in the obvious way, such that for

example Hij • Hk • Hl • Hmnp identifies the subset of states in H[ijklmnp] separable as

Hij • Hk • Hl • Hmnp ≡ {|φ〉 ⊗ |ϕ〉 ⊗ |χ〉 ⊗ |ψ〉} (5.12)

where |φ〉 ∈ Hij , |ϕ〉 ∈ Hk, |χ〉 ∈ Hl and |ψ〉 ∈ Hmnp. Note that the indices of the

entanglements are also commutative, such that for example Hmnp = Hnpm, as expected

from the property of a tensor product Hilbert space that its subregisters are not in any

definite or particular order.

Of course, the associativity of the entanglements follows directly from the associativity

of the separation product, for example if Hab ≡ HX etc., then

(Hab • Hcd) • Hef = (HX • HY ) • HZ = HX • (HY • HZ) = Hab • (Hcd • Hef ). (5.13)

Similar illustrations can be used to demonstrate the commutivity of the entanglements.

To simplify complicated expressions such as Hij • Hk • Hl • Hmnp, a single symbol

Hij•mnp
k•l may be employed where the use of sub-scripts and super-scripts indicates the
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separations and entanglements. This symbol can itself be further simplified by making

use of the cumulative property of the separation, i.e. Ha • Hb = Ha•b = Hab.

Note, however, that no such cumulativity property directly exists for the entangle-

ments. By way of an illustration of this, consider the observation that a state Φ in an

entanglement such as Habcd cannot, by definition, be separated into a product of entangled

states of the form θ⊗ η, where θ is in the entanglement Hab and η is in the entanglement

Hcd; a vector that is separable into a product of two entangled factors is not the same as a

vector that is separable into one giant entangled state. In other words, Habcd 6= Hab •Hcd

(= Hab•cd), even though Habcd = Hab•cd = Hab • Hcd = Ha • Hb • Hc • Hd.

Overall, separation products such as Hij •Hk •Hl •Hmnp may consequently be written

in a number of alternative ways; for example

Hij • Hk • Hl • Hmnp = Hij • Hmnp • Hl • Hk = Hji
l • Hmpn

k (5.14)

= Hij
k•l • Hmnp = Hij•mnp

k•l

= Hij•mnp
kl 6= Hijmnp

kl .

It is now possible to define rank-k entanglements in terms of their complements. Start-

ing with the rank-3 entanglement in the total Hilbert space H[123] = H1 ⊗H2 ⊗H3, it is

immediately noted that H123 is not simply given by H123 = H[123]−H123. Rather the sets

of states that are separable into a product of two factors, one of which is entangled, must

also be included. Thus, H123 is given by

H123 = H[123] −H123 ∪H23
1 ∪H13

2 ∪H12
3 . (5.15)

Similarly, the rank-4 entanglement H1234 in H[1234] is equal to

H1234 = H[1234] −H1234 ∪H34
12 ∪H24

13 ∪H23
14 ∪H14

23 ∪H13
24 ∪H12

34 (5.16)

∪H234
1 ∪H134

2 ∪H124
3 ∪H123

4 ∪H12•34 ∪H13•24 ∪H14•23.

Rank-k entanglements can clearly be defined in similar ways, though their expressions

rapidly become more complicated as k increases.

Equations such as (5.15) and (5.16) can be rearranged such that the overall register is

decomposed into a union of disjoint separations and entanglements, for example H[123] =

H123 ∪ H23
1 ∪ H13

2 ∪ H12
3 ∪ H123. Making use of the language familiar to set theory, such

a decomposition of a Hilbert space H[1...N ] may be called its ‘lattice of partitions’ with

each subset being called a ‘partition’. In general, each partition is a separation product of

separations and entanglements of various ranks, with the condition that the total number

of indices equals the overall number of subregisters. In addition each subscript index,

and each group of superscript indices, specifies one ‘block’ of the partition, such that for

example the partition H23•56
14 contains four blocks, denoted by ‘1’, ‘23’, ‘4’ and ‘56’. The
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union of all partitions of H[1...N ] may equivalently be called the ‘(natural) partitioning’ of

the Hilbert space.

It is important to realise that none of the partitions in H[1...N ] are vector spaces them-

selves. This conclusion follows from two reasons. Firstly, the zero vector has been defined

to be a member of the separation H1...N , so only this partition could potentially be a vector

space. Secondly none of the partitions are closed under arbitrary transformations of the

vectors they contain. Given a vector X contained in one partition, it is always possible to

add a second vector x to X such that the new vector Y = X+x is contained in a different

partition. Similarly it is possible to find unitary transformations Û that ‘rotate’ X into

the vector Z = ÛX, where Z is also a member of a different partition from X. Of course,

all four vectors x, X, Y and Z are members of H[1...N ], which is a vector space.

The use of upper and lower indices on the symbol H to denote subsets of H[1...N ]

containing various separations and entanglements can be extended to the vectors contained

within these partitions. For example, the vector Φij•mnp
kl is taken to be a member of the

partition Hij•mnp
kl , and implies that Φ can be separated into four factors of the form

Φij•mnp
kl = |φ〉ij ⊗ |φ′〉k ⊗ |φ′′〉l ⊗ |φ′′′〉mnp (5.17)

where |φ〉ij ∈ Hij , |φ′〉k ∈ Hk, |φ′′〉l ∈ Hl and |φ′′′〉mnp ∈ Hmnp. Obviously Φij•mnp
kl ∈ H[i...p]

and Φij•mnp
kl ∈ Hij•mnp

kl because Hij•mnp
kl ⊂ H[i...p].

Care is needed when applying this notation, however, because sub-scripts used in this

thesis, and elsewhere, are often context dependent. For example Ψ12 might denote a state

in the separation H12, or an arbitrary state in H[12], or even the state in the twelfth stage

Ω12 defined as Ω12 ≡ Ω(Ψ12, I12, R12). The same goes for super-scripts, where the notation

Φ12 might perhaps alternatively label a vector in the entanglement H12, an arbitrary state

Φ in a twelve dimensional Hilbert space H12
[1...N ], or maybe even one out of E possible

eigenvectors Φa of some Hermitian operator Ô for 1 ≤ a ≤ E where E ≥ 12.

For any given vector Ψ ∈ H[1...N ], it is possible to determine which partition it is in

by a repeated application of the microsingularity test (4.9) introduced in Section 4.1. For

example, to show that a state Θ ∈ H[1...3] is completely entangled, i.e. can be written

in the form Θ123 in the partition H123, it must be confirmed that Θ is not in H123, H23
1 ,

H13
2 or H12

3 . This is turn can be proved by demonstrating that Θ is not separable relative

to any of the three bi-partite factorisations of the total Hilbert space, i.e. H1 ⊗ H[23],

H2 ⊗H[13] and H3 ⊗H[12], because if this is true it also immediately follows that Θ is not

separable relative to the tri-partite factorisation H1 ⊗H2 ⊗H3.

From earlier discussions, any state Θ ∈ H[1...3] can be expanded in the form

Θ =
∑d1−1

i=0

∑d2−1

j=0

∑d3−1

k=0
Cijk|i〉1 ⊗ |j〉2 ⊗ |k〉3 (5.18)
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where the Hilbert space Ha of dimension da is spanned by the orthonormal basis Ba =

{|b〉a : 0 ≤ b ≤ da − 1} for a = 1, 2, 3 and the Cijk ∈ C are complex coefficients. The

microsingularity condition can now be used to determine the separability of Θ relative to

each of the three bi-partite factorisations of H[1...3].

For example, to confirm whether Θ is separable relative to H1 ⊗H[23], equation (5.18)

should be rewritten as

Θ =
∑d1−1

i=0

∑(d2d3)−1

x=0
Kix|i〉1 ⊗ |x〉23 (5.19)

where B23 = {|x〉23 : 0 ≤ x ≤ (d2d3 − 1)} forms an orthonormal basis for H[23], with for

example |0〉23 = |0〉2⊗|0〉3, |1〉23 = |0〉2⊗|1〉3, ..., up to |d2d3−1〉23 = |d2−1〉2⊗|d3−1〉3.
The general term |x〉23 in this basis may be given by |x〉23 = |j〉2⊗|k〉3 when j is the integer

part of the quotient x/(d3) and k is the remainder. The coefficients Kix are obtained from

Cijk in the same way, such that for example Ki1 is equivalent to Ci01.

Now, if KixKyz = KizKyx for all 0 ≤ i, y ≤ (d1 − 1) and 0 ≤ x, z ≤ (d2d3 − 1), then

Ψ is separable relative to H1 ⊗ H[23]. If this is not the case, Θ is entangled relative to

H1 ⊗H[23], and if the same method shows that Θ is also entangled relative to H2 ⊗H[13]

and H3 ⊗H[12], it can be concluded that Θ ∈ H123.

Similar procedures can be employed to determine which particular partition of the

lattice of H[1...N ] any given vector Ψ ∈ H[1...N ] is in, though the corresponding number of

microsingularity tests that need to be performed increases greatly with N.

The state Φij•mnp
kl ∈ Hij•mnp

kl in (5.17) is an example of a vector that is a separable

product of factors, two of which are entangled relative to the fundamental splitting of the

overall Hilbert space H[i...p] into its seven subregisters. In general, however, if an arbitrary

state contained within a Hilbert space H[1...N ] is chosen at random, there are very many

ways in which it might potentially be separated into F factors, where 1 ≤ F ≤ N, because

there are in general many different partitions comprising of F blocks. For example, the

state Θip•kn•jm
l in H[i...p] is also separated into four factors, but in a completely different

manner from Φij•mnp
kl .

Of course, if F = 1 then the state is completely entangled, whereas if F = N it is

completely separable, but for all other values of F the state is separated into a product

of factors, at least one of which is entangled. Further, the number of ways in which

an arbitrary state may potentially be separated into F factors increases rapidly as the

number, N, of subregisters in the fundamental factorisation of the Hilbert space increases.

For example, in a Hilbert space H[1] of prime dimension, which is therefore fundamen-

tally split into just one subregister, every state can obviously only be separated into one

factor. States in a Hilbert space H[12] that is fundamentally split into two subregisters

84



H[12] = H1⊗H2, however, are either entangled relative to this split, or else they are sepa-

rable into two factors; it can be said that there are two possible ‘types’ of state separations

in H[12].

In a Hilbert space H[123] fundamentally split into three subregisters H[123] = H1⊗H2⊗
H3, though, a state is either completely entangled relative to this split, or it is completely

separable into three factors, or else it is separable into one of the forms α1 ⊗ β23, λ2 ⊗µ13

or φ3⊗ϕ12, where α1 ∈ H1, λ2 ∈ H2 and φ3 ∈ H3, with β23, µ13 and ϕ12 being sub-states

that are entangled relative to H2 ⊗ H3, H1 ⊗ H3 and H1 ⊗ H2 respectively. Given an

arbitrary state in H[123], there are clearly five different types of way in which it might

be separable relative to H[123]: one of these types will have one factor, three types will

have two factors, and one will have three factors. Equivalently, every state in H[123] is

in one of the five partitions that comprise the partitioning of the total Hilbert space,

H[123] = H123 ∪H23
1 ∪H13

2 ∪H12
3 ∪H123.

In fact, it can be shown that in Hilbert spaces H[1...4] fundamentally split into four

subregisters, there are 15 different types of way in which a given state might possibly be

separated, whereas Hilbert spaces of the form H[1...5] allow the possibility of 52 different

types of separation. This number grows to 203 for H[1...6].

Generally, if hN is defined as the number of ways in which an arbitrary state in H[1...N ]

might possibly be separated, then this number is given by the iterative formula

hN =

N−1∑

i=0

CN−1
i h(N−1)−i (5.20)

where Ca
b is the combination function, Ca

b = a!/[(a−b)!b!], and the initial condition h0 = 1

follows from the assumption that there is only one way of separating a state contained

in zero Hilbert spaces6. The above relation also specifies the number, hN , of partitions

comprising the lattice of H[1...N ], as expected from the fact that every state in H[1...N ] is

in exactly one of the Hilbert space’s partitions, and that it is always possible to find an

example of a state in H[1...N ] that is a member of a given partition.

Equation (5.20) effectively generates the list of Bell numbers used in combinatorics to

number the set of partitions of a set of size N, and is equivalently given by Dobinski’s

formula (see [53] for an illustration of these points).

An intuitive proof of (5.20) is given from the following. Consider a factorisable Hilbert

space H[1...N ]. Every state in H[1...N ] will be associated with its own fundamental separa-

tion, i.e. a way or writing the state into the maximum possible number of factors relative

to H[1...N ], because each state is in one, and only one, partition of H[1...N ].

6Compare the generally accepted result 0! = 1. If this argument appears ad hoc, hN may equally be

defined as hN = 1 +
∑N−2

i=0 CN−1
i h(N−1)−i without loss of generality.
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Now assume that every state in H[1...N ] is fundamentally separable into one of hN

possible types, where hN is not yet known and the relation (5.20) is not assumed. For

example, it was shown earlier that every vector in H[1...3] is fundamentally separable into

one out of five possible types.

Clearly, this number hN of possible types is given by the sum of the number of ways

that vectors in H[1...N ] might be separable into just one factor, plus the number of ways

that vectors might be separable into just two factors, plus the number of ways that vectors

might be separable into just three factors, plus..., plus the number of ways that vectors

might be separable into just N factors. Thus, hN is also the total number of possible

partitions in the lattice of H[1...N ], or equivalently the total number of types of vector that

exist in H[1...N ].

Of course, there is only one type of way in which vectors in H[1...N ] may be fundamen-

tally separated into one factor, and only one type of way in which vectors in H[1...N ] may

be fundamentally separated into N factors.

Because H[1...N ] is of fixed dimension, every vector it contains must have a component

in every subregister Hi of H[1...N ], for 1 ≤ i ≤ N. Therefore, every vector in H[1...N ] must

consequently have a component in the subregister H1, and this component will be in one

of the F factors of the overall state (whatever F may be). Further, whichever sub-state

of the overall product it is in, the component in H1 will either be in a factor of the state

on its own, or entangled with a component from just one other subregister, or entangled

with the components from two other subregisters, or..., or entangled with the components

from each of the N − 1 other subregisters (in which case F = 1).

In other words, a given state Φ in H[1...N ] might be fundamentally separable as

Φ = X1 ⊗ Y[2...N ] (5.21)

or

Φ = X1i ⊗ Y[2...(i−1)(i+1)...N ] (5.22)

or

Φ = X1ij ⊗ Y[2...(i−1)(i+1)...(j−1)(j+1)...N ] (5.23)

or... etc., for 1 < i, j, k, ... ≤ N and i 6= j 6= k 6= ... . Here X1 ∈ H1, but Y[2...N ] ∈ H[2...N ]

is any vector (completely entangled, completely separable, or a separable product of en-

tangled factors) in H[2...N ]. Similarly X1i ∈ H1i and X1ij ∈ H1ij , but Y[2...(i−1)(i+1)...N ] ∈
H[2...(i−1)(i+1)...N ] and Y[2...(i−1)(i+1)...(j−1)(j+1)...N ] ∈ H[2...(i−1)(i+1)...(j−1)(j+1)...N ] are arbi-

trary vectors that also may or may not be separable.

The summation proceeds as follows.

If the component inH1 of a state is in a factor sub-state on its own, i.e. is not entangled

with anything, there are (N − 1) components of the state left ‘free’, corresponding to the
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remaining (N−1) subregisters H2, H3, ..., HN . This remaining part of the state is a vector

in H[2...N ], and so by assumption this may be separated into one of hN−1 different ways.

So, there are hN−1 different ways in which states in H[1...N ] might be separated in the

form X1 ⊗ Y[2...N ].

Now, there are precisely CN−1
1 = (N − 1) ways of selecting just one component of a

vector in H[2...N ], i.e. (N − 1) ways of choosing just one of the components in one of the

remaining (N − 1) factor spaces Hi for 2 ≤ i ≤ N. There are hence (N − 1) different

types of factor of the form X1i for states in H[1...N ], such that the component in H1

is entangled with the component in Hi. Further, each of these ways leaves a remaining

vector in H[2...(i−1)(i+1)...N ], with (N − 2) ‘free’ components, and this vector may itself be

separated into one of hN−2 different ways. So, overall there are (N − 1)hN−2 different

ways of separating states in H[1...N ] in the form X1i ⊗ Y[2...(i−1)(i+1)...N ].

Continuing, there are CN−1
2 ways of selecting two components of a vector in H[2...N ],

such that one is in the subregister Hi and the other is in the subregister Hj , for 2 ≤
i, j ≤ N and i 6= j. There are hence CN−1

2 different types of factor of the form X1ij

for states in H[1...N ], such that the component in H1 is entangled with just two of the

other components. This leaves a remaining vector in H[2...(i−1)(i+1)...(j−1)(j+1)...N ], which

has (N − 3) free components, and this could be separable in one of hN−3 different ways.

So overall there are CN−1
2 hN−3 different ways of separating states in H[1...N ] in the form

X1ij ⊗ Y[2...(i−1)(i+1)...(j−1)(j+1)...N ].

This analysis can be continued. In general, there are CN−1
x ways of selecting x compo-

nents of a vector in H[2...N ], such that the athb component is in the athb subregister Hab , for

0 ≤ x ≤ (N −1), whilst 2 ≤ ab ≤ N and b = 1, 2, ..., x, with, of course, no two components

being in the same subregister. There are hence CN−1
x different types of factor of the form

X1a1a2...ax , such that the component in H1 is entangled with x of the other components.

This leaves a remaining vector which has (N − 1 − x) ‘free’ components, and this vector

will be separable in one of hN−1−x different ways. So, there are CN−1
x hN−1−x different

ways of separating states in H[1...N ] into a product of factors, one of which is X1a1a2...ax .

Overall, the total number hN of ways in which arbitrary vectors in H[1...N ] might

potentially be separated into a product of factors is given by the exhaustive sum of the

number of ways in which vectors in H[1...N ] might be separated such that their component

in H1 is in a factor sub-state on its own, added to the number of ways in which vectors

in H[1...N ] might be separated such that there is a factor containing the component in

H1entangled with a component from one other subregister, added to the number of ways

in which vectors in H[1...N ] might be separated such that there is a factor containing the

component in H1entangled with the components from two other subregisters, and so on

to the addition of the number of ways in which vectors in H[1...N ] might be separated such
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that there is a factor containing the component in H1entangled with the components from

every other subregister.

From the above, this gives

hN = hN−1 + (N − 1)hN−2 + CN−1
2 hN−3 + ...+ CN−1

x hN−1−x + ...+ CN−1
N−1hN−N (5.24)

where the last term is equal to unity because there is only one way of separating a state

into one entangled factor.

Clearly, then, it follows that hN is given by (5.20).

As discussed earlier, the first few values for hN are h0 = 1, h1 = 1, h2 = 2, h3 = 5,

h4 = 15, h5 = 52, h6 = 203, such that hN evidently grows quickly for even relatively low

values of N. Indeed, note that even for a five qubit system, the number of ways its state

may be separable is greater than the dimension of its Hilbert space: a five qubit Hilbert

space H(32)
[1...5] of 32 dimensions contains h5 = 52 partitions.

For the case in which N is of the order 10184, the value of hN is expected to be truly

enormous. So, for a Universe represented by a state of dimension greater than 210
184

, the

number of partitions contained in the lattice of its Hilbert space H[1...10184] is clearly very

large. This should consequently provide an incredibly rich structure, with a tremendous

number of different ways in which the state of the Universe might potentially separate.

As will be shown, this provides a wide scope for the Universe’s dynamics.

5.4 Probability Amplitudes and Quantum Causal Sets

Now that a notation has been introduced to cope with large dimensional Hilbert spaces,

it is possible to examine how a causal set structure might arise from a fully quantum

description of physics.

From the discussion that the Universe may always be represented by a state Ψn in a

Hilbert space H of enormous dimension, and from the outcome of the previous section that

any vector in a given Hilbert space is always contained within one, and only one, of the

partitions of this space, the conclusion must be that the Universe’s state is always in one

of the partitions of H. The state Ψn is separable in a specific way, and is always a product

of between 1 and N factors, where N is the number of subregisters in the fundamental

factorisation of H.

As the wavefunction of the Universe develops from one state Ψn to the next Ψn+1,

its pattern of separability might change. That is, if the state Ψn may be fundamentally

separated into a product of Fn factors, 1 ≤ Fn ≤ N, the state Ψn+1 may be separable into

Fn+1 factors, where Fn is not necessarily equal to Fn+1. In fact, even if Fn = Fn+1 the
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states Ψn and Ψn+1 may have completely different patterns of separability, since there are

in general many different partitions comprising of F blocks. It is this changing pattern

of separability that will be shown to be the origin of family structures in the quantum

universe, and hence the beginning of a discussion of quantum causal sets.

As conjectured at the start of Section 5.3, the individual factors of the state of the

Universe may be analogous to the events of classical causal set theory. For example, the

growth of the events in classical causets satisfies ‘internal temporality’, in the sense that

every new event is born either to the future of, or unrelated to, every other event; no event

is created to the past of already existing events. The same is true in the present model,

because the next potential state Ψn+1 is an outcome (i.e. one of the eigenvectors) of a

test on the ‘current’ state Ψn, and so any factor of Ψn+1 cannot in any way be thought of

as in the past of any of the factors of Ψn.

It is important to reiterate, however, that the quantum and classical models are not

completely congruent. For example, as has been discussed previously the relation x ≺ y ≺
z between three classical events has no direct equivalent in the quantum theory. After

all, consider three consecutive states Ψn−1,Ψn and Ψn+1: whilst Ψn+1 may indeed be one

of the possible outcomes of a test on Ψn (which is itself one of the outcomes of a test on

Ψn−1), the successive states Ψn−1, Ψn and Ψn+1 cannot be granted equivalent degrees of

existence according to the Kochen-Specker theorem, and so cannot be directly compared.

Compared to the current state Ψn only potential future states Ψn+1 can be discussed.

One similarity that does still occur between the classical and quantum cases is the

notion of ‘links’, which are defined as being irreducible relations. In the classical theory

described in Section 5.2, for example, two events x and y are linked if x ≺ y and there is

no other event z such that x ≺ z ≺ y, or if y ≺ x and there is no other event z′ such that

y ≺ z′ ≺ x. Analogously, in the proposed quantum scenario the states Ψn−1 and Ψn could

immediately be described as ‘linked’, because by definition there is no intermediate state

between them.

A further similarity arises from the classical causal set concepts of families: related

notions are also present in the quantum case, based, in fact, on the factorisability of the

probability amplitude. To demonstrate this, consider the inner product 〈Ψn+1 = Φ|Ψn〉
between the current state Ψn and one of the next potential states Ψn+1 = Φ, where Φ is

one of the eigenvectors of some operator Σ̂n+1. The states Ψn and Ψn+1 are each contained

within particular partitions of the total Hilbert space H[1...N ], where as before H[1...N ] is

assumed factorisable into N subregisters. Now, because the factors of one state can only

take inner products with factors of another state if they lie in the same factor space of some

split of the total Hilbert space (where these factor spaces are not necessarily elementary),
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then, depending on the details of the partitions containing Ψn and Ψn+1, the probability

amplitude may be separable into a number, r, of factors.

Paraphrasing, if ψ ∈ H[ψ] is a factor of Ψn ∈ H[1...N ], where H[ψ] is one of the factors

of some split of H[1...N ] and need not be of prime dimension, and if φ ∈ H[φ] is a factor

of Ψn+1, where H[φ] is one of the factors of some split of H[1...N ] and also need not be of

prime dimension, then 〈φ|ψ〉 will contribute a factor to the overall probability amplitude

〈Ψn+1|Ψn〉 iff H[ψ] = H[φ].

This leads to the definition of a ‘family ’: ψ and φ, in successive states Ψn and Ψn+1

respectively, constitute a family if 〈φ|ψ〉 is a factor of 〈Ψn+1|Ψn〉 and if 〈φ|ψ〉 cannot itself
be factorised further.

The above observation can be generalised, such that ψ might be a product of A factors,

ψ = ψ1⊗ψ2⊗ ...⊗ψA, and φ might be a product of B factors, φ = φ1⊗φ2⊗ ...⊗φB, where

A is not necessarily equal to B. In this case, the definition of the family encompasses the

factors of which ψ and φ are a product.

Suppose now that the state of the Universe Ψn ∈ H[1...N ] is separable into k factors,

i.e. Ψn = ψa1 ⊗ ψa2 ⊗ ... ⊗ ψak
, where the individual factors ψai , for 1 ≤ i ≤ k, may,

or may not, themselves be entangled relative to the fundamental factorisation of H[1...N ].

Each factor ψai is in its own factor Hilbert space H[ai], and this may itself be a product

of elementary subregisters with the condition that H[1...N ] = H[a1]⊗H[a2]⊗ ...⊗H[ak]. For

simplicity, it may also be assumed that the factor sub-states are normalised within their

own factor Hilbert spaces, i.e. 〈ψai |ψai〉 = 1.

Consider now the next test of the Universe, Σ̂n+1. This test has d orthonormal eigenvec-

tors, where d is the dimension of the Hilbert space H[1....N ]. Of course, if each elementary

subregister of H[1...N ] is a qubit sub-space then clearly d = 2N . If Φ is one of these d

eigenvectors, then the conditional probability P (Ψn+1 = Φ|Ψn, Σ̂n+1) that the next state

Ψn+1 of the Universe is Φ, given a test Σ̂n+1, is given by the usual Born probability rule

|〈Φ|Ψn〉|2 .
Suppose that Φ is separable into l factors, i.e. Φ = φb1 ⊗ φb2 ⊗ ...⊗ φbl

, each of which

is also contained in its own factor Hilbert space H[bj ], for 1 ≤ j ≤ l, with
∏l

j=1⊗H[bj ] =

H[1...N ] and 〈φbj |φbj 〉 = 1. Now, depending on the particular partitions of H[1...N ] in which

Ψn and Ψn+1 are members, that is, depending on how the various Hilbert spaces H[ai] and

H[bj ] ‘overlap’ with one another, the probability amplitude 〈Φ|Ψn〉 may be separable into

a product of factors. In other words,

P (Ψn+1 = Φ|Ψn, Σ̂n+1) = P1P2...Pr (5.25)

where the overall probability is factorisable into r factors Ps, for 1 ≤ s ≤ r, and each factor

can be interpreted as a conditional transition probability within a particular family.
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Assuming that (5.25) represents the ‘fundamental factorisation’ of the probability

P (Ψn+1 = Φ|Ψn, Σ̂n+1), then r represents the maximum number of factors associated

with the transition amplitude, and is constrained by r ≤ min(k, l). Thus, in this case

there are r families involved in the transition of the state from Ψn to Ψn+1 = Φ. Further,

because each factor of the transition amplitude involves a distinct portion of the overall

set of quantum subregisters comprising the total Hilbert space, the complete set of factors

Ps specifies a particular r-partite split of H[1...N ].

Summarising, then, leads to the following definition. For the quantum transition from

the state Ψn to a potential state Ψn+1, both of which are vectors in a Hilbert space H[1...N ]

factorisable into at least two subregisters, N ≥ 2, the number of families involved is defined

as equal to the number of factors in the fundamental factorisation of the probability

amplitude 〈Ψn+1|Ψn〉, as determined from which particular partitions of H[1...N ] the states

Ψn and Ψn+1 are in.

Analogous to classical causal sets, once a family has been identified it is possible to

define concepts such as parents, children and siblings. Specifically, in a given family

transition 〈φbj |ψai〉, where ψai is a factor of Ψn and φbj is a factor of Ψn+1, the sub-state

ψai may be called the ‘parent’ of φbj , which is in turn its ‘child’. Further, if ψai is itself

a product of X factors, ψai = αai_1 ⊗ αai_2 ⊗ ... ⊗ αa1_X
, and if φbj is a product of Y

factors φbj = βbj_1
⊗ βbj_2

⊗ ...⊗ βbj_Y
, then each factor αa1_x for 1 ≤ x ≤ X is a parent

of each factor βbj_y
for 1 ≤ y ≤ Y, which are its children or ‘offspring’. Similarly, every

factor βbj_y
is a sibling of every other factor βbj_z

, for 1 ≤ y, z ≤ Y and y 6= z, because

they share a parent. Note, however, that the fact that the β’s are siblings does not imply

that the α’s must also be siblings. Which, if any, of the factors of ψai are siblings of each

other depends entirely on the factorisation of the transition amplitude 〈Ψn|Ψn−1〉, as will
be discussed shortly.

First, however, consider as an illustration of these ideas a Hilbert space H[1...8] factoris-

able into eight elementary subregisters, H[1...8] = H1⊗ ...⊗H8. Consider also the ‘current’

state Ψn ∈ H[1...8] and one of the potential next states Ψn+1, defined as Ψn = Θ456•78
123

and Ψn+1 = Φ23•678
145 respectively. Clearly, Ψn is in the partition H456•78

123 , whereas Ψn+1 ∈
H23•678

145 , and the states may be written in the forms

|Ψn〉 = Θ456•78
123 = |Θ1〉 ⊗ |Θ2〉 ⊗ |Θ3〉 ⊗ |Θ456〉 ⊗ |Θ78〉 (5.26)

|Ψn+1〉 = Φ23•678
145 = |Φ1〉 ⊗ |Φ23〉 ⊗ |Φ4〉 ⊗ |Φ5〉 ⊗ |Φ678〉

in obvious notation. Note that here, and in the following, the usual Hilbert space subscripts

on the ket factors have been omitted to avoid potentially confusing clashes in the products
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of amplitudes; specifically, then, it is implicitly assumed that

|Θ456〉 ≡ |Θ456〉456 ∈ H[456] (5.27)

and |Φ1〉 ∈ H1, etc.

Therefore, the transition amplitude 〈Ψn+1|Ψn〉 takes the form 〈Φ23•678
145 |Θ456•78

123 〉, which
is fundamentally factorised as

〈Φ23•678
145 |Θ456•78

123 〉 = 〈Φ1|Θ1〉〈Φ23|Θ23〉〈Φ678
45 |Θ456•78〉 (5.28)

= 〈Φ1|Θ1〉 〈Φ23|(|Θ2〉 ⊗ |Θ3〉)
×(〈Φ4| ⊗ 〈Φ5| ⊗ 〈Φ678|)(|Θ456〉 ⊗ |Θ78〉).

So, the probability P = |〈Ψn+1 = Φ23•678
145 |Ψn = Θ456•78

123 〉|2 can be fundamentally

factorised in the form P = P1P2P3 where P1 = |〈Φ1|Θ1〉|2 , P2 =
∣∣〈Φ23|Θ23〉

∣∣2 and P3 =
∣∣〈Φ678

45 |Θ456•78〉
∣∣2 . Further, it is evident that Ψn = Θ456•78

123 has k = 5 factors, Ψn+1 =

Φ23•678
145 has l = 5 factors, and the probability P has r = 3 factors, which clearly satisfies

the relation r ≤ min(k, l).

Moreover, in this transition, Θ1 is the (single) parent of Φ1, which has no siblings. The

factor Φ23 also has no siblings, and is the child of its parents, namely Θ2 and Θ3. Lastly,

the factors Θ456 and Θ78 are the parents of Φ4, Φ5, and Φ678, which are siblings of one

another.

Just as the sets of events generated in classical causal sets can be depicted by Hasse

diagrams, so too can the family structures produced by the quantum transitions also be

represented pictorially. The convention adopted is that every possible factor state present

in a transition amplitude is drawn as a large circle, whilst each factor of the relevant r-

partite split of the Hilbert space is denoted by a small circle. These two types of circle are

labelled in the obvious way, with, for example, a small circle labelled as [isy...b] denoting

the factor H[isy...b] of the total Hilbert space.

The ‘time’ parameter, n, is assigned to run upwards in the diagrams, such that the large

circles representing the ket vectors of the transition amplitude are below the large circles

that represent the bra vectors. In addition, the large circles are linked to the small circles

in a way that depends on how their factor states are contained in the factor Hilbert spaces

of the r-partite split. Specifically, with links drawn as arrows the convention becomes

that those arrows pointing towards the bottom of a small circle run from a set of parent

factor states, whilst those arrows coming from the top of this small circle point to their

corresponding set of children.

With these conventions adopted, the transition from the state Ψn = Θ456•78
123 to the

state Ψn+1 = Φ23•678
145 can be depicted by the diagram shown in Figure 5.2.
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Figure 5.2: The family structures present in the transition amplitude from Ψn = Θ456•78
123

to Ψn+1 = Φ23•678
145 .

In general, familial relations will be generated by every transition amplitude, and so

as the state of the Universe develops through many transitions, Ψn → Ψn+1 → Ψn+2 → ...

an extended network of families will begin to emerge. In addition, definitions of grand-

parents, grandchildren, cousins etc. will become apparent, as will identifications of great-

grandparents, great-great-grandparents, and so on. For example, if A is factor of Ψn, B

is factor of Ψn+1 and C is factor of Ψn+2, and if A is a parent of B and B is a parent

of C, then A is necessarily a grandparent of C. Further, as the state develops, individual

families may merge with other families, or may even remain isolated from all others over

a large number of jumps.

Exactly what happens will depend on the specific dynamics that govern the system,

as will be discussed later.

The existence of familial relations extending through a number of transitions gives

rise to causal set relationships, with the associated concepts of lightcones and volume

measures. To demonstrate this observation, consider as an illustrative example a model

universe represented by a state in a Hilbert space fundamentally factorised into six quan-

tum subregisters, H[1...6]. Consider also a possible sequence in the universe’s development,

in which five successive states Ψ0, Ψ1, ..., Ψ4 have the following form

Ψ0 = ϕ123456 ; Ψ1 = ψ23•456
1 ; Ψ2 = θ24•3516 (5.29)

Ψ3 = η12•3564 ; Ψ4 = χ12•34•56.

Note the inevitable notational clash here: in this example, subscripts on the capital

Greek letters (e.g. Ψn) will denote temporal ordering, whereas subscipts on lower case

Greek letters will denote separable factors.
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With the probability amplitudes given in the usual way, for example

〈Ψn+2 = θ24•3516 |Ψn+1 = ψ23•456
1 〉 = 〈θ1|ψ1〉〈θ24•356 |ψ23•456〉 (5.30)

etc., the above sequence of states can be represented by the diagram given in Figure 5.3.

Figure 5.3: One possible network of families produced as a toy-universe develops over five

jumps.

The universe of this example begins in an initial entangled state Ψ0 = ϕ123456. Since it

is argued throughout this thesis that separability is a necessary prerequisite for classicity,

then at time n = 0 the universe cannot be given any classical attributes. In fact from

entangled states of the form Ψ0 = ϕ123456, no notions of internal observers, apparatus, or

systems under investigation will be able to emerge. Further, since it has also been argued

that the appearance of space relies on the existence of classicity, then an initial entangled
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state cannot contain any sort of spatial relationships.

Separability, and hence the possibility of classicity, occurs in the next state Ψ1 =

ψ23•456
1 , which may be written as a product of three factors. Of course, it is still not possible

to define measures of distance at this stage, that is to say that the factor |ψ1〉 is so many

units away from the factor |ψ456〉, because these factors are nothing but ‘pregeometric

vectors’ in a Hilbert space, whereas physical space is a phenomenon that is only expected

to emerge by considerations of the relationships between large numbers of such factors over

very many transitions. Likewise, there is no immediately obvious definition of volume on

this pregeometric level. However, as with classical causal sets, embryonic notions of volume

may be estimated by a process of counting; for the quantum causal sets proposed here,

measurements of volume are expected to relate somehow to the number of factors present

in the current state of the universe. As a first approach, it is assumed that more separable

states will generate greater emergent volumes than less separable states, but it is still

unclear at this stage of research exactly how such a programme should proceed.

During the transition from Ψ1 = ψ23•456
1 to Ψ2 = θ24•3516 , the factor containing the

component of the state in the Hilbert space H1 does not change relative to the partition

structure of the total Hilbert space. In other words, although the state jumps from one

partition of H[1...6] to another during the transition, both Ψ1 and Ψ2 have a factor in the

same block, i.e. H1. Consequently the component of the state in the factor Hilbert space

H1 changes with no ‘interaction’ with any other component in H[2...6], and this may be

physically interpreted as the universe appearing to split into two distinct sub-universes,

neither of which influences the other. Although highly speculative, this may be the sort of

mechanism required to describe the behaviour of black holes in a fully quantum universe

of very many subregisters, in which an entire region of emergent spacetime appears cut

off from everything else.

A further point can be made if θ1 happens to be the same as ψ1. In this case, that

factor would appear to have been ‘frozen’ in time, whilst the rest of the universe evolved

around it. Such a freezing is a result of a local null test, defined in general as an operator

Ôn+1 with eigenvectors of the form Φ = αa ⊗ γb testing the separable state Θn = αa ⊗ βb,

where Φ,Θn ∈ H[ab], αa ∈ H[a], βb, γb ∈ H[b] and H[a] and H[b] need not be fundamentally

factorised. Local null tests are often observed in physics, for example when a spin-12particle

prepared via the spin-up channel of a Stern-Gerlach apparatus is passed through an iden-

tically orientated Stern-Gerlach device; as discussed in Chapters 3 and 6, in this type of

situation no new information is acquired about the state by repeating such a test.

Note that global null tests could also be a feature of the dynamics, defined in general

as an operator Ô′
n+1 with an eigenvector Θ testing the state Ψn = Θ. Such a global null

test leaves the entire state unchanged, and is therefore not physically ‘noticeable’.
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The appearance of local null tests, i.e. the persistence of some factors of the state over

a sequence of jumps, has a number of consequences for the quantum causal sets. Firstly

it introduces a concept of endo-time into the dynamics, that is, the property that over

a series of transitions, different factors of the state will ‘experience’ different durations,

where time is defined in terms of change. In other words, whilst one factor could change

a times as the state Ψn develops to Ψn+m, a different factor may change b times, where

m ≥ a, b. Consequently this endo-time is non-integrable, because the number of physically

significant jumps that one particular factor experiences as the Universe develops from the

state Ψn to the state Ψn+m depends on the chain of intermediate states Ψn+1, Ψn+2, ...,

Ψn+m−1. This will be expanded upon in Chapter 8, but for now note that endo-time is a

‘route dependent’ concept, analogous to the use of proper time in relativity. Further, since

isolated, classical-looking observers will ultimately be associated with different groups of

factors of the Universe’s state, the possibility that these factors may experience different

durations of time might account for one of the origins of different inertial frames of reference

in emergent relativity, in which different observers witness different passages of time.

Unlike the physically unobserved (and therefore fictitious) exo-time parameter, n,

endo-time is not necessarily absolute. There is no reason to assume that any one fac-

tor has any more claim to be experiencing the ‘real’ time than any other. For example if,

again, θ1 = ψ1 in Figure 5.3 then ψ1 could in principle be regarded as simultaneous with

θ24, θ35, and θ6, or instead simultaneous with ψ23 and ψ456. Thus, the occurrence of local

null tests also provides a basis for an eventual discussion of different planes of simultaneity

in emergent relativity.

Once a notion of endo-time has been introduced it is possible to discuss timelike dis-

tances in a manner analogous to classical causal sets. Generally speaking, the timelike

distance between a factor and one of its ‘ancestors’ is related to the number of intermediate

factors in its family structure. For example, the factors ψ456 and θ6 may be described as

separated by one ‘time step’ or one ‘tick’ of the ‘Universe’s quantum clock’ ( or ‘q-tick ’

[54]), whereas the factors ϕ123456 and θ6 are separated by two. Likewise, the factors ψ1

and η12 are also separated by two time steps, because there is one intermediate factor θ1.

However, if again it was the case that θ1 = ψ1 due to a local null test, then in this instance

the factors ψ1 and η12 would instead be described as separated by only one q-tick as there

are now no physically distinguishable intermediate factors.

As before, this highlights the fact that endo-time is a concept that depends on a

particular endo-observer’s route: if θ1 = ψ1 then the timelike distance between ϕ123456

and χ34 is three from the point of view of an observer ‘following’ the θ1 path, but is four

from the point of view of an observer associated with the alternative paths via θ24, θ35 or

θ6.
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A näive concept of lightcone structure can also be gathered from the above example

represented by Figure 5.3. Consider as an illustration the factor θ1 of the state Ψ2 and the

factor η356 of the state Ψ3. If these factors were simply associated with classical events,

i.e. taken to just be the ‘objects’ of the classical causal set theory described in Section

5.2, they would be described as incomparable. That is, there would be no relation of the

form ≺ linking the events θ1 and η356 as θ1 ≺ η356. The conclusion is that η356 is out of

the lightcone of θ1, and is hence not in its causal future, and so any change in θ1 could

not be expected to influence the event η356.

This type of lightcone structure is also potentially present in the quantum causal sets

introduced here. It might be possible, for instance, to discuss whether counterfactual

changes in the factors of one state affect particular factors of later states, simply by a

consideration of how the state of Universe changes from being in one partition to the

next as it develops. For example, in the current toy-universe model it appears that a

counterfactual change in the factor |θ1〉 of Ψ2 will not affect the factor |η356〉 in Ψ3 because

they are in completely different blocks of the partition. In other words, because |θ1〉 is

not a parent of |η356〉, a change in |θ1〉 may be expected to leave |η356〉 invariant. So, by

considering how counterfactual changes in one factor of the universe’s state might influence

factors in subsequent states, an embryonic concept analogous to lightcone structure is

introduced at the pregeometric level. Moreover, once such a notion is established, it

is possible to discuss features such as geodesics and spacelike distance, and ultimately

therefore also emergent spacetime, exactly as in the case of classical causal sets.

Note, however, that this line of thinking may be missing an essential point. In a fully

quantum universe with no external observers, the development of the state Ψn is achieved

by Hermitian operators of the form Σ̂n+1 chosen self-referentially by the Universe itself,

as discussed further in Chapter 8. In other words, there is expected to be some sort of

feedback mechanism in which the current stage somehow affects which test Σ̂n+1 is used

next. This immediately leads to a serious problem for the counterfactual argument given

above, because any change in just one factor of a state Ψn might lead to a completely

different next test Σ̂′
n+1, and this may have a completely different set of eigenvectors.

In the case of the example at hand, the state Ψ2 with the factor θ1 is assumed to give

rise (somehow) to the selection of an operator Σ̂3 which has an eigenvector Ψ3 that has a

factor η356. If this selection of Σ̂3 does not depend on Ψ2, then the above simple description

of lightcone structure in terms of counterfactual changes is appropriate. However if instead

the choice of Σ̂3 does indeed depend on Ψ2, then changing Ψ2 may affect Σ̂3. So in this

case, if the state Ψ2 instead had a factor θ′1, the next test chosen by the universe might

be Σ̂′
3, and this alternative operator might have a completely different set of eigenvectors,

with perhaps none of them possessing η356 as a factor. In fact, even a small change from
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θ1 to θ′1 in Ψ2 might lead to a next state Ψ3 that is completely entangled.

Clearly then, in a self-referential Universe developed according to a choice of operator

based upon the current state, an additional mechanism must be involved in order to

ensure that the emergent lightcone structure and Einstein locality observed in physics is

generated. This mechanism will be shown to involve the operators themselves.

5.5 Factorisation and Entanglement of Operators

The previous section showed where a discussion of causal set structure might begin to

emerge from a changing quantum state description of the Universe. What has not been

addressed, however, is how such patterns could arise in the first place, that is, how and

why the separability of the state can change from one jump to the next.

Since any state is an eigenvector of an Hermitian quantum operator, it is these tests

that must ultimately be responsible for the way in which the Universe might develop over

a series of collapses. Specifically in fact, the set of eigenvectors belonging to the operator

that is chosen to test the Universe will determine how separable the next potential state

will be. For example, if the rules governing the dynamics dictate that, for all n, an operator

Σ̂n+1 is chosen that has only entangled eigenvectors, then the state Ψn+1 of the Universe

will always be entangled and there is no chance that the type of causal set structure

described in the previous section will ever arise. For this reason, the types of possible

Hermitian operator used to develop the Universe must consequently also be examined.

Up until now, only the separation and entanglement properties of the states have

been investigated. In this section, however, it will be demonstrated that the operators

themselves may also be separable or entangled. Further, these properties will be shown to

also generate structures analogous to those of causal sets, and this will have far reaching

consequences for the states.

The set of Hermitian operators H(H(D)) of order D is a D2-dimensional, real vector

space [55]. In general then, every Hermitian operator Ô ∈ H(H(D)) acting on a state in

a D dimensional Hilbert space H(D) can be constructed from linear combinations of the

D2 independent elements that span this real vector space [22]. These D2 fundamental

‘building blocks’ will be called a skeleton set, S, of operators, and are the operators’

equivalent in H(H(D)) of the set B of basis vectors used to construct arbitrary states in

H(D).

Specifically, if S ≡ {σ̂λ : λ = 0, 1, .., (D2−1)} is defined as the skeleton set of operators

for a D dimensional Hilbert space H(D), then any Hermitian operator Ô acting upon states
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in H(D) may be written in the form

Ô = a0σ̂
0 + a1σ̂

1 + ...+ aD2−1σ̂
D2−1 =

D2−1∑

λ=0

aλσ̂
λ (5.31)

where aλ is a real parameter.

Consider as an illustration a single qubit quantum register, i.e. a two-dimensional

Hilbert space H(2)
A ≡ HA labelled by the subscript A, with the superscript ‘(2)’ that

indicates dimension being now implicitly assumed and hence dropped. Any Hermitian

operator ô ∈ H(HA) acting on a single qubit state in HA is composed of a linear sum of

the 22 = 4 members of the skeleton set SA of H(HA), defined as SA ≡ {σ̂µ
A : µ = 0, 1, 2, 3},

where the {σ̂µ
A} may be associated with the three Pauli spin operators and the identity

operator Î = σ̂0
A, as may be readily verified.

So, the skeleton operators in SA are taken to obey the algebraic relations

σ̂i
Aσ̂

j
A = δij σ̂

0
A + iǫijkσ̂

k
A (5.32)

σ̂i
Aσ̂

0
A = σ̂0

Aσ̂
i
A = σ̂i

A

where i, j, k = 1, 2, 3, but i =
√
−1 when it is not used as an index. Here and below, the

Einstein summation convention is assumed over lower case Latin and Greek indices, and

the Levi-Civita tensor is defined in the usual way:

ǫijk =





0 for i = j, k or j = k

+1 for ijk, kij, or jki

−1 for ikj, jik, or kji





. (5.33)

A more compact way of writing the relations (5.32) is

σ̂µ
Aσ̂

υ
A = Cµυ

ω σ̂ω
A (5.34)

where µ, υ, ω = 0, 1, 2, 3 and the coefficients Cµυ
ω are given by

C0υ
ω = Cυ0

ω = δυω (5.35)

Cij
0 = δij , Cij

k = iǫijk.

It is possible to obtain a matrix form for the operators σ̂µ
A. Consider an orthonormal

basis set BA of vectors spanning HA, defined as BA = {|0〉A, |1〉A}. A representation of the

operators σ̂µ
A in this basis may be given by

σ̂µ
A =

1∑

m,n=0

[σµ
A](m+1)(n+1)|m〉〈n|, (5.36)
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where m,n = 0, 1 and [σµ
A](m+1)(n+1) is the value in the (m + 1)th row of the (n + 1)th

column of a 2 × 2 matrix [σµ
A]. As might be expected, one possible such set of matrices

may be defined in the standard way of Pauli:

[σ0
A] =

(
1 0

0 1

)
, [σ1

A] =

(
0 1

1 0

)
(5.37)

[σ2
A] =

(
0 −i

i 0

)
, [σ3

A] =

(
1 0

0 −1

)
,

which clearly satisfy (5.34).

In addition, it can further be shown that the skeleton set of operators SA = {σ̂µ
A} may

be associated with the identity (µ = 0) and the generators (µ = i = 1, 2, 3) of the group

SU(2). Consequently, any special unitary operator Û acting on HA may be written in the

form

Û = exp

[
i

3∑
µ=0

uµσ
µ
A

]
(5.38)

where the uµ ∈ R are real parameters.

The above arguments can be extended to Hilbert spaces factorisable into more than

one qubit subregister. Consider a Hilbert space H[1...N ] formed from the tensor product

of N qubit factor spaces, H[1...N ] = H1 ⊗ H2 ⊗ ... ⊗ HN . An orthonormal basis Ba for

the ath factor space Ha (= H(2)
a as before) may be defined as Ba = {|0〉a, |1〉a}, where

a〈n|m〉a = δmn for m,n = 0, 1.

The skeleton set SN for the total Hilbert space H[1...N ] can be generated by taking the

tensor products of the skeleton operators of the individual qubit spaces, i.e.

SN ≡ {σ̂µ1
1 ⊗ σ̂

µ2
2 ⊗ ...⊗ σ̂

µN

N : µa = 0, 1, 2, 3 for a = 1, 2, ..., N}, (5.39)

which is clearly a set containing 4N = (2N )2 = D2 members.

Note that for convenience the skeleton set SN may also be rewritten as SN ≡ {σ̂η
1..N :

η = 0, 1, ..., (4N − 1)}, with the first member σ̂0
1..N = σ̂0

1 ⊗ σ̂0
2 ⊗ ...⊗ σ̂0

N etc.

The set SN forms a basis for the real vector space H(H[1...N ]) of Hermitian operators

in H[1...N ]. Any operator Â ∈ H(H[1...N ]) can be written as a linear sum7 of the members

of SN

Â =

3∑

µ1=0

3∑

µ2=0

...

3∑

µN=0

Aµ1µ2...µN
σ̂
µ1
1 ⊗ σ̂

µ2
2 ⊗ ...⊗ σ̂

µN

N (5.40)

= A00...0(σ̂
0
1 ⊗ σ̂0

2 ⊗ ...⊗ σ̂0
N ) +A10...0(σ̂

1
1 ⊗ σ̂0

2 ⊗ ...⊗ σ̂0
N ) + ...

...+A33...3(σ̂
3
1 ⊗ σ̂3

2 ⊗ ...⊗ σ̂3
N )

7For explicitness, the Einstein summation convention has been replaced in this expression by the ‘sum’

signs.
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where the coefficients Aµ1µ2...µN
are all real, as required for Hermicity.

Consider now a second operator B̂ ∈ H(H[1...N ]), such that it is possible to in turn

define a third operator X̂ as the multiplicative product X̂ ≡ ÂB̂. Assuming again that

the Einstein convention is adopted on repeated Greek indices, Â and B̂ may be written as

Â = Aµ1µ2...µN
σ̂
µ1
1 ⊗ σ̂

µ2
2 ⊗ ...⊗ σ̂

µN

N and B̂ = Bυ1υ2...υN
σ̂υ1
1 ⊗ σ̂υ2

2 ⊗ ...⊗ σ̂υN

N for 0 ≤ µr ≤ 3

and 0 ≤ υs ≤ 3 with r, s = 1, 2, ..., N.

So, the product X̂ is given by

X̂ = (Aµ1µ2...µN
σ̂
µ1
1 ⊗ σ̂

µ2
2 ⊗ ...⊗ σ̂

µN

N )(Bυ1υ2...υN
σ̂υ1
1 ⊗ σ̂υ2

2 ⊗ ...⊗ σ̂υN

N ) (5.41)

= Aµ1µ2...µN
Bυ1υ2...υN

(σ̂
µ1
1 ⊗ σ̂

µ2
2 ⊗ ...⊗ σ̂

µN

N )(σ̂υ1
1 ⊗ σ̂υ2

2 ⊗ ...⊗ σ̂υN

N )

= Aµ1µ2...µN
Bυ1υ2...υN

C
µ1υ1
ω1 C

µ2υ2
ω2 ...C

µNυN
ωN

σ̂ω1
1 ⊗ σ̂ω2

2 ⊗ ...⊗ σ̂ωN

N

from (5.34). The coefficients Aµ1µ2...µN
Bυ1υ2...υN

C
µ1υ1
ω1 C

µ2υ2
ω2 ...C

µNυN
ωN

are just products of

real parameters, so this last line may be rewritten in the form

X̂ = Xω1ω2...ωN
σ̂ω1
1 ⊗ σ̂ω2

2 ⊗ ...⊗ σ̂ωN

N (5.42)

where Xω1ω2...ωN
∈ R for ωt = 0, 1, 2, 3 and t = 1, 2, ..., N. The product operator X̂ is

a linear sum of the members of SN with real coefficients, and so is clearly a member of

H(H[1...N ]). The set H(H[1...N ]) is hence confirmed closed under the multiplication rule, as

expected for a vector space, and is an algebra over the real number field.

Consider again the Hermitian operator Â ∈ H(H[1...N ]) defined as Â = Aµ1µ2...µN
σ̂
µ1
1 ⊗

σ̂
µ2
2 ⊗ ...⊗ σ̂

µN

N . Depending on the actual values of the coefficients Aµ1µ2...µN
, this operator

may, or may not, factorise relative to the skeleton set associated with some particular

split of the total Hilbert space H[1...N ]. For instance, if H[1...N ] can be factorised into the

bi-partite split H[1...N ] = HV ⊗HW , where HV and HW need not be of prime dimension,

it may be the case that Â can be written in the form Â = V̂ ⊗Ŵ , where V̂ is an Hermitian

operator acting in the factor sub-space HV and Ŵ is an Hermitian operator acting in the

factor sub-space HW .

As an example, in the factorisable two qubit Hilbert space H[12] = H1 ⊗ H2, the

space of Hermitian operators H(H[12]) is spanned by the skeleton set S12 defined as S12 =

{σ̂µ1
1 ⊗ σ̂

µ2
2 : µ1, µ2 = 0, 1, 2, 3}. Clearly then, an Hermitian operator Ê ∈ H(H[12]) of the

form

Ê =
1

2
(3σ̂1

1 ⊗ σ̂1
2 + σ̂2

1 ⊗ σ̂2
2) (5.43)

is entangled, whereas an Hermitian operator F̂ ∈ H(H[12]) of the form

F̂ = 3σ̂0
1 ⊗ σ̂1

2 − σ̂3
1 ⊗ σ̂1

2 = (3σ̂0
1 − σ̂3

1)⊗ σ̂1
2 (5.44)

is factorisable relative to S12 in H[12] = H1 ⊗H2.
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Whether or not an arbitrary Hermitian operator Ô in H(H[1...N ]) is factorisable in the

form Ô = Ŷ ⊗ Ẑ, relative to the skeleton set of a particular bi-partite split of the total

Hilbert space H[1...N ] = HY ⊗HZ , may be determined in a manner that is similar to the

microsingularity test given in Chapter 4 used to discover whether an arbitrary state in

H[1...N ] is separable relative to H[1...N ] = HY ⊗HZ .

Theorem 5.1 An arbitrary Hermitian operator Ô ∈ H(H[1...N ]) is factorisable in the

form Ô = Ŷ ⊗ Ẑ, relative to the skeleton set SY Z = {σ̂α
Y ⊗ σ̂β

Z} of a particular bi-

partite split of the total Hilbert space H[1...N ] = HY ⊗HZ such that Ŷ ∈ H(HY ) and

Ẑ ∈ H(HZ) if, for Ô = Cαβσ̂
α
Y ⊗ σ̂β

Z ,

CαβCγδ = CαδCγβ (5.45)

for all values of the indices α, γ = 0, ..., (DY − 1) and β, δ = 0, ..., (DZ − 1), where Cαβ

is a real coefficient, σ̂α
Y is a skeleton operator for H(HY ), σ̂

β
Z is a skeleton operator

for H(HZ), and DY and DZ are the dimensions of H(HY ) and H(HZ) respectively.

This may be shown as follows:

Proof. ⇒ Suppose that the coefficients of the operator Ô = Cαβσ̂
α
Y ⊗ σ̂β

Z satisfy the

microsingularity condition (5.45), and without loss of generality assume that Ô is not

the zero operator. This implies that at least one coefficient Cαβ must be non-zero for

α = 0, ..., (DY − 1) and β = 0, ..., (DZ − 1). Further, since any Cγδ is just a real number,

the product CγδÔ is just a scalar multiple of Ô, so

Ô = Cαβσ̂
α
Y ⊗ σ̂β

Z (5.46)

CγδÔ = CγδCαβσ̂
α
Y ⊗ σ̂β

Z

= CαδCγβσ̂
α
Y ⊗ σ̂β

Z

= (Cαδσ̂
α
Y )⊗ (Cγβσ̂

β
Z).

Clearly, then, Ô is factorisable with respect to SY Z .

⇐= If Ô ∈ H(H[1...N ]) factorises relative to SY Z then

Ô = (yασ̂
α
Y )⊗ (zβσ̂

β
Z) (5.47)

where yα and zβ are real parameters. So

Ô = yµzυσ̂
µ
Y ⊗ σ̂υ

Z . (5.48)

Taking Cαβ = yαzβ , and similarly Cγδ = yγzδ, the microsingularity condition (5.45) is

clearly satisfied because

CαβCγδ = yαzβyγzδ = yαzδyγzβ = CαδCγβ . (5.49)
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Just as the states can be described as existing in certain entanglements or separations

of the Hilbert space, the operators testing them can also be placed into similar such sets.

Thus, the ‘partition structure’ of the operators may also be discussed. Again, the use of

upper and lower indices may be adopted in the obvious way, and the symbol “•” may

be used to denote separable products. For example, in this notation the operator Ôbc•def
a

acting on states in H[a...f ] is assumed fundamentally factorisable into three sub-operators

of the form

Ôbc•def
a = Âa ⊗ Âbc ⊗ Âdef (5.50)

where Âa acts on states in Ha, Â
bc is an entangled sub-operator acting in H[bc], and Âdef

is an entangled sub-operator relative to the skeleton set of H[def ]. Moreover, Ôbc•def
a is a

member of the set H(H[a...f ])
bc•def
a of Hermitian operators inH[a...f ] that are fundamentally

factorisable into three factors relative to the skeleton set of the split H[a...f ] = H[a]⊗H[bc]⊗
H[d...f ].

Whilst Hermitian operators may be factorisable or entangled, it should be noted that

not every type of entangled or factorisable operator is necessarily Hermitian. This is an

important point, since it is only Hermitian operators that are responsible for physically

realisable observables, and only the eigenvectors of Hermitian operators that make up the

physically realisable states.

Moreover, it should further be noted that not every type of Hermitian operator can

validly be used to test the quantum state of the Universe. This follows because with every

Hermitian operator is associated a set of eigenvalues, each of which implies a corresponding

eigenvector. However, if two (or more) of these eigenvalues are the same, their eigenvectors

are not uniquely determined. This is a standard result of linear algebra [56].

In the paradigm proposed in this thesis, the quantum state of the Universe Ψn in its

D dimensional Hilbert space is developed by collapsing into one of the eigenvectors of an

Hermitian operator Σ̂n+1. In this mechanism, the operator Σ̂n+1 is assumed to uniquely

provide a complete, orthonormal set of D eigenvectors, Φi
n+1 for i = 1, 2, ..., D, which

effectively produces a preferred basis for the next set of potential states Ψn+1. It is therefore

necessary that this set of eigenvectors has members that are not only distinguishable, but

are also well defined and specific.

This conclusion is partly because if two eigenvectors have the same eigenvalue they

cannot be distinguished by any sort of measuring apparatus, since it is generally the

eigenvalues that are actually recorded (c.f. energy eigenvalues in conventional laboratory

physics). So, since the jump from the state Ψn to the next state Ψn+1 has been ascribed to

be parameterised in terms of information acquisition, any such uncertainty as to what state
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this information implies would cause problems for an interpretation of how the Universe

is developing.

Additionally, if the eigenvectors of Σ̂n+1 are not uniquely specified, problems arise

involving the identification of the members of the set of potential next states. This, in

turn, could lead to an ambiguity regarding what (pure) state the Universe is actually in.

As a very simple illustration of the importance of these ideas, consider a universe

consisting of just a single qutrit, i.e. one represented by a state in a three dimensional

Hilbert space H(3) spanned by the orthonormal basis B(3) = {|i〉 : i = 0, 1, 2}. Consider
also an operator of the form P̂ = |0〉〈0|, denoted in this representation by the matrix

P =




1 0 0

0 0 0

0 0 0


 (5.51)

It can readily be shown that the states Θ1 = |0〉, Θ2 = 1√
2
(|1〉 + |2〉), and Θ3 =

1√
2
(|1〉−|2〉) are three orthonormal eigenvectors of P̂ , with eigenvalues µ1 = 1, µ2 = 0 and

µ3 = 0 respectively, because they satisfy P̂Θi = µiΘi and 〈Θj |Θi〉 = δij for i, j = 1, 2, 3.

These states therefore form an orthonormal basis B
(3) for P̂ . But it can also be shown

that there is no uniqueness in this construction of B
(3), because any other set of states

|0〉, (α|1〉 + β|2〉), and (β∗|1〉 − α∗|2〉) for any other values of α, β ∈ C also comprise an

orthogonal basis set B
(3)′ of eigenstates. There is hence an inherent ‘ambiguity’ in the

eigenvectors of P̂ , making it an example of the type of Hermitian operator that cannot

be used in the development of the state of the universe. In order to develop the universe

from the state Ψn to Ψn+1, a unique basis set Bn+1 must be specified.

A suggestion at this point might be to introduce additional ansatz into the dynamics

in order to overcome the above types of problem. In conventional quantum mechan-

ics, for example, operators with degenerate eigenvalues (and hence continuous spectra of

eigenstates) may be dealt with by an inclusion of Lüders’ generalised projection postulate

[57][31], and additional procedures may be employed to select a unique preferred basis set

of eigenstates from the infinite set of possibilities possessed by the degenerate operator.

For instance, it may be suggested that upon testing, the system selects a basis containing

the eigenvector that is ‘nearest’ to the initial state. Paraphrasing such a possibility: if a

quantum object represented by the state ψ is tested by the degenerate operator ô, then

according to this ‘selection mechanism’ it may be taken to collapse to a member of a basis

set of eigenstates of ô that contains the particular eigenvector ϕ for which the value of

|〈ϕ|ψ〉|2 is greatest.

Now, it is not clear at this stage exactly how such suggestions could affect, or be

incorporated into, the dynamics proposed in this thesis for the developing quantum uni-
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verse. For a start, Lüders’ postulate was originally phrased in terms of density matrices,

whereas such an approach is not the direct focus of this thesis on the grounds that en-

semble descriptions of the Universe are considered unphysical, as discussed in Chapter 3.

Moreover, Lüders’ idea of generalised projections was also developed from an exo-physical

perspective for quantum systems in the laboratory, and it is not always obvious whether

any such concepts may be directly applicable to the case where the state describes the

entire universe.

As for the above ‘selection mechanism’, it is not immediately clear how the other

members of the required orthogonal basis set of vectors may be self-referentially selected

during the procedure; recall that in a D > 2 dimensional Hilbert space, there are an

infinite number of (D − 1) mutually orthogonal vectors that are also orthogonal to any

given state ϕ. Additionally, it could be expected that there is a high propensity for such a

mechanism to result in null tests on the universe, and these are not ascribed to play a role

in the dynamics of the proposed paradigm. Elaborating on this last point, the ‘nearest’

eigenstate could be the same as the initial state, and this would potentially lead to trivial

dynamics. As an example of this possibility, if a single qutrit toy-universe is initially in a

state ψ = (α|1〉+β|2〉), the suggested mechanism could imply that the degenerate operator

P̂ described in (5.51) could leave the universe in the same state ϕ = (α|1〉+ β|2〉).

Two more technical points concerning incorporating the above suggestions into the

quantum universe dynamics are also appropriate. Firstly, even if additional mechanisms

are postulated in conventional quantum mechanics that select a unique basis set from

a continuous spectra of possibilities, they do not necessarily have a place in the work

described here. After all, in the paradigm proposed in this thesis it is the orthogonal basis

sets that have prime importance in the quantum developments, and not the equivalence

class of operators that they imply. In other words, and by reversing the overall argument,

since by definition the dynamics governing the transition from state Ψn to Ψn+1 requires

the specification of a unique basis set Bn+1 (∋ Ψn+1), which then in turn implies the

specification of an equivalence class of Hermitian operators, the question of what happens

if the eigenvalues of the operator Σ̂n+1 are degenerate does not automatically arise. By

definition, the operator Σ̂n+1 is not being used to generate a unique basis set Bn+1; the

unique orthonormal basis set Bn+1 is instead used to imply the operator Σ̂n+1.

Secondly, if the dynamics were to dictate that the current state Ψn is used to select a

particular basis set Bn+1 from the degenerate operator Σ̂n+1 (which is identical to arguing:

“if the dynamics were to dictate that the current state Ψn is used to select a particular

basis set Bn+1 from the infinite set of possible basis sets of eigenstates of the degenerate

operator Σ̂n+1"), then the question would remain: “why does the dynamics bother to

define the infinite set in the first place if only one member Bn+1 is deterministically
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picked?”. What is the point in defining a degenerate operator, and hence an infinite

number of possible basis sets, if additional constraints are then required to select just one

of these bases? Why not instead just define a particular unique basis set Bn+1, and then

consider the equivalence class of operators that this implies?

Overall, whilst none of the above issues explicitly forbid the use of generalised mea-

surements within the framework aimed at in this work, it is equally evident that their

inclusion into the quantum universe dynamics would require careful attention. Thus, the

question of how or whether the tests of the universe may be allowed to possess degenerate

eigenvalues is left as an area of investigation for the future, and the overall constraint of

only accepting non-degenerate operators Σ̂n+1 is enforced for simplicity by definition to

avoid possible such considerations.

Summarising, in the paradigm proposed here, the orthonormal basis set Bn+1 must

be uniquely specified if it is to be used in the development of the state Ψn of the universe.

Thus, the D eigenvectors Φi
n+1, i = 1, ..., D, of an operator Σ̂n+1 that form Bn+1 must

also be uniquely specified. To ensure this, the constraint is therefore assumed that only

operators Σ̂n+1 with D non-degenerate and real eigenvalues may be used to test the

universe.

This conclusion leads to a definition of three different types of Hermitian operator,

useful in the following:

i) A Degenerate operator is an Hermitian operator with at least two identical eigen-

values;

ii) A Weak operator is an Hermitian operator which is either degenerate, or at least

one of its eigenvalues is zero;

iii) A Strong operator is an Hermitian operator which is not weak, i.e. all of its eigen-

values are different and none are zero.

It immediately follows that projection operators are weak, as is evident from, for

example, (5.51).

The necessary distinction between Strong and Weak operators will become apparent

when tensor products of operators are considered; it will be shown later that products of

weak operators are in general insufficient to determine a preferred basis for the developing

state, whereas products of strong operators may be used. Products of strong operators

may thus be associated with the physical tests of the state of the Universe.

Note that for an operator Σ̂n+1 satisfying the eigenvector equation
∣∣∣(Σ̂n+1 − λiÎ)

∣∣∣ = 0,

with eigenvalue λi ∈ R, i = 1, ..., D and the identity Î , the actual, absolute values of λi
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are not important. What is important is the basis set of eigenvectors they represent,

and, specifically for the case of strong operators, that these eigenvectors are all different.

Indeed, given an arbitrary operator Ô with eigenvalues {a, b, c, ...}, it is possible to find a

second arbitrary operator Ô′ with eigenvalues {k′a, k′b, k′c, ...}, where k′ ∈ R is a real, non-

zero constant, that has the same spectrum of eigenvectors as Ô. Moreover, the alternative

operator Ô′′ defined as Ô′′ = Ô + k′′Î also has the same eigenvectors as Ô, even though

its eigenvalues {(a+ k′′), (b+ k′′), (c+ k′′), ...} are ‘shifted’ from those of Ô by a constant

amount k′′.

Conversely, note that two different strong operators may have the same set of eigen-

values but different eigenvectors, the Pauli matrices being a good example.

Of course, these principles are familiar to many physics experiments, where, for exam-

ple, energy and momentum eigenvalues often only have relative significance. Moreover,

the three operators Ô, Ô′ and Ô′′ would be physically indistinct, in the sense that if the

Universe collapsed to a particular state Ψn+1 that was one of the members of this set of

eigenvectors, an observer would be unable to determine whether it was Ô, Ô′ or Ô′′ that

was used to test Ψn.

Summarising, although their actual values are unimportant, it is necessary that the

members of the set of eigenvalues are all different if distinctions are to be made between

the members of the corresponding set of eigenstates.

In addition to the ideas of ‘weak’ and ‘strong’ operators, a further definition useful

in the following is the ‘pairwise-product ’. Consider a set X ≡ {x1, x2, ..., xM} with M

members, and the set Y ≡ {y1, y2, ..., yN} with N members. The pairwise-product XY

of the sets X and Y is defined as the set of all the products XY ≡ {xiyj : i = 1, ...,M,

j = 1, ..., N}. Clearly, XY is a set containing M ×N members.

As an extension, the pairwise tensor product of two sets can similarly be defined in

an obvious way.

Return now to the issue of the separability of operators. Consider a Hilbert space H[12]

factorisable into two subspaces, H[12] = H1 ⊗H2, where H1 and H2 are of dimensions d1

and d2 respectively, which need not be prime. Consider also the Hermitian operators Â1 ∈
H(H1) and B̂2 ∈ H(H2), such that the product operator Ô12 = Â1 ⊗ B̂2 is a factorisable

member of H(H[12]), i.e. Ô12 ∈ H(H[12])12. In addition, let the set of eigenvalues VA of Â1

be VA = {a1, a2, ..., ad1} and the set of eigenvalues VB of B̂2 be VB = {b1, b2, ..., bd2}.
The set of eigenvalues VAB of the product operator Ô12 is given by the pairwise-product
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VAB = VAVB of the sets of eigenvalues of the operators Â1 and B̂2. So, VAB is

VAB = {a1, a2, ..., ad1}{b1, b2, ..., bd2} (5.52)

= {a1b1, a1b2, ..., a1bd2 , a2b1, a2b2, ..., ad1bd2}
= {aibj : i = 1, ..., d1 , j = 1, ..., d2}.

Then, the following conclusions hold:

Theorem 5.2 If either of Â1 or B̂2 is weak, then the product Ô12 has a degenerate

set of eigenvalues, and is hence also weak.

Proof. Without loss of generality, let Â1 be weak. Then, at least one member ax of

VA is zero, or else two members ax and ay are equal.

If ax is zero, then the d2 members of VAB of the form axbj for j = 1, ..., d2 are also

zero. Hence, Ô12 has d2 degenerate eigenvalues, and is consequently a weak operator.

Alternatively, if ax = ay then axbj = aybj for all j = 1, ..., d2, which means that VAB

contains d2 sets of degenerate ‘pairs’. Hence, Ô12 is weak.

The above theorem is logically equivalent to the statement: only if Â1 and B̂2 are

both strong might the operator Ô12 = Â1⊗B̂2 be strong. Alternatively, if Ô12 = Â1⊗B̂2

is strong, then Â1 and B̂2 must both be strong.

However:

Theorem 5.3 If Â1 and B̂2 are both strong, then the product Ô12 may be either

weak or strong, depending on the actual eigenvalues of Â1 and B̂2.

Proof. The proof is obvious. Whether or not the members of

VAB = {a1b1, a1b2, ..., a1bd2 , a2b1, a2b2, ..., ad1bd2} (5.53)

are degenerate (noting that none can be zero if Â1 and B̂2 are strong) clearly depends on

the specific values of each of a1, a2, ..., ad1 and b1, b2, ..., bd2 .

For example, let d1 = d2 = 2 in order to consider a Hilbert space H[12] factorisable

into two qubit subregisters, H[12] = H1 ⊗ H2, and the skeleton set of operators S12 =

{σ̂µ1
1 ⊗ σ̂

µ2
2 : µ1, µ2 = 0, 1, 2, 3} where σ̂

µ1
1 and σ̂

µ2
2 are analogous to the Pauli operators.

Then:

1. Consider also an operator ô defined as ô ≡ σ̂1
1 ⊗ σ̂2

2. The skeleton operator σ̂1
1 is

a strong Hermitian operator, with eigenvalues +1 and −1; similarly, the skeleton

operator σ̂2
2 is also a strong Hermitian operator, and also has eigenvalues +1 and −1.

Thus, the four eigenvalues of the product operator ô are the products: (1)× (1) = 1,

(1)× (−1) = −1, (−1)× (1) = −1 and (−1)× (−1) = 1. So, ô clearly has degenerate

eigenvalues, and is hence a weak operator that is the product of strong operators.
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2. Consider instead the Hermitian operator F̂ defined as F̂ ≡ (3σ̂0
1− σ̂3

1)⊗ σ̂1
2 in (5.44).

The strong Hermitian operator (3σ̂0
1 − σ̂3

1) has eigenvalues of 2 and 4, whereas the

strong Hermitian operator σ̂1
2 has eigenvalues of +1 and −1, so the four eigenvalues

of the product operator F̂ are: (2) × (1) = 2, (2) × (−1) = −2, (4) × (1) = 4 and

(4) × (−1) = −4. Clearly, F̂ has non-degenerate and non-zero eigenvalues, and is

hence a strong operator that is the product of strong operators.

Note that the result of ‘1.’ generalises to higher dimensional cases: every element of

the skeleton set (5.39) associated with an n-qubit register is weak for n > 1. The members

of n-qubit skeleton sets are Hermitian, but have degenerate eigenvalues.

For clarity, the conclusions of the above two theorems have been summed up below.

If W and S denote weak and strong operators respectively, the following truth table is

generated where the first row denotes the ‘status’ of Â1, the first column denotes the

status of B̂2 operator, and the remaining values denote the status of the resulting product

operator Ô12 = Â1 ⊗ B̂2:

− A1 is W A1 is S

B2 is W W W

B2 is S W S or W ?

Table 5.1

The results of the previous two theorems extend to operators that are the products of

more than two factors. The generalisation of the first theorem implies that if an operator

Ô1...M is a product of M factor operators Ô1...M = ô1 ⊗ ô2 ⊗ ...ôM , then every factor ôi

must be strong if Ô1...M is strong. This follows because operators of the type Ô1...M can

always arbitrarily be rewritten as a product of just two factors: the factor representing a

particular ôi and the factor containing every other operator ôj for 1 ≤ j ≤ M and j 6= i.

So, if any of the ôi are weak, the pair-wise product of the eigenvalues of these two factors

contains either degeneracy or zeroes, and hence Ô1...M must also be weak.

Likewise, the extension of the second of the above theorems follows naturally, since

the spectrum of eigenvalues of an operator will always depend on the set of the products

of the eigenvalues of its factors.

Attention is now turned to the eigenstates of the operators themselves:

Theorem 5.4 All the eigenstates of a strong, factorisable operator are separable.

Proof. Without loss of generality, consider a strong operator Ô12 factorisable into two

factor operators, Ô12 = Â1 ⊗ B̂2. From the earlier theorem, the factors Â1 and B̂2 must

also both be strong operators.
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As before, let the eigenvalues of Â1 be {a1, a2, ..., ad1}. Each eigenvalue ai corresponds

to a particular normalised eigenvector |ai〉1, such that the overall set of eigenvectors for

i = 1, ..., d1 forms an orthogonal basis set B1 of states spanning the d1 dimensional factor

Hilbert space H1, i.e. B1 = {|ai〉1 : i = 1, ..., d1}.
Similarly, if the eigenvalues of B̂2 are {b1, b2, ..., bd2}, then each eigenvalue bj cor-

responds to a particular normalised eigenvector |bj〉2, and this set of eigenvectors for

j = 1, ..., d2 forms an orthogonal basis set B2 of states spanning the d2 dimensional factor

Hilbert space H2, i.e. B2 = {|bj〉2 : j = 1, ..., d2}.
Consider now the pairwise (tensor) product of B1 and B2 defined as the set {|ai〉1 ⊗

|bj〉2 : i = 1, ..., d1 j = 1, ..., d2}. Clearly, this set has d1d2 members.

Now consider one of the members ψ of this set, ψ = |ax〉1 ⊗ |by〉2. Evidently, ψ is

separable, and is a member of the partition ψ ∈ H12 = (H1 • H2) ⊂ H[12]. Moreover, ψ is

an eigenstate of Ô12 because:

Ô12ψ = Ô12(|ax〉1 ⊗ |by〉2) (5.54)

= [Â1 ⊗ B̂2](|ax〉1 ⊗ |by〉2)
= [Â1|ax〉1]⊗ [B̂2|by〉2]
= ax|ax〉1 ⊗ by|by〉2 = oxy|ax〉1 ⊗ |by〉2

where oxy = axby ∈ R+.

Similarly, every other member of the set {|ai〉1 ⊗ |bj〉2 : i = 1, ..., d1 j = 1, ..., d2} is an

eigenstate of Ô12, and is also a member of the separation H12.

However, because Ô12 is a strong operator acting on states in a d1d2 dimensional Hilbert

space, it has precisely d1d2 independent eigenstates. Since there are d1d2 independent

eigenstates of Ô12 in the set {|ai〉1 ⊗ |bj〉2 : i = 1, ..., d1 j = 1, ..., d2}, this set must be an

exhaustive, orthonormal basis B12 for Ô12.

Hence, every eigenstate of the strong, factorisable operator Ô12 is separable.

The proof extends to strong, separable operators of higher degrees of factorisation in

the obvious way.

In the context of the proposed paradigm that only strong (Hermitian) operators are

used in the development of the Universe’s state, the above theorem can be rephrased as:

separable tests only have separable outcomes.

An important consequence of this is that entangled states cannot be the outcome

of separable operators. Paraphrasing: entangled states can only be the outcome of

entangled operators.The converse, however, is not true: entangled operators can have

entangled eigenstates, but they can also have separable eigenstates.

So, overall the ‘Golden Rule’ is that:
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No operator can have more factors than any of its eigenstates,

but an eigenstate can have more factors than its operator.

As illustrations of these ideas, consider again a two qubit toy-universe, represented by

a state in a four dimensional Hilbert space H(4)
[12] = H(2)

1 ⊗ H(2)
2 spanned by the vector

basis B12 = {|i〉1 ⊗ |j〉2 ≡ |ij〉 : i, j = 0, 1}, with the usual skeleton set S12 = {σ̂µ1
1 ⊗ σ̂

µ2
2 :

µ1, µ2 = 0, 1, 2, 3} for the operators in H(H(4)
[12]). The operator

F̂ = (3σ̂0
1 − σ̂3

1)⊗ σ̂1
2 (5.55)

is factorisable, and has four separable eigenstates: 1√
2
(|01〉+|00〉), 1√

2
(|01〉−|00〉), 1√

2
(|11〉+

|10〉), and 1√
2
(|11〉 − |10〉). Conversely, the operator

Ê =
1

2
(3σ̂1

1 ⊗ σ̂1
2 + σ̂2

1 ⊗ σ̂2
2) (5.56)

is entangled and has four entangled eigenstates: 1√
2
(|11〉+ |00〉) , 1√

2
(|11〉−|00〉), 1√

2
(|10〉+

|01〉) and 1√
2
(|10〉 − |01〉). However, the operator

M̂ = σ̂1
1 ⊗ σ̂1

2 + σ̂2
1 ⊗ σ̂2

2 + (σ̂0
1 ⊗ σ̂3

2)/2 + (σ̂3
1 ⊗ σ̂0

2)/2 (5.57)

is also entangled but has a mixture of separable |00〉, |11〉 and entangled 1√
2
(|01〉+ |10〉) ,

1√
2
(|01〉 − |10〉) eigenstates.
It is interesting to note here that although a set of eigenstates may look relatively

‘simple’, the operator they come from may still be a non-trivial combination of skeleton

operators. This observation is perhaps a reminder of how much more complicated the

set of skeleton operators is compared to the set of states; recall that a Hilbert space

H(D) of dimension D is spanned by a basis set of D independent vectors, whereas the

corresponding space of Hermitian operators H(H(D)) is parameterised by a skeleton set

containing D2 members. In the present case, although operators in two qubit Hilbert

spaces H(4)
[12] only have four eigenstates, they will nevertheless comprise of linear sums of

up to sixteen basis operators. It is perhaps not surprising, then, that the structure of the

operators is considerably ‘richer’ than that of the corresponding sets of eigenstates.

Just as the factors of the states can be represented pictorially in ways analogous to the

Hasse diagrams of classical causal set theory, the operators of which they are outcomes

can too. In the chosen convention, emergent time is taken to run upwards again, and every

factor of an operator will be denoted by a square; so, an operator associated with k factors

may be represented by k squares in a row. Arrows pointing into a square come from the

group of factor states that are tested by the factor operator it represents, whereas arrows

leaving a square point to the set of outcome factor states of this factor operator.
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As an example, a graphical representation of the theorem that ‘separable tests only

have separable outcomes’ is given in Figure 5.4. Figure 5.4a shows a separable operator

Ô12 producing an entangled outcome ψ12, which is a forbidden process. In Figure 5.4b,

however, an entangled operator Ô12 is producing a separable outcome ψ12, whilst in Figure

5.4c an entangled operator Ô12 is producing an entangled outcome ψ12, and these processes

are allowed.

Figure 5.4: Pictorial representation of the relationship between operators and factor states.

The process described in Figure a) is forbidden, whereas those of Figures b) and c) are

allowed.

The ideas and theorems of this section place important mathematical constraints on

the operators used in the development of the Universe. In a fully quantum Universe rep-

resented by a unique state Ψn, which is an eigenstate of an operator Σ̂n in an enormous

and fundamentally factorised Hilbert space H[1...N ], if Ψn is a separable product of factor

sub-states, some of which may themselves be entangled relative toH[1...N ], then the conclu-

sion must be that the individual factors of the operator Σ̂n associated with the entangled

factors of Ψn cannot themselves be factorised any further within the factor Hilbert spaces

containing these entangled factor states. This result will lead to important consequences

for the generation of quantum causal sets, as discussed in the next section.

5.6 Einstein Locality and Quantum Causal Sets

Section 5.4 indicated where relationships analogous to those of classical causal set theory

may arise from a consideration of the changes in separability of the quantum state of the

Universe. So, given that Section 5.5 showed that the operators responsible for developing

the Universe’s state may also exhibit properties of entanglement and separability, it might

therefore be expected that these operators will also generate causal set structures. This
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implies the existence of two different types of causal set in a fully quantum picture of

the Universe, and these may in turn lead to different results in the large scale limit when

considering aspects of emergent physical spacetime. This discussion will be the focus of

the present section.

Before elaborating on this point, however, it should be stressed that any parallels

between tests and states should not necessarily be assumed too automatically. After all,

vectors and operators are mathematically very different. For example, the states are

members of D-dimensional, complex Hilbert spaces H(D), whereas the corresponding tests

that act upon them exist in D2-dimensional, real vector spaces H(H(D)). Similarly, a bra

state |Ψ〉 may be represented by a column vector with D elements, whilst the operators

may be represented by self-adjoint D ×D square matrices.

A further difference is evident from an examination of the product structure of the

vector spaces. For two states Ψ,Φ ∈ H(D), it is possible to define an inner product of

the form 〈Φ|Ψ〉 ∈ C, which is interpreted in the proposed paradigm as the probability

amplitude for the Universe to develop from the state Ψ to the state Φ. Conversely, no such

inner product is defined for two operators Â, B̂ ∈ H(H(D)), and there is hence no analogous

physical interpretation. However, it is possible to define a third operator Ĉ ∈ H(H(D)) as

the product Ĉ ≡ ÂB̂, even though this type of transformation has no equivalent in the

space of states. Indeed for vectors, the product ΨΦ is meaningless.

There are also more obvious differences between vectors and operators regarding what

they physically represent in quantum theory. The vectors represent the states of actual

quantum systems, and so every phenomenon that is associated with wavefunctions in

the laboratory has also to be applicable for the vectors. Thus, the vectors may be ex-

pected to exist in complex linear superpositions, and may appear to exhibit non-local and

non-classical correlations that are at odds with emergent views of relativity and general

covariance.

On the other hand, the operators are assigned to represent the observables of quantum

theory, and these tend to have classical analogues that obey Einstein locality and causality:

tests separated by spacelike distances do not affect one another. In fact, the canonical

quantisation procedure successfully employed in conventional quantum mechanics is a

process by which classical variables are directly replaced with their quantum operator

counterparts. It should not, then, perhaps be too surprising that the resultant quantum

operators therefore appear to obey classical laws of dynamics. An example here is that

operators associated with emergent observables separated by spacelike distances tend to

commute.

This point is very much the stance of Peres: quantum mechanics as such does not
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strictly have to satisfy covariance in every respect, but its physical observables do [58].

A physical illustration of this type of argument is evident in quantum field theory.

Local observables such a energy and momentum density operators satisfy microscopic

causality, because their commutators vanish at spacelike intervals, but the local quantum

fields out of which they are constructed need not commute at such separations [59]. In

other words, Einstein locality must always hold for the physical observables, but it need

not for the quantum states themselves. Of course, this may in turn be because the states

are never directly ‘experienced’ per se, whereas it was only ever by experiencing physical

observables that the (emergent) theory of relativity was discovered.

The differences highlighted above between states and operators should manifest them-

selves in the type of causal sets they produce. Specifically, whatever type of structure

arises from the state’s causal set may be expected to exhibit characteristics of non-locality,

whereas whatever type of structure arises from the operator’s causal set might conversely

be expected to obey Einstein locality. Indeed, if this were not the case it would be neces-

sary to explain how these features of empirical physics otherwise emerge in the observed

Universe if they are not present on the underlying pregeometric level.

As discussed a number of times so far in this work, the dynamics proposed for the Uni-

verse is that its state Ψn ∈ H(D)
[1..N ] is developed by collapsing into one of the D orthonormal

eigenvectors Φi, i = 1, ..., D, of an Hermitian operator Σ̂n+1 ∈ H(H(D)
[1..N ]). Further, the

conditional probability P (Ψn+1 = Φi|Ψn, Σ̂n+1) that the next state Ψn+1 will be the ith

eigenvector of Σ̂n+1, given that the Universe is initially in a state Ψn and is tested with

an operator Σ̂n+1, is determined by the usual rule of Born:

P (Ψn+1 = Φi|Ψn, Σ̂n+1) =
∣∣〈Φi|Ψn〉

∣∣2 . (5.58)

The above probability of the Universe collapsing from a state Ψn to one of the eigen-

states Φi of an operator Σ̂n+1 may be associated with the concept of entropy. Recall that

the Shannon entropy, S, attached to a particular probability distribution {p1, p2, ..., pM}
is given by

S ≡ −
M∑

r=1

pr ln pr, (5.59)

and is a reflection of a physicist’s ignorance of the result prior to a test that has M

outcomes of weighted probability [22].

So, the Shannon entropy associated with the Universe jumping into one out of a set

of D possible outcomes Φi of a given test Σ̂n+1, each with probability P i = P (Ψn+1 =
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Φi|Ψn, Σ̂n+1), is given by

S = −
D∑

i=1

P i lnP i (5.60)

= −
D∑

i=1

∣∣〈Φi|Ψn〉
∣∣2 ln

∣∣〈Φi|Ψn〉
∣∣2 .

Note that this is a classical entropy result, as expected because state reduction pro-

cesses do not permit quantum interference terms.

Equation (5.58) provides the correct probability for obtaining a particular next state

Ψn+1 = Φi as the result of a particular test Σ̂n+1, and equation (5.60) looks at the

corresponding entropy associated with the set of potential outcomes of this measurement.

What these relations do not do, however, is provide an answer as to why the test Σ̂n+1

was ever used in the first place; they say nothing about the Universe’s actual selection

of this particular operator. This is perhaps unsettling, because without specifying which

operator Σ̂n+1 is chosen to test the Universe, the probability amplitude 〈Ψn+1 = Φi|Ψn〉 is
meaningless. Without specifying Σ̂n+1 it is quite possible that a different operator Σ̂′

n+1

could be used, and this alternative test may not even have Φi as an eigenstate. In this

case it would then be pointless to ask about the relative probability of the next state Ψn+1

being Φi.

Although the issue is discussed to some extent in Chapter 8, at present there is no

known mechanism for understanding how or why the Universe selects a particular operator

Σ̂n+1 to test itself, a point that is summed up by the statement: ‘Only some of the rules

[of the Universe] are currently understood; we can calculate answers to quantum

questions, but we do not know why those questions have been asked in the first

place’ [1]. It is asserted, then, that any measure of the entropy associated with the

Universe developing through a series of states should take this additional ignorance into

account.

To this end, recall the conjecture of Chapter 3 that the Universe may be completely

parameterised by a unique stage Ωn defined as Ωn ≡ Ω(Ψn, In, Rn). Moreover, recall that

the current ‘information content’ In was taken to contain the set of possible operators

{Ôb
n : b = 1, ..., B} that might each provide a basis for the next potential state Ψn+1 of

the Universe in the next stage Ωn+1. Then, Σ̂n+1 will be one of B possibilities, which

may be labelled Σ̂b
n+1(≡ Ôb

n). If it may be assumed that there exists a certain probability

P b = P (Ôb
n|Ωn) that a particular operator Ôb

n is chosen by the Universe at time n + 1

to be Σ̂n+1, then
∑B

b=1 P
b = 1, noting that possibly B = 1 if the operators are selected

deterministically.

Thus, if the Universe is initially in the stage Ωn, the probability P (b,i) that it will be

tested by an operator Σ̂n+1 = Σ̂b
n+1 = Ôb

n and will then subsequently jump from the state
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Ψn to a particular state Ψn+1 = Φb,i, which is referred to as the ith eigenvector of the

operator Σ̂b
n+1, is given by

P (b,i) = P bP i = P (Σ̂b
n+1|Ωn)

∣∣∣〈Φb,i|Ψn〉
∣∣∣
2

(5.61)

where
∑D

i=1

∣∣〈Φb,i|Ψn〉
∣∣2 = 1 as expected.

Further, the Shannon entropy that may be associated with this jump is given by

S(1) = −
B∑

b=1

D∑

i=1

P (b,i) lnP (b,i) (5.62)

= −
B∑

b=1

D∑

i=1

P (Σ̂b
n+1|Ωn)

∣∣∣〈Φb,i
n+1|Ψn〉

∣∣∣
2

×
{
lnP (Σ̂b

n+1|Ωn) + ln
∣∣∣〈Φb,i

n+1|Ψn〉
∣∣∣
2
}

= −
B∑

b=1

P (Σ̂b
n+1|Ωn) lnP (Σ̂b

n+1|Ωn)

−
B∑

b=1

P (Σ̂b
n+1|Ωn)

D∑

i=1

∣∣∣〈Φb,i|Ψn〉
∣∣∣
2
ln

∣∣∣〈Φb,i|Ψn〉
∣∣∣
2

= St +

B∑

b=1

P (Σ̂b
n+1|Ωn)S

b

where St ≡ −
B∑
b=1

P (Σ̂b
n+1|Ωn) lnP (Σ̂b

n+1|Ωn) is the entropy associated with the selection

of the test, S ≡ −
D∑
i=1

∣∣〈Φb,i|Ψn〉
∣∣2 ln

∣∣〈Φb,i|Ψn〉
∣∣2 is the entropy associated with the collapse

from the state Ψn to one of the set of possible eigenvectors of this test, and the superscript

(1) is used to denote that S(1) is defined over one jump. Thus, the entropy (5.62) reflects

the ignorance associated with how the Universe might develop from the current stage Ωn

to a potential stage Ωn+1.

It is possible to extend these ideas to gain an appreciation of the entropy associ-

ated with the Universe prior to it developing over a series of jumps. Define P
bn+1

(bn,in)
=

P (Σ̂
bn+1
n+1 |Ωbn,in

n ) as the probability that an operator Σ̂
bn+1
n+1 will be chosen from a set

{Σ̂bn+1
n+1 : bn+1 = 1, ..., Bn+1} of Bn+1 possibilities, given that the Universe is currently

in the stage Ωbn,in
n = {Ψbn,in

n , Ibn,inn , Rbn,in
n } where the superscript (bb, in) implies, for ex-

ample, that the state Ψbn,in
n is one of the D outcomes Ψbn,in

n = Φbn,in , for i = 1, ..., D, of

one of Bn possible tests Σ̂bn
n contained in the previous stage Ω

bn−1
n−1 .

Similarly, the variable

P
in+1

(bn,in)
≡ P (Ψ

bn+1,in+1
n+1 = Φbn+1,in+1 |Ψbn,in

n , Σ̂
bn+1
n+1 ) (5.63)

=
∣∣∣〈Φbn+1,in+1 |Ψn〉

∣∣∣
2
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is defined as the probability that the outcome of this chosen test Σ̂
bn+1
n+1 is Ψ

bn+1,in+1
n+1 =

Φbn+1,in+1 .

Overall then,

P
(bn+1,in+1)
(bn,in)

= P (Σ̂
bn+1
n+1 |Ωbn,in

n )P (Ψ
bn+1,in+1
n+1 = Φbn+1,in+1 |Ψbn,in

n , Σ̂
bn+1
n+1 ) (5.64)

is defined as the probability that, given an initial stage Ωbn,in
n , the next test will be Σ̂

bn+1
n+1

and the resulting next state will be the eigenvector Ψ
bn+1,in+1
n+1 = Φbn+1,in+1 of Σ̂

bn+1
n+1 .

Since all the probabilities are classical due to the nature of the state reduction process,

it is possible to define chains of jumps in terms of products of probabilities. Thus,

P
(bn+1,in+1)(bn+2,in+2),...,(bn+m,in+m)
(bn,in),(bn+1,in+1),...,(bn+m−1,in+n−1)

= P
(bn+1,in+1)
(bn,in)

P
(bn+2,in+2)
(bn+1,in+1)

...P
(bn+m,in+m)
(bn+m−1,in+m−1)

(5.65)

is defined as the probability that the Universe will jump from the state Ψbn,in
n = Φbn,in to

the state Ψ
bn+1,in+1
n+1 = Φbn+1,in+1 via the test Σ̂

bn+1
n+1 , and that this new state will jump to the

state Ψ
bn+2,in+2
n+2 = Φbn+2,in+2 via the test Σ̂

bn+2
n+2 , and so on until the state Ψ

bn+m−1,in+m−1
n+m−1 =

Φbn+m−1,in+m−1 finally jumps to the state Ψ
bn+m,in+m

n+m = Φbn+m,in+m via the test Σ̂
bn+m

n+m .

Using this notation, the entropy S(1) given in (5.62) may be rewritten as S(1) =

−∑Bn+1

bn+1=1

∑D
in+1=1 P

(bn+1,in+1)
(bn,in)

lnP
(bn+1,in+1)
(bn,in)

. Similarly, the entropy S(2) over two jumps

may be given by

S(2) = −∑Bn+1

bn+1=1

∑D
in+1=1

∑Bn+2

bn+2=1

∑D
in+2=1 (5.66)

[
P

(bn+1,in+1)
(bn,in)

P
(bn+2,in+2)
(bn+1,in+1)

{
ln(P

(bn+1,in+1)
(bn,in)

P
(bn+2,in+2)
(bn+1,in+1)

)
}]

such that overall, the m jump entropy S(m) may hence be defined as

S(m) = −∑Bn+1

bn+1=1

∑D
in+1=1

∑Bn+2

bn+2=1

∑D
in+2=1 ...

∑Bn+m

bn+m=1

∑D
in+m=1 (5.67)


 P

(bn+1,in+1)
(bn,in)

P
(bn+2,in+2)
(bn+1,in+1)

...P
(bn+m,in+m)
(bn+m−1,in+m−1)

×{
lnP

(bn+1,in+1)
(bn,in)

+ lnP
(bn+2,in+2)
(bn+1,in+1)

+ ...+ lnP
(bn+m,in+m)
(bn+m−1,in+m−1)

}



= −∑Bn+1

bn+1=1

∑D
in+1=1 ...

∑Bn+m

bn+m=1

∑D
in+m=1




P (Σ̂
bn+1
n+1 |Ωbn,in

n )
∣∣〈Φbn+1,in+1 |Ψbn,in〉

∣∣2 × ...

...× P (Σ̂
bn+m

n+m |Ωbn+m−1,in+m−1
n+m−1 )

∣∣〈Φbn+m,in+m |Ψbn+m−1,in+m−1〉
∣∣2

×





lnP (Σ̂
bn+1
n+1 |Ωbn,in

n )

+ ln
∣∣〈Φbn+1,in+1 |Ψbn,in〉

∣∣2 + ...

...+ lnP (Σ̂
bn+m

n+m |Ωbn+m−1,in+m−1
n+m−1 )

+ ln
∣∣〈Φbn+m,in+m |Ψbn+m−1,in+m−1〉

∣∣2








.

Since there is at present no way of knowing how large Bn actually is, or how its value

changes with n, the number of potential next states may be literally gigantic. Moreover,
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the scope of possible ‘futures’ for the Universe will clearly increase rapidly over even a

relatively small number of jumps, especially when it is considered how large the dimension

D of the Hilbert space is likely to be, and hence how large the set of orthogonal eigenstates

is for each operator.

It is therefore obvious that the number of possible causal sets that may be produced

over a chain of jumps is also gigantic. This point is analogous to the Hasse diagram of

Hasse diagrams presented in [38] that are generated by examining the collection of possible

classical causal sets that can be grown by adding one new event to an existing set. In fact,

over the m jumps from Ψbn,in
n to Ψ

bn+m,in+m

n+m in the above case, there will in principle be

a whole ‘tree’ of M different possible causets produced, where

M ≤ Dm × (Bn+1 ×Bn+2 ×Bn+3 × ...×Bn+m). (5.68)

Note that the inequality reflects the fact that there may be some degeneracy in this

set of M members, because two operators Σ̂
bn+x

n+x and Σ̂
cn+x

n+x for bn+x, cn+x = 1, ..., Bn+x

and 1 ≤ x ≤ m may have y eigenvectors in common, 0 ≤ y < D.

Although the probabilities P
in+x+1

(bn+x,in+x)
for particular state transitions from Ψn+x to

Φbn+x+1,in+x+1 given a specific operator Σ̂
bn+x+1
n+x+1 are evaluated by the Born rule P

in+x+1

(bn+x,in+x)
=

∣∣〈Φbn+x+1,in+x+1 |Ψn+x〉
∣∣2 , as mentioned earlier there is no similar rule known for specifying

the probabilities P
bn+x+1

(bn+x,in+x)
= P (Σ̂

bn+x+1
n+x+1 |Ω

bn+x,in+x

n+x ) of choosing this particular operator

Σ̂
bn+x+1
n+x+1 from a set of Bn+x+1 possibilities.

Of course this selection could actually be deterministic, so there is in fact no choice,

and this would give rise to a semi-clockwork Universe in which quantum state reduction

provides the only randomness. In such a Universe it would always be possible to predict,

with certainty, in advance which test the Universe will choose to test itself with x stages

into the future, assuming that this deterministic rule is known.

Alternatively perhaps, in a Universe free of external observers the choice of next test

may depend somehow on the current state that the Universe is in. As will be discussed

in Chapter 8, the way in which such self-referential Universes might be developed after x

jumps may not be knowable until it has developed through the x−1 preceding stages. This

is possibly how (at least some of) the dynamics of the physical Universe works, because

human scientists, themselves just groups of factors of the state of the Universe, do appear

to be able to exert some sort of influence on how this state they exist as part of actually

gets tested, because they do seem able to prod and probe those factors that represent their

surroundings.

However, even if the physical Universe does develop according to a type of self-

referential mechanism, exactly how its next operator might be controlled by the current

state is still unknown.
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It is here that an appeal is made to empirical physics. Since it appears to be the case

that the Universe is highly classical, and hence highly separable, whichever method is

used by the Universe to select its next test seems to be constrained to choose an operator

that possesses a highly separable set of eigenvectors. Since current thinking also indicates

that the Universe has, on average, changed very slowly over the last 10 or so billion years,

however the Universe actually selects its next operator must ensure that the test chosen has

an outcome that it almost identical to the present state. In addition, given that it seems

an experimentally verified fact that physical observables in the Universe are constrained

by Einstein locality, it can also be assumed that whatever mechanism the Universe uses

to select the next operator to test itself with, the physically observed outcomes of this

operator must also obey the principles of relativity.

Rephrasing this last point, since the operators are expected to correspond to physical

observables in the emergent limit, their results must eventually correspond to the outcomes

of their classical counterparts. Similarly, and reversing this line of thinking, if physicists are

able to quantise particular classical variables to get the quantum operator equivalents, the

resulting quantum operators may still ultimately be expected to obey some of the classical

laws. For example, if classical variables are always forced to obey Einstein locality, and if

these variables can be directly quantised to produce operators that yield accurate physical

results, it may be fair to assume that, in general, quantum operators in the Universe are

also forced to obey Einstein locality. So, their observed outcomes will not permit features

such as superluminal communication. In other words, if observed physics is limited by

Einstein locality, the operators representing these observables may be too.

Thus, however the Universe selects its quantum operators, the choice made will ulti-

mately be expected to give the results familiar to classical experiments. Moreover, since

Einstein locality is an important fact of classical physics, this feature must therefore some-

how be reflected by the operators. So, one way to guarantee this condition would be to

argue that only those operators that are constrained by relativistic relationships are al-

lowed to be chosen. In other words, any operator selected by the Universe must have a

set of factor operators that do not violate classical causal laws.

If the above conjectures are correct, they might then suggest that the causal set struc-

tures generated by the changing operators create a pattern of Einstein locality, in terms

of their arrangements of factorisation and entanglement. Further, since the conclusion

of the previous section was that separable operators can only have separable outcomes,

this pattern of operators would in turn produce an arrangement of factor states that also

frequently share relationships obeying Einstein locality. And, since it is the states that

actually constitute physical reality, the observed relativity in the physical Universe may

hence be seen to be a consequence of a causal set formed from operators constrained to
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obey Einstein locality. Only under certain specially contrived circumstances, such as those

occurring in EPR experiments, would the true quantum non-locality of the states become

apparent.

It is quite possible that the Universe could choose a series of operators to test itself with

that produces a causal set structure that changes very little from one stage to the next.

Indeed, all sorts of patterns of separations and entanglements could be present in the set,

with many different types of local or global relationships appearing to emerge over a chain

of jumps, and even the possibility of particular groups or families of factors existing semi-

permanently. Such a series of patterns is analogous to those produced in automata such

as Conway’s “Game of Life” [60], and could ultimately be responsible for all the observed

features of the physical Universe, including, for example, apparent persistence, space,

dimension, particle physics, and even semi-classical looking endo-observers who are made

up of groups of factors seeming to persist in a nearly unchanged way over very many jumps.

Of course, underlying all of this structure would still be the counting procedures used to

estimate the number of jumps (giving rise to an emergent local temporal parameter) and

estimations of familial relationships (which give rise to emergent spatial relationships).

As an example, consider a classical cellular automaton in which the values in the

individual cells depend somehow on ‘nextdoor neighbour’ interactions. Such a dynamics

may give rise to zones of causal influence, in which cells outside of this zone are unable

to influence cells inside it, and vice versa. It is possible that the operators testing the

Universe could also adopt a dynamics that depends on the interaction with ‘neighbours’,

analogous to such classical cellular automata, where neighbouring factors are defined in

terms of the familial relationships formed by the outcome states. For example, one way

of defining two factors of the operator as neighbours might be if their respective outcome

factor eigenstates share a ‘parent’ factor state. Omitting the exact details, the overall point

is that if the patterns of separations produced by the operator’s causal set are somehow

forced to look, to some extent, like a type of cellular automaton whose cells’ values change

according to nextdoor neighbour interactions, the effect might be a case in which the

resulting states will possess patterns of separability that incorporate these causal zones.

Further, such zones may strongly resemble the lightcone structures of relativity, and might

produce a set of observed outcomes that are fully consistent with Einstein causality.

The overall conclusion of this section is that there are two different types of causal set

present in a fully quantum Universe. The first is generated by the changing separability of

the operators used to test the Universe. Whilst it is not known how this set is produced,

it does seem to give rise to observables that respect Einstein locality and everything this

entails, such as a maximum speed for the propagation of physical signals.
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The second causal set is generated by the changing separability of the state. This set

incorporates all of the features associated with quantum states in conventional physics, and

can, for example, support the non-local correlations and apparently superluminal trans-

mission of information familiar in EPR type experiments. In fact, since such correlations

do not respect Einstein locality, it might be taken as a further indication that there is

an underlying quantum and pregeometric structure lurking beneath the classical and con-

tinuous Lorentzian spacetime manifold. However, the observation that most of empirical

science appears to follow classical physics does seem to indicate that it is only under rare

and special circumstances that the true ‘quantum’ nature of the states becomes blatantly

apparent. Indeed, scientists generally have to try very hard in order to prepare a factor

of the Universe’s state that is entangled, for instance, and even harder to keep it that

way. The repeated efforts of computer scientists to build a working quantum computer is

a good example of this.

The conclusion, then, is that since the states are ultimately the outcome of the oper-

ators, and since in a self-referential Universe the choice of operator may depend somehow

on the current state, there must be a very careful interplay between the two different

causal sets in order to produce the type of Universe that physicists actually observe.

5.7 Physical Examples

The objective of this chapter has been to investigate the types of mechanism inherent

in a quantum Universe that may ultimately be responsible for the existence of spatial

relationships. Whilst there is still a very long way to go before the details are understood

of exactly how the deep and intricate theory of General Relativity could emerge from the

fully quantum picture, it is still possible to schematically describe how the current line of

thinking might fit into a number of physical situations. To this end, in this final section a

number of physically motivated examples are discussed in terms of the connections between

the states representing them and the operators used in their development.

5.7.1 The Quantum Big Bang

The physical Universe is very large. However, given that it also currently appears to be

expanding, the conventional conclusion is that it was once very much smaller than it is

today. In fact, by observing the acceleration of its increase in volume8, cosmologists have

8Depending upon different particular models and metrics used to describe the large scale structure of

the Cosmos.
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extrapolated backwards in time and concluded that the Universe must once have had no

size at all [61]. Further, by measuring the light emitted from far off clusters of stars in

order to determine when they were formed [62], astronomers have managed to establish

that the Universe had no size at a time between about 10 and 20 billion years ago. This is

the traditional Big Bang scenario, and is often taken to imply the very beginning of time,

physics, existence and reality.

In the paradigm proposed in this work, physical space is a marker of separability of the

Universe’s state. Thus, the observations of the above Standard Model of cosmology may be

interpreted here as a wavefunction that is today highly separable, but was considerably less

so in the past. Moreover, if there was a time at which the Universe could be attributed with

no physical size, there could then have been no spatial relationships existing, and hence

by the presented arguments its state must consequently have been completely entangled.

Classical general relativistic cosmology asserts that time must have began at the Big

Bang, because without space there is no spacetime and hence no time. However this is not

a necessary conclusion of the present work, and in the Stages paradigm it is conjectured

that time had no beginning. After all, physical time is seen as an emergent phenomenon

appearing as a complex vector jumps from one state to the next in its enormous Hilbert

space (as elaborated upon further in Chapter 8). It is hence quite possible that the state

and the Hilbert space can be conjectured as existing eternally, assuming such a phrase

can be used to describe something existing ‘outside’ of physical time, removing from

the dynamics the uncomfortable view of conventional physics that the Universe suddenly

appeared out of nothing and ‘no-when’.

During an era that might be referred to as pre-Big Bang (i.e. beyond the time cos-

mologists have extrapolated a zero size Universe), the Universe’s state would have been

completely entangled, from the point of view of the proposed paradigm. In fact its state

may have remained entangled for a large number of jumps, during which period no clas-

sical structures, including space, could have emerged. From an alternative perspective,

whichever operators were used to develop the Universe through this chain of entangled

states must themselves have been completely entangled, because separable operators can-

not have entangled outcomes.

Consider, however, a case in which the Universe (somehow) eventually chooses an

operator to test itself that has separable outcomes, and further that the Universe ends up

jumping into one of these separable states. This may at first glance appear unlikely, given

the discussion of Chapter 4 that separable states form a set of measure zero relative to

the set of all states, but is not impossible in a Universe that may have already remained

entangled for a ‘near-infinite’ number of jumps. Besides this, since it is an empirical fact
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that the Universe is large, classical looking and separable, it can be concluded that at

some point it must have stopped being entangled.

After this collapse to a separable state, the Rules governing the way the operators are

chosen may have selected another operator that is also separable, and the Universe would

then have jumped to another separable state. In fact, this new state could have even more

factors than the previous one. If this procedure is repeated a number of times, a situation

might arise in which the state of the Universe is monotonically becoming more separable

as it develops, and this could eventually give rise to the observed expansion of continuous

space. Overall, the selection of a series of separable operators drives the Universe to

develop through a series of separable states, and hence to the possible emergence of spatial

relationships.

The initial jump from a fully entangled state to a separable one could now be called

the ‘Quantum Big Bang’, and this may ultimately be what physicists are really extrapo-

lating back to when then examine the Universe’s past and conclude that it once had no

spatial size. However, unlike the Standard Model scenario, the presented description of

the Universe’s development has the desirable feature that there is no initial singularity at

the Quantum Big Bang, and so is not associated with any of the accompanying problems

of quantum gravity. In fact, this line of thinking once again reinforces the idea that simply

quantising space and gravity is the wrong direction to proceed. Rather, the proposal is

that space should perhaps be seen as something that is meaningless without quantum

relations.

In addition to the removal of the singularity problem, the suggested dynamics for the

development of the Universe may also provide an origin for the observed homogeneity

and isotropy of the Universe. Just after the Quantum Big Bang, the individual factors of

the Universe’s state could still be highly entangled within their respective factor Hilbert

spaces, which may themselves be of enormous dimension. Since entangled states exhibit

the properties of non-local correlations, when the entangled factor states eventually develop

into separable products of factor states (that are themselves contained in the factor Hilbert

spaces of the larger factor Hilbert space containing the entangled factor state), these new

factors may end up having similar ‘properties’, even though they may now appear to

be large, emergent spatial distances apart. In other words, the non-local correlations of

entangled factors just after the Quantum Big Bang may potentially help to solve the

Horizon problem of cosmology.

Note that it is, in fact, entirely possible that before the chain of entangled states present

in the pre-Big Bang era, there could have been whole cycles of expansion (i.e. increas-

ing separability) and contraction (i.e. decreasing separability) back to a ‘Quantum Big
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Crunch’ of renewed total entanglement. Indeed, there could also have been any number of

‘false starts’ in which the Universe chose a series of separable operators, before suddenly

choosing an entangled operator and jumping back to a completely entangled state. How-

ever, if no information regarding these has survived into the present era, perhaps because

no information can be encoded as relations between factors when a state is fully entangled,

there is no way of knowing about them. A return to full entanglement represents a return

to no familial relationships within the state, and since these are what might ultimately

constitute physical phenomena, all that scientists can ever look at is what has happened

since the last Quantum Big Bang.

Consider as an example of these ideas a universe represented by a state Ψn contained

within a Hilbert space H[1...N ] of dimension D = 22
M

consisting of a vast number N = 2M

of qubit subregisters, where M ∈ Z+. With H[1...N ] is associated, in the usual way, a

basis set B[1...N ] of orthonormal vectors and a skeleton set SN of operators. Further, for

all n the state Ψn is one of the D eigenstates of some Hermitian operator Σ̂n, where

Σ̂n ∈ H(H[1..N ]).

By defining n = 1 as the Quantum Big Bang, then, if the above discussion is true,

states Ψn for n < 1 are fully entangled relative to B[1...N ], and are hence the results of

operators that are fully entangled. Conversely, states Ψn for n ≥ 1 are separable into a

number of factors.

Now, suppose that the Rules of the universe dictate that for 0 ≤ n ≤ M − 1 the

operator Σ̂n+1 has twice as many factors as Σ̂n according to the scheme:

Σ̂0 = Â1...2M (5.69)

Σ̂1 = Â1...2M−1 ⊗ Â(2M−1+1)...2M

Σ̂2 = Â1...2M−2 ⊗ Â(2M−2+1)...2×2M−2

⊗Â(2×2M−2+1)...3×2M−2 ⊗ Â(3×2M−2+1)...2M

...

Σ̂M = Â1 ⊗ Â2 ⊗ Â3 ⊗ ...⊗ ÂM

where, for example, Â1...2M−1
is an Hermitian operator in H(H[1...N ])

1...2M−1
such that

Σ̂1 ∈ H(H[1...N ])
(1...2M−1)•((2M−1+1)...2M ) ⊂ H(H[1..N ]). Further, any eigenstate of Â1...2M−1

is in H[1..2M−1], and duly contributes at least one factor to the next state Ψ1.

Since separable operators only have separable outcomes, it is certain that Ψ1 will have

at least two factors, whereas Ψ2 cannot have less than four factors, and Ψ3 must have at

least eight factors, and so on up to ΨM which is separable into M factors. So, whatever

the operators Σ̂n+1 actually are, the resulting state Ψn+1 of this universe may be expected

to have more factors than the previous state Ψn, for 0 ≤ n ≤ M − 1; certainly, if M ≫ 1
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it may be the case that ‘on average’ the number of factors of the state Ψn could possibly

increase roughly monotonically with 0 ≤ n ≤ M.

Moreover, since separability has already been shown to be a necessary prerequisite

for spatial relationships, this type of development with deterministically chosen operators

may provide a basic starting point for a discussion on the expansion of space.

As a simple illustration of this last point, consider the case where M = 2, such that

N = 4, D = 16, and the Hilbert space is denoted by H[1...4]. The operators for n = 0, 1, 2

are then of the form: Σ̂0 = Â1...4, Σ̂1 = Â12 ⊗ Â34, and Σ̂2 = Â1 ⊗ Â2 ⊗ Â3 ⊗ Â4.

A corresponding set of states in the development of this universe could therefore be

Ψ0 = ϕ1234 , Ψ1 = θ12•34 ≡ θ12 ⊗ θ34 (5.70)

Ψ2 = ψ1234 ≡ ψ1 ⊗ ψ2 ⊗ ψ3 ⊗ ψ4

where ϕ1234 ∈ H1234, θ12•34(≡ θ12 ⊗ θ34) ∈ H12•34 and ψ1234 ∈ H1234. In this case,

the changing separability of the state would consequently lead to the type of causal set

structure illustrated in Figure 5.5.

Figure 5.5: Causal set structure for the state of an expanding universe of four qubits.

As discussed previously in Section 5.4, such a universe with a deterministic choice of

operator readily permits a discussion of embryonic lightcone structure, and so ultimately
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also concepts of distance and metrics. In this sense, the states ψ3 and ψ4 are ‘outside’ of

the causal future of θ12 because a counterfactual change in θ12 will not influence either ψ3

or ψ4.

Note that of the above scheme is not, of course, the only mechanism that could be used

to model an expanding universe. There could instead be a type of ‘feedback’ mechanism,

in which the choice of next operator is influenced by how separable or entangled the

current state of the universe is. Alternatively, there could be a mechanism in which, for

a finite series of jumps, an operator Σ̂n+1 is selected that has exponentially many more

factors than the previous test Σ̂n. This latter type of process could cause the state Ψn+1

to have exponentially more factors than the state Ψn, and this could lead to a period of

rapid expansion analogous to the era of inflation postulated [48] in the Standard Model of

cosmology.

5.7.2 EPR Paradoxes

As discussed in Chapter 3 the non-local consequences of quantum entanglement appear

to cause problems for the theory of relativity, because the latter places physics in a back-

ground ‘arena’ of classical and continuous spacetime. For example, recall the EPR ex-

periment featured earlier involving an entangled electron and positron. If the electron

is measured first and found to be in a spin-up state then the positron will consequently

be found to be in a spin-down state, and vice versa. Further, the standard priciples of

quantum mechanics (as verified by, amongst others, the Bell inequality) argue that before

the first measurement both the electron and positron may be thought of as existing in

both spin states simultaneously. Relativity’s problem with this can then be summed up

by the question: if the electron detector is x metres away from the positron detector, and

if the positron’s spin is measured t seconds after the electron’s spin is measured, then how

can any physical signal ‘inform’ the second particle that, say, the electron has been found

in a spin up state such that the positron must consequently be found to be spin down, if

x/t > c where c is the velocity of light? In other words, the measurement of a particle

at one location appears to be influenced by a measurement of a particle at a different

location, even though these two events are not in causal contact.

In fact, by setting up the system so that x ≫ 1 and t ≪ 1 it has been experimentally

shown [63] that if the correlations were arranged by a signal travelling physically from

one particle to the other, this signal would require a velocity of at least 104c, and this

conclusion appears to be contradict special relativity which asserts that nothing can travel

faster than the speed of light.
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However, in the paradigm proposed in this work the EPR paradox is not a problem

at all. From the presented viewpoint there is no background space over which correla-

tions have to cross, and the measurement of the electron and positron are only spacelike

separated from an emergent point of view. From the point of view of the proposed fully

quantum approach, the entangled electron-postitron state, the two detectors, the physi-

cists and everything else are just associated with factors of the state representing the

Universe, and so it is not correct to say that when the positron is measured it is fun-

damentally x metres away from where the electron was measured. On the pregeometric

quantum level the electron and positron are nothing but factors of a vector in a Hilbert

space, and physical spatial relationships are meaningless here.

As a schematic illustration of how an EPR type experiment might proceed in a fully

quantum Universe, consider the following chain of stages in the state’s development. Note

first, however, that as with the Schrödinger’s cat discussion of Section 4.3.3 the example

below is really just a highly simplified overview; in reality detectors (and the physicists

observing them) are incredibly complicated sets of factors, constantly undergoing many

different types of internal developments and interactions with their surroundings.

Let a particular split of the Hilbert space H of the Universe be of the form

H = He ⊗Hp ⊗HE ⊗HP ⊗HU (5.71)

where He represents the factor Hilbert space of an electron, Hp represents the factor

Hilbert space of a positron, HE represents the factor Hilbert space of an electron detector,

HP represents the factor Hilbert space of a positron detector, and HU represents the

factor Hilbert space containing everything else in the Universe. Note that none of these

five factor Hilbert spaces need be of prime dimension.

Consider now an operator Σ̂n factorisable in the form:

Σ̂n = Âep ⊗ ÂE ⊗ ÂP ⊗ ÂU (5.72)

where, for example, Âep ∈ H(H)ep, with the entanglement Hep ⊂ H[ep], and Σ̂n ∈
H(H)epEPU . Obviously, this separable operator Σ̂n will have separable eigenstates. So,

assume that the resulting next state of the Universe turns out to be of the form:

Ψn = |ψ〉ep ⊗ |D〉E ⊗ |D〉P ⊗ |R〉U (5.73)

where |ψ〉ep ∈ Hep, |D〉E ∈ HE , |D〉P ∈ HP and |R〉 ∈ HU , and hence Ψn ∈ Hep
EPU ⊂ H,

etc.

In a Universe represented by a state Ψn, the factor |ψ〉ep may be interpreted as the

initial entangled electron-positron sub-state, with |D〉E the initial state of the electron

detector and |D〉P the initial state of the positron detector. Of course, some of these
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factor states may also be separable relative to a more fundamental split of their respective

factor Hilbert spaces, and some of the factors of the operators may also be factorised

further. Indeed, the factor |R〉U representing the combined sub-states of everything else

in the Universe is presumably separable into very many factors in order to account for all

of these other parts, but for clarity this issue is ignored here.

Overall, the operator Σ̂n and the subsequent collapse into the state Ψn are equivalent

to the preparation of a Universe containing an entangled electron-positron pair.

Assume now that the Rules governing the Universe conspire in such as way as to choose

an operator Σ̂n+1 to test Ψn with, defined as

Σ̂n+1 = Âp ⊗ ÂEe ⊗ ÂP ⊗ ÂU , (5.74)

and further that this test collapses the Universe into the state Ψn+1 defined as

Ψn+1 = | ↓〉p ⊗ |u〉Ee ⊗ |D〉P ⊗ |R′〉U . (5.75)

Now, in Ψn+1 the factor |u〉Ee is interpreted as an entangled sub-state between a spin-

up electron and an electron detector. Similarly, | ↓〉p may be interpreted as a factor of the

Universe representing a spin-down positron. Note however that the positron detector is

still in its initial condition |D〉P : the factor operator ÂP of Σ̂n+1 is effectively behaving

as a local null test in HP because it was also a factor of Σ̂n. The factor |R′〉U ∈ HU is

interpreted as the part of the Universe that has nothing to do with the electron-positron-

detector system developing in its own way, and is again ignored.

Suppose further that the Rules now conspire to choose an operator Σ̂n+2 of the form

Σ̂n+2 = ÂEe ⊗ ÂPp ⊗ ÂU (5.76)

and that the Universe subsequently collapses to the state Ψn+2 defined as

Ψn+2 = |u〉Ee ⊗ |d〉Pp ⊗ |R′′〉. (5.77)

In this case, |d〉Pp might be interpreted as a correlated sub-state between a spin-down

positron and a positron detector.

The sequence of states Ψn, Ψn+1 and Ψn+2 offers a schematic picture of how a fully

quantum Universe might view an EPR type experiment involving the preparation of an

initial entangled electron-positron pair, through to the measurement of the electron, and

then followed by the measurement of the positron, noting that the issue of the actual

relationship between entanglement, changes of partition and endophysical measurements

will be addressed properly in the next chapter.

In the emergent limit, |D〉E is taken to represent that part of the Universe associated

with an electron detector. Moreover, in this limit the factor ÂEe of the operator Σ̂n+1 is
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associated with the ‘interaction’ between the electron detector and the component of the

entangled electron-positron pair in the electron’s Hilbert spaceHe. The factor Â
Ee is hence

the pregeometric equivalent of a detector physically testing the spin of the electron, and

is therefore analogous to one of the ‘usual’ Hermitian operators familiar to conventional

physics experiments in which an isolated semi-classical apparatus measures an isolated

system described by quantum mechanics. The difference between the current work and

that of familiar physics is that these single, isolated experiments of conventional physics

are taken in the larger context of the whole Universe being developed at once, instead of

just a tiny part of it. As has been discussed previously, this difference arises from the

acknowledgement that because the Universe is everything, any change in one part of it,

no matter how small, necessarily implies a change in the state of the whole.

The sub-state |u〉Ee may be seen as the outcome of this test ÂEe, and would ultimately

correspond in the emergent limit to the physical result of the interaction between an

entangled electron and a detector. Thus, the factor |u〉Ee is taken to be the result of this

measurement, and in this case represents the situation in which the detector finds the

electron to be spin up.

By the argument of Section 3.1, any measurement of the entangled electron automat-

ically collapses the state of the positron, in this instance into a spin down factor | ↓〉p.
Consequently, then, the overall development of the state from ... ⊗ | ↓〉p ⊗ |D〉P ⊗ ... to

...⊗|d〉Pp⊗ ... could be interpreted in the emergent limit as a semi-classical detector mea-

suring the positron’s spin with a test ÂPp to give the result |d〉Pp. Thus, the detector duly

finds the positron to be spin down.

Of course, many other tests Σ̂n+2 could have been selected by the Universe to develop

Ψn+1, just as semi-classical scientists appear able to choose many alternative ways of

measuring a quantum sub-system. For example, a particular factor B̂Pp of an alternative

operator Σ̂′
n+2 could represent the spin of the positron being measured along a completely

different axis, or it could even imply a test being performed that may have nothing to

do with spin at all. However, an important constraint is that if the Universe is in the

state Ψn+1, and if it tests itself with an operator Σ̂n+2 containing a factor ÂPp that, in

the emergent limit, measures the component of spin of the positron in the same emergent

direction as the component of spin of the electron was measured in, only those states

Ψn+2 containing a factor representing a spin-down positron result will have a non-zero

probability of occurring.

Now consider the familial relationships present in the causal sets produced from the

network of earlier states Ψn−m, for m = 1, 2, ..., and relating to what is going on in

the rest of the Universe. The result might be that in the emergent limit one factor
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|D〉E (corresponding to the factor operator ÂD) of the state Ψn representing the electron

detector seems to be located at one point in emergent space, whilst another factor |D〉P
that represents the positron detector (and corresponding to the factor operator ÂP ) seems

to be located at another point in emergent space. Moreover, the subsequent factors |u〉Ee

and |d〉Pp may also appear to have definite locations in the emergent limit.

The point is that in this emergent limit, it might therefore appear that the results of

the measurements of the electron and positron are correlated across emergent spacelike

distances, apparently defying relativity. However, this conflict is resolved by noting that

it is only a problem on the emergent scale: on the ‘true’ quantum level such locational de-

scriptions are meaningless, and so theories of emergent physics such as Lorentz covariance

cannot be applied there. In this quantum picture the entire experiment is seen as nothing

but a change in the separability of the vector representing the state of the Universe as it

jumps from being in one partition to another. There are hence no contradictions to su-

perluminality conditions because velocity is not defined on this pregeometric level. From

this point of view there is no paradox in EPR.

5.7.3 Superluminal Correlation

The following simple example illustrates how even a small difference between two consec-

utive operators can lead to large consequences for the resulting two consecutive states.

Consider a Hilbert space H[1...2N ] factorisable into 2N qubit subregisters. Consider

further the nth operator Σ̂n, which happens to be factorisable into two entangled sub-

operators, Σ̂n = Â1...N ⊗ B̂(N+1)...2N , where Â1...N ∈ H(H[1...N ])
1...N and B̂(N+1)...2N ∈

H(H[(N+1)...2N ])
(N+1)...2N .

Suppose also that the particular eigenstate of Σ̂n that becomes the next state Ψn is

of the form Ψn = ψ1...N ⊗ ψ(N+1)...2N , such that clearly Ψn ∈ H(1...N)•((N+1)...2N) with

ψ1...N ∈ H1...N and ψ(N+1)...2N ∈ H(N+1)...2N . Evidently, each factor is entangled relative

to its factor subspace, that is, each is entangled relative to half of the overall quantum

register.

Now consider the next operator Σ̂n+1, and suppose that the rules governing the

universe dictate that this is also a product of entangled operators, but of the form

Σ̂n+1 = Ĉ1...(N+1) ⊗ D̂(N+2)...2N . Roughly speaking, in this type of development it may

be envisaged that the (N + 1)th qubit has ‘gone over’ from one factor of the operator Σ̂n

to the other in the selection of Σ̂n+1; the factor Â has ‘gained’ a qubit from the factor

B̂ as they ‘became’ Ĉ and D̂ respectively. So overall the way the operators Σ̂n and Σ̂n+1

factorise only differs by one qubit, and if N ≫ 1 it may therefore be said that Σ̂n and

Σ̂n+1 appear highly similar from this factorisation point of view.
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However, given operators Σ̂n and Σ̂n+1 of this form, then by the discussion of Section

5.4 for any eigenstate Θ of Σ̂n+1 the probability amplitude 〈Ψn+1 = Θ|Ψn〉 may not

factorise. Thus, the conclusion is that by making what appears to be a very small change

from the perspective of the operators, the family structure of the state’s causal set could

be destroyed. Moreover, for a Universe with a very large number of quantum subregisters,

although this one qubit change in the operators may appear almost insignificant, it could

end up having far reaching consequences across the entire state. Indeed, since family

structure will ultimately account for the presence of spatial relationships, even small, local

changes in the operator structure could give rise to an emergent situation that appeared to

support superluminal correlations. This again highlights one of the important differences

between states and operators: even by making a small change in the operator structure

that might appear consistent with Einstein locality and emergent theories of relativity,

enormous changes in the factors of the state could result which might eventually lead to

an apparent violation of these principles.

5.7.4 Persistence

As is readily apparent from observing the nature of the Universe, some physical objects

appear to persist over time. A single atom, for example, is often assumed to be identical

from one instant to the next if it is not interacting with anything, and even macroscopic

states such as humans tend to believe that they continue to be the ‘same’ person for a

number of years.

Because time in the proposed paradigm is a concept that is expected to emerge as the

state of the Universe develops through a series of stages, the existence of persistence is

therefore equivalent to the observation that some features of the state appear to ‘survive’

relatively unchanged from one jump to the next. Moreover, because it is generally classical

objects that are observed to possess this property of longevity, the concept of persistence

may be seen as evidence that particular factors of the Universe’s can sometimes remain

approximately unaltered as it develops.

Now, the appearance of classical features in the Universe has previously been shown

to be a result of the separability of its state. The observation that there is any persistence

at all may therefore seem surprising. After all, when arguments of microsingularity are

taken into account, as well as the fact that separable states are contained in sets of measure

zero, it appears apparently ‘inevitable’ that the Universe should jump from one completely

entangled state to another.

However as has been discussed a number of times in this work, the assertion that the

state jumps from one highly separable vector Ψn to the next Ψn+1 is ascribed to be due to
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the Rules that govern the Universe’s dynamics very carefully selecting the operators Σ̂n

and Σ̂n+1. Further to this, since persistence is clearly a ready feature of empirical science,

it is possible to argue that the Rules may also be confined to only choose those operators

that have outcomes that are similar, in some sense, to the current state.

One way of achieving this result is to consider the earlier conclusion that the separa-

bility of a state may be dictated by the factorisability of the operator of which it is an

eigenvector.

Consider a Universe represented by a state in a Hilbert space H[1...N ]. Further, assume

that the Rules conspire in such a way that the nth Hermitian operator Σ̂n ∈ H(H[1...N ])

used to develop the Universe is of the form

Σ̂n = Âa1 ⊗ Âa2 ⊗ ...⊗ Âak (5.78)

where Âai ∈ H(H[ai]) and H[ai] need not be of prime dimension. By the conclusion of

Section 5.5, whatever eigenvector of Σ̂n becomes the next state Ψn will therefore have at

least k factors. So, Ψn will be of the form

Ψn = ψa1 ⊗ ψa2 ⊗ ...⊗ ψak
(5.79)

where ψai ∈ H[ai], noting that ψai may itself be a product of factors, some of which may

be entangled relative to the fundamental factorisation of H[ai].

Consider now the next test of the Universe Σ̂n+1, and assume that the Rules dictate

that it is also factorisable into k sub-operators. Further, assume that the Rules also specify

that each of the k sub-operators of Σ̂n+1 acts in the same factor Hilbert space as one of

the k individual factors of Σ̂n. In other words, Σ̂n+1 is constrained to possess the same

sort of ‘partition structure’ as Σ̂n, and may hence be of the form:

Σ̂n+1 = B̂a1 ⊗ B̂a2 ⊗ ...⊗ B̂ak (5.80)

where B̂ai ∈ H(H[ai]). Now, as before any eigenvector of Σ̂n+1 must also have no less than

k factors, so whatever the next state Ψn+1 of the Universe actually is, it clearly has to be

of the form

Ψn+1 = φa1 ⊗ φa2 ⊗ ...⊗ φak
(5.81)

where φai ∈ H[ai], noting that φai may also be a product of (possibly entangled) factors.

The point is that in this type of development, the state Ψn+1 has a very similar

structure to the previous state Ψn in terms of which partitions of H[1...N ] they are members

of. Consequently, the factor ψai of Ψn may be thought of as developing into the factor

φai of Ψn+1 without ‘interacting’ with any of the other factors. Thus, this could be an

embryonic form of ‘semi-persistence’ of the sub-state in the factor Hilbert space H[ai].

132



Moreover, because each sub-state ψai could actually be a group of factors itself, this

mechanism allows the possibility for macroscopic sets of sub-states to survive relatively

unchanged from one jump to the next. Although of course clearly only a schematic model

here, the persistence and apparently isolated nature of semi-classical objects such as appa-

ratus, laboratories and physicists, each of which is associated with large groups of factors,

may ultimately be a consequence of the relationships between factorisable operators and

separable states.

A more definite form of persistence would be evident if the Rules instead selected the

alternative operator Σ̂′
n+1, defined as

Σ̂′
n+1 = B̂a1 ⊗ B̂a2 ⊗ ...⊗ B̂aj−1 ⊗ Âaj ⊗ B̂aj+1 ⊗ ...⊗ B̂ak . (5.82)

Any next state Ψ′
n+1 resulting from an eigenvector of Σ̂′

n+1 is of the form

Ψ′
n+1 = φa1 ⊗ φa2 ⊗ ...⊗ φaj−1

⊗ ψaj ⊗ φaj+1
⊗ ...⊗ φak

(5.83)

which clearly has a factor ψaj ∈ H[aj ]. So, the factor in H[aj ] of both Ψn and Ψ′
n+1 is ψaj ,

such that the sub-operator Âaj of Σ̂′
n+1 is acting as a local null test. Thus, the factor

ψaj has clearly remained unchanged in the development of the Universe from Ψn to Ψ′
n+1.

From the point of view of the other factors φai of Ψ′
n+1, the factor ψaj can therefore be

said to have persisted during this jump.

Of course, by carefully choosing the subsequent operators Σ̂n+2, Σ̂n+3, Σ̂n+4, ... the

rules could readily ensure that particular factors persist over many more developments of

the state.

5.7.5 Position and Dimension

In this final example it will be shown how positional relationships might be encoded in

terms of factorisation and entanglement. Additionally, it will also be shown that such

relations may also afford a natural inclusion of the properties of dimension. A simple

illustration of these ideas will first be given, followed then by a generalisation to more

complicated examples.

Consider a cubic lattice in three spatial dimensions. In fact for simplicity consider the

smallest such lattice, that is, a single cube formed from only eight points, where one point

is on each of the eight corners of the cube. Clearly, each ‘edge’ of the cube implies the

minimum separation between two adjacent sites, and may be associated with a length of

1 unit.

133



Now, in order to discuss positional relationships within the cube it is necessary to

define a suitable set of axes. This can be achieved by arbitrarily selecting any one of

the corner sites to be an ‘origin’, and then using the direction of the three corners that

are adjacent to this origin to specify a set of three orthogonal, Cartesian axes. One such

choice is illustrated in Figure 5.6, where it is now possible to label the positions of the

sites according to this set of axes; for example the origin site is denoted (0, 0, 0), whereas

the site furthest (i.e.
√
3 units) from the origin is (1, 1, 1).

Figure 5.6: The cubic lattice formed from eight points, with the corners labelled according

to a set of orthogonal axes through the origin (0, 0, 0).

It is possible to label each of the corners with a unique integer a, where a = 0, 1, ..., 7.

One way of achieving would be to take the coordinates (x, y, z) of the corner as the

coefficients in a series expansion of the powers of two, such that a may be given by the

rule

a = x(20) + y(21) + z(22). (5.84)

For example, the corner positioned at (0, 0, 0) corresponds to a = 0, whereas the corner

(0, 1, 0) may be denoted by a = 2, whilst (1, 1, 1) corresponds to a = 7 etc. Indeed, by

relabelling the ath site as b, where b = a + 1 such that 1 ≤ b ≤ 8, the eight sites can be

numbered cardinally according to their positions on the lattice.
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Consider now a model universe represented by a state in a Hilbert spaceH[1...N ], and an

Hermitian operator ôn ∈ H(H[1...N ]) used to develop this state. Suppose that ôn is chosen

according to the rule that it can be fundamentally factorised into eight sub-operators.

Suppose further that the rules dictate that each factor of ôn is itself entangled relative

to the skeleton sets of c subregisters, where 1 ≤ c ≤ 8, and that no two factors of ôn

may be entangled relative to the same number of subregisters. Thus, one of the factor

operators acts on states in just one quantum subregister, whereas another factor of ôn is

an entangled operator acting on states contained in the space of two subregisters, and so

on, up to the eighth factor that is an entangled operator acting upon states contained in

the space of eight subregisters. Evidently, the total number of subregisters N in H[1...N ]

is given by N = 1+ 2+ ...+ 8 = 36, and one possible such operator ôn may be defined as

ôn = Â1 ⊗ Â23 ⊗ Â456 ⊗ Â7...(10) ⊗ Â(11)...(15) ⊗ Â(16)...(21) ⊗ Â(22)...(28) ⊗ Â(29)...(36) (5.85)

where Âi...j ∈ H(H[i...j])
i...j ⊂ H(H[i...j]) and H[i...j] ⊂ H[1...N ].

It is hence possible to assign a unique number c with each of the factors of ôn in terms

of the number of subregisters over which it is entangled. Moreover, since the discussion of

the previous paragraph showed that it is also possible to associate positions on a lattice

with numbers, the individual factors of ôn can conversely each be associated with a sort

of ‘position’. In other words, the factor Â1 of ôn may be labelled by the number c = 1 and

so may, in some sense, be associated with the position (0, 0, 0). Similarly the factor Â456

corresponds to the number c = 3 and so may be denoted as (0, 1, 0), whereas Â(29)...(36)

may be denoted by the number c = 8 and may hence be associated with (1, 1, 1).

Further, any eigenvector of ôn must be separable into at least eight factors, and so these

outcomes would therefore also follow the pattern of spatial positioning affiliated with the

operator. Hence whichever eigenvector the universe collapses into, the factors of this next

state ψn must share some of the ‘locational information’ of the factors of the operator ôn.

In other words, whatever factor α ∈ H[i...j] of the next state ψn = ...⊗α⊗ ... is the result

of a factor Âi...j of ôn, the location of Âi...j on the lattice can also be used to describe the

corresponding position of the factor α of the state.

Summarising, although the underlying structure is just a single cube, the rules selecting

the operator ôn imply that its factors, and those of its eigenvectors, may be discussed in

terms of the position of the lattice’s sites. Number and position are interchangeable, and

according to the rules, so are factor and number.

In order to generalise these ideas, consider a (very large) prime number p and a positive

integer d. By analogy with the base p = 2 expansion of a given above, the p-adic expansion

[64] of any non-negative integer P < pd to base p is given by

P = i0(p
0) + i1(p

1) + i2(p
2) + ...+ id−1(p

d−1) (5.86)
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where ij ∈ Z∗ is a non-negative integer that is less that p, and the subscript j identifies

which power of p a particular i is a coefficient of. Thus, any integer 0 ≤ P ≤ (pd − 1)

can be uniquely specified by a series of coefficients ij , for j = 0, 1, ..., (d− 1), and a prime

number p.

Consider now a d-dimensional lattice of points, where this lattice may be imagined to

be a d-dimensional ‘cube’ with edges of ‘length’ (p − 1) units. As before, by picking one

corner of the lattice as the origin (0, 0, ..., 0), the position of each site can be associated

with a specific number between 0 and (pd− 1). For example, the origin (0, 0, ..., 0) may be

associated with the number zero, whereas the number (pd − 1) is related to the position

(p−1, p−1, ..., p−1), and so on. So by continuing the analogy of the single cube example

of earlier, every integer P in the appropriate range may be thought of as mapped to a

unique site on a lattice with coordinates (i0, i1, ..., id−1). As before, these numbers may be

granted cardinality by relabelling them as P ′ = 1, 2, ..., pd defined as P ′ = P + 1.

Now consider a universe represented by a state in H[1...N ], and a particular Hermitian

operator Ôn ∈ H(H[1...N ]) factorisable as before into a product of pd sub-operators. As-

suming again the rules are such that each factor sub-operator of Ôn is entangled relative

to the skeleton sets associated with between one and pd subregisters, and that no two

factors of Ôn are entangled relative to the same number of subregisters, one possible form

of Ôn is given by

Ôn = Â1 ⊗ Â23 ⊗ Â456 ⊗ ...⊗ ÂM...N . (5.87)

Clearly, the total number N of subregisters required for such a prescription is given by

the arithmetic progression

N = 1 + 2 + 3 + ...+ pd (5.88)

= pd(pd + 1)/2

and because the ‘last’ factor ÂM...N of Ôn is entangled relative to pd subregisters, M is

given by M = pd(pd−1)/2. So, Ôn ∈ H(H[1...pd(pd+1)/2])
23•456·...•(M...N)
1 ⊂ H(H[1...N ]), with

ÂM...N ∈ H(H)(p
d(pd−1)/2)...(pd(pd+1)/2) etc.

As before, by assigning each factor of Ôn a unique number according to how many

subregisters it is entangled relative to, and by associating each of these numbers with a

coordinate, the factors of Ôn may be associated with ‘positions’ in a lattice. Thus, the

factor Â1 may be assigned the number 1 and so may be associated with the coordinate

(0, 0, ..., 0), whereas the factor Â23 may similarly be associated with (1, 0, ..., 0), whilst

Â456 may be associated9 with (2, 0, ..., 0), and so on, until ÂM...N is may be associated

with (p− 1, p− 1, ..., p− 1).

9Assuming p ≥ 3. Otherwise, say if p = 2, A456 will be associated with (0, 1, 0, ..., 0) etc.
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Likewise, the eigenstates of Ôn will also share the separability properties of this opera-

tor, and so their factors may similarly also be considered in terms of these simple positional

relationships.

It is easy to see how dynamics may be incorporated into this type of model. As

long as the rules governing what type of operators are allowed remain the same, the

lattice structure associated with the operators’ factors will be preserved. For instance, the

dynamics may permit permutations of the form r −→ sr in the structure of the operators,

where r, s label different subregisters, and this is equivalent to exchanging the subregisters

over which a factor of the operator is entangled relative to. For example, if the permutation

was such that the next operator Ôn+1 is of the form

Ôn+1 = B̂3 ⊗ B̂(1)(12) ⊗ B̂(7)(8)(14) ⊗ B̂(2)(4)(5)(27) ⊗ ... (5.89)

the result might be a set of eigenvectors whose factors are completely different from those

of the previous state, but are all still constrained by the same type of lattice structure.

It is important to reiterate that the lattice formed from the operator’s factors does

not exist in any sort of background space. The positional relationships, and hence the

corresponding measure of dimension, are simply a consequence of the way the operator

Ôn factorises in terms of the skeleton set of basis operators spanning the subregisters of the

total Hilbert space, and this is itself just a result of whatever rules dictate the dynamics.

As always throughout this work, physical space is not seen as absolute but as a marker of

distinction between objects in an underlying mathematical structure.

So as a final remark it should be noted that the present discussion of position should

not be taken too rigidly. As has been a central conclusion of this chapter, the relationships

between the pregeometric quantum register and the eventual emergence of physical space

is a subtle one that requires a great deal of future work before it is completely understood.

Indeed, even in the above example it is observed that a given number P may potentially

be expanded in many different ways, because many different bases p could be chosen, and

this would lead to a set of alternative lattices of different dimensions.

Of course, whether or not this last comment has any physical meaning is an important

question to be faced, and might perhaps imply that either: the current example is too

‘näive’ to describe proper physics; or that it is missing an important constraint that forces

every lattice in the ‘real’ Universe to be three dimensional; or even that it might possibly

allow the occurrence of multi-dimensional ideas such as Kaluza-Klein and string theory.

What is clear, however, is that in a fully quantum Universe with no external observers,

the Universe must somehow organise itself in such a way so that internal, semi-classical

observers are able to experience a reality with near-continuous spatial relationships. In
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such a Universe, the underlying quantum structure must somehow be responsible for

sophisticated theories such as relativity and four dimensional spacetime to emerge.
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6 Quantum Registers as Quantum Computers

In the previous chapter, it was discussed how spatial degrees of freedom might begin to

emerge if the causal set structure of operators obeys relationships analogous to those of

a classical cellular automaton. Moreover, starting from the premise that there are no

external observers dictating its development, a central theme of this thesis is that the

Universe is acting as a giant, self-regulating quantum automaton. From these viewpoints,

the development of its state is envisaged to be like an enormous quantum calculation,

such that overall the Universe may be thought of as behaving like an enormous quantum

computer. This conjecture is discussed now.

The present chapter is split into two parts. In Section 6.1 it is shown how simple

quantum computational methods may be applied to a system consisting of a finite number

of Hilbert space subregisters. Since in the proposed paradigm a state is considered that

exists in a large, but finite, number of such quantum subregisters, it is argued that these

principles are equally applicable to the case where the system is the Universe itself.

Because computation is often seen as synonymous with data manipulation, in Section

6.2 the role of information change and exchange is defined for quantum systems. It is then

discussed how endo-physical scientists might obtain ‘answers’ for the Universe’s quantum

calculation, and how these answers might be interpreted.

6.1 Computing with CNOT

In this section it will be demonstrated how operators can be used to perform compu-

tations in simple quantum systems of qubits. Specifically, in fact, the example of the

Controlled-NOT (or CNOT) operator will be examined. It must be noted, however, that

such computations are not just simply mathematical exercises; instead, they will be com-

pared with the actual, physical results of classical computations, namely by a formulation

of the Bell inequality. Some of the implications of this comparison will then be discussed.

Overall, the work described here will serve as a preparation for the following chapter in

which it will be shown how, by treating the state with quantum computational methods,

particle field theoretic concepts may arise in a fully quantum Universe.

Before quantum computational principles can be applied to a system of quantum sub-

registers, though, it is useful to review some of the ideas of classical computation. Specif-

ically, it will be beneficial to illustrate how the classical analogue of the quantum CNOT

operator, namely the CNOT logic gate, may be employed in classical computation. This
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issue is hence addressed first, noting that a more thorough background description of both

classical and quantum computation is provided in Appendix A.

6.1.1 Classical Computation

Broadly speaking, conventional classical computation involves processing the ‘values’ con-

tained at a sequence of ‘sites’, where each site will definitely take one, and only one, value

from a finite set of possibilities. In fact in general, classical computation can actually be

achieved by a particular manipulation of a finite set of bits, each of which is in one of two

possible states. The workings of modern, digital microelectronic computers are an exam-

ple of this. Moreover, because of their binary property, conventional logic may be applied

to these bits, and their states may consequently be labelled ‘true’ or ‘false’, or perhaps

‘on’ or ‘off’, or even ‘0’ or ‘1’. Equally, the processing of these bits may be accomplished

by the use of binary logic gates.

Classical computations generally involve three parts: there is the specification of the

Input, usually given in the form of a string of bits of which each has a particular value;

there is the computation itself, which involves the processing of these bits according to a

particular set of gates in a certain order; and there is the Output, which is the result of

the computation, and is also usually given in terms of a string of bit values.

Any sequence of 0’s and 1’s, and consequently any string of bits, denotes a unique

binary number. So from this perspective, a classical computation involving the transfor-

mation of an input series of bit values into an output sequence may be interpreted as a

calculation being performed on an initial number to generate an ‘answer’. This answer is

also a number, and may itself go on to be processed in subsequent computations.

Note how this could easily be seen as analogous to the quantum Universe, in which an

initial state Ψn is developed into the next state Ψn+1 by some particular combination of

unitary and Hermitian operators.

Just as the particular choice of quantum operators dictates the way the Universe is

developed, it is the transformations that determine how a certain sequence of bits is

processed in a computation. It is consequently the particular choice of logic gates that

define which particular classical computation is performed on the input. As with operators

in quantum mechanics, a number of different types of operation are also possible here.

As an illustration, consider a classical system consisting of just two bits X and Y. Each

bit may take one of two values, such that X may have the value x and Y may have the

value y, where x, y = 0, 1. Thus the state S of the system may be denoted by the pair

S = (x, y), and this will clearly be one of four distinct possibilities.
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A local operation may be defined as any operation that acts on the bits individually

and independently, with no reference to the values of any of the other bits. Examples in

the two bit system are the operations U and V, defined as

U(x, y) = (x⊕ x, y) = (0, y) (6.1)

V (x, y) = (x, y ⊕ 1)

where the symbol ⊕ denotes addition modulo two, i.e.

0⊕ 0 = 0 , 0⊕ 1 = 1 , 1⊕ 0 = 1 , 1⊕ 1 = 0. (6.2)

Conversely, a global operation is one that acts on the whole state S of the system.

In these operations, the way one of the two bits is processed depends on the value of the

other bit.

In fact, note that for all systems with more than one bit it is generally possible to

consider non-local operations, that is, those which act on two or more bits. In such

operations, the way a particular bit is developed may be affected by the value of at least

one other bit. Of course, clearly in a two bit system every non-local operation is also global,

but for systems of more than two bits the global operations are just special, extreme cases

of non-local operations.

An example of such a global operation acting on the two bit system X and Y is the

CNOT logic gate, C, defined as

C(x, y) = (x, x⊕ y). (6.3)

For obvious reasons from (6.3), in the above use of CNOT it is possible to describe X

as the ‘donor’ bit and Y as the ‘acceptor’ bit.

The above gate may be thought of as a type of ‘question and answer’ operation.

Processing a state S = (x, y) with C may be viewed as equivalent to asking a question of

the value x of the bit X, and registering the answer with a response in the value y of the

bit Y.

The CNOT computation is reversible. That is, in this case there exists an inverse

operation C−1 defined as

C−1(x, x⊕ y) = (x, y) (6.4)

such that C−1C(x, y) = (x, y); in fact, clearly C = C−1. Analogous to the gate C, the

inverse operation C−1 may then be interpreted as the statement: “given a particular result,

what was the question of which it is an answer?”. In this case, the answer is (x, x ⊕ y)

and the question is (x, y).
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Note that the inverse gate C−1 is different from the ‘conjugate’ operation C̃ defined as

C̃(x, y) = (x⊕ y, y) (6.5)

which reverses the role of acceptor and donor.

From this last gate C̃ it is possible to build a ‘transpose gate’ CT that swaps the values

of the bits X and Y, i.e. CT (x, y) = (y, x). With the above descriptions of C and C̃ this

can be achieved by writing CT as CT = C̃CC̃.

The two bit CNOT gate is a global operation when acting on a system containing just

two bits, but merely a non-local operation for an N bit system if N > 2. Specifically,

given a string of N bits Z1, Z2, ..., ZN in the state S = (z1, z2, ..., zN ), where za = 0, 1 for

a = 1, 2, ...N, the CNOT gate C(i,j) may be defined as

C(i,j)(z1, z2, ..., zi, ..., zj−1, zj , zj+1, ..., zN ) = (z1, z2, ..., zi, ..., zj−1, zi ⊕ zj , zj+1, ..., zN ).

(6.6)

This last definition will be useful later.

6.1.2 Quantum Computation

A classical computation involving operations performed on a classical state has immediate

parallels with the way operators in quantum mechanics act on quantum states. This latter

process may therefore naturally be called a quantum computation. Furthermore, a classical

computation involving operations performed on a series of bits is itself analogous to the way

operators in quantum mechanics can act on products of qubits. Indeed, just as a classical

bit is defined as some sort of ‘entity’ that can take one of two possible values, a qubit is

defined relative to a basis comprising of two different (orthogonal) states. However, whilst

classical bits are restricted to always have one value or the other, the states of quantum

bits can exist as complex linear superpositions of their basis vectors.

Consider a two dimensional (qubit) Hilbert space, H(2)
a , where the super-script may

again be assumed and hence dropped, and the sub-script denotes that this space belongs

to the ath qubit, in preparation for the later discussion of many qubit systems. Assume

also that Ha is spanned by the orthonormal basis set Ba defined as Ba ≡ {|0〉a, |1〉a}, where
a〈i|j〉a = δij for i, j = 0, 1, and note that these elements may be represented by column

vectors of the form |0〉a ≡
(
1
0

)
a
and |1〉a ≡

(
0
1

)
a
.

Define now the projection operators P̂ 0
a and P̂ 1

a acting on the ath space as

P̂ 0
a ≡ |0〉aa〈0| , P̂ 1

a ≡ |1〉aa〈1| (6.7)
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and the ‘transition’ operators Q̂a and Q̂†
a as

Q̂a ≡ |0〉aa〈1| , Q̂†
a ≡ |1〉aa〈0|. (6.8)

The application of these four operators to a qubit may be interpreted in particular ways.

For example, the projection operator P̂ 0
a may be thought of as equivalent to the question:

“is the ath qubit in the state |0〉?"; a similar question is appropriate for P̂ 1
a . The transition

operators Q̂ and Q̂† are analogous to the ladder operators of field theory: Q̂a may be

thought of as an operator which, when applied to a qubit in Hilbert space Ha, ‘annihilates’

the state |1〉 and ‘replaces’ it with a state |0〉. Conversely, Q̂†
a may be considered as an

operator that ‘destroys’ |0〉 and ‘creates’ |1〉. These connections are explored in Chapter

7.

Every operator acting on states in the qubit Hilbert spaceHa can be built from complex

sums of the four operators P̂ 0
a , P̂

1
a , Q̂a and Q̂†

a. So, if Âa is an arbitrary operator acting

in Ha it may be written

Âa = A1
aP̂

0
a +A2

aP̂
1
a +A3

aQ̂a +A4
aQ̂

†
a (6.9)

where A1
a, A

2
a, A

3
a, A

4
a ∈ C, or alternatively Âa = (A1

a, A
2
a, A

3
a, A

4
a) for brevity. Similarly,

the Hermitian conjugate operator Â∗
a may be given by Â∗

a = (A1
a
∗, A2

a
∗, A4

a
∗, A3

a
∗).

As an example, the identity and Pauli operators, σ̂µ
a for µ = 0, 1, 2, 3, can be defined

as

σ̂0
a = P̂ 0

a + P̂ 1
a , σ̂1

a = Q̂a + Q̂†
a (6.10)

σ̂2
a = −i(Q̂a − Q̂†

a) , σ̂3
a = P̂ 0

a − P̂ 1
a

or equally

σ̂0
a = (1, 1, 0, 0) , σ̂1

a = (0, 0, 1, 1) (6.11)

σ̂2
a = (0, 0,−i, i) , σ̂3

a = (1,−1, 0, 0)

and these clearly satisfy the ‘standard’ algebra (5.32), and the representation (5.37), as

given in Chapter 5.

It is possible to define products of operators in the above notation. As an illustra-

tion, consider two operators Âa and B̂a defined as Âa = (A1
a, A

2
a, A

3
a, A

4
a) and B̂a =

(B1
a, B

2
a, B

3
a, B

4
a). The product ÂaB̂a is then given by

ÂaB̂a = ([A1
aB

1
a +A3

aB
4
a], [A

2
aB

2
a +A4

aB
3
a], [A

1
aB

3
a +A3

aB
2
a], [A

2
aB

4
a +A4

aB
1
a]). (6.12)
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The product algebra of the operators in (6.7) and (6.8) is summarised in Table 6.1.

Specifically, the product XY is read as the member X of the first column multiplied by

the member Y of the first row; for example, P̂ 0Q̂ = Q̂, whereas Q̂P̂ 0 = 0.

− P0 P1 Q Q†

P0 P̂ 0 0 Q̂ 0

P1 0 P̂ 1 0 Q̂+

Q 0 Q̂ 0 P̂ 0

Q+ Q̂+ 0 P̂ 1 0

Table 6.1

The results of the products of these operators also comment on the role of information

in quantum processes. The idempotency of the projection products, P̂ 0P̂ 0 = P̂ 0 and

P̂ 1P̂ 1 = P̂ 1, for example, may be interpreted as the observation that once a ‘question’ has

been asked of a quantum system, no new information can be extracted by asking the same

question again. This reflects the deeper principle of quantum mechanics that once a state

has collapsed into one of the eigenvectors of a particular operator, testing the system a

second time with the same operator reproduces the same result.

On the other hand, note that the transition operators Q̂a and Q̂†
a obey the fermionic

algebra in the sense that their squares vanish, (Q̂a)
2 = (Q̂†

a)2 = 0. As with their association

with quantum field operators, this property will be useful in Chapter 7. For now, however,

note that any operator Â that satisfies the rule (Â)p+1 = 0 may be called a ‘parafermionic

operator of order p’, following the language of [65] and [66], where p ∈ Z∗ is the lowest

integer required for this rule to be true. Thus, Q̂a and Q̂†
a may be labelled parafermions

of order 1.

It is important to note that the construction of Table 6.1 does not rely on any use of

group theory. The sixteen entries in the table come directly from the logic induced by

taking the inner products of the basis vectors from which the four individual operators

P̂ 0
a , P̂ 1

a , Q̂a and Q̂†
a are defined. Conversely, in fact, the rotational symmetry of the

SU(2) group can be shown to be preserved as a natural feature of the underlying qubit

perspective.

To demonstrate this, define the ‘Transformation’ operators T̂ ij
a acting on the space

Ha as T̂ ij
a = |i〉aa〈j|, where i, j = 0, 1. Clearly, T̂ ij

a is one of four possible operators

corresponding to the two projection and two transition operators defined above in (6.7)

and (6.8). That is,

T̂ 00
a = P̂ 0

a , T̂ 01
a = Q̂a (6.13)

T̂ 10
a = Q̂†

a , T̂ 11
a = P̂ 1

a .

144



So, Table 6.1 can be summarised for i, j, k, l = 0, 1 by the relation

T̂ ij
a T̂ kl

a = δjkT̂
il
a . (6.14)

Consider now a unitary operator Û(θ) defined as

Û(θ) ≡ exp


i

3∑

j=1

θj σ̂
j
a


 (6.15)

where θ = (θ1, θ2, θ3), θj ∈ R and the σ̂j
a are generators of the group SU(2). The set of

operators Û(θ) form an SU(2) rotation group acting on states in Ha.

Define now a new transformation operator (T̂ ij
a )′ as

(T̂ ij
a )′ ≡ Û∗(θ)T̂ ij

a Û(θ) (6.16)

with Û∗(θ)Û(θ) = Îa where Îa is the identity in Ha. This new operator satisfies the

product rule (T̂ ij
a )′(T̂ kl

a )′ = δjk(T̂
il
a )

′, so it may be concluded that (6.14) is invariant to

rotations of the operators T̂ ij
a under the group SU(2).

The above conclusion might be surprising, given that spatial relationships were not

used in any way in the construction of (6.14) or Table 6.1, and indicates why the language of

spin may be used in discussions of qubits (e.g. spin up, spin down etc.). However, it should

be reiterated that the qubits should not be thought of as fundamentally possessing any sort

of physical spin, and the rotations are really nothing but mathematical transformations;

physical spin is expected to eventually appear in the emergent limit once space, directions,

and frames of reference have been established.

It is, though, still encouraging perhaps to note that spin relations automatically seem

to emerge as a natural feature of the algebraic rules inherent in the underlying qubit

structure.

Just as it is possible to perform computations on classical bit systems using a reversible

two-bit CNOT gate, it is possible to define a quantum CNOT operator also. In actual

fact this possibility turns out to be of fundamental importance, because it can be shown

that any qubit quantum computation can be performed using just local unitary operators

and the CNOT gate alone [67].

As with the classical case, the quantum CNOT asks a ‘question’ of one qubit and

registers the response with a second.

Consider a four dimensional Hilbert spaceH(4)
[ab], factorisable into two qubit subregisters

in the form H(4)
[ab] = H(2)

a ⊗ H(2)
b , where from now on the dimensional super-scripts shall

again be omitted. A suitable, separable orthonormal basis Bab for H[ab] may be defined in

the usual way as Bab ≡ {|00〉ab, |01〉ab, |10〉ab, |11〉ab}.
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The quantum CNOT operator Ĉ(a,b) acting on the qubits a and b may now be defined

as

Ĉ(a,b) = P̂ 0
a ⊗ σ̂0

b + P̂ 1
a ⊗ σ̂1

b (6.17)

= P̂ 0
a ⊗ (P̂ 0

b + P̂ 1
b ) + P̂ 1

a ⊗ (Q̂a + Q̂†
a)

with σ̂0
b the identity, and σ̂1

b the usual ‘first’ Pauli operator, acting on qubit b. Note that

in the representation Bab, the CNOT operator may equally be written as the matrix

C(a,b) =

(1
0
0
1
0
0
0
0

0
0
0
0
0
1
1
0

)
. (6.18)

CNOT is a unitary operator, and might hence be used to evolve the state of the two

qubit system. To illustrate how, assume that the initial state Ψi of the system is in one

of the four, separable basis states of Bab. The final state Ψf ≡ Ĉ(a,b)Ψi is then given by

Table 6.2

Ψi |00〉 |01〉 |10〉 |11〉
Ψf≡ C(a,b)Ψi |00〉 |01〉 |11〉 |10〉

Table 6.2

From Table 6.2 the result of an application of Ĉ(a,b) to the system is apparent: if qubit

a is in the state |0〉 then the state of qubit b remains the same, whereas if qubit a is in the

state |1〉 then the application of Ĉ(a,b) ‘flips’ the state of qubit b either from |0〉 → |1〉 or
|1〉 → |0〉.

Care is needed, however, before physically interpreting exactly how Ĉ(a,b) is working.

From one perspective it appears that an application of Ĉ(a,b) to Ψi does not affect qubit

a. The operator Ĉ(a,b) appears to be non-invasively determining the state of qubit a, and

then consequently registering the result with qubit b. This, however, is a very classical

viewpoint, and is therefore not the best way to proceed. From a quantum perspective

it must be noted that any determination of the state of qubit a necessarily involves an

extraction of information, and from quantum principles it should therefore be expected

that such an extraction will irreversibly alter the state of the system.

It is this conflict between attempted non-invasive, classical information extraction and

the truly invasive, quantum CNOT that forms the basis of the following example of how

quantum computational methods could be applied to quantum register systems. In the

next sub-section it is shown how a variation of the Bell inequalities can arise from a

classical computation acting on a classical bit system. Then by contrast, in the following

sub-section similar Bell inequalities will be derived for a quantum computation acting on

a product of qubits. However, it is shown further that once the outcome of a quantum

computation is obtained, the state collapses to a classical-looking system, and as such

any potential Bell violations are irretrievably lost. So, not only should the following sub-

sections provide a physically applicable demonstration of how quantum computational
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principles can be used for systems consisting of quantum subregisters, but it will also

illustrate how in a Universe ultimately envisaged to behave as an enormous quantum

computer, the conclusion must be reinforced that the extraction of information during

measurement inevitably comes with a cost.

6.1.3 Classical Calculations and the Bell Inequality

Consider a single classical bit that, at any time, can either take the value 0 or the value

1. Physically, such a bit could in principle represent any classical bi-level system, for

example the off-on states of a digital switch, or a random number generator programmed

to provide one of two possible outputs. Let the value of the bit at time T be labelled xT ,

and for simplicity further assume that the temporal parameter changes discretely such

that T = 0, 1, 2, ..., as is apparent in the case of the ‘clock’ of a modern microprocessor

(c.f. the parameter “n" used to denote different states Ψn and stages Ωn etc.). Moreover,

because it is a classical system that is being discussed, it is reasonable to conclude that at

any particular time T the bit is definitely in a unique state xT = 0 or xT = 1 whether or

not it is actually observed; in classical mechanics every dynamical variable may be said to

possess ‘independent existence’, irrespective of attempts to measure it.

Consider now the dynamics, of which there are of course many different types, that

govern the bit’s development from its value xT at time T to the value xT+1 at time T +1.

Generally speaking, any such development implies some sort of function F that, when

applied to the bit at time T, provides the value xT+1 at time T + 1. It is consequently

possible to represent this mapping by the operation xT+1 = F (xT ).

One of the simplest set of dynamics could incorporate a deterministic rule of the form

xT+1 = xT , such that the value of the bit remains constant for all time. In this situation,

after N timesteps the ‘history’ of the bit’s value will either be (N + 1) lots of 0’s or else

(N+1) lots of 1’s, depending on its value at the initial time. Alternatively, another simple

deterministic rule might be that xT+1 = (xT ⊕ 1), where ⊕ denoted addition modulo 2, in

which case the history of the bit’s value will be of the form ... → 0 → 1 → 0 → 1 → ...

Consider instead, however, a dynamics based on randomness, such that at each time

step there is a unique probability that the bit will have the value 0 and a unique probability

that the bit will take the value 1, where these two probabilities sum to unity as expected.

The probability P (xT+1 = 0) that the value of the bit at time T+1 is 0 could be irrespective

of the value xT of the bit at time T, as could the probability P (xT+1 = 1) that the value

of the bit at time T + 1 is 1. On the other hand, it is conversely possible to consider a

case where the dynamics might be based upon conditional probabilities, incorporating for
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example the probability P (xT+1 = 0|xT ) that the value of the bit at time T + 1 is 0, or

similarly the conditional probability P (xT+1 = 1|xT ) that the value of the bit at time

T + 1 is 1, given that its value at time T was xT .

Overall, then, it is possible to postulate a ‘Random Operation’ R that acts on a bit

of value xT , at time T, to give a value xT+1, at time T + 1, with a particular conditional

probability; that is R(xT ) = xT+1, where xT+1 occurs with probability P (xT+1|xT ).

Assume now that at time T = 0 the bit has the initial value x0 = 0, and consider such

a dynamics based upon conditional probabilities. By assuming conservation of probability,

if the conditional probability P (x1 = 0|x0 = 0) is denoted

P (x1 = 0|x0 = 0) = a (6.19)

then the probability P (x1 = 1|x0 = 0) is given by

P (x1 = 1|x0 = 0) = ā ≡ 1− a. (6.20)

It is similarly possible to consider the probabilities of obtaining particular ‘chains’ of

results. If the conditional probabilities P (x2 = 0|x1 = 0) and P (x2 = 0|x1 = 1) are given

by

P (x2 = 0|x1 = 0) = b (6.21)

P (x2 = 0|x1 = 1) = c

then it immediately follows that

P (x2 = 1|x1 = 0) = b̄ (6.22)

P (x2 = 1|x1 = 1) = c̄

so

P (x2 = 0 & x1 = 0|x0 = 0) = P (x1 = 0|x0 = 0)P (x2 = 0|x1 = 0) = ab (6.23)

P (x2 = 1 & x1 = 0|x0 = 0) = P (x1 = 0|x0 = 0)P (x2 = 1|x1 = 0) = ab̄

P (x2 = 0 & x1 = 1|x0 = 0) = P (x1 = 1|x0 = 0)P (x2 = 0|x1 = 1) = āc

P (x2 = 1 & x1 = 1|x0 = 0) = P (x1 = 1|x0 = 0)P (x2 = 1|x1 = 1) = āc̄

with as before, and in the following, a ‘bar’ over any variable α implies ᾱ = 1 − α, and

noting that

(
P (x2 = 0 & x1 = 0|x0 = 0) + P (x2 = 1 & x1 = 0|x0 = 0)

+P (x2 = 0 & x1 = 1|x0 = 0) + P (x2 = 1 & x1 = 1|x0 = 0)

)
= 1 (6.24)
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as expected. In words, a composite probability of the form P (x2 = 1 & x1 = 0|x0 = 0)

clearly represents the combined likelihood of the bit having the values x0 = 0, x1 = 0 and

x2 = 1 at the times T = 0, 1 and 2 respectively.

As an additional convenience, it is possible to denote consecutive results as a string of

0’s and 1’s, with time running from left to right. As an illustration, the sequence of results

x0 = 0, x1 = 0 and x2 = 1 is labelled in this notation by the string 001, and from (6.23)

occurs with probability P (001) = ab̄. Note that, perhaps rather confusingly, P (001) ≡
P (x2 = 1 & x1 = 0|x0 = 0); as will be obvious from the quantum case discussed later,

the reason for this order reversal comes from a desire to consider probabilities P (xT+1|xT )
as analogous to quantum probability amplitudes of the form |〈xT+1|xT 〉| , and sequences

x0x1x2... as analogous to qubit states of the form |x0〉 ⊗ |x1〉 ⊗ |x2〉 ⊗ ...

It is important to specify exactly what is meant by ‘probability’ in this example. To

this end, the probabilities are taken to imply here that if a very large number N of

identical bits were all in the same initial state x0 = 0, and if they were all subject to these

same dynamics, then at time T = 1 a number Na would be expected to have the value

x1 = 0, and so N(1 − a) would consequently have the value x1 = 1. Alternatively, the

probabilities may equally be viewed as the frequencies of obtaining particular ‘histories’

if the experiment was performed very many times N. So after two time steps, Nab of

the experiments would be expected to have resulted in the history 000, whereas Nab̄ of

the experiments would be expected to have resulted in the history 001, whilst Nāc of

the experiments would be expected to have resulted in the history 010, and Nāc̄ of the

experiments would be expected to have resulted in the history 011.

The above process may be continued indefinitely. Clearly, with each time step the

number of different possible sequences of results doubles, such that at time T the bit will

have experienced one of 2T possible histories, each with a specific probability of occurring.

Consider, however, just the set of possible histories for a bit developing from time

T = 0 to time T = 4. By defining the additional probabilities

P (0000) = abd , P (0010) = ab̄e , P (0100) = ācf , P (0110) = āc̄g (6.25)

P (00000) = abdh , P (00010) = abd̄i , P (00100) = ab̄ej , P (00110) = ab̄ēk

P (01000) = ācf l , P (01010) = ācf̄m , P (01100) = āc̄gn , P (01110) = āc̄ḡo

the individual histories can be illustrated as the ‘branches’ in Figure 6.1, where time runs

downwards. At each of the 2T individual ‘forks’ occurring at time T, the value at the fork

represents the probability that the bit at time T will have the history 0...xT−2xT−1xT ,

whereas the value at the bottom of the left hand branch of this fork denotes the probability

that the bit at time T + 1 will have the history 0...xT−2xT−1xT 0, whilst the value at the
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bottom of the right hand branch of this fork denotes the probability that the bit at time

T + 1 will have the history 0...xT−2xT−1xT 1.

So, for example, if N bits are developed under identical conditions the diagram shows

that Nab̄ē of them would be expected to have undergone the history 0011 (i.e. [left][right]

[right]) at time T = 3, whereas Nācf̄m̄ would be expected to have undergone the history

01011 (i.e. [right][left][right][right]) at time T = 4, etc.

Figure 6.1: Classical probability ‘tree’ for a developing bit.

In this model, any information regarding the value of the bit at time T − 1 is irretriev-

ably lost at time T. Without a form of ‘memory’ recording the bit’s development there

is no way of reconstructing any of the histories featured, and hence there is no way of

concluding, for example, at time T > 2 that the bit had the value x1 at time T = 1, and

had the value x2 at time T = 2, etc. All that can be known at time T is that the bit has

either the value xT = 0 or 1 now.

To overcome this it is therefore desirable to incorporate a type of ‘information store’

into the model. Consider, as a possible method of achieving such an effect, anM bit system

labelled at time T by the string LT = [x0x1x2...xM−1]T , where xi = 0, 1 denotes the value

of the ith bit, for i = 0, ..., (M − 1), labelled by left-right position i+1. Moreover, assume

that at initial time T = 0 all the bits have the value 0, such that L0 = [000102...0M−1]0.

Note the change in the use of the sub-script on the variable xi here; the symbol xi is

now used to denote the value x of the ith bit, and not a value at time i, as it was previously.

Instead, the sub-script T on LT and outside the square brackets [...]T takes the place of

the temporal parameter. Thus, the expression LT = [x0x1x2...xM−1]T denotes a string

x0x1x2...xM−1 of M bits of respective values x0, x1, x2, ..., xM−1 (for xi = 0, 1) at time

T, labelled by LT . So for example if L3 = [100112...0M−1]3, it implies that at time T = 3
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the 0th bit currently has the value 1, whilst the 1st bit has the value 0, whereas the 2nd

bit has the value 1, and so on.

In actual fact, this distinction will not matter much in the following, since the ith bit

will be used below to encode information at time i; the underlying change in sub-script

nomenclature is, however, nevertheless apparent.

Let the zeroth bit, i = 0, be associated with the single developing bit discussed so far

in this section. So, in this case the previous dynamics is equivalent to the operation

LT+1 = R(LT ) = R([x0x1x2...xM−1]T ) = R([x00102...0M−1]T ) = [x00102...0M−1]T+1

(6.26)

such that for example the string L1 = [000102...0M−1]1 occurs with probability a, whereas

the string L1 = [100102...0M−1]1 occurs with probability ā. Further, the probability that

the particular string L2 = [100102...0M−1]2 occurs at time 2, and that the previous string

was L1 = [000102...0M−1]1, is clearly ab̄. And so on.

To incorporate a ‘memory’ into the system, the rule is now introduced that at time T

the T th bit is assigned the current value of the zeroth bit, where T ≤ (M − 1). This result

is accomplished by an operation C(0,T ), where

C(0,T )(LT ) = C(0,T )([x0x1x2...xT−1xTxT+1...xM−1]T ) = [x0x1x2...xT−1x0xT+1...xM−1]T

(6.27)

so that the value of the T th bit is therefore providing a record of the value of the zeroth

bit at time T.

The rule is obviously based on the relations {if x0 = 0 at time T then xT → 0} and

{if x0 = 1 at time T then xT → 1}, and given that every bit initially has the value 0 it is

clear to see that C(0,T ) is just the CNOT operator of Section 6.1.1.

Overall, then, the development of this system from time T to T+1 follows the procedure

LT+1 = C(0,T+1)(R(LT )).

In order to ‘remember’ the four time steps illustrated in Figure 6.1, a model involving

at least five bits is required. At initial time T = 0 the system is described by the string

L0 = [0001020304]0, and as it develops the bits labelled 1, 2, 3 and 4 record the history of

bit 0 at those respective times. As an example, given a large number N of such systems it

is expected that at time T = 4 a fraction Nācf l̄ will have the string L4 = [1011020314]4,

because the probability P (01001) that the value of bit 0 develops from 0 to 1 to 0 to 0 to

1 over the four times steps is given by ācf l̄. Similarly, the probability P (01101) that the

zeroth bit had the values 0, 1, 1, 0 and 1 at times T = 0, 1, 2, 3 and 4 respectively is āc̄gn̄,

and so if N five bit systems were developed, Nāc̄gn̄ of them would be expected to have

the configuration L4 = [1011120314]4 at time T = 4.

With the probabilities of obtaining specific histories of results defined in Figure 6.1, it
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is possible to examine the probability of obtaining a particular type of result. For example,

a physicist might be interested in the probability pα that at time T = 3 the bit, irrespective

of its history, has the value 0, and this is readily given by the sum pα = abd+ab̄e+ācf+āc̄g.

Alternatively, it might be of concern to discuss the probability pβ that at time T = 4 the

bit has the value 1, given that at time T = 3 it also had the value 1, and this is clearly

pβ = abd̄ı̄+ ab̄ēk̄ + ācf̄m̄+ āc̄ḡō.

One particular probability of interest is the correlation Kxy, defined as the probability

that the bit had the same value at times T = x and T = y minus the probability that the

bit had different values at times T = x and T = y. Thus for an experiment performed N

times, Kxy is equally defined as the number of histories for which the bit had different,

anti-correlated values at times x and y, subtracted from the number of histories for which

the bit had the same, correlated value at times x and y, all divided by N. As an example,

the correlation K12 is given by

K12 = (ab+ āc̄)− (ab̄+ āc) (6.28)

= ab+ (1− a)(1− c)− a(1− b)− (1− a)c

= 1− 2a− 2c+ 2ab+ 2ac.

It is further possible to define ‘multiple correlations’. One such possibility, K, is given

by

K = K12 +K23 +K34 −K14 (6.29)

which reduces to

K = 2− 4(c+ g) + 4(ac− ae+ cg + ag − ak + gn) (6.30)

+4(abe− acg − abi+ abk + aek + cfl − agn− cgn)

+4(abdi− abek − acfl + acgn)

given the above probabilities. Moreover, because each individual probability a, b, ..., o is

0 ≤ a, b, ..., o ≤ 1 it can readily be shown that K satisfies the inequality

−2 ≤ K ≤ 2. (6.31)

The importance of (6.31) is that it is the temporal equivalent of the spacelike classical

Bell inequality, as given in Section 3.1, for a bit classically developing over four time

steps. It represents the relations between unequal-time correlations induced in a single

bit system, where at each time the bit has a definite and independently existing value

(0 or 1) irrespective of whether or not it is actually measured. Moreover, because every

classical bit must follow one of these 16 possible histories between times T = 1 and 4, the

correlations of any bit that obeys classical equations of dynamics must necessarily satisfy

this inequality.
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Furthermore, the unequal-time correlations of a single qubit would also have to obey

this temporal Bell inequality if it were to be argued that its ‘quantum’ dynamics ultimately

depended upon any sort of classical hidden variables, or if the value of the qubit at any

time could somehow be known without disturbing the system. This issue will be discussed

now.

6.1.4 Quantum Calculations and the Bell Inequality.

In this final part of Section 6.1, the ideas of the previous three subsections will be drawn

together to show how the quantum CNOT operator can be used to perform a particular

quantum computation on a set of qubits. Moreover, because the CNOT operator can

be applied to the qubits a number of times in succession, the possibility of comparing

correlations between results at unequal times might be expected to arise, just as in the

case of the classical calculation described above. Thus, a ‘quantised’ version of the model

introduced in 6.1.3 is presented, and this leads to a generation of relations analogous to

the classical temporal Bell inequality, which in turn allows the implications and validity

of the suggested quantum method to be explored.

Note that an alternative analysis of this was introduced in [68]. It is felt, however,

that approach lacked clarity, and so in this final sub-section an improvement and reinter-

pretation of the issues advocated by Kim et al is sought. Important conclusions may then

be drawn about the nature of quantum computation, and these will consequently provide

insight into some of the limitations inherent in any attempt to treat the Universe as a

giant quantum computer.

In the following work, subscripts are generally used to label qubits, with the exception

that the subscript on ΨT is used to denote a (discrete) temporal parameter, T = 0, 1, 2, ...

As a further comment on this, note that T is taken below as a time parameter that is

external to the qubit system being discussed; thus, T is the ‘usual’ time of conventional exo-

physics, as experienced by an observer who is not part of the system under investigation.

This last point will be an important factor in the later interpretation of the model.

Consider a five qubit system represented at time T by a state ΨT in a Hilbert space

H(32)
[0...4] spanned by an orthonormal basis B0...4 ≡ {|i〉0⊗|j〉1⊗|k〉2⊗|l〉3⊗|m〉4 : i, j, k, l,m =

0, 1}. Assume that at initial time T = 0 every qubit is in the ‘down’ state |0〉, such that

the overall state may be written

|Ψ0〉 = |0〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ |0〉4 = |00000〉 (6.32)

where the qubit subscripts may be omitted in favour of left-right positioning for brevity.
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Consider also an unitary operator Ŝ0 acting locally on qubit 0, defined as

Ŝ0 ≡ exp

(
− i

2
ασ̂1

0

)
(6.33)

where α ∈ R is a small real parameter and σ̂a
0 is the ath Pauli operator σ̂a acting in

subregister H0 for a = 1, 2, 3.

Note that a unitary operator Ŝ0 acting locally on qubit 0 is equivalent to the operator

ŜG
0 acting globally on the entire state Ψ, where ŜG

0 is defined by

ŜG
0 ≡ Ŝ0 ⊗ Î1 ⊗ Î2 ⊗ Î3 ⊗ Î4 (6.34)

with Ît the identity operator in Hilbert space Ht for t = 0, 1, 2, 3, 4. This equivalence will

be discussed in Chapter 7, but for now note that the two forms of the operator are used

interchangeably.

The exponential (6.33) can be expanded, to obtain

Ŝ0 =
∑∞

n=0

(
− i

2
α

)n (σ̂1
0)

n

n!
(6.35)

=
∑∞

n=0

(
− i

2
α

)2n (σ̂1
0)

2n

(2n)!
+

∑∞

n=0

(
− i

2
α

)2n+1 (σ̂1
0)

2n+1

(2n+ 1)!

= (σ̂0
0)
∑∞

n=0

1

(2n)!

(
− i

2
α

)2n

+ (σ̂1
0)
∑∞

n=0

1

(2n+ 1)!

(
− i

2
α

)2n+1

= cos
(α
2

)
σ̂0
0 − i sin

(α
2

)
σ̂1
0.

Consider also the generalised definition of the two-qubit, quantum CNOT operator

Ĉ(r,s) that acts on subregisters r and s

Ĉ(r,s) ≡ P̂ 0
r ⊗ σ̂0

s + P̂ 1
r ⊗ σ̂1

s (6.36)

with P̂ z
r = |z〉rr〈z| for z = 0, 1. Again, this operator can also be extended to one that acts

globally by taking a suitable product with Ît for t = 0, 1, ..., 4 where t 6= r, s.

In the example presented in this sub-section, and for reasons to become apparent, the

procedure performed by the quantum computation involves an application of the operator

Ŝ0 to the state |ΨT 〉, followed by the operator Ĉ(r,s). Moreover, in the chosen dynamics

attention is restricted to the case where r = 0 and s = T+1, such that the CNOT operator

may be written Ĉ(0,T+1). Thus given a state |ΨT 〉, the state |ΨT+1〉 at time T + 1 is

|ΨT+1〉 = Ĉ(0,T+1)Ŝ0|ΨT 〉. (6.37)

The state |ΨT+1〉 may itself then be evolved with Ŝ0 and Ĉ(0,T+2) to generate the later

state |ΨT+2〉. So overall, given the initial condition of Ψ0 at T = 0, the state ΨT at time

T will be

|ΨT 〉 = (Ĉ(0,T )Ŝ0)(Ĉ(0,T−1)Ŝ0)...(Ĉ(0,2)Ŝ0)(Ĉ(0,1)Ŝ0)|Ψ0〉 = ÛT |Ψ0〉 (6.38)
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where ÛT ≡ (Ĉ(0,T )Ŝ0)(Ĉ(0,T−1)Ŝ0)...(Ĉ(0,2)Ŝ0)(Ĉ(0,1)Ŝ0) is also a unitary operator.

Given the above general algorithm, the specific development of the state of the five

qubit system under investigation proceeds as follows. If the initial state Ψ0 is |00000〉,
then

Ŝ0|00000〉 =
(
cos

(α
2

)
σ̂0
0 − i sin

(α
2

)
σ̂1
0

)
⊗ |00000〉01234 (6.39)

=

(
cos

(
α

2

)
|0〉0 − i sin

(
α

2

)
|1〉0

)
⊗ |0000〉1234

and this result is subsequently ‘registered’ with qubit 1 by the CNOT operator acting in

the prescribed way, such that the later state |Ψ1〉 = Ĉ(0,1)Ŝ0|00000〉 is given by

|Ψ1〉 =
[
P̂ 0
0 ⊗ σ̂0

1 + P̂ 1
0 ⊗ σ̂1

1

](
cos

(
α

2

)
|0〉0 ⊗ |0〉1 − i sin

(
α

2

)
|1〉0 ⊗ |0〉1

)
⊗ |000〉234

=

(
cos

(
α

2

)
|0〉0 ⊗ |0〉1 − i sin

(
α

2

)
|1〉0 ⊗ |1〉1

)
⊗ |000〉234. (6.40)

Continuing,

Ŝ0|Ψ1〉 =
[
cos

(α
2

)
σ̂0
0 − i sin

(α
2

)
σ̂1
0

](
cos

(
α

2

)
|00〉01 − i sin

(
α

2

)
|11〉01

)
⊗ |000〉234

=

(
cos2

(
α
2

)
|00〉01 − i cos

(
α
2

)
sin

(
α
2

)
|11〉01

−i sin
(
α
2

)
cos

(
α
2

)
|10〉01 − sin2

(
α
2

)
|01〉01

)
⊗ |000〉234 (6.41)

and so the subsequent state |Ψ2〉 = Ĉ(0,2)Ŝ0|Ψ1〉 is given by

|Ψ2〉 =
[
P̂ 0
0 ⊗ σ̂0

2 + P̂ 1
0 ⊗ σ̂1

2

]( cos2
(
α
2

)
|000〉012 − i cos

(
α
2

)
sin

(
α
2

)
|110〉012

−i sin
(
α
2

)
cos

(
α
2

)
|100〉012 − sin2

(
α
2

)
|010〉012

)
⊗ |00〉34

=

(
cos2

(
α
2

)
|000〉012 − i cos

(
α
2

)
sin

(
α
2

)
|111〉012

−i sin
(
α
2

)
cos

(
α
2

)
|101〉012 − sin2

(
α
2

)
|010〉012

)
⊗ |00〉34. (6.42)

The states |Ψ3〉 and |Ψ4〉 at times T = 3 and 4 can generated in a similar way, with

the results

|Ψ3〉 =




cos3
(
α
2

)
|0000〉0123 − i cos2

(
α
2

)
sin

(
α
2

)
|1111〉0123

−i sin
(
α
2

)
cos2

(
α
2

)
|1011〉0123 − cos

(
α
2

)
sin2

(
α
2

)
|0100〉0123

−i sin
(
α
2

)
cos2

(
α
2

)
|1001〉0123 − cos

(
α
2

)
sin2

(
α
2

)
|0110〉0123

− sin2
(
α
2

)
cos

(
α
2

)
|0010〉0123 + i sin3

(
α
2

)
|1101〉0123




⊗ |0〉4 (6.43)
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and

|Ψ4〉 =




cos4
(
α
2

)
|00000〉01234 − i cos3

(
α
2

)
sin

(
α
2

)
|11111〉01234

−i sin
(
α
2

)
cos3

(
α
2

)
|10111〉01234 − cos2

(
α
2

)
sin2

(
α
2

)
|01000〉01234

−i sin
(
α
2

)
cos3

(
α
2

)
|10011〉01234 − cos2

(
α
2

)
sin2

(
α
2

)
|01100〉01234

− sin2
(
α
2

)
cos2

(
α
2

)
|00100〉01234 + i cos

(
α
2

)
sin3

(
α
2

)
|11011〉01234

−i sin
(
α
2

)
cos3

(
α
2

)
|10001〉01234 − cos2

(
α
2

)
sin2

(
α
2

)
|01110〉01234

− sin2
(
α
2

)
cos2

(
α
2

)
|00110〉01234 + i cos

(
α
2

)
sin3

(
α
2

)
|11001〉01234

− sin2
(
α
2

)
cos2

(
α
2

)
|00010〉01234 + i cos

(
α
2

)
sin3

(
α
2

)
|11101〉01234

+i sin3
(
α
2

)
cos

(
α
2

)
|10101〉01234 + sin4

(
α
2

)
|01010〉01234




. (6.44)

For the purposes of illustration, it is possible to associate a classical interpretation

to the action of the sequence (Ĉ(0,1)Ŝ0), (Ĉ(0,2)Ŝ0), ... and the consequent development of

the system. Firstly, the operator Ŝ0 may be thought of as one that locally ‘rotates’ the

state of qubit 0 independently of the other four qubits. Then, during the development

of the system from time T to T + 1 it is assumed that the CNOT operator somehow

‘examines’ the state of qubit 0 before ‘extracting’ this information and registering it with

qubit T + 1. Moreover, in the current example this registration appears analogous to a

‘copying’ procedure, because each qubit is initially in the state |0〉 and CNOT operates

according to the rules Ĉ(a,b)(|0〉a ⊗ |0〉b) → |0〉a ⊗ |0〉b and Ĉ(a,b)(|1〉a ⊗ |0〉b) → |1〉a ⊗ |1〉b.
Thus, the action of the operators may be thought of as producing a ‘wave of informa-

tion’ that sweeps through the system, moving in time along the chain of qubits. During

the evolution from ΨT to ΨT+1 only the 0th and (T +1)th qubits appear affected, and once

this classical looking ‘wave’ has ‘passed’ the (T + 1)th qubit its sub-state is never again

altered by the dynamics. So, the qubit T + 1 appears to serve as a permanent record of

the sub-state of qubit 0 after the application of Ŝ to ΨT .

Because the spins of the qubits 1, 2, 3 and 4 appear to contain information about the

state of qubit 0 at times T = 1, T = 2, T = 3 and T = 4 respectively, it might be natural

to expect that these four qubits could be interrogated in order to learn about the ‘history’

of the development of qubit 0. In fact, because once information is encoded into these

qubits it is assumed permanent, the individual spins of these four correlated qubits 1, 2, 3

and 4 in the final state Ψ4 might be expected to contain a record of the whole history of

qubit 0’s development. In other words, it may be hoped that by asking a specific question

about the state of the T th qubit of Ψ4, insight might be gained into the state of qubit 0

at time T, where 1 ≤ T ≤ 4.

Furthermore, in fact, and following the lead of [68], one possible such insight might

involve the quantum correlation Qxy defined as

Qxy = 〈Ψ4|σ̂3
xσ̂

3
y|Ψ4〉 (6.45)
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which is the quantum analogue of the classical correlation Kxy defined in Section 6.1.3,

and where x, y = 1, 2, 3, 4 indicate the four ‘memory’ qubits. Again σ̂3
x is a Pauli operator

acting locally on qubit space x, and may therefore as before also be associated with an

equivalent global operator by extending it in the obvious way.

The validity of this ‘insight’ is investigated now.

In the context of (6.45), the operator σ̂3
x may be interpreted as an object that ‘asks

a question’ of the spin of qubit x in Ψ4 whilst doing nothing to any of the other qubits:

if the xth qubit is in the spin-down state |0〉x =
(
1
0

)
x
the operation σ̂3

x|0〉x =
(
1 0
0 −1

)
x

(
1
0

)
x

gives a result |0〉x, whereas if the xth qubit is in the spin-up state |1〉x =
(
0
1

)
x
then σ̂3

x|1〉x
gives a result −|1〉x.

So, the correlation Qxy sums the amplitudes of the terms in |Ψ4〉 for which the xth

and yth qubits have the same spin state, and subtracts from this the amplitudes of terms

in |Ψ4〉 for which the xth and yth qubits have opposite spin states. Moreover, due to the

sequential procedure followed in the generation of Ψ4, the suggestion is then that Qxy may

be thought of as the correlation between the state of qubit 0 at the times x and y. It is

this suggestion that is now examined.

First, though, the correlations Qxy must be evaluated. In the present representation

Q12 = 〈Ψ4|σ̂3
1σ̂

3
2|Ψ4〉 is given by

Q12 = cos4
(
α

2

)
cos4

(
α

2

)[
01234〈00000|σ̂3

1σ̂
3
2|00000〉01234

]
(6.46)

+ cos4
(
α

2

)
(−i cos3

(α
2

)
sin

(
α

2

)
)
[
01234〈00000|σ̂3

1σ̂
3
2|11111〉01234

]
+ ...

+(+i cos3
(α
2

)
sin

(
α

2

)
)(−i cos3

(α
2

)
sin

(
α

2

)
)
[
01234〈11111|σ̂3

1σ̂
3
2|11111〉01234

]
+

...+ sin4
(
α

2

)
sin4

(
α

2

)[
01234〈01010|σ̂3

1σ̂
3
2|01010〉01234

]

which, by using the orthonormality relation

01234〈i′j′k′l′m′|ijklm〉01234 = δii′δjj′δkk′δll′δmm′ (6.47)
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becomes

Q12 = cos8
(
α

2

)
+ cos6

(α
2

)
sin2

(
α

2

)
− sin2

(α
2

)
cos6

(
α

2

)
− cos4

(
α

2

)
sin4

(
α

2

)

+sin2
(α
2

)
cos6

(
α

2

)
+ cos4

(α
2

)
sin4

(
α

2

)
− sin4

(α
2

)
cos4

(
α

2

)

− cos2
(
α

2

)
sin6

(
α

2

)
+ sin2

(α
2

)
cos6

(
α

2

)
+ sin4

(α
2

)
cos4

(
α

2

)
(6.48)

− sin4
(α
2

)
cos4

(
α

2

)
− cos2

(
α

2

)
sin6

(
α

2

)
+ sin4

(α
2

)
cos4

(
α

2

)

+cos2
(α
2

)
sin6

(
α

2

)
− sin6

(α
2

)
cos2

(
α

2

)
− sin8

(
α

2

)

= cos8
(
α

2

)
+ 2 sin2

(α
2

)
cos6

(
α

2

)
− 2 cos2

(
α

2

)
sin6

(
α

2

)
− sin8

(
α

2

)

= cos(α).

Similarly, it can be shown that

Q23 = cos(α) (6.49)

Q34 = cos(α)

but

Q14 = cos3(α). (6.50)

As with the classical result K of Section 6.1.3, it is possible to define a multiple

correlation Q in the manner

Q = Q12 +Q23 +Q34 −Q14. (6.51)

such that in the present case

Q = 3 cos(α)− cos3(α). (6.52)

However, by differentiating it can readily be shown that

−2 ≤ Q ≤ 2 (6.53)

for all α, exactly as in the case of the classical Bell inequality. Thus, it appears that the

qubit system is obeying classical rules of dynamics, which initially suggests that something

has gone wrong in the analysis: if the qubits are to obey quantum dynamics, they might

be expected to violate the Bell inequality for at least some values of α.

The problem with the above process is that at first glance the operator Ĉ(0,T ) seems to

be behaving like an information extraction process. Every time a CNOT operator is used
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it seems to imply a modification of the state such that parts of it appear to be ‘storing’

information regarding the current state of qubit 0. An attempt is then made to access this

store at some later time.

This can lead to interpretational difficulties in quantum mechanics. In classical me-

chanics it is perfectly reasonable to discuss a system of individual bits, each of which

possesses a definite value at all times. Moreover, the bits possess these values whether or

not they are actually observed. So, in a classical dynamics it is possible to consider the

type of model described in Section 6.1.3 in which at any time T the ‘zeroth’ bit has a

certain and specific value, and this value is unambiguously and non-invasively copied by

the bit T without affecting anything else.

In quantum theory, however, the same is not true. Firstly, there can be no analogous

copying procedure in quantum mechanics. The No-Cloning theorem [69] demonstrates

that there is no general unitary operator û that maps an arbitrary initial product state of

the form ψ = |A〉i ⊗ |B〉j into a final product state ψ′ = |A〉i ⊗ |A〉j , where |X〉a ∈ Ha for

a = i, j, such that ψ′ = ûψ. Even though this is not a direct limitation in the current case

because the CNOT operator does not in general preserve separability, and is therefore not

actually trying to evolve states in this forbidden way, it is evident in this respect that

the classical CNOT operation and its quantum operator counterpart are not completely

equivalent in their action.

Secondly, when a system becomes entangled (a phenomenon unique to quantum me-

chanics) it is no longer valid to discuss the components of the entanglement in different

factor Hilbert spaces as having any sort of individual existence, independent of one an-

other. Just as in the EPR situation of Chapter 3 and the discussion of separability in

Chapter 4, the introduction of entanglement automatically and directly implies a break-

down of the ability to state that “this object with these properties is here”. From this

point of view it is therefore incorrect to say that qubit 0, which is initially a factor sub-

state of the completely separable state Ψ0, has any properties on its own, i.e. is either

independently up or down, at the times T = 1, 2, 3, 4 when it is entangled with the other

qubits.

Thirdly, and perhaps more fundamentally, it is also not correct to assume that the

system has any physical properties at all independent of observation, and so it is inaccurate

to argue that the individual qubits are in any definite state before the measurement. In

other words, if the system is not measured at time T it is not only impossible to say

which state it is in at this time, but also to say that this state actually exists in any

sort of physical sense. It cannot therefore be said that the system is undergoing any

particular ‘history’ or classical ‘trajectory’. In fact, the fourth state Ψ4 may be seen as

an entangled linear superposition of every potential classical ‘history’, and it is only when
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a measurement is finally performed that the system is forced to collapse into a particular

configuration of qubit sub-states. Moreover if the test is of a certain sort, for example σ̂3
y,

it may be natural at this point to falsely conclude that the resulting product of sub-states

indicates a particular single-valued history for the system (and hence qubit 0), because

this is what would be inducted in the world of classical physics familiar to scientists.

Strictly, in fact, it is actually misleading to even use the word ‘history’, and this point

leads to an important comment on the role of time in quantum dynamics. Recall that,

normally, quantum probabilities are used to discuss potential futures. In the present case,

however, it might appear that an attempt is being made to discuss a potential past, and

this is contrary to the usual assertion that the past is a definite and unique, well defined

classical construct.

But, the resolution of this contradiction is to note that the potential pasts discussed

in the superposition of ‘histories’ in Ψ4 instead really form the basis for a set of potential

futures. Further, in quantum mechanics these potential futures are themselves only defined

relative to the eigenstates of whichever Hermitian operator is actually used to test the state.

More accurately, then, the discussion regarding the system’s ‘history’ should perhaps be

replaced by the question: “if an operator σ̂3
y is chosen that has eigenvectors |00000〉01234,

|10000〉01234, |01000〉01234, ..., |11111〉01234 what is the probability of projecting Ψ4 into one

of these possible future states?”.

Indeed, this point would be clarified further if, instead of σ̂3
y, the state Ψ4 was tested

by an operator that only had entangled eigenstates; in this instance, none of the separable

product states |ijklm〉01234 could be an outcome, and so no confusion would occur by

associating the result of this test with an apparent classical history for the system.

The issue can be addressed further. Because of the earlier discussions that only ob-

served states can be considered physical, it is not strictly meaningful to consider the state

having any physical reality whatsoever between the preparation of the state Ψ0 at time 0

and the measurement of Ψ4 after time 4. The quantum system is not proceeding through

a definite sequence of states Ψ0 → Ψ1 → Ψ2 → Ψ3 → Ψ4, as would be expected in a

semi-classical model evolving along a specific trajectory; instead, only initially prepared

states Ψ0 and measured outcomes 〈Ψ4|σ̂3
xσ̂

3
y|Ψ4〉 are physically relevant.

In other words, from the point of view of the state there are not four individual steps

existing between Ψ0 and Ψ4, and this conclusion may be highlighted by rewriting Ψ4 =

Û4Ψ0 as in equation (6.38) and noting that, because Û4 ≡ Ĉ(0,4)Ŝ0Ĉ(0,3)Ŝ0Ĉ(0,2)Ŝ0Ĉ(0,1)Ŝ0

is just a unitary operator, the state Ψ4 is really only ‘one evolution’ away from the state

Ψ0.

In fact, an immediate analogy may be drawn here to the quantum universe model
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proposed throughout this thesis: two states Ψn and Ψn+1 of the Universe are deemed

successive if there is only one collapse ‘separating’ them. The states Ψ0 and Ψ4 of the

present model, however, are not separated by any collapses; Ψ4 is simply an evolved

version of Ψ0, and as such it is not true to say that the system has undergone four distinct

developments.

It might perhaps be more honest, then, to relabel Ψ4 as Ψ′
0, that is, an evolved version

of Ψ0. The ‘temporal parameter’ 4 on Ψ4 should really only be seen as a marker of the

external processes occurring during the unitary Schrödinger evolution from Ψ0 → Ψ′
0, for

Ψ′
0 ≡ Ψ4 = Û4Ψ0, such that the state in question can only be said to have a ‘history’

between T = 0 and T = 4 relative to the development of the rest of the Universe during

this time. This ‘external history’ occurs because an external scientist, who is assumed

isolated from the state, has physically applied the operator Ŝ0, followed by the operator

Ĉ(0,1), then Ŝ0 again, then Ĉ(0,2), and so on until she applies Ĉ(0,4). Indeed, recall that T

was originally defined just as an external time parameter, and is hence only valid relative

to the observer who can remember ‘doing something’ in the interval during which the

state was evolving, and thereby noticing that, relative to other external processes, four

time steps (or ‘(q-) ticks’ of the observer’s clock [54]) appeared to elapse between the

preparation of the state Ψ0 and the eventual measurement of 〈Ψ4|σ̂3
xσ̂

3
y|Ψ4〉. This point

reinforces the discussions in Chapters 5 and 8 that physical time in the quantum Universe

is not absolute but contextual, and should only be discussed relative to change and the

‘path’ taken by endo-observers.

Summarising, from the ‘internal’ point of view of the isolated quantum system, the

state Ψ0 develops to Ψ4 ≡ Ψ′
0 in one ‘rotation’, whereas from an external viewpoint of

an observer developing and interacting with her surroundings in her own personal time T

the process appears to occur in four distinct steps. Moreover, it is by falsely granting the

external time parameter T an unphysical, internal significance that may be seen to form

an origin of the current difficulties.

The problem is additionally complicated in the present situation by misinterpreting

the result of 〈Ψ4|σ̂3
xσ̂

3
y|Ψ4〉 as seeming to indicate not only that the system followed a

particular classical path, but also as to what this path was. Specifically, the inherent

error is to assume that even if the state could physically be discussed between external

times 0 and 4, the result of 〈Ψ4|σ̂3
xσ̂

3
y|Ψ4〉 would actually provide insight into what it was

doing. In this case, the mistake lies in assuming that both the operators σ̂3
x and σ̂3

y are

measuring the same state Ψ4. This, however, is not true, because Ψ4 cannot be measured

non-invasively: the measurement of Ψ4 by the operator σ̂3
y collapses the entangled state
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into one of the 16 superposed states10 given in equation (6.44), but by doing so destroys

all of the quantum interferences exhibited by Ψ4. Thus the system is projected into a

classical-looking product of qubit sub-states.

Any subsequent measurement with an operator σ̂3
x then produces with certainty either

an up result or a down result, because qubit x is no longer in an entangled superposition

of the two. So, contrary to what might be hoped, this further investigation of the system

by the operator σ̂3
x is not asking a question about what the state of qubit x was before the

measurement of Ψ4 by σ̂3
y, but is asking about what the state of qubit x is afterwards.

Similarly, and from above, any such further investigation by σ̂3
x is not asking a question

about what the state of qubit x (or equivalently qubit 0) was at an earlier (external) time

T = x, but is asking about what the state of qubit x is now.

As an illustration of this, if y = 4 and σ̂3
4 finds qubit 4 to be up, and thereby collapses

the system into, say, the state Φ given by Φ ≡ |11001〉01234, the subsequent measurement

of Φ by σ̂3
1 seems at first glance to indicate that qubit 1 was definitely in an up state

at external time T = 1. This, however, is not the correct analysis: at external time

T = 1 qubit 1 was really in an entangled linear superposition of both up and down states,

assuming of course that it is possible to give any existence at all to the state at a time

when it was not measured. In short, the mistake is then to conclude that |11001〉01234
represents the history of the system over an external time span 1 ≤ T ≤ 4, and not just

the outcome eigenstate of a particular test.

Overall, therefore, the correlation Qxy = 〈Ψ4|σ̂3
xσ̂

3
y|Ψ4〉 should not be viewed as asking

about how many possible ‘histories’ of the state between external times T = 0 and 4

shared certain characteristics, but is asking about how many from a set of sixteen classical

looking eigenstates of the form |ijklm〉01234 share them.

It is hardly surprising, then, that by ascribing to a state such as Φ ≡ |11001〉01234
the semi-classical status of representing what actually happened, i.e. the perspective of

a single-valued classical reality for the state’s history, the correlations Q do not violate

the classical Bell inequality. In this sense the above method is just a form of ‘dressed-

up’ classical probability, with statistical correlations compared between states that have

undergone well defined histories. In effect, the classical probabilities a, ab, ab̄ē, ... etc. of

Section 6.1.3 have been replaced by sines and cosines, such that for example the probability

P (01100) = āc̄gn that the bits have the final configuration 01100 in the classical case is

directly equivalent to the quantum case where there is a probability cos4
(
α
2

)
sin4

(
α
2

)
that

the state collapses to |01100〉01234.
As an aside, note that it is of course always possible to examine an ensemble of identi-

10Given Ψ4 and an operator with 32 orthonormal eigenstates of the form |ijklm〉01234 for i, j, k, l,m =

0, 1, there are 16 non-zero amplitudes 〈ijklm|Ψ4〉, and hence 16 possible next states.
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cally prepared and evolved states Ψ4 and consider a density matrix of possible eigenstates,

but it must be stressed that this is still just a classical, probabilistic result due to the nature

of the collapse process, and as such would hence still be expected to obey Bell relations

in the corresponding classical way.

Summarising, the problem of the initial analysis of this system was two-fold. Firstly,

it is incorrect to assume that σ̂3
x and σ̂3

y are both measuring the state Ψ4, because neither

acts non-invasively. Secondly, it is wrong to apply an external time parameter T internally

to the state. So, any outcome resulting from these should not be thought of as containing

information about the ‘historical development’ of the state between 1 ≤ T ≤ 4.

It is beneficial to rephrase this synopsis in the context of the quantum Universe. In

the fully quantum reality proposed in this thesis, the above type of ‘experiment’ would

ultimately have to be viewed on the emergent level as one group of factors of the Universe’s

state (representing a scientist) appearing to prepare, evolve and test another group of

factors (the five qubit system), even though this perspective was not specified per se.

Moreover, and as discussed in Chapter 5 and elsewhere, each of these groups of factors

would be capable of experiencing their own passages of endo-time, relative to their own

internal transitions and changes, as the Universe jumps from one state to the next.

Of course, in the current case the variable T was defined as the endo-time of the

observer. The problem then arose because this time parameter T was taken to be absolute

and universal, even though it is only relative, endo-times that can be given any actual

physical significance. After all, recall that the endo-time of an observer is the exo-time of

the observed, and vice versa. T cannot therefore also be taken to be the endo-time for

the qubit system, and it is by incorrectly doing so that results in a misinterpretation of

(6.45).

Overall, since the development of the state of the Universe is ultimately taken to be

responsible for the development of the sub-states of everything in it (including the observer

and the qubits), it must be assumed to change in a very special way if the observer

appears to experience four distinct time steps between the preparation of the qubits and

their measurement, whilst the qubit system itself appears to experience none. So, apart

from the described comments and constraints on the role of time in this type of quantum

computation, a general conclusion of the above discussion should therefore be that care is

clearly needed when attempting to analyse the sort of endo-physical experiment presented

here. It is this issue that is the focus of the next section.
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6.2 Information Flow in the Quantum Universe

In many ways, computation may be described as the manipulation of information. After

all, classical computer science generically involves the encoding of some sort of physical

input into a series of ‘symbols’, the meaning of which is only valid relative to the informa-

tion regarding what they actually represent. Furthermore, during an actual computation

these symbols are processed to generate a final sequence, and the information contained in

this can itself then be decoded to describe the properties of a physical output. Of course,

it does not matter what form these symbols take: 0’s and 1’s, low-high voltages, squares

and circles, offs or ons; what is important is the information content they represent. In

fact, it is worth noting here that even a hard drive, the largest part of a modern personal

computer, is specifically designed for the storage of data that is not related in any obvious

way to the physical input it represents that was entered into the machine.

In other words, it may in some ways be imagined that in computational procedures the

‘properties’ of the physical input are directly translated into information, for example as a

specific series of 0’s and 1’s, and then it is the information itself that is actually processed.

For a Universe running as an enormous quantum computation, the same ideas might

be expected to be true. In fact, the central theme of Chapters 4 and 5 was to demonstrate

how physical concepts such as classical identity and spatial location might be encoded as

certain features of the quantum state representing the Universe, in this case in terms of

separability and the ensuing relationships between the various factors. Indeed, the possi-

bility of encoding space through informational methods should perhaps not be surprising;

after all recall that space and positional relations may themselves be envisaged as a type

of information storage process: a spatial separation between two objects is ultimately

equivalent to the information that they are semi-classical, individual and not in contact.

So, in the sense proposed in the previous chapters, the separability of the state may

be said to comprise a part of the information it intrinsically carries. Moreover, due to

this relationship a change in separability from one jump to the next consequently implies

a change in information. Thus, by defining the separability of the state as part of its

information content, it is evident that some of this information can be used (i.e. ‘decoded’)

to deduce particular physical properties, such as a quantum origin of space.

It might ultimately be expected, then, that any observed changes in physical systems

involve changes in the information carried by the state. In fact, by reversing this argument

due to the assumed ‘primacy’ of the quantum state, it might equally be expected that

changes in the information contained in the state could result in physical changes occurring

on the emergent level. Going further, since in the paradigm proposed in this thesis the
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passage of time and the jump from the state Ψn to Ψn+1 is parameterised in terms of

the acquisition of information, a change in the information content of the state might be

considered essential for any suggested dynamics of the Universe.

As a highly schematic example of this, it could be imagined that a particular change

in the state’s information content from one jump to the next could, somehow, eventually

result in one collection of factors of the Universe’s state (representing a human observer)

being led to believe that another group of factors of the Universe’s state (representing

particle A) has reacted with a third group of factors (representing particle B). Although

the details are left deliberately vague here, the point is that by a change in the information

carried by the state of the Universe, perhaps involving a change in its separability, it might

on the emergent level appear to the semi-classical observer that an experiment has been

performed between particles A and B, or even perhaps that particles A and B collided.

The purpose of this section is to examine what it actually means to say that the

information content of a state has changed. The issues will be examined as to what

the necessary conditions for this are, what it implies, and how this relates to physics.

The nature of physical experimentation and endo-physical measurement in the quantum

Universe will then be explored.

6.2.1 Types of Transformation

Consider a procedure Π that relates two states Θ and Φ, both of which are contained in

the Hilbert space H. As will be explained below in a variety of contexts, the relationship

here is defined such that the state Φ is the result of the procedure Π being performed on

the state Θ; this procedure could perhaps involve a state reduction process, or even be

some sort of mapping of the form Π : Θ → Θ′ = Φ. In fact, since information changing

procedures are taken to provide the basis for dynamical development of the quantum

Universe, in cases incorporating information change it might be possible to view Θ as Ψn

and Φ as Ψn+1, as will be discussed later.

The issue of current interest is now to determine when a given procedure Π may be

said to result in a change in the information carried by the state. In short, for what types

of process Π is the outcome Φ noticeably and physically different from Θ?

Before explaining what is meant to say that information has changed in a quantum

system, it is perhaps easier to first demonstrate what it means to say that it has not.

Consider, for example, a null test on the state Θ, defined previously as an operator N̂ with

an eigenvector Φ where Φ ≡ Θ, such that N̂Θ = λΘ with λ an eigenvalue. In this case, the

procedure N̂ gives an outcome Φ that is exactly the same as the initial state Θ, such that
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this type of test leads to no overall change: the resulting state Φ is indistinguishable from

the initial state Θ, and the action of the test is as if nothing has happened. Clearly, then,

the development of a quantum system with these sorts of null tests is effectively trivial,

because only differences can be physically observed. Consequently, and as discussed in

Chapter 3, a quantum universe in the state Ψn may be developed any number of times

by operators Σ̂ that possess the eigenvector Ψn, but it is only when an operator Σ̂′ is

encountered which does not have this eigenvector that the universe jumps to a different

state. Under such circumstances, it is now possible to label whichever eigenvector the

universe happens to jump to as the new state, Ψn+1.

Of course, it is also possible to discuss local null tests. If Θ is separable in the form

Θ ≡ α ⊗ β, where α ∈ Hα, β ∈ Hβ and Θ ∈ H[αβ] ≡ H, then an operator N̂β may be

said to be local null test on β if it has eigenvectors of the form Φ = γ ⊗ β, where γ ∈ Hα.

In this case, a development from Θ to Φ leaves the factor β invariant even though the

sub-state in Hilbert space Hα has changed.

As discussed in Chapter 5, local null tests play an important role in the dynamics of the

quantum Universe, for example as the origin of a ‘route-dependent endo-time’ experienced

by different factors of the developing state. Further, in this instance Θ 6= Φ so it might

be expected that the information carried by the states may have changed in some respect.

This assertion is to be investigated.

In global null tests the information contained in the outcome state Φ(= Θ) is obvi-

ously always the same as that carried by the initial state Θ, whereas in local null tests

the information carried by the ‘before’ and ‘after’ states may be different. This type of

comparison leads naturally to a discussion of ‘passive’ and ‘active’ transformations, both

of which will be defined below. As will become evident, a global null test provides a trivial

example of a passive transformation, whereas local null tests may conversely cause active

transformations.

Passive and active transformations are defined [70] by the statement: “An active

transformation is one which actually changes the physical state of a system and

makes sense even in the absence of a coordinate system, whereas a passive trans-

formation is merely a change in the coordinate system of no physical significance.”

Furthermore, on the grounds that every transformation either changes the physical state

of a system, or else it does not, the definition of passive transformations is revised in the

following to include every transformation that is not active. Thus, passive transformations

are taken to be effectively synonymous with ‘non-active’ transformations, and hence every

transformation is assumed to be either passive or active.

So, after a passive transformation from one state of a system to another, no observ-

able changes have occurred. Any apparent differences in ‘before’ and ‘after’ states are
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merely superficial, and may only arise due to a change in the way the system is being

described. Alternatively, since generally in physics, and especially in the endo-physical

approach advocated in this thesis, only relative differences between the parts of a system

are measurable, an example of a passive transformation is therefore one in which every

part of the system is altered in exactly the same way.

Cases of such transformations include:

• The relabelling of the vacuum ground state in quantum field theory by the addition

of a constant term to the energy eigenvalues. This effectively forms the basis of

the renormalisation program, and is ‘valid’ (in some senses) because only relative

differences are measurable in the laboratory;

• The addition of a constant term a to two numbers x and y under the subtraction

operation. That is, if x → x′ = x + a and y → y′ = y + a, then x − y = x′ − y′ =

(x+ a)− (y + a);

• The rotation of an entire space through some angle, such that no changes occur

in the relative positional relationships between any of the objects inside this space.

Such a transformation is unobservable from the perspective of an observer contained

entirely within the space;

• A change in the coordinate system of, say, a 3-dimensional space from Cartesian

to cylindrical axes. Indeed, much of general relativity is based upon this type of

invariance;

• A change in basis for a Hilbert space. For example, if Ba = {|i〉a : i = 0, 1, ..., da}
is an orthonormal basis for Hilbert space Ha, and if Bb = {|j〉b : j = 0, 1, ..., db}
is an orthonormal basis for Hilbert space Hb, then a state ψ ∈ H[ab] given by ψ =
∑da

x=0

∑db
y=0Cxy|x〉a⊗ |y〉b with complex coefficient matrix Cxy is invariant to any

relabelling Ba → B′
a = {|i′〉a : i′ = 0, 1, ..., da} and Bb → B′

b = {|j′〉a : j′ = 0, 1, ..., da}
of the individual subregister bases, where |i′〉a 6= |i〉a and |j′〉b 6= |j〉b;

and so on. The point is that although a mathematical change may appear to have occurred

during a passive transformation, there are no intrinsic physical consequences. In short,

many passive transformations may be realised or removed simply by relabelling the ‘axes’.

Conversely, an active transformation is one for which differences do become apparent

when ‘before’ and ‘after’ states are compared. In other words, if Φ cannot simply be

rewritten as a relabelled version of Θ, then it must be an active transformation that

relates Θ to Φ.
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In fact, in active transformations different parts of the system may actually change

relative to each other. In this sense, then, it is active transformations that are seen to

occur in real physics experiments, because in these situations the physicist notices that

the state under investigation has changed relative to herself (which she often believes has

not changed). A good example here is the measurement of an entangled EPR state and its

subsequent collapse into a product of factors: physically these ‘before’ and ‘after’ states

are completely different, and this fact is observable.

As discussed earlier, the separability of a state may be described as being part of the

‘information’ it contains. So, a change in separability of a state must therefore result

in a change in this information. As a consequence of this, another example of an active

transformation between Θ and Φ is one for which these two states lie in different partitions

of the total Hilbert space H. In this case, Θ and Φ must both be separable in different

ways, and so by the above description must duly represent different information contents.

As an illustration, it is evident that the EPR experiment mentioned above satisfies this

condition.

Active and passive transformations may readily be seen in the context of the quantum

Universe. For instance, an unitary operator Û acting globally on every element of the

Hilbert space H leaves all inner products between these elements invariant. That is, if

Ψ′
n = ÛΨn and Ψ′

n+1 = ÛΨn+1, then 〈Ψn+1|Ψn〉 = 〈Ψ′
n+1|Ψ′

n〉, and such a transformation

could not physically be detected. On the other hand, because (by assumption) Ψn+1 6= Ψn

then the jump from state Ψn to the state Ψn+1 must be regarded as a physically realisable,

active transformation. Active and passive transformations consequently play different roles

in dynamics.

However, given that in an endo-physical description of reality both the ‘experiment’

and the ‘experimentee’ are seen as different parts of the same quantum Universe, what is

really of interest in such a picture are the relative changes occurring between the sub-states

of this system. Further, it is evident that such real physical results, where one system is

observed to change relative to another, must not be ‘explainable away’ simply by a passive

relabelling of axes, or by a global transformation of every part of the Universe in the same

manner. These changes are physically observed, and so because a passive transformation

leads to no physical change in a system, the conclusion is then that passive transformations

cannot be responsible for changes in the information contained in the state of the quantum

Universe as it develops. On the contrary, because active transformations do result in a

change of the state of a system, it is these that are conjectured to ultimately form the

basis for information change and exchange, and the nature of endo-physical observation.

It is possible to further investigate what is meant by a passive change of information
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in quantum mechanics by using the concept of local transformations. In fact, because by

definition a transformation that is not passive must be active, a converse exploration is

equally demonstrated.

As described above, a simple relabelling of the basis implies a passive transformation.

In such relabellings there are no non-trivial differences in the state of the system before

and after the relabelling, and hence no observable changes. The information contained by

the state is therefore invariant to such a change. Furthermore, because of the asserted link

between information content and separability, in passive transformations the partition

containing the state is not expected to change: separable states remain separable, and

entangled factors remain entangled, etc.

Reversing these lines of argument provides a definition for passive transformation.

Consider a Hilbert space H[1...N ] factorisable into N subregisters of prime dimension, and

further assume that the states Θ and Φ are contained in this space. Consider also a basis

set BA of vectors spanning H[1...N ], and assume that each member of BA is completely

separable relative to the N subregisters of H[1...N ]. By defining

BA,m = {|im〉m : im = 0, 1, ..., (dm − 1)} (6.54)

as an orthonormal basis for factor Hilbert spaceHm of dimension dm, wherem = 1, 2, ..., N,

the set BA may be defined as

BA ≡ {|i1〉1 ⊗ |i2〉2 ⊗ ...⊗ |iN 〉N : im = 0, 1, ..., (dm − 1);m = 1, 2, ..., N}. (6.55)

Of course, this construction is not unique. It is equally possible to define a different

orthonormal basis set BB,m for the factor Hilbert space Hm as BB,m = {|i′m〉m : i′m =

0, 1, ..., (dm−1)}, and similarly define another completely separable basis set BB of vectors

spanning H[1...N ] as

BB ≡ {|i′1〉1 ⊗ |i′2〉2 ⊗ ...⊗ |i′N 〉N : i′m = 0, 1, ..., (dm − 1);m = 1, 2, ..., N}. (6.56)

Consider now a state Θ, defined relative to BA as

Θ =

(d1−1)∑

i1=0

(d2−1)∑

i2=0

...

(dN−1)∑

iN=0

Ci1i2...iN |i1〉1 ⊗ |i2〉2 ⊗ ...⊗ |iN 〉N , (6.57)

and a state Φ defined relative to BB as

Φ =

(d1−1)∑

i′1=0

(d2−1)∑

i′2=0

...

(dN−1)∑

i′N=0

Ci′1i
′
2...i

′
N
|i′1〉1 ⊗ |i′2〉2 ⊗ ...⊗ |i′N 〉N (6.58)

where the Ci1i2...iN and Ci′1i
′
2...i

′
N

give rise to complex coefficient matrices.

It is desirable to examine whether Θ and Φ are intrinsically different vectors, or whether

Φ is instead just a ‘relabelled’ version of Θ in an alternative basis. To this end, if it is
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possible to rotate (in a strictly mathematical sense) the N individual components |im〉m ∈
Hm of Θ into the components |i′m〉m to give a new state Θ′, then it is evident that Θ and

Φ are equivalent if Θ′ = Φ.

Similarly, if the basis set BA,m is transformed into the basis set BB,m for each m, such

that BA is therefore transformed into BB, and if Θ is rewritten in this new basis and

called Θ′, then the states Θ and Φ are again mathematically equivalent if Θ′ = Φ. In both

cases Φ is just a different version of Θ, but expressed in an alternative basis. In such a

circumstance it may then be said that Θ can be passively transformed into Φ.

This observation can be stated more precisely by noting that the individual rotations

can be achieved by the use of unitary operators acting locally. If the unitary operator ÛL

is defined as a product of local unitary operators, ÛL = û1 ⊗ û2 ⊗ ... ⊗ ûN where ûm is

a unitary operator acting locally in factor Hilbert space Hm, then the state Φ is just a

relabelled version of Θ if

Θ′ ≡ ÛLΘ = (û1 ⊗ û2 ⊗ ...⊗ ûN )Θ = Φ. (6.59)

Paraphrasing, Θ and Φ are equivalent if there exists a locally acting, unitary operator

ÛL relating them in this way.

As an aside, note that by definition any unitary transformation Û acting locally in the

individual factors of H[1...N ] can be written in the factorisable form Û = û1⊗ û2⊗ ...⊗ ûN ,

where ûm is an unitary operator in Hm for m = 1, 2, ..., N. Equally, if it acts locally the

operator Û must necessarily be factorisable. Moreover, because it is acting locally on

every subregister it must be completely or fundamentally factorised, i.e. factorisable into

N factors.

The above results may be compared to global transformations, that is, those in which

the overall basis sets BA and BB are rotated instead of their individual subregister basis

sets BA,m and BB,m, or equivalently those for which the overall state Θ is transformed

‘at once’ instead of its components in Hm being transformed individually. It is always

mathematically possible to find a unitary operator ÛG that transforms a given state Θ

globally into any other state Φ, such that Φ = ÛGΘ. However, such a transformation

may not go unnoticed: for example, Θ could be completely separable whilst Φ could be

completely entangled, and these such states are fundamentally and physically different.

Physically, separations and entanglements are completely different entities.

The same is not true for states that can be transformed locally into each other. If a

state Θ can be locally transformed into the state Φ, then not only are these two states

mathematically equivalent but they are also physically indistinct. In this case, the phys-

ical information contained in the state has remained unaffected by the rotation because
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such states can be interchanged simply by a suitable and trivial relabelling of the basis.

Paraphrasing, because a local unitary transformation just leads to a rotation or relabelling

of the basis, it is unobservable in physics, and it may hence be described as passive. Con-

versely, recall that it is the active transformations, i.e. the processes that cause relative

changes, that are of interest to endo-physics.

As an example of these ideas, consider a four dimensional Hilbert space H[12] factoris-

able as H[12] = H1 ⊗H2, and spanned by the orthonormal basis B12 = {|i〉1 ⊗ |j〉2 : i, j =
0, 1}. Consider also the separable states µ = |0〉1 ⊗ |1〉2 and χ = (a|0〉1 + b|1〉1)⊗ (c|0〉2 +
d|1〉2) for a, b, c, d ∈ C, as well as the entangled state ω = |0〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2. It is

always possible to find unitary transformations ÛG and Û ′
G that act globally on one of the

states µ, χ or ω, and not locally on its individual components, that transform it into one

of the others. That is, it is always possible to find global, unitary operators of the form

ÛG and Û ′
G that satisfy µ = ÛGχ = Û ′

Gω.

It is also possible to find a (factorisable) local unitary transformation Û ′′
L = û1⊗û2 that

relates µ to χ, where û1 and û2 are unitary operators acting locally on the components of

µ and χ in the subregister Hilbert spaces H1 and H2 respectively. That is, there exists an

operator Û ′′
L such that

Û ′′
Lµ = [û1 ⊗ û2](|0〉1 ⊗ |1〉2) = [û1|0〉1]⊗ [û2|1〉2] (6.60)

= (a|0〉1 + b|1〉1)⊗ (c|0〉2 + d|1〉2) = χ.

However it is not possible to find a factorisable, unitary operator of the form Û ′′′
L =

v̂1⊗ v̂2 that transforms ω to µ, where v̂1 and v̂2 are local unitary operators in H1 and H2.

That is, there is no unitary operator Û ′′′
L acting locally such that µ = Û ′′′

L ω = (v̂1 ⊗ v̂2)ω.

Equally, the separable state χ cannot be transformed into the entangled state ω by unitary

operators acting locally in the individual subregisters.

It seems that the outcome of a unitary operator acting locally on a state is in the same

partition as the original. This observation leads to the following theorem.

Theorem 6.1 Separations and entanglements are preserved by unitary transforma-

tions acting locally in the individual subregisters.

Proof. The theorem is proved first for the separations, and this is then used for the

entanglements.

• Separations:
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Consider a Hilbert space H[1...N ] factorisable in N subregisters Hm of prime dimension.

Consider also a unitary operator Û1...N acting locally in the individual subregisters Hm.

Then, by definition, Û1...N must be completely factorisable, such that Û1...N ≡ û1 ⊗ û2 ⊗
...⊗ ûN .

Consider further a completely separable state ϕ1...N ∈ H1...N ⊂ H[1...N ] written as

ϕ1...N ≡ ϕ1 ⊗ ϕ2 ⊗ ...⊗ ϕN where ϕm ∈ Hm. The evolution of ϕ1...N by Û1...N is given by

Û1...Nϕ1...N = (û1 ⊗ û2 ⊗ ...⊗ ûN ) (ϕ1 ⊗ ϕ2 ⊗ ...⊗ ϕN ) (6.61)

= (û1ϕ1)⊗ (û2ϕ2)⊗ ...⊗ (ûNϕN )

= ϕ′
1 ⊗ ϕ′

2 ⊗ ...⊗ ϕ′
N

where ϕ′
m ≡ ûmϕm ∈ Hm. Clearly the outcome ϕ′

1 ⊗ϕ′
2 ⊗ ...⊗ϕ′

N is also a member of the

separation H1...N , as required for the theorem.

• Entanglements:

The proof here is by contradiction. Consider now a completely entangled state ψ1...N

∈ H1...N ⊂ H[1...N ], and consider a hypothetical unitary operator Û1...N that, when acting

locally upon ψ1...N , evolves it into a state ψ′ that is not in the partition H1...N . Because

ψ′ /∈ H1...N it follows that ψ′ must be separable into at least two factors, and so must be

a member of the complement set ψ′ ∈ (H[1...N ] −H1...N ).

In this case, it would be possible to write

Û1...Nψ1...N = ψ′ = α⊗ β (6.62)

with α ∈ Hα ≡ H[1...M ] and β ∈ Hβ ≡ H[(M+1)...N ], where for simplification a suitable

relabelling of the subregisters has been performed to adopt an ascending order, and it is

noted that α and β may themselves be separable further relative to their factor Hilbert

spaces.

Now, because Û1...N is unitary it has a unique inverse denoted by (Û1...N )−1, such that

(Û1...N )−1(Û1...N ) = Î[1...N ] where Î[1...N ] is the identity operator in H[1...N ]. To discover the

form of (Û1...N )−1, observe that if it may be written as a completely factorisable product

(Û1...N )−1 = û−1
1 ⊗ û−1

2 ⊗ ...⊗ û−1
N (6.63)

then

(Û1...N )−1(Û1...N ) =
(
û−1
1 ⊗ û−1

2 ⊗ ...⊗ û−1
N

)
(û1 ⊗ û2 ⊗ ...⊗ ûN ) (6.64)

=
(
û−1
1 û1

)
⊗

(
û−1
2 û2

)
⊗ ...⊗

(
û−1
N ûN

)

=
(
Î1

)
⊗
(
Î2

)
⊗ ...⊗

(
ÎN

)
= Î1...N
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where Îm is the identity operator for Hm. Moreover, because by definition there can only

be one unitary operator (Û1...N )−1 satisfying (Û1...N )−1(Û1...N ) = Î[1...N ] (i.e. Û1...N can

only have one inverse), the inverse of Û1...N must be this completely factorisable operator.

Because (Û1...N )−1 is completely factorisable, it must also factorise in the form

(Û1...N )−1 = (Û1...M )−1 ⊗ (Û(M+1)...N )−1 = (Ûα)
−1 ⊗ (Ûβ)

−1, (6.65)

with Ûα and Ûβ acting locally in Hilbert spaces Hα and Hβ respectively. So, applying

(Û1...N )−1 to ψ′ gives

(Û1...N )−1ψ′ =
(
(Ûα)

−1 ⊗ (Ûβ)
−1

)
(α⊗ β) (6.66)

=
(
(Ûα)

−1α
)
⊗

(
(Ûβ)

−1β
)
.

However, (Ûα)
−1 and (Ûβ)

−1 are themselves just unitary operators, so (Ûα)
−1α = α′

and (Ûβ)
−1β = β′, where α′ ∈ Hα ≡ H[1...M ] and β′ ∈ Hβ ≡ H[(M+1)...N ]. So

(Û1...N )−1ψ′ = α′ ⊗ β′ (6.67)

but note that also

(Û1...N )−1ψ′ = (Û1...N )−1[Û1...Nψ1...N ] = ψ1...N (6.68)

such that equating leads to

ψ1...N = α′ ⊗ β′ (6.69)

which is clearly a contradiction. Thus, the equation Û1...Nψ1...N = ψ′ = α ⊗ β cannot be

true, so the conclusion must be that local unitary operators Û1...N preserve entanglements:

Û1...Nψ1...N = ψ′′, where ψ′′ ∈ H1...N .

Note that the proof is readily extended to states that are a separable product of

entangled sub-states, because the above argument is equally true for each of the individual

factors.

Thus, unitary operators acting locally on the components of a state in its fundamental

subregisters do not affect its partition. Conversely, partition changing processes may

not be accomplished by local unitary operators, and so cannot be ‘removed’ by a simple

relabelling of the basis.

It is consequently now possible to specify what is meant by information change, as

discussed in the next sub-section.
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6.2.2 Information Change and Exchange

Attention is now turned to transformations between the states of the quantum Universe.

For what potential transitions from Ψn to a next possible state is there an inherent and

intrinsic change of information? Further, in the context of the ‘measurement problem’,

for what transitions from Ψn to Ψn+1 is there an actual exchange of information between

different parts of the state?

From the work of the previous sub-section, it is now possible to argue that the transi-

tion from Θ and Φ implies a change of information if these two states are fundamentally

different. The question then becomes: when might a difference be described as funda-

mental, to which an answer may rely on whether or not it can be ‘transformed away’ by

a simple relabelling of the basis. Specifically, because a basis relabelling may be accom-

plished by the use of local unitary operators, it is evident that Θ and Φ are indistinct if

Θ may be locally transformed into Φ.

Going further, it has been demonstrated that unitary operators acting locally on a

state do not affect its partition. Thus, if Θ and Φ are in different partitions it is clear

that Θ cannot be transformed into Φ by the use of local unitary operators. Moreover,

this implies that Θ may not then be rewritten as Φ simply by a passive relabelling of

the basis. Consequently, such a partition changing transition must imply a change in the

information carried by the state, and this point is reinforced by recalling that because a

state’s separability is related to its information content, any change in partition necessarily

results in a change of information.

Summarising, partition changing processes necessarily imply an information change,

and hence represent active transformations. Conversely, it might automatically be ex-

pected that all partition preserving transformations are accordingly passive.

Care is needed, however, when applying this rule to the situation where the state is

not just an arbitrary vector in an abstract mathematical space, but is instead representing

an actual physical system. The following examples demonstrate this point.

For instance, does the change from the state Θ defined as Θ ≡ |0〉1 ⊗ |1〉2− |1〉1 ⊗ |0〉2
to the state Φ ≡ |0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2 constitute a change in information? It can be

achieved by the local unitary operator σ̂3
1 ⊗ Î2, such that Φ = [σ̂3

1 ⊗ Î2]Θ where σ̂3
1 is a

Pauli operator in H1 and Î2 is the identity in H2, and so may be thought of simply as a

rotation of the state of qubit 1, or alternatively as a relabelling of the |1〉1 basis of H2 to

−|1〉1. Clearly, Θ and Φ are in the same partition here, but in this circumstance are the

‘before’ and ‘after’ entangled states fundamentally the same?

Indeed, could such an apparently passive transformation ever be physically allowed in

nature? Say, for example, that H1 represents the Hilbert space of an electron and H2 the
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Hilbert space of a positron, with |0〉 representing a spin down state and |1〉 a spin up (in

some direction). On the subregister level the two states Θ and Φ are related by a local

unitary change of basis, but if the wavefunction is instead ascribed to represent entangled

up and down electrons and positrons the result of the above sort of change would be an

anti-symmetric state becoming a symmetric one, and these are physically different. Is

this then meant to imply that transformations that are defined as mathematically passive

could potentially lead to observable physical consequences?

As a second example of this type of problem, consider a state Ψn ∈ H[12R] of the

universe prepared such that

Ψn = [|0〉1 ⊗ |0〉2 − |1〉1 ⊗ |1〉2]⊗ |R〉R (6.70)

where H1 and H2 are qubit subregisters spanned by orthonormal bases {|0〉1, |1〉1} and

{|0〉2, |1〉2}, and R represents the rest of the universe in Hilbert sub-space HR, presumably

itself of enormous dimension and a product of very many factors. Obviously, qubits 1 and

2 are in a correlated state here, so an arbitrary measurement of qubit 1 with the result

|i〉1, for i = 0, 1, projects qubit 2 into the same state |i〉2, and vice versa.

Assume now that the next state Ψn+1 of the universe turns out to be

Ψn+1 = |0〉1 ⊗ |r〉2R (6.71)

where |r〉2R is some element of H[2R]. On the emergent level, and as discussed later in

Section 6.2.3, the jump from Ψn to Ψn+1 might correspond to an apparent endo-physical

measurement of qubit 2 by an ‘apparatus’ contained in |R〉R, with the result that it must

have been found in a down state, |0〉2, because qubit 1 has been left in the state |0〉1. So,
in this case it would be expected that if qubit 1 is measured next it will also be found to

be spin down, |0〉1.
However, if local transformations are always unobservable, it is possible to find a local

unitary operator û1 that results in an effective relabelling of the basis of H1 as |0〉1 → |1〉1
and |1〉1 → |0〉1, i.e. û1{|0〉1, |1〉1} = {|1〉1, |0〉1}. In other words, applying this rotation to

Ψn+1 gives Ψ′
n+1, where

Ψn+1 → Ψ′
n+1 = [û1 ⊗ Î2R]Ψn+1 = [û1 ⊗ Î2R](|0〉1 ⊗ |r〉2R) = |1〉1 ⊗ |r〉2R. (6.72)

and Î2R is the identity in H[2R]. Now when it is observed by emergent apparatus in H[2R],

qubit 1 will be found in the up state |1〉1. This appears to violate what would be expected

from an initially correlated state, such that an apparent passive transformation has again

led to an observed physical discrepancy.

In fact, this type of example can be given even greater significance. Consider a state

Ψn = |νL〉ν ⊗ |R′〉R′ , where |νL〉ν ∈ Hν represents a (left-handed) neutrino, |R′〉R′ ∈ HR′
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represents the rest of the Universe, and Ψn ∈ H[νR′]. In this case it might appear possible

to passively transform the sub-state of Ψn in Hν with a local unitary operator ûν such

that

Ψn → Ψ′
n = [ûν ⊗ ÎR′ ]Ψn = [ûν ⊗ ÎR′ ]|νL〉ν ⊗ |R′〉R′ = |νR〉ν ⊗ |R′〉R′ (6.73)

where |νR〉ν represents the state of a right-handed neutrino, with ÎR′ the identity in HR′ .

However, right-handed neutrinos are thought not to exist in nature11, so the local, passive,

non-partition changing and unobservable unitary transformation of the type |νL〉 → |νR〉
has ultimately lead to unphysical consequences.

So, how is it that apparently passive, local relabellings of basis can be reconciled with

such drastic resultant changes in the physical properties of the quantum system?

Firstly, one suggestion might be perhaps that the Universe forbids certain unitary

processes. It may not be valid, for example, to rotate just some basis sets and not others;

perhaps the bases of qubits 1 or 2 in the second example may not be relabelled without

also relabelling the basis of R in a similar way. In fact, as discussed in previous chapters,

the suggestion here would be that this is potentially another case of the Universe being

highly selective when deciding which operators it chooses to develop itself with. This

conclusion, however, is not a sufficient argument. Ignoring the fact that changing every

basis set in the same way is really just equivalent to a global transformation, it must also

be noted that the local unitary transformations discussed above are seen as mathematical

relabellings and not necessarily as direct physical evolutions of the system. In other words,

although it might be possible to impose the constraint that, say, |νL〉 cannot be evolved

into |νR〉 (e.g. by any sort of Schrödinger dynamics) it may not equally be imposed that

|νL〉 cannot be relabelled as |νR〉.
A second potential argument could then be to conject that physics on the subregister

level might obey different or additional constraints from that in the emergent limit of

real particles, for example electrons or neutrinos. This solution fails, however, because

all physical characteristics are expected to emerge from the proposed pregeometric de-

scription, and not the other way around, and so any considerations or invariances on the

pregeometric level might also be expected to exist at its large scale limit. At the very

least, if this argument was correct a good reason would be required to explain why such

pregeometric equivalencies disappear on emergent scales.

Alternatively, it might perhaps be argued that although local unitary operations lead

to mathematical invariances, the physical characteristics exhibited by a particular (sub-)

state, for example its asymmetry or left-handedness, are actually bestowed upon it by

external influences. A neutrino may be left handed, for example, only relative to a frame

11Or at least, no right handed neutrinos have ever been observed.
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of reference defined on the emergent scale by R, and as such this type of description may

be meaningless on the pregeometric, sub-register level. Whilst this ‘lack of properties’

explanation may be very much in the spirit of quantum theory, it still misses the essential

point that relative to these external frames an observable change in the state does actually

seem to be caused by an apparent, passive (local) transformation.

So, a better conclusion from the observation that the above types of passive relabellings

are not seen in nature might then be to suggest that the Universe selects its own preferred

basis, such that all ups and downs and rights and lefts are defined relative to this. In

this case, local rotations would represent a physical change in the information carried by

the state, because the new, transformed state could be compared to this absolute basis.

Thus, such rotations would be observable, and are hence inequivalent to simple passive

relabellings.

Further, in fact, a more endo-physical suggestion might be that the preferred basis need

not actually be defined by the entire universe, but by an internal endo-observer. In other

words, a preferred basis for a sub-state under investigation may emerge by considering the

basis of the sub-state(s) representing the observer.

Consider, for instance, the second example of above. The initial measurement of qubit

2 by the apparatus may be seen as defining a preferred up-down ‘axis’, because in order to

find qubit 2 to be either up or down it is necessary to specify what these ‘directions’ are

relative to. Moreover, in order to initially know that qubits 1 and 2 have been prepared

in the correlated way of above, their bases must also be correlated. Thus, the ‘fixing’

of the basis for qubit 2 also necessarily fixes qubit 1’s basis, such that any subsequent

investigation of qubit 1 can only be valid relative to the preferred ‘direction’ defined by

the measurement of qubit 2. So, when qubit 2 is found to be ‘down’, an up-down axis is

automatically defined, and it is this axis that must then be used for qubit 1 if a consistent

description of the system is to be used.

Of course, any other basis could have been chosen before the measurement of qubit 2.

However, once a ‘preferred axis’ has been chosen it must remain fixed, and must also be

used for qubit 1 if previously correlated sub-states are to be compared.

A similar argument applies for the case of the neutrinos. In order to contest that a

neutrino state has been prepared as left-handed, a preferred left-right basis must first be

agreed upon.

Summarising, then, by finding qubit 2 to be down, i.e. |0〉2, relative to the basis

{|0〉2, |1〉2}, the corresponding basis {|0〉1, |1〉1} immediately becomes ‘preferred’ for qubit

1. Any subsequent rotation of qubit 1 (say from |0〉1 to |1〉1) now changes its state relative

to this chosen basis, and as such would imply an active transformation. It is not surprising,

then, that this active transformation leads to a difference in the information attributed
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to the state. In fact, taking this point to absurdity for the sake of clarity, once qubit 2

has been found to be ‘down’ in some basis, it could obviously not itself then be passively

relabelled as ‘up’ relative to the same axis.

Note that none of this is saying that |0〉1 is the only possible outcome of ameasurement

on qubit 1. What it does mean, however, is that prior to such a measurement the initial

state of qubit 1 must be |0〉1, and not an arbitrarily relabelled version.

Overall, then, it is the state collapse processes, i.e. the measurements, that cause

information to be ‘extracted’ from the system and hence a preferred basis to be defined.

Before a measurement it is possible to arbitrarily relabel 0’s and 1’s (i.e. Ψn → Ψ′
n),

but after information has been extracted and the state has irreversibly changed it is then

too late to consider further changes of the basis. Paraphrasing, after a measurement the

‘direction’ of the basis becomes fixed, so any additional rotation would be a transformation

relative to this chosen direction. Moreover, because comparisons are now possible, this

sort of rotation is no longer un-observable, and so any such ‘relabelling’ of the basis sets

becomes an active process.

Of course, the differences caused by rotating a sub-state relative to the preferred basis

of the observer could themselves be passively removed by transforming this basis in the

same way as the sub-state. However, this then becomes effectively equivalent to a global

transformation, and is therefore not relevant to the present discussion.

Thus, it is the state collapse mechanism that prohibits passive transformations from

leading to observable physical consequences, and conversely prevents actual changes in

individual factors from being passively ‘transformed away’. Moreover, this conclusion

again highlights the fact that it is the state reduction postulate of quantum mechanics

that introduces non-trivial dynamics into a system, and thereby parameterises physical

changes in terms of information acquisition.

From the above discussions, it is evident that real, physical information change is a

concept that is meaningful relative to the comparison of states against the same basis.

This is perhaps not too surprising: after all, the ability to physically compare objects

is a fundamental prerequisite to any discussion involving change. Moreover, in a fully

quantum Universe this basis is defined by an internal, endo-physical ‘observer’ engaged

in a process of apparent, emergent measurements. In fact, these two points represent the

very essence of the measurement problem: in quantum theory a state under investigation

changes when it interacts with an observer. It is important, then, to specify what it really

means to talk of an endo-physical measurement.

Of course, from an exo-physical perspective it is always valid to discuss the measure-

ment of an isolated state by an external observer. From the endo-physical perspective of
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a fully quantum Universe, however, what is generally of issue is how the entire state of the

Universe changes in such a way that it appears (on emergent scales) like one of its sub-

states has measured a second. In other words, what is more of interest in an endo-physical

discussion of measurement is not whether information has changed during a transition

from Ψn to Ψn+1, but whether information has been exchanged. Paraphrasing, of more

concern than information change, where separate factors may be taken to change individ-

ually and independently of one other, is information exchange, in which the relationship

between different parts of the state is altered.

It is possible to formally define what is meant by a change in information, and what is

meant by an exchange of information. As is evident from earlier, a change in information

occurs during a transition between Θ and Φ if these two states are fundamentally different.

Moreover, this difference must not just simply be mathematical, but must also take account

of certain physical constraints, such as prior measurements giving rise to preferred bases.

However, within this set of information changing transitions are the information ex-

changing processes, defined below as those procedures in which parts of the state appear

to interact with each other. Specifically, if Θ and Φ are both contained in the Hilbert space

H[1...N ], then during a transition from Θ to Φ the component of the state in subregister

Hi may be defined as having exchanged information with the component of the state in

Hj if the ‘relationship’ between these two components has changed. As an example, if

these two components were perhaps separate in Θ but are entangled with one another in

Φ, it is evident that the relationship between them has been altered. Note, then, that

an exchange of information necessarily implies a change in information, but a change in

information may not necessarily have to imply an exchange.

What is ideally sought, therefore, is a test of whether two particular sub-states appear

to have exchanged information with each other during a particular transition. In other

words, does the relationship between the components of the state in factor Hilbert spaces

Hi and Hj change during the jump from Ψn to Ψn+1? Thus, do the components appear to

‘interact’ with each other in any way? Indeed, could it ultimately be possible to consider

the component in Hi as ‘measuring’ the component in Hj during the transition, at least

in an emergent sense?

To begin to answer these questions, recall that the dynamics of the quantum Universe

relies on the principle that, given an Hermitian operator Σ̂n+1, whichever eigenvector is

selected automatically becomes the initial state for the subsequent transition involving

Σ̂n+2. That is, the development of the Universe is viewed as a giant and autonomous

process of quantum testing and retesting. Moreover, because it is assumed that the actual

outcome Ψn+1 of a test is necessarily different from the previous state Ψn, the operator
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Σ̂n+1 used in the Universe’s development must induce a change in information, and so

must represent an active transformation. Further, because of the lack of an external agent

deciding upon a preferred basis for the quantum Universe, any change of information

within the system cannot arise simply from a relabelling of the ‘axes’. This is another

reason why the transition from Ψn to Ψn+1 cannot therefore be a consequence of any sort

of passive transformation.

The previous sub-section demonstrated that unitary operators acting locally in the

individual subregisters have unobservable consequences, and that these transformations

preserve the separation and entanglement properties of the state. The opposite is also

considered: any change in partition of the state of the Universe must imply an active

transformation because it cannot be removed by a local relabelling of the basis. Conse-

quently, a change of partition results in a change in the information carried by the state.

Of course, this last point might be expected immediately: given that the information con-

tent of a state has already been related to the ways its separates, any change in partition

must automatically imply a change in information.

This can be presented formally. Consider two successive states Ψn and Ψn+1 in the

Hilbert space H[1...N ]. The state Ψn will have Fn factors and lies in the partition Pn, which

has Fn blocks, where 1 ≤ Fn ≤ N. Similarly the state Ψn+1 will have Fn+1 factors and

lies in the partition Pn+1 with Fn+1 blocks, noting that Fn+1 is not necessarily equal to

Fn, and that even if Fn = Fn+1 the partition Pn+1 is not necessarily the same as Pn (e.g.

H234
1 6≡ H12•34, but both have two blocks).

From the conclusions of the earlier discussions, it is now possible to conject that:

• Information has been exchanged during the transition from Ψn to Ψn+1 if Pn 6= Pn+1.

The converse is also true: an exchange of information implies a change in partition.

The above conjecture follows from the very definition of a partition; if the state Ψn is in a

different partition from the state Ψn+1, it means that at least two components of the state

have changed their block during the transition. Moreover, it must then be the case that

at least one of the components of Ψn, in a particular subregister Hi, must have changed

its relationship (i.e. its entanglement) with at least one other component, in a different

subregister Hj , when the state became Ψn+1.

To rephrase this conjecture, consider the probability amplitude P = 〈Ψn+1|Ψn〉.
As shown in Section 5.4 this probability amplitude will have FP factors, where FP ≤
min(Fn, Fn+1). For example, if Ψn has two factors whilst Ψn+1 is fully entangled, then

Fn = 2 and Fn+1 = 1, such that FP = 1.
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Now, by the above argument, information exchange has occurred in the transition from

Ψn to Ψn+1 if

FP < Fn or FP < Fn+1. (6.74)

In other words, if the number of factors of the probability amplitude is less than the

number of factors of either the initial or final states, then Ψn and Ψn+1 are in different

partitions, and the transition is an information exchanging process.

Of course, this condition is immediately satisfied if Fn 6= Fn+1.

To go further, consider the general form of P, fundamentally factorised as

P = 〈Ψ(1)
n+1|Ψ(1)

n 〉〈Ψ(2)
n+1|Ψ(2)

n 〉...〈Ψ(FP )
n+1 |Ψ(FP )

n 〉 (6.75)

where Ψ
(p)
n and Ψ

(p)
n+1 may themselves be products of k

(p)
n and k

(p)
n+1 factors respectively,

and p = 1, 2, ..., FP for k
(p)
n , k

(p)
n+1 ∈ Z+ and

∑Fp

p=1 k
(p)
n = Fn, but k

(p)
n is not necessarily

equal to k
(p)
n+1.

Moreover each factor of Ψ
(p)
n is in some block of Pn, whereas each factor of Ψ

(p)
n+1 is

in some block of Pn+1, with the proviso that for P to factorise in the above way the two

sub-states Ψ
(p)
n and Ψ

(p)
n+1 must be contained in exactly the same set of subregisters, such

that Ψ
(p)
n ,Ψ

(p)
n+1 ∈ H[p] for

∏FP

p=1(⊗H[p]) = H[1...N ].

From this, it is now possible to assert that during the jump from Ψn to Ψn+1:

• The component of the state in factor Hilbert space Hi exchanges information with

the component in factor Hilbert space Hj , for i 6= j, if the components of Ψn in Hi

and Hj are in the same block B but the components of Ψn+1 in Hi and Hj are not

in B, or if the components of Ψn+1 in Hi and Hj are in the same block B′ but the

components of Ψn in Hi and Hj are not in B′.

Clearly, this statement is equivalent to the condition that:

• The component of the state in factor Hilbert space Hi exchanges information with

the component in factor Hilbert space Hj , for i 6= j, if the components of Ψn in Hi

and Hj are in the same block B of Pn but Pn+1 does not possess this block, or if

the components of Ψn+1 in Hi and Hj are in the same block B′ of Pn+1 but Pn does

not possess this block.

As an illustration, consider a three qubit universe in the Hilbert space H[123] spanned

by the orthonormal basis

B123 = {|a〉1 ⊗ |b〉2 ⊗ |c〉3 = |abc〉123 : a, b, c = 0, 1}. (6.76)
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If two consecutive states ψn and ψn+1 turn out to be

ψn = |000〉123 = |0〉1 ⊗ |0〉2 ⊗ |0〉3 (6.77)

ψn+1 = |000〉123 + |011〉123 = |0〉1 ⊗ (|00〉23 + |11〉23)

it is evident that ψn ∈ H123 whilst ψn+1 ∈ H23
1 . Clearly, the component of ψn in factor

Hilbert space H1 is in the same block as the component of ψn+1 in this subregister, and

so may not be said to exchange information with any of the other components during the

transition from ψn to ψn+1. On the other hand, the components of ψn in factor Hilbert

spaces H2 and H3 are in different blocks from the components of ψn+1 in H2 and H3, and

clearly the relationship between these components changes during the jump. In this case,

it may be said that information is exchanged between qubits 2 and 3 during the transition

from ψn to ψn+1.

6.2.3 The Ideal Physics Experiment

Discussions of information exchange during the development of a system lead naturally

onto questions of the measurement problem in quantum mechanics and the nature of endo-

physical experimentation. After all, the acquisition of information is the very purpose of

measurement.

The concept of measurement is generally well understood in exo-physics, with a fa-

mous exception being the problem of state reduction in quantum mechanics and the cor-

responding conflicts of interpretation regarding what this actually means. In exo-physics,

discussions often involve large, semi-classical observers surrounded by an even larger en-

vironment, who are observing the isolated and microscopic quantum state under investi-

gation. Moreover, during this process the observers and environment are often assumed

to be unaffected, or at least any changes in them are taken to be insignificant.

These perspectives, however, are incompatible with the notion of endo-physics, and are

therefore also ultimately incompatible with the nature of a physical Universe incorporating

quantum theory as the fundamental ingredient. As has been remarked previously, in a

fully quantum treatment of the Universe the system under investigation, the observer and

every element of the environment should really just be viewed as factors or groups of

factors of the single state representing all of physical reality. An endo-physical experiment

consequently involves one part of the Universe’s state appearing to measure another part of

it. Moreover, this also implies that the state itself must be developing in a highly organised

way if emergent, internal scientists are to gain the illusion that they are independent,

classical and isolated observers who can investigate and develop their surroundings with

apparent free will.
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The question of endo-physical measurement is an enormous subject, undoubtedly wor-

thy of a research programme in its own right. It is therefore not attempted here to provide

a complete and self-contained study of how this process actually works. After all, recall

that there is currently no mechanism known for determining how and why the Universe

selects which operators it uses to test itself with, so a theory of how emergent, internal

physicists gain the impression that they can decide how the Universe around them develops

must be even further away.

What can be described, however, are the essential points that this unknown theory

should incorporate, or alternatively what conditions such a mechanism might be expected

to satisfy. In other words, in the following the necessary features and constraints for

endo-physical experimentation are discussed.

Consider the sort of experiment performed by physicists everyday. Such a situation

necessarily incorporates at least two parts: there must be a ‘subject’ to be measured,

and there must be some sort of ‘device’ to do the measuring12. Furthermore, before any

measurement takes place these two parts must have some sort of independent existence,

and so must be classically isolated from each other.

Now, in the context of the paradigm proposed in this thesis, the above conditions

are achieved by recalling that in the quantum Universe every classically isolated physical

system is associated with a factor of the Universe’s state. Thus, in order for any physical

experiment to occur it is required that the Universe’s state must be separable into at least

two factors, one of which is ultimately taken to represent the ‘subject’ and the other is

taken to represent the ‘device’.

Consider the Universe at ‘time’ n, represented by a state Ψn contained in a Hilbert

space H[1...N ] factorisable into N subregisters Hm, for m = 1, 2, ...N. Since all of physical

reality is expected to emerge from this fundamental state description, it may be assumed

that some ‘portion’ of Ψn accounts for the subject, some of it accounts for the device, and

the rest accounts for everything else in the Universe.

Thus, without loss of generality assume that the factor of Ψn representing the subject

is contained in subregisters 1 to x. That is, assume that it is the components of Ψn

in H[1...x] that are (somehow) responsible for the physical appearance of the subject on

emergent scales. Similarly, assume that the device emerges from some sort of consideration

of those components of Ψn contained in the subregisters (x + 1) to y, where again the

exact mechanism of this origination lies in the realm of an unknown theory of emergence.

12Of course, for the sake of the present argument it does not matter what either the ‘device’ or the

‘subject’ actually are. For example, in different contexts the generic word ‘device’ could be taken to imply

a large piece of equipment, or a single ‘pointer-state’, or even the eye of a human observer; it is the fact

that a physical experiment necessarily contains both a subject and a device that is important.
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This leaves subregisters (y + 1) to N to account for the emergence of everything else in

the Universe, noting that in the above the subregisters have been arbitrarily labelled in

ascending order for clarity. Of course, generally in physics experiments the subjects are

much smaller than the devices that measure them, which are in turn dwarfed by the scale

of everything else in the Universe. It may therefore naturally be expected that x ≪ y ≪ N,

but this is not essential.

The above division of H[1...N ] into subject, device and everything else denotes a par-

ticular split of the Hilbert space. That is,

H[1...N ] = H[1...x] ⊗H[(x+1)...y] ⊗H[(y+1)...N ]. (6.78)

The present discussion is concerned with the relationships occurring in a single, isolated

endo-measurement between a ‘subject’ and a ‘device’. It is therefore possible to further

simplify the above situation by considering a ‘toy-universe’ containing nothing but these

two features, that is, one for which y = N. Such a universe defines the alternative split

H[1...N ] = H[1...y] = H[1...x] ⊗H[(x+1)...y] = H[A] ⊗H[B] (6.79)

where the sub-scripts A and B are adopted for brevity to denote respective subject and

device factor Hilbert spaces.

Now, in order to consider a classically distinct subject and device, argued as above

to be essential pre-conditions to any discussion of experiments, the state ψn of the toy-

universe must be separable relative to the split (6.79). Thus, if |φn〉 represents the sub-

state of the subject at time n, and |Λn〉 the sub-state of the device at time n, then clearly

|φn〉 ∈ H[1...x] ≡ H[A] and |Λn〉 ∈ H[(x+1)...y] ≡ H[B], such that

ψn = |φn〉[1...x] ⊗ |Λn〉[(x+1)...y]. (6.80)

Clearly, ψn is in the separation given by

ψn ∈ H[1...x]•[(x+1)...y] = HAB. (6.81)

It is important that no mention has been made so far as to the actual nature of

either the ‘subject’ or ‘device’. Indeed, |φn〉[1...x] could itself be separable, entangled, or

a separable product of entangled factors relative to its factor Hilbert space H[1...x], and

|Λn〉[(x+1)...y] could similarly be in any of the partitions of H[(x+1)...y], recalling that each of

the factors H[1...x] and H[(x+1)...y] are themselves vector spaces. In fact, in the ‘real world’

case where y 6= N it is almost taken for granted that the sub-state in H[(y+1)...N ] is highly

separable if it is expected to represent everything else in a semi-classical looking Universe.

Consider now the next state of the universe, ψn+1, which is one of the eigenvectors

of some Hermitian operator Σ̂n+1. There are, of course, a number of different forms that

ψn+1 could take, and it could potentially be in any one of the many partitions of H[1...y].
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For example, this subsequent state could also be in the separation HAB, such that it

may be of the form

ψn+1 = |φn+1〉[1...x] ⊗ |Λn+1〉[(x+1)...y], (6.82)

with |φn+1〉[A] 6= |φn〉[A], or |Λn+1〉[B] 6= |Λn〉[B] if, by axiom, Σ̂n+1 is assumed not to be a

null test. In this case, and from the conclusions of the previous sub-section, no information

may be said to have been exchanged between the components in Hilbert sub-space H[1...x]

and the components in H[(x+1)...y] during the transition, because the state did not change

in separability relative to these: ψn ∈ HAB and ψn+1 ∈ HAB.

So from the point of view of the separation HAB, the sub-state in H[1...x] and the sub-

state in H[(x+1)...y] are developing independently of one another, with no sort of influence

or interaction occurring between them. To all intents and purposes, during this jump

from ψn to ψn+1 the factor in H[1...x] and the factor H[(x+1)...y] would be developing like

distinct ‘mini-universes’ separate from each other, though care is needed not to take this

interpretation too far because the operator Σ̂n+1 is still acting across the entire Hilbert

space, H[1...N ].

In this case, it may be convenient to represent the transition ψn → ψn+1 as

{|φn〉[1...x] → |φn+1〉[1...x]} ⊗ {|Λn〉[(x+1)...y] → |Λn+1〉[(x+1)...y]}. (6.83)

Of course, the preservation of the separability of the state relative to H[AB] does not

automatically imply that the factors themselves have developed in trivial ways. After all,

recall that H[1...x] and H[(x+1)...y] may each be a product of very many subregisters, and

this gives rise to the possibility of many different types of internal transitions within these

individual spaces. For example, |φn〉[A] may be completely separable relative to H[1...x],

whereas |φn+1〉[A] may be completely entangled, assuming that x > 1.

In fact, it is this type of possibility that provides the most manifest difference between

information change and information exchange: the information content of the factors of

the state in sub-spaces HA and HB may have changed during the transition from ψn to

ψn+1, even though no information was exchanged between these two sub-states. Of course,

due to the internal transitions, information may still potentially have been exchanged

between any of the factors of |φn〉[1...x], and, similarly, also between any of the individual

components of |Λn〉[(x+1)...y].

Indeed, these points may be applied to the context of the quantum universe by ob-

serving that both the ‘subject’ and ‘device’ described in the present discussion may be

arbitrarily large, and might therefore incorporate many different levels of sub-subjects

and sub-devices within themselves. For instance, the ‘subject’ could be a large ‘black-box’

containing an electron of unknown spin, a loaded gun, and a Cat, etc. Moreover, this is

what generally happens in laboratory physics, where a sample is often prepared and left
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to undergo many different ‘internal interactions’ before it is eventually measured by an

apparatus at some later time; an experiment in the field of chemistry is a good example

of this.

Continuing, because the factors in each of these sub-spaces are effectively developing

like independent mini-universes, then if this isolation remains for many more transitions

they might also begin to develop their own internal causal set type relationships, as ap-

parent from (6.83). This could, in turn, give rise to concepts such as internal measures of

space and differing notions of endo-time.

Assume instead, however, that the jump from ψn to ψn+1 represents the pregeometric

equivalent of a device measuring a subject. Indeed, given that scientists do seem to be able

to perform experiments, and that these scientists and their equipment are fundamentally

just sub-states of the quantum Universe, there must be some sort of origin for this emergent

effect.

Now, although it may be difficult at this stage to say exactly how such a pregeometric

experiment occurs, by appealing to the consequences of actual physical measurements

it is possible to make inferences about their microscopic counterparts. For example, an

experiment necessarily involves an extraction of information, because the purpose of a

measurement is ultimately to obtain information about the subject under investigation.

Thus, the information content of the sub-state representing the device must necessarily

change during the measurement: its information afterwards must be different from its

information before, because it must incorporate the newly acquired information regarding

the measured subject.

Likewise, and for two similar reasons, the information content of the sub-state rep-

resenting the subject must also change. Firstly, because there are no non-invasive mea-

surements in quantum physics, any observation automatically affects the sub-state being

observed. The only exceptions to this rule are null tests, and these are considered un-

observable. Secondly, and encompassing the first point, the symmetry of the situation

implies an equivalence between observer and observed. From the point of view of a fully

quantum Universe, both the observer and the system under investigation are just factors

of the overall state, and so it is not really valid to say ‘who’ is actually doing the mea-

suring, nor are there any real grounds to make such a choice. So, if a device is measuring

a subject, symmetry implies that the subject is equally measuring the device. In fact,

in the emergent limit it is only ever possible to discuss a physical observer performing a

measurement on a subject (instead of vice versa) because observer states are often taken to

be very much larger that the systems under investigation. Thus, if these ‘observer’ states

do not change very much during the process, it may be valid to make the approximation

of a ‘constant’ observer measuring a changing quantum system. This point is discussed
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later.

The conclusion of the above discussion is therefore that an endo-physical measurement

relies on an exchange of information between the device and the subject. Moreover, and

by the results of the previous sub-sections, for an exchange of this type to occur it is

necessary for the relationship between one of the components of the state in H[1...x] to

change its relationship with one of the state’s components in H[(x+1)...y] during the jump

from ψn to ψn+1. Furthermore, this in turn implies that the state ψn+1 must be entangled

relative to the split HA ⊗HB, and hence a member of HAB.

Of course, exactly how this partition change physically affects the state is a greater

question. Indeed, the resolution of this issue involves the actual choice of the operators

Σ̂n+1 themselves, and this requires a knowledge of exactly how the self-referential nature

of the Universe’s development might work (a point that is discussed in Chapter 8). Elab-

orating on this, presumably the sub-state of the device must be changed in a way that

depends on the sub-state of the subject if the jump from ψn to ψn+1 is to represent the

type of measurement familiar to experimental physics. Indeed, if this were not the case

the process could hardly be called a measurement at all, because no useful information

would have been extracted about the subject by the device.

Similarly, and by the symmetry of the situation, the sub-state of the subject must

also be changed during the transition from ψn to ψn+1 in a way that depends on the

sub-state of the device. This point is also echoed in empirical science, where the state a

subject is projected into upon measurement may depend very much on the object that was

measuring it; for example, in an experiment involving the measurement of an electron’s

spin, the electron is projected into a spin-state that depends on the orientation of the

Stern-Gerlach apparatus. Such ‘feed-back’ mechanisms, however, are beyond the scope of

the present discussion.

What can be concluded, though, is still an important point regarding the nature of

experimentation in the quantum universe:

• An endo-physical measurement necessarily implies an exchange of information

between the subject and the device. Further, this necessarily implies a parti-

tion change involving some of those components of the state representing the

subject and some of those components of the state from which the (emergent)

description of the device arises.

Specifically, if ψn ∈ HAB, then a subject sub-state in HA is ‘measured’ by a device

sub-state in HB during the transition from ψn to ψn+1 iff ψn+1 ∈ HAB. Clearly, for such

a measurement the partition Pn of H[1...y] containing ψn cannot be equal to the partition

Pn+1 of H[1...y] containing ψn+1.
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It is this point that justifies the earlier simplification of discussing a ‘toy-universe’

containing just a subject and a device. If the original case is again considered, i.e. when

y 6= N and the Universe’s Hilbert space H[1...N ] is split as (6.78) allowing the state Ψn ∈
H[1...N ] to have a ‘rest of the Universe’ factor |rn〉[(y+1)...N ] in H[(y+1)...N ], then as long

as |rn〉[(y+1)...N ] does not interact or exchange information with any of the components of

the state in HA or HB, then this sub-state is effectively existing in its own isolated mini-

universe. Paraphrasing, if the development of the components of the state in spaces HA

or HB is restricted such that they can only interact with other components in HA or HB,

then these are also effectively existing as a mini-universe separate from the components

of the state in H[(y+1)...N ].

In fact, ifH[AB] is itself suitably factorisable into sets of sub-spaces and sub-sub-spaces,

it is additionally possible that within this mini-universe whole levels of sub-measurements

could simultaneously occur as it develops from one state to the next. This type of process

would thus be equivalent to various sub-devices measuring sub-subjects, and sub-sub-

devices measuring sub-sub-subjects, etc., each of which is contained in its own factor

sub-space of H[AB]. As before, a strong parallel is drawn here with the Schrödinger’s Cat

paradox, where within the Hilbert space of the ‘black-box’ containing the Cat, the gun,

and the electron, numerous levels of endo-measurement could be occurring.

These points may be stated more formally: because H[AB] = HA ⊗ HB it just a

vector space in its own right it can in some sense be treated as an independent entity. It

is then always possible to tensor product H[AB] with additional Hilbert spaces without

affecting the physics as long as sub-states contained in H[AB] do not become entangled

with components in these new spaces. Moreover, because any factors of HA and HB are

themselves also vector spaces, each of these may too be granted an independent existence.

This again reinforces the point that it is acceptable to consider just a ‘subject and

device’ toy-universe without loss of generality.

The caveat to this discussion involves the operators. In the quantum Universe, the

entire system is tested by a global, Hermitian operator Σ̂n+1 acting self-referentially ac-

cording to the current stage. It is this fact that may prevent the separate mini-universes

from being real, physical, isolated and independent universes, because the overall choice

of operator affecting the sub-state in one mini-universe may be influenced by the sub-state

of another mini-universe. In other words, the operator Σ̂n+1, which is obviously respon-

sible for developing sub-states in H[1...y], may be dependent on the sub-state contained

in H[(y+1)...N ]. This point is addressed again by Chapter 8, but in the present discussion

involving just the principles of an ideal physics experiment such a technicality is not too

drastic.

Note that a jump from one state to the next could contain many different ‘isolated
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universes’ if N ≫ y. Indeed, if the probability amplitude 〈Ψn+1|Ψn〉 factorises into FP

factors, then each of these is effectively representing a separate mini-universe during that

transition. So, every factor of 〈Ψn+1|Ψn〉 that contains an initial product of factors of

Ψn entangling with one another during the jump to Ψn+1 implies an endo-physical mea-

surement occurring between these factors of the initial product. It is hence possible that

a jump from one state to the next may permit many different sets of device sub-states

independently and simultaneously appearing to measure their own subject sub-states.

Information exchanging partition changes need not actually be too dramatic, a point

that can be illustrated when the above spaces H[A] and H[B] are written as H[1...x] and

H[(x+1)...y], with y = N again for simplicity. For example, assume that |φn〉[1...x] is com-

pletely separable relative toH[1...x], i.e. |φn〉[1...x] = |φn〉1...x, and |Λn〉[(x+1)...y] is completely

separable relative to H[(x+1)...y], such that ψn is in the partition Pn ≡ H1...y. Assume fur-

ther that the next state of the Universe ψn+1 is given by

ψn+1 = |ϕn+1〉[1...(i−1)(i+1)...x] ⊗ |Υn+1〉[i(x+1)...y] (6.84)

where |ϕn+1〉[1...(i−1)(i+1)...x] is completely separable relative to H[1...(i−1)(i+1)...x], i.e.

|ϕn+1〉[1...(i−1)(i+1)...x] ∈ H1...(i−1)(i+1)...x. (6.85)

Finally, assume that the component of ψn+1 in Hi is entangled with just one other

component, namely the component of ψn+1 in Hj , where (x + 1) ≤ j ≤ y, and that

|Υn+1〉[i(x+1)...y] is completely separable relative to H[i(x+1)...y] apart from this one entan-

gled factor. Evidently, |Υn+1〉[i(x+1)...y] has (y− x) factors. Then, ψn+1 is in the partition

Pn+1 given by

Pn+1 ≡ Hij
1...(i−1)(i+1)...(j−1)(j+1)...y (6.86)

and may be written

ψn+1 = |ϕn+1〉1...(i−1)(i+1)...x ⊗ |Υn+1〉ij(x+1)...(j−1)(j+1)...y (6.87)

Clearly, the jump from ψn to ψn+1 represents an information exchanging process be-

tween the factor of ψn in H[A] ≡ H[1...x] and the factor of ψn in H[B] ≡ H[(x+1)...y], because

the state has changed its separability relative to H[AB]. That is, ψn ∈ HAB whereas

ψn+1 ∈ HAB, such that Pn 6= Pn+1. This conclusion, however, is despite the fact that

nearly all of the components of the state representing the subject (in the individual sub-

registers Hm, for 1 ≤ m ≤ x) and nearly all of the components of the state representing

the device (in the individual subregisters Hm, for (x+ 1) ≤ m ≤ y) did not interact with

anything or each other.
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The above points regarding different sets and levels of subjects and devices in the

quantum Universe call for the definition of an endo-physical measurement to be refined.

Consider a Universe in a Hilbert space H[1...N ], where N is large such that states in H[1...N ]

may be highly separable. Consider also a particular k-partite split H[K1K2...Kk] of H[1...N ]

as

H[1...N ] ≡ H[K1K2...Kk] = H[K1] ⊗H[K2] ⊗ ...⊗H[Kk] (6.88)

where the k factor spaces of the split need not be fundamentally factorised relative to the

individual subregisters, and so need not be of prime dimension; the (Ka)
th factor space

H[Ka] could be the tensor product of a number of elementary subregisters, such that for

example H[K1] = H6 ⊗H14 ⊗H23, H[K2] = H4 ⊗H10, etc.

Assume now that the nth state Ψn of the Universe has a factor in the product sub-

space H[KXKY ] of H[1...N ], where 1 ≤ X,Y ≤ k, and moreover that this factor is separable

relative to H[KX ] ⊗ H[KY ]. Immediately, this implies that Ψn must have a factor in the

sub-space H[KX ] and a factor in the sub-space H[KY ]. Without loss of generality, the factor

in H[KX ] may be called the ‘device’ whereas the factor in H[KY ] may be called the ‘subject’,

though of course a vice versa description would be equally true, and exactly how well these

labelled sub-states represent actual physical and macroscopic objects is a question for a

theory of emergence.

Now, from an extension of the earlier definition given for a toy-universe containing just

an isolated device measuring an isolated subject, the factor of Ψn in sub-space H[KX ] may

be said to ‘measure’ (i.e. exchange information with) the factor of Ψn in sub-space H[KY ]

during the transition from Ψn to Ψn+1 if there exists a factor of Ψn+1 that is entangled

relative to at least H[KX ]⊗H[KY ]. In other words, for such a measurement the state Ψn+1

must either have a factor that is entangled relative to H[KX ] ⊗H[KY ], or else a factor that

is entangled relative to the larger tensor product sub-space H[KX ] ⊗H[KY ] ⊗H[C], where

H[C] is an arbitrary factor Hilbert space of dimension

2 ≤ dim(H[C]) ≤ dim(H[1...N ])÷
[
dim(H[KX ])× dim(H[KY ])

]
(6.89)

in some given split of H[1...N ] that includes H[KX ] and H[KY ] as sub-spaces. Clearly, H[C]

must satisfy

H[C] ∩H[KX ] = H[C] ∩H[KY ] = ∅. (6.90)

The above assertion defines a necessary condition for an endo-physical measurement

to occur between any two given factors of a state during a transition, whether or not these

factors may be further separated relative to a more fundamental splitting of the Hilbert

space. Paraphrasing this definition:

• Given a particular split S of H[1...N ], two factors X and Y of a state Ψn that is
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separable relative to S exchange information during a jump from Ψn to Ψn+1

if these factors become entangled relative to this original split.

This definition will be particularly important when discussing measurements on the

emergent level. Consider a state that is fundamentally separated13 relative to H[1...N ];

clearly, the above definition will apply to endo-physical measurements occurring between

each of these factors. However, as shown in Chapter 4, given a fundamentally separated

state, its factors can often be ‘grouped’ into larger factors such that it can be re-written

as a separable product of these new sub-states relative to an alternative, less fundamental

split of the Hilbert space (i.e. a split that has less than N factor spaces). For example, a

state φ123 ∈ H[1...3] defined as φ123 = φ1 ⊗φ2 ⊗φ3 with three factors may be re-written as

the state φA3 = φA ⊗ φ3 with two factors, where φA ≡ φ1 ⊗ φ2 ∈ H[A] ≡ H[12], relative to

the split H[A3].

These large factors may then play an important role in the theory of emergence, where

it may be convenient to consider a particular group of (more fundamental) sub-states as

a single entity in order to describe a certain macroscopic ‘object’. The point is that the

above assertion is always applicable when discussing whether or not an endo-physical mea-

surement has occurred between two given factor sub-states, regardless of which particular

split they are being defined separate relative to. Thus for the simple example in H[1...3],

the rule could be applied to define a potential measurement occurring between φ1 and

φ2, or between φ1 and φ3, or between φ2 and φ3, or, crucially, also between φA and φ3,

depending upon which particular situation is of current interest.

In other words, it has been possible to define information exchange on any given ‘level’

of separation, and the method is equally valid both on the most fundamental level, i.e.

between components in the N individual subregisters, and on more ‘macroscopic’ scales

between factors of Ψn that may themselves be separable relative to a more fundamental

split of the Hilbert space. Of course, exactly which level or split is the most appropriate in a

given situation to describe an endo-physical measurement in an actual physical, laboratory

experiment depends entirely on how these macroscopic objects emerge from the underlying

pregeometric structure.

Thus, it is evident that an endo-physical measurement occurring on one level may not

necessarily occur on another. Equivalently, an exchange occurring between factors defined

relative to one particular split of the Hilbert space does not necessarily occur between

every factor defined relative to a different split. This point resonates strongly with the

13Recall from Chapter 4 that a state may be said to be written in a ‘fundamentally separated’ form if

it cannot be separated further relative to the fundamental factorisation of the Hilbert space (that is, the

split of H[1...N] with N sub-spaces).
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Schrödinger’s Cat paradox, and is equally apparent in the second example of above where

the completely separable state (6.84) jumped to the ‘nearly’ completely separable state

(6.87).

As concluded above, in order to argue that any endo-physical measurements have

occurred during a transition from an arbitrary initial state to a final one, there must be a

change of partition14. However, different degrees of fundamental separability of different

initial and final states lead to different degrees of partition change, in which Pn+1 bears

different degrees of ‘resemblance’ to Pn, and this inevitably leads to different degrees

of information exchange. For instance, given an initial state Θ1...N ∈ H[1...N ] that is

completely separable and in the partition H1...N , it is intrinsically obvious that a next

state Φ12
3...N in H12

3...N is ‘more similar’ to Θ1...N than an alternative next state Φ̃1...N in

H1...N , and so less information might be expected to be exchanged during a transition

from Θ1...N to Φ12
3...N than from Θ1...N to Φ̃1...N .

It is therefore useful to define the concept of ‘partition overlap’ that attempts to

account for how ‘congruent’ Pn+1 is to Pn, and is related to the factorisability of the

probability amplitude discussed previously. Specifically, this partition overlap may then

help to quantify just ‘how much’ information is exchanged during a particular transition

from one state to a next, as shown below.

Clearly, partition overlaps will be appropriate for discussions involving information

exchanges occurring on the most fundamental level (i.e. between components of the state

in the individual subregisters themselves), because partitions are defined relative to the

fundamental factorisation of the Hilbert space H[1...N ] into its N subregisters, and not

just an arbitrary ‘higher order’ split. Of course, this is the most natural stance to adopt

anyway, because it is changes occurring on the most fundamental, non-emergent level that

are assumed ultimately responsible for changes on every other scale.

However, a definition similar to the partition overlap given below could easily be formu-

lated for any other given split if the ‘partitions’ are replaced by ‘split-partitions ’, which

are defined in an obvious manner in terms of the number of different ways an arbitrary

state could potentially be separable relative to a particular split of the Hilbert space.

As an illustrative example of this last idea, the split H[A3] ≡ H[A]⊗H[3] of the Hilbert

space H[123], where H[A] ≡ H[12], has two split-partitions HA3 and HA3, even though the

overall space H[123] has five partitions: H123, H12
3 , H13

2 , H23
1 and H123.

14Noting that similar reverse statements are not necessarily true: a change in partition does not auto-

matically imply that every arbitrary pair of factors of the state must have exchanged information during

the jump. To judge whether a particular ‘device’ has measured a particular ‘subject’, changes in the

separability of the state relative to the given split are of issue.
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Similarly, the split H[AB5] ≡ H[A] ⊗ H[B] ⊗ H[5] of the Hilbert space H[1...5], where

H[A] ≡ H[12] and H[B] ≡ H[34], clearly has five split-partitions, HAB5, HB5
A , HA5

B , HAB
5

andHAB5, even though the alternative splitH[A345] has 15 split-partitions, whilst equation

(5.20) of Section 5.3 showed that H[1...5] itself has 52 partitions.

In fact, the concept of split-partitions is evidently more general than that of partitions:

a partition is just a special case of a split-partition where the split in question is the

fundamental factorisation of the Hilbert space H[1...N ] into its N subregister sub-spaces.

Ultimately, ‘split-partition overlaps’ could therefore be employed to compare how ‘similar’

one state is to the next relative to the same split, just as partition overlaps will be shown

below to provide a comparison of how similar one partition is to another relative to the

fundamental factorisation of the Hilbert space. Again, this concept may be useful from

the perspective of emergence, and for discussions of how much information is exchanged

during a particular transition from the point of view of sets of ‘macroscopic’ sub-states

that are themselves further separable relative to a more fundamental split of the Hilbert

space.

Consider a Hilbert space H[1...N ], and a partition Pα of this with a blocks B
(1)
α , B

(2)
α , ...,

B
(a)
α . Consider also a second partition Pβ of H[1...N ] which has b blocks B

(1)
β , ..., B

(b)
β . Now,

the block B
(S)
α , for S = 1, 2, ...a, implies that every state in the partition Pα of H[1...N ]

possesses a factor that is entangled relative to the sub-space H(S) defined as the product

of the N(S) subregisters:

H(S) ≡ HS1 ⊗HS2 ⊗ ...⊗HSN(S)
= H[S1S2...SN(S)] ⊂ H[1...N ] (6.91)

where each Ss is uniquely one of the set {1, 2, ..., N} for all s = 1, 2, ..., N(S) and S =

1, 2, ..., a. Clearly, the partition Pα necessarily defines some split of H[1...N ], such that

H[1...N ] ≡
a∏

S=1

(⊗H(S)) =

a∏

S=1

N(S)∏

s=1

(⊗HSs) (6.92)

with the obvious condition

N = N(1) +N(2) + ...+N(a). (6.93)

Similarly, the block B
(T )
β for T = 1, 2, ..., b implies that every state in the partition Pβ

of H[1...N ] possesses a factor that is entangled relative to the sub-space H(T ) defined as the

product of N(T ) subregisters, i.e.

H(T ) ≡ HT1 ⊗HT2 ⊗ ...⊗HTN(T )
(6.94)

where each Tt is uniquely one of the set {1, 2, ..., N} for all t = 1, 2, ..., N(T ) and T =

1, 2, ..., b, and this defines another split of H[1...N ].
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Consider now a function F (B
(S)
α , B

(T )
β ) that effectively compares block B

(S)
α to block

B
(T )
β , with the result that F (B

(S)
α , B

(T )
β ) = 1 if B

(S)
α = B

(T )
β , but F (B

(S)
α , B

(T )
β ) = 0 other-

wise. The equality B
(S)
α = B

(T )
β is taken to hold only if there is a one-to-one equivalence

between the subregistersHSs in B
(S)
α and the subregistersHTt in B

(T )
β ; that is, B

(S)
α = B

(T )
β

if for each s = 1, 2, ..., N(S) there is one, and only one, t such that

HSs = HTt (6.95)

for t = 1, 2, ..., N(T ).

Then, the partition overlap P(α, β) between Pα and Pβ may be defined as

P(α, β) =

a∑

S=1

b∑

T=1

F (BS
α , B

T
β )

max(a, b)
(6.96)

with normalising factor max(a, b). Clearly, P(α, β) = P(β, α), as would be expected from

symmetry.

As an example, consider three states λ, µ and ω in H[1...4] that are elements of the

separations λ ∈ H1234, µ ∈ H34
12 and ω ∈ H123

4 . Evidently, the partition Pλ of H[1...4] of

which λ is a member contains four blocks: 1, 2, 3 and 4. Similarly, Pµ has three blocks,

1, 2, and 34, whilst Pω has only two blocks, 123 and 4. In this case, then, the partition

overlap P(λ, µ) between Pλ and Pµ is clearly (1 + 1)/4 = 1
2 , whilst P(λ, ω) = 1/4 and

P(µ, ω) = (0/3) = 0.

This idea can now be incorporated into the discussion of the quantum universe. To

this end, it is asserted that more information is exchanged during a transition from Ψn ∈
Pn ⊂ H[1...N ] to Ψn+1 ∈ Pn+1 ⊂ H[1...N ] if the partition overlap P(n, n+1) is small than if

the partition overlap is large. This follows immediately from the observation that in order

for P(n, n + 1) to be large, most of the components of the state must not have changed

their block during the jump from Ψn to Ψn+1, and so have not exchanged information.

Thus, the case where P(n, n+1) = 0 represents maximum information exchange, whereas

when P(n, n+ 1) = 1 no information has been exchanged. Note that for P(n, n+ 1) = 1,

a necessary but insufficient condition is that a = b.

So, it is expected that a jump from a state contained in H1234 to a state contained

in H34
12 results in less information being exchanged than an alternative jump to a state

contained in H123
4 .

It is now obvious how the partitions used in the definition of the partition overlap

could easily be replaced by split-partitions to provide an analogous definition for a split-

partition overlap. For example, given a particular split H[ABC] of H[1...N ] and two of its

split-partitions HABC and HBC
A , the split-partition overlap between HABC and HBC

A is

clearly (1/3); this is despite the fact that each of HA, HB and HC may itself be factorisable
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into very many subregisters relative to the fundamental factorisation H[1...N ]. Of course,

and as before, which particular split is of interest depends very much on the ‘level’ required

to describe a given emergent, physical situation.

The idea of partition overlap is related to the statement that, generally, the more

factorisable a transition amplitude 〈Ψn+1|Ψn〉 is, the less information is exchanged.

The above points lead to the question as to when a state such as |ϕn+1〉 can really

still be said to represent just a ‘later version’ of the same ‘subject’ as |φn〉 if these factors

are in different Hilbert sub-spaces of different dimensions. In other words, how similar is

the physical object that emerges from |ϕn+1〉 to the object that emerged from the earlier

factor |φn〉? An analogous comment arises concerning the similarity of the ‘device’s’ states

at different times, such as |Λn〉[(x+1)...y] and |Υn+1〉[i(x+1)...y]; can both of these be said to

represent the ‘before’ and ‘after’ configurations of the same piece of physical apparatus?

Furthermore, it is also an important question to ask about just how much ‘pregeometric

information’ (i.e. component information) needs to be exchanged to constitute the sort of

real, physical measurements occurring in laboratories. For instance, is the one component

exchange of (6.87) enough, or are more exchanges required for the device to really ‘learn’

about the subject? Indeed, is it alternatively necessary for the subject and device to

become completely entangled with each other in order for a physical measurement to take

place? This last point is presumably not the case, since in real physical experiments the

device at least generally seems to possess a classical identity after the interaction, and this

alternative would ultimately lead to all sorts of Schrödinger’s Cat type paradoxes. The

issue still remains, however, as to how much entanglement is either ‘allowed’ or required.

Of course, it is in practice very difficult to say exactly how ‘similar’ one sub-state

physically is to another. Indeed, even if differences could easily be quantified, any resulting

argument would then have to rely on knowing exactly how classical objects emerge from

the underlying pregeometric description, and a theory of this has not yet been completed.

In other words, only once it is understood how the factor state |φn〉 gives rise to a physical

description of the ‘subject’ can it be compared to whatever semi-classical object emerges

from a similar treatment of |ϕn+1〉.
That said, it is a natural speculation to suggest that for large macroscopic objects

represented by sub-states (or groups of sub-states, depending on the split being discussed)

in factor Hilbert spaces of very large dimension, the ‘addition or subtraction of just one

or two components’ may not be expected to affect their emergent appearance too much,

and this justifies the earlier argument of why it is usually reasonable to accept the ap-

proximation that a large semi-classical observer often seems unaffected by an observation.

Conversely, for microscopic sub-states in factor Hilbert spaces of very low dimension, the

‘loss of one or two components’ might be much more severe, and may lead to an object
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that looks completely different on emergent scales. These, however, are just heuristic ar-

guments, and a great deal of work on the issues of emergent and persistence is required in

order to fully justify them.

The ideas of the above discussions may now be summarised. When a factor remains in

the same block during a jump from one state to the next, it has not exchanged information

with any of the others. Such factors are effectively de-coupled and isolated from everything

else, and so appear to develop independently. It is only when the partition of the state

changes in such a way that the relationship between a component of it contained in one

factor changes with respect to a component of the state contained in another factor that

an exchange of information occurs between them. Then, these two factors may be said

to have interacted during the transition. This type of partition changing process is thus

viewed as the pregeometric origin of an endo-physical measurement of one particular factor

by another.

On the emergent scale, of course, actual physical measurements are highly complex

sets of events. Real experiments involving real devices extracting real information from

real subjects may well take place over very many jumps of the state of the Universe,

and may incorporate devices with perhaps very many constituent parts each experiencing

their own passages of internal endo-time and giving rise to whole different levels of sub-

measurements. In fact, particle detections in high energy collider physics provide the

perfect example of this point. However, if quantum mechanics does indeed hold for a

consistent picture of physical reality, such emergent experiments should fundamentally

result from chains and sets of endo-measurements occurring on the pregeometric scale,

and as such might ultimately be hoped to be governed by the principles discussed in this

section.

As a final remark, it is worth commenting on the roles of the operators in the above

types of development. In the type of development that was discussed first, where both ψn

and ψn+1 were in the same separation HAB, the factorisability of the operator Σ̂n+1 is not

important. This is because both factorisable and entangled operators can have separable

outcomes, as discussed in Chapter 5. The only circumstance where the factorisability of

Σ̂n+1 would matter is if, somehow and for some reason, it is known in advance that ψn+1

must be in the same separation as ψn; in this case either a factorisable operator would

have to chosen, or a particular entangled operator would have to be selected that has only

separable outcomes.

For the second type of development, however, where ψn and ψn+1 were in different

separations and ψn+1 was entangled relative to the split H[AB], the operator Σ̂n+1 must

also be entangled because factorisable operators can only have separable outcomes. In
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other words, for the outcome of Σ̂n+1 to be in the entanglement HAB, i.e. entangled

relative to HA ⊗ HB, this operator must also be entangled relative to HA ⊗ HB. This

observation then leads to the result that for a measurement to occur between a ‘subject’

and a ‘device’, i.e. for previously separate factors to become entangled, the operator must

be entangled.

These last points may be placed in context by remembering that operators are used in

conventional quantum mechanics to denote physical tests. Moreover, these physical tests

are themselves often also associated with sets of physical apparatus. Recall, however,

that in a Universe free from external observers, and as discussed more fully in Chapter 8,

its development depends upon operators self-referentially chosen according to the current

stage. Thus, since every physical ‘object’ is expected to emerge from the underlying

pregeometric description, and because human physicists do appear to be able to construct

sets of apparatus in order to measure things, it must be the case that groups of factors

representing devices are somehow able to influence the Universe’s decision about which

particular operator is chosen to test the state. In other words, the presence of a given set

of factors in Ψn may result in a certain choice of operator Σ̂n+1, and so the existence of

a particular emergent device and subject may consequently lead to a particular ‘action’

being taken by the Universe. So, in the quantum Universe, groups of factors representing

a physical apparatus may also hence be labelled by the action of the particular operator

they induce.

Of course as noted before, exactly how and why particular operators are chosen to de-

velop the Universe’s state is an interesting question for the future. How this decision might

be sufficiently self-referential to give the impression that physical devices are measuring

physical subjects, however, will be addressed later.
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7 Quantum Field Theory from Quantum Computation

A central theme of this thesis is to investigate how the semi-classical picture of physics

familiar to science may begin to arise from a fundamental quantum state description.

Specifically, one matter of particular interest is the question of when it might be possible

to argue that “this object with these properties is here”. Now, two thirds of this issue have

already been addressed: Chapter 4 discussed when it is possible to describe something as

a distinct and independent looking object, whereas Chapter 5 investigated the concept

of spatial location. It is therefore time to examine the remainder of these three points,

namely, how a state represented by a vector in a Hilbert space may give rise to objects

with particular physical properties.

Clearly, the idea of a ‘property’ is very vague, and the word is often used in science to

describe almost any number of the physical characteristics exhibited by a semi-classical ob-

ject, for example its size, or shape, or weight, or appearance, or odour. However, ever since

the philosophy of Democritus [71], a reductionist viewpoint has generally been accepted

in which each of these qualities is ultimately a feature resulting from a more fundamental

picture of reality, such that every macroscopic object comprises of enormous numbers of

microscopic ‘indivisible elements’. Furthermore, it is the different ways that these indi-

vidual entities interact and group together that are expected to eventually account for the

types of phenomena observed in the everyday world.

Of course, over time this picture has been refined, and it is now known that Democritus’

“atoms” should really be associated with elementary particles of given mass, charge, colour,

spin etc. Going further, these particles are themselves in turn associated with the various

excitation modes of quantum field theory (QFT), and are hence directly determined by the

laws, symmetries and formalisms of the equations governing this. Thus, in conventional

physics it is the theory of quantised fields that is often ultimately taken to provide an

explanation as for why a particular object has the properties it does.

The objective attempted in this present chapter is to go one step further. Because

the notion of operators and states in a Hilbert space is taken in this thesis to be the

fundamental description of physical reality, if it may be shown how quantum field theory

might emerge from such a picture, it might consequently be argued that semi-classical

properties will also equally arise as a natural continuation, just as in the conventional

case. To this end, it is the ‘link’ between quantum field theory and the model proposed

in this thesis that is now explored.

The mechanism suggested to achieve this result follows naturally from the work of

the preceding Chapter 6. That is, a treatment of the Universe with the principles of
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quantum computation will be shown to reproduce the desired field theoretic concepts.

Of course, such an approach may not be too surprising; after all, given the suggestion

that the Universe is running as a giant quantum automaton, the application of quantum

computational procedures might in some sense naturally be expected to account for every

physical effect.

In fact, the emergence of QFT from the type of quantum computation discussed in this

thesis is not just desirable for the completeness and consistency of the proposed quantum

Universe paradigm. Further to this hope, it might also be expected that such an analysis

could give rise to a slightly modified (and hence improved) version of quantum field theory

that is free from some of problems inherent in the traditional case. Indeed, this might

be hoped for immediately: given that the Hilbert space of the quantum Universe is taken

to be very large but finite, and consists of a discrete set of subregisters, the problems

associated with infinite dimensional and continuous theories may be expected not to arise.

As an example of this, it could be hoped that in the finite case the infra-red and ultra-

violet divergences may not occur. This, too, would clearly be an additional success for the

model.

Note that the idea of generating particle field theories from this type of analysis is

not completely new or unconventional. Feynman, for example, envisaged a description of

quantum field theory resulting from quantum computation [72], and Bjorken and Drell

similarly demonstrated how QFT may be derived from a set of objects, each of which is

positioned at a unique and well specified site [59] (and referenced therein to [73]-[75]).

This latter model will be seen to have strong analogies with the method presented in

the following. More recently, Wu and Lidar [76] explored the algebraic relationships ex-

isting between qubits and parafermions, and Deutsch [77] discussed a qubit field theory

embedded in a fixed background spacetime.

7.1 Preliminary Structure

The proposal starts from the premise that the usual quantum field theory familiar to physi-

cists is really an effective, emergent view of a more fundamental mechanism at work. The

overall approach will be to use to the rules and principles of quantum computation to con-

struct a model of QFT from the basic, underlying structure of operators and statevectors

in a factorisable Hilbert space.

Consider the Hilbert space H[1...N ] factorisable into N subregisters Hm of prime di-

mension, for m = 1, 2, ..., N. As always, the sub-script m is used merely as a convenient

label; the overall Hilbert space is assumed invariant to any left-right re-positioning of the
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subregister spaces, and hence m it is not in any way meant to denote physical location.

This last point should perhaps be emphasised by remembering that positions and distances

have only been defined on the emergent scale, due in fact to considerations of causal set

relationships as discussed in Chapter 5, and may be further reinforced by observing that

if the N ‘sites’ were taken to be directly equivalent to physical locations, it would be diffi-

cult to envisage how the three dimensional Minkowski space of physics could be translated

into the one dimensional lattice that would result. These issues will be important to recall

later.

The model suggested below may be greatly simplified by assuming that each subregister

Hm is two dimensional, such that the overall space H[1...N ] is a product of N qubit sub-

spaces. In this instance, it is possible to define an orthonormal basis Bm for Hm in the

usual way as

Bm ≡ {|0〉m, |1〉m} (7.1)

where, as before, |0〉m may be referred to as ‘down’ and |1〉m as ‘up’. Thus, a basis B1...N

for H[1...N ] may be defined as

B1...N ≡ {|i1〉1 ⊗ |i2〉2 ⊗ ...⊗ |iN 〉N : im = 0, 1;m = 1, 2, ...N} (7.2)

where the representation |0〉m ≡
(
1
0

)
m

and |1〉m ≡
(
0
1

)
m

could also be adopted.

Recall now the work of Section 6.1, where equation (6.13) defined the ‘Transformation’

operator T̂ ij
m acting in the spaceHm as T̂ ij

m = |i〉mm〈j|, for i, j = 0, 1. As was discussed, any

operator acting locally in Hm may be built up of complex sums of these four operators. It

is beneficial now to enlarge this definition to describe ‘extended transformation operators’,

which have the same resulting effects as their local counterparts, but act globally in the

whole space H[1...N ]. As alluded to in Section 6.1, this extension may be accomplished by

taking the tensor product of the local transformation operator T̂ ij
m with N −1 identity op-

erators Îm′ in Hm′ where m,m′ = 1, 2, ..., N but m 6= m′. So, the extended transformation

operator T̂ ij
m that has the same effect as the local transformation T̂ ij

m is defined as

T̂ ij
m = Î1 ⊗ Î2 ⊗ ...⊗ Îm−1 ⊗ T̂ ij

m ⊗ Îm+1 ⊗ ...⊗ ÎN . (7.3)

Clearly, these extended operators satisfy the product rule

T̂ ij
m T̂ kl

m = δjkT̂ il
m (7.4)

and the commutation relation

[T̂ ij
r , T̂ kl

s ] = 0 , r 6= s. (7.5)

Note that by using these types of transformation operator, the model of quantum field

theory to be presented encodes ideas such as information and logic from the outset, as

discussed in Section 6.1.
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Just as arbitrary local operators can be constructed from local transformation opera-

tors, the extended transformation operators may be used to generate arbitrary operators

that act globally on the whole state. Crucially, however, this also includes the construc-

tion of arbitrary global operators that appear to act locally on a particular sub-space. For

example, the ‘extended Pauli operators’, written σ̂a
m for a = 1, 2, 3, may be given by

σ̂1
m ≡ Î1 ⊗ Î2 ⊗ ...⊗ Îm−1 ⊗ σ̂1

m ⊗ Îm+1 ⊗ ...⊗ ÎN (7.6)

= Î1 ⊗ Î2 ⊗ ...⊗ Îm−1 ⊗
[
T̂ 01
m + T̂ 10

m

]
⊗ Îm+1 ⊗ ...⊗ ÎN

= T̂ 01
m + T̂ 10

m

and similarly

σ̂2
m ≡ −iT̂ 01

m + iT̂ 10
m (7.7)

σ̂3
m ≡ T̂ 00

m − T̂ 11
m .

where these appear to act only upon components of the state in the sub-space Hm of

H[1...N ].

The three extended operators σ̂a
m obey an algebra analogous to their local equivalents,

σ̂a
m. Assuming the Einstein summation convention over c only, then

σ̂a
r σ̂

b
s = δrs

(
δabσ̂

0
r + iǫabcσ̂

c
r

)
+ (1− δrs) σ̂

b
sσ̂

a
r (7.8)

for a, b, c = 1, 2, 3 and r, s = 1, 2, ..., N, with the extended identity operator σ̂0
m defined as

σ̂0
m ≡ σ̂0

1 ⊗ σ̂0
2 ⊗ ...⊗ σ̂0

N ≡ Î1 ⊗ Î2 ⊗ ...⊗ ÎN ≡ Î1...N (7.9)

and where the first set of bracketed terms in (7.8) account for local products when σ̂a
r and

σ̂b
s act in the same sub-register, and the second set is due to the commutation relation

(7.5) for local operators acting in different sub-registers. Moreover, it also follows that

σ̂a
r σ̂

0
s = σ̂0

sσ̂
a
r = σ̂a

r (7.10)

noting how these results compare with the ‘usual’ local Pauli algebra of (5.32), as given

in the standard literature [12].

As an aside, note that the extended Pauli operators may be used to demonstrate the

group symmetry of the extended transformation operators. Consider a unitary operator

Û(θ) defined as

Û(θ) ≡ exp
(
iθ1mσ̂1

m + iθ2mσ̂2
m + iθ3mσ̂3

m

)
(7.11)

that appears to act locally in the mth Hilbert sub-space Hm, where θ1m, θ2m, θ2m ∈ R. Then,

the algebra of the extended transformation operators is invariant to ‘rotations’ under the

SU(2) group, such that the operator (T̂ ij
m )′ defined as

(T̂ ij
m )′ ≡ Û∗(θ)T̂ ij

m Û(θ) (7.12)
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where Û∗(θ) is the conjugate transpose of Û(θ), obeys

(T̂ ij
m )′(T̂ kl

m )′ = δjk(T̂ il
m )′ (7.13)

as expected.

It is here that a discussion of the algebraic structure necessary for field theory can

begin. Consider the extended transformation operators T̂ 10
m and T̂ 01

m . If the ‘ground state’

in H[1...N ], written as |0〉, is chosen to be

|0〉 = |0〉1...N = |00...0〉1...N = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉N (7.14)

then the operator T̂ 10
m acting on |0〉 results in the transition of the state of the mth qubit

(i.e. the component of |0〉 in Hm) of H[1...N ] from |0〉m to |1〉m. That is

T̂ 10
m |0〉 = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉m−1 ⊗ |1〉m ⊗ |0〉m+1 ⊗ ...⊗ |0〉N . (7.15)

This transformation may be reversed by the operator T̂ 01
m . That is, if the mth qubit is

in the state |1〉m, then T̂ 01
m leads to a transition of this to |0〉m, such that

T̂ 10
m (|0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉m−1 ⊗ |1〉m ⊗ |0〉m+1 ⊗ ...⊗ |0〉N ) = |0〉. (7.16)

The operator T̂ 10
m can be applied in products that effectively act on different sub-

registers; viz,

T̂ 10
r T̂ 10

s |0〉 = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉r−1 ⊗ |1〉r ⊗ |0〉r+1 ⊗ ... (7.17)

...⊗ |0〉s−1 ⊗ |1〉s ⊗ |0〉s+1 ⊗ ...⊗ |0〉N

for r 6= s, noting that

T̂ 10
r T̂ 10

r |0〉 = 0 (7.18)

as expected from an analogy with the local transformation operators, and as discussed in

Section 6.1. Similar results apply in obvious ways for higher order products of T̂ 10
r T̂ 10

s T̂ 10
t ...,

for products of the ‘opposite’ operators T̂ 01
m , or for various ‘mixtures’ of the T̂ 10

r ’s and

T̂ 01
s ’s.

The last result (7.18) follows naturally from the rule that if the operator T̂ 10
m is applied

to a qubit that is in the state |1〉m, then the outcome is 0. Similarly, if the operator T̂ 01
m

is applied to a qubit that is in the state |0〉m, then the outcome of this is 0. Clearly, then,

T̂ 01
m |0〉 = 0. (7.19)

The operators T̂ 10
m and T̂ 01

m are in some sense analogous to the creation and annihilation

ladder operators of quantum field theory. Specifically, T̂ 10
m may be interpreted as an
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operator that creates a |1〉m state from the ‘vacuum’ |0〉, whereas T̂ 01
m destroys this to

return the ground state.

In addition to this comparison, T̂ 10
m and T̂ 01

m are seen (7.5) to obey some of the com-

mutation relations familiar to bosonic ladder operators. It might be suggested, therefore,

that they could hence be used to construct a pregeometric theory that might reproduce

the properties of physical bosons in the emergent limit. However, a problem with this

hypothesis is that conventional bosonic theories permit ‘multi-occupation number states’

[78]. That is, given a conventional, bosonic creation operator â†B acting on a conventional

vacuum ground state ϕ0 = |0〉, then

â†B|0〉 = |1B〉 (7.20)

produces the single boson particle state |1B〉, whilst

â†B â
†
B|0〉 = âB|1B〉 = |2B〉 (7.21)

yields the two boson particle state, and so on.

Conversely, an immediate difficulty that would be faced in attempts to reconstruct

bosonic field theory from the transformation operators of above is that although T̂ 10
m |0〉 6=

0, a second application of T̂ 10
m to this new state gives T̂ 10

m T̂ 10
m |0〉 = 0. So, even though

T̂ 10
m |0〉 is not being directly interpreted here as a single particle state per se, it is still

difficult to see how multiple particle states could ultimately be generated in this manner if

the underlying qubit operator algebra is so contrary to that employed to describe bosons.

However, note that the relationship T̂ 10
m T̂ 10

m |0〉 = 0 is instead similar to the Exclusion

Principle condition used in standard quantum field theory for particles obeying fermi-dirac

statistics. Thus, it is this connection that is now explored, and an attempt is made to

recover fermionic field theory from the pregeometric framework.

To this end, consider first the non-local operator ηm defined as

ηm ≡ σ̂3
1σ̂

3
2...σ̂

3
m−1Îm , 2 ≤ m ≤ N (7.22)

= σ̂3
1 ⊗ σ̂3

2 ⊗ ...⊗ σ̂3
m−1 ⊗ Îm ⊗ Îm+1 ⊗ ...⊗ ÎN

with η1 ≡ Î1 ⊗ Î2 ⊗ ...⊗ ÎN .

Now, consider the operator α̂m defined as

α̂m = ηmT̂ 01
m (7.23)

and its adjoint (i.e. Hermitian conjugate) operator α̂†
m

α̂†
m = ηmT̂ 10

m . (7.24)
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Clearly,

α̂m|0〉 = 0 (7.25)

and

α̂m (|0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉m−1 ⊗ |1〉m ⊗ |0〉m+1 ⊗ ...⊗ |0〉N ) = |0〉 (7.26)

whilst

α̂†
m|0〉 = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉m−1 ⊗ |1〉m ⊗ |0〉m+1 ⊗ ...⊗ |0〉N (7.27)

and

α̂†
mα̂†

m|0〉 = 0. (7.28)

Moreover, due to the presence of the operators σ̂3
1, σ̂

3
2, ..., σ̂

3
m−1, and hence unlike the

transformation operators T̂ 01
m and T̂ 10

m , the operators α̂m and α̂†
m obey anti-commutation

relations

{α̂r, α̂s} = 0 (7.29)

{α̂†
r, α̂

†
s} = 0

{α̂r, α̂
†
s} = δrsÎ1...N

as may be readily demonstrated.

Proof. A proof of the first of these is presented as follows. Given

{α̂r, α̂s} = α̂rα̂s + α̂sα̂r = ηrT̂ 01
r ηsT̂ 01

s + ηsT̂ 01
s ηrT̂ 01

r (7.30)

then expanding produces

=
(
σ̂3
1σ̂

3
2...σ̂

3
r−1Îr...ÎN

)(
Î1Î2...T̂

01
r ...ÎN

)(
σ̂3
1σ̂

3
2...σ̂

3
s−1Îs...ÎN

)(
Î1Î2...T̂

01
s ...ÎN

)

+
(
σ̂3
1σ̂

3
2...σ̂

3
s−1Îs...ÎN

)(
Î1Î2...T̂

01
s ...ÎN

)(
σ̂3
1σ̂

3
2...σ̂

3
r−1Îr...ÎN

)(
Î1Î2...T̂

01
r ...ÎN

)

=
(
σ̂3
1σ̂

3
2...σ̂

3
r−1T̂

01
r ...ÎN

)(
σ̂3
1σ̂

3
2...σ̂

3
s−1T̂

01
s ...ÎN

)

+
(
σ̂3
1σ̂

3
2...σ̂

3
s−1T̂

01
s ...ÎN

)(
σ̂3
1σ̂

3
2...σ̂

3
r−1T̂

01
r ...ÎN

)
(7.31)

where tensor product symbols have been omitted. Assuming, without loss of generality,

that r < s gives

=
(
σ̂3
1σ̂

3
1

) (
σ̂3
2σ̂

3
2

)
...

(
σ̂3
r−1σ̂

3
r−1

) (
T̂ 01
r σ̂3

r

)(
Îr+1σ̂

3
r+1

)
...

(
ÎsT̂

01
s

)
...
(
ÎN ÎN

)
(7.32)

+
(
σ̂3
1σ̂

3
1

) (
σ̂3
2σ̂

3
2

)
...
(
σ̂3
r−1σ̂

3
r−1

) (
σ̂3
rT̂

01
r

)(
σ̂3
r+1Îr+1

)
...

(
T̂ 01
s Îs

)
...
(
ÎN ÎN

)
.

Now, from the algebra (5.32) of the Pauli operators, σ̂3
mσ̂3

m = σ̂0
m = Îm, it is evident

that

{α̂r, α̂s} = Î1Î2...
(
T̂ 01
r σ̂3

r

) (
σ̂3
r+1

)
...

(
T̂ 01
s

)
Îs+1...ÎN (7.33)

+Î1Î2...
(
σ̂3
rT̂

01
r

) (
σ̂3
r+1

)
...

(
T̂ 01
s

)
Îs+1...ÎN

= Î1Î2...
(
T̂ 01
r σ̂3

r + σ̂3
rT̂

01
r

) (
σ̂3
r+1

)
...
(
T̂ 01
s

)
Îs+1...ÎN .
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Recall, however, that (like all local operators) the Pauli operators can be written as a

complex sum of local transformation operators. So, by using (6.10), i.e. σ̂3
r = T̂ 00

r − T̂ 11
r ,

it is evident that

(
T̂ 01
r σ̂3

r + σ̂3
rT̂

01
r

)
= {T̂ 01

r , σ̂3
r} (7.34)

=
(
T̂ 01
r [T̂ 00

r − T̂ 11
r ] + [T̂ 00

r − T̂ 11
r ]T̂ 01

r

)

= −T̂ 01
r + T̂ 01

r = 0

where the last line follows from the usual T̂ ij
r algebra (6.14). So, substituting in gives

{α̂r, α̂s} = 0 (7.35)

as expected.

Clearly, the proof holds also for r ≥ s.

Moreover, the relations {α̂†
r, α̂

†
s} = 0 and {α̂r, α̂

†
s} = δrsÎr can be readily verified via

analogous methods.

Due to their similarities to conventional theory, the fermionic-looking operators α̂†
m and

α̂m will be called pregeometric (fermionic) creation and annihilation operators respectively,

or equivalently, qubit ladder operators. The extent of this similarity will be investigated

fully in due course.

As an aside, however, note that the result (7.28) can also be given by the relation

(
α̂†
m

)D
|0〉

{6= 0 , D = 1

= 0 , D > 1

}
(7.36)

in anticipation of higher order generalisations in the future; the algebra (7.28) obeys

parafermionic statistics of order 1 [65][66].

Just as the transformation operators were invariant under SU(2) rotations, so too

are the pregeometric creation and annihilation operators. Specifically, using the rotation

operator Û(θ) given in (7.11), then the operators (α̂†
m)′ and (α̂m)′ defined as

(α̂†
m)′ ≡ Û∗(θ)α̂†

mÛ(θ) (7.37)

(α̂m)′ ≡ Û∗(θ)α̂mÛ(θ)

also obey the fermionic algebra. That is

{(α̂r)
′, (α̂s)

′} = {(α̂†
r)

′, (α̂†
s)

′} = 0 (7.38)

{(α̂r)
′, (α̂†

s)
′} = δrsÎ1...N .

This result may lead to important consequences for the gauge symmetry of the emer-

gent theory.
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As with separable states and factorisable Hilbert spaces, it is evident that the pregeo-

metric creation and annihilation operators are also invariant to any left-right re-positioning

of their factors. This, of course, is because it is always assumed that the factor sub-operator

with subscript t still acts in the sub-register Ht, for 1 ≤ t ≤ N, such that the imposed

left-right ordering of the equations is merely typographical. So, σ̂3
a always acts in Ha,

Îb always acts in Hb, T̂
10
c always acts in Hc, and so on, such that a sub-operator’s loca-

tion within the tensor product is immaterial. As an example, the pregeometric creation

operator

α̂†
r = σ̂3

1σ̂
3
2...σ̂

3
14T̂

10
15 Î16...Î28 (7.39)

may be rewritten as

α̂†
r = Î23Î17σ̂

3
14σ̂

3
1Î28σ̂

3
6T̂

10
15 Î18... (7.40)

without affecting the anti-commutation algebra.

7.2 Dirac Field Theory

It is now possible to begin to construct quantum field theories from the basic principles

described above. Specifically, attention will be focused on the emergence of Dirac theory

from the underlying pregeometric structure, because this field is often taken to be one of

the most basic (and hence important) ingredients of elementary particle physics. Indeed,

it is even possible to describe many boson species in terms of groups of fermions obeying

the Dirac theory; the pion of particle phenomenology, and the existence of Cooper pairs

in superconductivity provide good physical examples of this point.

So, in this section a description of spin-12 fermions will be given.

For convenience, the two types of particle and two types of anti-particle associated

with the field’s excitations will be referred to below as spin-up and spin-down electrons

and positrons. In should be noted, however, that this is merely for linguistic advantage,

and in principle the presented analysis is not restricted to any particular particle species.

In order to justify the enormous simplification involved in considering just a single,

isolated Dirac field, recall the types of situation in physics in which such circumstances

are generally encountered. In conventional particle accelerator experiments, for example,

scientists often go to great lengths to construct apparatus that effectively ‘shuts an area

off’ from the rest of the Universe, such that the region inside the collider can be treated

as an isolated system in which only a few basic fields are present.

Now, in a fully quantum Universe, this sort of experimental arrangement is taken to

arise in the large-scale limit when the state Ψn is sufficiently and suitably separable so that

its factors give rise to such an emergent, semi-classical picture. In this case, various factors
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and groups of factors may be used to represent the detector, the particles it contains, the

physicist, the laboratory, and, indeed, everything else. Moreover, in fact, the operators

chosen to develop the Universe are assumed to be carefully and self-referentially chosen

such that this semi-classical description appears to persist over a number of jumps, as has

been discussed previously.

So, it should therefore be reasonable to meaningfully discuss parts of the Universe that

seem to contain nothing but isolated, fundamental fields, because this is what scientists

tend to be able to do in real, physical experiments. Furthermore, since it has been conjec-

tured that there is a strong link between the ‘parts’ of the Universe and the factors of its

state, it is equally reasonable to assert the possibility of discussing factors that ‘contain’

just the particles inside the detector. Indeed, by rephrasing this argument for the per-

spective advocated in this thesis, it might be possible to generate isolated quantum fields

out of a consideration of the pregeometric ‘properties’ of a particular part of the Universe.

Specifically, and in the language of the previous chapter, the information content of such

regions might somehow be expected to include notions of quantum fields, though exactly

how this might be achieved is what is to be examined below.

Of course, the factors that represent the insides of particle detectors will also possess

many other types of features. For instance, they will have a well defined location in

emergent physical space because of their familial relationships with other factors (c.f.

Chapter 5), and since the separability of the Universe may change as it jumps from one

state to the next, it may be possible to discuss ‘observers’ appearing to measure the sub-

state representing the colliding particles (c.f. Chapter 6). Ultimately, then, it should be

possible to envisage a typical particle physics experiment from a pregeometric point of

view, where isolated particles appear to collide and be scattered, before being measured

by various components, detectors and scientists.

For now, however, just the isolated particle fields shall be discussed, with the implicit

assumption being made that any such procedures could also eventually be applied to more

‘complicated’ situations.

So consider just that factor ϕ, of the state Ψ ∈ H[1...N ] of the Universe, that represents

the ‘inside’ of the collider. Thus in the following, the label ϕ will be used to denote the

part of the Universe’s state Ψ responsible for a description of everything of interest that

occurs inside the detector during a collision event. By re-labelling the subregisters of the

overall Hilbert space H[1...N ] of Ψ in a convenient way, the factor ϕ may be said to be

contained in a factor Hilbert sub-space H[1...N ′], where H[1...N ′] ⊂ H[1...N ]. Of course, ϕ

may or may not itself be highly separable relative to H[1...N ′]. Clearly, the remaining sub-

space H[(N ′+1)...N ] contains factors and groups of factors that represent the Physicist, P,

the Apparatus, A, and the Rest of the Universe, R.
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Overall, the goal therefore becomes to investigate the circumstances in which the

Hilbert space H[1...N ′] may be described as ‘containing’ a single, isolated Dirac field.

In conventional quantum field theory, and in particular in the S-Matrix approach to

particle scattering [79], it is assumed that what actually occurs during the collision may

be represented by a type of ‘Black Box’; only the initial ‘In’ particle state, |ψin〉, and
final ‘Out’ particle state, |ψout〉, are of interest to physicists. Moreover, in the Heisen-

berg picture of dynamics traditionally used in quantum field theory, it is asserted that

the initially prepared state |ψin〉 is effectively ‘frozen in time’ until its later measurement

by an observer, at which point it is collapsed into |ψout〉. Thus, a typical particle physics

experiment proceeds by the scientist preparing an initial a-particle In state, before mea-

suring it at some time later time with some sort of Hermitian operator (representing an

observable), thereby collapsing it into a final b-particle Out state. Consequently, the time

evolution of the system is enforced by transforming the Observables, in a way that de-

pends, in fact, upon the time experienced by the physicist between the initial preparation

of |ψin〉 and its eventual measurement. Amplitudes between initial and particular final

states may therefore be considered.

Now, in order to recreate standard physics from the pregeometric perspective aimed

at in this thesis, the above type of setup must be reproducible in the quantum Universe

paradigm. So, the principles employed in conventional particle theory are used to guide

the present analysis.

To this end, consider an initial state Ψn defined as

Ψn = |ϕin〉 ⊗ |Pi〉 ⊗ |Ai〉 ⊗ |Ri〉 (7.41)

where |ϕin〉 ∈ H[1...N ′] represents the initially prepared sub-state of the particles in the

detector prior to the collision (i.e. before anything has happened), and |Pi〉, |Ai〉 and |Ri〉
the initial sub-states of the Physicist, Apparatus and Rest of Universe respectively.

Moreover, assume that the series of jumps from Ψn −→ Ψn+1 −→ ... −→ Ψn+n′ ,

where n′ ≫ n, represent, on the emergent level, a observer-apparatus-environment system

performing a particle collision experiment. In this case, Ψn+n′ may be taken to be of the

approximate form

Ψn+n′ = |ϕout〉 ⊗ |Pf 〉 ⊗ |Af 〉 ⊗ |Rf 〉 (7.42)

where |ϕout〉 represents the final sub-state of the particles in the detector after the collision,

and |Pf 〉, |Af 〉 and |Rf 〉 the respective final sub-states of the Physicist, Apparatus and

Rest of Universe. Of course, the operator Σ̂n+n′ , of which Ψn+n′ is an eigenstate, must be

carefully defined such that the Physicist factor in Ψn+n′−1 believes herself to be choosing

(with apparent free-will) a particular laboratory test to measure the particle sub-state

with; this general issue is discussed more fully in Chapter 8.
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By attempting to keep the dynamics congruent to the situation familiar to conventional

physics, a number of inferences may be drawn about what the above sequence of states

might be like. Firstly, because the sub-state representing the particles is assumed ‘frozen

in time’ between its preparation as part of Ψn and measurement as part of Ψn+n′ , whatever

the operators in the sequence Σ̂n+1 −→ Σ̂n+1 −→ ...Σ̂n+n′−1 might actually be, each must

be taken to result in a null test on the factor of the universe in H[1...N ′]. In such a case, ϕin

would consequently appear unchanged during this period. Moreover, and in the language

of Chapter 6, no information would therefore be exchanged between the components of

the state in H[1...N ′] and the components of the state in H[(N ′+1)...N ] during this time;

as desired, the sub-state in H[1...N ′] representing the inside of the detector is effectively

isolated from the remainder of the Universe. Of course, the Physicist, Apparatus and Rest

of Universe do interact, entangle and exchange information with one another throughout

this duration.

Overall, therefore, it is asserted that the Universe jumps through a series of states of

the form

Ψn+1 = |ϕin〉 ⊗ |P ′〉 ⊗ |A′〉 ⊗ |R′〉 (7.43)

Ψn+2 = |ϕin〉 ⊗ |P ′′〉 ⊗ |A′′〉 ⊗ |R′′〉
...

Ψn+n′−1 = |ϕin〉 ⊗ |P ′′′...′〉 ⊗ |A′′′...′〉 ⊗ |R′′′...′〉

where P ′′, for example, is a factor representing a physicist that has evolved and developed

since initial ‘time’ n.

As expected, the operators Σ̂n+1, Σ̂n+2, ..., Σ̂n+n′−1 must be very carefully constrained,

defined and selected, in order to ensure that this type of pattern occurs.

A second feature that may be concluded about the above system by drawing parallels

to the laboratory case is that the factors of the Universe representing the physicist will

bestow certain properties upon ϕ. For example, because they know it represents what is

going on inside a physical machine, they may assume it occupies a particular volume, or

represents a certain set of conditions. Consider just this volume: if ϕ is ultimately taken to

represent the state inside a physical detector, whatever spatial degrees of freedom emerge

from a causal set description of the operators acting in its Hilbert sub-space must match

the observed spatial properties of the object (i.e. the detector) appearing to physically

contain it.

Moreover, recall from Section 5.7.5 that, under certain conditions, particular sub-

operators acting locally in particular subregisters may be mapped to positions situated

on a three dimensional lattice; of course, this was not too say that the subregisters are

209



actually located at these sites per se, but that in the large scale limit such a description

may be effective. Such an observation then places an important constraint on the size

of the Hilbert sub-space H[1...N ′] containing ϕ: if the inside of a detector is modestly

assumed to occupy a volume of one cubic metre, H[1...N ′] must be sufficiently large such

that a causal set description can give rise to one cubic metre’s ‘worth’ of volume.

In fact going further, and following the estimation of Section 3.2 for the minimum

number of degrees of freedom of the quantum Universe (in which continuous spatial res-

olutions were assumed valid down to at least distance scales of the order of the Planck

length, lP ), if the minimum number nm3 of discrete ‘points’ in a cubic metre is given by

nm3 =

(
1

lP

)3

∼
(
10+35

)3
= 10105 (7.44)

and if each of these nm3 points is associated with just a single, two-dimensional qubit

degree of freedom, then the dimension of H[1...N ′] must be at least 210
105

.

In actual fact, the model of field theory presented in the following will be simplified by

restricting the discussion to dynamics occurring in a one dimensional volume. Thus, from

this viewpoint it is assumed that if an external scientist considers ϕ, she would conclude

that it is of emergent length L because it is contained in a one-dimensional detector with

a ‘known’ internal volume of L. This simplification will be justified later by restricting

the field theory analysis to one dimension of momentum, and noting that it is hoped that

an extension to D dimensional space could be achieved merely by using a formalism of

greater complexity. For now, however, note that by using such an assumption, the number

of spatial points discussed is given by

nm1 = 1035 (7.45)

where this value is still sufficiently enormous such that a causal set approximation of

continuous space is expected to be valid.

The physicist factor will also be able to make statements regarding the duration of

the sub-state |ϕin〉. For example, by recording various changes in her surroundings as the

Universe developed from Ψn to Ψn+1 to... to Ψn+n′ , she may be able to argue that a

certain quantity of (emergent) time elapsed between the preparation of ϕin in Ψn and the

measurement of ϕout as part of Ψn+n′ . In fact, such a determination is vital: measures

of time are necessary for many quantum field calculations to be performed and probabil-

ity amplitudes to be evaluated, because these are generally dependent on the extent of

dynamical unitary evolutions.

It is possible to estimate a value for the length of time perceived by the physicist

between Ψn and Ψn+n′ by again appealing to what actually occurs in laboratory collider
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experiments. If the colliding particles are assumed to be travelling at the speed of light,

c, and are assumed to interact only when in the cubic metre enclosed inside the detector,

then the physicist could conclude that they interact for a duration of (1/c) ∼ 10−8 seconds.

In other words, if the interaction is taken to endure between jumps n and n + n′, then

this period will last approximately 10−8 seconds according to the clock of the emergent

observer who had defined c and the metre (and hence also the size of the detector).

Moreover, if it is also assumed that physicists are able to resolve a continuous temporal

parameter down to at least durations of the order of the Planck time tP , then an extrap-

olation indicates that the time taken for the Universe to jump discretely from a state Ψn

to the next state Ψn+1 could not be greater than this value. So, from the external point

of view of the emergent observer, the number NJ of jumps during which the Universe will

possess a factor ϕin is given by

NJ ≡ (n+ n′ − 1)− n ≥
(

1

ctP

)
∼

(
1

(108)(10−43)

)
= 1035 (7.46)

which may again be expected to be large enough to generate the type of causal set struc-

tures required.

Attention may now be turned to the actual field theory. An immediate question is:

given that physical particle states are conventionally taken to be governed by annihilation

and creation operators, and also the assumption of the fundamental, underlying prege-

ometric structure advocated in this thesis, then is there a mechanism by which these

conventional operators could emerge from a consideration of their pregeometric counter-

parts? In other words, given a pregeometric creation operator of the form α̂†
r, how might

it be possible to relate this to the operator ĉ†(p, κ) that creates a physical electron with

momentum p and spin κ, or to the operator d̂†(p′, κ′) that creates a physical positron with

momentum p′ and spin κ′? Complicated functions of such operators could then ultimately

be used to relate the physical In state |ϕin〉 to the final Out state |ϕout〉, as is typically

done in the Heisenberg picture approach to particle collision experiments.

To begin to answer this, recall that it is well known that momentum and position

space variables may be related to one another in quantum theory by the use of Fourier

transforms [80]. This relationship follows from their reciprocal dependence in the uncer-

tainty principle, and is often exploited in conventional quantum field theory. So, if it

is possible to discuss ladder operators in position space, it is equally possible to discuss

ladder operators in momentum space by using Fourier methods.

Now, since an origin of spatial position has already be suggested for the quantum

Universe, it might be possible to use this as a starting point in order to obtain ladder

operators that are a function of momentum. Thus, it may be possible to employ Fourier

transform methods to generate momentum space relations from the positional degrees of
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freedom that emerge from the causal set structure. It is this type of procedure that is

consequently investigated below.

However, because space is assumed to be discrete and finite in the paradigm envisaged

in this thesis, the conventional Fourier transform must be replaced with a discretised

version. This then places an additional constraint on the proposal: the standard results

of the continuous theory must still emerge in the large scale limit if the model suggested

is to accurately represent the observed physics. This issue will be discussed in due course.

Given that the model in hand has been restricted to a single spatial dimension, assume

that a causal set analysis of the local operators in the sub-space H[1...N ′] ‘containing’ the

Dirac field concludes that the region of space that ultimately emerges from it is of length

L. Moreover, assume that this length may be associated with a discrete, one-dimensional

lattice consisting of (2M +1) points, where M is very large, such that (2M +1) ≥ nm1 =

1035. Finally, assume that H[1...N ′] may be factorised into at least (2M + 1) subspaces,

such that N ′ ≥ (2M + 1) ≥ nm1 . Then, it may be argued that each local operator acting

in each of these factor sub-spaces of H[1...N ′] could somehow map to one of these (2M +1)

possible ‘positions’ or ‘sites’, analogously to the mechanism presented in Section 5.7.5 for

relating sub-operators to the vertices of a three dimensional lattice. Equivalently, each

subregister of H[1...N ′] may be asserted to somehow correspond to a certain one of the

(2M + 1) sites.

Now, for the sake of simplicity, assume thatH[1...N ′] is a tensor product of just (2M+1)

sub-spaces (this assumption will be enlarged later). In this case, it might be possible to

relate each local sub-operator (or subspace) in a one-to-one way to a unique position

along the one-dimensional lattice consisting of (2M + 1) points. Thus overall, and from

the approximate point of view of emergence, it might therefore be possible to imagine that

each of the (2M + 1) subregisters (or local sub-operator acting in it) in H[1...N ′] may in

some sense be considered to exist at a definite location along this line of emergent length

L.

(To illustrate the proposed perspective further, a slightly different analysis could in-

stead be schematically discussed. Assume that the Hilbert sub-space H[1...N ′] containing

the particles is a tensor product of at least (2M + 1) subregisters, where M is very large,

and that a causal set analysis concludes that the region of space that ultimately emerges

from it (by considering the sub-states and sub-operators acting in it) is of length L. Then,

given that the model has been restricted to a single spatial dimension, it may be argued

from the approximate point of view of emergence that each subregister of H[1...N ′] is ‘re-

sponsible’, somehow, for one of (2M + 1) possible ‘positions’ or ‘sites’. Equivalently, the

particular sub-operator that acts locally in a particular subregister of H[1...N ′] may be as-

serted to correspond to a certain one of these (2M+1) sites. Reversing this argument, then,
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each local sub-operator (or subregister) may effectively be mapped to a unique position

along a one-dimensional lattice consisting of (2M + 1) points, similarly to the mechanism

of Section 5.7.5., and it is therefore possible to imagine that each subregister (or local

sub-operator) in H[1...N ′] may in some sense be considered to exist at a definite location

when this lattice is associated with a continuous one-dimensional volume of length L.)

Note that the presented approach differs greatly from the work of Deutsch [77], in

which qubit subregisters are instead actually embedded into a fixed and independently

existing background space whose nature or origin is not further questioned or justified.

Note also that the pregeometric ladder operators discussed in the previous section act

locally in particular subregister spaces; this observation will be crucial in the following.

Overall, a vision is imagined in which each subregister of H[1...N ′] is effectively placed

at a unique site along a locus of (2M+1) points that correspond to a spatial length of L in

the continuum limit. Each sub-operator (for example, the pregeometric ladder operators)

acting locally in one of these subregisters may therefore also be envisaged to act at a

definite one of these (2M + 1) positions.

From the above, it is possible to define a length scale X as the average, effective

distance between these subregisters. If the overall length arising out of H[1...N ′] is taken

to be L, and because there are precisely 2M intervals between (2M + 1) points, then

X =

(
L

2M

)
(7.47)

noting that X is defined only by extrapolating backwards from the overall length experi-

enced on the emergent scale and is meaningless on the actual pregeometric level.

Paraphrasing these ideas: from an emergent perspective the vision is of a one dimen-

sional lattice of length L comprising of (2M + 1) points separated by a distance of X,

but on the pregeometric level the (2M +1) subregisters are still just factors of the overall

Hilbert space and are not embedded into any sort of spatial background. As with the

causal set discussions of Chapter 5, it is the overall network of relationships between op-

erators and states that leads to the generation of effective concepts such as distance on

the macroscopic scale.

Note that the above considerations immediately imply a splitting of the Hilbert space

H[1...N ′] containing ϕ, which may be denoted as

H[1...N ′] = H[ϕ(−M)]
⊗H[ϕ(−M+1)]

⊗ ...⊗H[ϕ(M)]
(7.48)

=

M∏

R=−M

⊗H[ϕ(R)]
.

where R runs from −M to M for reasons that will become apparent. Moreover, from

this split a suitable relabelling of the subregisters may be performed in the obvious way
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for visual convenience, such that from a given emergent perspective the (−M)th sub-

space H[ϕ(−M)]
of H[1...N ′] may be thought of as being located at the ‘left-most’ position,

whereas sub-operators acting locally in the (+M)th subregister H[ϕ(M)]
of H[1...N ′] may be

thought of as being responsible for the ‘right-most’ position, with the remaining sub-spaces

positioned at the obvious locations in between.

Now consider the components of the state in each of these (2M +1) subregisters. The

nature of this set of components may be thought of as defining a type of field across the

one dimensional lattice. Moreover, concepts of information can be applied in this context,

such that the information contained in the Rth factor space can be seen as analogous to

the value of the field at spatial position R.

Assuming that this field is not trivially constant, the minimum dimension of each

subregister H[ϕ(R)]
is evidently two. Defining, then, the basis vectors for each subregister

in the usual way as |0〉 and |1〉, it implies that at each of the locations it is possible to assign

a ‘value’ for the field in terms of these bases. This information will play an important part

in describing the physical properties of the particle system, as shown later.

However, matters are straight away seen as being considerably more involved than a

simple two dimensional scenario permits. After all, a single Dirac field allows the existence

of four distinct particle species (both spin-up and spin-down electrons and positrons), so

each of the (2M + 1) factor sub-spaces of H[1...N ′] will be required to contain information

regarding four different types of particle at that site if such a field is ultimately to be

modelled. Thus, in order to consistently describe all of these possibilities at least eight

degrees of freedom will be required for each of the (2M +1) factors of H[1...N ′]. These may

in turn be grouped into four sets, each corresponding to a sub-space of H[ϕ(R)]
relating to

a given particle species.

The simplest possible model for the Dirac field may consequently be achieved by as-

sociating four qubits to each of the (2M + 1) factor spaces, one for each particle type. In

this case

N ′ = 4(2M + 1) = 4× 1035 (7.49)

and it is possible to consider a further split of each of the (2M + 1) sub-spaces of H[1...N ′]

into the products of subregisters they comprise. That is, the sub-space H[ϕ(R)]
may be

written

H[ϕ(R)]
= HR(1)

⊗HR(2)
⊗HR(3)

⊗HR(4)
(7.50)

such that

H[1...N ′] =

M∏

R=−M

4∏

z=1

⊗HR(z)
. (7.51)

Evidently, the dimension of the Hilbert space H[1...N ′] is 2
4×1035 .
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As desired, each of the four qubits in each H[ϕ(R)]
is to be associated with one particle

type. So, by arbitrarily relabelling the subregisters for convenience, the sub-register HR(1)

will be used in the following to contain information about the spin-down electron, whereas

HR(2)
is chosen to be the space containing information for a spin-up electron, whilst HR(3)

regards the spin-down positron, and HR(4)
is the space to be used for the construction of

the spin-up positron, for all R = −M, ...,M.

Moreover, by choosing an orthonormal BR(z)
basis forHR(z)

to be BR(z)
≡ {|0〉R(z)

, |1〉R(z)
}

it is possible to specify the component of ϕ in a particular one of the 4(2M+1) sub-spaces

of H[1...N ′].

The pregeometric ladder operators discussed in the previous section may be employed

to manipulate the components of the state ϕ ∈ H[1...N ′] at various emergent positions.

For example, by defining the completely separable vector |0〉1...N ′ as the ‘vacuum’ or

‘ground’ state in H[1...N ′], the operation

α̂†
R(z)

|0〉 = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉R(z−1)
⊗ |1〉R(z)

⊗ |0〉R(z+1)
⊗ ...⊗ |0〉N (7.52)

evidently changes the component of the state ϕ = |0〉 in HR(z)
from |0〉R(z)

to |1〉R(z)
,

whilst the operator α̂R(z)
reverses this ‘occupation’ of subregister15 HR(z)

. Equivalently, it

may be possible to imagine that the operation α̂†
R(z)

|0〉 creates a particular ‘pregeometric

particle’ at location R(z) from the vacuum, whereas the operator α̂R(z)
annihilates this

result. So, in this case a component of the form |1〉R(z)
is being chosen to relate to the

existence of a particular ‘pregeometric particle’ at a given position R(z), whereas the value

|0〉R(z)
is implying its absence; the similarities to the type of binary logic discussed in

quantum computation are obvious.

Overall, it is the information contained in the individual factor spaces that will be used

to control the physics of the situation.

Of course,

α̂†
R(z)

α̂†
R(z)

|0〉 = 0 (7.53)

α̂R(z)
|0〉 = 0

as expected.

The introduction of ladder operators to the current analysis is actually more fun-

damental than the above simple manipulation of the components of the state seems to

suggest. After all, recall that the second quantisation procedure of conventional field the-

ory involves re-writing the field as a field operator, before this is then typically expressed

in terms of annihilation and creation operators. Thus in the present case, it is expected

15With the notation of (7.52) defined ‘cyclically’, such that R(0) ≡ (R− 1)(4) and R(5) ≡ (R+ 1)(1).
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that pregeometric field operators acting across the space of interest could ultimately be

described in terms of the pregeometric ladder operators.

The overall aim is therefore to investigate how such a ‘pregeometric field’ could relate

to the physical particle field used in conventional quantum theory. In particular, it is

considered how ‘real’ Dirac particles in momentum space might emerge from the simple

logic of the pregeometric framework. The issue effectively becomes one of relating the

momentum space ladder operators of familiar physics to the pregeometric annihilation

and creation operators that act at definite positions along the emergent spatial lattice.

Concepts normally expressed in conventional particle physics as functions of momentum

space ladder operators, such as momentum space Hamiltonian or field operators, may

then be recovered from the underlying pregeometric framework by substituting the usual

momentum space annihilation and creation operators for their pregeometric definitions,

thereby re-writing the Hamiltonian or field in terms of these pregeometric ladder operators.

In fact, it is in principle possible to conjecture many different ways of bridging the gap

between the pregeometric picture and emergent momentum space. However, due to the

conventional relationship that exists between momentum and position in terms of Fourier

analysis, it is this type of method that presents itself as a natural candidate to provide

such a mechanism here. It is this that is now proposed.

Consider the standard Fourier Transform [81] of an arbitrary function f(τ) with the

variable ω

f(τ) =

∫ ∞

−∞
[F (ω) exp(iτω)] dω (7.54)

where F (ω) is an amplitude of value

F (ω) =

(
1

2π

)∫ ∞

−∞
[f(τ) exp(−iτω)] dτ. (7.55)

The present goal is to write the ladder operators in momentum space as a Fourier

transform of terms in pregeometric space. Thus, by temporarily introducing the continuous

position variable x, then a ‘first guess’ for the form of an annihilation operator â(p, κ) of

known spin κ may initially be given by

â(p, κ) =

∫ ∞

−∞
[F (x) exp(ipx)]dx (7.56)

with modifications required as follows:

• Firstly, the parameter x must be discretised if it is to fit into the proposed paradigm,

because space in the quantum Universe is assumed ultimately to be non-continuous.

Assuming from above that the minimum spatial resolution of the volume is X, then

x is given by

x = mX , m = 0,±1,±2, ... (7.57)
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and similarly

F (x) = F (mX) = Fm (7.58)

such that â(p, κ) is given by a sum of discrete terms instead of as a continuous integral.

• Next, the limits need to be constrained. Since the method is being used to describe a

finite model (i.e. a part of a finite dimensional Quantum Universe) of length L with a

finite number of possible positions, the Fourier sum must also be finite. Specifically,

since the integral is normally performed across all space, the sum in this case must

be taken over all the positions for which the system is defined. This is hence bounded

by the number of ‘sites’ contained in H[1...N ′], namely (2M + 1). So, by preserving

symmetry around the origin, the minimum and maximum positions are given by

xmin = −L/2 = (−M)(X) , xmax = +L/2 = (+M)(X) (7.59)

from which it follows that −M ≤ m ≤ M as expected. Clearly, the index m is

equivalent to the index R used above to label the (2M + 1) factors. Moreover, for

M ≫ 1 it follows that xmax ≫ 1 and xmin ≪ −1, such that the infinite integral is

well approximated by the sum.

• Finally, the amplitudes Fm = FR are hoped to be functions of the pregeometric

ladder operators, since this is after all the point of the current work. Taking pro-

portionality here gives

FR = Apα̂(R) (7.60)

where Ap is a type of ‘form function’ to be investigated, and the pregeometric an-

nihilation operator has been temporarily written as α̂(R) to indicate that it is a

function of R.

Overall, â(p, κ) becomes of the form

â(p, κ) =

M∑

R=−M

Apα̂(R) exp (iRpX) . (7.61)

The argument of the exponential in equation (7.61) introduces a periodicity into the

analysis; specifically,

(exp (ipX))R = (exp (i[pX ± 2jπ]))R , j = 0, 1, 2... (7.62)

Moreover, defining the resulting maximum positive momentum as pmax, and assuming

symmetry about the lowest value p = 0 such that |p| = |−p| , it implies that pmax is in

practice bounded by the half-period

|pmax|X = π (7.63)
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so pmax = π/X. Note that this relationship indicates how the largest momentum is related

to the reciprocal of the smallest spatial resolution, as analogous to the uncertainty princi-

ple. Importantly, observe also that since M ≫ 1, it follows that X ≪ 1, so pmax ≫ 1 as

required.

The energy Ep of the mode of momentum p may now be defined in the conventional

way. It follows, then, that this too is bounded, such that

(Ep)max ≡
(
p2maxc

2 + µ2c4
)1/2

(7.64)

where µ is the particle’s mass and c is the speed of light. Again, it is remarked that

(Ep)max is clearly very large.

The operator α̂(R) of equation (7.61) is assumed to be one of four possible types

because it could act on one of four possible qubits for each R. Thus, equation (7.61) must

be refined further to account for the four different sorts of particle that could be annihilated

by the generic operator â(p, κ). If ĉ(p, κ) is defined as the annihilation operator for electrons

of momentum p and spin κ, for κ = 1, 2 where κ = 1 represents spin-down and κ = 2

represents spin-up, and if d̂(p, κ) conversely annihilates positrons of momentum p and spin

κ, then from the discussion following (7.51) and the relation (7.61) it is evident that

ĉ(p, κ) =

M∑

R=−M

Apα̂4(M+R)+κ exp (iRpX) (7.65)

and

d̂(p, κ) =

M∑

R=−M

Apα̂4(M+R)+2+κ exp (iRpX) . (7.66)

The corresponding creation operators may be defined in an analogous way as the

Hermitian conjugates of the annihilation operators; viz.

ĉ†(p, κ) =
M∑

R=−M

A∗
pα̂

†
4(M+R)+κ exp (−iRpX) (7.67)

and

d̂†(p, κ) =
M∑

R=−M

A∗
pα̂

†
4(M+R)+2+κ exp (−iRpX) . (7.68)

For the conclusions defined in (7.65)-(7.68) to be accepted as physically valid, they

must be able to reproduce the standard results obtained for conventional fermionic ladder

operators. For example, the anti-commutation relations of momentum space annihilation

and creation operators must be obeyed, such that all the anti-commutators vanish apart

from the results {ĉ(p, κ), ĉ†(p′, κ′)} and {d̂(p, κ), d̂†(p′, κ′)} which should give

{ĉ(p, κ), ĉ†(p′, κ′)} = {d̂(p, κ), d̂†(p′, κ′)} = δpp′δκκ′ . (7.69)
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The vanishing terms are clearly satisfied: for the results defined in (7.65)-(7.68)

{ĉ(p, κ), ĉ(p′, κ′)} = {ĉ†(p, κ), ĉ†(p′, κ′)} = 0 (7.70)

{d̂(p, κ), d̂(p′, κ′)} = {d̂†(p, κ), d̂†(p′, κ′)} = 0

{ĉ(p, κ), d̂(p′, κ′)} = {ĉ(p, κ), d̂†(p′, κ′)} = 0

{ĉ†(p, κ), d̂(p′, κ′)} = {ĉ†(p, κ), d̂†(p′, κ′)} = 0

which follow immediately from the relations (7.29) for the pregeometric ladder operators.

Considering instead the relations {ĉ(p, κ), ĉ†(p′, κ′)} and {d̂(p, κ), d̂†(p′, κ′)}, gives

{ĉ(p, κ), ĉ†(p′, κ′)} =

M∑

R=−M

Apα̂4(M+R)+κ exp (iRpX)

M∑

S=−M

A∗
p′α̂

†
4(M+S)+κ′ exp

(
−iSp′X

)

+

M∑

S=−M

A∗
p′α̂

†
4(M+S)+κ′ exp

(
−iSp′X

) M∑

R=−M

Apα̂4(M+R)+κ exp (iRpX)

=

M∑

R=−M

M∑

S=−M

ApA
∗
p′ exp

(
i(Rp− Sp′)X

)

 α̂4(M+R)+κα̂

†
4(M+S)+κ′

+α̂†
4(M+S)+κ′α̂4(M+R)+κ




=

M∑

R=−M

M∑

S=−M

ApA
∗
p′{α̂4(M+R)+κ, α̂

†
4(M+S)+κ′} exp

(
i(Rp− Sp′)X

)

(7.71)

So

{ĉ(p, κ), ĉ†(p′, κ′)} =

M∑

R=−M

M∑

S=−M

ApA
∗
p′δRSδκκ′ exp

(
i(Rp− Sp′)X

)
(7.72)

=

M∑

R=−M

ApA
∗
p′δκκ′ exp

(
iR(p− p′)X

)

with a similar result for {d̂(p, κ), d̂†(p′, κ′)}.
Now, consider the Fourier expansion of the continuous space Dirac delta function δ(p)

of period 2∞, defined in the usual way as [81][82]

δ(p) ≡
(

1

2π

)∫ ∞

−∞
(1) exp (−ipx) dx. (7.73)

By making the same type of approximation as before, i.e. associating the function with

a large, but finite, period of at least 2
(
π
X

)
defined over a discretised background space of

emergent length L = 2MX, the expression (7.73) may be truncated, and re-written as

δp ≡
(

1

2π

) M∑

R=−M

CR exp (−iRpX) . (7.74)
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Multiplying both sides by eiR
′pX and integrating over all momentum |p| ≤ pmax gives

∫ π/X

−π/X
δp exp

(
iR′pX

)
dp ≡

(
1

2π

) M∑

R=−M

CR

∫ π/X

−π/X
exp

(
−i(R−R′)pX

)
dp

e0 =

(
1

2π

) M∑

R=−M

CRδRR′

(
2π

X

)

1 = CR′

(
1

X

)
(7.75)

so CR = X such that
∑M

R=−M exp (−iRpX) =
(
2π
X

)
δp from (7.74).

Clearly then
M∑

R=−M

exp
(
−iR(p− p′)X

)
=

(
2π

X

)
δpp′ . (7.76)

and substituting this into (7.72) gives

{ĉ(p, κ), ĉ†(p′, κ′)} =

M∑

R=−M

ApA
∗
p′δκκ′

(
2π

X

)
δp′p (7.77)

=

(
2π

X

)
(ApA

∗
p′)δκκ′δpp′

which is equal in form to the usual anti-commutation algebra (7.69). So, from a comparison

of (7.69) and (7.77) it follows that the expressions are equal if Ap ∈ R may be defined as

Ap =

√
X

2π
. (7.78)

Collecting these solutions defines the momentum space annihilation and creation op-

erators in terms of pregeometric ladder operators. For electrons these are

ĉ(p, κ) =

√
X

2π

M∑

R=−M

α̂4(M+R)+κ exp (iRpX) (7.79)

ĉ†(p, κ) =

√
X

2π

M∑

R=−M

α̂†
4(M+R)+κ exp (−iRpX)

whilst for positrons the results are

d̂(p, κ) =

√
X

2π

M∑

R=−M

α̂4(M+R)+2+κ exp (iRpX) (7.80)

d̂†(p, κ) =

√
X

2π

M∑

R=−M

α̂†
4(M+R)+2+κ exp (−iRpX) .

These expressions may be substituted into the standard equations of fermionic field

theory, to give, for example, the momentum space field operators. More importantly, per-

haps, they may also be used to construct the actual observables familiar to the conventional

theory, as discussed next.
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7.2.1 The Hamiltonian

The results of above can be used to formulate a version of the Hamiltonian in terms of

pregeometric ladder operators. Such a formulation is important, as is the derivation of the

momentum and charge operators discussed later, because it is operators like these that

form the basis for actual observables in physics.

Of course, such operators require careful interpretation from the perspective of the

quantum Universe paradigm proposed in this thesis. Specifically, the operators of below are

assumed to be associated with the part of the operator Σ̂n+n′ (which is used to develop the

entire Universe) that appears to test the sub-state |ϕin〉 of Ψn+n′−1. Thus, the Hamiltonian,

momentum and charge operators discussed below are expected to ultimately be represented

by different factors of different possible tests Σ̂n+n′ .

Moreover, given that the quantum Universe is taken to be completely self-contained and

autonomous, the operators it self-referentially chooses must be very carefully controlled

if emergent endo-observers are to gain the impression that they can detect electrons and

positrons in the medley of ways familiar to physicists. This again is emphatic of the point

that a quantum state cannot really be said to exist independently of the tests used to

observe it, and consequently that different choices of test (e.g. energy or charge) lead to

different ‘experiences’ of physical reality by emergent endo-observers.

Consider the conventional Hamiltonian operator Ĥ for the free-field theory of spin-12

fermions, defined [59] in three dimensional momentum space as

Ĥ =
∑

κ

∫ ∞

−∞
Ep

[
ĉ†(p, κ)ĉ(p, κ) + d̂†(p, κ)d̂(p, κ)

]
d3p (7.81)

noting that this equation has been derived in Appendix B for completeness. Here, Ep is

the energy of the particle, p is its momentum 3-vector, and the sum is over both spin

states κ = 1, 2.

Now, noting that in the present chapter the momentum p has been restricted to a one

dimensional variable p, it is possible to rewrite the conventional Hamiltonian in terms of

the pregeometric operators defined in (7.79) and (7.80). So,

Ĥ =
∑

κ

∫ π/X

−π/X
Ep

M∑

R=−M

M∑

S=−M

(
X

2π

)
(7.82)

×


 α̂†

4(M+R)+κ exp (−iRpX) α̂4(M+S)+κ exp (iSpX)

+α̂†
4(M+R)+2+κ exp (−iRpX) α̂4(M+S)+2+κ exp (iSpX)


 dp

with the obvious imposition that the integral limits ±∞ have been constrained to ±π/X
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as before. Recalling that the energy is defined as Ep = (p2c2 + µ2c4)1/2, it follows that

Ĥ =

(
X

2π

)∑

κ

M∑

R=−M

M∑

S=−M

∫ π/X

−π/X
(p2c2 + µ2c4)1/2ei(S−R)pX (7.83)

×


 α̂†

4(M+R)+κα̂4(M+S)+κ

+α̂†
4(M+R)+2+κα̂4(M+S)+2+κ


 dp.

Erdélyi et al [83] list no known explicit solution for this integral, suggesting that

the Hamiltonian may only be evaluated as a numerical approximation. Whilst on the

surface this may appear unsatisfactory, it does evidence the fact that the Hamiltonian is

a highly non-trivial function of pregeometric variables, as might perhaps be expected for

an operator defined in the emergent limit.

7.2.2 The Momentum Operator

Just as for the Hamiltonian, it is also possible to write the emergent momentum operator

in terms of the pregeometric ladder operators.

Recall the conventional momentum operator P, defined [59] as

P =
∑

κ

∫ ∞

−∞
p
[
ĉ†(p, κ)ĉ(p, κ) + d̂†(p, κ)d̂(p, κ)

]
d3p (7.84)

and derived also in Appendix B. By restricting again the analysis to one finite dimension,

and substituting in the relations (7.79) and (7.80), the momentum operator becomes

P =

(
X

2π

)∑

κ

M∑

R=−M

M∑

S=−M


 α̂†

4(M+R)+κα̂4(M+S)+κ

+α̂†
4(M+R)+2+κα̂4(M+S)+2+κ



∫ π/X

−π/X
pei(S−R)pX dp.

(7.85)

In order to solve the integral, it will prove useful to separate this last expression into

a ‘diagonal’ part for which R = S and an off-diagonal part for which R 6= S. Thus

P = PD + POD (7.86)

where

PD =

(
X

2π

)∑

κ

M∑

R=−M


 α̂†

4(M+R)+κα̂4(M+R)+κ

+α̂†
4(M+R)+2+κα̂4(M+R)+2+κ



∫ π/X

−π/X
p dp (7.87)

and

POD =

(
X

2π

)∑

κ

M∑

R=−M

M∑

S=−M

(1− δRS) (7.88)

×


 α̂†

4(M+R)+κα̂4(M+S)+κ

+α̂†
4(M+R)+2+κα̂4(M+S)+2+κ



∫ π/X

−π/X
pei(S−R)pX dp.
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The integral in (7.87) gives

∫ π/X

−π/X
p dp =

(
π2

2X2
− π2

2X2

)
= 0 (7.89)

such that

PD = 0. (7.90)

Turning now to the off-diagonal case, and defining the integral in (7.88) to be ΛR 6=S ,

it follows that

ΛR 6=S =

∫ π/X

−π/X
pei(S−R)pX dp , R 6= S (7.91)

=

(
1

(S −R)2X2

){
iπ(R− S)

{
eiπ(S−R) + e−iπ(S−R)

}

+
{
eiπ(S−R) − e−iπ(S−R)

}
}

=

(
2i

(S −R)2X2

)
{sin(π(S −R)) + π(R− S) cos(π(S −R))} .

However, because R,S ∈ Z and R 6= S

sin(π(S −R)) = 0 , ∀R,S (7.92)

and

cos(π(S −R)) = (−1)(S−R) , ∀R,S. (7.93)

So finally

POD =

(−i

X

)∑

κ

M∑

R=−M

M∑

S=−M

(1− δRS)

(
(−1)(S−R)

(S −R)

)
(7.94)

×


 α̂†

4(M+R)+κα̂4(M+S)+κ

+α̂†
4(M+R)+2+κα̂4(M+S)+2+κ


 .

Overall,

P =

(
1

X

)∑

κ

M∑

R=−M

M∑

S=−M


 α̂†

4(M+R)+κα̂4(M+S)+κ

+α̂†
4(M+R)+2+κα̂4(M+S)+2+κ


 (7.95)

×
(−i(−1)(S−R)

(S −R)

)
(1− δRS).

Again, note that this emergent construct is also a complicated function of basic pre-

geometric logic operators.
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7.2.3 Charge

To conclude this section, it is shown how the conventional charge operator may also be

written as a function of pregeometric ladder operators.

Recall the operator Q̂, defined as

Q̂ = q

∫ ∞

−∞
d3p

2∑

κ=1

[
ĉ†(p, κ)ĉ(p, κ)− d̂†(p, κ)d̂(p, κ)

]
(7.96)

and again derived in Appendix B. Here, q is an arbitrary scalar constant, but of course

for ‘real’ electrons and positrons it is known to have the value q = −e ∼ −1.602 × 10−19

[84].

By once again considering only a finite, one dimensional volume, and substituting in

the relations (7.79) and (7.80), it follows that Q̂ becomes

Q̂ =

(
X

2π

)
q
∑

κ

M∑

R=−M

M∑

S=−M


 α̂†

4(M+R)+κα̂4(M+S)+κ

−α̂†
4(M+R)+2+κα̂4(M+S)+2+κ



∫ π/X

−π/X
ei(S−R)pX dp.

(7.97)

Solving the integral gives

Q̂ =

(
Xq

2π

)∑

κ

M∑

R=−M

M∑

S=−M


 α̂†

4(M+R)+κα̂4(M+S)+κ

−α̂†
4(M+R)+2+κα̂4(M+S)+2+κ


 (7.98)

×
(

1

i(S −R)X

)
(ei(S−R)π − e−i(S−R)π)

=

(
q

π

)∑

κ

M∑

R=−M

M∑

S=−M


 α̂†

4(M+R)+κα̂4(M+S)+κ

−α̂†
4(M+R)+2+κα̂4(M+S)+2+κ



(
sin((S −R)π)

(S −R)

)
.

Now, when (S −R) 6= 0, the relation
(
sin((S −R)π)

(S −R)

)
= 0 (7.99)

holds for all S,R. However, when (S −R) = 0 it becomes

lim
(S−R)=0

(
sin((S −R)π)

(S −R)

)
= π (7.100)

as may be readily verified by Maclaurin expansion.

Clearly, the expression only has non-zero values when R = S. So, substituting this

result into (7.98) gives the final expression for the charge operator

Q̂ = q
∑

κ

M∑

R=−M


 α̂†

4(M+R)+κα̂4(M+R)+κ

−α̂†
4(M+R)+2+κα̂4(M+R)+2+κ


 . (7.101)
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7.3 Field Theory and CNOT

Instead of the pregeometric ladder operators, it is both possible and useful to write the

expressions for the above Hamiltonian, momentum and charge in terms of a set of more

conventional quantum operators acting on the qubits. One such set comprises of extended

local unitary operators and the extended CNOT operator defined16 as

Ĉ(a,b) = P̂ 0
a ⊗ σ̂0

b + P̂ 1
a ⊗ σ̂1

b (7.102)

= P̂ 0
a ⊗ (P̂ 0

b + P̂ 1
b ) + P̂ 1

a ⊗ (Q̂a + Q̂†
a)

where the tensor product of identity operators Îc, c 6= a, b and c = 1, 2, ..., N ′, in the

extension has been omitted for brevity. Of course, this definition could easily be extended

even further, such that the tensor product is also taken with the identity operators acting

in every other sub-space of the Universe’s total Hilbert space H[1...N ] ⊃ H[1...N ′], but this

is an unnecessary amendment here.

As has been discussed previously, Ĉ(a,b) acts on every qubit in the Hilbert spaceH[1...N ′],

but only changes the value of the qubit sub-state in sub-space Hb depending on the value

of the qubit sub-state in sub-space Ha.

The motivation for choosing this particular set of operators is two-fold. Firstly, such

a possibility provides an immediate bridge between the work of this chapter and the dis-

cussions of quantum computation in Chapter 6. Secondly, and perhaps more importantly,

this choice follows directly from the suggestion of Feynman [20] that all of physics could in

principle originate from quantum computation, and then from the work of Barenco et al

[67] that every qubit quantum computation may be achieved by the use of local unitary

operations and the CNOT gate. Thus by amalgamating this second idea into the model

proposed currently, the result is demonstrated that fermionic field theory in momentum

space can be obtained from these standard quantum computational operators acting on

qubits defined on the pregeometric level. Feynman’s prediction is hence confirmed.

In order to convert the equations for the Hamiltonian, momentum and charge operators

into this chosen set of operators, the goal would be to express the sums of products of

pregeometric ladder operators present in their constructions in terms of local unitary

operators and CNOT. By way of a demonstration of how this can be achieved, consider a

typical such sum of products given by

ΠRS = α̂†
4(M+R)+κα̂4(M+S)+κ + α̂†

4(M+R)+2+κα̂4(M+S)+2+κ. (7.103)

For convenience in this example, it is possible to restrict attention to just the first of

these products. Furthermore, it is also possible to re-label the sub-registers featured, and

16Repeated here from equation (6.17).
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define the product Πrs as

Πrs = α̂†
rα̂s (7.104)

where r = 4(M+R)+κ and s = 4(M+S)+κ. Writing out the expression in full extended

notation, this product becomes

Πrs =
(
σ̂3
1σ̂

3
2...σ̂

3
r−1T̂

10
r Îr+1...ÎN

)(
σ̂3
1σ̂

3
2...σ̂

3
s−1T̂

01
s Îs+1...ÎN

)
(7.105)

= Î1Î2...Îr−1(T̂
10
r σ̂3

r)σ̂
3
r+1...σ̂

3
s−1T̂

01
s Îs+1...ÎN

using σ̂0
t ≡ Ît with the usual SU(2) product algebra (5.32), and assuming r < s without

loss of generality. So,

Πrs = (T̂ 10
r σ̂3

r)T̂
01
s Î1Î2...Îr−1σ̂

3
r+1...σ̂

3
s−1Îs+1...ÎN (7.106)

= T̂ 10
r T̂ 01

s Î1Î2...Îr−1σ̂
3
r+1...σ̂

3
s−1Îs+1...ÎN

using the assumed ‘rearrangement’ property of the tensor product and recalling the defi-

nition (6.10) that σ̂3
r = T̂ 00

r − T̂ 11
r .

Now consider just the product of local transformation operators, T̂ 10
r T̂ 01

s . The question

becomes: what combinations of local unitary operators and CNOT gates will give T̂ 10
r T̂ 01

s

as a result? To begin to answer this, consider the product of CNOT operators Ĉ(r,s)Ĉ(s,r)

given by

Ĉ(r,s)Ĉ(s,r) =
(
P̂ 0
r P̂

0
s + P̂ 0

r P̂
1
s + P̂ 1

r Q̂s + P̂ 1
r Q̂

†
s

)
(7.107)

×
(
P̂ 0
r P̂

0
s + P̂ 1

r P̂
0
s + Q̂rP̂

1
s + Q̂†

rP̂
1
s

)

where tensor product symbols are omitted and the notations T̂ 00 ≡ P̂ 0, T̂ 11 ≡ P̂ 1, T̂ 01 ≡ Q̂

and T̂ 10 ≡ Q̂† used in Section 6.1 have been adopted instead for clarity. By recalling the

algebra of transformation operators (6.14), this becomes

Ĉ(r,s)Ĉ(s,r) = P̂ 0
r P̂

0
s + Q̂rP̂

1
s + Q̂†

rQ̂s + P̂ 1
r Q̂

†
s. (7.108)

It is possible to multiply the product Ĉ(r,s)Ĉ(s,r) with unitary operators that act locally

upon the individual qubits in sub-spaces Hr and Hs. Three such operators are σ̂3
r ⊗ σ̂0

s,

σ̂0
r ⊗ σ̂3

s and σ̂3
r ⊗ σ̂3

s, and these lead to the results

(
σ̂3
r ⊗ σ̂0

s

) [
Ĉ(r,s)Ĉ(s,r)

]
=

(
P̂ 0
r Îs − P̂ 1

r Îs

) [
P̂ 0
r P̂

0
s + Q̂rP̂

1
s + Q̂†

rQ̂s + P̂ 1
r Q̂

†
s

]

= P̂ 0
r P̂

0
s + Q̂rP̂

1
s − Q̂†

rQ̂s − P̂ 1
r Q̂

†
s (7.109)

and

(
σ̂0
r ⊗ σ̂3

s

) [
Ĉ(r,s)Ĉ(s,r)

]
=

(
ÎrP̂

0
s − ÎrP̂

1
s

) [
P̂ 0
r P̂

0
s + Q̂rP̂

1
s + Q̂†

rQ̂s + P̂ 1
r Q̂

†
s

]

= P̂ 0
r P̂

0
s − Q̂rP̂

1
s + Q̂†

rQ̂s − P̂ 1
r Q̂

†
s (7.110)
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and

(
σ̂3
r ⊗ σ̂3

s

) [
Ĉ(r,s)Ĉ(s,r)

]
=

(
P̂ 0
r P̂

0
s − P̂ 0

r P̂
1
s − P̂ 1

r P̂
0
s + P̂ 1

r P̂
1
s

)

×
[
P̂ 0
r P̂

0
s + Q̂rP̂

1
s + Q̂†

rQ̂s + P̂ 1
r Q̂

†
s

]

= P̂ 0
r P̂

0
s − Q̂rP̂

1
s − Q̂†

rQ̂s + P̂ 1
r Q̂

†
s. (7.111)

Now, adding (7.108) to (7.110) and then subtracting (7.109) and (7.111) gives 4Q̂†
rQ̂s,

so it is evident that

Q̂†
rQ̂s =

1

4

(
1− σ̂3

r ⊗ σ̂0
s + σ̂0

r ⊗ σ̂3
s − σ̂3

r ⊗ σ̂3
s

)
Ĉ(r,s)Ĉ(s,r) (7.112)

=
1

4

[(
σ̂0
r − σ̂3

r

)
⊗

(
σ̂0
s + σ̂3

s

)]
Ĉ(r,s)Ĉ(s,r).

Substituting this into (7.106) gives

Πrs =
1

4

[(
σ̂0
r − σ̂3

r

)
⊗

(
σ̂0
s + σ̂3

s

)]
Ĉ(r,s)Ĉ(s,r)σ̂

0
1σ̂

0
2...σ̂

0
r−1σ̂

3
r+1...σ̂

3
s−1σ̂

0
s+1...σ̂

0
N (7.113)

with the usual interchangeability between σ̂0
m and Îm.

Similarly, products of local transformation operators of the form T̂ 01
r T̂ 10

s ≡ Q̂rQ̂
†
s may

be obtained from alternative products of CNOT and Pauli operators. Viz, from

Ĉ(s,r)Ĉ(r,s) =
(
P̂ 0
r P̂

0
s + P̂ 1

r P̂
0
s + Q̂rP̂

1
s + Q̂†

rP̂
1
s

)
(7.114)

×
(
P̂ 0
r P̂

0
s + P̂ 0

r P̂
1
s + P̂ 1

r Q̂s + P̂ 1
r Q̂

†
s

)

= P̂ 0
r P̂

0
s + P̂ 1

r Q̂s + Q̂rQ̂
†
s + Q̂†

rP̂
1
s

it follows that

(
σ̂3
r ⊗ σ̂0

s

) [
Ĉ(s,r)Ĉ(r,s)

]
= P̂ 0

r P̂
0
s − P̂ 1

r Q̂s + Q̂rQ̂
†
s − Q̂†

rP̂
1
s (7.115)

with
(
σ̂0
r ⊗ σ̂3

s

) [
Ĉ(s,r)Ĉ(r,s)

]
= P̂ 0

r P̂
0
s + P̂ 1

r Q̂s − Q̂rQ̂
†
s − Q̂†

rP̂
1
s (7.116)

and
(
σ̂3
r ⊗ σ̂3

s

) [
Ĉ(s,r)Ĉ(r,s)

]
= P̂ 0

r P̂
0
s − P̂ 1

r Q̂s − Q̂rQ̂
†
s + Q̂†

rP̂
1
s (7.117)

so

Q̂rQ̂
†
s =

1

4

[
1 + σ̂3

r ⊗ σ̂0
s − σ̂0

r ⊗ σ̂3
s − σ̂3

r ⊗ σ̂3
s

]
Ĉ(s,r)Ĉ(r,s) (7.118)

=
1

4

[(
σ̂0
r + σ̂3

r

)
⊗
(
σ̂0
s − σ̂3

s

)]
Ĉ(s,r)Ĉ(r,s).

With results such as these, it is easy to see how it is possible to write the Hamiltonian,

momentum and charge operators in terms of local unitary operators and the two-qubit

CNOT gate, as expected and desired. Thus, the emergence of physics from universal

quantum computation acting upon pregeometric qubit structure is shown.
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7.4 Discussion

The aim of this chapter has been to demonstrate how quantum field theoretic descriptions

of physical particles might begin to emerge from the underlying pregeometric structure

proposed in this thesis. Whilst some success may therefore be claimed from the point of

view of fermions, due to a derivation of emergent ladder, Hamiltonian, momentum and

charge operators for particles obeying the Dirac equation, a number of issues still remain

and the overall programme behind this work is far from being complete. These points are

highlighted now.

Firstly, the observation is made that elementary particles are objects possessing more

than just spin. The fundamental fermions currently understood in the Standard Model,

namely quarks and leptons, are known to possess an array of different physical character-

istics in addition to angular momentum, examples being colour, flavour, chirality, etc. A

truly complete theory of matter would therefore have to explain how each of these degrees

of freedom emerge from the sub-register picture. Indeed, this problem was stated in its

large-scale entirety by the original brief of the chapter: how can the pregeometric descrip-

tion advocated in this thesis account for the enormous variety of ‘properties’ exhibited by

classical-looking objects?

An obvious direction to proceed therefore involves an extension of the presented discus-

sion of the Dirac field to multi-field theories incorporating, say, colour and flavour degrees

of freedom.

Exactly how this should best be accomplished remains a question for the future, but

it is however possible to speculate that the principles and types of methods used in the

previous section would not be wholly inappropriate in an implementation of alternative

fields. After all, historically the theory of colour gauge symmetry grew from a foundation

based on an initial study of the Dirac field, so it might be expected that any future

pregeometric description of hadrons could equally be derived from a set of underlying logic

operations, just as the Dirac field was shown to be in the present work. Of course, this is

a viewpoint prejudiced by tradition, but a consideration of this type of argument might

at least provide a reasonable starting point for more advanced models, or alternatively

perhaps suggest the need for a novel approach to the problem.

Following on from the above point regarding additional degrees of freedom, it is noted

that one other important property of an elementary particle is its rest mass. In a fully

quantum Universe this too would be expected to have a pregeometric origin, an issue that

is presumably related to how a Higgs-type mechanism could emerge from the described

sub-register picture. However, this extension is actually more pertinent than the questions
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of the origin of colour or flavour, because the mass of the particle was implicitly assumed

in the formalism of the above discussion, specifically as the parameter µ introduced to

arrive at the Hamiltonian. So, without explicitly knowing the mechanism for generating

mass in the quantum Universe, a question then arises as to whether it is valid to make

such an insertion.

The introduction of µ, however, may be justified on two grounds. Firstly, physicists of-

ten ignore various degrees of freedom when discussing particular effects. The conventional

Dirac equation, for example, provides a perfectly good description of spin-12 particles of

a given mass, even though the actual mechanism that produces this mass is neglected17.

It seems reasonable, then, that a similar approximation is equally valid in a pregeometric

discussion, certainly at least as a first step towards a more complete picture of field theory.

Secondly, the mass term µ was only used anyway to formulate the Hamiltonian. So,

even if its introduction does involve an element of ‘cheating’, the results found for the

ladder, momentum and charge operators still provide a valid description of fermionic

objects.

Nevertheless, for a consistent and thorough understanding of physical reality, an ac-

count of the pregeometric origin of mass is a further necessary direction to take.

In addition, it is interesting to speculate how or whether any such hypothetical mecha-

nism might influence the types of causal set structure exhibited by the state of the Universe

as it changes its separability through a sequence of jumps. The answer to this question

would itself provide useful insight into the origin of general relativity and the apparent

curvature of space by mass in the quantum Universe.

Perhaps the most obvious extension to an understanding of how fermionic particles

emerge from the sub-register picture involves asking the question of how bosons might

also.

This, however, immediately presents a difficulty. To demonstrate why, consider a

conventional fermionic ladder operator â†F (p) that creates a particle of momentum p from

the vacuum |0〉, to give the single particle state

â†F (p)|0〉 = |1(p)F 〉 (7.119)

where the actual spin of the particle is temporarily ignored. As expected, â†F (p) satisfies

the usual relationship

â†F (p)â
†
F (p)|0〉 = 0 (7.120)

with

â†F (p
′)â†F (p)|0〉 = (1− δpp′)|1(p

′)
F 1

(p)
F 〉 (7.121)

17And indeed was totally unknown at the time of Dirac. Perhaps this is further support for the argument

that the development of quantum field theory in terms of pregeometry could follow an ‘historical’ route.
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and so on. The point is that the maximum occupancy of a given particle state is one, as

predicted for objects obeying Fermi-Dirac statistics. Furthermore, these relations imply

that the operator â†F (p) may be seen, in some ways, as being analogous to a transition

operator between the qubit states |0〉m and |1〉m, because these too follow the product

algebra of fermions. Of course, it was this type of association that formed the basis for

the work of the previous section.

Consider instead, however, a conventional bosonic ladder operator â†B(p) that creates

a boson of momentum p from the vacuum |0〉, such that

â†B(p)|0〉 = |1(p)B 〉 (7.122)

where |1(p)B 〉 represents a single boson particle state.

Now, because â†B(p) governs the creation of bosons, it is taken to obey the relationships

â†B(p)â
†
B(p)|0〉 = â†B(p)|1

(p)
B 〉 = |2(p)B 〉 (7.123)

â†B(p)â
†
B(p)â

†
B(p)|0〉 = |3(p)B 〉

... =
...

(â†B(p))
n|0〉 = |n(p)

B 〉

that is, the theory allows multi-occupancy of states: the state |n(p)
B 〉 contains n identical

bosons. Moreover, the statistics are assumed to be valid for all n up to n = ∞.

But, it is difficult to envisage how such multi-occupancy states could be incorporated

into the binary ‘on/off’ logic of qubits. Not only that, but it is also difficult to imagine

how infinite occupancies could arise at all from any pregeometric structure based on finite

dimensional Hilbert spaces. Ultimately, then, these two comments might perhaps lead

to the criticism that only half of particle physics could ever emerge from the subregister

model suggested.

Whilst the origin of bosons in the quantum Universe remains an unresolved issue, a

number of points may be made against the above conclusion, and which should therefore

provide a guide for future research. For example, it is noted that in the Standard Model of

particle physics the four fundamental bosons may not so much be interpreted as observable

entities, but should perhaps instead be viewed in terms of representations of interactions.

In other words, it is remarked that these bosons are not necessarily directly observed

per se, but that it is only their effect on the fermions comprising physical matter that is

actually seen. Thus, the apparent existence of bosonic particles in conventional physics

could perhaps be viewed simply as an artifact of a misunderstanding of how fermions

interact with one another, based itself on the mistake of assuming that fermionic particles

are representative of the most fundamental level of reality. Real, physical bosonic particles
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such as photons, gluons and gravitons may not actually exist, or at least not in the sense

that they are conventionally assumed to.

So, the suggestion here is that a discussion of bosons may therefore naturally be post-

poned until the questions of Section 6.2 surrounding pregeometric interactions, reactions

and measurements are better understood. In short, the argument is that it may never be

possible to understand the ultimate nature of the fundamental forces and the apparent

existence of bosons simply by devising ever more complicated particle theories and exper-

iments (as conventional physics attempts to do), but will instead only be resolved when a

fuller cognition of the issues present at the very heart of quantum mechanics’ measurement

problem has been achieved. Of course, an admission is also made here that an element of

“sweeping under the carpet” may appear to be present in this argument.

Alternatively, another potential way around the highlighted problem might be to relax

the ‘infinity condition’ of bosonic occupancy. As has been done consistently through-

out this work, infinities have often been removed in the quantum Universe paradigm by

assuming finite, but very large, degrees of freedom. This may then be the solution for

the present case involving bosons, and is reinforced by finite energy arguments in favour

of restricting the number of particles of given energy-momentum to non-infinite values.

Paraphrasing this last point, and echoing the words of Feynman [20], the question is again

asked as to whether it is really physically possible to have an infinite number of positive

energy particles in a Universe of finite size and mass.

So from this perspective, and as speculated upon by Lu and Widar [76], it might be

suggested that bosons should instead really obey a rule of the form

(â†B(p))
q|0〉 = |q(p)B 〉 (7.124)

but

(â†B(p))
q+1|0〉 = 0 (7.125)

where q ≫ 1. In the language of Green [65] and Greenberg [66], bosons would then be

viewed as parafermions of order q, and would be governed by ladder operators of the form

â†B(p)|n〉 = |(n+ 1)
(p)
B 〉 (7.126)

for 0 ≤ n ≤ (q − 1), and

âB(p)|n〉 = |(n− 1)
(p)
B 〉 (7.127)

for 1 ≤ n ≤ q, with

âB(p)|0〉 = 0 (7.128)

In principle, as long as q is sufficiently large such that the maximum occupancy |q(p)B 〉
is never actually reached physically, the mechanism would, to all intents and purposes,
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appear equivalent to the conventional theory of bosons that allows any number of particles

to be in the same state.

Of course, this solution is still highly speculative, and a great deal of work is required to

investigate whether the usual laws applying to bosons may be extended to such high-order

parafermions.

Emergent operators possessing the relations inherent to (7.126) and (7.127) may not

actually be able to arise from a qubit subregister structure, especially if the procedure

described in Section 7.2 is used. To illustrate why this might be the case, recall that qubit

Hilbert (sub-)spaces are spanned by just two orthogonal basis states, and can hence only

exhibit two possible transition operators relating them. Furthermore, these two possible

transition operators were taken above to be the ultimate origin of ladder operators in

momentum space that governed physical particle states that could only exist in either one

of two possible occupancies (i.e. fermions). Thus, it is difficult to see how this result

could be generalised to account for emergent ladder operators that cause apparent multi-

occupancy of states, if these emergent operators are a direct consequence of pregeometric

transition operators confined to act only in two-level spaces.

Consequently, in order to incorporate higher order occupancies it might be necessary

to remove the constraint of using two-level, qubit Hilbert sub-spaces and instead consider

subregisters of higher dimension. Of course, this removal may be justified anyway by

recalling that qubit spaces were only ever employed in the first place because they provided

the simplest starting point for the ensuing discussion, and not because of any physical

constraints.

So, assuming that the mth subregister H(d)
m of the Hilbert space Hϕ containing the field

ϕ is not a qubit space but is of dimension d, then H(d)
m may be spanned by an orthonormal

basis set B(d)
m defined as B(d)

m ≡ {|i〉m : i = 0, 1, ..., (d− 1)}. In this case, it is now possible

to define transformation operators between the bases of H(d)
m in an analogous manner to

that used for qubits. That is, an operator of the form

[T̂ (d)](i+1)i
m = |i+ 1〉mm〈i| (7.129)

acting on the state |i〉m ∈ H(d)
m changes it to

[T̂ (d)](i+1)i
m |i〉m = |i+ 1〉m (7.130)

for i = 0, 1, ..., (d− 2), whereas an operator of the form

[T̂ (d)]i(i+1)
m = |i〉mm〈i+ 1| (7.131)

acting on the state |i+ 1〉m ∈ H(d)
m changes it to

[T̂ (d)]i(i+1)
m |i+ 1〉m = |i〉m. (7.132)
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Of course, due to the orthogonality of the bases, any operator [T̂ (d)]kjm acting on the

basis state |i〉m gives

[T̂ (d)]kjm |i〉m = 0 (7.133)

unless j = i. So, it is therefore useful to define ‘general ladder operators’ such as Â
(d)
m and

Â
(d)†
m acting in the space H(d)

m ; assuming that the current state contained in H(d)
m is in one

of the d basis states |i〉m, then the operator Â
(d)
m given by

Â(d)
m ≡ [T̂ (d)]01m + [T̂ (d)]12m + ...+ [T̂ (d)](d−2)(d−1)

m (7.134)

‘lowers’ it to |i− 1〉m, for i ≥ 1, whereas the general operator Â
(d)†
m of the form

Â(d)†
m ≡ [T̂ (d)]10m + [T̂ (d)]21m + ...+ [T̂ (d)](d−1)(d−2)

m (7.135)

may be used to ‘raise’ it from this state |i〉m to |i+ 1〉m, for i ≤ (d− 2). Clearly, Â
(d)†
m is

behaving analogously to the pregeometric creation operator defined previously for qubits,

whilst the generalisation Â
(d)
m is evidently related to the qubit annihilation operator.

Such higher dimensional subregisters and ladder operators may play an important part

in accounting for the large number of fields, both fermionic and bosonic, familiar in the

emergent world of high-energy physics.

As a final comment to this chapter, it is observed that the treatment given in Section

7.2 is for a free-field theory. However, almost all ‘interesting’ physics, and certainly that

occurring in a real collider experiment, arises out of the interactions existing between par-

ticles. Moreover, it is also worth recalling that is the actual results of the interactions,

and hence ultimately the observations of the particles, that are considered the only physi-

cally real phenomena in quantum mechanics. It is therefore an important question to ask

exactly how an interacting field theory could emerge from the underlying structure of the

proposed paradigm.

Of course, this issue involves a huge research program in its own right. From the pre-

geometric point of view advocated in this thesis, the question involves the arduous task

of describing the mechanism by which information may be exchanged and extracted from

the emergent field theory picture, and hence relies upon a full integration of the principles

introduced in this and the preceding chapter. Putting this in perspective, the question

could equally be phrased as analogous to how the measurement problem of standard quan-

tum mechanics may be reconciled with the awesome formalism of conventional quantum

field theory.

This point may be continued. One eventual goal of future research would be to apply

the types of ideas presented here to describe real collider physics experiments from the

point of view of the underlying pregeometric structure. So, further to the above question
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regarding the incorporation of the work of the previous chapter into the results of the

current one, such an investigation would then require non-trivial extensions in order to

explain how:

1. large collections of pregeometric particles organise themselves into the ‘elementary’

particles familiar to the Standard Model;

2. how these elementary particles interact and organise themselves to form atoms and

molecules;

3. how these then accumulate into large, semi-classical looking objects, some of which

are called human beings;

4. and how these scientists can then manipulate other large collections of emergent

objects such that they resemble apparatus, laboratories, isolated particles etc., and

then perform experiments with them.

Point “4." itself incorporates an enormous number of different questions, such as how

humans gain the illusion of free-will, and hence why particular experiments are actually

performed. This is particularly important in the context of a collider physics experiment,

because certain particles may only appear to exist when they are being looked for. Indeed,

whilst this last comment may appear meta-physical, it should be recalled that it is a central

tenet of the principles of quantum measurement theory, and follows naturally from the

conclusion of Wheeler [15] that no phenomenon can really be said to exist independently

of observation.

The comments “1." to “4." also highlight the importance of the role of observables

in the above dynamics: after all, it is these that are responsible for the resulting states.

As before, the conclusion is again that these operators must be selected very carefully if

large, separate groups of factors can form and persist over enormous numbers of jumps,

such that classical-looking collider experiments may be carried out on the emergent scale.

Furthermore, and as has been discussed previously, recall that from an endo-physical

point of view the process of a scientist performing an experiment on a subject is equivalent

to one part of the Universe’s state appearing to perform an experiment on another part of

it. Moreover, in a fully quantum Universe free from external influences, this implies a very

careful and intricate interplay between the state representing the scientists and subjects,

and the Hermitian operator used to develop it. How this type of mechanism might work

is therefore also an important question.

It is this interplay that is the focus of the final chapter.
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8 The Developing Quantum Universe

Three of the major conclusions that have played an important role in the paradigm pro-

posed in this thesis are the following:

1. The Universe is a fully quantum system, and as such may be represented by a pure

state Ψn in a Hilbert space H(D) of enormous dimension D, where this vector is

one of the D orthonormal eigenstates of the Hermitian operator Σ̂n chosen by the

dynamics;

2. The Universe is developed by testing its state with the Hermitian operator Σ̂n+1. It

consequently jumps to the new state Ψn+1;

3. The Universe is ‘closed’ in the sense that it is self-contained, because by definition

the Universe contains everything. Thus, there cannot be any notion of an external

observer.

In conventional quantum mechanics, however, these points might appear somewhat

contradictory. In laboratory quantum mechanics, a wavefunction (for example a single,

free electron) may be developed by testing it with a given Hermitian operator, which,

in general, collapses the state into one of its eigenvectors. Moreover, these Hermitian

operators represent the observables of the system, and as such denote the various physical

tests that a scientist may perform on the quantum subject.

Now, in conventional quantum mechanics the choice of the test is usually made by

the physicist, and is hence often assumed to be a result of the free-will processes of a

semi-classical observer. So, and perhaps most importantly, these processes are generally

assumed to be occurring externally to the quantum system under investigation.

Herein lies the problem. If the quantum Universe does not possess observers external

to it, yet is governed by state reduction dynamics according to Hermitian operators Σ̂n+1,

the question remains as to how these tests are actually chosen.

In other words, if there are no external agents to decide the Universe’s fate, and if

the existence of the states Ψn, Ψn+1, Ψn+2, ... may be explained as being the results of

the operators Σ̂n, Σ̂n+1, Σ̂n+2, ..., what mechanism accounts for, governs, or explains the

choice of the these tests? Specifically, if the actual state Ψn of the Universe depends (albeit

stochastically) upon the choice of test, how is this operator Σ̂n actually chosen? Ultimately,

then, in the case where the quantum state encompasses the entire Universe, what takes

the place of the external observer familiar to conventional quantum mechanics? Thus,

how may the traditional exo-observer be replaced by any sort of endo-physical equivalent?
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It is these issues that are addressed in this chapter.

Before beginning to see how these questions might be answered, however, a number of

points should be noted.

Firstly, if the entire Universe is described by quantum principles, yet cannot support

any sort of external observers, the conclusion must be that it is somehow able to prepare,

evolve and test itself. Moreover, the result of this test could then be associated with the

preparation of a new state, which could itself subsequently be evolved and tested, in an

automatic process. Thus, and as has been discussed a number of times throughout this

work, the Universe could ultimately be envisaged to be a giant, self-developing quantum

automaton.

Overall, then, the suggestion is that the Universe itself somehow chooses a sequence

of tests Σ̂n, Σ̂n+1, Σ̂n+2, ... to test its state with.

Secondly, and as has also been discussed a number of times, the exact way the Universe

develops appears to be highly constrained. Equivalently, therefore, this statement implies

that whatever mechanism is actually responsible for choosing the operator used for the

state’s development, it must itself be highly constrained. The existence of continuous

looking space, the nature of particle physics experiments, and the apparent persistence of

semi-classical objects all support this conclusion.

However, the actual nature of these observations suggests something else about what-

ever mechanism is responsible for choosing operators. Namely, since the Universe appears

to look so very similar from one stage to the next, part of the mechanism must be respon-

sible for ensuring that this is the case. For example, the mechanism might be such that

the Universe examines, somehow, its current state Ψn, and then only chooses operators

Σ̂n+1 that have an eigenstate that is ‘almost identical’ to Ψn in some sense. Thus, and

by the usual rules of probability amplitudes, it would then be highly likely that the next

state Ψn+1 is virtually the same as Ψn, especially when the enormous dimensionality of

the Hilbert space of Ψn is taken into account.

Continuing, if this process repeats for all n, the overall result would therefore be of a

Universe that appears to change only very slightly from one jump to the next, such that

over a large number of steps it could appear to evolve smoothly and continuously, just as

appears to be the situation in physics.

Such a mechanism would thus be an example of a ‘self-referential ’ system, because

the dynamics are such that the Universe examines itself before deciding upon a choice of

test. Specifically, in the above example, the selection of Σ̂n+1 depends somehow upon the

state Ψn.
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In fact, the suggestion that the Universe might actually develop in this self-referential

manner is reinforced further by the fact that human physicists, who are themselves just

parts of the Universe’s state, do appear to be able to manipulate and test the sub-states

around them. In physics, the next state of the Universe does seem to depend on the current

state, because scientists do appear able to perform physical experiments, and consequently

‘determine’ future states of reality (within the limits set by quantum probability, of course).

In essence, because the initial wavefunction of a subject, and the outcome of any laboratory

quantum experiment upon it, are both viewed in the proposed paradigm as just factors of

states of the Universe, physicists must actually be changing the overall state of the entire

Universe whenever they perform an experiment.

Furthermore, in fact, the physicist, the apparatus, and the laboratory should them-

selves all really be viewed simply as groups of factors of the Universe’s state. So, because

the factor that represents a piece of physical apparatus does appear to be able to examine

the sub-state representing the sample under investigation, such an experiment should re-

ally be interpreted as one part of the Universe’s state being developed according to another

part of it. The conclusion must therefore be that the real, physical Universe is developing

self-referentially.

As an aside and an illustration, note that an example of a self-referential system is

a modern computer. Many computers possess software that is able to run diagnostic

checks upon themselves; the software may examine the internal state of the machine, and

‘decide’ upon a course of action depending on which particular configuration the computer

is currently in. This decision may be based entirely upon the current state of the computer

according to the ‘rules’ of action programmed into the software.

In fact, in the context of the current work a better example may involve a quantum

computer, but the point remains the same. To continue the parallel drawn throughout his

work, the development of the Universe is therefore again viewed as an enormous quantum

computation, such that overall the Universe is envisaged to be an enormous, self-referential,

quantum automaton.

The structure of this chapter is as follows. Firstly, definitions will be given for some

of the different types of way in which a quantum system free from external agents may be

able to decide upon a choice of operator. For the reasons given above, particular attention

will then be given to the self-referential mechanisms in which the development of the

universe depends somehow upon its current state. The different sorts of such ‘state self-

referential’ mechanisms will then be discussed, and examples given in order to demonstrate

and explain some of the issues surrounding the dynamics that result.
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Many of the examples will take the form of ‘toy-universe’ models that are represented

by states in Hilbert spaces of low dimension, with the general assumption being made that

the reduction in complexity of these models from the real Universe18 has not been made

at the expense of discarding any overriding physical principles. This is analogous to how

similar such low dimensional examples have been used throughout this thesis to illustrate

various points when it has been necessary to not become overwhelmed by the enormous

number of degrees of freedom inherent in the real, physical situation.

8.1 Types of Development

The dynamics of the developing Universe are, at least in principle, fairly simple.

At the nth stage of the Universe’s development, its state may be represented by the

unique vector Ψn. This wavefunction may be ‘tested’ by some non-degenerate Hermitian

operator Σ̂n+1, or might first be ‘evolved’ with some sort of unitary operator Ûn, i.e.

Ψn → Ψ′
n = ÛnΨn, which is equivalent to a ‘rotation’ of the vector within its Hilbert

space, before then being ‘tested’ by Σ̂n+1. Moreover, this testing process is irreversible,

and the state Ψn (or Ψ′
n) consequently collapses to a next state Ψn+1, which is one of

the eigenstates of Σ̂n+1. Thus, the development of the universe is a discontinuous process,

with jumps from one state to the next occurring due to state reduction. The exact forms

of the operators Ûn and Σ̂n+1 are dictated by the Rules governing the system.

In the following, various sets of Rules are investigated, where the aim is to generate

a dynamics that develops the Universe in an automatic way. A goal of this chapter is

therefore to examine some of the different mechanisms by which a decision regarding the

choice of next operator Σ̂n+1 may be made, without appealing to any sort of external

observer with free-will.

Now, in the paradigm proposed in this thesis, a Stage Ωn of the Universe is parame-

terised by (amongst others) a state Ψn, the operator Σ̂n of which Ψn is an eigenstate, and

the Rules Rn governing the dynamics. Of course, the presence of an operator Σ̂n equiv-

alently implies the presence of a unique basis set B
(D)
n of orthonormal vectors19, which

spans the Hilbert space H(D) of Ψn and comprises of the D eigenstates of Σ̂n.

The general question of this chapter then becomes: how can some, all, or none of these

parameters be used to decide what happens next? In other words, given a state Ψn and an

18In general in the following, a capitalised ‘Universe’ will indicate The Real, physical Universe, whereas

a lower case ‘universe’ will imply the low-dimensional, toy-model case. The context of the word should

nevertheless make it clear anyway which U/universe is being discussed.
19Noting that the reverse of this is not strictly true: a given basis set B

(D)
n does not specify a unique

operator Σn, but instead describes an entire equivalence class.
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operator Σ̂n, what Rules Rn could govern the mechanism for generating Ψn+1? In short,

what are the different types of mechanism that could relate the present state Ψn to the

next state Ψn+1?

In fact, it turns out that there are a number of different types of Rule that could be

used to determine a state’s development. One possible such list of types of mechanism

is now introduced, with its members described in turn. The list is written in order of

increasing (intuitive) complexity:

Type 0: Free Will. The state is developed by an operator chosen by an external observer.

Type I: Evolution. Ψn is mapped to Ψn+1 by continuous evolution, say by an unitary

function U , such that Ψn → Ψn+1 = Ψ′
n = UΨn.

Type II: Deterministic Choice. The Rules Rn select an operator Σ̂n+1 by some sort of

deterministic algorithm without reference to the current state or last operator. Thus,

the choice of operator Σ̂n+1 does not depend in any way upon Ψn or Σ̂n.

Type IIa: Probabilistic Choice. The Rules Rn select an operator Σ̂n+1 according to some sort

of probabilistic algorithm, without reference to the current state or last operator.

Thus, Σ̂n+1 = Â with probability PA, whilst Σ̂n+1 = B̂ with probability PB, etc.,

where the various probabilities sum to unity.

Type III: State Self-Referential. The Rules dictate that the algorithm used to generate the

next operator Σ̂n+1 (or equivalently Bn+1) refers, somehow, to the vector Ψn. Thus,

the choice of the next operator depends on the current state.

Type IIIa: Probabilistic State Self-Referential. As with Type III, the Rules still dictate that

the algorithm used to generate the next operator Σ̂n+1 (or equivalently Bn+1) refers

to the current state Ψn, but there is now an element of probability in the algorithm.

For instance, a given state Ψn could imply a probabilistic choice of one of a number

of possible operators, or alternatively, the way in which the next operator Σ̂n+1

depends on the state Ψn could be probabilistic. As a schematic example of this

last possibility, given two ‘functions’ f and g defined somehow by the Rules, it

could follow that Σ̂n+1 = f(Ψn) with probability Pf , whereas Σ̂n+1 = g(Ψn) with

probability Pg, with Pf + Pg = 1.

Type IV: Basis Self-Referential. The next operator Σ̂n+1 is generated in a way that makes

reference to the current basis, such that in effect Σ̂n+1 depends somehow on Σ̂n (or

equivalently Bn+1 depends somehow on Bn).
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Type IVa: Probabilistic Basis Self-Referential. The choice of the next operator depends

probabilistically on the current basis. As analogously to the Type III case, a given

basis Bn could imply a number of potential bases Bn+1, or there could alternatively

perhaps be a number of different ways in which the basis Bn+1 depends on the basis

Bn, with the actual choice in both circumstances made probabilistically.

Type V: Fully Self-Referential. The next operator Σ̂n+1 is generated in a way that makes

reference to the current basis Bn and whichever of its eigenvectors was actually

chosen to be the current state Ψn, Thus, the choice of the next operator depends

deterministically on both Ψn and Bn.

Type Va: Probabilistic Fully Self-Referential. The choice of the next operator depends prob-

abilistically on the current basis and whichever of its eigenvectors was actually cho-

sen to be the current state Ψn. As before, this probabilistic algorithm could take a

number of forms, one schematic example of which would be if Σ̂n+1 = Fn(Ψn, Σ̂n)

with probability PF whereas Σ̂n+1 = Gn(Ψn, Σ̂n) with probability PG, where Fn and

Gn are ‘functions’ defined in the Rules, and PF + PG = 1.

Of course, further Types are possible if more parameters are specified. For example, if

the current Stage Ωn also contains information regarding previous states Ψn−1, Ψn−2, ...

it would additionally be possible to consider higher order ‘Historic’ Rules, such as an

‘Historic Type III mechanism’ in which the choice of operator Σ̂n+1 somehow depends

on Ψn and Ψn−1 and... etc. Variants on this theme may also be imagined, in obvious

ways, for this and other Types by including or excluding particular permutations of the

parameters.

This chapter focuses primarily on Type III and IIIa mechanisms, for the reasons

given now.

Firstly, any Type 0 mechanism is clearly unsatisfactory for the development of a Uni-

verse free from external observers. It is also wrong from the epistemological viewpoint, in

which every phenomenon, including free will, is ultimately hoped to be explainable from

a consistent set of underlying physical laws.

The Type I mechanisms are effectively the same as decoherence and Many Worlds

type dynamics. They would hence be accompanied by all the problems and contortions

associated with these. So, since such difficulties are hoped to be avoided, not least for the

reasons outlined in Section 4.3, the Type I mechanisms will be neglected in the following

discussions.

Type II and IIa mechanisms are indicative of the current state of play in conventional

quantum mechanics, and acknowledge the fact that although physicists are able to obtain
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accurate answers to quantum questions (via probability amplitudes etc.), they cannot

say why these questions were posed in the first place. In the language of causal sets, the

causal set generated over a series of stages by operators chosen according to Type II Rules

would be completely independent of the causal set generated by the states over the same

period. Thus, in Type II and IIa models it is difficult to see how the very finely tuned

constraints discussed throughout this thesis could be achieved, because the mechanisms

do not possess any of the ‘feed-back’ processes that appear necessary for the emergence of

classical looking physics.

Lastly, although Types IV, IV a, V and V a do, in principle, describe possible Rules

for the development of the physical Universe, they are also anticipated to give rise to

mechanisms that are considerably more complicated than the Type III cases. In short,

the dynamics of systems based upon Rules in which the next operator Σ̂n+1 depends

upon the current state Ψn and/or the current basis Bn are expected to be far richer than

those in which the next operator depends only upon the current state, and as such a full

investigation of the Types IV, IV a, V and V a will be left as a necessary avenue of inquiry

for future research.

Type III and IIIa Rules hence provide a suitable starting point, useful to investigate

some of the ways in which the quantum Universe could develop. The central focus of this

chapter is therefore to investigate operator selection mechanisms that permit the Universe

to develop self-referentially according to the current state.

To this end, the description of a Type III mechanism may now be expanded. Specifi-

cally, if the quantum state of the Universe after n jumps is represented by Ψn, then a state

self-referential mechanism is defined as one in which if Ψn has one particular ‘property’

then it is tested with one particular operator (say, Σ̂n+1 = X̂n+1), but if it has another

‘property’ it is instead tested with a different operator (i.e. by Σ̂n+1 = Ŷn+1). And so on,

including of course what happens if it instead has a third, or a fourth, or a..., particular

‘property’. Of course, the Rules must be sufficiently well defined so that whatever the

current state Ψn may be, or whatever ‘properties’ it might have, it will definitely lead to

a certain and unique selection of the next operator Σ̂n+1, for all n.

Thus, in such state self-referential mechanisms, the way in which the universe develops

depends entirely upon which state it is in. Clearly, this is analogous to the type of computer

described earlier that is able to ‘examine’ its state in order to decide upon the next course

of action. Again, the physical Universe may be compared in this fashion to a type of

self-examining quantum computer.

In fact, it is even possible to imagine extending the above definitions, and consider a

universe in which if Ψn has one particular ‘property’ then it is evolved in one way (say,
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by Ûn = ûAn ), but if it has another property it is instead evolved in a second way (i.e. by

Ûn = ûBn ). So, in these universes it is the next unitary operator Ûn that depends on the

current state Ψn. Such a dynamics could be defined as obeying Type III∗ Rules20, and

is an issue discussed further in Section 8.5. The evolved state Ψ′
n = ÛnΨn could then be

tested by an operator Σ̂n+1, itself chosen by a particular Type of Rule.

In the general case, the choice of both the next unitary operator Ûn and the next test

Σ̂n+1 may depend on their own individual Types of Rule.

The Type III and IIIa categories of mechanism can in fact themselves be further

subdivided, because there are very many different sorts of way in which the actual choice

of operator Σ̂n+1 could depend on Ψn.

One important subdivision involves the question as to whether the operators are defined

independently of the states, or whether they are somehow ‘created’ by them. In the first

instance, it is possible to imagine a dynamics associated with a large, fixed set of possible

operators defined at the outset, with the decision about which member of this set is

actually chosen to be Σ̂n+1 made in reference to the state Ψn. In the second scenario,

no such pre-existing set of potential operators is present, and the state Ψn is assumed to

somehow ‘generate’ the operator Σ̂n+1 itself according to whatever Rules Rn govern the

universe’s dynamics. In other words, in the former case the state Ψn may be said to ‘pick’

an operator Σ̂n+1 from a pre-existing list, whereas in the latter circumstance the state Ψn

is directly responsible for ‘creating’ the operator Σ̂n+1.

Clearly, the difference between these two sorts of Rule is most manifest when Ψn is

unspecified: in the first sort of dynamics it cannot now be said which operator Σ̂n+1 will

be chosen out of the list of known possibilities, whilst in the second case there is now

simply no way of knowing what Σ̂n+1 might be like at all.

For obvious reasons, these two different sorts of Type III mechanism may be labelled

List-Sort and Generated-Sort respectively, and are discussed more fully in the next few

sections.

8.2 List-Sort Dynamics

Consider a universe represented at ‘time’ n by a state Ψn in a Hilbert space H of enormous

dimension D. As has been asserted previously, it is assumed that the next state Ψn+1 will

be one of the D orthonormal eigenstates of whichever Hermitian operator Σ̂n+1 is chosen

by the Rules Rn to develop the system. The question is: what will this operator actually

be?

20Similar ‘starred’ extensions are readily imagined for other Types of Rule.
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In List-Sort dynamics, it is conjectured that along with the overall Hilbert space defin-

ing the system, a universe is also provided with an enormous List L of different Hermitian

operators

L ≡ {B̂1, B̂2, ..., B̂l} = {B̂i : i = 1, 2, ..., l} = {B̂i} (8.1)

where l may be called the ‘List Length’.

Then, the central principle behind the development of this universe according to Type

III List-Sort dynamics is that a particular state Ψn leads to the selection of one, and only

one, operator from the List L. This chosen operator is consequently identified with Σ̂n+1,

and can hence be used to test the state Ψn. The next state Ψn+1 will thus be one of the

eigenvectors of this operator21.

In fact, each operator B̂i in L is actually a member of an equivalence class of Hermitian

operators, which could be written B̂i ≡ {B̂1
i , B̂

2
i , B̂

3
i , ...}, with identical eigenvectors but

different eigenvalues. Moreover, this equivalence class may be used to specify a unique

basis Bi containing a set of D orthonormal vectors spanning the Hilbert space H, such

that Bi may be given by

Bi ≡ {Θa
i : a = 1, 2, ..., D} (8.2)

with 〈Θa
i |Θb

i〉 = δab, where the set {Θa
i } are the eigenvectors of B̂i.

Effectively, then, the List L also implies a List of different possible basis sets

L ≡ {B1,B2, ...,Bl} = {Bi : i = 1, 2, ..., l} = {Bi}. (8.3)

such that bases Bi and operators B̂i may be used interchangeably in the following, de-

pending on context.

So, the state Ψn of a universe developing according to List-Sort dynamics implies the

selection of one, and only one, basis set from the List L, and this in turn implies the

selection of a unique equivalence class of operators. The next state Ψn+1 will hence be

one of the elements of whichever basis set was chosen from the List.

Of course, exactly which basis set is chosen from the List depends on the actual Rules

Rn that govern the universe’s dynamics, and the current state Ψn. However, once a basis

set has been picked, it automatically fixes the set of possible next states. So, if the Rules

conspire such that a particular state Ψn = ΦA leads to a selection of the basis BA from

21As an aside, note that other Types of List-Sort dynamics are permitted. A Type II List-Sort mecha-

nism, for example, could choose the next operator Σn+1 from a List according to some sort of deterministic

algorithm that does not refer in any way to the current state Ψn.

Type III List-Sort dynamics could similarly be expected to have their analogies in universes developing

according to Type IV, IV a, V and V a mechanisms.
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L, then it is assumed that Ψn will be tested by the operator Σ̂n+1 = B̂A, so that the next

state Ψn+1 will be one of the vectors {Θa
A}.

Furthermore, whichever one of these eigenvectors will actually be realised is given in

the usual, stochastic way of the Born probability rule, such that the probability P a
n+1 that

the next state of the universe is Ψn+1 = Θa
A is clearly

P a
n+1 = |〈Ψn+1 = Θa

A|Ψn〉|2 . (8.4)

Note that there is no form of ‘compound’ probability involved here: the selection of

the basis BA is assumed to be fully deterministic given the state Ψn = ΦA, such that

under this circumstance, B̂A is chosen from the List L with probability 1. This rule will

be modified later.

As discussed, it is hoped in this section to investigate state self-referential Rules, that

is, mechanisms in which the actual selection of a particular basis from the List {Bi}
depends upon the current state Ψn.

To this end, it is possible to schematically envisage a situation in which if Ψn has one

particular ‘property’, then the basis set BA is chosen from the List, whereas if Ψn has

instead a different such ‘property’, then the basis set BB is alternatively chosen from the

List, whilst if Ψn has neither of these but has instead a third particular ‘property’, then

the basis set BC is chosen from the List, and so on.

Clearly, the Rules must be defined such that whichever state the universe is in, one,

and only one, operator is picked from the List. Effectively, then, this implies that the

various ‘properties’ made reference to by the Rules must be mutually exclusive: that is, if

the state Ψn has a property A, it cannot also have the properties B,C, ..., and so there is

therefore no ambiguity in which of BA,BB,BC , ... is picked from the List to give Σ̂n+1.

Moreover, the set of possible properties made reference to must also be exhaustive, such

that whatever Ψn may be, it will definitely have one (and only one) of the properties

A,B,C...., so that the Rules can definitely select one of BA,BB,BC , ...

The question dominating the dynamics them becomes one concerning which particular

‘property’ the Rules Rn deem important. Again, of course, this depends entirely on how

these Rules are defined, and many different types of Rule are possible.

The above general definition of a Type III List-Sort mechanism is perhaps best

demonstrated by illustration. As a simple example of these ideas, consider a universe

represented by a state Ψn and governed by List-Sort dynamics according to the List

L = {B1,B2, ...,Bl}. Assume also that the Hilbert space H of this universe may be

written as a product of l sub-registers

H ≡ H[12...l] = H1 ⊗H2 ⊗ ...⊗Hl. (8.5)
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Then, the state Ψn is separable into Fn factors relative to this fundamental factorisa-

tion, where Fn is clearly an integer between 1 and l.

Now, the dynamics of this toy-universe could be such that it is governed by the simple,

algorithmic rule

• Given a state Ψn separable into Fn factors, the basis set BFn is chosen from the list

L.

So, Ψn is tested by the Hermitian operator Σ̂n+1 = B̂Fn , such that the next state Ψn+1

is one of the eigenvectors {Θa
Fn

: a = 1, ..., D}, with individual probabilities summing as

D∑

a=1

|〈Θa
Fn

|Ψn〉|2 = 1. (8.6)

Thus, the development of this toy-universe proceeds in a manner that depends on

a particular ‘property’ of its state. In this instance, the ‘property’ in question regards

the universe’s separability. Specifically, if Ψn has Fn factors relative to the fundamental

factorisation of H[12...l], the Rules conspire such that the state is tested by the (Fn)
th

operator B̂Fn from the List L = {B̂1, B̂2, ..., B̂l}. Evidently, and as required, the particular

properties of the states referred to by the Rules are mutually exclusive, because if Ψn has

Fn = A factors it cannot also have Fn = B factors, where A 6= B; they are also exhaustive,

because no matter what Ψn is, it will definitely possess between 1 and l factors.

Now, whichever eigenvector of B̂Fn becomes the new state Ψn+1 will possess Fn+1

factors, where 1 ≤ Fn+1 ≤ l. The Rules hence dictate that the (Fn+1)
th test B̂Fn+1 is

selected from the List L to become Σ̂n+2, and the universe collapses to a state Ψn+2 which

is one of the eigenvectors of this chosen operator.

Clearly, the procedure may be iterated indefinitely.

As an aside, note that if each operator B̂Fn in the above List is itself factorisable into

Fn sub-operators, the described Rules could give rise to a universe in which the state Ψn+1

may have the same number of factors as the state Ψn (or, at least, no fewer: Fn+1 ≥ Fn;

recall from Chapter 5 that factorisable operators only have separable eigenvectors), exactly

as required for both apparent persistence and a quantum causal set description of classical

spacetime to begin to arise.

Furthermore, the particular List-Sort mechanism discussed here is also attractive from

the point of view of generating the types of pregeometric lightcone structure necessary

for the emergence of classical spacetime. Recall from Section 5.4 that such basic causal

relationships are expected to arise from considering how the individual factors of Ψn+1 are

affected by counterfactual changes in the factors of Ψn. In the present case, moreover, a

separability preserving operator Σ̂n+1, that is selected solely according to the number of
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factors of Ψn, could permit such counterfactual arguments to be applied, if, for example,

B̂i+1 is factorisable relative to the same split H[x1x2...xi] of the Hilbert space as B̂i for all

i = 1, ..., (l − 1) and
(∏i

y=1⊗Hxy

)
= H[12...l].

Thus, List-Sort Rules might effectively be used to generate potential lightcone-like

causal relationships between the factors of successive states and operators, and could

therefore possibly be employed to develop a universe containing classical-looking space-

time.

Inflationary scenarios could also potentially be accounted for by modifying the Rules

in similar, suitable ways.

The above illustrative model is just one very simple way of obtaining List-Sort dy-

namics; many alternative Rules are, of course, possible. In fact, although the state of a

universe in a D dimensional Hilbert space governed by a List of List Length l will always

be one of only D× l eigenvectors, there are in general very many ways in which the various

different ‘properties’ of the members of this set could be used to specify particular choices

of next operator.

As a second illustration, then, it could be imagined that if these D× l different vectors

are arbitrarily labelled {Φj : j = 1, 2, ...(D×l)}, a universe could be considered that follows

the Rules

• If Ψn ∈ {Φ1,Φ2, ...,Φa1}, then choose the operator B̂1 from the List L = {B̂1, B̂2, ...,

B̂l} to be Σ̂n+1;

• Alternatively, if Ψn ∈ {Φa1+1,Φa1+2, ...,Φa2}, then instead choose the operator B̂2

from the List L to be Σ̂n+1;

• ...

• And so on, up to the case where if Ψn ∈ {Φal−1+1,Φal−1+2, ...,Φal}, the operator B̂l

is chosen from the List L to be Σ̂n+1;

where the vectors have arbitrarily re-labelled in ascending order for simplicity in this

example, and where

a1 + a2 + ...+ al = D × l. (8.7)

As before and as required, the choice of next operator Σ̂n+1 depends on the current

state Ψn. Also as before, the algorithm may be repeated indefinitely, because Ψn+1 ∈ {Φj :

j = 1, 2, ...(D × l)} for all n.

Two points are immediately obvious from this second example. First, it is evident that

more that one state can lead to the same choice of operator. In fact, this observation was
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also paralleled in the first example, because if Fn 6= 1 or Fn 6= l, the state Ψn could be

in a number of different partitions, each with Fn factors, and each resulting in the same

operator B̂Fn . The general conclusion is therefore that although a given state Ψn must

result in the definite choice of a specific operator Σ̂n+1, the reverse need not be true: an

operator Σ̂n+1 could have been chosen due to the universe being in any one of a variety

of different states.

Secondly, it is apparent that the same List L was appropriate in both examples, even

though the ‘property’ of the state that is of interest to the Rules was completely different

in the two cases. This highlights the overall point that is the actual Rules relating the

state Ψn to the operator Σ̂n+1 that are of most importance in List-Sort mechanisms.

The List-Sort mechanisms discussed up until now have been manifestly deterministic,

at least as far as the choice of operators is concerned: a given state Ψn results in the

selection of a unique operator Σ̂n+1 from the List, because the universe is obeying Type III

List-Sort Rules. These types of mechanism, however, may be extended to Probabilistic

List-Sort dynamics (governed by Type IIIa List-Sort Rules) in a straightforward manner.

One way of achieving this would be to relax the ‘uniqueness’ condition of the basis

Bi chosen by the Rules in reference to Ψn. Specifically, given a state Ψn, then instead of

this deterministically implying the definite selection of a single basis Bi from the list L, it

could instead be used to imply the selection of a set of possible bases Bi, Bj , Bk, ... from

L, with probabilities pi, pj , pk, ... respectively. Of course, in this case the condition must

hold that

pi + pj + pk + ... = 1. (8.8)

In other words, a given state (or more specifically, perhaps, a given ‘property’ of a

given state) could give rise to a number of potential next tests B̂i, B̂j , B̂k, ..., but which of

these operators actually becomes Σ̂n+1 is determined randomly. Thus, given a state Ψn,

the next test Σ̂n+1 could be the operator B̂i with probability pi, or the operator B̂j with

probability pj , and so on.

Equally, then, the probability that the next state Ψn+1 will be any one of the set of

eigenstates {Θa
i } of B̂i is given by pi, whereas the probability it will instead be any one

of the set of eigenstates {Θa
j} of B̂j is given by pj , etc.

The probability of choosing a particular operator compounds with the standard quan-

tum mechanical probability governing the state collapse mechanism to give the overall

probability that the universe will jump to a particular next state. Thus, given a state Ψn,

the probability P a
n+1 that the next state Ψn+1 will be a particular eigenstate Θa

A of B̂A is

the product of the probability that the operator B̂A is chosen, with the probability that
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the state will then collapse to this eigenvector; viz,

P a
n+1 = pA |〈Θa

A|Ψn〉|2 (8.9)

noting that a measure of entropy could be applied in this type of situation, as analogous

to Section 5.6.

Actually, the probability that the next state Ψn+1 will be a particular vector may in

fact be much higher than this individual result, because it is possible that a given eigenstate

may be a member of more than one of the potential basis sets. Of course, this point is

a mere technicality in the present discussion, and does not affect the general principles

being suggested; it would only be important if just ‘before’ and ‘after’ states were being

considered, with the ‘route’ (i.e. the operator) taken by the state being ignored.

As a final comment, note that exactly how the universe is provided with the particular

List L containing the particular members {Bi} is unexplained. Indeed, it is perhaps

unexplainable, and in a universe developing according to List-Sort Rules, the List L may

simply have to be accepted along with the laws of physics as just one of the necessary

pre-requisites for dynamics to occur. Paraphrasing, it would be as if the universe needs

to be provided with an enormous ‘data-bank’ of possible operators at the outset, just

as a (quantum) computer must be provided with all of the logic gates necessary for its

functioning in order for it to work.

In fact, this quantum computational analogy may be continued: the Rules Rn govern-

ing the universe could similarly be associated with the algorithm or program governing the

steps taken during a computation, whilst the state Ψn may be related to the current inter-

nal configuration of the machine. Again, the universe is viewed as a giant, self-referential

quantum automaton.

Of course, if the actual Universe develops according to List-Sort dynamics, it would

be a task for physicists to attempt to discover what its List is, and hence what the total

set of possible operators available to the physical Universe actually are. Why it has

whatever List it has, however, is perhaps a question for either the Anthropic Principle or

for philosophy.

8.3 Examples of List-Sort Dynamics

The aim of this section is to provide a set of examples that illustrate how toy-universes

obeying List-Sort Rules might develop. For reasons of simplicity, attention will be re-

stricted to low dimensional systems, with the usual assumption being made that the

underlying principles are not entirely unrelated to those existing in more complicated

situations. Specifically, a two qubit model is discussed.
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Consider a universe represented by a state in a four dimensional Hilbert space H
fundamentally factorised into two qubit subregisters, i.e.

H ≡ H(4)
[12] = H(2)

1 ⊗H(2)
2 (8.10)

where dimensional superscripts shall, again, generally be dropped from now on.

Define also an orthonormal basis for Ha, where a = 1, 2, as Ba = {|0〉a, |1〉a}, such that

any state Ψ of the two qubit universe may be written in the form

Ψ =
∑

ij

Cij |i〉1 ⊗ |j〉2 , i, j = 0, 1 (8.11)

where the four coefficients Cij ∈ C produce a 2 × 2 matrix.

As before, and when no confusion is likely to occur, the subscripts denoting subregisters

1 and 2 will be omitted in the following in favour of the convention that vectors to the

left of the tensor product represent the state of qubit 1 in H1, whereas vectors to the

right of the tensor product represent the state of qubit 2 in H2. Further, the additional

simplification may be made that the tensor product is always implied, so that its symbol

is consequently omitted: |i〉1 ⊗ |j〉2 ≡ |i〉 ⊗ |j〉 ≡ |i〉|j〉 ≡ |ij〉.

For a universe represented by a vector in a factorisable Hilbert space, it is possible

that its state may be entangled. Moreover, and as has been discussed previously, the

issue of entanglement versus separability is of fundamental importance in any discussion

of quantum theory, and has played a central role in this thesis.

In Chapter 4 the issue of separability versus entanglement was introduced, with a goal

being to classify the different ways an arbitrary vector could be entangled or separable

relative to a given factorisation of its Hilbert space. In the current situation, however, any

state in H(4)
12 is either fully entangled or fully separable, because it can only possess either

1 or 2 factors. This simplification will be useful in the following.

Consider an arbitrary set B of orthonormal vectors that forms a basis for a given

Hilbert space. Specifically, in fact, it is a standard theorem of vector algebra that for a

Hilbert space of dimension D, each basis set of such vectors contains D elements.

Now, the elements of these basis sets will each possess a certain degree of separability

or entanglement relative to the fundamental factorisation of the Hilbert space, and this

may be classified by referring to the ‘type’ of the basis. For example, and returning to

the current four dimensional case of a two qubit system, a basis set B(p,q) can be said

to be of type (p, q) if it contains p entangled and q separable elements, where p + q = 4.

Furthermore, these p+ q vectors may be associated with the p+ q orthogonal eigenstates

of a set of operators acting upon the two qubit universe, and so to define the basis B(p,q)

also defines the equivalence class of operators B̂(p,q).
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Of course, the above analysis is highly simplistic, and may neglect a number of impor-

tant points. Indeed, it was shown in Section 4.2 that only type (0, 4), (2, 2), (3, 1), and

(4, 0) bases can be found to span the Hilbert space H(4)
[12], and that no example of a type

(1, 3) basis set can exist.

Nevertheless, from these elementary ideas it is now possible to begin to construct toy-

model universes that develop according to state self-referential List-Sort Rules, as is shown

by the following examples.

8.3.1 Example I

Consider as above a two qubit universe represented by a state Ψn in the factorisable Hilbert

space H[12]. Consider further the particular (2, 2) type basis set B(2,2) of orthonormal

vectors described by

B(2,2) =

{
|00〉 , |11〉 , 1√

2
(|01〉+ |10〉) ,

1√
2
(|01〉 − |10〉)

}
(8.12)

and also the type (4, 0) basis set B(4,0) defined by

B(4,0) =





1√
2
(|00〉+ |11〉) , 1√

2
(|00〉 − |11〉) ,

1√
2
(|01〉+ |10〉) , 1√

2
(|01〉 − |10〉)



 . (8.13)

For convenience and brevity, B(2,2) may be written as B(2,2) = {a, b, c, d}, where the

order as defined in (8.12) is preserved such that c = 1√
2
(|01〉+ |10〉) etc. Similarly, B(4,0)

may be written as B(4,0) = {e, f, g, h}, where for example f = 1√
2
(|00〉 − |11〉).

The basis set B(2,2) corresponds to the set of orthonormal eigenvectors of an (equiv-

alence class of) operator B̂(2,2) of the form given in (8.14), where A, B, C, D are real,

non-degenerate and non-zero eigenvalues

B̂(2,2) = A|00〉〈00|+B|11〉〈11|+ C

2
(|01〉+ |10〉)(〈01|+ 〈10|) (8.14)

+
D

2
(|01〉 − |10〉)(〈01| − 〈10|)

with a similar construction of B̂(4,0) from B(4,0).

Now, in the language of the List-Sort dynamics, it is possible to define a List LX of

list length 2 as

LX ≡ {B(2,2),B(4,0)} (8.15)

or equivalently, LX ≡ {B̂(2,2), B̂(4,0)}.
Moreover, and for the sake of example, it is also possible to define the set of Rules

governing the development of this toy-universe such that they make reference to the above

List. A dynamics based upon a Type III List-Sort mechanism is thus defined.
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On possible such mechanism is the following. Suppose the universe develops according

to the Rule that

• If the state Ψn is separable, then it is tested by an operator whose eigenstates form

the basis B(4,0);

• But if instead Ψn is entangled, it is alternatively tested by an operator whose eigen-

states form the basis B(2,2).

Then, the development of the universe involves an operator chosen from the List LX

in a manner that depends upon a ‘property’ of the current state. Specifically, if Ψn is

separable then an operator B̂(4,0) is chosen from the List to be Σ̂n+1 and the state Ψn+1

will be one of the eigenstates {e, f, g, h}, whereas if Ψn is entangled then an operator B̂(2,2)

is instead picked from the List and the state Ψn+1 will be one of the vectors {a, b, c, d}.
Note that these two properties are mutually exclusive and exhaustive, as required: every

state is either separable or entangled.

Of course, which of the four eigenstates is actually chosen in each case depends entirely

on the random nature of the quantum collapse process.

As an illustration of how such a model could develop, consider a universe in an initial

state Ψ0 given by Ψ0 = |00〉 = a. This state is separable, so by following the Rules, the

next state Ψ1 will be one of the eigenvectors of an operator Σ̂1 = B̂(4,0), such that

B̂(4,0)|Ψ1〉 = λ4,0|Ψ1〉. (8.16)

Ψ1 will be one of the states e, f, g, or h, with corresponding eigenvalues λ4,0
e , λ4,0

f , λ4,0
g ,

or λ4,0
h respectively, where the actual values of the λ4,0 need play no further part in the

discussion, save to say that they are real, non-degenerate and non-zero (c.f. the discussion

of Strong operators in Chapter 5).

As in conventional quantum mechanics, the probability P (Ψ1,Ψ0) of jumping from the

state Ψ0 to a potential state Ψ1 is given by the square of the amplitude, that is

P (Ψ1,Ψ0) = |〈Ψ1|Ψ0〉|2 . (8.17)

So, from an examination of (8.12) and (8.13), the relationship (8.17) clearly leads to

the amplitudes: 〈e|a〉 = 〈f |a〉 = 1/
√
2 and 〈g|a〉 = 〈h|a〉 = 0. Thus, if the initial state of

the universe is Ψ0 = a = |00〉 then the subsequent state Ψ1 will be either

Ψ1 = Ψe
1 = e =

1√
2
(|00〉+ |11〉) (8.18)

or

Ψ1 = Ψf
1 = f =

1√
2
(|00〉 − |11〉) (8.19)
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with equal probabilities of 1
2 .

Now, both of the states Ψe
1 and Ψf

1 are entangled, so no matter what happens, Ψ1 will

be entangled. Consequently, and according to the defined algorithm, the Rules next pick

out the basis set B(2,2) from the list LX , such that the successive state Ψ2 will be one of

the eigenvectors of an operator Σ̂2 = B̂(2,2); viz.,

B̂(2,2)|Ψ2〉 = λ2,2|Ψ2〉. (8.20)

Thus, Ψ2 will be one of the states a, b, c, or d, with corresponding eigenvalues λ2,2
a ,

λ2,2
b , λ2,2

c or λ2,2
d , which are again ignored.

This time, the relevant amplitudes in the transition from Ψ1 to Ψ2 are i) 〈a|e〉 =

〈b|e〉 = 1/
√
2 with 〈c|e〉 = 〈d|e〉 = 0, or ii) 〈a|f〉 = 〈b|f〉 = 1/

√
2 with 〈c|f〉 = 〈d|f〉 = 0,

depending on whether Ψ1 is e or f.

So, if the state Ψ1 of the universe after the transition Ψ0 → Ψ1 was measured and

found to be Ψe
1, then the next state will either be Ψ2 = Ψe,a

2 = a = |00〉 or alternatively

Ψ2 = Ψe,b
2 = b = |11〉, each with equal probability of 1

2 .

However, if instead the collapse from Ψ0 to Ψ1 had left the state at time n = 1 as Ψf
1 ,

then the subsequent state will be either Ψ2 = Ψf,a
2 = a = |00〉 or Ψ2 = Ψf,b

2 = b = |11〉,
again each with equal probability of 1

2 .

So even after two jumps, the random nature of the quantum state reduction and the

chosen Rules for the List-Sort mechanism have led to four different ‘histories’ for the

development of the state from Ψ0 → Ψ1 → Ψ2. Namely, the four possible ‘routes’ are

either a → e → a, or a → e → b or a → f → a or a → f → b.

Although it may appear trivial in this case, note that the probability of going from

Ψ1 = e to Ψ2 = a is 1
2 , and not 1

4 as would be the case if the sum

〈a|e〉+ 〈b|e〉+ 〈a|f〉+ 〈b|f〉 (8.21)

had to be normed to unity. This is because although the transition from one state to

the next makes use of quantum probability amplitudes, once a jump has happened it is

possible to say with certainty which state the system is in. In other words, if the state Ψ1

is measured and found to be Ψ1 = Ψe
1 = e, it is no longer valid to discuss the probability of

jumping from the alternative state Ψ1 = Ψf
1 = f to any possible future state Ψ2, because

Ψf
1 does not exist.

In fact, the ability to describe the state with certainty is a fundamental difference

between Schrödinger evolution and state reduction, and arguably leads to the single valued

nature of reality. Once state reduction has occurred, the universe is in a unique state Ψx
n,

and it is therefore meaningless to discuss the probability of transition from any other state
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Ψy
n. This is a central principle of quantum theory, which holds that although Ψx

n and Ψy
n

may both have been potential futures of the state Ψn−1, once state reduction has selected

the state Ψx
n, no other state Ψy

n can be said to exist. Over a series of jumps it is therefore

necessary to discuss the classical probability that the universe will jump from one state

to another, and then from that new, now ‘known’ state to the next.

This type of reasoning was at the heart of the discussion of Section 6.1.4 concerning

the qubit Bell inequalities.

The difference between a dynamics based on state reduction and one acting without it

may be highlighted by appealing again to the above example. If Ψ0 = a and also Ψ2 = a

then the quantum probability P (Ψ2,Ψ0) of jumping directly from Ψ2 to Ψ0 (if this were

allowed by the Rules) would be |〈Ψ2|Ψ0〉|2 = 1, which is effectively equivalent to a null

test from the point of view of the universe. If, however, it is specified that the universe

develops from Ψ0 to Ψ1 to Ψ2, where Ψ1 = Ψe
1 and so Ψ2 = a = Ψe,a

2 , then the probability

P (Ψe,a
2 ,Ψe

1,Ψ0) is instead given by

P (Ψe,a
2 ,Ψe

1,Ψ0) = |〈Ψe,a
2 |Ψe

1〉|2 |〈Ψe
1|Ψ0〉|2 =

1

2
× 1

2
=

1

4
(8.22)

and this indicates that information has been extracted from the system. As discussed

previously, the state reduction mechanism is essential in order to associate the subscript

on Ψn with a temporal-like parameter.

Generalising, the probability P (Ψn+N ,Ψn+N−1, ...,Ψn) of the universe developing from

the state Ψn to a given state Ψn+N via a series of specified intermediate states Ψn+1, Ψn+2,

..., Ψn+N−1 is given by the classical product of the squared moduli of the N appropriate

quantum probability amplitudes, such that

P (Ψn+N ,Ψn+N−1, ...,Ψn) = |〈Ψn+N |Ψn+N−1〉|2 |〈Ψn+N−1|Ψn+N−2〉|2 ... |〈Ψn+1|Ψn〉|2 .
(8.23)

Note that this generalisation may be related to the concept of entropy discussed in

Section 5.6, where a measure of entropy is associated with different sets of possible futures

of a quantum system.

Note also that the inclusion of state reduction shows the inherent asymmetry and

irreversibility of time. Given that the universe is in a state Ψn, it is reasonable to ask the

question: what is the probability that the universe will jump to a specific state Ψn+1, and

will then jump to another specified state Ψn+2, and so on through a chain of specified states

up to Ψn+N? However, the reverse question is different. If it is known that the universe

is in a state Ψn+N , then the probability that it jumped from the previous state Ψn+N−1

is 1, assuming that no information has been lost during the transition such that Ψn+N−1

is also known. It is meaningless to ask in this context about the probability of arriving
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at the current state from a given alternative past, because state reduction ensures that

only one past actually occurred. Although it may not always be possible in the present to

retrodict with certainty what the past actually was, a physicist can be sure that a unique

past did occur. This is different from discussions of the future, because it is never possible

to predict what will happen, but only what might happen as a potential outcome of a

potential quantum test. Again, strong parallels are drawn here with the discussion of the

qubit Bell inequalities in Section 6.1.4.

Returning now to the example in hand, the universe described by this model would

continue to be tested by the operators B̂(2,2) or B̂(4,0) according to whether its state is

respectively entangled or separable.

In fact, ignoring the ‘route’ by which it got there, it can easily be shown that after 2n

steps, for n ∈ N, the universe is in either the state Ψ2n = a = |00〉 or Ψ2n = b = |11〉,
each with probability 1

2 , whereas after 2n − 1 steps the universe is in either the state

Ψ2n−1 = e = 1√
2
(|00〉+ |11〉) or Ψ2n−1 = f = 1√

2
(|00〉 − |11〉) , also each with probability

1
2 . The system will ‘oscillate’ between having a state that is separable and one that is

entangled, though which particular separable (i.e. a or b) or entangled (i.e. e or f) state

it is actually in depends on the random nature of quantum state reduction.

It is perhaps surprising to note that a different choice of initial condition, Ψ0, would

not drastically affect the subsequent development of the model. To illustrate why, observe

that, according to the Rules governing the dynamics, if the universe were ever to collapse

to any of the vectors c, d, g or h, it would remain in that state from then on, because

these states are eigenvectors of both operators. So, if the initial state was an arbitrary

normalised vector of the form

Ψ0 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (8.24)

where α, β, γ, δ ∈ C, it is possible to conclude that after a period of n steps the universe

would either be following the above pattern of ...[a/b] −→ [e/f ] −→ [a/b]..., where “[a/b]"

denotes “a or b" etc., or else it would be ‘stuck’ in one of the states c (= g) or d (= h). Of

course, exactly which course of action has the highest propensity for occurring depends on

the actual values of the complex coefficients α, β, γ, δ, because these determine whether Ψ0

is entangled or separable, and the nature of the potential probability amplitudes 〈Ψ1|Ψ0〉.
Actually, the details of the above ‘extension’ are in fact considered fairly unimpor-

tant anyway. After all, it is the principles behind the mechanisms investigated in this

section that are of interest, specifically those concerning the question of how a universe

might develop according to List-Sort Rules. Thus, in the remaining examples it is to be

recalled that a different choice of initial condition would not add anything significant to

the discussion, and so the possibility of choosing alternative states as Ψ0 is omitted.
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8.3.2 Example II

A toy-universe model that is perhaps more interesting than that of Example I could add to

the List LX a type (0, 4) basis set B(0,4), where this completely separable basis is defined

as

B(0,4) =

{
1
2 (|00〉+ |10〉+ |01〉+ |11〉) , 1

2(|00〉+ |10〉 − |01〉 − |11〉)
1√
2
(|00〉 − |10〉) , 1√

2
(|01〉 − |11〉)

}
(8.25)

Analogously to before, where the bases B(2,2) and B(4,0) were redefined as {a, b, c, d}
and {e, f, g, h} respectively, the elements of B(0,4) written in the above order may be

labelled as B(0,4) = {j, k, l,m} for simplicity, with for example l = 1√
2
(|0〉 − |1〉)⊗ |0〉.

Clearly, the addition of B(0,4) to LX defines a new List LY , such that

LY ≡ {B(2,2),B(4,0),B(0,4)} (8.26)

or equivalently LY ≡ {B̂(2,2), B̂(4,0), B̂(0,4)}, where evidently LY ⊃ LX .

In the mechanism proposed now, it is supposed that the universe follows the Rule

• If the state Ψn is separable then the basis B(2,2) = {a, b, c, d} is picked from the List

LY , and the next operator Σ̂n+1 to test the state will be B̂(2,2);

• Whereas if Ψn is entangled then the basis B(0,4) = {j, k, l,m} is instead chosen from

LY , and the next state Ψn+1 is one of the eigenstates of an alternative operator

Σ̂n+1 = B̂(0,4).

So, and as desired, a particular ‘property’ of the state Ψn of the universe (again, its

separability) is being used to select a particular operator from the List LY to become

Σ̂n+1; the universe is hence governed by Type III List-Sort dynamics.

As as aside, note that there is no general constraint in the List-Sort method for the

Rules to use every operator contained in the specified List. Indeed, the current mechanism

could equally be realised with the shorter List LZ defined as LZ ≡ {B(2,2),B(0,4)}, where
LZ ⊂ LY .

However, if the actual physical Universe runs according to List-Sort Rules, a question

would remain in this case as to why any operator should be included on its List if it could

never be used. In general, then, such ‘non-essential’ operators should perhaps best be

removed for efficiency.

That said, in the present example, the inclusion of the non-used B(4,0) to the List

does not make any real difference, and so the longer List LY will be retained; this is in

preparation for Examples III and IV, where the whole of LY will be employed.
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At any time n the state of the universe in question is constrained to be one of the eight

possible vectors: a, b, c, d, j, k, l,m. Furthermore, which of these it actually is at time n

determines the basis set at time n+ 1, according to the above Rules.

In addition, and as in Example I, the likelihood of transition from each of these states

to the next depends on the probability amplitudes. Specifically, the probability |〈y|x〉|2 of

transition from the state Ψn = |x〉 to a potential state Ψn+1 = |y〉 is given as the element

in column x, row y of Table 8.1

* a b c d j k l m

a 1 0 - - 1/4 1/4 1/2 0

b 0 1 - - 1/4 1/4 0 1/2

c 0 0 - - 1/2 0 1/4 1/4

d 0 0 - - 0 1/2 1/4 1/4

j - - 1/2 0 - - - -

k - - 0 1/2 - - - -

l - - 1/4 1/4 - - - -

m - - 1/4 1/4 - - - -

Table 8.1

noting that transitions which are forbidden by the Rules, for example a separable state

jumping to one of the members of B(0,4), are indicated by a dash.

Moreover, note that the probabilities are normed in such a way that

∑

i

|〈i|x〉|2 = 1 , i, x = a, b, c, d, j, k, l,m (8.27)

because if the universe is in a state Ψn = |x〉 it must certainly be able to jump to some-

thing.

By way of example, let the initial state Ψ0 of the universe be Ψ0 = c = 1√
2
(|01〉+ |10〉) .

This state is entangled, so according to the Rules the next state Ψ1 will be one of the

members of the basis set B(0,4) = {j, k, l,m}, and will hence be an eigenstate of the

equation

B̂(0,4)|Ψ1〉 = λ0,4|Ψ1〉 (8.28)

where λ0,4 is an eigenvalue that is subsequently ignored.

It is possible to develop the state of this toy-universe model over a number of steps,

just as it was in Example I. So, if Ψ0 = c, then Ψ1 must be either j, l or m because the

probability that the universe will collapse to the state Ψ1 = k is zero.

Moreover, by applying the same logic, and from the results given in Table 8.1, it follows

that if Ψ1 = j then Ψ2 must be either a, b or c. Alternatively, if instead Ψ1 = l, it implies

that Ψ2 must be either a, c or d, whereas if Ψ1 = m it implies that Ψ2 must be either b, c

or d.
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This process may be continued to generate a set of possible transitions from Ψ2 to Ψ3,

and then from Ψ3 to Ψ4, etc., until a ‘family tree’ of different possible chains of states are

created.

Of course, quantitatively some states or patterns are more likely to occur than others

due to the list of probabilities given in Table 8.1. For example, once the universe has

jumped into the state a, then according to the Rules it will remain in this state forever.

It is easy to write a computer program that will iterate this two qubit universe over N

steps according to the specified Rules. Furthermore, a number of questions can then be

asked of the system’s development. For example, what is the probability that after N = 3

jumps the universe will have proceeded through the history Ψ0 = c, Ψ1 = m, Ψ2 = d,

Ψ3 = k? (Answer: 1/32). Alternatively, what is the probability that after N = 57 jumps

the universe is in the state j? (Answer: ∼ 9.3132× 10−10).

One interesting question is: what is the probability that after N steps the universe

is in an entangled state, given that Ψ0 = c? Paraphrasing, what is the probability that

ΨN = c or ΨN = d? The result of this is shown in Figure 8.1, where the x-axis is n and

the y-axis is the probability P (Ψn = [c/d]).

Figure 8.1: Probability, P (Ψn = [c/d]), of an entangled universe after n steps.

As is evident from the graph, the outcome of the presented Rules governing a universe
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in an initial state Ψ0 = c is similar to the result of the previous toy-model universe (for

the case when Ψ0 equalled a), in the respect that the wavefunction Ψn will definitely be

separable at periodic intervals: in this example, Ψn will always be separable when n is

odd, whereas in Example I the state was always separable when n was even. The major

difference between these two examples, however, is that in the current case the probability

of getting an entangled state at the remaining times decreases as the number of jumps, n,

increases, whereas in Example I this probability remained at unity.

This model therefore has an important physical interpretation. The situation here is of

a universe that begins in an initial entangled state, but is driven to a greater likelihood of

separability as it develops. Obvious comparisons can hence consequently be made with the

discussions of Chapters 3, 4 and 5 in which it was suggested how the actual Universe may

have developed in an analogous manner, from an initial entangled state at the quantum Big

Bang, to one that now appears to possess an enormous amount of semi-classical looking

separability and persistence.

8.3.3 Example III

The dynamics of the models in sub-sections 8.3.1 and 8.3.2 could be described as ‘semi-

deterministic’. That is, although the quantum reduction of the state into one of the

eigenvectors of the operator is a stochastic process, if it is known which state Ψn the

universe is in, it is always possible to say with certainty what the next test Σ̂n+1 will be.

The models in the previous two sub-sections provided examples of deterministic List-Sort

dynamics, that is, Type III Rules.

It is, however, possible to consider a development mechanism based on probabilistic

List-Sort, Type IIIa dynamics, as alluded to in Section 8.2. Under such circumstances, a

given state Ψn may imply a number of potential ‘candidates’ to become the next operator

Σ̂n+1, but which is actually chosen depends on some kind of random factor. Thus, each

potential operator is associated with a particular probability of being chosen, given the

presence of a certain state.

Of course, there are many forms that these various operator probabilities could take.

Firstly, for example, they could simply be fixed ‘weighting factors’, where each operator on

the list is associated with a fixed probability of being chosen, given a particular property

of the state (for instance, whether it is entangled or separable). Secondly, however, they

could instead involve a Rule in which these probabilities themselves are a function of the

current state, as will be explained later. Thirdly, even, the choice of operator probability

could actually depend somehow on some sort of higher order quantum process that would

be in need of definition.
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For the time being, attention will be restricted to the simplest possible type of situation,

and a model will be considered in which the ‘random factor’ is constant. In the following

case of Example IV in Sub-section 8.3.4, however, this factor will instead be a variable

that depends upon which particular state the universe is currently in.

Thus for the example at hand, an elementary dynamics is suggested in which if the

state of the universe has one particular ‘property’ then it is developed in one way, but if

it has another ‘property’ then it will instead be developed in one of two potential ways,

though which of these ways is actually chosen is a random process. Specifically, the

probability that it will be tested by the first of the two potential operators is defined to be

a constant, Q, whereas the probability that the next state will be one of the eigenstates

of the alternative potential operator is given by (1−Q), where 0 ≤ Q ≤ 1.

Consider as before a two qubit system, and consider again the above List LY , defined

as LY ≡ {B(2,2),B(4,0),B(0,4)}. Suppose further that the universe follows probabilistic

List-Sort dynamics, and is governed by the Rules

• If the state of the universe is entangled, then the basis B(0,4) is picked from the list

LY , and Ψn is tested by an operator Σ̂n+1 = B̂(0,4), such that the next state Ψn+1

is one of the members of B(0,4);

• However, if Ψn is separable there is a probability Q that the operator B̂(2,2) will be

chosen from the list to be Σ̂n+1, but also a probability (1 − Q) that B̂(4,0) will be

selected instead. Thus if Ψn is separable, there is a probability Q that the next state

Ψn+1 will be one of the elements of B(2,2), but a probability (1 − Q) that it will

instead be one of the elements of B(4,0).

Here B(2,2) = {a, b, c, d}, B(4,0) = {e, f, g, h} and B(0,4) = {j, k, l,m} are as defined

previously, and 0 ≤ Q ≤ 1. Clearly, such a universe is governed by a Type IIIamechanism.

As in the previous examples, the two qubit universe described here will develop in an

automatic way, with its state jumping from one vector to the next according to the Rules

that govern the model’s dynamics.

Also as in the previous examples, the individual probability amplitudes will play a

crucial role in determining the propensity for a given state Ψn to jump to a particular

future state Ψn+1, within, of course, the boundaries set by the Rules. In fact, it is easy to

generalise Table 8.1 for the 144 probabilities given by |〈y|x〉|2 for Ψn = |x〉, Ψn+1 = |y〉 and
x, y = a, b, c, ...,m, noting again that many of the transitions would be ‘dashed’ because

they are forbidden in the current mechanism.

To illustrate the type of dynamics proposed here, assume that as in Example II, the

two qubit universe may be prepared in the initial state Ψ0 = c = 1√
2
(|01〉+ |10〉) , where
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it is again noted that alternative initial conditions would not give rise to significantly

different or interesting outcomes.

Clearly, Ψ0 = c is entangled, so the Rules dictate that the next operator Σ̂1 will be

B̂(0,4), such that the next state Ψ1 will be either j, k, l or m with relative probabilities of

1/2, 0, 1/4 and 1/4 respectively.

Now, if Ψ1 turns out to be Ψ1 = j, it is evident that the universe has collapsed to a

separable state (actually, the same would be true whether it had collapsed to l or m, but

that is beside the point). So, according to the Rules, the next operator Σ̂2 to test the

state will either be Σ̂2 = B̂(2,2) with probability Q, or else Σ̂2 = B̂(4,0) with probability

(1 − Q). Overall, then, the next state Ψ2 will be one of eight possibilities: it will be one

of the vectors a, b, c, d, e, f, g, h with relative probabilities given in Table 8.2.

Ψ2 a b c d e f g h

Prob. P (Ψ2,Ψ1 = j) Q/4 Q/4 Q/2 0 (1−Q)/2 0 (1−Q)/2 0

Table 8.2

Of course, similar tables would be generated for the probabilities of jumping to a

particular state Ψ2 from the alternative states Ψ1 = l or Ψ1 = m. In these instants, the

same set {a, ..., h} of eight possible vectors would be present, because l and m are both

separable and would hence both imply that Σ̂2 = B̂(2,2) with probability Q or Σ̂2 = B̂(4,0)

with probability (1−Q), but the various quantum probability amplitudes that result would

now be different.

As in the previous examples, the above model could be developed through an arbitrary

number of steps to give rise to complicated ‘trees’ of possible histories for the system, each

with a particular probability of occurring. Also as before, various questions can be asked

regarding the possible nature of the system after a given number of jumps.

The number Q is seen as a free parameter in the model. Two particular situations,

however, are the special cases when Q = 0 and Q = 1. For Q = 0, the development

proceeds in a similar way to that experienced by the system described in Example I, that

is, a universe with a state that oscillates between being certainly entangled and certainly

separable.

In the converse case of Q = 1, however, the model is instead identical to the system

described in Example II, that is, a universe with a state that it increasingly more likely

to be separable as it develops.

But, a more novel situation occurs for 0 < Q < 1. In these cases the probability that

the universe is separable or entangled after n jumps tends to some fixed value as n becomes

large. Additionally, unlike for Q = 1, in which for n = odd the state is always separable

and it is only the n = even states whose probability of being entangled is driven to zero,

for 0 < Q < 1 the probability that the state is entangled (or separable) tends to the same
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fixed value for both odd and even values of n; at any ‘time’ n there is always a possibility

that the state could be entangled. In such a universe, the likelihood of the nth state being

separable for n ≫ 1 is approximately the same as the likelihood of the (n− 1)th state also

being separable. This point is illustrated in Figure 8.2, which is a plot of the probability

(y-axis) of getting an entangled state after n jumps (x-axis) for Q = 1/2.

Such a model may have an important physical interpretation in terms of discussions

regarding the emergence of persistence.

Figure 8.2: Probability of an entangled universe after n steps for Q = 1/2.

Of course, it is not in principle difficult to determine what the probability of obtaining

an entangled state tends to as n becomes large, for the given initial condition, value of Q,

and set of Rules. It may also be interesting to consider the rate at which the probability

tends to this fixed value. In fact, since from the above graph the convergence to this value

appears ‘smooth’ (in some sense), it is not impossible to suggest that the probability of

obtaining an entangled universe might begin to be approximated by a continuous function

of n, particularly as n increases. In short, it might be possible to fit a continuous curve

to the above data, and the equation of this curve might play an important role in dis-

cussions regarding the emergence of continuous physics from the underlying and discrete

pregeometric structure.

The same argument may also be true for the results indicated by Figure 8.1 of Example

II: a continuous ‘decay’ curve could be fitted to the results when n is even, and the equation

of this curve might be useful in approximating average properties of the system.

Continuing this train of thought, and by considering the various probabilities that the
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universe will be in a particular state Ψn ∈ {a, ...,m} after n steps, it is noted that it is

possible to describe the likely ‘trajectories’ or ‘histories’ of the system between times 0 to

n. In other words, by considering the probabilities of obtaining various ‘histories’ Ψ0 →
Ψ1 → ... → Ψn, a discrete and probabilistic ‘equation of motion’ could be determined for

the development of the universe. Moreover, it might then be the case that this too could

be approximated using continuous looking laws and functions of n. In this case, therefore,

the discrete process of jumps of the system would, in some sense, effectively begin to be

described by continuous equations, exactly as required for the emergence of continuous

physics.

It is intriguing to speculate on the potential links between this type of analysis of the

presented models, and the types of dynamics discussed in models of quantum stochastic

calculus (e.g. [85]).

8.3.4 Example IV

Example III is a probabilistic List-Sort universe that develops in a way that depends on

a fixed probability: the choice of operator B̂(2,2) or B̂(4,0) is influenced by the value of Q,

and Q remains constant throughout. A natural extension to this type of mechanism is

therefore to allow the probability of using B̂(2,2) or B̂(4,0) to depend on the current state.

It is important to clarify the difference between these two types of mechanism. In

the ‘fixed’ case, the Rules select a set of potential operators from the List based upon

a particular ‘property’ of the state, and there is then a fixed probability as to which

of these operators is actually used. So, in the case of Example III, the probability of

picking a given operator from the List depended only on a ‘property’ of the state: if the

state was separable, then there was a probability Q of choosing the operator B̂(2,2), but a

probability (1−Q) of instead choosing the operator B̂(4,0). Moreover, these probabilities

were independent of what the details of the state actually were: all that was important

was whether it was entangled or separable, because this was the only property used in the

selection process.

In the type of mechanism proposed in this sub-section, however, although the Rules

are such that a particular ‘property’ of the state is still used to select a set of potential

operators, which operator from this set actually gets chosen does now depend on the precise

details of the state. In other words, the probability of picking a particular operator from

the set of potentials is not a fixed number defined at the outset, but is instead a variable

defined as a particular function of the state. Thus, and as will be shown below, in the

type of mechanism proposed here it is not sufficient to simply say whether the state Ψn

is entangled or separable in order to determine the propensity of using a particular next
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operator; it is also necessary to know exactly what the state is in order to determine the

probability of what the next operator Σ̂n+1 will be.

The general case of this type of idea is therefore the following. Given a state Ψn in a

D dimensional Hilbert space H with a List of bases L defined as L ≡ {Ba : a = 1, 2, ..., l},
the Rules could pick out a set of potential operators {B̂i, B̂j , B̂k, ...} to be the next test

Σ̂n+1, with respective probabilities pi, pj , pk, ... However, unlike in the previous, fixed

probability case for which pi, pj , pk, ... were constants, a mechanism is now considered

where

pi = fi(Ψn) , pj = fj(Ψn) , . . . (8.29)

with the actual functions {fi, fj , ...} defined in the Rules governing the dynamics, and

where

fi(Ψn) + fj(Ψn) + ... = 1. (8.30)

The idea is perhaps best illustrated by example.

Consider again a two qubit universe, and the basis sets B(2,2) = {a, b, c, d}, B(4,0) =

{e, f, g, h} and B(0,4) = {j, k, l,m} defining the List LY as before. In this illustration, the

Rules governing the system are chosen to be analogous to those used in Example III; viz.

• If Ψn is entangled then the basis B(0,4) is picked from the list LY , and the next state

Ψn+1 is one of the eigenstates of B̂(0,4);

• However, if Ψn is separable then there is a probability R that the basis B(2,2) is

picked from the list LY , such that the next state Ψn+1 is one of the eigenstates of

B̂(2,2), but a probability (1−R) that the basis B(4,0) is instead picked from the list

LY , such that the next state Ψn+1 is one of the eigenstates of B̂(4,0).

In this case, however, R is not a constant, but is a function of Ψn. Specifically, R could

be defined in this example by

R = |〈Ψn|X〉|2 = |〈X|Ψn〉|2 (8.31)

where X is some fixed ‘reference’ vector that is normed such that 0 ≤ R ≤ 1.

Clearly, the value of R depends upon which state the universe is currently in, thereby

making the dynamics strongly self-referential. As a consequence, it turns out that some

separable states Ψn are more likely to be tested by the operator B̂(2,2) whilst others are

more likely to be tested by B̂(4,0), depending of course on the magnitude of the inner

product of Ψn with X.

263



For the sake of this illustration, X could arbitrarily be chosen as

X =
1

2
(|00〉+ |10〉+ |01〉+ |11〉) (8.32)

so that in fact X = j. Thus, R will be given by one of the square amplitudes R =

|〈y|X = j〉|2 for y = a, b, j, k, l,m, noting that {a, b, j, k, l,m} are the only separable

states, and hence the only states of relevance here. Clearly, the values of 〈a|j〉 and 〈b|j〉
may be readily extracted from Table 8.2 (by putting Q = 1), whilst 〈j|j〉 = 1 with

〈k|j〉 = 〈l|j〉 = 〈m|j〉 = 0, and this highlights the above point that some states are

considerably more likely to be tested by, say, B̂(2,2) than others.

So as an example, if the universe is known to be in the separable state Ψn = a, the

Rules dictate that the next operator Σ̂n+1 will be B̂(2,2) with probability |〈a|j〉|2, but will
be B̂(4,0) with probability (1− |〈a|j〉|2).

Furthermore, given the state Ψn = a, the ‘compound’ probability P (e, a) that the next

state Ψn+1 will be the element e of the basis set B(4,0) is clearly given by

P (e, a) = (1− |〈a|j〉|2)|〈e|a〉|2 (8.33)

= (3/4) (1/2) = 3/8

which is just the product of the probability that a will be tested by the operator B̂(4,0)

multiplied by the probability that the outcome of this test will be e.

Of course, if Ψn+1 is indeed the entangled state e, then the next test will be Σ̂n+2 =

B̂(0,4), and the subsequent state Ψn+2 will be one of the elements {j, k, l,m} of the basis set

B(0,4). Evidently, and as in previous models, it is easy to continue this process indefinitely

and generate a ‘tree’ of sets of possible ‘histories’ from a given initial state. It is also

possible to ask questions of the system, such as the probability of obtaining a certain ΨN

at time N, or whether the universe at time M is likely to be entangled or separable.

As with Examples II and III, the model presented here also has an important physical

interpretation. In the system described in this sub-section, a dynamics is presented in

which the presence of certain states leads to a greater propensity that the universe will

be developed by a particular operator. In other words, some states are more likely to be

tested by certain operators than others.

This, however, is generally what occurs in the real Universe. Given a state that is

separable into a number of particular factors (representing an apparatus, a subject, a

physicist etc.), it is often possible to predict what the next operator may be like, because

scientists are generally able to set up certain experiments in the laboratory, and represent

them by Hermitian operators. Furthermore, the presence of a particular set of initial

sub-states does generally seem to make some choices of test considerably more likely than

others. As an example, if a Stern-Gerlach machine and an electron are present as factors
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of Ψn, it might be expected that the Universe will select an operator that appears to

represent a spin-measurement; indeed, this course of action certainly seems more likely

than an alternative choice of operator being made, where, perhaps, the next state Ψn+1 of

the universe appears to contain the results of some sort of position measuring experiment.

Thus, the point is that certain initial conditions, i.e. certain states Ψn, do appear to

constrain the Universe to develop in certain ways; a particular state Ψn does seem to make

a particular test more likely than others.

These issues themselves lead onto a general philosophical point. Conventional quantum

mechanics generally deals with statements of the form: “if a given quantum system is

tested in a certain way, what is the probability that a certain outcome will be measured?”.

However, this view ignores the more fundamental question that should perhaps be asked

first: “what is the probability that a physicist will choose to apply that particular test to

the system anyway?”.

Such a question is presumably an important feature in a fully quantum universe. As

has been discussed previously, if the Universe contains everything, there can be no external

agent acting as “The Physicist” deciding which test to apply to its state at any particular

time. The choice of operator acting upon the wavefunction must therefore be a result

of something going on inside the Universe. Further, assuming that human physicists are

themselves quantum systems (or at least are comprised of quantum systems), they must be

subject to quantum laws and are the outcomes of quantum tests. Thus, any ‘decision’ they

appear to make, regarding the selection of a particular operator to test their surroundings

with, is the result of an earlier quantum process22. This conclusion was very much the

stance of Feynman [72].

So, given that the Universe is represented by a quantum state, and that this state is one

of the eigenvectors of a quantum operator, physicists are left with the question of why this

particular operator was selected. Exactly how this selection mechanism might work, and

whether it is based on a deterministic algorithm or the stochastic result of quantum prob-

ability, are interesting questions seldom addressed in a science normally concerned with

predicting the answers to specific, well defined questions. In a self-referential, quantum

Universe featuring endo-physical observers, however, they must be unavoidable consider-

ations.

8.4 Generated-Sort Dynamics

In Type III List-Sort dynamics, the universe possesses an enormous set L of ‘pre-ordained’

operators {B̂1, B̂2, ..., B̂l}, and the Rules Rn select just one of these to be the next test

22It is intended here to ignore arguably metaphysical notions that involve free-will or consciousness.
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Σ̂n+1 based on the ‘properties’ of the current state Ψn.

A converse to this sort of mechanism would therefore be one in which there is no

pre-existing set of operators waiting to be picked to test the state. Under circumstances

such as these, a dynamics could be imagined in which the next operator Σ̂n+1 is somehow

‘created’ at time n in a manner that is based entirely upon the current state. In other

words, in these scenarios the next operator Σ̂n+1 is not selected from an already existing

List, but is instead generated from Ψn according to the Rules governing the universe in

question.

Thus, the operator Σ̂n+1 could be taken to be some sort of function fn of the current

state, and it would be possible to write

Σ̂n+1 = fn(Ψn) (8.34)

or equivalently

Bn+1 = fn(Ψn) (8.35)

where Bn+1 ≡ {Φ1
n+1,Φ

2
n+1, ...,Φ

D
n+1} for aD dimensional Hilbert space, and 〈Φi

n+1|Φj
n+1〉

= δij for i, j = 1, 2, ...D.

Such a mechanism may be called a ‘Generated-Sort ’ dynamics.

Generated-Sort dynamics could lead to a ‘phase space’ of possible states that is much

larger than that available in List-Sort dynamics, where the phase space is defined in terms

of the number of different states the universe could exist in over all time n. In particular,

in Generated-Sort dynamics this set of different states could be unbounded, whereas in

List-Sort dynamics the total set of possible states will always be constrained according to

the size of the List.

To justify this last point, note that a finite List L of operators acting over a finite

Hilbert space implies a finite number of possible states. Specifically, given that every

possible Hermitian operator in a Hilbert space of dimension D possesses D orthogonal

eigenstates, then if the number l of possible equivalent classes of operators contained in

L is finite (i.e. L is of List Length l), there can be no more than D × l different states

for the universe, such that the universe’s phase space is of ‘size’ D × l. In other words,

as the universe develops, its state will always be one of these D × l different possibilities.

Of course, quantum stochastics does still ensure that it is generally impossible to say in

advance which of this set the nth state will be.

In fact, this point is evident from the examples of Section 8.3: for any two qubit model

with the List LX of List Length 2, the universe could only ever be in one out of no more

than eight possible states, {a, b, ..., h}.
In Generated-Sort dynamics, however, the set of different possible states could po-

tentially be limitless, depending of course on the exact details of the function fn(Ψn).
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Specifically, the set of different possible futures for a state obeying Generated-Sort dy-

namics could, in principle, increase exponentially with n.

There are two obvious ways that may be introduced in order to achieve a Generated-

Sort dynamics according to the Rule Bn+1 = fn(Ψn). These may be called

1. Basis Method;

2. One-to-Many Method;

and are each described in turn.

In the Basis Method, the individual elements {Φ1
n+1,Φ

2
n+1, ...,Φ

D
n+1} of Bn+1 are dif-

ferent functions of the state Ψn. Thus, in this mechanism it is assumed that (for each n)

the function fn really implies a set of D ‘sub-functions’

fn = {f (1)
n , f (2)

n , ..., f (D)
n } (8.36)

such that the basis set Bn+1 is given according to the Rule

Bn+1 = fn(Ψn) = {f (1)
n (Ψn), f

(2)
n (Ψn), ..., f

(D)
n (Ψn)} (8.37)

where clearly

Φi
n+1 = f (i)

n (Ψn) , i = 1, 2, ..., D (8.38)

with the constraints that the sub-functions {f (i)
n } are defined so that f

(i)
n (Ψn) is orthogonal

to f
(j)
n (Ψn) for all i 6= j,

∣∣∣f (i)
n (Ψn)

∣∣∣ = 1, and f
(i)
n (Ψn) 6= Ψn. Clearly, each f

(i)
n is a 1 → 1

function that maps a given state Ψn to a different, unique vector Φi
n+1.

Conversely, in the One-to-Many Method it is assumed that fn is instead defined as

some sort of 1 → D function that maps the state Ψn into D different, orthogonal vectors.

These D states are then taken to form the basis set Bn+1.

The exact mechanics and viability of these two potential methods is explored in the

following sub-sections.

Note first, however, that a Rule of the form Bn+1 = fn(Ψn) is manifestly deterministic:

given a state Ψn, it is assumed that the function fn is used to generate a unique basis

set Bn+1. The Generated-Sort mechanisms could, though, be extended to a probabilistic

(Type IIIa) dynamics in the obvious way, by re-writing the Rule for generating Bn+1 as

Bn+1 =





fn(Ψn) with Probability Pf

gn(Ψn) with Probability Pg

...





(8.39)
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where the probabilities Pf , Pg, ... of using the various functions fn, gn, ... sum as

Pf + Pg + ... = 1. (8.40)

As with their analogies in List-Sort dynamics, the forms of the above probabilities

could themselves be fixed or variable, depending of course on the Rules governing the

system.

However, a modification from a deterministic (Type III) Rule to a probabilistic (Type

IIIa) one does not significantly add to the discussion presented in this section. The

possibility of the above extension will therefore be taken for granted from now on, and

will hence not be explored further.

8.4.1 The Basis Method

As indicated above, in the Basis Method the next basis set Bn+1 = {Φ1
n+1,Φ

2
n+1, ...,Φ

D
n+1}

of orthogonal eigenstates is generated from the vector Ψn according to the rule Φi
n+1 =

f
(i)
n (Ψn) for i = 1, ..., D. The question then becomes: what sort of functions f

(i)
n are able

to give rise to such a mechanism?

To begin to answer this, note that each f
(i)
n is necessarily a function that maps a vector

Ψn in H(D) uniquely into another vector Φi
n+1 in H(D). It is hence possible to associate

with f
(i)
n a unitary operator Û

(i)
n that achieves the same end, that is

Û (i)
n Ψn = Φi

n+1. (8.41)

Thus, the procedure that creates the basis set Bn+1 from the state Ψn may be per-

formed by defining a set of unitary operators, {Û (i)
n : i = 1, ...D}.

Now, the actual forms of these unitary operators are generally seen as free parameters

in the model, defined, perhaps, by whatever Rules govern the system. But, because the

basis Bn+1 must contain a set of orthonormal vectors, that is

〈Φi
n+1|Φj

n+1〉 = δij , i, j = 1, 2, ..., D (8.42)

it is necessary that whatever definition is chosen, the set of operators {Û (i)
n } must satisfy

the constraint

〈ΨnÛ
(i)
n |Û (j)

n Ψn〉 = δij , i, j = 1, 2, ..., D (8.43)

such that the product operation (Û
(i)∗
n Û

(j)
n ) acting on the state Ψn maps it to an orthogonal

vector23 for all i 6= j.

23Note throughout that the ‘starred’ operator U∗ denotes the complex conjugate transpose of the oper-

ator U ; this is equivalently represented in some textbooks as UT , or U†, or even U+. Clearly, for unitary

operators U∗ = UT = U−1, where the inverse operator U−1 gives U−1 U = I, with I the identity.
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In fact, from the above discussion it turns out that only (D−1) of the operators {Û (i)
n }

can be chosen arbitrarily at each time n, and not D as might be expected. Specifically,

after the definition of (D−1) operators {Û (i) : i = 1, 2, ..., (D−1)}, the remaining operator

is immediately defined by constraint.

To demonstrate this explicitly, observe that, without loss of generality, if {Û (1)
n , Û

(2)
n , ...,

Û
(D−1)
n } are freely chosen according to the constraint that 〈ΨnÛ

(i)
n |Û (j)

n Ψn〉 = δij for

i, j = 1, 2, ..., (D − 1), the “Dth" operator Û
(D)
n is automatically defined by the condition

that only one state is orthogonal to all of the vectors {Û (1)
n Ψn, Û

(2)
n Ψn, ..., Û

(D−1)
n Ψn}.

Assuming, then, that this ‘last’ vector is given by Û
(D)
n Ψn, it consequently follows that

there can be no freedom in the definition of the Dth operator Û
(D)
n .

So, in D dimensional Hilbert spaces H(D), an orthonormal basis set Bn+1 = {Û (i)
n Ψn :

i = 1, ..., D) cannot be specified by using D unitary operators if each Û
(i)
n is viewed as a

free parameter. In reality, only (D − 1) of the operators {Û (i)} may actually be chosen

freely.

Continuing, in fact, there is actually no need to define an operator Û
(D)
n that maps Ψn

to ΦD
n+1 = Û

(D)
n Ψn at all; the ‘remaining’ vector ΦD

n+1 is immediately determined by the

operations {Û (j)
n Ψn : i = 1, ..., (D − 1)} and by appealing to the mutual orthogonality of

the elements of Bn+1.

Note that for clarity and to avoid confusion, from now on in this sub-section, Latin

indices i, j, ... will generally be used to run from 1, 2, ..., D, whereas Greek indices µ, ν, ...

will be assumed to run from 1, 2, ..., (D − 1).

With these comments in mind, it is possible to restate and clarify the Basis Method

Rules. Specifically

• Given a state Ψn and a set of (D− 1) unitary operators {Û (µ)
n : µ = 1, 2, ...(D− 1)}

defined arbitrarily but obeying the rule

〈ΨnÛ
(µ)
n |Û (ν)

n Ψn〉 = δµν , µ, ν = 1, 2, ..., (D − 1) (8.44)

it is possible to construct a unique basis set of vectors, Bn+1, as

Bn+1 = {Û (1)
n Ψn, Û

(2)
n Ψn, ..., Û

(D−1)
n Ψn,Φ

D
n+1} (8.45)

where the Dth vector is defined according to the constraint

〈ΦD
n+1|Û (µ)

n Ψn〉 = 0 , µ = 1, 2, ..., (D − 1). (8.46)

• From this basis set Bn+1, an equivalence class of Hermitian operators B̂n+1 are

implied, with eigenstates {Φi
n+1} equal to

{Φi
n+1} = {{Û (µ)

n Ψn : µ = 1, ..., (D − 1)},ΦD
n+1}. (8.47)
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The next test, Σ̂n+1, of the universe is then taken to be one of these operators B̂n+1,

and the universe collapses to the state Ψn+1, which is an element of the set Bn+1.

Of course, since by definition Ψn+1 6= Ψn, none of the unitary operators Û
(i)
n may be

defined as the identity operator.

It will be useful in the following to consider the ‘Reduced basis set’ B
R
n+1 at time

n+ 1. Specifically, B
R
n+1 ⊂ Bn+1 is defined as the set of vectors

B
R
n+1 = {Û (1)

n Ψn, Û
(2)
n Ψn, ..., Û

(D−1)
n Ψn}, (8.48)

where the unitary operators {Û (µ)
n : µ = 1, ..., (D − 1)} acting on the state Ψn obey the

condition (8.44). The actual next basis set Bn+1 consequently comprises of this Reduced

basis set B
R
n+1 and a vector ΦD

n+1 obeying (8.46) that is orthogonal to every element of

B
R
n+1. Thus

Bn+1 = {BR
n+1,Φ

D
n+1}. (8.49)

Clearly, because the Dth vector ΦD
n+1 is provided by constraint, the central task for

the Basis Method Rules lies in defining a set of (D − 1) unitary operators {Û (µ)
n : µ =

1, ..., (D − 1)} that can be used to generate the Reduced basis set B
R
n+1.

Before discussing this further, however, note as an aside that in a single qubit universe

governed by Basis Method Rules, there is only one free parameter: Û
(1)
n . For a single qubit

universe in a two dimensional Hilbert space H(2), only one unitary operator Û
(1)
n needs be

specified in order to generate a unique basis set of vectors, because if Bn+1 = {Φ1
n+1,Φ

2
n+1}

and Φ1
n+1 is defined as Φ1

n+1 = Û
(1)
n Ψn, the remaining vector Φ2

n+1 is given immediately

from the orthogonality condition

〈Φ2
n+1|Φ1

n+1〉 = 〈Φ2
n+1|Û (1)

n Ψn〉. (8.50)

Equivalently, it is evident that the Reduced basis set for a single qubit universe contains

only one member. This discussion is analogous to that presented later in Sub-section 8.5.2

regarding unitary rotation in single qubit spaces.

Of course, Û
(1)
n is chosen freely, and could be any unitary operator in H(2), obviously

excluding the identity.

Similarly to every other mechanism used in this chapter to develop the universe, an

important principle of the Basis Method dynamics is that the Rules should be repeatable.

In the present case, such a principle implies that the Reduced basis set B
R
n+2 for the next

step must be generated from the function fn+1 acting on Ψn+1, i.e. B
R
n+2 = {Û (µ)

n+1Ψn+1 :

µ = 1, ..., (D − 1)}. The universe would then develop in an automatic, iterative way.
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So, an issue that is immediately faced concerns how the (D − 1) unitary operators

{Û (µ)
n } used to determine B

R
n+1 from Ψn could relate to the set {Û (µ)

n+1} that will be used

to determine B
R
n+2 from Ψn+1. Specifically, a question of particular interest is whether the

same set of operators {Û (µ)
n } could be used in both cases, such that {Û (µ)

n } ≡ {Û (µ)
n+1}. In

other words, this question is effectively asking whether it is possible to have Basis Method

dynamics based upon functions f
(i)
n = f (i) that are constant for all n, or whether they

have to change with n in order for the proposed mechanism to work.

In fact, if both possibilities are valid, it would consequently lead to two classes of Basis

Method Rules:

Class 1: The set {Û (µ)
n } is fixed for all n, such that

Φµ
n+1 = Û (µ)

n Ψn , µ = 1, ..., (D − 1) (8.51)

and

Φµ
n+2 = Û

(µ)
n+1Ψn+1 = Û (µ)

n Ψn+1 , µ = 1, ..., (D − 1) (8.52)

and so on. By dropping the now redundant subscripts, such a fixed set of operators

could be denoted by UF = {Û (1), Û (2), ..., Û (D−1)}, and, like the List in List-Sort

dynamics, would be defined for all time at the outset. Moreover, the definition of

UF would be taken as a necessary pre-requisite without further justification, just as,

for example, the existence of the underlying Hilbert space is assumed to be.

Class 2: The operators {Û (µ)
n } do change with n, such that

Φµ
n+1 = Û (µ)

n Ψn , µ = 1, ..., (D − 1) (8.53)

but

Φµ
n+2 = Û

(µ)
n+1Ψn+1 , µ = 1, ..., (D − 1) (8.54)

where Û
(µ)
n is not (necessarily) equal to Û

(µ)
n+1.

Evidently, Class 1 Rules are a special case of Class 2 Rules, in which Û
(µ)
n+1 = Û

(µ)
n for

all n and µ.

These two possible cases are now discussed in turn.

Class 1 Basis Method

The short answer to the above question is that it does not seem likely that a universe is

able to develop according to Basis Method Rules that incorporate a fixed set UF of unitary
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operators. In other words, whilst its non-existence has not yet been proved rigorously, no

(Type III) Class 1 mechanism has been found that can be used to self-referentially develop

the state of the universe from Ψn → Ψn+1 → Ψn+2 → ..., continuing indefinitely, and no

such mechanism is expected to be found.

This conclusion arises because in order for Class 1 Basis Method Rules to be valid, it is

required that if B
R
n+1 = {Û (µ)Ψn} with 〈ΨnÛ

(µ)|Û (ν)Ψn〉 = δµν , then B
R
n+2 = {Û (µ)Ψn+1}

with 〈Ψn+1Û
(µ)|Û (ν)Ψn+1〉 = δµν , for all µ, ν = 1, 2, ..., (D − 1). This validity therefore

rests on the assumption that the set UF = {Û (µ)} defined ‘initially’ to ensure the mutual

orthogonality of the vectors {Û (µ)Ψn}may also be used generate a set of orthogonal vectors

{Û (µ)Ψn+1} from Ψn+1.

However, a set of unitary operators UF = {Û (µ) : µ = 1, ..., (D − 1)} obeying the con-

straint 〈ΨnÛ
(µ)|Û (ν)Ψn〉 = δµν for all µ, ν will not in general also satisfy the relationship

〈ΘÛ (µ)|Û (ν)Θ〉 = δµν , where Θ 6= Ψn is an arbitrary vector in H(D).

Specifically, in fact, given an ‘initial’ state Ψ0, then if the operators {Û (µ)} are in

the first instance defined so that they obey 〈Ψ0Û
(µ)|Û (ν)Ψ0〉 = δµν to give the Reduced

basis set B
R
1 , the same set {Û (µ)} will not then in general also satisfy the relationship

〈Ψ1Û
(µ)|Û (ν)Ψ1〉 = δµν required for the following step of the dynamics, where Ψ1 ∈ B1 and

recalling that Ψ1 6= Ψ0 by definition. So, the set of vectors {Û (1)Ψ1, Û
(2)Ψ1, ..., Û

(D−1)Ψ1}
will not in general be orthogonal, and so cannot be used to determine the next basis set

B2.

In fact, in order for such a set of vectors {Û (1)Ψ1, Û
(2)Ψ1, ..., Û

(D−1)Ψ1} to be orthog-

onal, the set UF must satisfy the following condition.

Condition. Assume an initial state Ψn and a set UF of unitary operators {Û (µ)}
defined such that 〈ΨnÛ

(µ)|Û (ν)Ψn〉 = δµν for µ, ν = 1, 2, ..., (D − 1). Each Û (µ) generates

a unique vector Φµ
n+1, given by Φµ

n+1 = Û (µ)Ψn, such that the set {Φµ
n+1} defines the

Reduced basis set B
R
n+1.

Consider also the “Dth" operator Û (D), defined according to the constraint that it

maps Ψn to the vector ΦD
n+1 that is orthogonal to every Φµ

n+1. Then, the set {UF , Û
(D)}

acting on the state Ψn can be used to generate an orthonormal basis set Bn+1 = {Φi
n+1 :

i = 1, ..., D}.

Now, consider an additional set of D mutually orthogonal vectors {Ψk : k = 1, ..., D},
defined arbitrarily apart from the condition that the ‘first’ of these, Ψ1, is identical to the

state Ψn, i.e. Ψ
1 = Ψn. Then, the set {Ψk} is effectively equivalent to some basis in H(D),

which may be labelled BK .

Clearly, the subset {Ψj : j = 2, ..., D} of BK contains an arbitrary set of vectors that

are orthogonal to the current state Ψn and to each other.
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It is possible to find a transformation that maps each of the vectors Ψk, k = 1, ..., D,

to the state Ψn = Ψ1. One such map involves an operator V defined as

V = |Ψ1〉〈Ψ2|+ |Ψ2〉〈Ψ3|+ ...+ |ΨD−1〉〈ΨD|+ |ΨD〉〈Ψ1| (8.55)

with the rule

(V )k−1Ψk = Ψ1 (8.56)

where (V )k−1 implies the operator V raised to the (k − 1)th power.

So, as an example

(V )2Ψ3 = V V |Ψ3〉 (8.57)

=

(
(|Ψ1〉〈Ψ2|+ |Ψ2〉〈Ψ3|+ ...+ |ΨD〉〈Ψ1|)
×(|Ψ1〉〈Ψ2|+ |Ψ2〉〈Ψ3|+ ...+ |ΨD〉〈Ψ1|)

)
|Ψ3〉

= (|Ψ1〉〈Ψ3|+ |Ψ2〉〈Ψ4|+ ...+ |ΨD〉〈Ψ2|)|Ψ3〉 = |Ψ1〉 = Ψn

and note that (V )1−1Ψ1 = ÎΨ1 as expected, where Î is the identity.

Evidently, V is unitary

V V ∗ =

(
(|Ψ1〉〈Ψ2|+ |Ψ2〉〈Ψ3|+ ...+ |ΨD〉〈Ψ1|)
×(|Ψ2〉〈Ψ1|+ |Ψ3〉〈Ψ2|+ ...+ |Ψ1〉〈ΨD|)

)
(8.58)

= (|Ψ1〉〈Ψ1|+ |Ψ2〉〈Ψ2|+ ...+ |ΨD〉〈ΨD|) = Î .

Moreover, (V )k−1 is therefore also unitary for all k, as may be readily shown.

So as an aside, note that the vectors Ψk with the operators (V )k−1 are defined very

much in the spirit of the Basis Method from the state Ψ1; that is, from the unitary

transformation

Ψk = (V ∗)k−1Ψ1. (8.59)

Recall now that it is always possible to rotate any orthogonal basis set of vectors into

a second orthogonal basis set of vectors, by using a suitably defined unitary operator. So,

the basis set BK = {Ψk} may be rotated into the basis set Bn+1 = {Φi
n+1} by a unitary

operator, which may be labelled Û (n+1,K).

In fact, this possibility implies that each element Ψk ∈ BK may be uniquely mapped

into an element Φi
n+1 ∈ Bn+1 by Û (n+1,K), such that

Φi
n+1 = Û (n+1,K)Ψk (8.60)

with the reverse also, of course, holding: Ψk = (Û (n+1,K))∗Φi
n+1.

Now, rewriting Ψk as Ψk = (V ∗)k−1Ψ1 by definition, and associating the ith vector

Φi
n+1 of Bn+1 with the kth vector Ψk of BK without loss of generality, gives

Φi
n+1 = Û (n+1,K)(V ∗)i−1Ψ1. (8.61)
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Moreover, because the product operation (Û (n+1,K)(V ∗)i−1) is unitary

(Û (n+1,K)(V ∗)i−1)(Û (n+1,K)(V ∗)i−1)∗ = (Û (n+1,K)(V ∗)i−1)((V )i−1(Û (n+1,K))∗)

= Û (n+1,K)(V ∗V )i−1(Û (n+1,K))∗

= Û (n+1,K)Î(Û (n+1,K))∗ = Î (8.62)

it may be associated with a single unitary operator, and by denoting this single operator

as Û (i), it is evident that

Φi
n+1 = Û (n+1,K)(V ∗)i−1Ψ1 = Û (i)Ψn. (8.63)

Clearly, then,

〈Φi
n+1|Φj

n+1〉 = 〈ΨnÛ
(i)|Û (j)Ψn〉 (8.64)

= 〈Ψ1|(V )i−1(Û (n+1,K))∗Û (n+1,K)(V ∗)j−1|Ψ1〉
= 〈Ψ1|(V )i−1(V ∗)j−1|Ψ1〉 = 〈Ψi|Ψj〉 = δij

as required, so that the product (Û (n+1,K)(V ∗)i−1) can clearly be used to perform

the unitary rotation Û (i) used in the ‘standard’ Basis Method, assuming of course that

Û (n+1,K) 6= Î .

Furthermore, because the vectors {Ψj : j = 2, ..., D} were originally chosen arbitrarily,

such an association of Û (i) with Û (n+1,K)(V ∗)i−1 can always be found for any definition

of the fixed set UF of unitary operators {Û (µ) : µ = 1, ..., (D− 1)}, with the Dth operator

Û (D) defined by constraint. In short, there is always a transformation Û (n+1,K) and a

basis BK that defines an operator V, from which a set of unitary operators Û (i) may be

defined that act on Ψn to generate an orthogonal basis Bn+1; similarly, any set of unitary

operators Û (i) that relate Ψn to Bn+1 may be constructed in the above manner by defining

a suitable transformation Û (n+1,K) and basis BK .

Without loss of generality, assume that on testing Ψn by an operator Σ̂n+1 with eigen-

vectors {Φi
n+1 : i = 1, ..., D}, the universe collapses into the state Ψn+1 = Φa

n+1 = Û (a)Ψn,

where a ∈ {1, ..., D}. The question faced by the Class 1 Basis Method Rules is: can the

same set UF = {Û (µ) : µ = 1, ..., (D − 1)} ⊂ {Û (i) : i = 1, ..., D} of unitary operators be

used to construct a new orthonormal Reduced basis set of vectors from Ψn+1? In other

words, given a set of vectors {Θµ : µ = 1, ..., (D − 1)} defined as

Θµ = Û (µ)Ψn+1 = Û (µ)Û (a)Ψn (8.65)

does it in general follow that

〈Θµ|Θν〉 = δµν (8.66)
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for all µ, ν = 1, ..., (D − 1)?

Now, the condition is obviously satisfied for the case when µ = ν,

〈Θµ|Θµ〉 = 〈Ψn+1|Û (µ)∗Û (µ)|Ψn+1〉 = 〈Ψn+1|Î|Ψn+1〉 = 1. (8.67)

For µ 6= ν, however, it follows that

〈Θµ|Θν〉 = 〈Ψn+1|Û (µ)∗Û (ν)|Ψn+1〉 = 〈Ψn+1|(V )µ−1(Û (n+1,K))∗Û (n+1,K)(V ∗)ν−1|Ψn+1〉
= 〈Ψn+1|(V )µ−1(V ∗)ν−1|Ψn+1〉 = 〈Ψn|Û (a)∗(V )µ−1(V ∗)ν−1Û (a)|Ψn〉
= 〈Ψ1|(V )a−1(Û (n+1,K))∗(V )µ−1(V ∗)ν−1Û (n+1,K)(V ∗)a−1|Ψ1〉
= 〈Ψa|(Û (n+1,K))∗(V )µ−1(V ∗)ν−1Û (n+1,K)|Ψa〉. (8.68)

Now, the product (V )µ−1(V ∗)ν−1 gives

(V )µ−1(V ∗)ν−1 =

( (
|Ψ1〉〈Ψµ|+ |Ψ2〉〈Ψµ⊕1|+ ...+ |ΨD〉〈Ψµ⊕(D−1)|

)

×
(
|Ψν〉〈Ψ1|+ |Ψν⊕1〉〈Ψ2|+ ...+ |Ψν⊕(D−1)〉〈ΨD|

)
)

=

D∑

x=1

|Ψx〉〈Ψµ⊕(x−1)|
D∑

y=1

|Ψν⊕(y−1)〉〈Ψy|

=

D∑

x=1

D∑

y=1

|Ψx〉〈Ψy|δ[µ⊕(x−1)],[ν⊕(y−1)] (8.69)

where ⊕ implies addition modulo D, i.e. D ⊕ z = z for 1 ≤ z ≤ D.

So overall, the condition, 〈Θµ|Θν〉 = 0, for orthogonality is only satisfied iff

D∑

x=1

D∑

y=1

δ[µ⊕x],[ν⊕y]〈Ψa|(Û (n+1,K))∗|Ψx〉〈Ψy|Û (n+1,K)|Ψa〉 = 0 (8.70)

for µ 6= ν.

Now, noting that

Û (n+1,K)|Ψa〉 /∈ {Ψ1,Ψ2, ...,ΨD} (8.71)

for a valid development from Ψn → Ψn+1 to occur in this quantum universe, where

Ψ1 = Ψn 6= Ψn+1 by definition, such that the inner products 〈Ψa|(Û (n+1,K))∗|Ψx〉 and

〈Ψy|Û (n+1,K)|Ψa〉 are not equal to zero, the above condition is only fulfilled if the sum of

products of amplitudes equals zero. Clearly, this will not in general be the case.

In fact, following on from this, it is observed that since the dimension of the Hilbert

space of the real Universe is expected to be enormous, for the above result to be obtained

in reality a truly remarkable level of cancellation must occur between the probability

amplitudes in the relevant sum of terms.

It is expected, then, that in general 〈Θµ|Θν〉 6= δµν for every µ, ν, so that a set of vectors

given by {Û (µ)Ψn+1 : µ = 1, ..., (D − 1)} are unlikely to be orthogonal, where the unitary

operators {Û (µ)} are defined such that 〈ΨnÛ
(µ)|Û (ν)Ψn〉 = δµν for µ, ν = 1, 2, ..., (D − 1).
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An arbitrarily defined set UF cannot therefore be expected to specify an orthonormal

Reduced basis set B
R
n+2.

Furthermore, note that the above condition is only defined for the ‘first’ potential

transition, that is from Ψn+1 to Ψn+2. However, for the set UF to provide valid Class

1 Basis Method dynamics, similar conditions must also hold for the indefinite series of

transitions Ψn+2 −→ Ψn+3 → Ψn+4 → ... Thus, the set UF must be defined such that it

actually satisfies an ‘infinite tower’ of conditions, with a fortuitous level of cancellation

required at each stage.

It is these observations that prompt the conclusion that such a set is unlikely to exist.

Summarising, given an arbitrary set UF of unitary operators {Û (µ) : µ = 1, ..., (D−1)}
defined such that they satisfy (8.44) for Ψn, and a vector ΦD

n+1 defined ‘orthogonally’

such that it satisfies (8.46), then whichever member Φi
n+1 of the set Bn+1 = {{Φµ

n+1 =

Û (µ)Ψn},ΦD
n+1} the universe collapses into when it becomes Ψn+1, the elements of a new

set of vectors defined as {Û (1)Φi
n+1, Û

(2)Φi
n+1, ...., Û

(D−1)Φi
n+1} are not expected to be

orthogonal.

Thus, the set {Û (µ)Ψn+1 : µ = 1, ..., (D−1)} is unlikely to form an orthogonal Reduced

basis B
R
n+2 for H(D), and so cannot be used to specify a unique basis set Bn+2, or,

consequently, an equivalence class of operators B̂n+2. The next operator Σ̂n+2 cannot

therefore be generated in this manner, from the state Ψn+1 being rotated by the members

of a fixed set UF of unitary operators.

Concluding, the Type III Class 1 Basis Method is expected to be invalid.

As a caveat to this conclusion, note that it is in fact always possible for a single qubit

universe in a two dimensional Hilbert space to be governed by Type III Class 1 Basis

Method Rules. This result follows because any Reduced basis set B
R
n+1 for H(2) has only

one member; there is therefore no ‘orthogonality problem’ for its elements.

So, given any arbitrary vector θ ∈ H(2) and any unitary operator Û (1), it is always pos-

sible to specify an orthonormal basis for H(2) that contains the vector Û (1)θ and whichever

vector in H(2) is orthogonal to Û (1)θ. Effectively, the vector Û (1)θ single-handedly implies

a unique basis set for H(2).

Thus, given Û (1) and a state Ψn ∈ H(2), the basis set Bn+1 is readily generated, and

either element of this can be used with Û (1) to generate a new basis set Bn+2. In fact,

this process may be repeated indefinitely.

Such a possibility is unique to two dimensional Hilbert spaces.
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Class 2 Basis Method

In the Class 2 Basis Method, the set of unitary operators {Û (µ)
n : µ = 1, ..., (D − 1)},

and hence the functions f
(i)
n , change as the universe jumps from one stage to the next. In

other words, a new set of (D−1) unitary operators is chosen at each time step, n. Clearly,

this Class of Basis Method mechanism is immediately valid, because it is always possible

to define a set of unitary operators that provides the next orthogonal Reduced basis set

of vectors when acting upon a given state, for all n.

Summarising, then, a universe developing according to a Type III (state self-referential)

Basis Method mechanism is governed by the general Rule

Bn+1 = {BR
n+1,Φ

D
n+1} =

{
{Û (1)

n Ψn, Û
(2)
n Ψn, ..., Û

(D−1)
n Ψn},ΦD

n+1

}
(8.72)

with the set of unitary operators {Û (µ)
n } defined such that they satisfy the conditions

〈ΨnÛ
(µ)
n |Û (ν)

n Ψn〉 = δµν (8.73)

and the vector ΦD
n+1 defined as

〈ΦD
n+1|Û (µ)

n Ψn〉 = 0 (8.74)

for all µ, ν = 1, ..., (D − 1) and n.

Of course, in order to ensure the above conditions, the actual choice of the operators

{Û (µ)
n }must rely to some extent on some sort of ‘knowledge’ of what the current state Ψn is.

Certainly, it is difficult to imagine how Û
(µ)
n could be defined obeying 〈ΨnÛ

(µ)
n |Û (ν)

n Ψn〉 =
δµν if Ψn is unknown, especially considering the conclusion from the Class 1 case that no

generalised set of such operators is expected to exist that can give orthogonal results when

acting on arbitrary vectors. The suggestion, then, could be that the definition of these

unitary operators might itself depend on self-referential rules, such that the members of

the set {Û (µ)
n } might themselves be some unknown function, Fn, of the state Ψn. Of course,

Fn could perhaps be a 1 → (D− 1) function, such that {Û (µ)
n } = Fn(Ψn), or could maybe

‘contain’ (D − 1) sub-functions, such that Û
(µ)
n = F

(µ)
n (Ψn). Thus, the function Fn would

be defined such that Fn(Ψn) generates a set of unitary operators {Û (µ)
n } that satisfy the

conditions 〈ΨnÛ
(µ)
n |Û (ν)

n Ψn〉 = δµν for µ, ν = 1, ..., (D − 1) and all n.

Overall, therefore, the Rules governing a universe that develops according to the Class

2 Basis Method could rely on a choice of Hermitian operator that is a result of unitary

operators acting upon the state, that are themselves functions of the state.

Such a mechanism would overcome the non-orthogonality problem experienced by the

Class 1 dynamics, but does lead to the question as to exactly how the unitary operators

{Û (µ)
n } are defined at each time step: what exactly is the form of the function Fn?
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Indeed, at first glance it appears from such a question that very little progress is

actually gained from analysing the presented method. After all, recall that the original

aim of this chapter was to investigate how the universe chooses which operator it uses to

develop itself with. So, if an answer to this question is that the actual mechanism relies

on a particular choice of unitary operators that is itself unexplainable, or at least relies

upon some higher-order self-referential process Fn(Ψn), it is still unclear as to how the

dynamics of a universe developing according to the Basis Method might actually proceed.

Nevertheless, the mathematical possibility of such a Class 2 Basis Method dynamics,

and hence the possibility that the physical Universe itself develops according to such a

mechanism, does imply that a full investigation into operators that are a result of operators

that depend on the state is a necessary direction for future research.

Summary

Summarising, in order for a set of (D − 1) unitary operators {Û (µ)
n } to generate a

Reduced basis B
R
n+1 from a state Ψn in a universe governed by Type III Basis Method

Rules, it is expected that the set {Û (µ)
n } must be defined at each n in a way that depends

upon this current state Ψn. In other words, Class 1 Basis Method Rules are unlikely to

be valid for the development of a quantum universe (for D > 2). Class 2 Basis Method

Rules, however, are.

Overall, then, in a universe governed by Type III Class 2 Basis Method Rules, the

state develops as follows.

Given a state Ψn and a set of (D − 1) unitary operators {Û (µ)
n } defined such that

〈ΨnÛ
(µ)
n |Û (ν)

n Ψn〉 = δµν for µ, ν = 1, ..., (D − 1), a Reduced basis set of vectors B
R
n+1 is

determined, where B
R
n+1 = {Û (µ)

n Ψn}.
Moreover, given also a vector ΦD

n+1 defined such that 〈ΦD
n+1|Û

(µ)
n Ψn〉 = 0, a basis set

Bn+1 of mutually orthogonal states can then be generated, where Bn+1 = {BR
n+1,Φ

D
n+1}.

Equally, therefore, an equivalence class of operators {B̂n+1} is also specified, and these

may be associated with the operator Σ̂n+1 used to develop the state Ψn. The universe

consequently jumps to the state Ψn+1, which is an eigenvector of Σ̂n+1, with probability

given in the usual way.

The process may then be continued, so that a new set of unitary operators {Û (µ)
n+1},

defined such that 〈Ψn+1Û
(µ)
n+1|Û

(ν)
n+1Ψn+1〉 = δµν for µ, ν = 1, ..., (D−1), is used to generate

the next Reduced basis set of vectors B
R
n+2 from the new state Ψn+1 according to the Rule:

B
R
n+2 = {Û (µ)

n+1Ψn+1}.
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Consequently, the next basis set Bn+2 = {BR
n+2,Φ

D
n+2} may immediately be deter-

mined from the conditions 〈ΦD
n+2|Û

(µ)
n+1Ψn+1〉 = 0, and this is turn implies an equivalence

class of operators {B̂n+2}. The universe then jumps to the state Ψn+2, which is one of the

members of Bn+2.

And so on; the procedure may be iterated indefinitely.

8.4.2 The One-to-Many Method

The development of a state Ψn ∈ H(D) according to the Basis Method relies onD functions

f
(i)
n , for i = 1, ..., D, each of which maps the state Ψn to a unique vector f

(i)
n (Ψn). Assuming

that these new vectors are orthogonal, a condition ensured by the actual definitions of

{f (i)
n }, they are then taken to comprise the next preferred basis set Bn+1. The universe

subsequently jumps to one of these possible states.

In the One-to-Many Method, however, it is instead postulated that there exists a

single function fn that maps the state Ψn to D different, orthogonal vectors. In other

words, fn is defined to be a 1 → D function which, when applied to Ψn, has D outcomes:

Θ1,Θ2, ...,ΘD.

Now, because the function fn is defined such that these D outcomes are all mutually

orthogonal, then the application of fn to Ψn effectively defines a basis set. Labelling this

basis set Bn+1, it is possible to write

Bn+1 ≡ {Θ1
n+1,Θ

2
n+1, ...,Θ

D
n+1} = fn(Ψn) (8.75)

where the ‘temporal’ subscript has now been added for completeness. Thus, the next basis

set Bn+1 is generated from the current state by applying the 1 → D function fn to Ψn;

such a Rule may be called a One-to-Many Method.

Evidently, the determination of the basis set Bn+1 implies the determination of an

equivalence class of operators B̂n+1, and these may be associated in the usual way with

the next test Σ̂n+1 used to develop the state.

In order to provide a consistent mechanism for the automatic development of a universe

from Ψn → Ψn+1 → Ψn+2 → ..., it is expected that the next basis set Bn+2 may be

determined by applying a One-to-Many function fn+1 to the vector Ψn+1, where Ψn+1 is

defined as whichever member of the set {Θ1
n+1,Θ

2
n+1, ...,Θ

D
n+1} the state of the universe

collapsed into. As with the earlier Basis Method, an immediate question then arises

regarding how the function fn+1 might be related to fn. Also as before, two different

classes of Rule consequently become apparent:
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Class 1: The function fn is constant for all n, so that fn = f. Thus, the same 1 → D function

is used to generate Bn+2 from Ψn+1 as was used to generate Bn+1 from Ψn, such

that

Bn+1 = f(Ψn) (8.76)

Bn+2 = f(Ψn+1)

...

Class 2: The function fn changes with n. Thus, a different 1 → D function may be used to

generate Bn+2 from Ψn+1 than was used to generate Bn+1 from Ψn, such that

Bn+1 = fn(Ψn) (8.77)

Bn+2 = fn+1(Ψn+1)

...

Of course, and as with the Basis Method dynamics, the first Class is evidently a special

example of the second Class in the case where fn+1 = fn for all n.

It is expected that there are many different functions fn that could be used to generate

a basis set of D orthogonal vectors from a given state Ψn; there might be many ways in

which fn might generally be constructed, and many forms it could then take. Indeed,

this point may be reinforced by recalling that there are an infinite number of basis sets

of orthogonal vectors spanning a Hilbert space H(D), and hence, at least in principle, an

infinite number of functions fn relating them to a particular state Ψn.

However, it must be recalled that not every conceivable function acting in a vector space

will provide D orthogonal outcomes when applied to a given state. In fact, the set of valid

One-to-Many functions is a tiny subset of the set of all possible functions. Moreover, there

are no obvious guidelines to suggest what a ‘typical’ such function should look like, and

it is difficult to predict exactly how suitable One-to-Many relationships should in general

be constructed. Clearly, then, it is a task for future research to attempt to discover what

the various types and forms of valid One-to-Many functions might actually be.

For now, though, it is remarked that the validity of any proposed One-to-Many method

depends entirely on the definition of the function in question, and hence relies on the

underlying choice of Rules governing the system. This point is particularly important in

regard to the question of when it is possible to construct a valid dynamics from a constant

function fn = f.

It is possible to provide a simple example of the Generated-Sort, One-to-Many Method

using a single qubit universe represented by a state in a two dimensional Hilbert space. To
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demonstrate this, however, observe first that the application of the function fn to Ψn to

give the basis set Bn+1 = {Θ1
n+1,Θ

2
n+1, ...,Θ

D
n+1} is, as expected, effectively the same as

generating an equivalence class of operators B̂n+1 with eigenstates {Θ1
n+1,Θ

2
n+1, ...,Θ

D
n+1}.

Moreover, the reverse of this is also clearly true: if an operator B̂n+1 could be constructed

that is a function f ′
n of Ψn, then this process also automatically defines the basis set Bn+1.

Thus, there are two equivalent ways of specifying One-to-Many Method Rules: either

a 1 → D function fn should be defined that maps a state Ψn directly to D orthogonal

vectors; or else a mechanism for obtaining an operator B̂n+1 = f ′
n(Ψn) may be provided,

where B̂n+1 is a Strong operator with D orthogonal eigenstates.

It is this latter possibility that will prove useful in the following examples.

Example A

Consider a state Ψn in the qubit Hilbert space H(2) spanned by the ‘usual’ qubit basis

B = {|0〉, |1〉} =

{(
1

0

)
,

(
0

1

)}
. (8.78)

Moreover, assume that the universe is governed by a One-to-Many Method mechanism,

and develops according to the Class 1 Rule that the next operator Σ̂n+1 is defined simply

as the projection of the nth state. In other words, the dynamics of the universe proceeds

by the general algorithm

• Ψn is tested by the Hermitian operator Σ̂n+1, to give the next state Ψn+1 which is

one of the eigenvectors of Σ̂n+1, where Σ̂n+1 is given by

Σ̂n+1 = |Ψn〉〈Ψn|. (8.79)

Consider also an arbitrary state encountered in the universe’s development. In fact,

assume that at time n the universe may be described by the most general vector possible,

that is, Ψn = 1√
κ
(α|0〉 + β|1〉), where α, β ∈ C and

√
κ =

√
αᾱ+ ββ̄. Clearly, in the

representation employed in this example, Σ̂n+1 is then given by the matrix

Σ̂n+1 =
1

κ

(
αᾱ αβ̄

βᾱ ββ̄

)
(8.80)

which has orthonormal eigenstates Θ1
n+1 and Θ2

n+1 equal to

Θ1
n+1 =

1√
κ
(α|0〉+ β|1〉) (8.81)

Θ2
n+1 =

1√
κ
(β̄|0〉 − ᾱ|1〉)
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So, the eigenstates24 of Σ̂n+1 define an orthogonal basis set Bn+1 given by Bn+1 =

{Θ1
n+1,Θ

2
n+1}. Moreover, because Σ̂n+1 is a function of Ψn, i.e. Σ̂n+1 = Σ̂n+1(Ψn), a single

qubit universe developing according to the Rule Σ̂n+1 = |Ψn〉〈Ψn| provides a potential

example of a Generated-Sort, One-to-Many Method mechanism.

Furthermore, because applying the same Rule (8.79) to whichever of the eigenstates

Θ1
n+1 and Θ2

n+1 becomes Ψn+1 gives rise to an operator Σ̂n+2 = |Ψn+1〉〈Ψn+1| which also

has two orthogonal eigenstates, and because this process may be continued indefinitely,

where the next operator is always the same function of the current state for all n, a single

qubit universe developing according to the Rule Σ̂n+1 = |Ψn〉〈Ψn| actually provides an

example of a Class 1 One-to-Many Method dynamics. Such a universe will develop with

the next operator always dependent on the current state.

Of course, it must immediately be noted at this point that a Rule of the form Σ̂n+1 =

|Ψn〉〈Ψn| only really gives trivial dynamics. Clearly, Ψn is an eigenstate of Σ̂n+1, so the

operator is ultimately equivalent to a null test, and Ψn = Ψn+1 for all n. Nevertheless, this

example does, at least in principle, provide an illustration of the proposed mechanism.

Example B

A dynamics for a single qubit system that is perhaps more interesting than that of the

above could instead be governed by the Class 1 One-to-Many Method Rule

• Ψn is tested by the Hermitian operator Σ̂n+1, to give the next state Ψn+1 which is

one of the eigenvectors of Σ̂n+1, where Σ̂n+1 is given by

Σ̂n+1 = Û∗|Ψn〉〈Ψn|Û (8.82)

where Û is a unitary operator of the form Û = exp(−iεσ̂1), for ε ∈ R+ a real parameter

and σ̂1 the usual Pauli operator. Clearly, such a Rule leads to a universe governed by an

operator Σ̂n+1 with eigenvectors different from its current state.

As a visual interpretation of how this mechanism proceeds, it may be possible to

imagine projecting the state Ψn onto a fixed vector Û∗Ψn to get the next state Ψn+1,

which is one of the eigenvectors of Û∗|Ψn〉〈Ψn|Û . Continuing, a new ‘fixed vector’ may

then be generated by slightly rotating Ψn+1 to Û∗Ψn+1, and the state Ψn+1 may be

24Strictly, Σn+1 as given here is not a strong operator because it possesses a zero eigenvalue, so should

technically not be allowed to develop the state according to the paradigm proposed in this thesis. However

the reasons given in Chapter 5, for ruling out such operators in general, do not actually apply in the special

case of two dimensional universes, and so the current example may still be validly discussed.
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projected onto this new fixed vector Û∗Ψn+1 to get the subsequent state Ψn+2, which is

one of the eigenvectors of Û∗|Ψn+1〉〈Ψn+1|Û . And so on.

As a simple illustration, consider without loss of generality a universe initially in the

state Ψ0 = |0〉. According to the above Rule, the subsequent state Ψ1 will be an eigenvector

of the operator Σ̂1 given by

Σ̂1 = Û∗|Ψ0〉〈Ψ0|Û = eiεσ1 |0〉〈0|e−iεσ1 (8.83)

=

(
cos2 ε −i cos ε sin ε

i cos ε sin ε sin2 ε

)

where the last line follows from the usual representation |a〉 =
(
1−a
a

)
, for a = 0, 1, and

from the identity e−iεσ1 =
(
cos ε −i sin ε
−i sin ε cos ε

)
= σ̂0 cos ε− iσ̂1 sin ε, which itself follows from the

standard algebra (5.32) of the Pauli operators.

The operator Σ̂1 defined above has eigenvectors Θa
1 and Θb

1 given by

Θa
1 = i sin ε|0〉+ cos ε|1〉 (8.84)

Θb
1 = −i cos ε|0〉+ sin ε|1〉.

So, the next state Ψ1 of this universe will be either Ψ1 = Ψa
1 = Θa

1 with probability

|〈Θa
1|Ψ0〉|2 = sin2 ε, or else Ψ1 = Ψb

1 = Θb
1 with probability |〈Θb

1|Ψ0〉|2 = cos2 ε, noting

that |〈Θa
1|Ψ0〉|2 + |〈Θb

1|Ψ0〉|2 = 1 as expected.

Now, because Ψ1 will be one of two possibilities, Ψa
1 or Ψb

1, then according to the

rule (8.82) it is evident that the subsequent test Σ̂2 will take one of two possible forms.

Labelling these Σ̂a
2 and Σ̂b

2, it is clear that they are given by

Σ̂a
2 = Û∗|Ψa

1〉〈Ψa
1|Û (8.85)

Σ̂b
2 = Û∗|Ψb

1〉〈Ψb
1|Û .

Of course, which one of these is actually used to test the universe depends entirely

upon which state, Ψa
1 or Ψb

1, the system collapsed into when it became Ψ1.

The operators Σ̂a
2 and Σ̂b

2 will themselves each possess two orthogonal eigenvectors.

For Σ̂a
2 these may be labelled Ψac

2 and Ψad
2 , and are given by

Ψac
2 = i sin 2ε|0〉+ cos 2ε|1〉 (8.86)

Ψad
2 = −i cos 2ε|0〉+ sin 2ε|1〉

whereas for Σ̂b
2 they may be labelled Ψbe

2 and Ψbf
2 , with

Ψbe
2 = −i cos 2ε|0〉+ sin 2ε|1〉 (8.87)

Ψbf
2 = i sin 2ε|0〉+ cos 2ε|1〉.
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So, given an initial state Ψ0, then according to the rule (8.82) the wavefunction Ψ2 after

two steps will be one of these four possible states {Ψac
2 ,Ψad

2 ,Ψbe
2 ,Ψbf

2 } with appropriate

probabilities given by, for example,

P (Ψac
2 ) = P (Ψac

2 |Ψa
1|Ψ0) = P (Ψac

2 |Ψa
1)× P (Ψa

1|Ψ0) (8.88)

= |〈Ψac
2 |Ψa

1〉|2 × |〈Ψa
1|Ψ0〉|2

= |(sin ε sin 2ε+ cos ε cos 2ε)|2 sin2 ε = cos2 ε sin2 ε

in obvious notation.

Further, the next test Σ̂3 will be one of four possibilities (one of which is Û∗|Ψac
2 〉〈Ψac

2 |Û ,

etc.), each of which possesses two eigenstates. Clearly, the process continues such that the

nth state Ψn will be one of the eigenstates of one of 2n−1 possible operators Σ̂n.

The development of a universe described by a Rule such as Σ̂n+1 = Û∗|Ψn〉〈Ψn|Û may

be modelled by a simple computer simulation looping through a program a finite number

of times. One successful method of achieving this has been to supply the program with an

input containing an initial vector Ψ0, an unitary matrix Û , and a number of iterations N

to perform. The i+1th iteration, for i = 0, 1, .., (N−1), has two parts: the first step of the

program is to compute the matrix Û∗|Ψi〉〈Ψi|Û , determine its two eigenvectors, and fill an

array with the results of this evaluation. In the second step, a ‘random number generator’

is introduced that, when called, produces a number ri+1 that has either the value 0 or 1

with equal likelihood. If a “0" is found then the first element of the eigenvector array is

recovered and set to Ψi+1; the second element is discarded from further discussion. If a

“1" if found then the converse occurs and the second element is chosen instead to be Ψi+1.

The program loops through the process N times to yield a unique ‘history’ of states

{Ψ0,Ψ1,Ψ2, ...,ΨN}, where there are 2N possible such histories, corresponding to the 2N

chains r1, r2, ..., rN of numbers produced by the random number generator, for ri+1 = 0, 1

for i = 0, 1, .., (N − 1). Of course, obtaining 2N sets of results after time N is to be

expected: any string of N characters { ri+1 : i = 0, ..., (N −1)}, where each character may

take one of two values, may be thought of as representing a binary number < 2N . These

binary numbers may thus be used to effectively label the quantum history of the system.

As with the model described in Example A, it is to be noted that the types of develop-

ment resulting from the above Rule are extremely limited. In fact, this conclusion follows

from two observations.

Firstly, and as is evident from (8.86) and (8.87), the eigenvectors of Σ̂a
2 are degenerate

with those of Σ̂b
2, that is, Ψac

2 ≡ Ψbf
2 and Ψad

2 ≡ Ψbe
2 . It can be shown, moreover, that

this is a trend that is continued throughout the universe’s development, such that the

state Ψn after n steps will not be one out of 2n different possibilities, but will instead be
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one of only 2 different vectors. Specifically, in fact, it may be shown that if ΨX
n and ΨY

n

are the two possible outcomes of a test Σ̂n, then the two subsequent potential operators

Σ̂X
n+1 = Û∗|ΨX

n 〉〈ΨX
n |Û and Σ̂Y

n+1 = Û∗|ΨY
n 〉〈ΨY

n |Û share the same set of eigenstates.

This conclusion follows from the observations that ΨX
n and ΨY

n are necessarily or-

thogonal, that the eigenstates of Σ̂X
n+1 must also be orthogonal, and that the eigenstates

of Σ̂Y
n+1 must be orthogonal too. Now, labelling the eigenstates of Σ̂X

n+1 as {ψ,ϕ}, it
is evident that the vector Û∗|ΨX

n 〉 is an eigenstate of Σ̂X
n+1 with eigenvalue 1, because

Σ̂X
n+1(Û

∗|ΨX
n 〉) = Û∗|ΨX

n 〉; thus, ψ may be chosen as ψ = Û∗|ΨX
n 〉.

Now, the other (unknown) eigenvector, ϕ, of Σ̂X
n+1 must be orthogonal to Û∗|ΨX

n 〉,
such that

〈ϕ|Û∗ΨX
n 〉 = 0. (8.89)

The question becomes: what is this vector ϕ? Clearly, one possible candidate for ϕ is

the vector Û∗ΨY
n , because Û Û∗ = Î and 〈ΨY

n |ΨX
n 〉 = 0, where Î is the identity operator.

Furthermore, because the Hilbert space of the system is two dimensional, this candidate

is the only choice. So, the eigenvectors of Σ̂X
n+1 must be Û∗ΨX

n and Û∗ΨY
n .

A similar analysis of Σ̂Y
n+1 can readily be used to demonstrate that the eigenstates of

this operator are also Û∗ΨX
n and Û∗ΨY

n ; the conclusion is shown.

Secondly, the above types of mechanism, where the tests Σ̂n+1 depend on projection

operators |Ψn〉〈Ψn|, can only provide a suitable dynamics for single qubit universes. This

is because projection operators are not strong, as discussed in Section 5.5, on account of

them possessing (degenerate) eigenvalues of zero. So, an operator of the form Û∗|Ψ〉〈Ψ|Û ,

where Ψ is a vector in a D > 2 dimensional Hilbert space H(D), does not specify a unique

basis set of orthogonal eigenvectors, and hence cannot be used to provide valid dynamics

in the scheme proposed here.

The problem is in fact symptomatic of the result that in situations with dimensions

greater than 2, it is difficult to find a mechanism that uses a single vector Ψ to uniquely

specify D−1 other vectors orthogonal to Ψ. This follows because there are very many sets

of D− 1 vectors in H(D) that are mutually orthogonal, whilst also being orthogonal to Ψ,

and so in general it is hard to find a Rule that effectively picks just one of these out.

For instance, consider the case when D = 3, and define an orthonormal basis B(3) for

H(3) as B(3) ≡ {|0〉, |1〉, |2〉}. Now, without loss of generality, given a state Ψ = |0〉 it is

possible to find many different pairs of vectors [φ, θ] that are mutually orthogonal to one

another, and also orthogonal to |0〉. One example is [φ, θ] = [|1〉, |2〉], but of course

[φ, θ] =

[
1√
2
(|1〉+ |2〉), 1√

2
(|1〉 − |2〉)

]
, (8.90)

[φ, θ] =

[
1

5
(4|1〉 − 3i|2〉), 1

5
(−3i|1〉+ 4|2〉)

]
,
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and so on, also satisfy this criterion. Thus, specifying just the vector Ψ = |0〉 does not

imply an automatic choice for a unique orthonormal basis set {Ψ, φ, θ} of states spanning

H(3), because φ and θ could take many different forms. In fact, more information needs

to be provided in order to select a particular pair of orthonormal vectors from the infinite

set of possibilities. In this case, only when, say, Ψ = |0〉 and φ are both given is it then

possible to specify what θ must be.

In the context of this chapter, a unique basis set Bn+1 of states is hoped to be generated

from Ψn in order for the universe to develop. So, in any One-to-Many mechanism based

upon a Rule of the form Bn+1 = fn(Ψn), it would clearly be unsatisfactory if the result of

fn acting on Ψn gave a number of orthonormal basis sets. Instead, fn must be sufficiently

well defined such that this process ‘pins down’ just one unique set.

A dynamics based on projection operators, however, cannot in general achieve this.

Fortunately, though, an exception to this conclusion occurs in two dimensional Hilbert

spaces. In this circumstance, specifying just a single vector Ψ does imply a unique or-

thonormal basis set of states, because there is only one other vector that is orthogonal to

Ψ in H(2). So, when D = 2 it is possible to label an orthonormal basis set by using just

one of its two states Ψ, and this principle may ultimately be exploited to formulate rules

determining the system’s development.

So, in the dynamics described in Examples A and B, a given Ψn ∈ H(2) is able to

generate a unique, preferred basis set Bn+1 for the next jump. Thus, a dynamics based

upon projection operators may be justified in H(2), and a unique basis set of states can

still generated, even though an eigenvalue of zero is present.

Of course, despite potential objections questioning how physically ‘interesting’ a single

qubit universe models might be, it does not detract from the overall point that the proposed

examples show how a state in a Hilbert space can be developed according to Type III,

Generated-Sort One-to-Many method Rules.

Example C

Examples A and B involve universes developing according to a deterministic (Type

III) Class 1 One-to-Many Method mechanism. However, just as in previous sections of

this chapter, it is also possible to consider probabilistic (Type IIIa) dynamics by extending

the Rules in the obvious way.

For instance, instead of generating the next basis set Bn+1 from the current state Ψn

according to the deterministic rule Bn+1 = fn(Ψn), it is alternatively possible to consider

Rules in which Bn+1 = fn(Ψn) with probability Pfn , but Bn+1 = gn(Ψn) with probability
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Pgn , whilst Bn+1 = hn(Ψn) with probability Phn
, and so on, where fn, gn and hn are

different functions. As before, conservation of probability requires that Pf + Pg + ... = 1.

So, Example B may readily be augmented to a probabilistic Class 1 One-to-Many

Method mechanism for a state Ψn in a two dimensional Hilbert space H(2), by considering

a Rule such as

• Ψn is tested by the Hermitian operator Σ̂n+1, to give the next state Ψn+1 which is

one of the eigenvectors of Σ̂n+1, where Σ̂n+1 is given by

Σ̂n+1 =

{
Û (1)∗|Ψn〉〈Ψn|Û (1) with Probability P (1)

Û (2)∗|Ψn〉〈Ψn|Û (2) with Probability P (2)

}
(8.91)

where P (1) + P (2) = 1, and

Û (1) = e−iεσ1 , Û (2) = e−iµσ2 (8.92)

with σ̂1 and σ̂2 Pauli operators and ε, µ ∈ R+.

As was the case in previous sections, extending a Type III Rule to a Type IIIa one

does not add anything significantly new to the discussion.

Example D

Up until now, attention has been focused on the Class 1 One-to-Many Method. It is,

however, also possible to consider Class 2 models.

As an example of such a dynamics, consider as before a state Ψn in a two dimensional,

single qubit Hilbert space H(2), and assume that the universe is governed by the Rule

• Ψn is tested by the Hermitian operator Σ̂n+1, to give the next state Ψn+1 which is

one of the eigenvectors of Σ̂n+1, where Σ̂n+1 is given by

Σ̂n+1 = (Û∗)n+1|Ψn〉〈Ψn|(Û)n+1 (8.93)

where Û is an arbitrary unitary operator which, for the sake of illustration, could be

defined again as Û = exp(−iεσ̂1).

So, from a given state Ψ0 at initial ‘time’ n = 0, it follows that

Σ̂1 = Û∗|Ψ0〉〈Ψ0|Û (8.94)

Σ̂2 = Û∗Û∗|Ψ1〉〈Ψ1|Û Û

Σ̂3 = Û∗Û∗Û∗|Ψ2〉〈Ψ2|Û Û Û
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and so on.

A universe developing according to this type of Rule would proceed analogously to

the models discussed in Example A and B; the universe always collapses to one of the

eigenstates of Σ̂n, and the next operator Σ̂n+1 is then given as a function of this new state

Ψn. The major difference, however, is that in the present case the function that generates

the next operator Σ̂n+1 from the current state Ψn is not constant, but is instead a dynamic

relationship that depends on the parameter n.

Thus, the above Rule provides an example of a universe that is developed according

to operators that depend on both the current state and the current ‘time’: a Class 2

mechanism.

The difference between Class 1 and Class 2 dynamics might perhaps be likened to

the differences encountered in laboratory quantum mechanics between systems that are

evolved by a constant Hamiltonian, Ĥ, and those that are alternatively evolved by a time

dependent Hamiltonian Ĥ(t). After all, a jump dependent operator on the pregeometric

level is directly analogous to a time dependent operator in conventional physics, because

the parameter n is ultimately assumed to be the pregeometric origin of emergent time t.

However, this similarity should not of course be taken too literally: Hamiltonians are

viewed in the proposed paradigm as emergent constructs, and as such are not defined on

the pregeometric level discussed here.

8.4.3 A Type IV Extension

As an extension to this section, note that both List-Sort and Generated-Sort mechanisms

are expected to have their analogies in universes developing according to Type IV, IV a,

V and V a Rules. Moreover, in fact, such analogies may provide richer possibilities for

dynamics than their Type III counterparts.

For example, note that although no Type III Class 1 Basis Method Rule has been

found that can provide a valid dynamics for a universe developing self-referentially accord-

ing to the current state (i.e. where the Reduced basis set B
R
n+1 = {Û (1)Ψn, Û

(2)Ψn, ...,

Û (D−1)Ψn} is generated by a fixed set of (D − 1) unitary operators {Û (µ)} acting on

Ψn), such a Class 1 Basis Method mechanism may easily be implemented in universes

developing according to Type IV rules.

To demonstrate this last point, recall from Section 8.1 that a Type IV Rule is defined

as one in which the next basis set Bn+1 depends on the current basis set Bn (unlike, of

course, a Type III mechanism, where the next basis set Bn+1 depends on the current

state Ψn, which is just one element of Bn).
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So, by denoting the orthonormal elements of these two preferred bases as

Bn ≡ {Φ1
n,Φ

2
n, ...,Φ

D
n } (8.95)

Bn+1 ≡ {Φ1
n+1,Φ

2
n+1, ...,Φ

D
n+1}

it is clear that the analogy of the Class 1 Basis Method mechanism for a Type IV universe

requires a fixed set of unitary operators {Û (i)} to be found, where the operator Û (i) maps

the element Φi
n ∈ Bn to the element Φi

n+1 ∈ Bn+1 in the manner

Φi
n+1 = Û (i)Φi

n (8.96)

where the elements of the bases have been indexed in the simplest way, without loss of

generality.

For completeness, note how this compares with the Type III Rule

Φi
n+1 = Û (i)Ψn. (8.97)

Of course, just as in the Type III situation, the constraint

〈Φi
n+1|Φj

n+1〉 = 〈Φi
nÛ

(i)|Û (j)Φj
n〉 = δij (8.98)

must be enforced on the definition of the unitary operators {Û (i)} to ensure that the

vectors {Φi
n+1} are orthogonal.

Moreover, of course, in actuality only (D−1) unitary operations {Û (µ)} can be freely de-

fined: as with the Type III case, a specification of the Reduced set {Φ1
n+1,Φ

2
n+1, ...,Φ

D−1
n+1 }

automatically defines the “Dth" vector ΦD
n+1 because of the required orthogonality.

Now, in order for Type IV Class 1 Basis Method Rules to be accepted as providing

a suitable mechanism for the universe’s development from Ψn → Ψn+1 → Ψn+2 → ...,

the subsequent Reduced basis set B
R
n+2 defined as B

R
n+2 ≡ {Φ1

n+2,Φ
2
n+2, ...,Φ

D−1
n+2 } must

contain (D−1) orthogonal elements Φµ
n+2 that are generated from those of B

R
n+1 according

to the map25: Φµ
n+2 = Û (µ)Φµ

n+1, where µ = 1, ..., (D − 1). Of course, these conditions

must hold for all n.

However, unlike for the Type III case, in which no fixed set {Û (µ)} has been found

that can develop the system from Ψn → Ψn+1 → Ψn+2 → ... according to the Basis

Method algorithm, in Type IV universes it is trivially easy to find a constant set of

unitary operators that provide a valid mechanism for dynamics. In fact one such set

occurs for the Rule

Û (µ) = Ûf , ∀µ (8.99)

25In principle, the (D − 1) ‘free parameter’ operators { U (µ)} could be defined such that they act on

any of the D vectors in Bn. The permutations that result, however, do not seriously affect the situation

discussed. In short, it does not matter which member of Bn is ‘left out’ of the Reduced basis BR
n+1.
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where Ûf is an arbitrary, fixed unitary operator, such that the set {Û (µ)} becomes a set

of (D − 1) equal members, {Ûf , Ûf , ..., Ûf}.
Under this circumstance, the constraint 〈Φµ

nÛ (µ)|Û (ν)Φν
n〉 = δµν is clearly satisfied by

definition, because

Û∗
f Ûf = Î (8.100)

where Î is the identity operator in H(D), and the Reduced basis set B
R
n+1 is given by

B
R
n+1 = {ÛfΦ

1
n, ÛfΦ

2
n, ..., ÛfΦ

D−1
n }. (8.101)

Moreover, for the ‘remaining vector’ ΦD
n+1, it turns out in this case that

ΦD
n+1 = ÛfΦ

D
n (8.102)

because in this instance

〈ΦD
n+1|Û (µ)Φµ

n〉 = 〈ΦD
n Ûf |ÛfΦ

µ
n〉 = 〈ΦD

n |Φµ
n〉 = 0 (8.103)

for all µ = 1, ..., (D − 1), as required.

So, assuming that Ûf 6= Î it is evident that

Bn+1 = ÛfBn 6= Bn (8.104)

such that Bn+1 does provide a suitable basis set of states for a jump from Ψn to Ψn+1 to

occur.

Furthermore, the same set of operators {Û (i) = Ûf : i = 1, ..., D} can then be applied

to the elements of Bn+1 to give a new orthogonal basis, which may be labelled as Bn+2,

and the process may be continued. Thus, the proposed mechanism may be described as

valid, and the above conclusion is justified: Type IV Class 1 Basis Method Rules are

indeed allowed.

Overall, then, the development of a universe according to this type of Type IV Basis

Method Rule proceeds by the state Ψn collapsing to the state Ψn+1, which is one of the

elements Φi
n+1 of the basis set

Bn+1 = ÛfBn = {Φi
n+1 = ÛfΦ

i
n : i = 1, ..., D} (8.105)

with probability

P (Ψn+1 = Φi
n+1) = |〈ÛfΦ

i
n|Ψn〉|2 (8.106)

where Φi
n+1 may equally be viewed as one of the eigenstates of Σ̂n+1, which is a member

of the equivalence class of operators B̂n+1 implied by Bn+1. The universe then collapses

to the state Ψn+2, which is one of the elements Φi
n+2 of the basis set

Bn+2 = ÛfBn+1 = Ûf ÛfBn = {Φi
n+2 = Ûf ÛfΦ

i
n : i = 1, ..., D} (8.107)
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with probability P (Ψn+2 = Φi
n+2) = |〈Ûf ÛfΦ

i
n|Ψn+1〉|2. And so on.

Of course, the particular deterministic (Type IV ) Rules presented above can be gen-

eralised to probabilistic (Type IV a) cases in the obvious way. For instance, the next basis

Bn+1 could be given by

Bn+1 = ÛfBn (8.108)

with probability Pf , or instead by

Bn+1 = ÛgBn (8.109)

with probability Pg, and so on, where Ûf and Ûg are different unitary operators, and

Pf + Pg + ... = 1.

In effect, in the above mechanisms the unitary operator Ûf (or Ûg etc.) may be thought

of as ‘rotating’ the entire basis set Bn into the set Bn+1, and then subsequently rotating

this new basis set Bn+1 into the set Bn+2, and so on. In addition, because Ûf is effectively

behaving globally on the whole basis set, that is, because Ûf is rotating each member of

the basis set in the same way, its application automatically preserves the orthogonality

between the individual elements, as required.

So, the proposed Rule clearly provides a simple, but valid, mechanism for dynamics,

where the next operator Σ̂n+1 = B̂n+1 chosen by the universe to test the state Ψn is

strongly related to the previous operator Σ̂n = B̂n of which Ψn is an eigenstate. More-

over, the procedure is valid for all n. The above mechanism therefore provides an example

of a Basis Self-Referential, Class 1 Basis Method dynamics, a conclusion made particu-

larly significant by the lack of any analogous State Self-Referential, Class 1 Basis Method

dynamics.

Of course, analogies of the other sorts of mechanism discussed in this chapter are

naturally expected to exist within the frameworks of Type IV and V Rules.

Note that the type of Rule proposed above could have an important physical conse-

quence. Consider as before a universe developing according to the Rule Bn+1 = ÛfBn,

but this time impose the additional condition that

Ûf = Î + ǫÛ ′ (8.110)

where Î is the identity operator, ǫ a small parameter, and Û ′ an operator chosen according

to the constraint that Ûf obeys the conditions required for the dynamics (i.e. Ûf is

unitary).
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Now because ǫ is small, it follows that Ûf approximates to Î , i.e. Ûf ≈ Î . So, in this

case

Bn+1 = ÛfBn ≈ ÎBn = Bn (8.111)

such that the preferred basis at time n+ 1 is ‘roughly’ the same as the preferred basis at

time n. Moreover, this then implies that the next basis set Bn+1 will contain a member

that is very ‘similar’, in some sense, to the current state Ψn. So, and due to the Born

probability rule, the universe is highly likely to jump to this ‘very similar’ state, where

the probability that the universe collapses to this vector is expected to approach unity in

models with Hilbert spaces of high dimensionality. Overall, then, the outcome from such

a Rule is that Ψn+1 ≈ Ψn for all n.

In other words, in a universe developing according to this type of Rule, the state

changes only very ‘slightly’ from one jump to the next. Importantly, then, such a mecha-

nism might be useful to describe a possible origin of apparent persistence in the quantum

universe. Moreover, it might also provide a dynamics in which the universe’s development

appears almost deterministic, just as seems to be the case in classical physics: given a

state Ψn, it would be possible to predict what the next state Ψn+1 will be like with near

certainty, because Ψn+1 ≈ Ψn.

Of course, much work is required to fully justify these assertions, and to define exactly

what the notion of ‘similarity’ might imply.

8.4.4 Summary

As a final remark to this section, it should be mentioned that it is also possible to envisage

universes governed by Rules that are themselves subject to change. Indeed, the Type of

Rule used to select the next operator Σ̂n+1 could actually depend on n, such that for

example at ‘time’ m a particular Type III List-Sort mechanism could be used to select

Σ̂m+1, whereas at time m′ a different Type III List-Sort Rule might be employed instead

to give Σ̂m′+1, whilst at time m′′ the universe could adopt a Type III Generated-Sort

dynamics, but at time m′′′an entirely different Type IV Rule could be used. And so on.

Under such circumstances, it might be expected that there is some sort of ‘Meta-Rule’

governing the dynamics of how the Rules change with n, a concept that is analogous to

Buccheri’s idea of the “Rules of the rules” [27] which determines how the laws of physics

may develop with time.

It is possible now to sum up the various Types of fixed Rule dynamics discussed so

far in this chapter, and compare these with universes governed by Rules that change and

develop over time.
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Starting with classical physics, for example, if a scientist knows the current ‘state’ of

the Universe (i.e. the position and momentum of every particle it contains) and the laws

of physics, she is able to determine with certainty what its entire future will be. This is

the deterministic physics of Newton’s clockwork universe.

In Type 0 quantum universes, on the other hand, if the scientist knows the current

state of the universe and decides upon a particular operator to test it with, she is able to

determine with certainty what the next basis set of eigenstates will be, and hence estimate

the next state within the bounds imposed by quantum probability.

Furthermore, the same comment is broadly true for the Type III List-sort dynamics

discussed in Section 8.2: if the List L ≡ {Bi : i = 1, 2, ..., l} of potential next operators is

specified, and the Rules governing which of these is chosen to test the state are understood,

then given a state Ψn it is always possible to determine what the next set of eigenstates

will be. Moreover, under such circumstances the state of the universe will always be an

element of one of the basis sets from the list L, and this state will always be tested by one

of the operators {B̂i}.
So, it is consequently possible not only to predict the probability of obtaining a partic-

ular next state, but also to ask questions of the form: “if the next state turns out to be X,

what is the probability that the subsequent state will be Y ?"; or, “what is the probability

that the test after n steps will be a particular operator B̂a?".

In Class 1 Type III Generated-Sort dynamics, if the current state of the universe is

known, it is only ever possible to determine the next operator that acts. Unlike the List-

sort dynamics, there is now no pre-existing List of basis sets specifying every operator that

will ever be used in the universe’s development, because the universe is ‘making-up’ its

tests as it goes along. Additionally, unlike for List-Sort dynamics, in which the number of

different states the universe could ever potentially exist in (its phase space) is fixed by the

length of the List and the dimension of the Hilbert space, in Generated-Sort dynamics this

number of different states could be unbounded. However, whilst it may not be known in

advance what every future operator will be, because the Rules are known and the function

f relating Bn+1 to Ψn ∈ H(D) is fixed, it is possible to say that if the universe were ever

in a particular state Z, the subsequent state would be one of the D eigenvectors of an

operator Σ̂ = f(Z) determined by Z.

Conversely, in Class 2 Type III Generated-Sort dynamics it is not possible to deter-

mine what the next operator will be if only the current state is known. In this case, if the

universe were ever in a state Z, it could not immediately be inferred what the next set of

eigenvectors must be, because the relationship fn between states and operators is always

changing. Specifically, if a universe is governed by a Rule of the form Σ̂n+1 = fn(Ψn), it

is necessary to know both the state Ψn and the ‘time’ n in order to determine the next
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operator Σ̂n+1. In this instance, information additional to the knowledge of the current

state is required (for example how many jumps have taken place since a particular ‘refer-

ence state’ Ψ0, or at least what the previous operator was), because even if it is known

how the operator changes with ‘time’, it is still necessary to specify what the time is in

order to say how much it has changed. However, given Ψn and n it is then possible to

determine Σ̂n+1, because the Rule Σ̂n+1 = fn(Ψn) relating Σ̂n+1 to Ψn is defined for all

time at the outset.

Finally, in a universe governed by Rules which also change, it is not sufficient just

to know the current Rule, state and time in order to determine Σ̂n+1, but it is also

necessary to know the Rules of the Rules. Such ‘Meta-Rules’ could then be used to select

a particular Type of Rule, which could then choose a particular operator Σ̂n+1 based

somehow, perhaps, on the current state Ψn and/or the last basis Bn and/or the current

time n. Of course, these choices could also even depend upon some sort of additional

variable previously indiscussed.

In reality, it would be very difficult for endo-physical observers to ever ascertain what

the Rules of the Rules governing their universe actually are. After all, a physicist could (at

best) only ever really be sure of what the current Rule is, and the Rules are assumed to be

constantly changing. So, although such universes will not be discussed further in this work,

note that this point has analogies with some of the recent speculations in fundamental

physics regarding whether the speed of light or the electron charge have remained constant

throughout the history of the Universe (e.g. [86] and [87], respectively). In both of these

cases, it is difficult to reconstruct what the laws of physics were like in the distant past

when only the current state of the Universe is available for study.

It is also far beyond the scope of this thesis to take the logically greater step and

consider a completely ‘free’ universe, that is, one in which neither the Rules, nor the Rules

governing the Rules, are fixed and specified in advance. Indeed, it is difficult to imagine

how such a model could even be envisaged that required no order or direction, at least

at the outset. After all, even a universe incorporating Meta-Rules relies on a definition

of what this Meta-Rule is, and additionally on what the boundary or initial condition Ψ0

was. In fact, in any such ‘free universe’, order, Rules, and even Rules of Rules would have

to be defined or ‘created’ somehow on their own account as the universe develops, and it is

almost impossible to comprehend how this process could occur. A mechanism governed by

Rules of the Rules might therefore represent the ‘final level’ that can be used to describe

a fully quantum universe.

Ultimately, then, the actual definition of the Rules governing a universe (or at least the

choice of the Rules of the Rules) could have no origin that is explainable in terms of any
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sort of higher order mechanism. Consequently, their presence and form in any given model

may have to be accepted merely as a fundamental pre-requisite, just as the existence of

the underlying Hilbert space or the List L is taken to be.

Of course, this is similar to the philosophical problem faced in the real Universe:

physicists might one day be able to determine what the Theory of Everything is, but to

say why it is like this without appealing to blind chance, the Anthropic Principle, or a

Higher Being may be beyond the scope of empirical physics. Scientists may never be able

to say why the constants of nature have the values that they do, but just that they are

predicted by a theory that happens to describe the reality they exist in.

8.5 Examine-Decision Mechanisms

Each of List-Sort and Generated-Sort dynamics attracts an obvious comment.

The List-Sort Rules rely on the decision of operator Σ̂n+1 being made based upon a

particular ‘property’ of the state Ψn, for example its separability. No explanation is given,

however, as to how the Rules actually get to ‘know’ what this property is, such that they

can then make the selection. Paraphrasing, there is no ‘self-examining’ part of the List-

Sort algorithm that allows the universe to explicitly investigate its state for a particular

property (e.g. count how many factors Ψn has), such that the next operator may then be

chosen appropriately from the List.

The same remark is not necessary in Generated-Sort mechanisms, because in these the

next operator is a direct function of the current state. However, the types of Rules dis-

cussed in Section 8.4 suffer instead from the fact that the dynamics which results is rather

inflexible: once a state Ψn is specified, there is no choice about how the next operator

will be defined. In other words, there is no ‘decision making’ part of the Generated-Sort

algorithm applying logic of the form: if the universe finds itself in state Ψn = x then

use an operator Σ̂n+1 = f(x); but if instead the universe is in state y then instead use

an operator Σ̂n+1 = g(y) generated in an alternative way, where f 6= g; and so on. For

example, there is no freedom in the mechanism to allow the state to be tested by, say,

Σ̂n+1 = h(Ψn) if Ψn has FH factors, but instead by Σ̂n+1 = k(Ψn) if it has FK factors;

according to Generated-Sort Rules, the actual ‘properties’ of Ψn are not used to decide

how the state develops.

Whilst these two comments are not serious problems, such that both List-Sort and

Generated-Sort Rules can still be taken to provide valid dynamics for the quantum uni-

verse, it is natural to speculate on whether mechanisms could exist that appear to develop

the state without these limitations. After all, on the small scale this type of development is
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what real physicists tend to experience in the laboratory: in general, scientists do believe

themselves to be able to examine and investigate quantum sub-systems, and then choose

how to develop them, from a huge number of different ways, based upon what they have

learnt.

In this section, therefore, it is hoped to explore the possibility of universes that are

somehow able to ‘examine’ their state themselves for a particular property, and then

develop it in a way that depends on what this property is. The desire, then, is to investigate

sets of Rules that could provide a fully automatic and self-referential mechanism that leads

to a dynamics equivalent to a process of examination, decision, development, examination,

decision, development,..., continuing indefinitely. Universes governed by such mechanisms

could be described as obeying Examine-Decision (ED) Rules.

8.5.1 Preliminary Considerations

In order to be valid, the Rules governing ED dynamics must define a single quantum

computation that, in one time step, ‘examines’ the universe’s state Ψn, ‘decides’ upon a

course of action according to the result of the initial examination, and then consequently

develops it to the next state Ψn+1. So, the question becomes: how might it be possible to

construct mechanisms that examine the state, and then develop it in a way that depends

on the outcome of this investigation?

The overall goal of this section is to investigate how such computations might be

achieved.

The first point to note, however, is that any measurement of any property of the

state Ψn of the universe necessarily involves a process of information extraction. This

fact would not cause any problems in a classical universe, because in classical physics it

is possible to observe an object and expect it to remain unchanged. In a fully quantum

universe, on the other hand, such non-invasive techniques are forbidden: it is not possible

to measure a quantum state for one property, and then test the same state for something

else. The first measurement destroys the original state and creates a new one that is an

eigenstate of whichever operator was used, and it is this new state that then has to be

tested in subsequent measurements.

Now, if a hypothetical ED mechanism was proposed that followed the general algo-

rithm

1. test the state Ψn for a particular ‘property’ p(i) from the set {p(i), i = 1, 2, ...}, by
applying an operator P̂ ;
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2. then collapse the state Ψn into one of the eigenvectors of a particular Hermitian

operator Σ̂n+1, where, if the result of “1." is p(1) the operator Σ̂n+1 = Ô(1) is used;

but, if instead the result of “1." is p(2) then the operator Σ̂n+1 = Ô(2) is used instead;

and so on, accounting for every possible outcome p(i) of P̂ ;

the above discussion would consequently cause a problem. Specifically, if the exami-

nation by P̂ of the property p(i) of the state Ψn is taken to be a measurement process,

then it would lead to a wavefunction collapse, and so after this examination the universe

will be in a new state Ψn+1, which is one of the eigenvectors of P̂ . Clearly, it is now too

late to test the ‘old’ state Ψn by whichever operator Σ̂n+1 ∈ {Ô(1), Ô(2), ...} is implied by

Rule “2." from the information gained as a result of this measurement.

In fact, the universe would next have to be developed by some operator Σ̂n+2, and

would accordingly jump to a new state Ψn+2.

This conclusion highlights the fact that any method used to measure the state Ψ for a

particular property must be seen as equivalent to the operators Σ̂ used in the universe’s

development. Indeed, this is not surprising: recall that the Hermitian operators Σ̂ have

been regarded throughout this thesis as being synonymous with physical tests anyway.

Thus, in this case the test P̂ was effectively used as the test Σ̂n+1, so in this universe

Σ̂n+1 = P̂ .

So, any examination procedure that involves a measurement does not fulfil the intention

of finding an ED computation that proceeds in a single time step. Consequently, in any

suggested ED mechanism the examination part of the algorithm cannot rely on any sort

of physical measurement or information extraction process: two tests per time step are

not allowed in the proposed paradigm.

It is therefore necessary to choose the ED Rules very carefully, such that whatever

‘examination’ procedure is employed avoids an actual physical measurement of the state.

8.5.2 Selective Global Evolution

In an attempt to find a way around the above difficulty, recall that operators used in

standard quantum mechanics are generally one of two types, namely, either Hermitian or

unitary. Hermitian operators represent physical measurements, and are used to test the

state, thereby resulting in its collapse into one of the operator’s eigenvectors. Unitary

operators, conversely, are used to evolve the state, or, in the sense discussed in this thesis,

‘rotate’ it into a new vector in its Hilbert space. Unlike Hermitian operators, unitary op-

erators do not extract any physical information from the state, and are hence traditionally
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used in quantum theory to describe the (Schrödinger) development of the system in the

absence of observation.

Now, since it has been shown that the examination part of an ED mechanism cannot

be based upon a physical extraction of information from the state, if Rules are to be

proposed that do provide suitable Examine-Decision dynamics for the development of a

quantum universe, they must rely on non-invasive techniques.

Particularly, if the examination part cannot rely on Hermitian tests, the suggestion

might be that it should instead be based upon unitary operators.

So, as an alternative to a dynamics based upon a universe that is tested by an operator

chosen according to some property of its state (as hypothesised in Section 8.5.1), it might

instead be possible to conject a dynamics in which the universe is evolved in a way that

depends on some property of its state.

The suggestion, then, is that the examination and decision parts of an ED mechanism

could be governed by a unitary operator. Consequently, the existence of a unitary oper-

ator Ûn is hypothesised that appears to ‘examine’ the state Ψn for a particular property,

‘decides’ how it is to be developed, and then accordingly develops it into Ψ′
n = ÛnΨn in a

way that depends upon this ‘property’.

So, Examine-Decision Rules are considered that involve both unitary operators Ûn and

Hermitian tests Σ̂n+1. Specifically, when a certain, carefully defined unitary operator Ûn

is applied to the state Ψn, if Ψn has one particular property the universe will be evolved

in one way, whilst if instead Ψn has a second property it is rotated in a different way, and

so on. The evolved state Ψ′
n may then be tested in the usual manner by some Hermitian

operator Σ̂n+1 that is chosen, perhaps, by one of the various Types of Rule discussed in

Section 8.1, and the universe subsequently collapses to Ψn+1.

Clearly, because no physical information gets extracted from the state Ψn during the

application of Ûn (i.e. regarding what its properties actually are; the choice of Σ̂n+1

does not depend on this initial examination), no quantum collapse occurs, and the overall

development of the state using the operators Ûn and Σ̂n+1 proceeds in one time step, as

required. Of course, this condition is ensured because the ‘examination’ process is part of

Ûn, and is hence not a Hermitian test.

Such a mechanism may be described as Selective Global Evolution (SGE), because

properties of the state are being used to select the way in which Ψn is globally evolved.

The development of a universe according to a SGE mechanism would therefore proceed

in two distinct parts: an evolution part and a test part. Thus, the general Rules governing

such a universe may be of the form

• Apply Ûn to Ψn to give the ‘rotated’ state Ψ′
n = ÛnΨn;
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• Test Ψ′
n with Σ̂n+1 to give the new state Ψn+1, which is one of the eigenvectors of

Σ̂n+1;

where Ûn is defined such that it can Selectively Globally Evolve the state Ψn. The

process may then be repeated, such that Ψn+1 is selectively rotated by Ûn+1.

The actual development of a SGE governed universe will become clearer in the follow-

ing.

The overall goal of SGE dynamics is to use an operator Ûn that evolves the universe

in a manner that depends upon some property of its state. So, the obvious first question

is: what sort of unitary operators could give rise to such a selective development? How

could Ûn be constructed such that it evolves different vectors in different ways, depending

on what this vector is?

Perhaps the most obvious answer to this question would be to suggest that Ûn is an

operator that somehow ‘contains’ (in a sense to be defined) many other unitary operators

{û(i)n : i = 1, 2, ...}, each of which can be somehow ‘turned on or off’ depending on the

particular properties of the state Ψn on which Ûn acts. In other words, a mechanism

might schematically be suggested in which under some circumstances the operator Ûn

‘looks’ like the unitary operator û
(1)
n , whereas under different circumstances it instead

effectively behaves like the unitary operator û
(2)
n , etc., where û

(1)
n , û

(2)
n , ... are different

unitary operators. Clearly, the “actual circumstances” would be dictated by the Rules

governing the universe’s development, and it would be a ‘property’ of the state Ψn that

actually causes Ûn to resemble one particular operator, û
(i)
n , over another, û

(j)
n .

Continuing this schematic viewpoint, it is possible to imagine a mechanism in which

Ûn is defined such that if Ψn has one particular form, then the application of Ûn to Ψn

gives the same result as an application of û
(1)
n to Ψn, whereas if Ψn has a different property,

then ÛnΨn is instead effectively equivalent to û
(2)
n Ψn, and so on. For example, Ûn could

be such that if Ψn is the state Ψn = Θ, then ÛnΨn = ÛnΘ = û
(i)
n Θ, whereas if Ψn is

instead the state Ψn = Φ, then ÛnΨn = ÛnΦ = û
(j)
n Φ, where û

(i)
n 6= û

(j)
n .

Overall, then, different states are taken to cause the same operator Ûn to behave

differently.

Of course, even in such a schematic model the issue of how the various operators {û(i)n }
are actually “turned on or off” by the properties of the state remains to be addressed.

So, one potential suggestion might be to propose that Ûn could in fact ‘contain’ (again,

in a sense to be defined) many pairs of operators {û(i)n Ŝ
(i)
n }, where the {Ŝ(i)

n } are defined

as ‘asking’ operators. Thus, the idea, again schematic, is that when Ûn acts on Ψn, the

operator Ŝ
(i)
n in each pair ‘asks’ a question of the state, and the remaining operator û

(i)
n
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either rotates Ψn if the answer to this question is “Yes”, but is not applied to Ψn if the

answer is instead “No”. It is this potential mechanism that is explored now.

Each ‘asking’ operator Ŝ
(i)
n must obey the condition that it provides a definite answer,

either “Yes” or “No”, for a given state Ψn, such that there is no ambiguity in whether

the corresponding unitary operator û
(i)
n is applied or not. Furthermore, note that if the

set {Ŝ(i)
n } is constrained such that the individual ‘questions’ are mutually exclusive of the

others, that is

Ŝ(i)
n Ψn →

{
“Yes” for i = a

“No” for all i 6= a

}
(8.112)

it follows in this case that {û(i)n Ŝ
(i)
n } acting on Ψn is equivalent to just û

(a)
n acting on Ψn,

as desired; no other operator û
(j)
n , j 6= a, is applied.

Continuing, it is also observed that the Yes/No answers to the ‘questions’ {Ŝ(i)
n } could

be associated with binary logic of the form “Yes”⇒ 1 and “No”⇒ 0.

So, one choice for the operators {Ŝ(i)
n } could be to define them according to the rule

Ŝ(i)
n Ψn =

{
1×Ψn if Ŝ

(i)
n Ψn → “Yes”

0×Ψn if Ŝ
(i)
n Ψn → “No”

}
(8.113)

In this case, Ûn could be written as a linear sum of the pairs {û(i)n Ŝ
(i)
n }, that is, in the

form

Ûn = û(1)n Ŝ(1)
n + û(2)n Ŝ(2)

n + û(3)n Ŝ(3)
n + ... (8.114)

and this imposes an additional, obvious constraint on the operators {û(i)n Ŝ
(i)
n }: the pairs

û
(i)
n Ŝ

(i)
n must be chosen such that the unitarity of the overall operator Ûn is preserved.

Under the above circumstances, for each pair û
(i)
n Ŝ

(i)
n acting on Ψn, if the operator

Ŝ
(i)
n applied to Ψn gives the result 1, the product û

(i)
n Ŝ

(i)
n Ψn equals û

(i)
n Ψn, and so û

(i)
n is

used to evolve the state Ψn. However, if instead Ŝ
(i)
n Ψn gives the result 0, the combination

û
(i)
n Ŝ

(i)
n Ψn also becomes 0, and the unitary operator û

(i)
n is effectively ‘removed’ from the

equation. In essence, the state Ψn only ‘sees’ the unitary operator û
(i)
n if Ŝ

(i)
n Ψn = 1×Ψn;

the operator Ŝ
(i)
n is effectively being used to turn û

(i)
n ‘on or off’ depending entirely on the

properties of the state Ψn. As throughout this chapter, the parallels between the above

type of logic and that exhibited in (quantum) computational gates are evident.

So, if i = a is the only value for which Ŝ
(i)
n Ψn → “Y es", it consequently follows that

ÛnΨn = û(a)n Ψn (8.115)

as desired.

Note that {Ŝ(i)
n } could be associated with a suitable set of projection operators, as

suggested below, because these can conventionally be interpreted as Yes/No operators in

quantum mechanics.
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As an illustration of how a possible such SGE mechanism might be constructed, con-

sider a universe represented by a state Ψn in a D dimensional Hilbert space H(D) spanned

by the orthonormal basis B(D) = {|i〉 : i = 0, ..., (D − 1)}. Further, assume that the dy-

namics of the universe are governed by the SGE two part Rules: Ψn is evolved to Ψ′
n by

applying the unitary operator Ûn, i.e. Ψn → Ψ′
n = ÛnΨn, where Ûn acts selectively; and

then Ψ′
n is collapsed to Ψn+1 by a test with the Hermitian operator Σ̂n+1, where Ψn+1 is

an eigenstate of Σ̂n+1. Finally, consider for all n defining Σ̂n+1 as an operator with a basis

set of eigenstates Bn+1 = {|i〉 : i = 0, ..., (D − 1)}, such that the collapsed state is always

a member of the set {|i〉}.
Now, assume that Ûn is of the form given in (8.114), but that each Ŝ

(i)
n is defined as

the projection operator Ŝ
(i)
n = |i〉〈i|, for i = 0, ..., (D − 1). That is

• Ûn = û
(0)
n |0〉〈0|+ û

(1)
n |1〉〈1|+ ...+ û

(D−1)
n |D − 1〉〈D − 1|

where the {û(i)n } are particular unitary operators to be defined in due course.

Clearly, each pair of operators û
(i)
n |i〉〈i| acts sequentially on Ψn; first the operator |i〉〈i|

is applied to the state Ψn, then the resulting vector (|i〉〈i|Ψn) is rotated by the unitary

operator û
(i)
n . However, since Ψn ∈ Bn = {|i〉} for all n, the expression

|i〉〈i|Ψn = 1×Ψn (8.116)

is true for only one value of i; for all other values, the application of |i〉〈i| to Ψn gives

|i〉〈i|Ψn = 0 × Ψn. Labelling this one value i = a, it implies that Ψn = |a〉, and so it

consequently follows that

ÛnΨn =

[
D−1∑

i=0

û(i)n |i〉〈i|
]
|a〉 = 0 + 0 + ...+ û(a)n |a〉+ 0 + ...+ 0. (8.117)

Thus, the state is evolved globally by an operator û
(a)
n , selected from the set {û(i)n }

‘contained’ in Ûn, because the universe is initially in the state Ψn = |a〉.
Overall, the projection operator |i〉〈i| is effectively ‘asking’ whether or not Ψn is in the

state Ψn = |i〉. The interpretation of the above type of Selection mechanism is that the

projection operators cause Ûn to act like a set of “If ” statements: if the state Ψn is |0〉,
then it is rotated by û

(0)
n , but if the state Ψn is instead |1〉, then it is instead rotated by

û
(1)
n , and so on. In other words, given a universe prepared as Ψn = |i〉, the |i〉〈i| part of

the operator Ûn effectively selects the operator û
(i)
n to evolve the state.

The overall SGE mechanism is then concluded by the second part of the Rules. So,

the evolved state Ψ′
n = ÛnΨn = û

(a)
n |a〉 is collapsed back into one of the vectors {|i〉} by

the operator Σ̂n+1, with the usual quantum probabilities.
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The two part process may then be repeated, noting that because Ψn+1 ∈ Bn = {|i〉},
the projection operators |i〉〈i| in the next SGE operator Ûn+1 =

[∑D−1
i=0 û

(i)
n+1|i〉〈i|

]
are

still able to provide a mutually exclusive and exhaustive set of ‘questions’ for the new

state Ψn+1. Clearly, this point will be true for all n.

Whilst the methodology behind the mechanism suggested above is sound, it turns out

that it cannot actually accomplish non-trivial SGE development. In particular, in order

for the proposed mechanism to provide valid dynamics, the set of operators {û(i)n } must be

so restrictively defined that any non-trivial selection is effectively removed. Specifically,

the necessary constraint of choosing the set {û(i)n } such that the overall unitarity of the

operator Ûn is preserved prevents the suggested SGE mechanism from developing the

universe in a non-trivial way.

Phrasing this more mathematically, it can be shown that the overall operator Ûn is

only unitary if

〈i|û(i)∗n û(j)n |j〉 = δij (8.118)

for all i, j = 0, 1, ..., (D − 1), and this is only achieved if û
(i)
n = û

(j)
n .

This result is derived now. Note how the present ideas may be related to the discussions

given in Section 8.4.1 regarding Class 1 and 2, Type III Basis Method dynamics.

Proof. Consider an operator Ûn defined, as above, as

Ûn = û(0)n |0〉〈0|+ û(1)n |1〉〈1|+ ...+ û(D−1)
n |D − 1〉〈D − 1| (8.119)

where the û
(i)
n are unitary, for i = 0, 1, ..., (D − 1).

In order for Ûn to be unitary it must be the case that Û∗
nÛn = Î , where Î is the identity

operator, and Û∗
n is the transpose conjugate of Ûn given by

Û∗
n = |0〉〈0|û(0)∗n + |1〉〈1|û(1)∗n + ...+ |D − 1〉〈D − 1|û(D−1)∗

n (8.120)

with û
(i)∗
n û

(i)
n = Î . So,

Î =
(
|0〉〈0|û(0)∗n + |1〉〈1|û(1)∗n + ...+ |D − 1〉〈D − 1|û(D−1)∗

n

)
(8.121)

×
(
û(0)n |0〉〈0|+ û(1)n |1〉〈1|+ ...+ û(D−1)

n |D − 1〉〈D − 1|
)

=
D−1∑
i=0

D−1∑
j=0

|i〉〈i|û(i)∗n û(j)n |j〉〈j|.

The sum of terms
∑D−1

i=0

∑D−1
j=0 |i〉〈i|û(i)∗n û

(j)
n |j〉〈j| may be used to generate a D × D

matrix. Moreover, the specific term |i〉〈i|û(i)∗n û
(j)
n |j〉〈j| gives the value 〈i|û(i)∗n û

(j)
n |j〉 ∈ C

of the component in the [(i+ 1)th row, (j + 1)th column] of this matrix.

302



Now, recall that the identity operator Î may also be represented by a D ×D matrix,

which contains components of zero everywhere apart from the leading diagonal, where the

values are one. So, for the above equality (8.121) to hold, it must be the case that

〈i|û(i)∗n û(j)n |j〉 = δij (8.122)

for all i and j.

Clearly, the equation 〈i|û(i)∗n û
(j)
n |j〉 = δij is equivalent to the matrix elements of the

identity Î operator: 〈i|Î|j〉 = δij . It is therefore the case that û
(i)∗
n û

(j)
n = Î . Moreover,

since û
(i)
n and û

(j)
n are unitary by definition, the relations û

(i)∗
n û

(i)
n = Î and û

(j)∗
n û

(j)
n = Î

must also be true. Thus, because each unitary operator has one, and only one, inverse, it

must follow that û
(j)∗
n = û

(i)∗
n , such that û

(i)
n = û

(j)
n for all i and j.

Summarising, Ûn is only unitary if û
(i)
n = û

(j)
n for all i, j = 0, 1, ..., (D − 1).

Thus, Ûn is only unitary if û
(i)
n = û

(j)
n . In this case,

〈i|û(i)∗n û(j)n |j〉 = 〈i|û(i)∗n û(i)n |j〉 = 〈i|Î|j〉 = 〈i|j〉 = δij (8.123)

and it then follows that Ûn = û
(i)
n , because

Ûn = û(0)n |0〉〈0|+ û(1)n |1〉〈1|+ ...+ û(D−1)
n |D − 1〉〈D − 1| (8.124)

= û(i)n (|0〉〈0|+ |1〉〈1|+ ...+ |D − 1〉〈D − 1|) = û(i)n Î = û(i)n .

Evidently, such a choice of {û(i)n } or Ûn does not lead to any Selective Global Evolution

of the sort aimed at in this section, because the universe would be evolved by the same

operator û
(i)
n regardless of which state it is in.

So, the conclusion is that it is not possible to use the mechanism proposed above to

define a SGE dynamics for a universe based upon the selection of one of a number of

different unitary operators {û(i)n : i = 0, ..., (D − 1)}; the procedure can only work if

û
(i)
n = û

(j)
n for all i, j, because only under this circumstance is the overall operator Ûn

unitary. Clearly, then, such a Ûn is not selectively evolving the universe in a way that

non-trivially depends on what Ψn is: whichever of the set {|i〉 : i = 0, ..., (D − 1)} the

state is in, it will always be rotated in the same way.

It appears that Selective Global Evolution mechanisms of the sort described above

cannot be used to self-referentially develop the state of the universe.

To demonstrate this point explicitly, consider a single qubit universe represented by a

state Ψn in a two dimensional Hilbert space spanned by the basis B(2) = {|0〉, |1〉}, where
B(2) may equally be given in the usual representation as

{(
1
0

)
,
(
0
1

)}
.

If this universe was to be governed by the above type of Selective Global Evolution

mechanism, two unitary operators, û
(0)
n and û

(1)
n , would be required for its development.
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Moreover, these operators would in turn define a third operator Ûn according to the Rule

Ûn = û
(0)
n |0〉〈0|+ û

(1)
n |1〉〈1|, where Ûn is also required to be unitary, which would be used

to evolve the state Ψn.

The three unitary operators û
(0)
n , û

(1)
n and Ûn may be given by the general matrices

Ûn =

(
A B

C D

)
, û(0)n =

(
a b

c d

)
, û(1)n =

(
e f

g h

)
(8.125)

with the values of A, ...,D, a, ..., h ∈ C to be investigated.

Now, in order for Ûn, û
(0)
n and û

(1)
n to fulfil the unitarity conditions Û∗

nÛn = û
(0)∗
n û

(0)
n =

û
(1)∗
n û

(1)
n = Î , it must be the case that B = −C̄, D = Ā, b = −c̄, d = ā, f = − ḡ and h = ē

(ignoring row exchange permutations), where the bar denotes complex conjugation, with

AD −BC = ad− bc = eh− gh = 1.

So by substituting these, the relation Ûn = û
(0)
n |0〉〈0|+ û

(1)
n |1〉〈1| becomes

(
A −C̄

C Ā

)
=

(
a −c̄

c ā

)(
1 0

0 0

)
+

(
h̄ f

−f̄ h

)(
0 0

0 1

)
(8.126)

=

(
a 0

c 0

)
+

(
0 f

0 h

)
=

(
a f

c h

)

such that clearly a = A, c = C, f = −C̄ and h = Ā. Thus, by inspection of their

components’ complex conjugates, it immediately follows that Ûn = û
(0)
n = û

(1)
n .

Evidently, there can be no choice of operator, û
(0)
n or û

(1)
n , in this single qubit universe;

it does not matter what the state Ψn actually is, it will always be rotated in the same

way.

8.5.3 Selective Local Evolution and Endophysics

In universes developing according to the Rules described in Section 8.5.2, every part of

the state would be evolved at the same time and in the same way.

This, however, would lead to a physical limitation. An outcome of Chapter 6 was that

the result of a global application of a unitary operator to a state is effectively unobservable,

at least from the point of view of an endo-observer who is only able to witness the universe

developing if it changes relative to herself. But, real endo-physical observers do appear to

be able to witness relative changes occurring in the real physical Universe.

As an illustration of this issue, consider again the notion of an idealised physics ex-

periment. Traditionally, in such an experiment a physicist prepares an apparatus and

some sort of sample to be investigated. She then decides what she wants to measure,

tests the sample, and records the result. She may then go on to do any number of further

investigations on the sample based upon what she has learnt.
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In the context of a fully quantum reality, however, it should be recalled that the

physicist, the sample, and the apparatus are just sub-systems within the state Ψn of the

universe. Each may be represented by a factor of the universe’s state, such that Ψ may

be written in the form

|Ψ〉 = |Physicist〉 ⊗ |Sample〉 ⊗ |Apparatus〉 ⊗ |Rest of Universe〉. (8.127)

Of course, these sub-states of Ψ are likely to change as the experiment proceeds; they

must also necessarily entangle with one another as new information is exchanged. Thus,

the separability of the state changes as the universe develops, and this gives rise to apparent

measurements of the sample’s sub-state, movement of the apparatus’ pointer, changes in

the scientist’s brain as she learns the result, etc.

So, as the universe develops from state Ψn to Ψn+1 to Ψn+2 etc., the factors represent-

ing the sub-systems also develop. However, if this sequence is to be consistent with the

reality experienced by scientists, the development must be such that, overall and from the

endo-physical perspective of the physicist, the factor representing the physicist appears

to use the factor representing the apparatus to independently prepare and test the factor

representing the sample.

Thus in the context of a quantum universe, the above experiment may be viewed as one

part of the universe’s wavefunction apparently developing another part of the universe’s

wavefunction. Further, in such a universe the decision about which operator is used to

develop one part of the universe’s state may be made by considering changes in a different

part of the universe’s state. In other words, what the scientist decides to do next to the

sample may be based upon the result contained in the position of the apparatus’ pointer.

This then leaves a question. If physicists are part of the Universe, yet appear to be able

to develop their surroundings with an apparent freedom that depends (literally) on their

current ‘state of mind’, how does this procedure actually work? How are physicists able

to get the impression that the evolution of the Universe around them actually depends

on their sub-state and what they are doing? In other words, what mechanisms could

be used to self-referentially develop the universe in a manner that appears to depend on

one or some of its sub-states, but not on others? Thus, how might it be possible for the

universe to develop in a way such that some parts of it are evolved, whilst other parts

appear to remain unaffected, so that changes and relative differences may be observed and

catalogued?

So, to begin to answer to these questions, and as an extension to the previous Selective

Global Evolution Rules, it may be possible to consider Examine-Decision mechanisms in

which one factor of the state is examined, and where the outcome of this is then used to
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determine how a different factor is evolved. Such a mechanism may be called a Selective

Local Evolution (SLE).

Care must be taken when interpreting this type of evolution. Emphatically, the sug-

gestion is not to introduce a dynamics in which only a portion of the state Ψn is evolved,

measured or collapsed at any one time. After all, recall that quantum mechanics is a

holistic theory, and so the entire state of a universe based upon quantum principles must

be evolved and tested at the same time, and not just sub-states or factors of it. Indeed,

even in the simple toy-universes described in this chapter as tensor products of qubits, it

has not been possible to evolve or test just one of these qubits on its own, but has instead

relied on the projection of the entire wavefunction Ψn into one of members of the basis

sets of eigenvectors of Σ̂n+1 that span the overall Hilbert space of the universe’s state.

So in the hope of proposing Rules for a quantum universe that appears to evolve

according to examinations of parts of its state, the ‘trick’ is therefore to devise a mechanism

in which although every part of the universe is evolved or tested at the same time, it

appears as if, after each evolution or state reduction, only certain factors have changed

whereas others have been unaffected. Moreover, the way in which a changed factor is

rotated appears to depend on the sub-state of an unaffected factor.

Putting this in context, the aim is to investigate mechanisms in which the ‘Physicist’

factor remains unchanged during the evolution of the ‘Sample’ factor under investigation,

and where the sub-state of the Physicist somehow determines how the Sample sub-state

is actually rotated.

Universes incorporating SLE Rules necessarily require a separable state, and hence

a factorisable Hilbert space. Without loss of generality, and for simplicity, consider a

bi-partite factorisation of the Hilbert space H of the universe, such that H ≡ H[AB] =

HA ⊗HB. Consider also an arbitrary separable state Ψn ∈ HAB of the form

Ψn = |a〉A ⊗ |b〉B. (8.128)

In order to generate the SLE dynamics desired, a unitary operator Ûn is sought that,

when acting upon the state Ψn, examines the ‘properties’ of one of the factors (i.e. the

“Physicist”), and then evolves the other factor (i.e. the “Sample”) in a way that depends

upon the result of this examination. Moreover, the sub-state of the physicist must be left

unchanged by the application of Ûn. The resulting vector Ψ′
n = ÛnΨn (consisting of the

unchanged Physicist and the evolved Sample) may then be tested and collapsed by some

Hermitian operator Σ̂n+1, to give the next state Ψn+1. For obvious reasons, the particular

SLE mechanism described here may hence be labelled a Physicist-Sample (PS) mechanism.

Overall, then, this type of Physicist-Sample, Selective Local Evolution, Examine-

Decision mechanism is based upon general Rules of the form

306



1. Apply a particular unitary operator Ûn to Ψn to give the ‘rotated’ state Ψ′
n = ÛnΨn;

2. Test Ψ′
n with Σ̂n+1 to give the new state Ψn+1, which is one of the eigenvectors of

Σ̂n+1;

Of course, the actual mechanism employed to choose the Hermitian operator Σ̂n+1 is

left unspecified in this discussion, and may, perhaps, involve any of the Types of Rule

described in Section 8.1. In fact, to ensure that the state Ψn+1 is also separable relative

to HA ⊗ HB, as would be necessary for the procedure to repeat, the choice of operator

Σ̂n+1 could actually be constrained such that it is itself factorisable relative to this split,

as discussed in Chapter 5.

In order to provide the type of Physicist-Sample dynamics hoped for, the unitary

operator Ûn must be defined such that

Ψ′
n = ÛnΨn = Ûn(|a〉A ⊗ |b〉B) = |a〉A ⊗ |c(a)〉B (8.129)

where |c(a)〉 ∈ HB is a vector in HB whose form depends somehow on |a〉. Thus |c(a)〉 =
|b′〉 = û

(a)
B |b〉, where û

(a)
B is a unitary operator acting locally in the sub-space HB that is

chosen according to some property of |a〉.
A schematic description of the SLE dynamics discussed here is analogous to the SGE

case introduced in Sub-section 8.5.2. In particular, a mechanism is similarly imagined in

which the operator Ûn is taken to ‘contain’ within it a further set of unitary operators,

each of which may be appropriately ‘turned on or off’. This time, however, which one of

these unitary operators is actually ‘activated’ depends on the properties of one particular

factor of Ψn, and not on overall properties of the whole state. Thus, the factor |a〉 in HA is

used to select how the factor |b〉 in HB is evolved, such that the selection of the particular

operator û
(a)
B depends somehow on |a〉.

Also similarly to the SGE mechanism suggested previously, the proposal here is to

construct Ûn from a linear sum of pairs of operators. This time, however, one member of

the pair is used to ‘ask’ about the factor of Ψn in HA, whilst the other operator is used

to evolve the factor of Ψn in HB in a way that depends on the result of this ‘question’.

Consequently, in the present circumstance the operator Ûn is given by a linear sum of

tensor products of such pairs of operators, and may be given in the form

Ûn = Â
(1)
A ⊗ û

(1)
B + Â

(2)
A ⊗ û

(2)
B + ... (8.130)

where Â
(i)
A is an operator that ‘asks’ about the factor in HA, and û

(i)
B evolves the factor in

HB according to the answer. As before, the ‘questions’ {Â(i)
A } are assumed to be mutually

exclusive and exhaustive, and are taken to provide a definite ‘Yes’ or ‘No’ (i.e. 1 or 0) for

each Ψn. So, if the answer to Â
(i)
A ‘asking’ about the factor in HA is ‘Yes’ (or 1), then the

factor in HB is rotated by û
(i)
B ; otherwise, if the answer is ‘No’ (or 0), û

(i)
B is not applied.
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The actual details of the Selective Local Evolution mechanism are perhaps best illus-

trated by example, as given in the following sub-sections. As will be seen, the asking

operators may again be associated with projection operators.

First, however, note that in any SLE governed universe, the apparent dynamics de-

pends very much upon point of view. In fact, this comment itself reflects the opposing

viewpoints of exo- and endo-physics.

From the exo-physical point of view of an observer standing outside the quantum

universe and examining the system as a whole, the dynamics describes a single state Ψn

evolving as Ψn → Ψ′
n = ÛnΨn according to a global operator Ûn, before undergoing

collapse to one of the non-degenerate eigenvectors of a particular operator Σ̂n+1. The new

state Ψn+1 is then evolved and collapsed, and the process continued.

This ‘external’ point of view is generally the most convenient way to discuss the devel-

opment of a universe, and is the one that has been used almost exclusively throughout this

thesis. Of course, such a perspective is also inherently unphysical, because by definition

nothing can stand outside of the universe. However whilst this may be the case, it is

still valid to discuss this hypothetical point of view if it is specified that such an external

‘observer’ does not interact with the universe in any way; it is merely a privileged vantage

point illustrative when discussing the development of the state as a whole. Thus, such

observers do not actually observe anything, in the true quantum sense of the word.

Now, a feature of the Physicist-Sample mechanism suggested above is that some sub-

states that were present as factors of Ψn may still exist as factors of Ψn+1. Say, for example,

that the operator Σ̂n+1 is such that the next state Ψn+1 is of the form

Ψn+1 = |a〉A ⊗ |d〉B (8.131)

where |d〉B ∈ HB. Clearly, then, |a〉A is a factor of each of Ψn, Ψ
′
n and Ψn+1.

Now, from the endo-physical point of view of this unchanged factor |a〉A, it would

look like nothing had been done to it during the transition from Ψn to Ψn+1 whilst other,

apparently isolated, parts of the universe have changed. From such a factor’s perspective,

it would appear as if the rest of the universe had evolved ‘around’ it, whilst it had been

unaffected by either the evolution from Ψn to Ψ′
n or the state reduction from Ψ′

n to Ψn+1.

Alternatively, from the point of view of the rest of the universe, it appears that the

unchanged factor has been ‘frozen in time’. The frozen factor is a part of the universe

that seems to have been created at some time in the past, but has since appeared to have

been left alone in the subsequent development.

So, if the way in which the universe evolves depends somehow on properties of one of

these unchanged factors, it could appear, again from the perspective of such a factor, that
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it was these properties that caused the change in the rest of the universe. From this point

of view, it is as if the way in which the universe is developed depends on one of the factors

of its state.

Summarising, from the point of view of an endo-physical observer, it is possible to

devise a mechanism in which the dynamical evolution of the universe appears to depend

on parts of its state, as will be shown in the following. From such a perspective, it would

seem that the unchanged factor (i.e. the Physicist) ‘chooses’ how the Sample evolves,

according to which sub-state this ‘endo-observer’ is in.

From the external point of view of the entire universe, however, the state Ψn will

be seen to evolve to Ψ′
n in a deterministic, global fashion, as expected from the unitary

relationship Ψn → Ψ′
n = ÛnΨn.

SLE rules are therefore a variant of SGE dynamics in which local examinations and

relative evolutions seem to become apparent from an endo-physical perspective.

The exact details behind such SLE mechanisms will be introduced, elaborated upon,

and demonstrated in the following examples.

8.5.4 A Two Qubit ‘Physicist-Sample’ Universe

To illustrate the type of Selective Local Evolution, Physicist-Sample dynamics suggested

in the previous subsection, consider a two qubit universe represented by a state Ψn in the

factorisable Hilbert space H[12] = H1 ⊗H2. Further, assume that Ψn is separable relative

to H[12], such that Ψn ∈ H12 ⊂ H[12], and label the factor in H1 as ‘qubit 1’, or q1, and

the factor in H2 as ‘qubit 2’, or q2. Additionally, consider the usual orthonormal basis sets

B1, B2 and B12 for the Hilbert spaces H1, H2 and H[12] respectively, defined as

B1 = {|0〉1, |1〉1} , B2 = {|0〉2, |1〉2} (8.132)

B12 = {|00〉12, |01〉12, |10〉12, |11〉12}.

As before, the matrix representation {|0〉a, |1〉a} ≡
{(

1
0

)
a
,
(
0
1

)
a

}
may be adopted for

a = 1, 2.

The intention of this sub-section is to introduce a model in which the development

of qubit 1 is controlled somehow by the state of qubit 2. In particular, and to illustrate

the general principle, the aim will be to analyse a system in which if q2 = |0〉 then q1

is evolved using an unitary operator û0, whereas if q2 = |1〉 then q1 is evolved using a

different unitary operator û1.

As should be evident from before, such a mechanism is analogous to introducing a

‘physicist’ into the universe. The physical interpretation is that qubit 2 acts like the deci-

sion making scientist: if the ‘physicist’ is in one particular state then a certain experiment
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is performed on qubit 1, but if ‘she’ is in another state then something completely different

is done to qubit 1.

An important comment, however, must first be made at this point. Note that in the

following, a sub-script on an operator is used to distinguish it, whereas its super-script

denotes which qubit(s) Hilbert space(s) it is acting upon. Thus, for example, the operator

written û10 indicates the operator û0 acting in H1, whereas û20 implies the same operator

û0 acting instead in H2. Similarly, the operator Ûn ≡ Û
[12]
n acts across the entire Hilbert

space H[12]. This notation is converse to both the usual convention adopted generally

throughout this thesis to label operators, and to the usual reservation of sub-scripts for

labelling Hilbert spaces, and results from a desire to keep the sub-script n on Ûn as a

‘temporal’ parameter.

Sub-scripts on states are still used to denote Hilbert space affiliation, such that |0〉1 ∈
H1 etc., apart from on Ψn where it indicates the state of the universe at time n in the

usual way.

Note also that labels may be omitted for clarity when no confusion is likely to occur,

such that for example Ûn ≡ Û
[12]
n , and |0〉1 ⊗ |1〉2 ≡ |0〉 ⊗ |1〉 ≡ |01〉. Further, note that

the ‘lower case’ unitary operators û0 and û1 will be defined constantly for all time: û0 is

the ‘zeroth’ operator, and not an operator û at ‘time’ n = 0. In general, of course, the

purpose of a particular sub- or super-script in any individual case in the following should

be fairly obvious from context.

As expected from (8.130), the evolution of a two qubit PS universe is taken to be

governed by a unitary operator Ûn of the form26 Ûn = û10 ⊗ Â2
0 + û11 ⊗ Â2

1 + ..., where Âi
j

is an operator that ‘asks’ the jth ‘question’ of the ith qubit. In fact for simplicity in the

current two qubit universe, attention may be restricted to operators Ûn of the form

Ûn = û10 ⊗ Â2
0 + û11 ⊗ Â2

1 (8.133)

where Â2
0 and Â2

1 provide mutually exclusive and exhaustive ‘questions’: if Â2
0 acting on

q2 is ‘Yes’, then Â2
1 acting on q2 must be ‘No’, and vice versa.

In order to define a valid Physicist-Sample mechanism, unitary operators Ûn, û0 and û1

are sought such that, from the exo-physical point of view, the entire state of the universe

is evolved globally by a single unitary operator Ûn, i.e. Ψn → Ψ′
n = ÛnΨn, but from

the endo-physical viewpoint of qubit 2 this operation Ûn appears to be equivalent to a

selection of either û0 or û1 to act locally upon q1, by a decision made in reference to the

state of q2. Clearly, a definition for the operators Â2
j , that ‘ask’ whether qubit 2 is in the

state |0〉 or |1〉, will therefore also be required.

26Noting the now changed sub- and super-script convention.
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This observation provokes a second important comment; namely, observe that there is

immediately an inherent difference between the operators Ûn, û0 and û1. The operator û10

may be represented by a 2 × 2 matrix, because it is to act locally on qubit 1 in the two

dimensional Hilbert space H1. Similarly, û11 may also be represented by a 2 × 2 matrix

because it also acts just on q1 in H1. However, Ûn acts globally on the state of the entire

universe, i.e. on the state Ψn of both qubits in the four dimensional Hilbert space H[12],

and so must be represented by a 4× 4 matrix. Clearly, if Ûn is given in the form (8.133),

its dimension must equal the product of the dimensions of the operator acting in H1 (i.e.

û10 or û11) and the operator Â2
j acting in H2 that ‘asks’ which state qubit 2 is in. Thus,

the ‘asking’ operator must also be represented by a 2 × 2 matrix, as expected from the

observation that it is to ‘ask’ about the state of a single qubit.

As before, suitably defined projection operators are obvious candidates for the Âi
j .

The following example illustrates how a two qubit Physicist-Sample mechanism might

be constructed. The development of the presented model will proceed through two different

steps, each incorporating an evolution part and a state reduction. Thus, one ‘cycle’ of the

dynamics takes place in two time steps, as will become evident. Moreover, under this

circumstance it is necessary to define an initial stage as a type of ‘reference’, so that the

Rules ‘know’ which of the first or second steps should be applied to the current state.

Defining the initial state as ΨN at initial ‘time’ n = N, the development of the proposed

two qubit PS universe is governed by the Rules

1. Evolve the initial state ΨN with the particular unitary operator ÛN = ÛX , such that

ΨN → Ψ′
N = ÛXΨN ;

2. This evolved state Ψ′
N is then collapsed into one of the eigenstates of a particular

Hermitian operator Σ̂N+1 = B̂, and this vector may now be associated with the next

state ΨN+1, with the usual probability amplitudes 〈ΨN+1|Ψ′
N 〉;

3. The new state ΨN+1 is then evolved with a different unitary operator, ÛN+1 = ÛY ,

into the state Ψ′
N+1, such that ΨN+1 → Ψ′

N+1 = ÛY ΨN+1;

4. Finally, this new evolved state is collapsed back into one of the eigenstates of Σ̂N+2 =

B̂ to give the next state ΨN+2, with probabilities |〈ΨN+2|Ψ′
N+1〉|2.

The ‘first step’ hence contains procedures “1." and “2.", whilst the second step is parts

“3." and “4.". The two step mechanism then repeats, such that ΨN+2 is next rotated by

ÛN+2 = ÛX = ÛN , and so on. Of course, the operators ÛX , ÛY and B̂ must be carefully

defined in order for the universe to follow SLE dynamics.
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In general, then, the Rules of the model are such that

Σ̂N+m = Σ̂N+m+1 = B̂ , m = 0, 1, 2, ... (8.134)

ÛN+m =

{
ÛN = ÛX if m = 0, 2, 4, ...

ÛN+1 = ÛY if m = 1, 3, 5, ...

}

noting the unavoidable clash of notation: ÛN is taken to indicate the relevant unitary

operator at time N, whereas ÛX denotes a fixed unitary operator. Similarly, ÛY is also a

fixed operator, and is not meant to imply Û at time Y.

In order to provide a suitable mechanism for a universe developing according to

Physicist-Sample, SLE Rules, the unitary operators ÛX and ÛY are defined to be

ÛX = û10 ⊗ P̂ 2
0 + û11 ⊗ P̂ 2

1 (8.135)

where P̂ r
s ≡ |s〉rr〈s| for s = 0, 1 is the sth projection operator acting in Hr, and

ÛY = Î1 ⊗ û22 (8.136)

where Ît is the identity operator in Ht. The exact reasons for these choices will become

apparent, noting immediately, however, that ÛX is in the form expected from (8.133).

Similarly, the Hermitian operator B̂ is chosen to be one that possesses a completely

separable basis set B(0,4) of orthonormal eigenvectors,

B(0,4) = {|00〉12, |01〉12, |10〉12, |11〉12} (8.137)

such that in fact B̂ ≡ B̂(0,4) and B(0,4) = B12, again for reasons given below.

The significance of this model, and in particular the appearance of Selective Local

Evolution dynamics, can be demonstrated from a comparison of the exo- and endo-physical

interpretations of the universe’s development.

From the point of view of an observer external to the system, the first step involves

the global rotation of the entire initial state ΨN by ÛX , followed by its subsequent mea-

surement with B̂, whilst the second step involves the new state ΨN+1 being globally

rotated in a different way by ÛY , before the whole universe is again measured with B̂.

So, from the exo-physical point of view, the development of the universe proceeds in a

semi-deterministic globalised fashion according to the operators ÛX , B̂, ÛY and B̂ being

applied in turn, and the only randomness occurs as a result of the stochastic nature of the

wavefunction collapse process, when a particular state ΨN+m is obtained from the set of

eigenvectors B(0,4) of Σ̂N+m = B̂.

However, to see the apparent Selective Local Evolution present in the model, it is

necessary to examine the endo-physical point of view of one of the qubits. From such a
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perspective, it appears that the unitary operators ÛX and ÛY are evolving the universe

in a manner that depends on one of its sub-states; this conclusion is demonstrated now.

Firstly, and for simplicity, assume that the universe has been prepared such that its

initial state ΨN is separable (i.e. the qubits are not entangled with one another), that

the factor of ΨN representing q1 in H1 is either in the state |0〉1 or the state |1〉1, and
that the factor of ΨN representing q2 in H2 is either in the state |0〉2 or the state |1〉2
(i.e. neither qubit is in an arbitrary superposition of its basis vectors). These assumptions

will be justified later, noting that the former has already been taken to be essential if a

classically distinct ‘Physicist’ and ‘Sample’ are to be discussed.

Consider now the application of the operator ÛX to this state ΨN . A projection op-

erator P̂ 2
s ≡ |s〉22〈s|, where s = 0, 1, may be interpreted as an operator that ‘asks’ which

state qubit 2 is in: if q2 is in the state |q2〉2 = |s〉2, then P̂ 2
s |q2〉2 gives the ‘answer’

P̂ 2
s |q2〉2 = |s〉22〈s||s〉2 = 1× |s〉2 , s = 0, 1 (8.138)

whereas if q2 is in a state orthogonal to |s〉2 then P̂ 2
s |q2〉2 gives the ‘answer’ 0× |s〉2.

Thus, the combined operator û1t ⊗ P̂ 2
s acting on the general qubit product state |q1〉1⊗

|q2〉2, where |q2〉2 is |0〉2 or |1〉2 by design and t = 0, 1, gives the result

[û1t ⊗ P̂ 2
s ]|q1〉1 ⊗ |q2〉2 =

{
[û1t |q1〉1]⊗ [1× |q2〉2] if |q2〉2 = |s〉2
[û1t |q1〉1]⊗ [0× |q2〉2] if |q2〉2 6= |s〉2

}
, s, t = 0, 1. (8.139)

Overall, then, the evolution ΨN → Ψ′
N = ÛXΨN is consequently equivalent to an

operation that leaves q2 in its initial state (either |0〉 or |1〉) whilst rotating the state of q1.

Further, if qubit 2 is initially in the state q2 = |0〉 then qubit 1 is evolved by û10, whereas

if qubit 2 is in the state q2 = |1〉 then qubit 1 is evolved by û11.

So, from the endo-physical point of view of the ‘Physicist’ qubit, q2, it appears that

the rest of the universe, q1, has developed in a way that depends on ‘her’ state, whilst

‘she’ has remained unchanged. Qubit 2 could conclude that it was she who determined

how the universe evolved, by ‘choosing’ to apply an operator û10 or û12 to q1; she would not

automatically assume that it was actually the whole universe that was globally evolved by

an operator ÛX .

The next part of the first step involves the collapse of the wavefunction Ψ′
N .

In many ways, it is possible to consider qubit 2 as being a classical ‘object’; qubit 2 is

still in a ‘classical’ looking state, |0〉 or |1〉, because the unitary operators û10 and û11 act

solely on q1, such that only this first qubit may be in a superposition. It might therefore

be tempting to disregard q2 entirely when discussing the collapse of the statefunction

Ψ′
N . This follows from the general logic that if the initial state of qubit 2 is known, no
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new information may be extracted from the system by the application of the projection

operators P̂ 2
0 or P̂ 2

1 .

From the point of view of the physical interpretation of the current model, this dis-

regarding seems a natural conclusion, and represents the normal, ‘everyday’ exo-physical

approach to quantum theory in which it appears possible to perform some sort of quantum

experiment on one particular sub-system of the universe whilst leaving other sub-systems

alone.

So, following on from this (erroneous) perspective, a suitable next operator Σ̂N+1 =

B̂suit? used to test the universe’s state Ψ′
N might therefore be expected to be of the form

B̂suit? = σ̂1
3 ⊗ Î2 (8.140)

which could be interpreted as the product of a Pauli operator σ̂1
3 that collapses qubit 1

into either |0〉 or |1〉, with the identity operator Î2 doing nothing to qubit 2.

Such an analysis, however, is incorrect. The operator B̂suit? can be shown to have

degenerate eigenvalues, and as such does not possess a unique basis set of orthogonal

eigenvectors; consequently it is not a valid operator to use when discussing tests in the

proposed fully quantum paradigm.

The general problem associated with operators such as B̂suit? results from the fact

that the universe cannot be tested simply as a product of classical objects: in quantum

theory it is not possible to isolate a sub-state from everything else. Phrasing this more

mathematically, it is not always possible to test the universe by independently testing

its parts: an operator Λ̂1 acting on qubit 1 in H1 may have two, unique orthogonal

eigenvectors, as might an operator ∆̂2 acting on qubit 2 inH2, but this does not imply that

the combined operator Λ̂1⊗∆̂2 must necessarily have four, unique orthogonal eigenvectors.

Such an argument was presented in the discussion of ‘Strong’ and ‘Weak’ operators given

in Chapter 5, and is also related to the conclusion of Chapter 4 that separable states are

just a tiny subset of the set of all vectors in a Hilbert space.

In short, the state of the universe may be described as greater than the sum of its

parts, and so care must therefore always be taken to choose an operator Σ̂N+1 that acts

on the entire quantum state, yet also possesses a basis set of four orthogonal eigenvectors.

The operator B̂(0,4), however, defined by

B̂(0,4) = w|00〉〈00|+ x|01〉〈01|+ y|10〉〈10|+ z|11〉〈11| (8.141)

in accordance with the basis set B(0,4) in (8.137), does satisfy this condition, where

w, x, y, z ∈ R+ are non-degenerate eigenvalues of no further consequence to the discus-

sion. Thus, B̂(0,4) is a valid Hermitian operator, and so may be used to test the overall

state Ψ′
N of the universe.
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Moreover, an operator of the form Σ̂N+1 = B̂(0,4), which defines the basis set BN+1 =

B(0,4) for the next state ΨN+1, also has the important consequence that there is no eigen-

state of Σ̂N+1 for which q1 and q2 are entangled with one another, nor is there an eigenstate

containing a linear superposition of the form (a|0〉1+b|1〉1)⊗(c|0〉2+d|1〉2), for a, b, c, d 6= 0

and a, b, c, d ∈ C. Thus after testing Ψ′
N with Σ̂N+1 = B̂(0,4), both qubits have the ‘classi-

cal’ form q1 = |0〉 or q1 = |1〉 and q2 = |0〉 or q2 = |1〉.
Furthermore, since the Rules are such that Σ̂N+m = B̂(0,4) for all m, it implies that

ΨN+m ∈ B(0,4) for all m, and this justifies the assumption made earlier that the ‘initial’

wavefunction is always a separable state with neither qubit superposed.

So, after the test of Ψ′
N by Σ̂N+1 = B̂(0,4), the subsequent state ΨN+1 will be one of

the eigenstates of B̂(0,4), with appropriate probability amplitudes given in the usual way.

The above discussion highlights the fact that from the holistic point of view of a

quantum universe, it is not possible to naively segregate the state into factors under

investigation and everything else. In fact, it is the entire state of the universe that must

instead be measured.

The endo-physical observation that qubit 2 appears to be unaffected by the application

of ÛX or Σ̂N+1 = B̂(0,4), however, is because the jump from the state

Ψ′
N = (a|0〉1 + b|1〉1)⊗ (c|0〉2 + d|1〉2) (8.142)

where a, b ∈ C and either c = 0 and d = 1 or c = 1 and d = 0 (noting that Ψ′
N is still

separable, as û10, û
1
1, P̂

2
0 and P̂ 2

1 act locally), to a subsequent state

ΨN+1 = (A|0〉1 +B|1〉1)⊗ (C|0〉2 +D|1〉2) (8.143)

which is an eigenstate of B̂(0,4) (one of which, for example, is |00〉, where A = C = 1,

B = D = 0), has a non-zero probability, |〈ΨN+1|Ψ′
N 〉|2, of occurring if and only if C = c

and D = d.

So, from the point of view of qubit 2, the test B̂(0,4) therefore appears equivalent to

the product of a projection of the evolved sub-state of qubit1 onto the basis set {|0〉1,
|1〉1}, with a ‘null’ operator acting upon itself. In reality, both qubits are actually tested,

but no new information is acquired about q2.

It is these apparent null tests, i.e. the observation that every factor of a state is involved

in a quantum test but that some outcomes of this measurement have a zero probability

of being realised, that may be a root cause of apparent permanence in the Universe.

Specifically, this mechanism gives rise to the “frozen factors” described previously, and

explains why it is possible to have sub-states that appear unchanged as the Universe

evolves from Ψn to Ψn+1.
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Note that, of course, this ‘null process’ may in principle continue over several jumps

of the real Universe: a sub-state that was present as a factor of both Ψn and Ψn+1

may remain as a factor of Ψn+2, Ψn+3, ... until some later state Ψn+m, which may have

completely different factors. Again, this could contribute to the phenomena of persistence

and longevity.

It should be reiterated how important it is that the null tests are included in the

operators. In the present case, qubit 2 must still be involved in the measurement of

Ψ′
N , because, apart from the degenerate eigenvalue problem, if this were not the case the

question would remain as to why only parts of the state are evolved or tested when others

are left alone, and this is contrary to the notion of a single set of rules of physics applying

to the whole universe at the same time. Further, if a test did include eigenstates in which

qubit 2 could be neglected, that is if, say, ΨN+1 ≡ χ = (A|0〉1 + B|1〉1), the question

would remain as to what the amplitude 〈χ|Ψ′
N 〉 may mean mathematically, given that the

dimensions of the Hilbert spaces of χ and Ψ′
N differ.

Of course, it is possible to restrict attention to individual factors of the initial and

final states, and correctly evaluate amplitudes such as 〈χ|ϕ〉, where ϕ = (a|0〉1 + b|1〉1) is
a factor of Ψ′

N = ϕ ⊗ (c|0〉2 + d|1〉2), for a, b ∈ C and either c = 0 and d = 1 or c = 1

and d = 0. However whilst this is mathematically sound, the interpretation is really only

valid from the exo-physical point of view of one sub-system (in this case q2) describing

changes in another isolated sub-system (in this case q1). It is therefore a bit misleading

when attempting to consider a universe that is a complete quantum system, in which the

endo-physical ‘observer’ (here q2) is itself part of the state it is trying to measure.

In a fully quantum universe, everything has to be evolved and tested at the same time,

though some factors of the universe’s state may be unchanged by the evolution, and may

appear unchanged by the test. Despite appearances, it is not possible to just evolve or

measure part of a fully quantum universe, though it is possible to discuss effects that

appear local by ignoring null tests and identity evolutions and considering the physical

interpretation of the model.

If the development of the two-qubit universe was governed by just repeating the first

step of the Rules (i.e. just parts “1." and “2."), its dynamics would be rather restricted.

Specifically, if the development from ...ΨN → ΨN+1 → ΨN+2 → ... was due solely to an

application of the operators ÛX , Σ̂N+1, ÛX , Σ̂N+2, ÛX , ..., its Evolution would actually

contain very little Selection. This is because if qubit 2 is initially in the state |0〉, it implies

that qubit 1 will always be evolved by û10 from then on, whereas if at initial ‘time’ N qubit

2 is instead in the state |1〉, then qubit 1 would instead be evolved by û11 for all N +m,

where m = 0, 1, 2, ...
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The above conclusion follows because there is currently no mechanism for changing the

state of qubit 2, and therefore obtaining a more interesting dynamics based upon selection.

This problem, however, may be remedied by introducing the second step. The second

step is defined such that it begins by evolving q2 whilst appearing to leave q1 unaffected.

A unitary operator ÛN+1 is hence used that rotates the factor of ΨN+1 in H2 whilst doing

nothing to the factor in H1.

Specifically, this “doing nothing” operation may be achieved by the identity operator

Î1 acting locally on q1, such that a suitable unitary operator ÛN+1 = ÛY is given by

ÛN+1 = ÛY = Î1 ⊗ û22 (8.144)

as suggested earlier. Clearly, both qubits are involved in the evolution, but only the state

of q2 is actually changed.

The final procedure of the second step is then to collapse the wavefunction in order to

obtain the next state ΨN+2. The operator B̂(0,4) may again be used, such that the state

after reduction is ‘reset’ back to one of the members of the basis B(0,4).

Evidently, from the endo-physical point of view of the individual qubits, it appears

that during the second step qubit 1 is not taking any part in the evolution or collapse

process. From the exo-physical point of view of the entire universe, of course, both qubits

are involved.

The two step process may then be repeated, starting with the application of ÛX to

ΨN+2.

The proposed mechanism may now be summarised from the endo-physical perspective.

Given an ‘initial’ state ΨN ∈ B(0,4), the application of the operator ÛX evolves this vector

in a manner that appears to depend on whether qubit 2 is |0〉 or |1〉. The rotated state

Ψ′
N is then tested by an operator Σ̂N+1 = B̂(0,4), which collapses it back into one of the

members B(0,4), with probabilities given in the usual way.

Then, during the second step, the state ΨN+1 of the universe is evolved by ÛY , which

is equivalent to just rotating the sub-state of qubit 2 with û22. Finally, the state Ψ′
N+1

is tested with B̂(0,4), and the universe collapses back into one of the members of B(0,4),

noting that whichever member this may be, ΨN+2 is separable and q2 is definitely in either

|0〉 or |1〉, as required for the reapplication of ÛX when the first step is repeated.
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PS Example

It is now shown implicitly how a two qubit universe may develop when governed by

the above Selective Local Evolution, PS Rules incorporating the operators ÛX , ÛY and

B̂(0,4).

Consider as an example a two qubit system initially in a state Ψ0 given by

Ψ0 = |00〉12 = |0〉1 ⊗ |0〉2 =
(
1

0

)

1

⊗
(
1

0

)

2

=

(1
0
0
0

)
. (8.145)

Consider also unitary operators û0, û1 and û2 defined as

û0 = e−iεσ1 , û1 = e−iµσ2 , û2 = e−iνσ1 (8.146)

where ε, µ, ν ∈ R+ are real parameters, and σ̂i is the i
th Pauli operator. Thus the operator

ÛX becomes

ÛX = û10 ⊗ P̂ 2
0 + û11 ⊗ P̂ 2

1 (8.147)

=

(
cos ε − i sin ε

−i sin ε cos ε

)
⊗
(
1 0

0 0

)
+

(
cosµ − sinµ

sinµ cosµ

)
⊗

(
0 0

0 1

)

whilst ÛY is given by

ÛY = Î1 ⊗ û22 =

(
1 0

0 1

)
⊗

(
cos ν − i sin ν

−i sin ν cos ν

)
. (8.148)

The first step of the mechanism evolves the state of the universe to Ψ′
0 by an application

of Û0 = ÛX to Ψ0. So,

Ψ′
0 = ÛXΨ0 = ÛX(|0〉1 ⊗ |0〉2) (8.149)

= [û10|0〉1]⊗ [|0〉22〈0|0〉2] + [û11|0〉1]⊗ [|1〉22〈1|0〉2]
= [û10|0〉1]⊗ [|0〉2 × 1] + 0 = (cos ε|0〉1 − i sin ε|1〉1)⊗ |0〉2.

The universe is then tested with the Hermitian operator Σ̂1 = B̂(0,4), such that its next

state Ψ1 will be a member of the basis set B(0,4) ≡ {|00〉, |01〉, |10〉, |11〉}, with relative

probabilities given by

Ψ1 |00〉 |10〉 |01〉 |11〉
Prob.= |〈Ψ1|Ψ′

0〉|2 cos2 ε sin2 ε 0 0
Table 8.4

As an aside, note that if ε ∼ 0, it is highly probable that Ψ1 is the same state as Ψ0;

this type of argument could play an important role in discussions regarding the origins of

apparent persistence.
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In accordance with the second step of the proposed Rules, the new state Ψ1 is now

evolved by the unitary operator Û1 = ÛY .

From Table 8.4 it is clear that Ψ1 will be one of two possible states, which may be

labelled Ψa
1 = |00〉 and Ψb

1 = |10〉. The next evolved state Ψ′
1 = ÛY Ψ1 will consequently

also be one of two possible states, viz. Ψa′
1 = ÛY Ψ

a
1 or Ψb′

1 = ÛY Ψ
b
1.

Specifically, it can be shown that Ψa′
1 is given by

Ψa′
1 = ÛY Ψ

a
1 = |0〉1 ⊗ (cos ν|0〉2 − i sin ν|1〉2) (8.150)

whereas Ψb′
1 is given by

Ψb′
1 = ÛY Ψ

b
1 = |1〉1 ⊗ (cos ν|0〉2 − i sin ν|1〉2). (8.151)

The second part of the second step involves the collapse of the wavefunction Ψ′
1 back

into one of the eigenstates of the operator Σ̂2 = B̂(0,4).

For the case where the state Ψ′
1 turned out to be Ψ′

1 = Ψa′
1 , the probabilities that the

subsequent state Ψ2 will be a particular member of B(0,4) are given by

Ψ2 |00〉 |10〉 |01〉 |11〉
Prob.= |〈Ψ2|Ψa′

1 〉|2 cos2 ν 0 sin2 ν 0
Table 8.5

So, if the state Ψ1 at ‘time’ n = 1 is Ψ1 = Ψa
1, the next state Ψ2 is clearly going to be

one of two possibilities, which may be labelled Ψac
2 = |00〉 or Ψad

2 = |01〉.
Conversely, if the ‘first’ state Ψ1 is instead found to be Ψ1 = Ψb

1 = |10〉, and not Ψa
1,

then the corresponding probabilities of obtaining a particular eigenstate of B̂(0,4) for Ψ2

would alternatively be given by

Ψ2 |00〉 |10〉 |01〉 |11〉
Prob.= |〈Ψ2|Ψ′

1,b〉|2 0 cos2 ν 0 sin2 ν
Table 8.6

As before, Ψ2 would again clearly be one of two possibilities in this case, which may

now be labelled Ψbe
2 = |10〉 or Ψbf

2 = |11〉.
The Rules next dictate that the first step is repeated again, such that ÛX is used to

evolve whichever of Ψac
2 or Ψad

2 or Ψbe
2 or Ψbf

2 is actually realised. Now, if Ψ2 turns out to

be either Ψac
2 = |00〉 or Ψbe

2 = |10〉, then ÛX will effectively be equivalent to û10⊗P̂ 2
0 , just as

it was for Ψ0. However, if it is instead the case that Ψ2 is either Ψad
2 = |01〉 or Ψbf

2 = |11〉,
then ÛX instead effectively becomes equivalent to û11 ⊗ P̂ 2

1 . In this latter circumstance,

cos2 µ or sin2 µ terms are now consequently introduced into the probability amplitudes, in

the obvious way.

And so on; the two step algorithm may be continued indefinitely.
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As with the examples of previous sections of this chapter, it is possible to write ele-

mentary computer programs that iterate the above procedure through a number of cycles.

Also as previously it is possible to ‘interrogate’ the results in a number of ways, as desired.

For example, even after just one iteration it is possible to examine the probability of

proceeding from an initial state Ψ0 to a particular state Ψ2. Specifically, defining

Pac = P (Ψ2 = Ψac
2 = |00〉|Ψ0 = |00〉) (8.152)

as the probability that the state Ψ2 at ‘time’ n = 2 will be Ψac
2 given that the initial state

is Ψ0 = |00〉 (which is equivalent to the product of the probability of jumping from state

Ψ0 to Ψa
1 and the probability of then jumping from state Ψa

1 to Ψac
2 ), the result (8.153) is

readily obtained.

Pac = P (Ψac
2 | Ψa

1) · P (Ψa
1 | Ψ0) (8.153)

= cos2 ν cos2 ε.

Of course, other ‘histories’ of Ψ0 → Ψ1 → Ψ2 may alternatively be chosen. In obvious

notation, it may similarly be found that Pad = sin2 ν cos2 ε, Pbe = cos2 ν sin2 ε and Pbf =

sin2 ν sin2 ε. Clearly, Pac + Pad + Pbe + Pbf = 1 as expected.

Continuing, the probability that the universe will develop from the initial state |00〉
through the sequence |00〉 → |10〉 → |11〉 → |11〉 (i.e. |00〉 → Ψb

1 → Ψbf
2 → |11〉) is given

by cos2 µ sin2 ν sin2 ε, as may be readily verified. And so on.

The physical interpretation of the above model should be emphasised from the endo-

physical point of view of qubit 2. Initially q2 is in the state |0〉, so the projection operator

part of ÛX ‘picks out’ û10, and qubit 1 is evolved accordingly. In other words the projection

operator ensures that the global transformation Ψ0 → Ψ′
0 = ÛXΨ0 is effectively equivalent

to the local transformations |q1〉1 → |q′1〉1 = û10|q1〉1 and |q2〉2 → |q′2〉2 = |q2〉2.
After the subsequent collapse of the state into either |00〉 or |10〉, qubit 2 is evolved

into a superposition by the global operator ÛY . This time, the global transformation

Ψ1 → Ψ′
1 = ÛY Ψ1 is clearly equivalent to the local transformations |q1〉1 → |q′1〉1 = |q1〉1

and |q2〉2 → |q′2〉2 = û22|q2〉2. So, although the system was initially in the state Ψ0 = |00〉,
after a second state reduction the wavefunction Ψ2 of the universe could be any member

of the set B(0,4) ≡ {|00〉, |01〉, |10〉, |11〉}, with appropriate probabilities.

The dynamics become particularly interesting during the next application of ÛX . If Ψ2

is either |00〉 or |10〉, then the projection operator will again pick out the û10 part of ÛX ,

and q1 will be evolved with this. However, if Ψ2 is instead either |01〉 or |11〉, then the

projection operator will alternatively pick out the û11 part of ÛX , and q1 will be evolved

in a completely different way.
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Thus from the endo-physical point of view, the way in which qubit 1 develops depends

on the sub-state of qubit 2. For an observer inside the universe it appears as if the way in

which the universe develops depends upon a ‘property’ of part of it.

As a final comment to this discussion it should be remarked that, despite the name,

the above two qubit Physicist-Sample mechanism is in no way imagined to be completely

descriptive of a real, physical quantum experiment. After all, from a practical point of

view, real experiments in real laboratories generally occur over very many jumps, and

between apparatus, equipment, scientists and samples that may each be represented by

enormous groups of factors. Furthermore, real experiments generally involve extended

spatial objects, and so could perhaps only be truly discussed in the large scale limit of

very many subregisters, when a quantum causal set description of emergent space may

be incorporated27. Additionally, real physical objects are generally made from enormous

collections of fundamental physical particles, and this perhaps implies that a quantum

field theoretic description should also ultimately be employed in any discussion of real

measurements in physics28.

More importantly, though, an outcome of Chapter 6 was that a real physical mea-

surement between a physicist and a sample necessarily requires a degree of entangling to

occur between their sub-states if any physical information is to be exchanged. Specifically,

a conclusion was that endophysical interactions cannot just be the result of local uni-

tary transformations. Thus, in the two qubit universes investigated above, the Physicist

qubit would not actually witness the selective evolution of the Sample qubit, because no

information is physically exchanged between them during the system’s development.

Having noted these points, however, they are subsequently ignored in the present

chapter, because it is the principles behind the Selective Evolution mechanisms that is of

interest. In particular, the success of this section is that even in the absence of physical

information extraction or exchange, it is still possible for the universe to develop in a way

in which parts of it appear to evolve relatively to others, and where the development of

one factor appears to determine the development of another. The fact that neither part is

actually ‘aware’ of how the other qubit is developing is not currently important; what is

important is that the overall universe is able to develop in this apparently self-referential

manner. In short, as long as the overall universe ‘knows’ what it is doing, it does not

matter that its constituent parts do not.

Indeed, an additional entangling step could be added to the presented SLE Rules

without great conceptual difficulty, and this could effectively enable the Physicist qubit

to investigate, in some sense, how the Sample qubit has been evolved. ‘She’ could then

27See Chapter 5.
28See Chapter 7.
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potentially ascertain how her state influenced the development of the Sample qubit.

Of course, this type of proposed extension is still highly schematic at this stage; pre-

sumably for a Physicist to really make conscious measurements and deductions would

actually require her to possess enormous numbers of degrees of freedom and be highly and

complexly organised. The conclusion, then, is that the issue of exactly how the suggested

SLE mechanism could be extended and incorporated into the discussions of the previous

chapters, so that real Physicists perform real measurements on real Samples, remains an

important question for the future.

8.5.5 A Two Qubit ‘Double Experiment’ Universe

The Physicist-Sample, Selective Local Evolution Rules of sub-section 8.5.4 govern a uni-

verse in which, from an endo-physical point of view, the development of qubit 1 (the

‘Sample’) appears to be determined by the state of qubit 2 (the ‘Physicist’), whereas the

state of qubit 2 is evolved independently: during the second step, q2 is rotated by û22

regardless of the state of q1.

A natural extension to this mechanism therefore involves a two-factor system in which

each factor appears to be evolved in a way that depends upon the sub-state of the other.

Thus, the development of one individual sub-state of such a universe seems, from the

endo-physical perspective, to be determined by the factor that comprises the remainder

of the universe; during the second step, q2 is now rotated by an unitary operator that is

selected according to the state of q1. This is a truly self-referential system: at each stage,

the universe appears to develop by examining one part of itself and evolving the other

part accordingly.

The suggested Rules may thus be described as giving rise to ‘Double Experiment ’

(DE) dynamics; they are still a type of Selective Local Evolution.

The physical interpretation of such a universe is of a ‘Sample’ whose state is evolved

according to the state of a ‘Physicist’, and where the state of the ‘Physicist’ is then

influenced by the outcome of this experiment. Furthermore, on repetition of the procedure,

the analogy is of a Physicist who subsequently ‘decides’ to develop the Sample in a way

that is based upon how ‘she’ has been affected. These ideas are consistent with the notion

that when an experiment is performed in reality on a subject, its result is often registered

as a changed ‘pointer state’ of the apparatus and, ultimately, as a change in the observing

scientist’s brain. Moreover, the result of an initial test often dictates how a scientist may

decide to perform further experiments.

In addition, such a dynamics is also fully compatible with one of the central tenets of

quantum theory: in any quantum measurement, there should be an element of symmetry
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between the ‘observer’ and the ‘observed’, because there is no real criterion for deciding

exactly which is which anyway.

The Rules that govern such a Double Experiment universe could be similar to that

of the ‘single experiment’, Physicist-Sample mechanism discussed in the previous sub-

section, but modified in the obvious way. As before, a separable state is required such

that a classical distinction may be made between the Physicist and the Sample.

Defining again a ‘reference’ time N in order to keep track of which step is currently

applicable, for an ‘initial’ separable state ΨN = |a〉A⊗|b〉B in a Hilbert space H factorised

in the bi-partite form H ≡ H[AB] = HA⊗HB, the Rules could dictate a two step sequence

of the form

1. Evolve ΨN to Ψ′
N = ÛNΨN by applying the unitary operator ÛN , where ÛN is

defined such that it selectively evolves the factor of ΨN in HA according to the

factor of ΨN in HB. Thus, ÛN obeys the relationship

ÛNΨN = ÛN (|a〉A ⊗ |b〉B) = |a′〉A ⊗ |b〉B (8.154)

with |a′〉A ∈ HA defined as |a′〉A = ûAb |a〉A, and where the actual choice of the

unitary operator ûAb depends somehow on the factor |b〉B. Note that the sub-script

and super-script convention adopted here is the same as in Sub-section 8.5.4;

2. Collapse Ψ′
N to ΨN+1 with an operator Σ̂N+1 that has a separable eigenstate of the

form |c〉A ⊗ |b〉B. Thus, ΨN+1 ∈ HAB, as would be ensured if Σ̂N+1 is chosen such

that it is factorisable relative to HA ⊗HB;

3. Evolve ΨN+1 to Ψ′
N+1 = ÛN+1ΨN+1, where ÛN+1 is defined such that it selectively

evolves the factor of ΨN+1 in HB according to the factor of ΨN+1 in HA. Thus,

ÛN+1 obeys the relationship

ÛN+1ΨN+1 = ÛN+1(|c〉A ⊗ |b〉B) = |c〉A ⊗ |b′〉B (8.155)

with |b′〉B ∈ HB given by |b′〉B = ûBc |b〉B, where the actual choice of the unitary

operator ûBc depends somehow on the sub-state |c〉A;

4. Collapse Ψ′
N+1 to ΨN+2 with an operator Σ̂N+2 that has a separable eigenstate of

the form |c〉A ⊗ |d〉B. Thus, ΨN+2 ∈ HAB.

Procedures “1." and “2." are taken to comprise the first step, whilst “3." and “4."

define the second step, as analogous to the PS Rules.

Clearly, because ΨN+2 ∈ HAB, the first step may now be repeated, and the overall

process continued indefinitely. Also clearly, the universe is developing according to Se-

lective Local Evolution, where in any given step of the mechanism the sub-state of one
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factor determines the evolution of the other factor, before these roles are reversed in the

subsequent step.

To illustrate how a typical DE mechanism might proceed, consider as before a toy-

universe represented by a state in a four dimensional, two qubit Hilbert space H(4) =

H1 ⊗ H2 spanned by the orthonormal basis B12 = {|00〉12, |01〉12, |10〉12, |11〉12}, where
B1 = {|0〉1, |1〉1} and B2 = {|0〉2, |1〉2} are bases for H1 and H2 respectively. Consider also

the above Rules, but specified by operators of the form

• Σ̂N+m = Σ̂N+m+1 = B̂, for all m = 0, 1, 2, ...

• ÛN+m given by

ÛN+m =

{
ÛN = ÛS if m = 0, 2, 4, ...

ÛN+1 = ÛT if m = 1, 3, 5, ...

}
(8.156)

where B̂ has four separable eigenstates defining the basis set

B = B(0,4) = {|00〉12, |01〉12, |10〉12, |11〉12} = B12 (8.157)

and

ÛS = û10 ⊗ P̂ 2
0 + û11 ⊗ P̂ 2

1 (8.158)

ÛT = P̂ 1
0 ⊗ û22 + P̂ 1

1 ⊗ û23.

and a suitable ‘initial’ time, N, has been chosen for reference, noting that the subscripts S

and T on the fixed operators ÛS and ÛT are obviously labels, and not temporal parameters.

Moreover, P̂ i
j is the projection operator P̂ i

j = |j〉ii〈j| for i = 1, 2 and j = 0, 1, whilst û10

and û11 are different unitary operators acting in H1, but û22 and û23 are different unitary

operators acting in H2.

As with the Physicist-Sample mechanism of the previous sub-section, the interpretation

of the dynamics of a universe developing according to the above types of Rule depends very

much upon whether an exo-physical or an endo-physical perspective is being discussed.

From a viewpoint external to the system, an ‘observer’ would witness the state of

the universe changing as follows29. The initial wavefunction ΨN is globally evolved into

the state Ψ′
N by an application of the unitary operator ÛN = ÛS , i.e. ΨN → Ψ′

N =

ÛSΨN . This evolved state Ψ′
N is then tested by the Hermitian operator Σ̂N+1 = B̂, and

consequently collapses into one of the members of the basis set B(0,4) with probability

given by the usual Born rule, thereby becoming the new state, ΨN+1.

29Note that as before, the ‘observer’ merely possesses a priviliged vantage point useful for the discussion,

and does not interact with the universe in any way.
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The second step in the universe’s development begins by the global evolution of the

state ΨN+1 by the operator ÛN+1 = ÛT , that is, ΨN+1 → Ψ′
N+1 = ÛTΨN+1. Finally,

the operator B̂ is again used to test the universe, and the state again collapses into

one of the members of B(0,4) with a new set of appropriate probabilities. The resulting

eigenvector now becomes the subsequent state ΨN+2, and the process begins again with

a repetition of the first step and an application of the operator ÛS to ΨN+2, such that

ΨN+2 → Ψ′
N+2 = ÛSΨN+2. The two-step procedure may be iterated indefinitely.

Thus, from the external point of view the universe develops in a semi-deterministic,

globalised fashion, with the choice of unitary operator ÛS or ÛT used to globally evolve

the state depending only on whether the procedure is in its first or second step. Of course,

randomness does occur in the model, but only due to the stochastic nature of the collapse

mechanism.

Ultimately, then, an exo-physical observer would conclude that the universe is not

developing according to operators chosen as a result of any of the ‘properties’ of the

current state.

As in the case of the Physicist-Sample universe, the interesting physics in the current

system’s development arises when considering the endo-physical perspective of the indi-

vidual qubits. From the point of view of one of these factors, the unitary operator ÛS

described by (8.158) is an object that appears to ‘ask’ whether qubit 2 is in the state |0〉
or |1〉, whilst locally evolving qubit 1 with either û10 or û11 according to the ‘answer’ to this

question. Specifically, if q2 is in the state |0〉, then q1 is evolved by û10, but if q2 is instead

in the state |1〉, then q1 is alternatively evolved by û11.

Similarly, from this endo-physical point of view, the unitary operator ÛT appears to

‘ask’ about the state of qubit 1 before locally evolving qubit 2 appropriately with either

û22 or û23; if q1 is |0〉, then q2 is evolved by û22, whereas if q1 is |1〉, then q2 is evolved by û23.

Also congruent to the earlier PS example, the repeated use of the operator Σ̂N+m = B̂

constrains, for all m, every collapsed state ΨN+m to be one of the four separable and

non-superposed eigenvectors defined by the basis set B(0,4).

Moreover, as before an important fact is that only those eigenstates with non-zero

probability amplitudes with Ψ′
N+m−1 can actually be realised physically. Consequently,

because during the application of either ÛS or ÛT only one of the qubits actually changes,

only two of the possible eigenvectors of Σ̂N+m = B̂ will give rise to non-vanishing inner

products with Ψ′
N+m−1. In practice, therefore, the randomly selected ΨN+m can only ever

be one of these two eigenstates. So, from an internal point of view it appears that only

one of the qubits was actually involved in the development of the state from ΨN+m−1 to

Ψ′
N+m−1 to ΨN+m, because nothing appears to have been done to the other qubit during
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this transition.

Thus, from the endo-physical perspective, the development of the universe proceeds in

a manner that appears to depend on parts of its state. Paraphrasing, during one of the

steps an observer associated with a particular qubit would believe that ‘she’ was ‘deciding’

how the other qubit is being evolved, whilst she would then conclude during the remaining

step that she was herself being evolved by an operator chosen according to the sub-state

of the other qubit.

The development of this universe may now be summarised. From the point of view of

an external observer looking at the entire state, the overall two qubit system is globally

developed according to a deterministic Rule. Broadly speaking, this Rule implies the

successive application of the operators ÛS , B̂, ÛT , B̂, ÛS , ... to the changing state Ψ.

However, the specific construction of the operators ÛS and ÛT , and the fact that the

state prior to evolution is always one of the members of B(0,4), ensures that the individual

qubits only ever ‘see’ half of each of these operators at any one time, that is, either û10⊗ P̂ 2
0

or û11⊗ P̂ 2
1 for ÛS , and either P̂ 1

0 ⊗ û22 or P̂ 1
1 ⊗ û23 for ÛT . For example, if at the beginning

of the second step the state has the form Ψ = |01〉, then the application of ÛT is effectively

equivalent to an application of just the operator P̂ 1
0 ⊗ û22, and it would appear that the

unitary operator û22 has been ‘selected’ to evolve qubit 2 according to the state of qubit 1.

Thus, from the point of view of an individual qubit, it is the state of the other factor

that appears to determine its evolution. From this perspective, an internal observer as-

sociated with an individual qubit would believe herself to exist in a fully self-referential

universe.

DE Example

As with the earlier Physicist-Sample model, it is beneficial to illustrate the Double-

Experiment mechanism by example.

Consider a separable state Ψn, in the factorisable two qubit Hilbert spaceH = H1⊗H2,

whose development is governed by the operators ÛS , ÛT and B̂ according to the above

DE Rules, and where û0, û1, û2, and û3 are given by

û0 = e−iεσ1 , û1 = e−iµσ2 (8.159)

û2 = e−iνσ1 , û3 = e−iτ σ2

for ε, µ, ν, τ ∈ R+ with σ̂j the jth Pauli operator.
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The unitary operators ÛS = û10 ⊗ P̂ 2
0 + û11 ⊗ P̂ 2

1 and ÛT = P̂ 1
0 ⊗ û22 + P̂ 1

1 ⊗ û23 are hence

given by

ÛS =




cos ε 0 −i sin ε 0

0 cosµ 0 − sinµ

−i sin ε 0 cos ε 0

0 sinµ 0 cosµ




, ÛT =




cos ν −i sin ν 0 0

−i sin ν cos ν 0 0

0 0 cos τ − sin τ

0 0 sin τ cos τ




(8.160)

with the matrices constructed from the usual representations of the bases. As expected,

Û∗
SÛS = Û∗

T ÛT = Î , as may be readily shown.

The development of this universe proceeds as follows. Without loss of generality, let

the initial state Ψ0 of the system be Ψ0 = |00〉. Then, the evolved state Ψ′
0 is given by

Ψ′
0 = ÛSΨ0 = ÛS |00〉 (8.161)

= (û10|0〉1)⊗ (1× |0〉2) + 0 = (cos ε|0〉1 − i sin ε|1〉1)⊗ |0〉2.

The subsequent state will be one of the eigenvectors of Σ̂1 = B̂, with appropriate

probabilities given by

P (Ψ1 = |00〉,Ψ0) = |〈00|((û10|0〉1)⊗ |0〉2)|2 = |1〈0|û10|0〉1|2 × 1 = cos2 ε

P (Ψ1 = |10〉,Ψ0) = |〈10|((û10|0〉1)⊗ |0〉2)|2 = |1〈1|û10|0〉1|2 × 1 = sin2 ε

P (Ψ1 = |01〉,Ψ0) = P (Ψ1 = |11〉,Ψ0) = 0. (8.162)

Whichever eigenvector becomes the new state Ψ1 is then evolved by the unitary opera-

tor ÛT . This time, however, it is qubit 1 that is used to ‘select’ how ÛT ‘works’. Specifically,

if Ψ1 = |00〉 then

Ψ′
1 = ÛTΨ1 = ÛT |00〉 (8.163)

= (1× |0〉1)⊗ (û22|0〉2) + 0 = |0〉1 ⊗ (cos ν|0〉2 − i sin ν|1〉2)

whereas if alternatively Ψ1 = |10〉 then

Ψ′
1 = ÛTΨ1 = ÛT |10〉 (8.164)

= 0 + (1× |1〉1)⊗ (û23|0〉2) = |1〉1 ⊗ (cos τ |0〉2 + sin τ |1〉2).

The evolved state Ψ′
1 is then tested again by the Hermitian operator Σ̂2 = B̂ to give

the next state Ψ2 ∈ B(0,4) with a new set of appropriate probabilities, and the process

repeated. From the endo-physical perspective, qubit 1 could then be evolved by either

û10 or û11 during this second application of ÛS , depending of course on which particular

element of B(0,4) the universe collapses into when it becomes Ψ2. And so on.
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The Double Experiment Rules featured in this sub-section may be extended to ‘higher

order’ mechanisms in obvious, though non-trivial, ways. Indeed, for a universe in a Hilbert

space factorisable into a large number F of sub-registers, with a state Ψn that is con-

strained to be separable into F factors for all n, it is possible to imagine Selective Local

Evolution dynamics of many types. Continuing, obvious such mechanisms include

• Many-Physicist Rules, where the evolution of a Sample sub-state appears to be

determined by the sub-states of a number of different Physicist factors;

• Many-Sample Rules, where a single Physicist sub-state appears to determine how

a number of Sample factors evolve;

• Many-Physicist/Sample Rules, where sets of Physicist sub-states appear to deter-

mine how groups of Sample factors evolve;

• Chain-Experiment Rules, which are effectively F step models: in the first step

factor 1 determines how factor 2 evolves, whilst in the second step factor 2 determines

how factor 3 evolves, and in the third step factor 3 determines how factor 4 evolves,

and so on. In each step, only one of the state’s factors actually changes, with the

remaining F − 1 sub-states apparently unaffected;

• Simultaneous-Experiment Rules, in which different ‘experiments’ occur simultane-

ously within separate groups of factors of the universe’s state, and where the evolu-

tion of a member of one group is independent of any member in another group. The

simplest Simultaneous-Experiment mechanism would require a four qubit universe,

where perhaps in each two step cycle, qubit 1 and qubit 2 are used to determine

the evolution of each other, whilst qubit 3 and qubit 4 are also used to evolve each

other. Each set of two qubits (say qubits 1 and 2), however, neither influences, nor is

influenced by, the other set of qubits (that is, qubits 3 and 4). Thus, the two groups

appear to evolve self-referentially within themselves, but independently of the other;

and many others, including potential hybrid ‘cross’-variants of those Rules mentioned

above.

Clearly, the level of complexity of the different types of Selective Local Evolution mech-

anisms increases rapidly as the factorisability of the Hilbert space increases. Of course, and

as with previous discussions throughout this thesis, such levels are expected to be echoed

in the real, physical Universe, where many different strata of systems, sub-systems, sub-

sub-systems etc., exist and are known to evolve and interact within themselves and with

each other.
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8.6 Concluding Remarks

The intention of this chapter has been to investigate a number of closed, quantum systems

whose developments are not reliant on the scrutiny, whim or decisions of any sort of

external agent. The focus has been to investigate the various types of Rules that could

govern such a universe, and could lead it to develop in a wholly isolated and self-consistent

manner.

A number of issues and outcomes related to this, however, still remain to be discussed.

8.6.1 Self-referential Quantum Computation

At the beginning of this chapter, an analogy was drawn between self-referential quantum

universes and the self-diagnostic software of a hypothetical quantum computer. It is

now possible to reinforce this comparison by observing that the mechanisms described

in the above sections are themselves nothing more than quantum computations. From

this standpoint, the developing quantum universe is therefore viewed as equivalent to

a gigantic, self-referential quantum computation, with the universe’s wavefunction Ψn

at time n analogous to the internal state of the quantum computer after n steps of its

algorithm, and with the various operators acting upon Ψn interpreted in the form of

elementary quantum logic ‘gates’.

Continuing on from this, given that it can be shown that all qubit evolutions may

be re-written in terms of local unitary matrices and the CNOT operator [67], it should

consequently be possible to break down some of the mechanisms discussed in this chapter

into combinations of these basic quantum computational gates, and this would be taken

to additionally illustrate the equivalence.

Ultimately, the above comments complete a central discussion of this thesis. Recall that

a developing quantum universe is able to give rise to spatial and quantum field theoretic

degrees of freedom, as explored in Chapters 5, 6 and 7. So, it has effectively been shown

in this body of work that space and particle physics may be generated by considering the

quantum universe as an enormous self-referential quantum computer.

Furthermore, this particular conclusion is granted additional physical weight by not-

ing that in the Standard Model of modern physics, the real Universe is often viewed as

containing a vast collection of interacting quantum fields, and by recalling the idea of

Feynman [20] that all quantum field theories should be reinterpreted in terms of quantum

computation.

Summarising, then, the suggestion is that real physics is quantum computation, and

that a developing quantum universe behaves like a quantum computer. The quantum
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universe paradigm proposed in this thesis could therefore be hoped to simulate any physical

phenomenon observed in the real Universe.

When it is remembered that the dimension of the Hilbert space containing the state

Ψn representing the real physical Universe is at least of the order of 210
184

, the enormity

of the quantum computations required to model the actual Universe highlights just how

limited the qubit examples described in the chapter actually are.

However, even the modelling of these relatively small dimensional quantum systems

can lead to computational problems, and this would be expected to become far worse

as the number of qubits is increased. Indeed, as a simple illustration of how even low

numbers of qubits can cause severe computational demands, recall that because a system

of just fifty qubits is represented by a vector of dimension 250 (i.e. ∼ 1015), even a modern

processor of 1 GHz could require something like 106 seconds to compute just one simple

step of its evolution.

Going further, if the physical Universe really does behave like a vast quantum compu-

tation, it could be argued that any device on which a scientist tried to model it would itself

have to be a quantum computer with a dimension even greater than that of the Universe

it is modelling. This would lead to the amusing consequence that such a computer would

presumably have to be larger than the Universe containing it.

The point is that the low-dimensional qubit models discussed in this chapter provide

an illustration of how quantum computational methods can be applied to a universe as a

whole. More importantly, the thrust is that it is possible to develop these toy-universes

in ways that do not require external guidance, as required for a self-contained and all

encompassing view of physics. The hope, then, is that if the principles applied are valid

in the low dimensional region, it might be possible to extend them to cope with situations

where the complexity of the quantum state is increased. Such extensions will form a basis

for future work.

In fact, it is noted that vectors of increased dimensionality would provide incredibly

rich scopes for potential dynamics, involving, for example, whole sub-systems of factors

evolving and appearing to test one another independently of other sub-systems that are

apparently evolving and testing yet more sub-systems that are apparently evolving and...

just like the interactions and hierarchies present in the real, classical Universe that humans

seem to perceive.
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8.6.2 The Real Universe

Nevertheless, despite the fact that many different types of Rules and mechanisms have

been successfully proposed and illustrated, a number of issues still remain when faced

with the question of the dynamics of the real Universe.

Firstly, and perhaps most obviously, is: what Rules govern the development of the real

quantum Universe? Is real physics best described, for example, by Type IIIa Probabilistic

List-Sort Rules, or is a Type IV Generated-Sort Class 1 Basis Method mechanism more

appropriate? In fact, would some Rules be favoured over others when constrained by

attempts to recreate the physical phenomena known to empirical science? Is one particular

mechanism, for instance, more able or more likely to provide the sorts of ‘persistence’ of

groups of factors that is generally observed in physics, or provide the sort of causal set

structure required to generate apparently continuous Minkowski spacetime?

Indeed, could the Rules governing the development of the Universe ever change, per-

haps according to some Rules of the Rules [27], as discussed previously? Such a possibility

could provide, potentially, abrupt changes in values of the constants of Nature over time,

an idea favoured by some theorists when attempting to answer some of the problems of

cosmology; the proposed variable speed of light [86] in the early Universe is an obvious

example here.

Of course, the answers to these questions rely on a better understanding of the princi-

ples that govern emergence in physics, and will only really become more apparent in the

future when states in many sub-register Hilbert spaces have been properly investigated

and modelled. In short, exactly how the real Universe develops, and hence gives rise to the

spatial and particle degrees of freedom observed in physics, remains an enormous question

for the future.

A second issue regarding the choice of operators in the real Universe is: how do they

translate to the types of test familiar to empirical physics? How exactly does it arise that

physicists appear able to develop their surroundings in an almost unimaginable number

of ways, and with complete apparent freedom?

This problem is made more pertinent by noting that not every question that a physicist

can ask of a quantum state in the laboratory may be asked of the state of the Universe.

In a laboratory, for example, physicists are often able to ascertain whether a given state

is entangled or not; given a large number M of identically prepared states ψ = {ψx : x =

1, 2, ...,M} of the form

ψx = a|00〉x1x2 + b|01〉x1x2 + c|10〉x1x2 + d|11〉x1x2 (8.165)

in factorisable Hilbert sub-spaces H[x1x2] = Hx1⊗Hx2 spanned by bases Bx1x2 = {|ij〉x1x2 :
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i, j = 0, 1} (with Bx1 = {|i〉x1 : i = 0, 1} and Bx2 = {|j〉x2 : j = 0, 1}), the coefficients

a, b, c, d ∈ C may be statistically determined, and the separability of ψ in turn discovered.

In particular, each laboratory state ψx may be tested by an operator B̂x1x2
(0,4) with eigenstates

{|ij〉x1x2 : i, j = 0, 1}, and the frequencies of particular results used to determine the values

of the coefficients a, b, c and d.

There is, however, no known general ‘entanglement operator’ Ê of the form ÊΨ = λΨ

in physics, where if an arbitrary state Ψ is entangled then λ = λ1 (which might be

interpreted as ‘yes’), but if Ψ is instead separable then λ = λ2 (or ‘no’). So, if Ψn = ψx

were taken to represent the state of a two qubit universe, there is no operator Σ̂n+1 = Ê

that could be directly applied to test its separability.

Indeed, it is difficult to imagine how any such operator Ê could actually be constructed

anyway: aside from the fact that a yes/no response is ‘binary’, whereas any test of ψx

should give four possible results; and the point that there are an infinite number of entan-

gled states in H[x1x2], whereas Ê must have a finite number of eigenvectors; it is difficult

to see how the measurements of a, b, c and d could ever be achieved in a single jump when

a statistical approach is instead generally required. Apart from anything else, it is not

possible to prepare an ensemble of M identical Universes.

So, a situation appears to arise in which endophysical tests of one factor of the universe

by another seem, over a number of jumps, to be able to gain more information than

exophysical tests of its entire state. The obvious parallels with Gödel type incompleteness

[24] may be drawn here.

The question is, then: how can the self-referential nature of the Universe organise

itself in such a way so that at one stage a physicist group of factors is prepared along with

M separate entangled factors {ψx}, and then over a series of jumps the state develops

such that the physicist believes she is applying the local operators B̂x1x2
(0,4) , and is hence

determining the values of a, b, c and d? In a many subregister universe developing over a

number of jumps, how might it be possible for one persistent set of factors to determine

whether another factor is entangled or not?

8.6.3 Memory and Information

In Section 8.5 it was shown that it is possible for a universe to self-referentially develop

if it is governed by certain carefully defined, two-step, Selective Local Evolution Rules.

However, in accordance with the notion of Process time and the Kochen-Specker theorem

[21][22], it is noted that once the state Ψn has been realised, then the previous state Ψn−1

can no longer be said to exist in any sense. Given this, a natural question faced by such

332



a two-step mechanism is: how does the universe ‘know’ which step it should be in? If the

universe can only refer to its current state Ψn, how does it ‘keep track’ of which part of

the two step Rules are applicable at that time? Specifically, and from the example given

at the end of Sub-section 8.5.4, after the state has collapsed to Ψn via a test with an

operator Σ̂n = B̂(0,4), how does the universe ‘know’ that the state Ψn−1 was evolved by

the operator ÛY , say, and not ÛX , such that the current state Ψn must now be rotated

by the operator ÛX?

One suggestion could therefore be that some sort of ‘memory’ is required in a com-

pletely self-referential universe. This memory could perhaps be used to record what the

previous state was, what it did, and how it was developed (or even, by extension, what

the previous few states were). Alternatively, the memory could maybe equivalently take

the form of a type of ‘clock’ that counts the number of steps taken since a particular

‘reference’ time, as alluded to in Sub-section 8.5.4. Either way, the Rules would ‘consult’

this memory store in order to keep track of which step it is in, and to determine what the

universe should do next.

The question now becomes: what exactly is this memory and where could it be stored?

Up until now, the current state Ψn has been taken to completely specify everything

about the universe. It might seem natural, therefore, to somehow try to incorporate the

proposed memory store into this vector. In fact, there are two obvious ways to attempt

this, each with associated problems.

Firstly, if Ψn is assumed to completely represent every conceivable current property of

the universe and everything about the previous state (i.e. if a mechanism is suggested in

which Ψn−2 somehow gets ‘absorbed’ into Ψn−1, which itself then somehow gets ‘absorbed’

into Ψn, and so on), then the dimension of the Hilbert space of Ψn must be at least twice

that of Ψn−1. This leads to a situation in which as the universe proceeds from Ψn−2 to

Ψn−1 to Ψn etc., the associated vector space is growing at an exponential rate, and it is

unclear what this may mean mathematically.

The second way may be to redefine the actual nth state of the universe as the larger

vector Φn, where Φn = Ψn ⊗ Mn, which contains the usual ‘physical’ current state Ψn

responsible for the physically observable universe, and a ‘memory’ factor Mn. Particu-

larly, Mn might contain some sort of ‘information’ regarding what the previous states

Ψn−1,Ψn−2, ..., previous tests Σ̂n, Σ̂n−1, ..., and previous operators Ûn−1, Ûn−2, ..., were,

or even just be a ‘clock’ that somehow registers the current ‘time’ n. This memory factor,

Mn, could then be ‘examined’ somehow to determine how the ‘physical state’ factor Ψn is

developed. Then, and overall, during the development of the universe from Φn to Φn+1,

where Φn+1 = Ψn+1 ⊗Mn+1, the ‘memory’ part Mn in Φn might somehow be erased and
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replaced by Mn+1 in Φn+1 (now containing information about Ψn and/or Σ̂n+1 and/or

Ûn and/or n+ 1), whilst the ‘physical state’ part Ψn of Φn would be replaced by Ψn+1 in

Φn+1.

However, segregation of the overall vector Φn into a ‘physical state’ and a ‘memory’

could also lead to difficulties. For example, if the memory factor Mn+1 is to be a direct

copy of Ψn, i.e. Mn+1 = Ψn, then it is difficult to see how the transition Mn → Mn+1

could occur. In particular, the ‘erase and replacement’ procedure may not be governed by

unitary evolution, because it is manifestly irreversible. Whilst this might appear good from

the point of view of a universe developing according to the second law of thermodynamics,

it is forbidden by an argument similar to the No-Cloning theorem which prevents general

unitary evolutions Û of the form Û(ψ ⊗ φ) → ψ ⊗ ψ.

Alternatively, if the ‘erase and replacement’ procedure is to result from a state re-

duction, then an operator Σ̂n+1 with an eigenstate Ψn+1 ⊗ Ψn needs to be used to test

Φn = Ψn⊗Ψn−1, and it is unclear how this should in general be constructed; the Memory

factor of Φn+1 might be expected to result from the factor Ψn of Φn, whilst the ‘physical

state’ factor of Φn+1 might equally be expected to result somehow from details of the

memory factor of Φn. In short, it is difficult to see how the memory could be both referred

to and changed at the same time. It would also be required that the probabilistic nature

of the collapse from Φn to Φn+1 is taken into account by the Rules, and additionally that

Σ̂n+1 is defined such that every physically realisable outcome of it is separable into a

‘physical state’ factor and a ‘memory’ factor.

Moreover, observe that the form of Φn is similar to the partitioning of the Double-

Experiment universe described in Sub-section 8.5.5. However, given that it was this sep-

aration that led to the need for a two-step dynamics in the first place, it is difficult to

envisage how such a form may then be able to solve the problem of specifying which step

of the mechanism the Rules should follow.

Of course, the memory Mn does not have to contain the entire state Ψn−1. Indeed, the

above problems may not occur if the memory factor instead takes the form of a type of

‘clock’. However, one difficulty that would now arise is that if each possible ‘time’ of this

clock is assumed to be represented by a different basis state in the memory’s sub-space,

the dimension of this Hilbert space might be expected to be very large. Specifically, in

an eternally enduring universe, the dimension of the clock’s Hilbert sub-space may be

required to be infinite, and this is clearly undesirable.

Evidently, the above suggestions are just embryonic ideas at this stage. However, if

the difficulties encountered are indeed insurmountable problems, the conclusion might be

that in order to account for two (or more) step Rules, it may be necessary to parameterise
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the universe with two vectors: a state vector and a memory vector. Exactly how a two

vector mechanism might be defined, what form the memory vector could take, what its

implications might be for the dynamics, and how it might influence the development of

the state Ψn, are left as questions for the future. However, as remarked in Chapter 3, it

could appear that the state Ψn and the rules Rn in the nth stage Ωn of the Universe’s

development might only be parts of the story; in a complete and consistent quantum

universe some sort of information store In might also be vital.

Furthermore, in fact, an information content In may not just be necessary in universes

governed by Selective Evolution dynamics. In List-Sort dynamics, for instance, an Infor-

mation In may be needed to ‘contain’ the List of possible operators L, whilst in Type IV

Class 1 Basis Method mechanisms an Information In may be required to specify the set

of constant unitary transformations {Û (i)}.
Consequently, and continuing the computational analogy central to this thesis, if the

Universe may be described as an enormous quantum computer whose wavefunction Ψn

describes the state during the nth step of an algorithm specified by the Rules Rn, the

Information In is like a ‘cosmic hard drive’ that keeps track of the time n and stores the

set of possible instructions, Σ̂n, L and Ûn etc.

8.6.4 Reduction without Observers

One point that has not been addressed so far is the actual cause of the state reduction

process ubiquitously present in all of the mechanisms discussed in this chapter, and, indeed,

throughout this thesis.

Every mechanism has assumed that the nth state Ψn of the universe is tested by some

Hermitian operator Σ̂n+1, and consequently collapses into the next state Ψn+1 which is

one of the eigenvectors of Σ̂n+1; the dynamics are therefore analogous to those empirically

known to govern quantum systems in the laboratory. With this analogy in mind, however,

the issue remains as to why the application of an operator Σ̂n+1 actually causes the state

of the universe to jump from Ψn to Ψn+1. In other words, how exactly does the proposed

paradigm view the infamous ‘Measurement Problem’ of laboratory physics?

The Measurement Problem of laboratory quantum mechanics traditionally raises two

main questions: firstly, how is a test actually chosen, and secondly, why does this lead to

a collapse of the wavefunction?

In the conventional Copenhagen interpretation of quantum theory, the first question

is often swept under the carpet by assuming the role of the observer. In this exo-physical

“solution”, the state reduction process is initiated by an external physicist deciding to
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measure the quantum state with a particular operator, and the collapse then manifests

itself as the quantum state reducing to a classically observed object. In short, in laboratory

quantum theory an external agent or environment is assumed to ‘do something’ to the

quantum system, and the quantum state then reacts by jumping to the observed (semi-)

classical form.

Of course, this ‘explanation’ has a number of problems associated with it. For example,

which observer or observers actually get to choose the test? At what level of observation

does the collapse ultimately occur (i.e. the Schrödinger’s Cat paradox [32])? How does

the physicist decide to test the state in a particular way in the first place, given that she

is presumably a complex of quantum particles herself?

The second question also remains unanswered in conventional quantum theory. How-

ever, whilst there has never been a satisfactory explanation for the existence of this discon-

tinuous and irreversible process in a Universe that otherwise seems to run on continuous

and reversible laws, in many elementary texts on quantum mechanics a number of dif-

ferent interpretations are given that attempt to account for the apparent collapse of the

wavefunction in laboratory physics. For example, some explanations involve particular

deterministic evolutions, suggestions being due to the Decoherence paradigm discussed

in Chapter 3, or because of the Many-Worlds interpretation [19] of Multiverse splitting.

Other attempts assume that the state collapses spontaneously, perhaps because of the non-

trivial dynamics of the Hamiltonian in GRW theory [88], or due to quantum gravitational

effects induced by superposed spacetimes [26].

Each of these interpretations, however, is associated with its own set of problems,

inconsistencies and difficulties, and it is by no means clear as to whether any of them is

able to provide a coherent, complete and verifiable explanation for the phenomenon of

state reduction.

Now, it is not the intention of this thesis to bias any one of the above exo-physical

‘explanations’ over the others, nor is there a desire to provide fresh insight into possi-

ble solutions for the exo-physical Measurement Problem. Instead, in the presented fully

quantum universe paradigm it is implicitly assumed that state reduction is a necessary

part of quantum theory, and must hence also be a necessary part of any universe running

according to quantum principles. Generally speaking, the way in which a state appears to

collapse in the laboratory is less important here than the fact that it does indeed collapse.

Summarising, in fact, in the paradigm proposed in this thesis involving the measure-

ment of a state Ψn by a test Σ̂n+1, the existence of the operator Σ̂n+1 is considered to

be just as fundamental as the existence of the vector Ψn or the Hilbert space H. In other

words, the existence of the operator Σ̂n+1 is taken to be an integral feature of the dynam-
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ics of the universe, and it is assumed that it is an automatic application of this test that

results in an automatic collapse of the state. Moreover, the choice of the operator Σ̂n+1

is governed by a quantum algorithm, as suggested by the various Rules discussed in this

chapter.

There is consequently no real “Measurement Problem” in the quantum universe para-

digm, at least not in the sense generally understood. The traditional exo-physical difficul-

ties of laboratory physics, which should now be associated with one group of factors ap-

pearing to measure another group of factors, consequently find a natural solution emerging

from the discussion of information exchange (Chapter 6), and from the operator selection

mechanisms proposed in the present chapter.

In conventional laboratory physics, with the scientist and quantum experiment stand-

ing isolated in a much larger universe, a question naturally arises concerning the associated

timescale between the preparation of the quantum state by the physicist and its subsequent

collapse. This question is especially important in, for example, the GRW and superposed

spacetime interpretations mentioned above, because in these the quantum wavefunction

is assumed to collapse spontaneously after a period of time that depends on the model in

question.

However, in the case presented here, where the state represents the entire Universe

and not just a tiny sub-system within it, such a concern could not be an issue. Under

this circumstance, and because there is no absolute, external time in which the universe

is developing, the question as to ‘how long’ it takes for the universe to develop from the

state Ψn to the state Ψ′
n ≡ ÛΨn to the state Ψn+1 is meaningless.

Conversely, in fact, in the universe described in this thesis, time is nothing but a concept

that emerges from the observation that the state Ψn is not the same as the state Ψn−1,

which was itself not the same as Ψn−2. Thus, in this sense time is viewed as synonymous

with change. It is consequently no more pertinent to ask about the timescale involved

between the preparation of Ψn and the collapse of Ψ′
n into Ψn+1, than it is to ask about the

spatial distance between different factors of Ψn. The actual process is seen as nothing but

the mathematical transformation of a vector in a Hilbert space; time, space and physics

are concepts that somehow emerge internally from the dynamics of this state.

8.6.5 Time without Time

The actual origin of continuous-looking physical time in the quantum Universe is naturally

a complicated process due to the dimensionality of the Hilbert space involved, but the logic

behind it is fairly straightforward.
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Consider first an exo-physical perspective, and consider two arbitrary vectors Ψa and

Ψb in a Hilbert space H. If the vector Ψb results from an operation on Ψa, such that Ψb

does not exist without the prior existence of Ψa, it may be concluded that Ψa is a ‘cause’

of Ψb, in some sense.

Moreover, if Ψa and Ψb cannot both exist simultaneously, and if Ψb is known to exist

‘now’, it follows that Ψa existed at one point, but no longer does. It may hence be said

that Ψa existed ‘before’ Ψb.

Furthermore, if Ψb is taken to be an eigenstate of a physical test Σ̂b on Ψa, such that

no intermediate state exists30 between the existence of Ψa and the existence of Ψb, it may

be argued that Ψa and Ψb are separated by one ‘step’. It may therefore be justifiable to

relabel the sub-scripts as Ψa = Ψn−1 and Ψb = Ψn.

In addition, if Ψa and Ψb are not orthogonal (such that the inner product |〈Ψb|Ψa〉| =
|〈Ψa|Ψb〉| > 0), and if Ψa 6= Ψb (such that Ψb and Ψa may be distinguished and |〈Ψb|Ψa〉| <
1), the vectors Ψa = Ψn−1 and Ψb = Ψn may be used, from this perspective, to represent

successive states of a quantum universe.

Continuing the logic, if the state Ψn−1 resulted from a test Σ̂n−1 on a different, but not

orthogonal, state Ψn−2 (i.e. 0 < |〈Ψn−1|Ψn−2〉| < 1), and if this chain may be repeatedly

extended to the observation that the state Ψn−N+1 resulted from a test Σ̂n−N+1 on a

different, but not orthogonal, state Ψn−N (i.e. 0 < |〈Ψn−N+1|Ψn−N 〉| < 1), it could be

interpolated that the state Ψn−N appeared to develop into the state Ψn through a sequence

of intermediate states Ψn−N+1, Ψn−N+2, ..., Ψn−1, and hence through a series of discrete

jumps. It might consequently be argued that the universe developed from Ψn−N to Ψn in

N distinct changes, or steps.

So, it is now possible to define ‘exo-time’ as a measure of the number of steps taken to

get from one state to another in the chain Ψn−N ,Ψn−N+1,Ψn−N+2, ... Thus, the exo-time

taken for the universe to develop from Ψn−N to Ψn is N. Paraphrasing, according to this

definition, time is at root a counting process.

Once a definition of exo-time has been established, it is possible to consider notions

of endo-time. In particular, endo-time is defined in terms of the number of changes expe-

rienced by a particular factor (representing, for example, a human endo-observer) as the

state of the universe develops through a series of steps. This definition will be clarified in

the following.

Note first of all, however, that since such an endo-observer can at most only ever be

sure of parts of the current state Ψn, can possibly recollect factors of a state Ψn−1 that

30Recall that in the context of quantum mechanics, nothing can be said to physically exist unless it is

observed or measured.
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appeared different from the current state, and can predict other possible states Ψn+1 that

are eigenvectors of subsequent potential operators, they could immediately infer that Ψn

is later than Ψn−1, but Ψn+1 does not yet exist. Moreover from this logic, such complex,

macroscopic and allegedly intelligent parts of the universe called human beings, who are

aware of parts of the state Ψn, can remember parts of sets of states Ψn−1, Ψn−2, ... but

cannot recall anything about sets such as Ψn+1, Ψn+2, ..., are moved to construct concepts

such as past, present and future in order to describe things that they think have happened,

are currently happening, and may well happen.

Humans could then go on to quantify measures of endo-time by a process that involves

counting the changes of the universe around them. They might, for instance, define the

‘second’ in terms of how many times a particular part of the universe changed as the

universe developed from the remembered state Ψn−X to the current state Ψn, where X

implies a huge number of jumps. If, for example, they notice that over Y jumps particular

factors of the universe representing photons emitted by Caesium-133 atoms are able to

change 9, 192, 631, 770 times [89] under certain circumstances, then they might define Y

to constitute one second.

Going further, physicists could even attempt to define time by using laws of physics

that were themselves discovered by observing changes in the universe. If, for example,

constraints on laboratory quantum mechanics and general relativity seem to indicate that

any time scale less than about τp = (Gh
c )1/2 ∼ 1.35 × 10−43 seconds is undefined, they

might conclude that in one second the overall state of the universe is able to change

Y = 1/τp times. However, this is not the clearest way to view the process: it is not that

in one second the universe may change Y times, but that by changing Y times, parts of

the universe may go on to provide a definition of one second. In essence, one second is

the fact that the universe changes Y times.

Of course, this then leads to an apparently paradoxical situation in which although Y

jumps might give rise to the definition of one second, it does not imply that the change from

Ψi to
31 Ψi+1 has a duration of 1/Y th of a second. After all, recall that this development is

just a mathematical procedure, and is therefore without duration. Paraphrasing, because,

for example, the evolution of Ψn to Ψ′
n = ÛnΨn by Ûn is nothing but a mathematical

relation, to question its timescale is effectively equivalent to asking how long it takes for

one plus one to equal two.

The resolution of this paradox is to note that it only arises from an exo-physical

perspective, that is, when an observer believes she can stand isolated from the universe

31Or even from Ψi to Ψ′
i = UiΨi to Ψi+1, if the Rules governing the dynamics dictate that the state is

rotated during its development.
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and witness it evolving in her own external time. From the endo-physical point of view

of a scientist who is part of the universe she is trying to observe, the paradox does not

arise because only relative differences can be granted any real, physical significance. In

fact, even if an external time did exist in which the universe evolves, an observer who is

part of the universe would be unable to say whether the development of the state from

Ψn−1 to Ψ′
n−1 to Ψn took the tiniest fraction of an “exo-second” or many billions of “exo-

years”, because all that she can ever be aware of is that Ψn is different from Ψn−1 (c.f.

the discussion of passive and active transformations given in Chapter 6).

Moreover, from a strict quantum mechanical point of view, the actual evolution of the

state from Ψn−1 to Ψ′
n−1 can have no duration, external or internal, because according to

the interpretation of Wheeler ([15]), and as discussed in Chapter 3, no attributes of the

state can even be said to exist until it is measured. Only the measurements, that is the

changes from Ψn−1 to Ψn, are physically relevant, so it is only relative to these changes

that physical phenomena such as time may be discussed.

Like the apparent existence of Euclidean space, and as proposed in Chapter 5, the

emergence of a linear, temporal dimension is something that appears under specific cir-

cumstances, according to the unique point of view of a particular endo-observer, as the

universe jumps from Ψn−X to Ψn−X+1 to... to Ψn, where X ≫ 1. Schematically, if X is

very large and if Ψm−1 is sufficiently ‘similar’32 to Ψm for all (n − X + 1) ≤ m ≤ n, a

particular causal set description might begin to generate flat Minkowski spacetime.

The point is that under these special circumstances (which certainly appear to be the

case from the perspective of physicists in the real Universe), endo-physical observers might

falsely conclude that they live in a universe that is evolving in an external, continuous time

that exists independently of the state.

Moreover, they might therefore make the mistake in this case of asking how long it

takes for the state of such a universe to develop from Ψm to Ψ′
m to Ψm+1. They might

also be surprised when, under specially controlled laboratory conditions, they witness

discontinuous processes such as quantum state collapse occurring, because their ‘everyday’,

large scale, emergent, classical time and laws of physics appear continuous. And when they

extrapolate this continuous time dimension to the smallest scales, they might find problems

with their classical theories of general relativity and spacetime.

In short, the problem lies in assuming that the state of the universe is developing

in an external, continuous, background (space)time; the mistake is to apply the Block

universe approach to a system that is running according to quantum principles, and hence

according to Process time. Instead, physical time might really only be defined in terms

32In some sense. Certainly, for example, Ψm−1 could not be in a vastly different partition to Ψm if

apparent continuity is to result.
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of counting the number of changes of this quantum state, and should hence be considered

an emergent feature that is ‘created’ as the universe develops.

It is at this stage that a simple and schematic discussion of the relative durations of

different systems within the universe is permissible. Suppose that the Hilbert space of the

universe may be split in the form H[OABR] = HO ⊗ HA ⊗ HB ⊗ HR, where each factor

sub-space needs not be of prime dimension. Suppose also that HO may be associated with

the Hilbert sub-space of an ‘Observer’ (i.e. a part of the universe representing a physicist);

HA may be associated with the Hilbert sub-space of a particular ‘sample’ (an electron,

say, in order to draw parallels with the EPR system discussed in Chapter 3); HB may be

associated with the Hilbert sub-space of a different ‘sample’ (say, a positron, for the same

reasoning); and HR may be associated with the Hilbert sub-space comprising the rest of

the Universe.

Suppose further that four successive states, Ψn−3, Ψn−2, Ψn−1, and Ψn, in the uni-

verse’s history are separable in the forms

Ψn−3 ∈ HOAB
R , Ψn−2 ∈ HOABR (8.166)

Ψn−1 ∈ HOA
BR , Ψn ∈ HOAB

R .

Then, the interpretation of the development of this universe is as follows.

First, the jump from Ψn−3 to Ψn−2 may be schematically imagined to imply the

creation at ‘time’ n− 2 of an ‘Observer’ sub-state in HO, an isolated electron sub-state in

HA, and an isolated positron sub-state in HB.

Continuing, from the endo-physical point of view of the sub-state representing the Ob-

server, the sequence Ψn−2 → Ψn−1 → Ψn schematically appears to represent a progression

of a quantum universe from an initial state Ψn−2 prepared as four separate sub-systems,

to the state Ψn−1 in which the Observer has ‘measured’ the electron, and then to the

state Ψn in which both the electron and positron sub-states have been ‘measured’ by the

Observer33. Of course, and as in Section 8.5, assuming that the factor of Ψn−2 in HB is

identical to the factor of Ψn−1 in HB, the operator Σ̂n−1 of which Ψn−1 is an eigenstate

must be carefully chosen to ensure that, from an endo-physical perspective, the positron

sub-state appears to be unaffected by the transition from Ψn−2 to Ψn−1.

From the endo-Observer’s point of view, a physicist would argue that the time-scale

involved between the preparation of the positron and its measurement was twice that

involved between the preparation of the electron and its measurement. The reasoning is

that although both the electron and positron are apparently prepared at the same time as

factors of Ψn−2, the factor in HA is ‘measured’ by the Observer during the transition from

33The actual meaning of the word ‘measurement’ is left deliberately vague here, with reference made to

Chapter 6.
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Ψn−2 to Ψn−1, whereas the ‘measurement’ of the positron by the Observer does not occur

until the transition from Ψn−1 to Ψn. In other words, the Observer witnesses two changes of

the universe’s state between the preparation of the positron and its measurement, whilst

only one step appears to occur between the preparation of the electron factor and its

subsequent re-entangling. The Observer could therefore conclude that the positron factor

exists for twice as long as the electron, from her endo-physical perspective.

On the other hand, from the perspective of the positron, only one time step appears to

occur between its creation as a factor of Ψn−2 and its measurement by (or, indeed, of) the

Observer, because it is unchanged during the transition from Ψn−2 to Ψn−1. Paraphrasing,

because the factor in HB does not witness any changes occurring between exo-times n− 2

and n− 1, time appears not to pass for it; the factor representing the positron effectively

behaves as if it is ‘frozen’ in time during this period.

So overall, the apparent null test on the factor in HB during the jump from Ψn−2 to

Ψn−1 leads to the type of ‘route dependent’ endo-time discussed in Chapter 5, and results

in concepts analogous to the notion of proper time in relativity. In short, the Observer

would believe that two time steps occurred between the preparation of the positron and its

measurement, whereas the positron would contend that only one step occurred between

these two events.

Of course, the Observer cannot say absolutely how long it took for the universe to

develop from the state Ψn−2 to the state Ψn, because such an absolute measure is mean-

ingless when time is only defined relative to the changes themselves. Time is defined in the

proposed paradigm as nothing but a counting process, and so should not be confused with

the mathematical developments of the individual states themselves, such as would occur

by falsely associating durations to mathematical procedures. Only relative endo-times

have any physical significance in a fully quantum universe.

Moreover, once a concept of relative time-scales has been established, it is possible to

ignore the definition of time as a counting procedure simply by appealing to the ‘duration’

of a specific process compared to that of an accepted standard. From this, scientists are

consequently able to say that a certain factor |F 〉 of the universe’s state exists for Z seconds

if it persists for, say, Z × (9, 192, 631, 770) cycles of the radiation emitted by a particular

atom, where, ultimately, this value is itself only defined relative to the universe developing

through a series of Y states. The ‘standard’ definition of time used in conventional physics

is therefore recovered, without the need to count actual numbers of jumps.

It is hence possible to reinterpret the question faced by proponents of spontaneous

collapse models of quantum mechanics (e.g. the GRW process) for conventional quan-

tum sub-systems of the universe. Any time-scale involved between the preparation of a
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quantum sub-state and its apparent collapse is only relevant either relative to a number

of changes of the universe, or equivalently relative to the duration of another sub-system

that itself only endures relative to a number of changes of the universe.

Clearly, however, similar such questions are not relevant for the Universe itself. There

is no time in which the state of the Universe is evolving; rather the Universe is generating

time as it develops through a series of states. This is truly a self-contained perspective.
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9 Summary, Conclusions and Future Directions

The purpose of this thesis has been to propose a perspective on the overall structure of the

Universe that is fully compatible and consistent with the empirically verified principles of

quantum mechanics. In effect, the proposal resulted in extending the standard principles

of quantum mechanics to the case where the state in question represents the Universe

itself, and not just some microscopic sub-system within it.

Despite such an inevitable conclusion, however, it is noticed that the Universe observed

by physicists does not generally appear to resemble a quantum wavefunction. So from this

viewpoint, and by considering the various properties of a state developing in a Hilbert

space factorisable into an enormous number of subregisters, attempts have been made to

suggest how the aspects of physics familiar to laboratory science could begin to emerge

from this fundamental, mathematical picture. Some success may therefore be claimed

for the endeavour of investigating the potential bridges between the quantum computa-

tional, pregeometric vision of reality unavoidably proposed, and the semi-classical world

experienced by humans.

These attempts are now summarised in this final chapter, with the conclusions that

may be drawn from such work given, and some of the remaining questions and future

directions for research highlighted.

In Chapter 3 it was shown that quantum mechanics is a ‘valid’ theory, in the sense

that empirical results confirm the predictions of quantum physics, but do not support

the conclusions of theories based upon classical Hidden Variables. Furthermore, from a

basic set of observations regarding experimentally known features of physics, it was then

argued that the entire Universe should in fact be treated according to quantum principles.

Specifically, it was suggested that the Universe may be represented by a pure state Ψn in

a Hilbert space H(D) of enormous dimension D > 210
184

, and that this state is subject to

‘rotations’ by unitary operators Ûn and ‘testing’ by Hermitian operators Σ̂n+1; moreover,

it is this discontinuous process of information extraction by Σ̂n+1 that justifies the use of

the discrete, ‘temporal-like’ label, n.

From this line of thinking, the concept of a Stage was conjectured. Thus, it was

suggested that the operators Ûn and Σ̂n+1 used to develop the state Ψn are chosen by a

quantum algorithm according to a set of Rules Rn, possibly making reference to some sort

of Information store, In. In the paradigm proposed in this thesis, the development of the

Universe is therefore envisaged to be analogous to a gigantic quantum computation, with

its state proceeding eternally through a sequence of collapse, evolution, testing, collapse,

evolution, testing,... in an automatic and self-referential way.
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Based on the observation that the Universe that humans perceive generally appears to

be classical, and consequently not indicative of the types of phenomena typically exhibited

by conventional quantum states, Chapter 4 attempted to discuss the necessary require-

ments for arguing that two physical objects may be described as classically distinct and

distinguishable. To this end, it was shown that if a Hilbert space H may be factorised

into two factor sub-spaces HA and HB, such that H = H[AB] = HA ⊗HB, then the com-

ponents of a state Φ ∈ H[AB] in HA are distinguishable from the components of Φ in HB

if Φ is separable relative to the split HA ⊗HB. That is, if Φ may be written in the form

Φ = φ ⊗ ϕ, where φ ∈ HA and ϕ ∈ HB, then the factor φ is classically distinct from the

factor ϕ.

Continuing, a test to determine the separability of an arbitrary state was then given,

and the conclusion thereby drawn that separability should be a surprisingly uncommon

feature in a fully quantum Universe. The fact that this does not seem to be the case

in Nature, however, because the Universe does seem to possess enormous numbers of

classically distinct objects, therefore strongly suggested that very tight constraints must

be placed upon the operators used to produce the states, such that the occurrence of this

result is ensured.

It was then shown that states that are separable relative to one particular split of the

overall Hilbert space may be entangled relative to an alternative split. This result in turn

suggested that a preferred factorisation of the Hilbert space may be appropriate for the

case of the Universe.

Chapter 4 also raised the issue of basis sets of vectors, and showed that even in a

four dimensional Hilbert space not every combination of entangled and separable elements

exists; specifically, no type (1, 3) basis set B(1,3) is permitted. This then immediately

raised the question of preferred bases for the Universe, and it is consequently a task for

future research to discover which types of basis are allowed in Hilbert spaces of higher

dimensions, and which are forbidden by vector space mathematics. Is it possible, for

example, to find a (1, [D − 1]) type basis set for a D > 4 dimensional Hilbert space split

into two factors? What limitations exist in tri-, quad-,... or N -partite splits of a Hilbert

space?

The last part of Chapter 4 addressed the question of real classicity. The suggestion was

that classical objects on the macroscopic scale may be somehow associated with groups of

factors of the state Ψn of the Universe, not least because if two objects may be described

as classically distinct and distinguishable from one another, they cannot by definition be

entangled. Exactly how these groups of factors translate to the classical looking objects of

the laboratory is however left as an important question for the future, but it is interesting

to speculate on whether paradigms related to emergent theories of decoherence may play
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a central role in this discussion.

So overall, the conclusion was that the semi-classical degrees of freedom of the observed

Universe somehow ultimately originate from the factors of the state Ψn, because the factors

of a separable state may be considered to be distinct and distinguishable, as required for

classicity.

One necessary requirement for a system of objects to be described as classical is that

it is possible to argue that “this object with these qualities is here, whereas that object

with those properties is there.” The issues of ‘here’ and ‘there’ were therefore addressed

in Chapter 5. In response, it was consequently shown that during the development of a

universe represented by a state contained in a highly factorisable Hilbert space, causal

set relationships may begin to arise between the factors of successive states, and these

may in turn give rise to spatial degrees of freedom in the emergent limit. Specifically,

embryonic lightcone structures were introduced by considering how counterfactual changes

in the factors of Ψn−1 could affect the factors of Ψn, and it was conjectured that, over

a large number of jumps, these could ultimately be used to generate manifolds, metrics

and geodesics. Spatial relationships are therefore introduced between the physical objects

that these factors represent on the emergent scale.

Furthermore, because the state Ψn is itself the result of a test Σ̂n, the factorisabil-

ity of the operators was also investigated; an important conclusion was that factoris-

able operators can only have separable eigenstates. The changing sequence of operators

Σ̂n, Σ̂n+1, Σ̂n+2, ... was therefore also demonstrated to exhibit causal set type patterns, and

this fact was asserted to be responsible for driving the conditions necessary for continuous

space and time to arise. Moreover, and unlike the states, the operators were also conjec-

tured to be constrained to obey Einstein locality, and it was suggested that these assertions

may play important parts in discussions explaining why states in quantum physics may

exhibit apparently superluminal correlations, whilst observables are restricted to follow

classical causality.

A number of physical examples were finally given to illustrate these general points.

Overall, the outcome of Chapter 5 was to show that the changing factorisability of

the operators, as the Universe proceeds through a series of Stages, can give rise to a

changing separability of the state, and this in turn might consequently begin to exhibit

causal set-like relationships between its factors. In addition, the presence of local null

tests as factors of the operators generates the appearance of ‘route dependent’ endo-times

for the various factors of the changing state, and this may be interpreted as analogous

to the existence of proper time in relativity. So, the ‘fictitious’ exo-time parameter n

gives way to physical, local endo-times in terms of counting the changes experienced by

particular groups of factors, and this could in turn provide a possible pregeometric origin
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for discussions involving the possession of unique inertial frames of reference by individual

endo-observers.

Despite the successes mentioned above, a number of questions still remain unanswered

concerning the origin of space from the proposed fully quantum paradigm. Perhaps the

greatest of these is: how exactly does conventional general relativity emerge from the

underlying statevector description of the Universe?

Now, this question is not just about how the separations of a state in a D > 210
184

dimensional Hilbert space could give rise to the continuous looking spacetime experienced

in physics, though this task is, of course, itself an enormous issue to be addressed. Nei-

ther is it directly concerned with the mechanics of exactly how a spacetime existing as an

apparently linear, 3 + 1 dimensional Block Universe arena could emerge from the prege-

ometric, causal set relationships between factors, though this too is an important point.

More importantly, the question of particular concern is: what features of the separable

state picture could be used to contain information regarding an emergent object’s mass,

and how could this be used to affect and distort the lightcone structure so that it appears

to result in gravitationally curved spacetime? In other words, how can a sort of ‘mass

parameter’ be introduced into the statevector description, such that the self-referential

interplay between the factorisable operators and separable states results in an apparently

curved spacetime in the emergent limit?

In short, the emergence of mass curved, four dimensional spacetime from the quantum

universe is an enormous question for the future.

Chapter 6 explored the links between quantum computation, information, and the

quantum universe paradigm.

Section 6.1 was used to set up the necessary framework for the work of the following

chapters; in particular the issues of logic gates and the CNOT operator were discussed,

and the concept of ‘Transformation’ operators that act between the basis vectors of the

individual subregisters introduced. It was then shown how elementary computations may

be performed, with the accompanying Bell correlations used to provide an example of how

care must be taken when interpreting the results of quantum questions.

The remaining section of Chapter 6 discussed the definition and role of information in

closed quantum systems. In particular, the notions of active and passive transformations

were discussed, and this was followed by definitions for information change and exchange.

Summarising, the conclusion was that information changing processes necessarily rely

on an active transformation, and as such cannot be achieved simply by a convenient

transformation (e.g. relabelling) of the basis. Moreover, it was argued that if Ψn−1

and Ψn are in different partitions, the change from Ψn−1 to Ψn is synonymous with an
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information changing process. Such physically significant processes cannot be achieved by

passive transformations, and cannot be removed by unitary rotations of the bases of the

individual subregisters.

Related to information change was information exchange, where a component of the

state in a particular subregister Hi may be said to have exchanged information with a

component of the state in a different subregister Hj during a jump from Ψn−1 to Ψn if

the ‘relationship’ between them changes. Specifically, if the component of Ψn−1 in Hi is

in a different block of the partition containing Ψn−1 from the component of Ψn−1 in Hj ,

but the component of Ψn in Hi is in the same block of the partition containing Ψn as

the component of Ψn in Hj , then these two components may be said to have exchanged

information during the transition from Ψn−1 to Ψn.

Ultimately, the conclusion was that if the number of factors of the probability ampli-

tude 〈Ψn|Ψn−1〉 is less than the number of factors of either the initial or final states, then

the transition from Ψn−1 to Ψn is an information exchanging process.

Following on from these definitions, the question of endo-physical measurements was

addressed. Specifically, if Ψn−1 ∈ HABR but Ψn ∈ HAB
R , where H[ABR] = HA⊗HB ⊗HR,

with HR interpreted as a ‘rest of the universe’ factor space, and HA,HB,HR need not be

of prime dimension, then the factor of Ψn−1 in HA may be said to have ‘measured’ the

factor of Ψn−1 in HB (and vice versa) as the universe jumped to Ψn.

The concepts of ‘split partition’ and ‘partition overlap’ were in turn usefully introduced.

As with the work of Chapter 5, the results of Chapter 6 also raise a number of questions

when attempting to apply them to the real world of laboratory physics; again, it is the issue

of how they relate in the emergent limit that is of issue. For example, for a semi-classical

object consisting of large numbers of factors, exactly ‘how much’ information needs to be

exchanged to constitute the sort of experiment familiar to physics? Paraphrasing, if a

laboratory apparatus is represented by, say, 106 components of the state of the universe,

whilst a laboratory subject by, say, 103, how many of these must become entangled during

a jump from Ψn−1 to Ψn in order to say that the apparatus has measured the subject? 1

of each? 46 of one, but 23 of the other? All 103 and 106?

Additionally, how do actual laboratory measurements, that may in reality take place

over very many jumps of the universe, translate to the pregeometric, single-jump endo-

measurements discussed in this thesis?

In Chapter 7 the remaining part of the statement concerning when “this object with

these qualities is hereÔ was addressed, by considering how particular groups of factors

might begin to exhibit the types of physical property possessed by particle fields in Na-

ture. From the starting point of the Transformation operators introduced in the previous
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chapter, pregeometric ladder operators were defined that caused, under certain circum-

stances, qubit states to be ‘raised’ or ‘lowered’ within their individual Hilbert sub-spaces.

Moreover, these pregeometric ladder operators were shown to obey the same statistics

and anti-commutation relations as fermionic annihilation and creation operators, and also

exhibited the characteristics of U(2) symmetry.

From this definition, it was then shown how the Dirac field may be accounted for

from the suggested pregeometric structure, by considering a Hilbert space factorisable

into 4(2M +1) subregisters, where M is large. Specifically, momentum space creation and

annihilation operators were defined in terms of discrete Fourier transforms of the prege-

ometric ladder operators over this large number of subregisters, and these were shown to

obey the anti-commutation relationships necessary for physical spin-half particles. More-

over, Hamiltonian, momentum and charge operators were then derived for these particles

in terms of the pregeometric ladder operators, by substituting the usual momentum space

operators for their subregister defined counterparts.

To complete the discussion, it was finally shown how these operators may be re-written

as sums of products of two-qubit CNOT gates and unitary operators acting locally in the

individual subregisters. Feynman’s vision of reinterpreting quantum field theory as a form

of quantum computation was therefore demonstrated from the perspective of the proposed

paradigm.

In conclusion, then, it was shown that by considering particular combinations of prege-

ometric transformation operators defined in a highly factorisable Hilbert space, the types

of operator familiar to experimental particle physics may be constructed. From such con-

siderations, the physical properties exhibited by particular physical objects may therefore

begin to emerge from the quantum universe picture envisaged in this thesis.

Of course, real objects in the real Universe tend to exhibit enormous varieties of phys-

ical properties, and these are still generally unaccounted for in the proposed model. It

is therefore a task for future work to attempt to discover how alternative fields may be

encoded into the suggested paradigm. How, for example, could colour degrees of freedom

emerge from the suggested quantum vision? Or flavour? What about more ‘exotic’ fields

and particle species? Indeed, would the existence of, for example, (the so far unexplained)

Dark Energy matter emerge as an inevitable consequence of the types of pregeometric

treatment employed to obtain quantum fields from the state of the quantum universe?

What about string theory: does this fit into the proposed paradigm, and if so, how?

On a related note, how could the Higgs field be accounted for, or even the inflation

fields conjectured in the early universe, and how would such mass-involving processes

influence the quantum causal sets produced, and consequently the emergence of spacetime

from the statevector description?
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Indeed, how could the suggested approach actually be applied in real space anyway?

After all, Chapter 7 discussed the emergence of the Dirac field from a set of qubits that

map to an emergent, one dimensional ‘lattice’; how exactly should this approach best

be extended to cope with the three dimensional volumes present in the real Universe, as

accounted for by conventional quantum field theory?

A further extension to the work presented in Chapter 7 asks the question: is the

emergence of quantum field theoretic descriptions limited to qubit subregisters, or could

higher dimensional factor spaces be considered? Certainly, non-qubit subregisters would

intuitively seem to be required for SU(3) colour gauge symmetry, but is this actually the

case; is it necessary? Going further, could such a proposal account for the appearance

of bosonic particles, with subregisters of enormous, ‘near infinite’ dimension playing an

important part? If so, would the emergence of bosonic particles from such a para-fermionic

treatment of physics make important comments regarding the theories of supersymmetry

currently hypothesised?

Finally, would the suggested approaches to quantum field theory eventually be able to

explain why some of the parameters of the Standard Model have the values that they do?

In fact, could the proposed links between quantum field theory and the origin of spacetime

in the united paradigm be used to explain some of the other puzzles of fundamental physics,

such as why, for example, the constants of nature have the values they do, or why the

curvature of the Universe is so close to unity?

All of these are necessary questions for the future development of the quantum universe

vision. Many, it is hoped, may be answered from the type of analysis discussed in Chapter

7.

Chapter 8 attempted to classify and explore some of the different ways that a fully

quantum universe free from external observers might be able to develop. First, the various

Types of way in which Ψn could develop into the next state Ψn+1 were classified. Then

it was argued that a self-referential mechanism is required in order to provide some of

the empirical properties of the physical Universe, and attention was therefore turned onto

situations in which the next operator Σ̂n+1 depends somehow on the present state Ψn.

Two particular Sorts of mechanism consequently became apparent: those in which the

state Ψn is used to select a particular operator from a pre-existing List, and those in

which the next operator is instead Generated from the current state at time n; these two

possibilities were explored in turn. Moreover, it was also concluded that not every method

of determining Σ̂n+1 from Ψn is necessarily permitted, even though it might be possible

to determine Σ̂n+1 from Σ̂n in an analogous way.

In all cases it was shown that particular types of Rule could give rise to various phys-
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ical features for the developing universe; certain List-Sort Rules, for example, may be

particularly suitable to produce the sorts of embryonic lightcone structure required for a

causal set description of space to begin to emerge.

Chapter 8 finished by discussing the possibility of allowing the state to be evolved self-

referentially, and unitary operators Ûn were proposed that could rotate Ψn in ways that

appeared to depend on what it is. However, the crucial point concluded in this work was

that an interpretation of how Ûn acting on Ψn behaves depends very much on whether an

exo- or an endo-physical perspective is adopted. Specifically, although from an external

point of view the outcome of ÛnΨn may not seem to be determined self-referentially, from

an internal viewpoint it could appear that Ûn is examining Ψn, and then developing it in

a manner that depends on the result of this investigation.

Moreover, it was also shown that by defining the operators such that Ûn appears to

just examine part of Ψn, endo-physical experiment type effects could consequently arise,

again from an endo-physical perspective. As before, a conclusion drawn was that local null

tests play an important part in the emergence of real physics from the quantum universe.

As discussed in the final part of Chapter 8, a huge number of questions still remain

regarding the development of the state in the proposed paradigm. What Type of Rule,

for example, is the physical Universe actually governed by, and what exactly is this Rule?

Which sorts of mechanism are most suitable for the generation of particular physical phe-

nomena, highly separable states persisting over large numbers of jumps being an obvious

example? Could the Rules governing the development of the state change over ‘time’, n,

and how would this affect the resulting physics? Indeed, if this is the case, how does the

universe keep track of what the current time is, noting that this is also a question faced

in the two-step Selective Local Evolution mechanisms? Is the suggestion therefore to be

accepted that some sort of information store is required for the actual development of the

Universe, and if so, what form could this ‘memory’ take?

In short, although the conclusion may be made that it is possible to successfully specify

consistent quantum algorithms that automatically develop the state of a universe through

an endless series of stages, without the need or intervention of any sort of external guidance,

a great deal of future research will be required before it is known what the Rules governing

the development of the real Universe actually are, and how these might physically operate.

By far the greatest question for future research concerns the issue of emergence: how

exactly does the semi-classical world familiar to physicists arise from the pregeometric,

statevector description proposed in this thesis?

Throughout this work, a number of points that begin to answer this issue have been

addressed. The general conclusion is that each successive state Ψn must be highly separa-
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ble, such that the vision of reality perceived by physicists, involving countless numbers of

quantum ‘micro-systems’, may be readily generated. Moreover, it additionally follows that

the operators must also be highly factorisable, such that they can appear to control the

development of these quantum micro-systems in apparently local and microscopic ways.

However, an enormous number of details still remain to be investigated in this picture,

and it is by no means clear as to exactly how the proposed vision can give rise to every

emergent property known to classical physics. How, for example, is the continuous time

Schrödinger equation able to emerge as an accurate tool useful in describing the apparent

evolution of these quantum microsystems in the absence of measurement by emergent

semi-classical observers? Similarly, how do the emergent operators of laboratory physics

arise from the properties of the ‘universe operators’ Σ̂n+1, Σ̂n+2, ...?

Of course, the relationships between the ‘laboratory tests’ and the ‘universe tests’, Σ̂,

and operators Û are expected to be highly complex and non-trivial. For instance, field

theoretic operators such as the Hamiltonian may initially be constructed from incredibly

complicated relations between pregeometric transformations, as was discussed in Chapter

7. But, it both interesting and necessary to speculate on how such a vision could be

incorporated into the picture of the developing universe discussed in Chapter 8. After all,

the interpretations of laboratory experiments are ultimately expected to rely somehow on

subjects and apparatus both being represented by large groups of factors of a state Ψn,

and the universe then self-referentially choosing operators Ûn and Σ̂n+1 according to these

sets of factors; the resulting state Ψn+1 is then taken to represent the outcome of this

experiment. It is, however, unclear at this stage as to exactly how this mechanism might

work in practice, and so a consistent, self-referential version of field theory is even further

away.

In fact, the emergent operators familiar to emergent physicists may be expected to

bear no resemblance at all to the ‘universe operators’ Σ̂, and the operators that represent

real laboratory measurements may, perhaps, really only emerge from considering average

properties of the operators Σ̂n+1, Σ̂n+2, ..., Σ̂n+m as the universe develops over an enormous

number m of jumps. This type of general point was again exemplified in Chapter 7, where

it was demonstrated how conventional field theory annihilation and creation operators may

emerge from Fourier transforms of enormous numbers of pregeometric ladder operators.

It may also go some way towards explaining the “how much information needs to be

exchanged” question of Chapter 6: groups of factors representing subjects and apparatus

could become slowly entangled, a few components at a time, over a large number of jumps,

and it could only be over this set of transitions Ψn → Ψn+1 → ... → Ψn+m that a large

scale measurement may be said to have occurred between them. Overall properties of

the corresponding set of operators Σ̂n+1, Σ̂n+2, ..., Σ̂n+m may then be used, somehow, to
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describe this single laboratory test.

The real operator structure of the developing universe may therefore be vastly different

from the types of laboratory Hermitian operators that physicists are familiar with. More-

over, the ultimate, self-referential interplay between the states Ψn and the operators Σ̂n+1

could provide a vision of reality completely different to that perceived by scientists on the

classical, emergent scale. Indeed, to quote Jaroszkiewicz [90]: “...almost everything that

we humans believe in is a sort of illusion, a convenient fabrication of the brain,

designed to rationalize the massive amounts of stimuli that we constantly receive

from our immediate environment. This includes space. This illusion gives us a

fighting chance of survival. From this point of view, nothing is really what it seems.

If you have seen the film “The MatrixÔ, you may have some idea of what I mean.”.

Exactly how the patterns and constructs recognisable to the human brain emerge from

the developing quantum state description therefore remains an enormous question. Indeed,

exploring how the human brain creates this illusion from the constantly changing state

is a task potentially beyond the scope of neuroscientists and psychologists, despite that

fact that some scientists are already beginning to explore the possible quantum origins of

consciousness (e.g. [91]).

The point is that the reality humans perceive, consisting of macroscopic semi-classical

objects representing subjects, laboratories and apparatus, and with laboratory tests rep-

resented by single Hermitian operators, could really bear no apparent similarity to the

underlying subregister structure of states and jumps from which they emerge. The se-

quence of evolutions, tests, and partition changes occurring on the pregeometric level as

the Universe’s state develops could bear very little resemblance to the large scale reality

perceived by human observers.

Humans may therefore never truly be able to understand the apparently bizarre prop-

erties of the underlying quantum structure, because the notions of pregeometric states

and operators are far beyond their sphere of rational experience. Indeed, what exactly is

a quantum state?

The conclusion of this thesis is not that the conjectured quantum universe paradigm

provides a ‘Theory of Everything’. It is hoped, however, that it could provide a valid

and correct framework for such a theory to begin to be discussed. Thus, the overall

desire is that from this work, it will eventually be possible to describe an all-encompassing

and consistent view of physics, in which the properties of a quantum state undergoing an

endless series of evolutions and tests in a factorisable Hilbert space of enormous dimension

is able to generate, in the emergent limit, every phenomenon associated with the observed

physical Universe.

A real ‘Theory of Everything’ will therefore take the form of a complete set of self-
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referential Rules, which may be used to select particular operators, which in turn cause the

development of this state to give rise to these particular properties. From the underlying

pregeometric structure, such a Theory will therefore consequently govern the emergent

scale presence of classicity, continuous space, an expanding Universe, particle field theories,

interactions, and even human physicists performing tests in laboratories. And, of course,

the phenomenon of time.
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A Classical and Quantum Computation

Culturally, technologically and epistemologically, the Theory of Computation was one of

the revolutionary successes of Twentieth century science. Now in the Twenty-first century,

a great deal of research time is being spent on extending the idea of a computer acting

classically to one obeying the rules of quantum mechanics. There are a number of reasons

for this, both practical and theoretical.

Practically, modern computer chip technology is reaching its limits. One reason is that

the overall size of the device is bounded by thermodynamic concerns over the dissipation

of heat, and so there is an increasing need to manufacture silicon chips of highly compact

structure. This, however, can only go so far, and current technology is rapidly approaching

scales where quantum effects become significant.

On the other hand, as suggested by Manoharan [92], it might be expected that the

theory of quantum computation is the natural extension to the classical case. An anal-

ogy is drawn here to mechanics: Newtonian mechanics is the limiting case of relativity

(c → ∞) and of quantum theory (h → 0), which are in turn both special cases of rela-

tivistic quantum field theory. In a similar vein, Classical Computation (CC) might be a

limit to Quantum Computation (QC), itself just a subset of Quantum Field Computation

(QFC). It is even conjectured that quantum field theory itself is only an approximation of

higher order theories, for example supersymmetry or quantum gravity, and so this area of

computation might also eventually need expanding as subsequent models of reality become

better understood.

Furthermore, it has been conjectured throughout this thesis that the entire Universe

may be running as a giant quantum computer. If this viewpoint is correct, a better

understanding of the principles of quantum computation is essential if any type of ‘Theory

of Everything’ is to be achieved.

The purpose of this appendix is to introduce and elaborate upon the conventional

ideas of classical and quantum computation. It should be noted, however, that the type of

quantum computation discussed here is not strictly identical to the mechanism adopted by

the quantum Universe, as proposed in the body of this work. In fact, and as has been the

case before, the difference arises from a conflict between endo- and exo-physics. From the

endo-physical viewpoint of a system free from guiding observers, the Universe prepares,

evolves and tests itself according to the Rules governing its dynamics. Conversely, in the

conventional quantum computations examined below, the concern is for how semi-classical

human observers are able to manipulate an isolated quantum state in order to perform a

specific calculation, and how they can then test this state to obtain a specific answer.
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Thus, the discussion below provides a summary of the principles of laboratory compu-

tation, and therefore forms a useful completion and comparison to the ideas of Chapter

6.

A.1 Classical Computation

In the 1930s Alan Turing wrote his seminal paper on computation [93] and proposed the

Turing Machine (TM), the archetypal Classical Computer and forerunner to all modern

electronic computers. Contained in this work is the definition of computability: “A num-

ber is computable if its decimal can be written down (by a machine)”. Obvious

examples are integer quantities and rational fractions such as 1/2, 3/8 etc.

In fact, it is possible to extend the definition to numbers that can be written down

as decimals to a given degree of accuracy. This extends computability to quantities that

are the result of Cauchy convergent sequences if a level of approximation is specified. For

example, the number 2.7183, which is the estimate to five significant figures of the value

of e1, provides an approximation to the sequence

e1 = 1 +
1

2!
+

1

3!
+ ...+

1

r!
+ ... (A-1)

for very large values of r. Hence, 2.7183 is a good approximation to the infinite sum

generating the exponential, so e1 can be considered computable.

Mathematics is generally concerned with the processing of numbers via specific op-

erations. Calculations, for example, often follow the general logic: “what is the output

number O resulting from the operation A acting on the input number I ?". From

this, and the definition of computability, it is possible to conject an Automated Computing

Machine (or TM) which, given an input and a set of rules for computation, is able to solve

(or ‘compute’) a specific problem and return an output.

Turing provided his hypothetical machine with a certain set of characteristics and

components necessary for it to work. The actual physical design of the machine is taken

to be immaterial, and any particular hypothesised TM is not automatically assumed to

be the only (or even the best) way of encoding and processing information. It is the

hierarchy of how the characteristics and components interrelate that is important, and

how the algorithm proceeds. This principle is reinforced by Church’s Thesis, which argues

that all reasonable models of computation are equivalent [94].

Turing’s necessary conditions are as follows:

1. A TM has a finite number of internal states (called m-configurations). These are

analogous to a set of rules to be followed during the computation, and consequently

define it.
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2. The machine is supplied with a ‘tape’, that is, a medium of infinite capacity on which

the Input is recorded, the Output is displayed, and the result of any intermediate

‘rough workings’ can be temporarily recorded.

3. The tape itself is divided into a series of sites or ‘squares’. Each square can bear

one, and only one, ‘symbol’ from a set of possibilities.

4. The tape is moved along and is ‘scanned’ by the TM one square at a time. The TM

is ‘aware’ of only one square at any one time.

5. Scanning the symbol in the square may cause the internal state of the TM to change.

6. Define the Configuration of the TM as (Sr, i), where Sr is the symbol in the rth

square, and i is the current internal state of the machine. The Configuration deter-

mines the behaviour of the machine.

7. The machine may erase, amend or do nothing to the symbol, and may move the

tape one square to the left or right, according to the rules specified by its current

configuration.

A simple TM can perform all possible computations using just one of two possible

symbols in each ‘square’; this includes modern computers which run on binary logic based

on microelectronic components that are either switched ‘on’ or ‘off’. Thus, each square

has a value corresponding to a binary digit, and so may be called an individual bit.

Labelling these two possible values 0 and 1, it is easy to show that any input number can

be represented by a string of these bits according to the rules of binary mathematics, as

demonstrated later.

Additionally, special sequences of 0’s and 1’s can also be implemented to incorporate

necessary functions or instructions, for example a code to inform the TM that the input

string has ended, and computation can begin.

The m-configurations contain all of the possible instructions required during a com-

putation. Of course, which instructions are used depends on the actual calculation to be

performed. Four of the eight simplest instructions that might be used are:

a → b : L (A-2)

where a, b = 0 or 1. In words, this command implies: “If the current symbol is a then

amend it to b and move the tape one square to the left”. The complement four instructions,

‘a → b : R’, would move the tape to the right.
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The next simplest set of instructions are of the form

(c) a → b : L (A-3)

with a, b, c = 0, 1 and implying: “If the current symbol is a and the last encountered symbol

was c then amend a to b and move the tape one square to the left”. The complexity of the

instructions can of course be extended in an obvious way by considering the last 2, 3, ..., n

encountered symbols.

A computation is conventionally taken to begin with the Input string (input number

+ any instructions) on the far left of the tape. The schematics of this basic computation

can now be written as a generic algorithm:

1. The TM has a finite number of m-configurations which determine the nature of the

computation. It is initially in a particular state.

2. The Input is read (from the left) until a certain sequence of symbols is encountered.

This signals the end of the Input, and the actual calculating can begin.

3. The TM scans a particular square with the algorithm: If the current symbol is a

and the last N symbols were ABC..., then:

• Amend the symbol to b,

• Move the tape one step to the left or right,

• Change the internal state of the TM from m-configurationX to m-configuration

Y.

Exactly what action the symbols a, A, B, C, ... produce is determined by the particular

m-configuration at that time.

4. Step 3 is looped until symbol z is encountered when the last N ′ symbols were

A′B′C ′... and the TM is in m-configuration Z. At this point the computation is

halted.

5. The ‘answer’ to the problem is encoded as the remaining symbols on the tape.

It is possible that step 4 may never be encountered, for example if the internal state

Z never arises; in this case, the computation effectively loops forever without producing

an answer. In fact, it is a central problem in computer science to determine whether a

given computation will ever yield an output or will run on indefinitely. There are many

examples of this ‘Halting problem’, Gödel’s Incompleteness Theorem [24] being a famous

case.
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Note that it is additionally possible to encode into the Input (as a series of 0’s and 1’s)

the rules telling the TM which m-configurations to use. This gives a binary representation

of all the m-configurations used in a particular TM calculation, and by transforming this

binary number into the decimal number n it is possible to label the TM as the nth-Turing

Machine.

This idea can be extended to the concept of a Universal Turing Machine (UTM),

defined as a TM which has all possible m-configurations inbuilt. Any particular TM, i.e.

any specific computation, can be simulated on this Universal machine simply by supplying

the number n, because this consequently ‘informs’ the UTM which m-configurations are

relevant. A modern PC is effectively a Universal Turing Machine.

Generally speaking, computations involve mathematics, and mathematics involves

numbers. It is therefore necessary to be able to explicitly encode numerical concepts

into the Turing machines if they are to be useful. This can be achieved by recalling that

any non-negative integer z < 2r+1 may be represented in binary notation by the (r + 1)

bit string

z = zrzr−1...z2z1z0 (A-4)

which is shorthand for

z = (zr)2
r + (zr−1)2

r−1 + ...+ (z2)2
2 + (z1)2

1 + (z0)2
0 (A-5)

where zi = 0, 1 for i = 0, 1, ..., r. This obviously extends in a natural way to incorporate,

for example, negative integers where (zt) < 0 for all t, but this is not important here.

As an illustration, by using this binary notation the results: 2 = 10, 3 = 11, 4 = 100,

9 = 1001, 23 = 10111 etc. are readily obtained. The important point for the present

discussion on computation is that by employing this method every number z may be

uniquely defined by a string of 0’s and 1’s, exactly as required for the classical Turing

machine. Any number z < 2r+1 can consequently be written as a sequence of (r+1) bits,

each of which has a definite value.

In fact, it is also possible to cleverly incorporate instructions for mathematical oper-

ations as particular combinations of bit values [25]. A full discussion of how this may be

achieved, however, is beyond the scope of this short introduction.

It is possible now to provide a simple example of how an idealised Turing machine

might actually perform a calculation. For instance, consider the sum 1 + 3 = 4; in binary

notation, this equation is equivalent to the relation

...00001 + ...00011 = ...00100 (A-6)
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By noting that the right-most position in a string may be labelled the ‘first’ bit (that

is, perhaps even more confusingly, r = 0), a computer is able to generate the output string

according to the following algorithm:

1. The computer is initially provided with the input. In this case, the input takes the

form of information regarding the number ‘1’ (i.e. the string ...00001), some sort of

code telling the machine that an addition is required, and a number ‘3’ (indicated

by another string ...00011).

2. The value of the first bit of the output is given by the modulo two addition of the

value of the first bit, 1, of the first string (...00001) of the input to the value of the

first bit, 1, of the second string (...00011) of the input. So, in this case the value of

the first bit of the output is 0, because 1⊕ 1 = 0.

3. This first addition leaves a ‘carry’ of 1. The value of the second bit of the output

is then given by the modulo two addition of the value of the second bit, 0, of the

first string of the input, to the value of the second bit, 1, of the second string of the

input, followed by the modulo two addition of this result to the remainder (i.e. the

‘carry’), 1, of the previous addition used to generate the value of the first bit (i.e.

“Step 2”.). So, in this case the value of the second bit of the output is 0, because

(0⊕ 1)⊕ 1 = 0.

4. The procedure is repeated for all of the bits in the string. In general, the value of

the jth bit of the output is given by the modulo two addition of the values of the jth

bits of the two strings (...00001 and ...00011) of the input, added to the remainder

of the result of the modulo two addition of the values of the (j − 1)th bits of these

two strings and the ‘carry’ from the determination of the output’s (j − 2)th bit.

Thus, given an input incorporating the number ‘1’ (≡ ...00001), a code telling the

machine to do addition, and another number ‘3’ (≡ ...00011), the computer outputs the

number 4 (represented by the string ...00100).

The actual ‘mechanics’ of the above type of computation may be performed using

particular logic gates to manipulate the values of the bits of a string in order to produce

an output [95]. Consider the AND, the OR and the Exclusive-OR (XOR) operations that

obey the truth table

x 0 0 1 1

y 0 1 0 1

x AND y 0 0 0 1

x OR y 0 1 1 1

x XOR y 0 1 1 0

Table A-1
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Given an input that incorporates the two (r + 1)-bit strings of value xrxr−1...x2x1x0

and yryr−1...y2y1y0, the result of the sum (xrxr−1...x2x1x0+yryr−1...y2y1y0) is expected to

be a string of the form zr+1zrzr−1...z2z1z0, where x, y, z = 0, 1, noting that the additional

bit zr+1 may be required in the output to cope with a potential ‘carry’ from the addition

of xr and yr.

Now, it is evident that the calculation of the value z0 of the 1st bit of the output is

given by

z0 = (x0 XOR y0). (A-7)

Then, the calculation of the value z1 of the 2nd bit of the output may be given by

z1 = (x1 XOR y1) XOR (c0), (A-8)

where c0 is the ‘carry’ from the sum of the values of the first bits of the input, such that

c0 is clearly c0 = x0 AND y0.

In general, the value zj of the jth bit of the output is

zj = (xj XOR yj) XOR (cj−1) (A-9)

where the carry cj−1 from the earlier calculation of zj−1 is given by the recursive formula

cj−1 = (xj−1 AND yj−1) OR [(xj−1 OR yj−1) AND cj−2] . (A-10)

Of course, computers are not simply limited to addition, and alternative calculations

can be achieved by using different combinations of logic gates.

Another function useful in computation is the NOT-AND gate (NAND), which pro-

duces the truth table

x 0 0 1 1

y 0 1 0 1

x NAND y 1 1 1 0

Table A-2

This operation is particularly important because it is a standard result [95] that all

classical computations can be performed just by using combinations of NAND gates. Thus,

the NAND gate is said to be ‘complete’, and can consequently form the basis for a truly

universal Turing machine.

Moreover it is easy to physically build a NAND gate, for example by connecting a set

of transistors in a certain way. Thus, by incorporating the principle that low and high

voltages may be used to represent the off/on states associated with the bit values 0 and 1, it

is possible to construct an electronic device whose output is related to its input potentials

according to the logic of the NAND truth table. In fact, a modern personal computer

is effectively just a “black-box” containing many such devices. Thus by representing the
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input string of bits of value 0 or 1 as a set of low and high voltages, and by instructing the

computer as to which groups of NAND gates are to be used in which order and on which

bits for a particular desired calculation, the values of an input sequence of electrical pulses

may be used to generate a digital output sequence of 0’s and 1’s. From this starting point

any classical computation is theoretically possible.

As noted previously, a Turing Machine can act on any computable number. Com-

putable numbers, however, are only a subset of the field of real numbers, because Real

analysis contains non-computable quantities, that is, those which do not possess a se-

quence that is Cauchy convergent and hence those for which no level of approximation

can be used to specify them to an acceptable degree. As an example, non-computability

is exhibited in non-recursive sets, for instance the Mandlebrot fractal34 (described in [25]

and others).

For both mathematical and computational completeness, and maybe even for physics

as well, it is necessary to extend the encompass of computations operating over the set of

computable numbers to that of ‘Real Computations’ that also operate over the set of non-

computable numbers. This extension has recently been analysed [96] with an algorithm

found in polynomial time, but is beyond the scope of this short introduction. It is, however,

encouraging to note the completeness of mathematics in classical computation.

A.2 Quantum Computation

A number of authors have given accounts of how quantum computation may work, though

much of the original idea is accredited to Feynman [72]. Gramß et al have written a good

introductory text [97], from which much of this section of Appendix A is based.

A quantum computer has the same general structure as a classical computer: there is

an Output which is the result of some computation on an initial Input. The Input of a

quantum computer, however, is not a classical series of bits but a wavefunction represented

at time t = 0 by ψ(0). This wavefunction is dynamically evolved during the computation

into an Output wavefunction ψ(T ), which represents the state of the system at some later

time t = T. The actual evolution is governed by an operator Û , and this determines the

type of computation to be performed.

The information contained in the state ψ(t) may be encoded in a way analogous to a

classical computer that incorporates bits of value 0 and 1. Each quantum bit, or ‘qubit’,

34Strictly, the Mandlebrot set is based on complex numbers. This is unimportant for the present discus-

sion since moduli may be taken, and it is the fact that it is irrational and non-Cauchy convergent that is

of issue.
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q is a component of ψ(t) and is contained in a two dimensional Hilbert space spanned by

an orthonormal basis set of vectors conventionally represented by |0〉 and |1〉. However,
unlike the bits of a classical computer which can only take the values 0 or 1, the state of

a qubit can exist as a linear superposition of the form α|0〉+ β|1〉, for α, β ∈ C.

In practical terms, qubits could be physically associated with the two orthogonal eigen-

states of a ‘binary’ quantum system. Traditionally, the qubit is identified with the eigen-

states of a spin-1/2 particle, where perhaps |down〉 represents |0〉 and |up〉 represents |1〉,
but of course the ground and first excited states of any other two-level system could equally

well be used, as could, for example, left and right handed photonic polarisation states.

The two states can also be identified with the column matrices

|0〉 =
(
1

0

)
and |1〉 =

(
0

1

)
. (A-11)

The most general state ψ(t) of the quantum computer may be represented in the usual

way by a vector in a Hilbert space H. However, since a desire will be to retain the binary

logic common to both classical and quantum bits, attention is restricted to Hilbert spaces

of dimension 2N , where N is the number of qubits chosen to comprise the system. Thus,

H may be written H ≡ H[1...N ], where Hm is the two-dimensional subregister containing

the mth qubit, for m = 1, 2, ..., N. The state ψ(t) is now taken to be an arbitrary vector in

H[1...N ] with all the separability and entanglement properties familiar to quantum theory

and discussed elsewhere in this work.

This general vector approach may be usefully simplified and constrained in order to

draw further parallels with the classical computers described previously. For example,

just as the state of a classical Turing Machine is given by a string of classical bits, the

wavefunction of the quantum computer could be the tensor product of N qubit factor sub-

states; such a product may also be called a ‘string’. Continuing the analogy, the classical

symbol 0 or 1 in the mth square of the Input section of the TM’s tape may be seen as

related to the particular spin eigenstate of the mth qubit.

Thus a classical N bit string aNaN−1...a1, where am = 0 or 1 for m = 1, 2, ..., N, is

analogous (in some sense) to an N qubit product represented by a wavefunction ψ defined

as |ψ〉 = |a1〉 ⊗ |a2〉 ⊗ ...⊗ |aN 〉, with the important difference being that in the quantum

case each of these sub-states |am〉 may exist as a linear superposition of their bases.

So, |am〉 = αm|0〉m + βm|1〉m for m = 1, 2, ..., N and αm, βm ∈ C, which clearly gives

|ψ〉 =
[
α1

(
1

0

)

1

+ β1

(
0

1

)

1

]
⊗
[
α2

(
1

0

)

2

+ β2

(
0

1

)

2

]
⊗...⊗

[
αN

(
1

0

)

N

+ βN

(
0

1

)

N

]
(A-12)

noting how the left-right ordering of the state has been reversed between the classical

(aN → a1) and quantum (a1 → aN ) cases. As throughout this thesis, tensor product
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symbols may be emitted for brevity, with the position being used instead as the marker of

distinction. For example, the state |110...1〉 will be taken to imply |1〉1⊗|1〉2⊗|0〉3⊗...⊗|1〉N
etc.

If a string of qubit sub-states may be written as a product that involves no quantum

superposition, it may be seen to directly represent a classical input string. Of course,

one way of achieving this would be if either αm or βm is zero for each m. In such cases,

products of qubits may also be associated with unique numbers according to the rules of

binary mathematics, just as with the strings of classical bits. Thus, in the instance where

either αm or βm is zero for each m, the state |a1a2...aN 〉 would be classically equivalent to

the string aNaN−1...a1, and may hence be labelled by the number aN2N−1 + aN−12
N−2 +

...+a12
0. For instance, the product quantum state |101〉 is equivalent to the classical string

101, and hence represents the binary number 5.

This idea may be extended in a way that will become important later. If the individual

products of qubit sub-states may be superposed, the overall wavefunction may then be

interpreted as representing a superposition of numbers. As an illustrative example, the

superposed state

|101 + 111〉 = |101〉+ |111〉 (A-13)

which may be thought of as a superposition of the quantum strings |101〉 and |111〉 and is

equivalent to the single qubit superposition

|1〉1 ⊗ [|0〉2 + |1〉2]⊗ |1〉3 (A-14)

is analogous to a quantum superposition of the classical strings 101 and 111, and conse-

quently represents a superposition of the numbers 5 and 7. Note, however, that the actual

superposed state |1(0 + 1)1〉 has no classical equivalent itself, because classical physics

does not support superpositions. Reversing this statement: there is no single string of

classical bits aNaN−1...a1 that has the quantum equivalent |101 + 111〉.

The evolution of the state is governed by an operator Û . For a useful quantum com-

putation, this operator must be: a) Reversible; b) Universal, so that all computations can

be performed (c.f. NAND in classical logic). The first condition is important because it

implies the existence of the inverse operator Û−1, ensuring that the operator is unitary as

required for the Schrödinger evolution of a state. Furthermore, the one-to-one mapping

that then arises from the reversibility of Û implies that a given Output state is the result

of a unique Input state.

The operator Û could be seen as a type of logic gate, for example the Fredkin-Toffoli

gate [98] ÛFT . An Input wavefunction |ψ(0)〉 would be evolved by such a gate into an

output wavefunction, such that, for example, the state |ψ(1)〉 after one ‘application’ is
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given by:

ÛFT |ψ(0)〉 = |ψ(1)〉. (A-15)

In reality, the desired form of the unitary operator Û is achieved by carefully modifying

the Hamiltonian used to determine the dynamical evolution of the system. Exactly how

this is accomplished is, therefore, an important technical question. However whilst this

might be the case, the issue should really just be seen as a physical practicality that does

not alter the following theoretical discussion.

A Universal Quantum Turing Machine (i.e. Quantum Computer (QC)) is the quan-

tum version of the reversible classical Turing Machine. There are, however, important

differences between how the two ‘devices’ work. In general, for example, classical UTM’s

operate by performing a series of computations (‘Serial Computation’), i.e. by performing

one step after another, where the TM only ‘reads’ and acts upon one particular bit at any

one time. Conversely, the power of quantum computation lies within ‘Quantum Paral-

lelism’ (QP), as shown below. The Input wavefunction can exist as a linear superposition

of its qubit sub-states, so the quantum computer can in principle act on more than one

‘string’ of qubits at a time, where each string has a different classical equivalent. For

example, if the input state was of the form ψ(0) = |00〉 + |11〉, the computation could

act simultaneously on the strings |00〉 and |11〉 (with classical equivalents 00 and 11). The

general idea is that the computations of the strings (e.g. |00〉 and |11〉) are performed

in parallel (i.e. as |00〉 + |11〉), and then brought together at the end to give a result in

less time than would be the case if the computations had been performed on each string

serially (e.g. |00〉 followed by |11〉).

This power of QC can be illustrated by example. Consider some rule or function

f(i) that, given an input integer i, computes an output integer i′ (i.e. f(i) = i′ : i, i′ ∈
Z∗). Because any computable function can be constructed from reversible logic gates, the

function f(i) is described by a particular unitary operator Ûf .

Assume that the state of the system may be labelled by Ψ. This state must necessarily

represent everything that is involved in the computation; if the quantum computer is

viewed as a ‘black box’, the state Ψ must incorporate the part of the computer’s memory

that stores the input state, the part used to perform the calculation, the part used to store

the outcome, etc.

So, in order to abbreviate the notation, consider the sub-state ψ of Ψ defined as |ψ〉 =
|i, j〉, where i is the state of the input and j the current state of the output. Moreover, if i

and j are both assumed to be integers, they may naturally be written in binary notation

as a string of 0’s and 1’s, and so may readily be encoded as a product of non-superposed

qubits of given spin.
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Consider now an initial state ψi(0) defined as |i, 0〉, where 0 is a ‘ground state’ string

of 0’s, i.e. 0 = |000...0〉, representing the obvious observation that there is no output j

yet. If the function f(i) is associated with the computation Ûf , the evolution of the initial

state ψi(0) to the final state ψi(f) is described by

ψi(f) = Ûfψi(0) = Ûf |i, 0 〉 = |i, f(i)〉. (A-16)

Note that the number i features in both the Input ψi(0) and Output ψi(f) wavefunc-

tions. This feature is a result of the constraint that the evolution is unitary; if the input

information had been overwritten or ‘forgotten’, reversibility would be violated.

As required for quantum parallelism, it is desirable to write the input state as a linear

superposition of many alternative classical strings of qubits. Supposing there are n such

possible strings, i.e. i = 1, 2, ..., n corresponding ultimately to the ‘binary’ product states

ψ1(0) = |10...0, 0〉, ψ2(0) = |01...0, 0〉, ..., ψn(0) = |11...1, 0〉, the superposed Input state

|ψ 〉I may be given by the sum

|ψ〉I =
1√
n

n∑

i=1

ψi(0) =
1√
n

n∑

i=1

|i, 0〉. (A-17)

The final state |ψ〉F is generated by evolving the input state |ψ〉I with Ûf , i.e.

|ψ〉F = Ûf |ψ〉I = Ûf

(
1√
n

n∑

i=1

|i, 0〉
)

=

(
1√
n

n∑

i=1

|i, f(i)〉
)
. (A-18)

Clearly, this final state |ψ〉F contains n ‘solutions’ corresponding to the n many f(i)

for i = 1, 2, ..., n. However, the generation of |ψ〉F from |ψ〉I has been achieved during

one time step (evolution) of the calculation on only one quantum computer, i.e. by one

application of the gate Ûf to the Input state |ψ〉I . Conversely, if performed serially on

each of the n states ψi(0), it would take n time steps to produce n results for f(i).

There is, however, unfortunately an inherent problem here: it is not possible to access

more than one of these solutions. As soon as the superposed Output |ψ〉F is observed its

state vector collapses to one of the eigenfunctions of whichever Hermitian operator was

used to measure it. From this perspective all that can be known about |ψ〉F is that it

collapses to, say, the eigenstate |e〉 with relative probability |〈e|ψ〉F |2. Moreover, assuming

that the Hermitian operator is chosen such that its n eigenvectors are the ‘answer’ states

|i, f(i)〉, then the probability |〈e|ψ〉F |2 = |〈e, f(e)|ψ〉F |2 of obtaining the eth one of these

is given by 1/n, with each outcome taken to be equally likely.

Furthermore, once the state |ψ〉F has collapsed, any additional measurements of the

system with the same Hermitian operator produce the same result. Thus, there is no way
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to retrieve any information about any of the other n−1 parts of the superposition |i, f(i)〉
of |ψ〉F for i 6= e, and so the fact that all of this other information is lost renders the QC

described above as no more efficient than a classical computer.

The problem may be rephrased by emphasising that the quantum state |ψ〉F has been

‘asked a direct question’, thereby forcing it into a single eigenstate. To avoid this, a more

stochastic approach needs to be employed, where sets of questions are simultaneously

posed and the results are given in terms of the probabilities of ensembles of answers.

As it turns out, this procedure is incredibly difficult, and only a few such possible

solutions to this type of problem have been found where quantum parallel computation can

better classical serial computation. Examples are Shor’s algorithm for the fast (polynomial

time) factorisation of a large number into two primes [99], and the work by Deutsch and

Jozsa [100] described below.

Deutsch and Jozsa’s model (henceforth referred to as DJ) begins by considering a

function f that maps a positive integer z randomly to either 0 or 1, that is

f(z) = 0 or 1 , ∀ z ∈ Z+. (A-19)

Consider now a string of n numbers {n} =
{∑2N

i=1 i
}
= {1, 2, ..., 2N}, where n = 2N

is clearly even. In DJ’s model the computation f acts on each of these numbers to yield

a bit string x defined as

x = f(1)f(2)...f(2N) (A-20)

which is evidently a sequence 2N characters long of 0’s and 1’s that will randomly take

one of the 22N forms:

x = {(000...0), (100...0), (010...0), ... , (000...1), (110...0), (101...0), ......... , (111...1)}.
(A-21)

Given an initial sequence n, the thrust of DJ’s task is then to find at least one true

statement about the resulting string x from the following two assertions:

1. The string x is neither just a string of 0’s nor just a string of 1’s (i.e. x is neither

000...0 or 111...1). This is equivalent to the statement that f is not a constant

function.

2. The number of 0’s in x is not equal to the number of 1’s in x. In other words, the

function f acting on the 2N numbers 1, 2, ..., 2N will not give exactly N many 0’s

and N many 1’s.

Clearly, for a string x picked at random both statements are likely to be true.
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A schematic algorithm for a classical computation of this sort could be to compute

f(1), then compute f(2), then compare the values of f(1) and f(2), then compute f(3)

before comparing its value to f(1) and f(2), then compute f(4), and so on. Assuming that

each computation takes one time step to complete, and that the comparison procedure is

effectively instant, a worst case scenario for the efficiency of such a serial method of testing

the validity of statements “1." and “2." consequently takes N +1 steps: if the first N bits

all turn out to be 0’s, and if the N + 1th bit is another 0, it implies that Assertion “2." is

true, whereas if the N + 1th bit is alternatively a 1 it follows that Assertion “1." must be

true (and similarly, of course, if the first N bits are all 1’s). In other words, for a serial

classical computer the computation f may need to be called N +1 times before an answer

can be obtained to statements “1." and “2." for an initial sequence of 2N numbers.

The question is: “Can a quantum computer improve on this efficiency?”. Is it possible

to find a quantum method that appears to compute every number simultaneously?

The quantum computation in DJ’s proposed method makes use of three distinct stages:

preparation of the Input state; computation via dynamical evolution; and measurement

of the Output state.

In a classical computation, the string n comprises of a ‘chain’ of (binary) numbers

1, 2, 3, ..., 2N, and the function f(i) acts on each of them in turn, i.e. serially. In quantum

computation, however, the quantum strings equivalently representing these 2N numbers

may be linearly superposed into a single state. Thus, the Input state |ψ〉I for the present

calculation is taken to be a linear superposition of the 2N numbers
{∑2N

i=1 i
}
and may be

written

|ψ〉I =
1√
2N

2N∑

i=1

ψi(0) =
1√
2N

2N∑

i=1

|i, 0〉 (A-22)

with the |i = input, j = output〉 defined as before and the 0 implying a string of 0’s. Of

course, each i is taken to represent a binary number between 1 and 2N, and is hence a

string of non-superposed qubits of definite value; this therefore requires at least R qubits,

where R is the smallest integer for which 2R > 2N.

As an aside, note that in order to actually prepare the initial state |ψ〉I it is necessary

to consider the ‘pre-Input’ state |ψ〉p. This is taken to be |ψ〉p = |0, 0〉, such that every

qubit of that part of the quantum computer allocated to store the input state i is assumed

to be in the ground state |0〉. Now, because any number i can be represented in binary

notation by a unique string of 0’s and 1’s, every quantum ‘number state’ |i〉 is represented
by a product of qubits, each of which is definitely in the state |0〉 or |1〉. To represent

a particular number it is therefore necessary to transform some of the state |0〉 qubits

contained in the input product 0 into state |1〉 qubits. Moreover, because the eventual

Input state |ψ〉I is defined to be a superposition of all of these different combinations of
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product qubit states, this must also be taken into account.

One way of achieving this is therefore to use a suitable unitary operator Â acting on

|ψ〉p that evolves it into the superposition state |ψ〉I . Thus,

|ψ〉I = Â|ψ〉p = Â|0, 0〉 (A-23)

where Â may act locally on the individual qubit spaces.

The actual quantum computation makes use of two operators: an evolution operator

Ûf that evolves a state in the manner

Ûfψi(0) = Ûf |i, 0 〉 = |i, f(i)〉 (A-24)

where f(i) = 0 or 1, and a ‘parity’ operator Ŝ defined as

Ŝ|i, j〉 = (−1)j |i, j〉. (A-25)

The computation is achieved by evolving the state, performing a parity operation,

and then applying the inverse operator Û−1
f to obtain an Output wavefunction |ψ〉F .

Specifically,

|ψ〉F = Û−1
f ŜÛf |ψ〉I = Û−1

f ŜÛf

(
1√
2N

2N∑

i=1

|i, 0〉
)

(A-26)

= Û−1
f Ŝ

(
1√
2N

2N∑

i=1

|i, f(i)〉
)

= Û−1
f

(
1√
2N

2N∑

i=1

(−1)f(i)|i, f(i)〉
)

=

(
1√
2N

2N∑

i=1

(−1)f(i)|i, 0〉
)
.

Consequently, the 2N results of the computation f(i) are stored as phase information

in the (−1)f(i) part of the Output state |ψ〉F .

Measurement of the Output wavefunction |ψ〉F is achieved by a Hermitian operator

that possesses φ as an eigenvector, where φ = |ψ〉I is the initial state. The probability

of recording the eigenvalue associated with this is given in the usual way by P, where

P = |〈φ|ψ〉F |2. So

P =

∣∣∣∣∣∣
1

2N

2N∑

i=1

2N∑

j=1

(−1)f(i)〈j, 0|i, 0〉

∣∣∣∣∣∣

2

, (A-27)

and assuming orthogonality of the states, 〈j, 0|i, 0〉 = δij , gives

P =

∣∣∣∣∣
1

2N

2N∑

i=1

(−1)f(i)

∣∣∣∣∣

2

. (A-28)

The statements “1." and “2." can be answered by examining P. Three distinct cases

are present:
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i) If P = 0 then the sum must have vanished. This implies that f(i) has produced as

many 0’s as it has 1’s and consequently Assertion “1." must be true (and “2." must

be false).

ii) If P = 1 then all of the f(i)’s must be either 0 or 1 and hence Assertion “2." is true

(and “1." is false).

iii) If 0 < P < 1 then f(i) has produced an unequal number of 0’s and 1’s, but has

produced at least one of each. Both Assertions “1." and “2." must be true.

The important point is that the time taken for Ûf to act is assumed to be the same

as the time needed to perform just one computation f(i) on a single number i in the

classical (serial) case. If Û−1
f is assumed to take one time step also, and if Ŝ is taken to

act comparatively ‘instantly’, the entire quantum computation has proceeded in just two

time steps. Thus the quantum computation is performing 2N computations in parallel in

only two time steps. Moreover, the testing of the validity of statements “1." and “2." has

also been achieved in just two time steps, which compares with a serial, classical computer

taking (at worst) N + 1 time steps to arrive at the same conclusion.

So, quantum computers clearly have an enormous advantage over their classical coun-

terparts in certain specifically defined computations. Unfortunately, of course, they also

have the even greater disadvantage that they cannot (currently?) actually be built: the

effects of their external surroundings destroy the superposition of the evolving state before

any significant computation can take place.

Whether or not this technological difficulty will ever be overcome is a question for

the future. However, even if the ‘decohering’ presence of an environment fundamentally

prohibits the construction of a working quantum computer inside the Universe, it does not

prevent the principles of quantum computation being applied to the Universe as a whole,

as proposed in this work. After all, the physical Universe has no external environment to

interfere with it.

As relativity is an extension of Newtonian mechanics, and quantum field theory an

extension of quantum mechanics, we might expect the extension of quantum computation

into relativistic quantum field computation. After all, quantum computation proceeds as

the time evolution of an initial state (generally comprising of products of qubits located at

definite sites), where time is treated as a continuous variable. Lorentz invariance, however,

expects space and time to be interchangeable, so a covariant case of quantum computation

might ultimately be sought: quantum field computation.
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Quantum field computation would be a new branch of computation drawing from

both Real and Quantum analogues. At this stage, very little is clear about exactly how a

QFC could work, and authors mainly describe it as a necessary new direction instead of

as a well understood procedure with defined mathematical structure [92][101][102]. The

actual preparation of input states, and the eventual defining of the system via information

encoded into Lagrangian formulations, are both interesting considerations for the future.

The primary difference between quantum computation and quantum field computation

is that whilst QC permits superpositions of qubits, QFC allows superpositions of entire

fields. So, whereas in quantum computations an Input exists as linear superpositions of

‘classical’ n qubit strings in a Zn dimensional Hilbert space (where Z is the number of

states per qubit35), each field in a quantum field computation would possess an infinite

number of degrees of freedom, so the computation would take place in an infinite dimen-

sional Hilbert space. Additionally, whereas the results of a quantum computation may be

exhibited as single eigenstates, the output of a quantum field computation might be given

in terms of expectation values of field operators.

Quantum field computation is an extension from real computation in that it includes

computation over the continuum. This extension naturally increases the computational

power of the system at the cost of an increasingly complex mathematical formalism.

Exactly what this might imply for a Universe running as a quantum computer is an

intriguing question for the future.

35Strictly speaking, “qubitÔ is an acronym for QUantum Binary digIT, so Z can only ever equal 2, but

it is in principle possible to build quantum computers out of suitably named qutrits, ququads, ..., quzits

(?), represented by 3, 4, ..., Z level systems.
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B The Dirac Field

In this appendix, the standard Hamiltonian, momentum and charge operator representa-

tions are derived for spin-12 fermions. The presented approach follows closely the treatment

given in the text of Mandl and Shaw [78].

B.1 Lagrangian Dynamics

The Dirac equation of motion for free particles of rest mass m is conventionally given by

i~γµ∂µψ(x)−mcψ(x) = 0 (B-1)

where c is the speed of light, ∂µ ≡ ∂
∂xµ for µ = 0, 1, 2, 3 and xµ ≡ (ct,x) ≡ (ct, xj) for

j = 1, 2, 3, and γµ are 4× 4 matrices satisfying the anti-commutation relations

{γµ, γν} = 2gµν (B-2)

and the Hermiticity conditions γ0† = γ0 and γj† = −γj , so that

γµ† = γ0γµγ0 (B-3)

with gµν the metric tensor of signature (+,−,−,−) such that xµ = (ct,−x); the gamma

matrices form a Clifford algebra [103].

The ‘adjoint’ field ψ̄(x) is defined as ψ̄(x) ≡ ψ†(x)γ0, and this satisfies the ‘adjoint’

Dirac equation i~∂µψ̄(x)γµ + mcψ̄(x) = 0. Note that there is no standardised notation

in the texts on quantum field theory, and is often incongruent with ‘conventional’ mathe-

matics: the field ψ†(x) is taken here to represent the Hermitian (or transpose) conjugate

of the field ψ(x), whereas in linear algebra such an operator ψ†(x) would often be called

the adjoint of ψ(x) and may instead be denoted by ψ∗(x).

Both the Dirac equation and the adjoint Dirac equation can be derived from the Euler-

Lagrange condition, given the Dirac Lagrangian density L defined36 as

L = cψ̄(x) [i~γµ∂µ −mc]ψ(x) (B-4)

= cψ̄(x)

[
i~γ0

∂

∂(ct)
+ i~γj

∂

∂xj
−mc

]
ψ(x)

= ψ̄(x)
[
i~γ0ψ̇(x) + i~cγj∂jψ(x)−mc2ψ(x)

]

36Note that for convenience in this appendix an asymmetric Lagrangian has been used. As can be readily

verified, however, a symmetrised version would lead to the same results.
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where the dot denotes differentiation with respect to time, t. Consider now the conjugate

momenta to ψ(x) and ψ̄(x), written as π(x) and π̄(x) respectively. These are given by

π(x) ≡ ∂L

∂ψ̇(x)
= ψ̄(x)i~γ0 = i~ψ†(x) (B-5)

π̄(x) ≡ ∂L

∂
·
ψ̄(x)

= 0.

Together with the fields, the conjugate momenta satisfy the canonical anti-commutation

algebra

{ψ(x), π(x′)} = i~δ(x− x′) (B-6)

{ψ(x), ψ(x′)} = {π(x), π(x′)} = 0.

So, the Hamiltonian density H̃ (x) defined as

H̃ (x) ≡ π(x)ψ̇(x) + π̄(x)
·
ψ̄(x)− L (B-7)

becomes

H̃ (x) = i~ψ†(x)ψ̇(x) + 0−
[
i~ψ†(x)ψ̇(x) + i~cψ̄(x)γj∂jψ(x)−mc2ψ̄(x)ψ(x)

]

= mc2ψ̄(x)ψ(x)− i~cψ̄(x)γj∂jψ(x) (B-8)

producing the Hamiltonian H

H =

∫
ψ̄(x)[mc2 − i~cγj∂j ]ψ(x) d

3x. (B-9)

Similarly, the 3-momentum P defined as

P ≡ −
∫
[π(x)∂jψ(x) + π̄(x)∂jψ̄(x)] d

3x (B-10)

becomes

P = −
∫

[i~ψ†(x)∂jψ(x) + 0] d3x. (B-11)

such that the relativistic energy-momentum vector Pµ = (H/c,P) may be evaluated.

Lastly, from the quantity Q defined as

Q ≡ − iq

~

∫
[π(x)ψ(x)− π̄(x)ψ̄(x)] d3x (B-12)

for particles possessing ‘charge’ of magnitude q, it follows that

Q ≡ − iq

~

∫
[i~ψ†(x)ψ(x)− 0] d3x (B-13)

= q

∫
ψ†(x)ψ(x) d3x.
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The result (B-13) for Q is associated with the conserved electric charge, and leads to

an invariance of the Lagrangian density L under a global phase transformation of the fields

ψ(x) → ψ(x)′ and ψ†(x) → ψ†(x)′ by e−iαq, where

ψ(x) → ψ(x)′ ≡ e−iαqψ(x) ∼ (1− iαq + ...)ψ(x) (B-14)

ψ†(x) → ψ†(x)′ ≡ e+iαqψ†(x) ∼ (1 + iαq + ...)ψ†(x)

for small α ∈ R, such that

L = L(ψ, ψ̄) = L(ψ′, ψ̄
′
) ≡ L([e−iαqψ], [e+iαqψ̄]) (B-15)

as may be readily shown from the condition of invariance, δL = 0, for a Lagrangian density

affected as L → L′ ≡ L+ δL by a change of the fields (B-14), where

δL ≡ ∂

∂xµ

(
∂L

∂ψ,µ

δψ(x)

)
(B-16)

and by using the Dirac equation.

Specifically, the unitary transformation U associated with this unobservable phase

change in the fields is given by

U = exp(iαQ) (B-17)

such that from Schrödinger’s equation

ψ(x)′ = eiαQψ(x)e−iαQ (B-18)

= ψ(x) + iα[Q,ψ(x)]

which is seen to result in (B-14) by using the equations

[Q,ψ(x)] = −qψ(x) (B-19)

[Q,ψ†(x)] = qψ†(x)

which themselves follow from the anti-commutation relations of on the field [104].

The conserved nature of the charge Q is thus shown from Noether’s theorem regard-

ing the invariance of the Lagrangian density under a given continuous transformation.

Furthermore, the invariance of the dynamics under this unitary transformation may be

incorporated into Heisenberg’s equation of motion.

B.2 Quantisation

The system may now be quantised. Firstly, consider a large, cubic region of space of

volume V containing the fields. For every periodic mode of momentum p and positive

energy Ep given by

Ep =
√

(p · p)c2 +m2c4 , Ep ≥ 0 (B-20)
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that is inside this ‘box’ and is constrained to tend to zero at the boundary, the Dirac

equation has four independent, plane wave solutions represented by

ψ+
r (x) = Kpur(p)

e−ip·x/~
√
V

and ψ−
r (x) = Kpvr(p)

e+ip·x/~
√
V

, r = 1, 2 (B-21)

where r = 1, 2 and Kp is a constant, with p = pµ = (Ep/c,−p). The ur(p) and vr(p) are

constant, four-component spinors, which, together with their adjoints ūr(p) ≡ u†r(p)γ0

and v̄r(p) ≡ v†r(p)γ0, satisfy

(γµpµ −mc)ur(p) = 0 , (γµpµ +mc)vr(p) = 0 (B-22)

ūr(p)(γ
µpµ −mc) = 0 , v̄r(p)(γ

µpµ +mc) = 0

as may be verified by substituting the solutions (B-21) into the original Dirac equation.

The index r = 1, 2 labels two distinct solutions for each momentum p; choosing these

to be orthogonal, the solutions are ultimately taken to represent the two spin compo-

nents required for a spin-12 theory. Thus, the states containing ur(p) are interpreted as

corresponding to positive energy particles of momentum p (e.g. spin-up and spin-down

electrons), whereas the states containing vr(p) are interpreted as corresponding to neg-

ative energy particles (e.g. spin-up and spin-down positrons). Note, however, that the

negative energy solutions are also traditionally taken to represent positive energy anti-

particles travelling backwards in time, but from the point of view advocated in this thesis

it is debateable as to whether this interpretation really makes consistent sense.

The normalisation of the spinors is defined [105] as

u†r(p)ur(p) = v†r(p)vr(p) =
Ep

mc2
(B-23)

such that

u†r(p)us(p) = v†r(p)vs(p) =
Ep

mc2
δrs (B-24)

u†r(p)vs(−p) = 0

and

ūr(p)us(p) = −v̄r(p)vs(p) = δrs (B-25)

ūr(p)vs(p) = v̄r(p)us(p) = 0.

Consider now the expansion of the field ψ(x) into a complete set of plane wave states,

that is ψ(x) = ψ+(x)+ψ−(x), where ψ+(x) represents the solutions propagating forwards

(i.e. the ‘electrons’) and ψ−(x) the solutions propagating backwards (i.e. the ‘positrons’).

This expansion is given by

ψ(x) =

2∑

r=1

∞∑

p=0

(
mc2

Ep

)1/2
[
cr(p)ur(p)

e−ip·x/~
√
V

+ d†r(p)vr(p)
e+ip·x/~
√
V

]
(B-26)
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where the sum is over all possible spin states, r, and all possible momenta, p, noting that

this last point leads to some of the divergence problems associated with quantum field

theory. The variable37 cr(p) = c(p, r) provides the amplitude of the pth contribution of

ur(p) of spin r to ψ+(x), whilst d†r(p) = d†(p, s) similarly provides the amplitude of the

pth contribution of vr(p) of spin r to ψ−(x), and both are scaled such that the multiplying

constant
(
mc2/Ep

) 1
2 is chosen for later convenience.

In a similar manner, the adjoint field ψ̄(x) may be expanded as

ψ̄(x) =
∑

r,p

(
mc2

V Ep

)1/2 [
dr(p)v̄r(p)e

−ip·x/~ + c†r(p)ūr(p)e
+ip·x/~

]
. (B-27)

Taking now the continuous limit [78], the discrete sum over all momenta in V → ∞
may be replaced by an integral, such that

ψ(x) =

∫ ∞

−∞

d3p

(2π~)3/2

2∑

r=1

(
mc2

Ep

)1/2 [
cr(p)ur(p)e

−ip·x/~ + d†r(p)vr(p)e
+ip·x/~

]
(B-28)

and similarly for ψ̄(x).

In the standard procedure of quantum field theory, quantisation is achieved by di-

rectly quantising the individual harmonic oscillator modes of the field. Thus the field

amplitudes cr(p) and dr(p) are associated with operators, such that for example the op-

eration ĉ†r(p)|0〉 = |pu
r 〉 is taken to imply the creation of a positive energy particle |pu

r 〉 of
‘type’ ur(p) with spin r and momentum p from the vacuum |0〉, whilst ĉr(p) is taken to

result in the destruction of this state.

Moreover, different particles can be created by applying different operators, such that

for example ĉ†r(p)ĉ
†
s(p′)|0〉 = |pu

r ,p
′u
s 〉 produces the two particle state |pu

r ,p
′u
s 〉. Note that

the vacuum is defined as the lowest possible ‘occupation’ of particles, such that ĉr(p)|0〉 =
0.

Care is needed, however, when applying such an interpretation, because the spin-12

particles of Dirac theory are physically observed to obey the statistics of Fermi. Para-

phrasing, this condition ensures that no two identical particles can exist in the same state,

so that ĉ†r(p)ĉ
†
r(p)|0〉 = 0. This constraint leads to the result that [ĉ†r(p)]2 = [d̂†r(p)]2 = 0,

which is ensured by assuming the anticommutation relations for the operators:

{ĉ†r(p), ĉ†s(p′)} = {ĉr(p), ĉs(p′)} = 0 (B-29)

{d̂†r(p), d̂†s(p′)} = {d̂r(p), d̂s(p′)} = 0

{ĉr(p), d̂s(p′)} = {ĉr(p), d̂†s(p′)} = 0

{ĉ†r(p), d̂s(p′)} = {ĉ†r(p), d̂†s(p′)} = 0

37Noting the interchangeability of the notation between this appendix and Chapter 7, in which sub-

scripts were replaced by bracketed parameters for clarity.
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and

{ĉr(p), ĉ†s(p′)} = {d̂r(p), d̂†s(p′)} = δrsδpp′ . (B-30)

It is beneficial to define two further operators N̂r(p) and N̂ r(p) as

N̂r(p) = ĉ†r(p)ĉr(p) , N̂ r(p) = d̂†r(p)d̂r(p). (B-31)

N̂r(p) and N̂ r(p) are then seen as analogous to the number operators of the conven-

tional harmonic oscillator, and have product rules evidently given by

[N̂r(p)]
2 = ĉ†r(p)ĉr(p)ĉ

†
r(p)ĉr(p) (B-32)

= ĉ†r(p)[1− ĉ†r(p)ĉr(p)]ĉr(p) = N̂r(p)− 0

and so on.

As noted above, the vacuum state |0〉 is defined as

ĉr(p)|0〉 = d̂r(p)|0〉 = 0 (B-33)

which is equivalent to

ψ+(x)|0〉 = ψ̄
+
(x)|0〉 = 0. (B-34)

B.3 The Hamiltonian Operator

It is now possible to rewrite the Hamiltonian (B-9) in terms of the annihilation and creation

operators.

Substituting gives

Ĥ =

∫
d3x

{∫ ∞

−∞

d3p

(2π~)3/2

∑

r

[
d̂r(p)v̄r(p)e

−ip·x/~ + ĉ†r(p)ūr(p)e
+ip·x/~

]}

×
(
mc2

Ep

)1/2

(mc2 − i~cγj∂j) (B-35)

{∫ ∞

−∞

d3p′

(2π~)3/2

∑

s

(
mc2

Ep′

)1/2 [
ĉs(p

′)us(p
′)e−ip′·x/~ + d̂†s(p

′)vs(p
′)e+ip′·x/~

]}

=

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

[
d̂r(p)v̄r(p)e

−ip·x/~ + ĉ†r(p)ūr(p)e
+ip·x/~

]

×
(

mc2√
EpEp′

)
(mc2 − i~cγj∂j)

[
ĉs(p

′)us(p
′)e−ip′·x/~ + d̂†s(p

′)vs(p
′)e+ip′·x/~

]
.

By rearranging the Dirac equation as

i~γi∂jψ(x) = mcψ(x)− i~γ0∂0ψ(x) (B-36)
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the Laplacian derivatives c(i~γj∂j) may be removed, and (B-35) may be rewritten as

Ĥ =

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

(
mc2√
EpEp′

)[
d̂r(p)v̄r(p)e

−ip·x/~ + ĉ†r(p)ūr(p)e
+ip·x/~

]

×
(
mc2 −mc2 + i~cγ0

∂

∂x0

)[
ĉs(p

′)us(p
′)e−ip′·x/~ + d̂†s(p

′)vs(p
′)e+ip′·x/~

]

=

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

(
mc2√
EpEp′

)

×
[
d̂r(p)v̄r(p)e

−ip·x/~ + ĉ†r(p)ūr(p)e
+ip·x/~

]

×(i~cγ0)
[
(−iEp′/~c)ĉs(p

′)us(p
′)e−ip′·x/~ + (iEp′/~c)d̂

†
s(p

′)vs(p
′)e+ip′·x/~

]

=

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

(
mc2

√
Ep′

Ep

)

×
[
d̂r(p)v̄r(p)e

−ip·x/~ + ĉ†r(p)ūr(p)e
+ip·x/~

]

×
[
γ0ĉs(p

′)us(p
′)e−ip′·x/~ − γ0d̂†s(p

′)vs(p
′)e+ip′·x/~

]
. (B-37)

Clearly, multiplying out the square brackets gives four terms, which in turn become

1.

d̂r(p)v̄r(p)e
−ip·x/~γ0ĉs(p

′)us(p
′)e−ip′·x/~ = e−i(p+p′)·x/~d̂r(p)ĉs(p

′)v̄r(p)γ
0us(p

′)

= e−i(p+p′)·x/~d̂r(p)ĉs(p
′)× 0 = 0

(B-38)

2.

d̂r(p)v̄r(p)e
−ip·x/~(−γ0d̂†s(p

′)vs(p
′)e+ip′·x/~) = −e−i(p−p′)·x/~d̂r(p)d̂

†
s(p

′)v̄r(p)γ
0vs(p

′)

= −e−i(p−p′)·x/~d̂r(p)d̂
†
s(p

′)v†r(p)vs(p
′)

(B-39)

3.

ĉ†r(p)ūr(p)e
+ip·x/~γ0ĉs(p

′)us(p
′)e−ip′·x/~ = e+i(p−p′)·x/~

r ĉ†r(p)ĉs(p
′)ūr(p)γ

0us(p
′)

= e+i(p−p′)·x/~ĉ†r(p)ĉs(p
′)u†r(p)us(p

′)

(B-40)

4.

ĉ†r(p)ūr(p)e
+ip·x/~(−γ0d̂†s(p

′)vs(p
′)e+ip′·x/~) = −e+i(p+p′)·x/~ĉ†r(p)d̂

†
s(p

′)ūr(p)γ
0vs(p

′)

= −e+i(p+p′)·x/~ĉ†r(p)d̂
†
s(p

′)× 0 = 0

(B-41)
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where the simplification p′ = p has been made in “1." and “4." without affecting the

outcome, in anticipation of the assumed orthogonality of the terms in the Fourier expansion

as given below and the appearance of the Dirac delta δpp′ in (B-30), and using [106]

u†r(p)vs(p) = 0 (B-42)

v†r(p)us(p) = 0.

Substituting, (B-37) evidently becomes

Ĥ =

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

(
mc2

√
Ep′

Ep

)
(B-43)

×
[

0− e−i(p−p′)·x/~d̂r(p)d̂
†
s(p′)v†r(p)vs(p′)

+e+i(p−p′)·x/~ĉ†r(p)ĉs(p′)u†r(p)us(p′) + 0

]

and taking the Fourier transform of the exponential over d3x to give a Dirac delta function,

it follows that

Ĥ =

∫ ∞

−∞

∫ ∞

−∞
d3p d3p′

∑

r

∑

s

δpp′

(
mc2

√
Ep′

Ep

)
(B-44)

×
[
ĉ†r(p)ĉs(p

′)u†r(p)us(p
′)− d̂r(p)d̂

†
s(p

′)v†r(p)vs(p
′)
]
.

Furthermore, from the normalisation of the spinors defined in (B-24) the above rela-

tionship becomes

Ĥ =

∫ ∞

−∞
d3p

∑

r

∑

s

(
mc2

√
Ep

Ep

)[
ĉ†r(p)ĉs(p)

(
Ep

mc2

)
δrs − d̂r(p)d̂

†
s(p)

(
Ep

mc2

)
δrs

]

=

∫ ∞

−∞
d3p

∑

r

Ep

[
ĉ†r(p)ĉs(p)− d̂r(p)d̂

†
s(p)

]
. (B-45)

This last equation can be rearranged, by making use of the anti-commutation relations

{d̂r(p), d̂†r(p′)} = δrsδpp′ of the ladder operators, to give

Ĥ =

∫ ∞

−∞
d3p

∑

r

Ep

[
ĉ†r(p)ĉr(p) + d̂†r(p)d̂r(p)− 1

]
. (B-46)

Equation (B-46) evidently contains two terms involving operators and a constant term

of the form
(∫∞

−∞ d3p
∑

r Ep

)
. Moreover, because of the integral this constant provides

an infinite contribution to the Hamiltonian. To ‘overcome’ this problem the constant is,

perhaps rather dubiously, ignored in conventional quantum field theory by arguing that

only relative differences in energy are observable, such that the vacuum is consequently

instilled with a non-zero expectation value. Whilst it is not intended to fully discuss the

issue here, it is noted that this property leads to all sorts of interpretational difficulties

when considering general relativity.

379



The above procedure is implied by adopting the ‘Normal Order’ convention, denoted

by N , in which it is assumed that all anti-commutators vanish, such that in a product

every creation operator is placed to the left of the absorption operators. Thus, the normal

ordered Hamiltonian may be rewritten as

Ĥ =

∫ ∞

−∞
d3p

∑

r

EpN [ĉ†r(p)ĉr(p)− d̂r(p)d̂
†
r(p)] (B-47)

=

∫ ∞

−∞
d3p

∑

r

Ep

[
ĉ†r(p)ĉr(p) + d̂†r(p)d̂r(p)

]
.

Finally, by making use of the number operators defined in (B-31), the Hamiltonian

becomes

Ĥ =

∫ ∞

−∞
d3p

∑

r

Ep[N̂r(p) + N̂ r(p)]. (B-48)

B.4 The Momentum Operator

The momentum operator P of (B-11) can also be investigated. Substituting into this

expression the plane wave expansions for ψ(x) and ψ̄(x) gives

P = −
∫

d3x[i~ψ†(x)∂jψ(x)] = −
∫

d3x[i~ψ̄(x)γ0∂jψ(x)] (B-49)

= −
∫

d3x

∫ ∞

−∞

d3p

(2π~)3/2

∑

r

i~

[(
mc2

Ep

)1/2 [
d̂r(p)v̄r(p)γ

0e−ip·x/~ + ĉ†r(p)ūr(p)γ
0e+ip·x/~

]]

×∂j

[∫ ∞

−∞

d3p′

(2π~)3/2

∑

s

(
mc2

Ep′

)1/2 [
ĉs(p

′)us(p
′)e−ip′·x/~ + d̂†s(p

′)vs(p
′)e+ip′·x/~

]]
.

So,

P = −
∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x(i~)

(
mc2√
EpEp′

)
(B-50)

×
[
d̂r(p)v

†
r(p)γ

0γ0e−ip·x/~ + ĉ†r(p)u
†
r(p)γ

0γ0e+ip·x/~
]

×
[
(ip′/~)ĉs(p

′)us(p
′)e−ip′·x/~ + (−ip′/~)d̂†s(p

′)vs(p
′)e+ip′·x/~

]

=

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

(
mc2√
EpEp′

)
p′

×
[
d̂r(p)v

†
r(p)e

−ip·x/~ + ĉ†r(p)u
†
r(p)e

+ip·x/~
]

×
[
ĉs(p

′)us(p
′)e−ip′·x/~ − d̂†s(p

′)vs(p
′)e+ip′·x/~

]
.

As before, the product may be expanded into four terms:
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1.

d̂r(p)v
†
r(p)e

−ip·x/~ĉs(p
′)us(p

′)e−ip′·x/~ = e−i(p+p′)·x/~d̂r(p)ĉs(p
′)v†r(p)us(p

′)

= e−i(p+p′)·x/~d̂r(p)ĉs(p
′)× 0 = 0

(B-51)

2.

d̂r(p)v
†
r(p)e

−ip·x/~(−d†s(p
′)vs(p

′)e+ip′·x/~) = −e−i(p−p′)·x/~d̂r(p)d̂
†
s(p

′)v†r(p)vs(p
′)

(B-52)

3.

ĉ†r(p)u
†
r(p)e

+ip·x/~ĉs(p
′)us(p

′)e−ip′·x/~ = e+i(p−p′)·x/~ĉ†r(p)ĉs(p
′)u†r(p)us(p

′)

(B-53)

4.

ĉ†r(p)u
†
r(p)e

+ip·x/~(−d̂†s(p
′)vs(p

′)e+ip′·x/~) = −e+i(p+p′)·x/~ĉ†r(p)d̂
†
s(p

′)u†r(p)vs(p
′)

= −e+i(p+p′)·x/~ĉ†r(p)d̂
†
s(p

′)× 0 = 0

(B-54)

So, P becomes

P =

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3
∑

r

∑

s

∫
d3x

(
mc2√
EpEp′

)
p′ (B-55)

×
[

0− e−i(p−p′)·x/~d̂r(p)d̂
†
s(p′)v†r(p)vs(p′)

+e+i(p−p′)·x/~ĉ†r(p)ĉs(p′)u†r(p)us(p′) + 0

]

which may be Fourier transformed to give

P =

∫ ∞

−∞

∫ ∞

−∞
d3p d3p′

∑

r

∑

s

(
mc2√
EpEp′

)
p′δpp′ (B-56)

×
[
ĉ†r(p)ĉs(p

′)u†r(p)us(p
′)− d̂r(p)d̂

†
s(p

′)v†r(p)vs(p
′)
]
.

Using again the normalisation of the spinors

P =

∫ ∞

−∞
d3p

∑

r

∑

s

(
mc2

Ep

)
p

[
ĉ†r(p)ĉs(p)

(
Ep

mc2

)
− d̂r(p)d̂

†
s(p)

(
Ep

mc2

)]
δrs

and with the anti-commutation relations of the ladder operators, this may be written in

the normal order convention as

P =

∫ ∞

−∞
d3p

∑

r

pN [ĉ†r(p)ĉr(p)− d̂r(p)d̂
†
r(p)] (B-57)

=

∫ ∞

−∞
d3p

∑

r

p[ĉ†r(p)ĉr(p) + d̂†r(p)d̂r(p)].

381



Lastly, expressing this as a sum of number operators gives

P =

∫ ∞

−∞
d3p

∑

r

p
[
N̂r(p) + N̂ r(p)

]
. (B-58)

B.5 The Charge Operator

Finally, the charge operator Q̂ may also be evaluated. From equation (B-13), Q̂ becomes

Q̂ = q

∫
ψ†(x)ψ(x) d3x (B-59)

= q

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3

2∑

r=1

2∑

s=1

∫
d3x

(
mc2√
EpEp′

)

×
[
dr(p)v̄r(p)e

−ip·x/~ + c†r(p)ūr(p)e
+ip·x/~

]

×γ0
[
cs(p

′)us(p
′)e−ip′·x/~ + d†s(p

′)vs(p
′)e+ip′·x/~

]

which again gives four terms upon multiplication:

1.

d̂r(p)v̄r(p)e
−ip·x/~γ0ĉs(p

′)us(p
′)e−ip′·x/~ = e−i(p+p′)·x/~d̂r(p)ĉs(p

′)v†r(p)us(p
′)

= e−i(p+p′)·x/~d̂r(p)ĉs(p
′)× 0 = 0

(B-60)

2.

d̂r(p)v̄r(p)e
−ip·x/~γ0d†s(p

′)vs(p
′)e+ip′·x/~ = e−i(p−p′)·x/~d̂r(p)d̂

†
s(p

′)v†r(p)vs(p
′)

(B-61)

3.

ĉ†r(p)ūr(p)e
+ip·x/~γ0ĉs(p

′)us(p
′)e−ip′·x/~ = e+i(p−p′)·x/~ĉ†r(p)ĉs(p

′)u†r(p)us(p
′)

(B-62)

4.

ĉ†r(p)ūr(p)e
+ip·x/~γ0d̂†s(p

′)vs(p
′)e+ip′·x/~ = e+i(p+p′)·x/~ĉ†r(p)d̂

†
s(p

′)u†r(p)vs(p
′)

= e+i(p+p′)·x/~ĉ†r(p)d̂
†
s(p

′)× 0 = 0

(B-63)
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So, Q̂ becomes

Q̂ = q

∫ ∞

−∞

∫ ∞

−∞

d3p d3p′

(2π~)3

2∑

r=1

2∑

s=1

∫
d3x

(
mc2√
EpEp′

)
(B-64)

×
[

0 + e−i(p−p′)·x/~d̂r(p)d̂
†
s(p′)v†r(p)vs(p′)

+e+i(p−p′)·x/~ĉ†r(p)ĉs(p′)u†r(p)us(p′) + 0

]

which is Fourier transformed as

Q̂ = q

∫ ∞

−∞

∫ ∞

−∞
d3p d3p′

2∑

r=1

2∑

s=1

(
mc2√
EpEp′

)
δpp′ (B-65)

×
[
d̂r(p)d̂

†
s(p

′)v†r(p)vs(p
′) + ĉ†r(p)ĉs(p

′)u†r(p)us(p
′)
]

and, upon substituting the spinor normalisation, gives

Q̂ = q

∫ ∞

−∞
d3p

2∑

r=1

2∑

s=1

(
mc2

Ep

)[
d̂r(p)d̂

†
s(p)

(
Ep

mc2

)
+ ĉ†r(p)ĉs(p

′)

(
Ep

mc2

)]
δrs. (B-66)

Thus, applying the anti-commutation relations of the ladder operators, Q̂ may be

written in normal order as

Q̂ = q

∫ ∞

−∞
d3p

2∑

r=1

N
[
d̂r(p)d̂

†
r(p) + ĉ†r(p)ĉr(p

′)
]

(B-67)

= q

∫ ∞

−∞
d3p

2∑

r=1

[
−d̂†r(p)d̂r(p) + ĉ†r(p)ĉr(p

′)
]
.

So, charge is defined as

Q̂ = q

∫ ∞

−∞
d3p

2∑

r=1

[
N̂r(p)− N̂ r(p)

]
. (B-68)

Clearly, the commutation relation

[Q̂, Ĥ] = 0 (B-69)

vanishes due to the relations (B-29), such that ∂ Q
∂t = 0 as expected from Heisenberg’s

equation.

383



References

[1] Eakins, J., and Jaroszkiewicz, G., “The Quantum Universe and the Stages

Paradigm”, arXiv: quant-ph/0203020.

[2] Eakins, J., “Quantum cellular automata, the EPR paradox and the Stages

paradigm”, Proceedings of NATO ARW, The Nature of Time: Geometry,

Physics and Perception, Ed: Buccheri, R., Saniga, M. and Stuckey, M. (Kluwer),

(2003).

[3] Eakins, J., and Jaroszkiewicz, G. “Factorization and entanglement in quantum sys-

tems”, Journal of Physics A, 36 (2) 517, (2003).

[4] Eakins, J., and Jaroszkiewicz, G. “The origin of causal set structure in the quantum

universe”, arXiv: gr-qc/0301117 (2003).

[5] Eakins, J., and Jaroszkiewicz, G. “Endophysical information transfer in quantum

processes”, arXiv: quant-ph/0401006 (2004).

[6] Rothe, H. J., Lattice Gauge Theories: An Introduction, World Scientific Press

(1997).

[7] Whitrow, G., The Natural Philosophy of Time, Clarendon Press (1980).

[8] Prigogine, I., From Being to Becoming, Freeman (1980).

[9] Bell, J. S., “On the Einstein Podolsky Rosen Paradox”, Physics, 1, 195 (1964)

[Reprinted in [10]].

[10] Wheeler, J. A., and Zurek, W. H., Quantum Theory and Measurement, Princeton

University Press, New Jersey (1983).

[11] Einstein, A., Podolsky, B., and Rosen, N., “Can quantum mechanical descriptions of

physical reality be considered complete?”, Phys. Rev. 41, pp777 (1935) [Reprinted

in [10]].

[12] Rae, A. I. M., Quantum Mechanics, Institute of Physics publishing, Bristol, UK

(2002).

[13] Wigner, E. P., “Interpretation of Quantum Mechanics”, from a lecture series given

at the Physics Department of Princeton University (1976) [Reprinted in [10]].

[14] Aspect, A., Grangier, P., and Roger, G., “Experimental Realization of Einstein-

Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell’s Inequali-

ties”, Phys. Rev. Lett, 49 (2), (1982).

384



[15] Wheeler, J. A., “Law Without Law”, published in [10].

[16] De Witt, B. S., Phys. Rev. 160, pp1113, (1967).

[17] Hartle, J. B., and Hawking, S. W., “Wavefunction of the Universe”, Phys. Rev. D,

28, 2960 (1983).

[18] Deutsch, D., The Fabric of Reality, Allen Lane, Penguin Publishers (1997).

[19] Everett III, H., “‘Relative State’ Formulation of Quantum Mechanics”, Rev. Mod.

Phys., 29, 454 (1957) [Reprinted in [10]].

[20] Documented by Minsky, M., Feynman and Computation, Ed: Hey, A. J. G.,

Westview Press, US (2002).

[21] Kochen, S., and Specker, E. P., “The Problem of Hidden Variables in Quantum

Mechanics”, J. Mathematics and Mechanics, 17, 59-87, (1967).

[22] Peres, A., Quantum Theory: Concepts and Methods, Kluwer Academic Publish-

ers, Dordrecht (1993).

[23] Fink, H., and Leschke, H. “Is the Universe a Quantum System?”, Found. Phys.

Lett., 13 (4), (2000).
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