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AGlycopeptide Dendrimer Inhibitor of the Galactose-Specific Lectin
LecA and of Pseudomonas aeruginosa Biofilms**
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Magdalena A. Swiderska, Cristina Nativi, Michael Sattler, Alan R. Smyth, Paul Williams,

Miguel C�mara, Achim Stocker, Tamis Darbre, and Jean-Louis Reymond*

The spread of antibiotic resistant bacteria is one of the most
pressing problems in human health today.[1] In the case of the
opportunistic pathogen Pseudomonas aeruginosa, which
causes lethal airway infections in cystic fibrosis and immuno-
compromised patients, the formation of biofilms plays an
important role in antibiotic resistance and disease progres-
sion.[2] Biofilm formation is mediated in part by the galactose-
specific lectin LecA (PA-IL)[3] and the fucose-specific lectin
LecB (PA-IIL),[4] as evidenced by studies with deletion
mutants[5] and the partial inhibitory effect of simple fucose
and galactose derivatives in vitro and in vivo.[5a, 6] Under-
standing the glycoconjugate–lectin interaction is a key feature
in developing potent biofilm inhibitors. Capitalizing on the
well-known cluster effect observed on binding of multivalent
carbohydrates to lectins,[7–11] we recently reported the first
case of P. aeruginosa biofilm inhibition with a multivalent
lectin inhibitor, the fucosylated glycopeptide dendrimer FD2
(cFuc-Lys-Pro-Leu)4 (Lys-Phe-Lys-Ile)2Lys-His-IleNH2,

which targets LecB.[12, 13] Herein we report the first case of
P. aeruginosa biofilm inhibition with a multivalent ligand
targeting the galactose-specific lectin LecA, using the related
b-phenylgalactosyl peptide dendrimer GalAG2.

Considering the favorable properties of FD2 as lectin
inhibitor, we set out to investigate if its peptide dendrimer
portion might also be suitable for inhibitors of the galactose-
specific P. aeruginosa lectin LecA. Because hydrophobic
groups in the sugar anomeric position have been shown to
enhance the affinity of galactosides to LecA,[3b,14] acetyl-
protected 4-carboxyphenyl b-galactoside (GalA) was at-
tached to the peptide dendrimer. To probe the effect of the
sugar-dendrimer linker on binding, carboxypropyl b-thioga-
lactoside (GalB) was also introduced as the last building block
in solid-phase peptide synthesis to provide dendrimers GalA/
BG1 and GalA/BG2, and the linear peptides GalA/BG0. The
dendrimers were obtained pure as trifluoroacetate salts after
deacetylation on a solid support, acid-mediated cleavage from
the support, and purification by preparative HPLC
(Scheme 1).

The binding affinity to LecA was evaluated in a hemag-
glutination assay that measured the inhibition of LecA-
induced agglutination of rabbit erythrocytes in comparison to
d-galactose as the reference.[15] Thermodynamic parameters
were obtained by isothermal titration calorimetry (ITC). A
strong multivalency effect on binding was observed in both
the GalA and the GalB dendrimer series. The strongest effect
occurred with dendrimer GalAG2, which showed a 4000-fold
increase in hemagglutination inhibition activity and a 875-fold
increase in binding (Kd) to LecA compared to d-galactose
(Table 1). Considering that the number of sugars and the
peptidic scaffold are the same in both series, the presence of
the phenyl group in GalA dendrimers led to a remarkable
enhancement in affinity compared with the thiogalactoside
GalB dendrimers.

The dendrimers inhibited P. aeruginosa biofilms, as evi-
denced by using the steel coupon assay (Figure 1).[16] A
generation-dependent effect was observed in both the GalA
and the GalB series, with essentially complete inhibition of
biofilm formation with the second-generation (G2) dendri-
mers, as observed with the LecB inhibitor FD2, whereas the
acetylated dendrimer AcG2, which lacks galactosyl groups,
showed only a small inhibition of biofilm formation. Bacterial
growth was unaffected by the ligands, thus ruling out toxicity
effects. These data were consistent with a LecA-mediated
inhibition of P. aeruginosa biofilms by the dendrimers.
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The origin of the binding affinity of the glycopeptide
dendrimers for LecA was investigated further. Multivalency
effects provided for increased potency compared to the

monovalent ligands in both the GalA and the GalB series, as
indicated by the ratio KdGalAG0/KdGalAG2= 42 and KdGalBG0/
KdGalBG2= 129. This effect was of the same order of magnitude
as that previously observed with FD2 and LecB (FD2/G0=
40),[13c] and probably reflects a favorable presentation of the
glycosides by the peptide dendrimers for lectin binding. The
presence of the aromatic b-phenyl aglycone in the GalA
series caused an additional affinity increase, as indicated by
the ratios KdGalBG0/KdGalAG0= 12, KdGalBG1/KdGalAG1= 4,
KdGalBG2/KdGalAG2= 4 (MIC values: MICGalBG0/MICGalAG0= 32,
MICGalBG1/MICGalAG1= 21, MICGalBG2/MICGalAG2= 160). As
normally observed for lectin–carbohydrate interactions,[17]

LecA–galactoside binding was enthalpically driven, with
slightly unfavorable entropic contributions (Table 1).

The structures of the lectin–ligand complexes were
investigated to gain insight into the molecular basis of
glycopeptide dendrimer–lectin interactions. While heavy
precipitates formed in all crystallization trials using the G1
and G2 dendrimers, good quality crystals were obtained for

Scheme 1. Synthesis of the galactosyl peptide dendrimers: a) Fmoc-

AAOH, PyBOP, DIEA, NMP, 1–3 h (2�), then 20% piperidine in DMF,

(2�10 min), b) GalA or GalB, HCTU, DIEA, NMP, or acetylation

c) MeOH/NH3/H2O (v/v 8:1:1), then TFA/TIS/H2O (95:2.5:2.5).

Fmoc=9-fluorenylmethyloxycarbonyl, PyBOP=1-benzotriazolyloxy-

tris(pyrollidino)phosphonium, DIEA=diisopropylethylamine,

NMP=N-methylpyrrolidone, DMF=N,N-dimethylformamide,

HCTU=2-(6-Chloro-1-H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium

hexafluorophosphate, TFA= trifluoroacetic acid, TIS= triisopropylsi-

lane, Lys= lysine as branching unit, K= lysine (Lys), P=proline (Pro),

L= leucine (Leu), F=phenylalanine (Phe).

Table 1: Data for binding to P. aeruginosa lectin LecA.

Hemagglutination assay[a] Isothermal titration calorimetry (ITC)[b]

Ligand n MIC [mm] r.p./n n’ DH

[kcalmol�1]

�TDS

[kcalmol�1]

DG

[kcalmol�1]

Kd [mm] r.p./n

d-galactose 1 3125 1 1.1�0.1 �8.4�0.1 2.3�0.4 �6.0�0.3 87.5�3.5 1

p-nitrophenyl-b-galactoside (NPG) 1 550 5.7 0.9�0 �10.0�0.1 3.4�0.1 �6.6�0 14.1�0.2 6.2

isopropyl-b-thiogalactoside (IPTG) 1 1100 2.8 1.1�0.1 �8.9�0.5 2.8�0.5 �6.1�0.1 32.4�2.7 2.7

GalAG0 (GalA-KPL-NH2) 1 80 40 1.0�0.1 �10.8�0.6 3.4�0.7 �7.4�0.1 4.2�0.9 20.9

GalAG1 (GalA-KPL)2KFKI-NH2 2 31 50 2.6�0.3 �11.5�0.7 2.9�0.9 �8.7�0.2 0.5�0.2 91.1

GalAG2 (GalA-KPL)4(KFKI)2KHI-NH2 4 0.78 1000 4.2�0.6 �12.0�1.4 2.6�1.5 �9.4�0 0.1�0.01 219

GalBG0 (GalB-KPL-NH2) 1 2500 1.3 1.2�0.1 �7.3�1.0 1.5�1.1 �5.9�0.1 51.5�6.7 1.7

GalBG1 (GalB-KPL)2KFKI-NH2 2 630 2.5 2.5�0.3 �8.3�0.4 0.7�0.4 �7.6�0.1 2.1�1.0 20.5

GalBG2 (GalB-KPL)4(KFKI)2KHI-NH2 4 125 12.5 4.3�0.2 �9.1�0.2 0.3�0.0 �8.8�0.2 0.4�0.1 59.9

[a] MIC=minimal inhibitory concentration for the hemagglutination assay. Conditions: twofold serial dilutions of the tested compounds were

incubated with the LecA lectin for 30 min at 4 8C, after which time rabbit erythrocytes (5% solution in PBS) were added and further incubated for

another hour at RT. The MIC corresponds to the highest dilution causing a complete inhibition of hemagglutination. n=number of galactose residues

per ligand, r.p./n= relative potency per galactose residue= (MIC(D-galactose)/MIC(ligand))/n. [b] Stoichiometry n’=number of occupied lectin galactose

binding sites per dendrimer; thermodynamic parameters and dissociation constant Kd reported as an average of two independent runs from ITC in

0.1m tris(hydroxymethyl)aminomethane (Tris base), pH 7.5, 25 mm CaCl2, 25 8C, r.p./n= (Kd(d-galactose)/Kd(ligand).)/n. The acetylated G2 dendrimer AcG2

did not show any measurable affinity in ITC (Figure S26 in the Supporting Information).

Figure 1. Inhibition of P. aeruginosa wild-type strain PAO1 biofilms by

glycopeptide dendrimers. Biofilms were grown on steel coupons

inoculated with PAO1 for 48 h at 37 8C in the presence of ligands

(20 mm galactosyl endgroup) followed by staining with acridine orange

prior to analysis of surface coverage. Metal coupons incubated with

bacteria only (control), growth media with no bacteria (media control),

and with FD2 dendrimer, were used as positive and negative controls.
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complexes of LecA with the monovalent ligands NPG,
GalAG0, and GalBG0, and their X-ray structures were
determined.

In the structure of the NPG–LecA complex, the galactosyl
group binds in the same orientation as free galactose, with the

characteristic coordination of the C(3)�OH and C(4)�OH
groups to the lectin-bound calcium ion (Figure 2a).[18a] The
nitrophenyl group occupies a hydrophobic groove adjacent to
the glycoside binding site, with van der Waals contacts to
residues Tyr36, Pro38, and His50. Residue His50 not only

forms a hydrogen bond with the
C(6)�OH group of the galac-
tose, as observed in other
LecA-galactose complexes,[18]

but also engages in a T-stack
interaction with the nitrophenyl
group. The C(e)�H group of the
imidazole ring is located 2.5 �
from the phenyl ring and points
towards it. Similarly, the struc-
ture of the GalAG0–LecA com-
plex shows the phenyl group in
the hydrophobic groove adja-
cent to the carbohydrate bind-
ing site and the “face-to-edge”
interaction with the C(e)�H
group of His50 (Figure 2b).

Binding of the tripeptide
portion of GalAG0 to LecA
causes an average 0.66 �
inward movement of the
phenyl linker relative to the
position of the nitrophenyl
moiety of NPG. This movement
triggers concomitant inward
movements of the interacting
Glu49-His50-Pro51 loop of
0.45 � on LecA. Overall,
tighter surface interactions
between LecA and GalAG0

Figure 2. Structures of cocrystallized

ligands (in sticks) a) NPG,

b) GalAG0, and d) GalBG0 with

LecA. The fit of the ligands to the

electron density map is shown in

the left-hand panel. Noncovalent

interactions between the ligand and

the protein are shown by dotted

lines. The well-defined electron den-

sity for water molecules (red

spheres) is shown in the right-hand

panel. The protein is shown as a

surface model colored according to

electrostatic potentials ranging from

�2 kcalmol�1 (red) to +2 kcalmol�1

(blue). c) Left: T-shaped interactions

of the imidazole side chain of His50

of LecA with NPG. Right: Overlay of

LecA in complex with NPG (brown),

GalAG0 (gray), and GalBG0 (green).

D=aspartic acid (Asp), H=histi-

dine (His), N=asparagine (Asn),

Q=glutamine (Gln), Y= tyrosine

(Tyr), T= threonine (Thr). Atom

labels: N blue, O red.
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are observed relative to NPG (Figure 2c). Analysis of
aromatic His···X interactions by examining 593 PDB struc-
tures indicates that “face-to-edge” stack interactions are
frequent arrangements for His···X interacting pairs, with the
X partners representing aromatic side chains of the same
protein.[19] However, an intermolecular T-stack of an aromatic
ring with the C(e)�H group of the histidine imidazole side
chain at a distance of 2.5 � is unprecedented. This interaction
probably contributes favorably to the binding of the phenyl
galactoside to the lectin.

In the structure of the GalBG0–LecA complex, solely the
galactosyl group and the thioethyl part of its linker are well-
resolved (Figure 2d). Interestingly, the linker moiety points
perpendicularly away from the protein surface in GalBG0,
thus indicating impaired surface contacts of its tripeptide
moiety with LecA.

Amolecular dynamics (MD) study was carried out to gain
insight into the possible cause of the multivalency effects that
might explain the stronger binding of GalA/BG2 to LecA
compared to their monovalent ligands. Models of GalA/BG2
bound to the lectin were constructed by fusing the MD-
simulated dendrimer structures with the experimentally
determined structures of the GalAG0–LecA and GalBG0–
LecA complexes, followed by energy minimization and
simulations for a period of 10 ns (Figure 3a). In the resulting

complexes, the dendrimers appeared too small to allow
bridging of two galactose binding sites within the same
LecA dimer. However, the galactoside residues were exposed
on the surface (Figure 3b). This observation suggests that the
enhanced binding by multivalency could result from the
ability of the dendrimers to bridge different LecA tetramers
in addition to secondary interactions within the LecA–
dendrimer complex.

In summary, we have reported the first example of
P. aeruginosa biofilm inhibition with multivalent galactosy-
lated LecA ligands.[20] The strongest binding was observed
with the second-generation glycopeptide dendrimer GalAG2.
This dendrimer contains an aromatic aglycone linker that
engages in an unprecedented T-stack interaction withHis50 at
the LecA galactose binding site, as evidenced by X-ray
crystallography. This interaction enables additional contacts
between the outer tripeptide branch of the dendrimer and the
lectin; the contacts do not occur in the case of the thiopropyl
linker in the GalB-type ligands, for which the tripeptide is
disordered in the X-ray structure. Interestingly, both GalAG2
and GalBG2 dendrimers displayed potent biofilm inhibition,
whereas the G1 analogues were much less active and the G0
analogs were inactive. Thus multivalency played a much more
important role for biofilm inhibition than the nature of the
linker. Future experiments will address activity improvement
by dendrimer sequence optimization and the synthesis of
analogues with higher multivalency.
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