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NOISE REDUCTION IN COARSE BIFURCATION ANALYSIS OF
STOCHASTIC AGENT-BASED MODELS: AN EXAMPLE OF

CONSUMER LOCK-IN

DANIELE AVITABILE ∗, REBECCA HOYLE † , AND GIOVANNI SAMAEY ‡

Abstract. We investigate the occurrence of coarse macroscopic states in an agent-based model
of consumer lock-in. The system studied here is a modification of an existing model by Garlic and
Chli [24] and it serves as a prototypical Ising-type sociological system with binary state variables and
spatially-dependent agent parameters. In the regime of globally-coupled agents with independent
identically-distributed parameters, we derive an analytic approximate coarse evolution-map for the
expectation of the average purchase. Following Barkley et al. [5], we interpret metastable locked-in
states as fixed points of this one-dimensional first moment map. We then study the emergence of
coarse fronts in the regime of heterogeneous agents with strongly discordant preferences. When agent
polarization becomes less pronounced, the front destabilizes and one of the two products prevails,
giving rise to inhomogeneous profiles featuring pockets of resistance. Stochastic continuation of the
spatially-extended case poses a numerical challenge, as Jacobian-vector products are severely affected
by noise. We exploit the non-uniqueness of the lifting step introducing weighted lifting/restriction
operators, which result in variance-reduced Jacobian-vector products. We test our numerical strategy
and show that weighted operators induce good convergence properties of the Newton-GMRES solver.
We then show that macroscopic fronts destabilise at a coarse symmetry-breaking bifurcation.

1. Introduction. Understanding how social groups reach general agreement or
perform a coordinated task has been the subject of an intense research effort over the
past fifty years [10]. In models of social behaviour, consensus is a macroscopic feature
emerging from random reciprocal interactions between a large number of heteroge-
neous actors. Understanding how consensus arises and identifying the key factors for
its generation or inhibition are fundamental questions in social dynamics.

A large class of social models, known as sociophysical models [23], is based on an
analogy with ferromagnetism: social attributes such as opinions or preferences then
correspond to magnetic dipole moments of atomic spins and choices are influenced by
interactions with neighbouring spins; consensus is then represented by a phase tran-
sition [9, 12, 57] that is studied with the tools of statistical mechanics. Sociophysical
models have been applied in various social contexts to study for instance segregation
(Ising and Schelling models) [52, 25, 58], opinion formation [34, 60] and social im-
pact [43]. We refer the reader to the reviews by Schweitzer [53], Castellano [10] and
Chakrabarti and co-editors [11] for further examples.

In statistical mechanical models, macroscopic coherent states emerge from the
interaction of a large number of identical particles whose behaviour obeys well-known
physical principles. However, particle-like descriptions of social actors may be seen as
simplistic, as, in social systems, individuals do not behave according to precise physical
laws: collective behaviour is the result of the interaction between complex heteroge-
neous entities which often take unpredictable decisions. An alternative strategy is to
use agent based models (ABMs) [20, 4, 27]. ABMs provide a bottom-up approach to
social modeling, in that they focus directly on individual actors. In ABMs, model-
ers prescribe detailed rules for agents’ behaviour, possibly including heterogeneities,
stochasticity, memory effects and bounded rationality. Agents exchange information
with each other and influence (and are influenced by) their environment, which may be
a model of a physical space or a network. Because of these characteristics, ABMs have
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become a popular tool in social sciences, with applications including crowd dynamics
[33, 49], civil violence [19], urban crime [54], opinion dynamics [18, 31, 44, 45] and so-
cial networks [48]. They have also been used to model biological systems [30, 28, 62, 6].
In addition, several ABM libraries and software packages are available (see [50] for a
review).

Even though ABMs allow a great level of granularity, it is often interesting to
extract macroscopic variables from the system, study their asymptotic behaviour and
explore their dependence upon control parameters. Sociodynamical models, pioneered
by Weidlich [65, 66], are obtained by choosing appropriate coarse variables for the
system under consideration and deriving master equations for the time evolution
of their probability distributions; assuming that the distributions are unimodal and
sharply peaked, an approximate closed nonlinear model for the first few distribution
moments is then derived and analysed with tools from dynamical systems theory. For a
detailed review of techniques and applications of sociodynamics, we refer the reader to
a recent book by Helbing [32]. In general, however, the induced closure approximations
may either be insufficiently accurate, or (in more complicated situations) impossible
to perform, resulting in evolution equations for coarse variables that are hard or
impossible to derive. In those cases, parameter variations are typically explored via
brute-force Monte Carlo simulations, which give access only to stable asymptotic
states and may require long transient simulations [59, 16, 1, 61].

The past decade has seen a growing interest in the development and deployment of
computational methods that aim at accelerating multiple-scale simulations using on-
the-fly numerical closure approximations. We mention here equation-free [37, 38] and
heterogeneous multiscale methods [17, 67]. Equation-free methods, in particular, are
an effective tool to bridge between the microscopic descriptions of sociophysical models
or ABMs and the macroscopic viewpoint of sociodynamical models, since they not
only allow for accelerated simulation at the macroscopic level, but also enable system-
level tasks, such as macroscopic bifurcation analysis. In the equation-free framework
[37, 38], one assumes the existence of a closed macroscopic model in terms of a few
macroscopic state variables. However, instead of deriving an approximate macroscopic
model analytically, one constructs a computational superstructure, wrapped around
a microscopic simulation. In this context, a key tool is the coarse time-stepper, which
implements a time step of a macroscopic model that is not available in closed form
as a three-step procedure: (i) lifting, that is, the creation of initial conditions for
the microscopic model, conditioned upon the macroscopic state at a given time t;
(ii) simulation, using the microscopic model over a time interval [t, t + T ]; and (iii)
restriction, that is, the estimation of the macroscopic state at t+ T .

While equation-free methods have been employed in various contexts [13, 22, 41,
21, 40, 39, 42, 63, 56, 14, 35, 47], several numerical issues remain, mainly related to
the stochastic nature of the microscopic evolution. In the present paper, we focus
on some of the these numerical aspects while performing a coarse-grained bifurcation
analysis of a stochastic ABM for opinion formation. In particular, the computation
of macroscopic steady states requires the solution of a nonlinear system of algebraic
equations, which is usually carried out via Newton-Krylov solvers built around the
coarse time-stepper. If the underlying microscopic evolution equation is stochastic,
numerical noise can severely affect Jacobian evaluations, representing a serious obsta-
cle to the convergence of the nonlinear iterations [35].

The present paper deals with the numerical computation of macroscopic coherent
structures for a model of vendor lock-in. Lock-in is achieved when customers repeat-
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edly purchase the same product, irrespective of its quality, because choosing an alter-
native vendor is inconvenient or impossible. The term was originally used to explain
the emergence of technological standards, with classic examples being the prevalence
of VHS over Betamax videocassette recorders and of QWERTY over Dvorak lay-
outs for computer keyboards [15, 2, 3, 36]. The starting point of our investigation is
an ABM of vendor lock-in for duopolistic markets [24]: Garlick and Chli proposed
this model in order to study, via direct numerical simulations, how to break lock-in.
We extend their model so as to include stochastic dynamics and spatially-dependent
heterogeneities and perform a coarse numerical bifurcation analysis of two types of
macroscopic steady states: a global locked-in state, where the entire agent popula-
tion polarizes homogeneously, and spatial fronts, which arise at the interface between
factions of agents with conflicting preferences.

The present paper thus contains two main contributions. First, for the specific
system under study, we explain the birth of the above-described macroscopic states in
terms of coarse symmetry-breaking bifurcations. To the best of our knowledge, steps
in this direction were taken only very recently [55, 7] and were confined to globally
locked-in states. In the homogeneous case, we follow [5] and interpret metastable
locked-in states as fixed points of a coarse evolution map. In the limit of infinitely
many globally-coupled agents with homogeneous product preferences, we derive the
coarse evolution map analytically. In the case of heterogeneous agents we employ
stochastic continuation and show for the first time how fronts destabilise to spatially-
dependent partially locked-in states.

The second main contribution of the paper is the development of a novel pro-
cedure to obtain coarse Jacobian-vector products with reduced variance, allowing
the accurate evaluation of Jacobian-vector products in the presence of microscopic
stochasticity, thus gaining full control over the linear and the nonlinear iterations
of the Newton-Krylov solver. Even though our implementation of variance-reduced
Jacobian-vector products is specific to the lock-in model, we believe that analogous
strategies can be applied to other ABMs. Therefore, we provide a detailed account of
the algorithmic steps involved in defining an accurate equation-free Newton-Krylov
method and testing its convergence properties.

The paper is organised as follows: Section 2 contains the description of the lock-
in model and a preliminary simulation-based study of coarse macroscopic states; in
Section 3 we derive an approximate analytic coarse map for the case of homogeneous
agents; in Section 4 we describe the macroscopic time-stepper for the lock-in model
and introduce weighted lifting operators to obtain variance-reduced Jacobian-vector
products; in Section 5 we test numerical properties of the Newton-GMRES solver; in
Section 6 we present the results of the coarse bifurcation analysis and we conclude in
Section 7.

2. An ABM for consumer lock-in.

2.1. Model description. In this section, we introduce a generalization of a
consumer lock-in ABM proposed by Garlick and Chli [24], which, in our investigation,
will serve as a prototypical ABM with heterogeneous agents and binary state variables.

Let us consider a set of N agents on a two-dimensional square lattice spanning
[−1, 1]2, in which the agents are placed on evenly spaced points (xi, yj)

I,J
i,j=1,1, with

xi = −1+i∆x and yj = −1+j∆y, such that xI = yJ = 1 and IJ = N . For notational
convenience, we use a lexicographic numbering of the agents, which are identified by
a single index n running from 1 to N . The position of the nth agent on the lattice is
then denoted by rn = (xn, yn) = (xi, yj) with i = n mod I and n = (j − 1)I + i.
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At each discrete time step t, agents choose simultaneously between two products,
labelled 0 and 1, so that the associated state variables un(t) are collected in a vector
u(t) ∈ BN , where B = { 0, 1 }. Agents are coupled via their neighbourhoods �n,
comprising |�n| other agents, and their choices are determined by two parameters:
the perceived relative quality qn of both products, and each agent’s tendency to follow
its neighbourhood, λn. If qn ≈ −1, then the nth agent has an intrinsic preference for
product 0 over product 1 (and the opposite is true if qn ≈ 1). On the other hand, a
value λn ≈ 0 indicates that the nth agent disregards the opinion of its neighbours,
whereas λn ≈ 1 implies that the agent aligns itself with the majority of the neighbours.
While these parameters remain constant at all times, each agent draws its values from
an approximate normal distribution, whose moments may depend upon the position
rn,

qn ∼ N
(

q;µ(rn), ξ(rn)
)

, λn ∼ N
(

λ; ν(rn), ζ(rn)
)

, n = 1, . . . , N. (2.1)

In practice we require some constraints on qn and λn, namely qn ∈ [−1, 1] and
λn ∈ [0, 1]: the normal distributions are chosen such that this occurs with very high
probability; otherwise, the values of qn and λn are discarded and a new random value
is generated.

Agent diversity is therefore modelled in two ways: qn and λn are randomly gen-
erated and the corresponding probability distributions may vary along the lattice. In
the present paper, we will choose

µ(rn) := µ(xn) = µ̄+∆µ tanh(αxn), ξ(rn) = ξ̄,

ν(rn) = ν̄, ζ(rn) = ζ̄ ,
(2.2)

for n = 1, . . . , N , µ̄, α ∈ R and ∆µ, ξ̄, ν̄, ζ̄ ∈ R+. Note that with the above choice, we
only introduce a one-dimensional spatial dependence, as the y-coordinate of the agent
is irrelevant). As we shall see in the following sections, the sigmoid µ(xn) allows us
to model the existence of factions with strong preferences for one product.

At each time step, agents simultaneously inspect their neighbourhoods and com-
pute two utility functions, associated with products 0 and 1, that represent a weighted
average between their intrinsic preference and the choice of their neighbours,

f0n
(

u(t)
)

= −(1− λn)
qn
2

+ λn

[

1− 1

|�n|
∑

n′∈�n

un′(t)

]

,

f1n
(

u(t)
)

= (1− λn)
qn
2

+
λn
|�n|

∑

n′∈�n

un′(t).

(2.3)

Once the utility functions have been computed, each agent selects a product at time
t + 1 according to a Bernoulli distribution whose mean depends upon the difference
between the utility functions at time t. More precisely, let

∆fn
(

u(t)
)

= f1n
(

u(t)
)

− f0n
(

u(t)
)

,

then the nth agent’s choice is determined via the following conditional distribution

p(un(t+ 1) = 1|u(t) = v) =
exp

[

β∆fn(v(t))
]

exp[−β∆fn(v(t))] + exp
[

β∆fn(v(t))
]

p(un(t+ 1) = 0|u(t) = v) =
exp

[

− β∆fn(v(t))
]

exp[−β∆fn(v(t))] + exp
[

β∆fn(v(t))
]

(2.4)
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for n = 1, . . . , N and β ∈ R. The evolution of the system is best understood by
inspecting the utility functions (2.3). The function f1n, for instance, is formed by
two contributions: the first addend pertains to the perceived quality of product 1;
the second addend accounts for the neighbourhood’s influence, since this term is
proportional to the number of purchases of product 1 in the neighbourhood. The
relative importance of the two contributions is determined by the parameter λn.

The agent-based model described by (2.3)–(2.4), completed by initial conditions
and explicit expressions for means and standard deviations in (2.1), defines an evolu-
tion equation that we will formally denote by

u(t+ 1) = ϕ(u(t);γ,ωn), t ∈ Z+, u ∈ BN , γ ∈ RQ,

u(0) = u0,
(2.5)

where we have collected in γ the following parameters

γ = (q1, . . . , qn, λ1, . . . , λn, β), (2.6)

and ωn denotes the set of random choices that were made by the agents during this
time step.

Henceforth, we will refer to (2.5) as the lock-in model, implying that the agents
behave as specified in (2.1)–(2.4). Unless otherwise stated, we shall assume all-to-all
coupling, that is, �n = { 1, . . . , N } for all n, and random Bernoulli-distributed initial
conditions with average 0.5.

u0n ∼ B(u; 0.5) u0n i.i.d. for n = 1, . . . , N . (2.7)

Remark 2.1 (Deterministic lock-in model). The evolution of the lock-in model
is stochastic, since agents’ choices are determined via (2.4). However, it is possible to
study a deterministic evolution by considering the limit β → ∞. In this case, agents
purchase their product according to

un(t+ 1) =

{

0 if f0n
(

u(t)
)

> f1n
(

u(t)
)

,

1 otherwise.
n = 1, . . . , N,

that is, un(t+1) is a deterministic function of u(t) and of the agent’s parameters λn,
qn. Even in that case, u(t) remains a random variable, since λn, qn and the initial
condition u0 are randomly distributed according to (2.1) and (2.7), respectively. Our
model differs from the original model of Garlick and Chli [24] in two ways. First, the
model in [24] is a deterministic lock-in model with no spatial variability of the agents,
∆µ = 0. Second, we rescaled the utility function so as to include a single parameter
qn for the perceived quality, as opposed to having separate parameters for products 1
and 0.

Remark 2.2 (Possible model extensions). Different types of coupling can be
considered for the agents. Beside the all-to-all coupling adopted in the present paper,
nearest-neighbour [24] and static/dynamic small-world couplings [64] are also possible.
More realistic models can also be obtained if the agents adapt their parameters qn and
λn as time varies, so that they can change their opinion about the products or their
attitude towards the neighbourhood.

Remark 2.3 (Interpretation of µ(x)). The first and most immediate interpreta-
tion of the sigmoid µ(xn) in (2.2) is a simple geographical segregation. If, for instance,

5



Experiment µ̄ ∆µ α ξ̄ ν̄ ζ̄ β

E1 0 0 0 0.236 0.05 0.0167 10
E2 0 0 0 0.236 0.5 0.167 10
E3 0 1 5.0 0.236 0.5 0.167 10
E4 0 1 0.5 0.236 0.5 0.167 10

Table 2.1: Parameter values for the lock-in model simulations of Figures 2.1 and 2.4. Ex-
periments are done with all-to-all coupling and random Bernoulli-distributed initial condi-
tions (2.7).

we choose µ̄ = 0, ∆µ = 1 and α = 5, then the lattice is naturally split in two factions:
agents with negative x like product 0 and agents with positive x favour product 1, so
that agents with the same preferences are close to each other (an example will be given
in Section 2.2). However, the position rn on the lattice need not represent a physical
location and the monotonically-increasing function µ(xn) can be interpreted just as a
way to order the agents according to their preferences, without implying any notion
of physical space or distance.

2.2. Simulation-based study of the lock-in system. We now discuss mi-
croscopic numerical simulations that motivate our choice of the macroscopic state
variables. In the following numerical experiments, we iterate the lock-in model (2.5)
with initial condition (2.7) for the choices of the parameter distributions (2.1) spec-
ified in Table 2.1. This leads naturally to the introduction of a set of macroscopic
variables, which will be defined more precisely in Section 2.3.

2.2.1. Globally locked-in states with homogeneous agents. With the first
two experiments, using parameter sets E1 and E2, we find spatially-homogeneous
macroscopic solutions corresponding to globally locked-in states. In Figures 2.1(a)–
2.1(c) we show 1 mixed state obtained in E1 and 2 locked-in states obtained in E2.
In each realization of these experiments, we obtain different final states since the
evolution is stochastic and the initial condition u0 as well as the parameters γ are
randomly distributed. We note that, while the agents are defined on a lattice, their
spatial position has no influence on the dynamics since we specified an all-to-all cou-
pling.

In experiment E1, we set the agents parameters so that the average perceived
quality of product 0 and 1 is identical and the tendency to follow the neighbourhood
is low (see Table 2.1 and Figure 2.1(a). The resulting state is a mixed state, with an
even distribution of final products. In experiment E2, we increase the average and
variance of the coupling (Figures 2.1(b)–2.1(c)) and observe two locked-in states (each
equally likely to occur) in which almost all agents continually purchase one product,
irrespective of its perceived quality. Indeed, since ν̄ = 0.5, we expect that on average
only half of the agents have a preference for the dominant product, whereas agents in
the remaining half purchase a product that they consider worse in terms of quality.
As the experiment is repeated, we can get lock-in of either product, owing to the
stochasticity of the evolution and the randomness of parameters and initial conditions.
These results are in accordance with what was reported by Garlick and Chli [24]
for a deterministic lock-in model with all-to-all coupling (see also Remark 2.1) and
reinforce the similarity between the lock-in ABM and other Ising-type sociophysical
models available in the literature [10].
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(b)

(c)

(a)

t0 30

1

0

(d)

ν̄ = 0.5, c

ν̄ = 0.5, b

ν̄ = 0.05, a
E[ρN (t)]

Fig. 2.1: Homogeneous states of the lock-in model (2.1)–(2.4) with N = 2002 agents, cor-
responding to experiments E1 and E2 in Table 2.1. White and blue dots represent agents
purchasing product 0 and 1 respectively. The lock-in model is initialised sampling a Bernoulli
distribution (2.7) and it is iterated for 30 time steps. Panel (a): mixed state obtained with
experiment E1. Panel (b): global lock-in of product 1, obtained with one realization of E2.
Panel (c): global lock-in of product 0, obtained with a second realization of E2. Panel (d):
ensemble average of the average purchase ρN =

∑
n
un/N over 2000 realizations as a func-

tion of time for simulations of panels (a), (b) and (c); the experiment of panel (a) is here
repeated with initial conditions u0n ∼ B(u; 0.9) for n = 0, . . . , N , showing that the mixed
state is the unique macroscopic stable equilibrium for ν̄ = 0.5.

It is natural to seek for a characterization of the lock-in model in terms of a
simple macroscopic variable and to interpret the statistical equilibria obtained as
steady states of a suitably-defined dynamical system. In panel Figure 2.1(d) we begin
introducing such a characterization: we repeat 2000 times the numerical simulations
that led to each of the states in panels (a), (b), (c), group each of the samples by their
spatial mean

⇢N (t) =
1

N

∑

n

un(t) ∈ QN , t ∈ Z+, where QN =
{ n

N
∈ Q

∣

∣

∣
0 ≤ n ≤ N

}

,

and plot the ensemble average of these spatial means as a function of time. The
plot shows that, in this description, locked-in and mixed states are achieved rapidly,
within just 10 iterations of the map. For a low value of the average coupling strength
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0 1

ν̄ = 0.5, ζ̄ = 0.167

(c)

2.5× 10−1

0
E[ρN ]

var[ρN ]

0 1
0

2.5× 10−2

(a)

ν̄ = 0.05, ζ̄ = 0.0167

E[ρN ]

var[ρN ]

(b)

0 1

ν̄ = 0.263, ζ̄ = 0.0879

0

1.25× 10−1

E[ρN ]

var[ρN ]

1

2

3

1

2

3

(d)

0 1ρN

Fig. 2.2: Expectation and variance of the average agents’ choice ρN (t) =
∑

n
un(t) starting

from different initial conditions. For each trajectory on the (E[ρN ], var[ρN ])-plane, we ini-
tialise M = 105 independent simulations for N = 2002 agents (as in Figure 2.1) with various
initial conditions and iterate the lock-in model until t = 20. Panel (a): low average coupling
λn (as in E1 of Table 2.1). Panel (b): intermediate value of the average coupling. Panel (c):
high value of the average coupling (as in E2). Panel(d): examples of final distributions of
ρN .

ν̄, the system reaches a single macroscopic state: from panel (d) we see that, in this
region of parameter space, the mixed state is attracting even if the initial conditions
are close to a fully locked-in state, that is, u0n ∼ B(u; 0.9), for n = 1, . . . , N . Upon
increasing the coupling strength, we find two new macroscopic states, suggesting the
presence of a pitchfork bifurcation at the macroscopic level.

However, a more careful inspection shows that these macroscopic locked-in solu-
tions are not stable steady states, but rather coarse metastable states. In Figure 2.2,
we repeat similar computations and monitor E[⇢N ] and var[⇢N ] as a function of time.
This time we prepare realizations with different initial expectation and variance, so
as to plot several orbits on the (E[⇢N ], var[⇢N ])-plane. A low average value of the
coupling parameter λn leads to a single steady state, as shown in Figure 2.2(a). For
intermediate and high values of the coupling (Figures 2.2(b) and 2.2(c)), trajectories
are quickly attracted to a slow manifold (purple curve) which, for these choices of
parameters, is well approximated by a parabola. In equation-free terminology, the
existence of a slow manifold in the (E[⇢N ], var[⇢N ])-plane is referred to as slaving.

In Figure 2.2, we iterate the lock-in model only until t = 20, a time scale clearly
suggested by the coarse solution curves of Figure 2.1(d): in fact, for these choices of the
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t = 1

1

2

3

4

E[ρN ]0.1 0.5
0

var[ρN ]

1.6× 10−1

0 1ρN

1

2

3

4

t = 10

t = 102

t = 105

Fig. 2.3: Expectation and variance of the average agents’ choice ρN (t) =
∑

n
un(t) for the

lock-in model with N = 40 agents (see also the animation slaving.avi). Left: we initialise
M = 104 realizations from u0n = 0.1 for all n; the evolution on the (E[ρN ], var[ρN ])-plane
is plotted with a blue line for the first 102 iterations and in magenta for the following
iterations, until t = 105. Right: distributions of ρN at various times. After a short transient,
the evolution takes place on a slow manifold. Parameters: µ̄ = 0, ∆µ = 0, α = 0, ξ̄ = 0.235,
ν̄ = 0.3, ζ̄ = 0.03, β = 8.

control parameters, the time scale of the drifting on the slow manifold is so long that
it is not feasible to observe it with numerical computations; hence the magenta curves
in Figures 2.2(b)–2.2(c) are obtained by fitting a parabola to the set of final points
on the phase plane. In Figure 2.3 (and the accompanying animation slaving.avi), the
system size and parameters have been adjusted to observe drifting on more affordable
time scales (N = 40, µ̄ = 0, ∆µ = 0, α = 0, ξ̄ = 0.235, ν̄ = 0.3, ζ̄ = 0.03 and β = 8):
the initial probability distribution of ⇢N is a Dirac delta, which becomes a unimodal
distribution with nonzero variance on time scales of order t = 10 and drifts towards
a bimodal distribution on time scales of order t = 105. The system therefore always
evolves towards a state with E[⇢N ] = 1/2. However, the difference between strong
coupling and weak coupling is clearly visible: when the agents are weakly coupled,
each individual realization of the system evolves to a mixed state with ⇢N = 1/2, so
there is no lock-in, whereas with strong coupling between the agents, each realization
will display lock-in and the initial condition determines which state the agents will be
locked into. Due to microscopic stochasticity, the system only equilibrates over a very
long time scale, over which a fraction of the realizations flips to the other locked-in
state in the latter case.

As a consequence, even though these locked-in solutions are only metastable,
it is still meaningful to characterize them as fixed points of an evolution map on
intermediate time-scales. Berkley, Kevrekidis and Stuart studied metastable states
in physical systems with similar properties and use the term moment map for the
coarse evolution operator [5]. We shall return to this moment map for homogeneous
steady states in Section 3, where we derive an approximate coarse evolution map for
the lock-in model.

2.2.2. Fronts for heterogeneous agents. We now turn to spatially-dependent
states, which correspond to large-dimensional coarse maps and are more challenging
to compute with equation-free methods. More specifically, we allow the average qual-
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-1 1

(a)

1

0

1

-1

(b)

1

0-1 1

1

-1

(c)

1

0-1 1

1

-1

E[huii] µ(xi,1)

xi,1

xi,1 xi,1

Fig. 2.4: Heterogeneous states of the lock-in model (2.1)–(2.4) with N = 400 × 150 agents,
corresponding to experiments E3 and E4 in Table 2.1 (see also the animations stableFront.avi
and unstableFront.avi ). The square [−1, 1]2 has been scaled to a rectangle for visualization
purposes and we use xi,j to indicate the position on the lattice. The lock-in model is ini-
tialised sampling a Bernoulli distribution (2.7) and it is iterated for 30 time steps. Panel (a):
in experiment E3 a stable interface is formed between two locked-in states (top); macroscopic
states are obtained by averaging along the y axis (bottom, blue histogram) and then taking
an ensemble average with respect to 2000 realizations (bottom, red curve, left axis); The
resulting macroscopic state is a front connecting a macroscopic 0-state with a macroscopic
1-state; the front is sharper than the spatial profile µ of the average quality perception pa-
rameters qn (bottom, dashed black curve, right axis). Panels (b) and (c): in experiment E4,
the slope of the profile µ is varied; the macroscopic front loses stability, giving rise to two
stable heterogeneous states featuring pockets of resistance.

ity perception µ to vary as a function of the x-coordinate of the agent position, as
specified in (2.2): in experiments E3 and E4 we choose a nonzero ∆µ, and vary
the steepness α of the sigmoidal function µ(xn). Note that, in effect, this amounts
to an effective one-dimensional space dependence. Nevertheless, as in the spatially
homogeneous case, we continue plotting the agents on the two-dimensional lattice
for visualization purposes. With these experiments, we model the existence of two
neighbouring factions separated by an interface of neutral agents. For these experi-
ments we choose a lattice of 400× 150 agents, initialise the system with the Bernoulli
distribution with success probability 0.5 and evolve the map for 30 iterations.

Figure 2.4(a) shows the results of experiment E3, for which α = 5 (see also
stableFront.avi). As expected, the inhomogeneity in the distribution of the average
quality perception parameters qn induces the formation of two areas of regional lock-
in. We shall abandon for a moment the lexicographical ordering used so far and
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denote the agents’ purchases as ui,j . To obtain a macroscopic description of the state
in Figure 2.4(a), we compute averages of the purchases along the y-axis, 〈ui〉, and then
take an ensemble average with respect to 2000 realizations of the same experiment (red
curve in panel a). The resulting macroscopic state is a front connecting a macroscopic
0-state to a 1-state. For convenience, we also plot µ(xi,1) and compare it to the
macroscopic front, noting that the final macroscopic steady state is sharper than
the spatial profile µ. As we decrease α, the macroscopic front persists and becomes
flatter, until a critical point at which two new inhomogeneous states emerge (see the
animation unstableFront.avi). Such states, obtained with experiment E4 and shown
in Figure 2.4(b) and 2.4(c), are related via the transformation

E[〈ui〉] 7→ −E[〈u−i〉] + 1, .

The scenario described above suggests that, as α is decreased, the front of Figure 2.4(a)
undergoes a symmetry-breaking bifurcation at the macroscopic level. To the best of
our knowledge, this type of transition has not been observed before in studies of
opinion formation models. In the following sections, we will give a more precise
definition of the macroscopic variables chosen to describe the lock-in systems for both
homogeneous and inhomogeneous states, and then proceed to perform a numerical
bifurcation analysis of the corresponding states.

2.3. Macroscopic level description. Let us consider the lock-in model for
fixed values of the parameters γ ∈ RQ, which are randomly distributed via (2.1)
and remain constant at all times1. Then, we denote by χ(u, t|γ) the probability
distribution of the vector u(t), given these parameters γ. Now, considering that the
parameters themselves are distributed according to a probability distribution ψ(γ),
we can define the joint probability distribution of parameters and states as

p(u,γ, t) = χ(u, t|γ)ψ(γ).

The probability distribution P (u, t) for an average agent at time t is then obtained
by integrating over all possible parameter values,

P (u, t) =

∫

RQ

p(u,γ, t) dγ.

We can formally write the time evolution of P (u, t) as

P (u, t+ 1) =

∫

RQ

∫

BN

Ψ(u|v,γ)p(v, t,γ) dv dγ,

where Ψ(u|v,γ) represents the transition kernel, that is, the probability distribution
of the state at time t + 1 given that the system was in v at time t with constant
parameters γ. 2

The macroscopic state U(t) = (Un(t))
N
n=1

that was described informally in Sec-
tion 2.2 is the ensemble average of a large number of realizations, each with different
parameters. In the limit of infinitely many realizations (M → ∞), this corresponds

1The vector γ, as given by (2.6), also contains the deterministic parameter β, which has been
omitted here for simplicity

2The transition kernel depends explicitly on time, Ψ(u, t+ 1|v, t,γ). However, time dependence
has been omitted here to simplify the notation.
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to taking the expectation of u with respect to the probability distribution P (u, t) of
the microscopic realizations,

U(t) := E [u(t)] =

∫

BN

uP (u, t) du, (2.8)

leading to the evolution map

U(t+ 1) =

∫

BN

u

[
∫

RQ

∫

BN

Ψ(u|v,γ)p(v,γ, t) dv dγ
]

du. (2.9)

Clearly, the macroscopic evolution above cannot be written as a closed form equa-
tion that depends explicitly on U(t), unless one makes a closure approximation that
specifies p(u,γ, t) as a function of U(t). The focus of the present paper is to obtain
bifurcation diagrams for fixed points of the coarse map (2.9). The algorithm that
will be presented in Section 4 is a procedure to impose the aforementioned closure
approximation numerically.

Remark 2.4 (Low-dimensional coarse descriptions). Our macroscopic descrip-
tion is high-dimensional, in that U is a vector with N entries. Lower-dimensional
descriptions can be obtained expressing U in terms of a coarse polynomial or spec-
tral basis [26, 51, 41]. Since we aim to develop a numerical framework suitable for
high-dimensional coarse systems (and applicable to the low-dimensional descriptions
as well), we will continue to use simple agent-wise coarse variables in this paper.

Remark 2.5 (Discrete distributions). Since u ∈ BN , the microscopic state
belongs to a discrete set of possible admissible states with dimension 2N . Thus, the
probability distribution can be written as

P (u, t) =
∑

v∈BN

P ∗(v, t)δ(u− v),

and integrals of the type (2.8) should be interpreted as a discrete sum,

∫

Bn

f(u)P (u, t) du =
∑

u∈Bn

f(u)P ∗(u, t). (2.10)

In other words, the integral is computed assigning to each possible configuration u a
weight corresponding to its probability P ∗(v, t). In practical computations, however,
we will not be able to simulate all possible realizations u, so we will approximate the
integrals by a Monte Carlo estimate using M ≪ 2N realizations,

∫

Bn

f(u)P (u, t)du ≈ 1

M

M
∑

m=1

f(um), (2.11)

where um are sampled from the probability distribution P (u, t).

In Section 2.2 we have introduced homogeneous and inhomogeneous macroscopic
states that we are now ready to characterise by means of coarse bifurcation analysis:
for the former, a simple one-dimensional coarse description exists and will be discussed
in the following section; for the latter, we will use equation-free bifurcation analysis,
which will be the subject of Sections 4–6.
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3. Spatially homogeneous macroscopic states. We begin by characterising
spatially homogeneous macroscopic states, which are described in terms of the average
purchase

⇢N (t) =
1

N

∑

n

un(t) ∈ QN . (3.1)

For each t ∈ Z+, ⇢N (t) is a random variable, whose probability distribution is denoted
by

P̄ (⇢N , t) =

∫

Σρn

P (u, t)du, Σρn
=

{

u ∈ BN

∣

∣

∣

∣

∣

⇢N =
1

N

∑

n

un

}

.

The numerical simulations of Figure 2.2 lead us to search for a coarse evolution
map whose fixed points correspond to the homogeneous metastable locked-in states
of the lock-in model. Following [5], we search for a first moment map, that is, a map
that closes at the level of the first moment E[⇢N (t)] of the probability distribution
P̄ (⇢N , t). In this section we show that a first moment map can be found explicitly
under suitable hypotheses.

Lemma 3.1. Let us consider the lock-in model (2.5) under the following hypothe-
ses

1. All-to-all coupling, �n = { 1, . . . , N } for all n.
2. Deterministic evolution, that is, β → ∞.
3. Deterministic tendency to follow the neighbours

λn ∼ δ(λ− ν̄), ν̄ ∈ (0, 1), n = 1, . . . , N.

4. Homogeneous distribution of the quality perception qn ∼ N (q; µ̄, ξ̄), qn i.i.d.

Further, let ⇢N (t) be the spatially averaged purchase as defined in (3.1). Then, in the
limit as N → ∞, we have

E[⇢∞(t+ 1)] =
1

2
erfc

[

1

ξ̄
√
2

(

ν̄
1− 2E[⇢∞(t)]

1− ν̄
− µ̄

)]

+O
(

var[⇢∞(t)]
)

.

Proof. Hypotheses 1 and 2 imply that the state of an individual agent un(t+1) is a
deterministic function of the spatial average ⇢N (t) and the individual perceived quality
qn, which are both random quantities (see Remark 2.1). Furthermore, Hypothesis 3
implies

un(t+ 1|⇢N (t), qn, ν̄) =











1 if qn >
ν̄

1− ν̄
(1− 2⇢N (t)),

0 otherwise,

n = 1, . . . , N. (3.2)

Next, let us denote by p̄n(⇢N , t, q) the joint probability of obtaining a spatial
average ⇢N and a perceived quality q for agent n. Owing to Hypotheses 1 and 4, the
agent-wise expectation of un with respect to all possible realizations of the parameters,

E[un(t+ 1)] =

∫

QN

∫

R

un(t+ 1|⇢N , q, ν̄) p̄n(⇢N , t, q) dqd⇢N , (3.3)
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is the same for all n, since p̄n(⇢N , t, q) = p̄(⇢N , t, q), independently of n. Hence,

E[⇢N (t)] =
1

N

∑

n

E[un(t)] = E[un(t)].

Similarly, we write p̄(⇢N , t, q) = p̃(⇢N , t|q)N (q; µ̄, ξ̄), in which N (q; µ̄, ξ̄) is the proba-
bility density of the Gaussian distribution from which q was drawn. In the limit as N
tends to infinity, we moreover have that p̃(⇢N , t|q) = P̄ (⇢N , t), as the spatial average
is then independent of a specific agent’s perceived quality. We then use (3.2) to obtain

E[⇢N (t+ 1)] = E[un(t+ 1)]

≈
∫

QN

∫

R

un(t+ 1|⇢N , q, ν̄) P̄ (⇢N , t)N (q; µ̄, ξ̄) dq d⇢N

=

∫

QN

[
∫ ∞

ν̄(1−2ρN (t))

1−ν̄

N (q; µ̄, ξ̄) dq

]

P̄ (⇢N , t) d⇢N

=

∫

QN

1

2
erfc

[

1

ξ̄
√
2

(

ν̄
1− 2⇢N (t)

1− ν̄
− µ̄

)]

P̄ (⇢N , t) d⇢N

= E

[

1

2
erfc

[

1

ξ̄
√
2

(

ν̄
1− 2⇢N (t)

1− ν̄
− µ̄

)]]

:= E[Ψ(⇢N (t); ν̄, µ̄, ξ̄)],

(3.4)

where the expectation is taken over all possible values of ⇢N .
The equation above does not close at the level of E[⇢N ], since Ψ is a nonlinear

function of ⇢N , and therefore E[ψ(⇢N )] 6= ψ(E[⇢N ]). However, in the limit as N → ∞,
we can perform a Taylor expansion of ψ(⇢) around E[⇢], (see [32, 66])

E[Ψ(⇢∞)] ≈ E

[

Ψ(E[⇢∞]) + Ψ′(E[⇢∞])(⇢∞ − E[⇢∞]) +
1

2
Ψ′′(E[⇢∞])(⇢∞ − E[⇢∞])2

]

= E[Ψ(E[⇢∞])] +
1

2
Ψ′′(E[⇢∞])E[(⇢∞ − E[⇢∞])2]

= Ψ(E[⇢∞]) +O(var[⇢∞]),

(3.5)

which combined with (3.4) proves the assertion.
Remark 3.2. In Lemma 3.1 we assume that the deterministic coupling constant

ν̄ is strictly between 0 and 1, in order to exclude trivial dynamics. If ν̄ = 0, then (3.4)
gives

E[⇢N (t+ 1)] =
1

2
erfc

(

− µ̄

ξ̄
√
2

)

, t ∈ Z+

that is, a microscopic equilibrium is reached after one time step and the correspond-
ing macroscopic equilibrium does not depend upon initial conditions. This is to be
expected, since ν̄ = 0 means that agents disregard information about their neighbours,
therefore initial conditions are not relevant to their choice.

On the other hand, if ν̄ = 1 we cannot directly apply (3.4). However, we have

un(1) =

{

1 if
∑

n un(0) > N/2,

0 otherwise,
n = 1, . . . , N,
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and so the system achieves a microscopic locked-in equilibrium after one time step.
If, as was done in the numerical experiments of Figure 2.1, the microscopic initial
conditions are independent identically-distributed variables, un(0) ∼ B(u, 0.5) for all

n = 1, . . . , N , we have
∑N

n=1
un(0) ∼ Binomial(N, 0.5), therefore

E[⇢(1)] = 1− Pr

[ N
∑

n=1

un(0) ≤ N/2

]

= 1− 1

2N

⌊N/2⌋
∑

i=0

(

N

i

)

.

Lemma 3.1 suggests a simple way to derive a coarse evolution map: if the hy-
potheses of the lemma hold true and we are in the limit of infinitely many agents,
we can choose U = E[⇢∞] = E[un] as our coarse variable; then, to leading order, we
obtain

U(t+ 1) =
1

2
erfc

[

1

ξ̄
√
2

(

ν̄
1− 2U(t)

1− ν̄
− µ̄

)]

:= Φa(U(t); ν̄, µ̄, ξ̄) (3.6)

It is clear that this is only an approximate evolution map, as we have tacitly assumed
that the probability distribution for ⇢N (t) is unimodal and sharply peaked, so that
⇢∞ ≈ E[⇢∞] and var[⇢∞] ≈ 0. The numerical simulations of Section 2.2 (in particular
Figure 2.2) show that this is a valid approximation on sufficiently short time scales.
By analogy with [5], we expect that fixed points of this first-moment map will inform
us about metastable homogeneous states of the full lock-in model, hence we proceed
to discuss fixed points of the map and their stability.

For simplicity, let us consider the case of equally-perceived products, such that
µ̄ = 0, and fixed standard deviation ξ̄ and study fixed points U∗ of Φa as ν̄ is varied.
For all ν̄, the map possesses a fixed point at U∗ = 1/2, the mixed state, which is
stable for ν̄ < ν̄c, where ν̄c is computed as

Φ′
a(1/2; ν̄c, 0, ξ̄) = 1 ⇒ ν̄c =

1

1 + ξ̄−1
√

2/π
. (3.7)

At the critical point, two new fixed points arise (corresponding to equilibria with
increasingly high proportions of one product over the other), while the mixed state
becomes unstable at a pitchfork bifurcation. Since we have an analytic expression for
Φa, we can readily apply numerical continuation techniques and obtain the bifurcation
diagram shown in Figure 3.1.

Similar considerations are valid if we assume that the population has a bias to-
wards one of the products (µ̄ 6= 0). Then, the pitchfork breaks into two branches: one
of them, corresponding to the product with higher average perceived quality, is stable
for all values of the coupling ν̄, whereas the other one destabilises at a saddle-node
bifurcation. As expected, the basin of attraction of the locked-in state is larger for
the product with a higher perceived quality.

To understand better the relation between fixed points of Φa and metastable
states of the lock-in model we refer to Figures 2.1 and 2.3. In the bistable region
of parameter space, each realization of the stochastic process evolves to a state that
corresponds to one of the stable fixed points of the coarse evolution map over reason-
ably short time scales; these equilibria in Figure 2.1 correspond to the fixed points
of the coarse evolution map on Figure 3.1. For a microscopic stochastic simulation
starting close to such an equilibrium, this implies that there is a distribution of spatial
averages, unimodal and sharply peaked around this population average, as can be ob-
served in Figure 2.3. The equilibria computed from the analytic coarse evolution map
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Fig. 3.1: Fixed points of the approximate coarse map Φa as a function of the coupling
parameter ν̄ for ξ̄ = 0.236 and various values of µ̄. Solid (dashed) lines represent stable
(unstable) coarse equilibria. Representative microscopic solutions are plotted on the right.
If agents are unbiased on average (µ̄ = 0), the mixed state becomes unstable at a pitchfork
bifurcation (PF), attained at the critical value given by (3.7), and two locked-in states emerge.
If agents have an average bias towards product 1 (µ̄ > 0), the pitchfork breaks down, giving
rise to a saddle node bifurcation (SN). A similar scenario occurs if µ̄ < 0 (not shown).

approximate this distribution using a Dirac-delta distribution. However, over long
time scales, both metastable states are equally likely to occur, as Figure 2.3 shows.

4. Equation-free Newton-Krylov method. In this section, we aim to obtain
a numerical closure relation for the evolution of the spatially distributed macroscopic
state U = (Un)

N
n=1. In this case, an analytical closure approximation is no longer

valid. We thus propose an equation-free method. We first outline the general prin-
ciple of the equation-free methodology (Section 4.1). Next, we describe the concrete
lifting and restriction operators that will be used (Section 4.2). The main algorithmic
contribution of the present paper is the introduction of a weighted lifting and restric-
tion operator that allows the accurate computation of Jacobian-vector products, as
will be discussed in Section 4.3.

4.1. Principle. As was shown in the previous sections, the lock-in model (2.5)
consists, at the microscopic level, of individual agents whose state keeps evolving,
owing to the probabilistic nature of their choices. Nevertheless, at the macroscopic
level, the ensemble average (2.8) is seen to evolve to a metastable equilibrium. In this
paper, we are interested in performing a bifurcation analysis at the macroscopic level,
at which an exact, closed model is not available. The equation-free framework was
developed for such tasks [37, 38].

The main building block in an equation-free method is the coarse time-stepper,
which allow the performance of time-steps at the macroscopic level (defined by (2.9)),
using only the simulation ofM realizations of the microscopic model (2.5). To achieve
this, the procedure relies on the definition of two operators (lifting and restriction)
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that relate the microscopic and macroscopic levels of description. The lifting operator
maps a macroscopic state to a microscopic one, that is, it generates an ensemble,

B = [um]
M
m=1

∈ BN×M , (4.1)

of M realizations um (m = 1, . . . ,M) of the microscopic state (each consisting of
N individual agents) from the ensemble average U ∈ RN , as well as a set of Q
parameters for each agent, A = [γm]Mm=1, with γm ∈ RQ×N , sampled from the
parameter distributions (2.1), specified by the parameters Γ = (µ̄,∆µ, α, ξ̄, ν̄, ζ̄) ∈
RP . When generating random realizations for the microscopic state and parameters,
applying the same lifting operator multiple times will give different results, depending
on the precise random numbers that were generated during the process. We will denote
this set of random numbers by ω ∈ Ω, in which the sample space Ω represents all
possible sets of random numbers that can be generated; it may be convenient to think
of ω as the set of seeds of all the random number generators involved. This leads to
an operator of the form:

L : RN × RP ×Ω −→ BN×M × RQ×N×M ,

(U ,Γ,ω) 7−→
(

B,A
)

.
(4.2)

In the remainder, we will also denote the lifting by

(B,A) =
(

Lu(ω)U ,Lγ(ω)Γ
)

= L(ω)(U ,Γ), (4.3)

to emphasize that ω only appears as a parameter.
Remark 4.1 (Dependence on the random event ω). The explicit introduction of

the parameter ω may seem elaborate at first. Nevertheless, in the remainder of the
text, especially when discussing the computation of variance-reduced Jacobian vector
products in Section 4.3, this notation will prove to be indispensable.

Remark 4.2 (Closure approximation). The microscopic realizations have to be
sampled from a probability distribution P (u, t) that is consistent with U(t), that is,
we require

∫

BN uP (u, t) du = U(t). At this point, we have not yet specified what
probability distribution P (u, t) will be used to this end. Choosing P (u, t) amounts to
enforcing a closure approximation. In Section 4.2, we will construct several lifting
operators that perform this closure approximation numerically.

Conversely, the restriction operator maps a microscopic state to a macroscopic
one, that is, it computes an appropriate ensemble average U ∈ RN of the M realiza-
tions B = [um]

M
m=1

∈ RN×M :

R : BN×M −→ RN , B 7−→ U . (4.4)

As a general principle, one expects the macroscopic state to be unchanged when
performing lifting followed by restriction, that is,

R ◦ Lu ≡ Id . (4.5)

In general, however, Lu ◦ R 6= Id, since it is impossible to recover exactly the mi-
croscopic information during lifting that was discarded during restriction. For the
problem considered here, even ensuring (4.5) is nontrivial, because one cannot rep-
resent every possible value of U exactly as the ensemble average of M microscopic
realizations. Specific operators that circumvent this problem are proposed in Sec-
tion 4.2.
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Once lifting and restriction operators have been constructed, a coarse time-stepper
ΦM

T to evolve the macroscopic state U over a time interval of length T is constructed
as a three-step-procedure (lift–evolve–restrict), in which the microscopic evolution is
simulated independently for each of the M realizations, i.e.,

U(t+ T ) = ΦM
T (ω)(U(t);Γ) = (R ◦ ET ◦ L(ω))

(

U(t);Γ
)

, (4.6)

with L(ω) and R defined in (4.3) and (4.4), and ET defined as

ET : BN×M × RQ×N×M −→ BN×M , (B,A) 7−→
[

ϕT (u
m;γm)

]M

m=1
, (4.7)

where we have denoted by ϕT the T th iterate of the lock-in map (2.5). Note that, in
the limit M → ∞, the coarse time-stepper approaches

U(t+ T ) =

∫

BN

u

[
∫

RQ

∫

BN

ΨT (u|v,γ)p(v, t,γ|U(t),Γ) dvdγ

]

du, (4.8)

in which we have introduced the transition kernel ΨT over a time interval T and
the probability distribution p(v, t,γ|U(t),Γ) conditioned upon (U(t),Γ), from which
the samples are taken. The interpretation of the coarse time-stepper as a numerical
closure follows by comparing equation (4.8) with (2.9), and noticing that the right-
hand side is completely determined by U(t) and Γ, since the probability distribution
p(v, t,γ|U(t),Γ) is conditioned upon U(t) and Γ.

If the system (2.5) possesses macroscopic steady states, these can be found (for
fixed parameters Γ = Γ∗) by solving the nonlinear system,

F (U∗) = U∗ − ΦM
T (ω)(U∗,Γ∗) = 0, (4.9)

for an appropriate choice of M and T . This procedure allows the computation of
unstable steady states that would not be reached by direct simulation. By adding a
pseudo-arclength condition, one can also perform continuation to obtain a branch of
steady states as a function of a free parameter.

In each Newton iteration, one needs to solve a linear system involving the Jaco-
bian of ΦM

T , denoted as DΦM
T (U ;Γ). Since we do not have an explicit formula for

DΦM
T (U ;Γ), we are forced to use an iterative method (such as GMRES) that only

requires Jacobian-vector products, and to estimate such Jacobian-vector products us-
ing a finite difference approximation. However, we recall that, for a finite number
of realizations M , the coarse time-stepper ΦM

T is stochastic. Hence, repeating the
same coarse time-step with two sets of random numbers ω1,2 gives different results.
A standard Monte Carlo argument [8] reveals that

var
[

ΦM
T (ω1)(U ;Γ)− ΦM

T (ω2)(U ;Γ)
]

≤ C
1

M
,

resulting in typical deviations of O(1/
√
M). Then, estimating Jacobian-vector prod-

ucts using the simple finite-difference formula

DΦM
T (U ;Γ)V ≈ ΦM

T (ω2)(U + εV ;Γ)− ΦM
T (ω1)(U ;Γ)

ε
, (4.10)

≈ ΦM
T (ω2)(U ;Γ) + εDΦM

T (ω2)(U ;Γ)V − ΦM
T (ω1)(U ;Γ)

ε
, (4.11)

with ε ≪ 1 will result in an O(1/(ε2M)) variance.
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Consequently, the variance of DΦM
T (U ;Γ)V will grow unboundedly as ε tends to

zero. One should therefore aim at using the same random numbers twice, both with
the unperturbed and perturbed initial conditions. A method to enforce the use of the
same random numbers is proposed in Section 4.3.

4.2. Lifting and restriction. In this section, we describe two lifting opera-
tors, as well as their corresponding restriction operator. For both approaches, the
parameters are initialized by generating i.i.d. samples for each agent in each realiza-
tion from the governing probability distributions (2.1). The difference between both
lifting and restriction operators is limited to the initialization of the microscopic state.
We emphasize as well that, for each realization, the microscopic state is initialized
independently of the parameter values.

4.2.1. Simple lifting and restriction. Let us first describe a simple approach.
We are given a macroscopic state U = (Un)

N
n=1 and we want to generate M realiza-

tions of N agents, consistently with that macroscopic state. To create these micro-
scopic realizations B = [um]Mm=1, with um = (um

n )Nn=1, we can sample, at each spatial
location, the Bernoulli distribution with mean Un, that is

um
n ∼ B(u;Un) ⇐⇒

{

Pr(um
n = 1) = Un

Pr(um
n = 0) = 1− Un,

m = 1, . . . ,M (4.12)

Combining this sampling of the microscopic state with a sampling procedure for the
parameters of the individual agents, we obtain a lifting operator L(ω) of the type (4.3)
The corresponding restriction operator is then given by taking the empirical average
over the set of M realizations,

R : BN×M −→ RN , B 7−→ U =
1

M

M
∑

m=1

um. (4.13)

The simple lifting and restriction operators defined above cannot satisfy the con-
sistency condition (4.5) for an arbitrary value of U(t), since the restriction can only
map onto QN

M = QM × · · · ×QM instead of onto RN , i.e., only integer fractions of M
can be represented. The incurred discrepancy is essentially a sampling error, since the
sampling procedure outlined above only ensures (4.5) in the limit M → ∞. Indeed,

when (B,A) = L(U ,Γ), with B = [um]
M
m=1

, then

lim
M→∞

1

M

M
∑

m=1

um = U (4.14)

4.2.2. Weighted lifting and restriction. The main idea of the present paper,
which is key to all the numerical methods that follow, is the introduction of a new
restriction operator that replaces the empirical average (4.13) by a weighted average
of the form

Rw(w) : BN×M −→ RN , B 7−→ U =
1

M

M
∑

m=1

wmum, (4.15)

in which w = [wm]
M
m=1

∈ RM is a vector of weights satisfying

1

M

M
∑

m=1

wm = 1. (4.16)
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The restriction operatorRw is specified completely only once the weightsw are known;
they will be selected such that the constraint (4.5) is satisfied exactly, which implies
that the restriction operator will depend on the specific realizations um that were
generated during the lifting.

Before outlining the procedure, let us highlight the rationale behind the introduc-
tion of the weighted average. As noted in Remark 2.5, the probability distribution
P (u, t) can be discretized according to two guiding principles: (i) deterministically,
that is, we consider every possible realization and attach to it a probability weight
expressing how likely the realization is to occur, which results in equation (2.10); or
(ii) stochastically, that is, we sample a finite number of realizations from the cor-
responding probability distributions, resulting in the estimate (2.11). Option (i) is
unfeasible because it requires considering M = 2N realizations (many of which will
be extremely unlikely), while option (ii) will contain a sampling error such that the
identity (4.5) is violated. Introducing the weighted restriction (4.15) can then be seen
as a hybrid approach that allows satisfying (4.5) with a limited number of realiza-
tions M ≪ 2N ; the condition (4.16) ensures that the weight wm, attached to the
realization um, can be interpreted as the probability of obtaining that realization out
of all the realizations in the sample. This interpretation also imposes the condition
that all the weights be positive. We shall see there there is an interplay between the
creation of the M realizations and the computation of the corresponding weights for
the restriction.

A possible way to compute weights is the following: first, we generate M ′ realiza-
tions um according to the naive procedure (4.12); since we know that this procedure
yields the desired result as M ′ tends to infinity, it seems reasonable to attach weights
that are as close to 1 as possible, while satisfying the identity (4.5), as well as the
constraint (4.16). As will become clear further on, this procedure will turn out to
allow for optimization problems that are either unfeasible (with no possible solutions)
or ill-posed (with infinitely many possible solutions). To see this, we formulate the
following least squares problem,

w = argmin
1

2

M ′

∑

m=1

(wm − 1)
2
, (4.17)

1

M ′

M ′

∑

m=1

wmum = U , (4.18)

1

M ′

M ′

∑

m=1

wm = 1, (4.19)

wm ≥ 0 1 ≤ m ≤M ′. (4.20)

We recall here a basic result in minimization problems [29, 46]:

Lemma 4.3. Let us consider the following equality-constrained quadratic mini-
mization problem

w = argmin
1

2
wTw − gTw,

Cw = b,

where w, g ∈ RM , b ∈ RN and where C ∈ RN×M , with N < M , is a constraint
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matrix with full rank, then

[

I CT

C 0

] [

w

λ

]

=

[

g

b

]

, (4.21)

where λ ∈ RN is the associated Lagrange multiplier. The linear system (4.21) has a
unique solution. Let us now consider the difficulties that may arise:

1. The sampling procedure (4.12) can yield multiple identical realizations (iden-
tical columns in the constraint matrix), which lead to a rank-deficient C. For
instance this may happen, with high probability, if the macroscopic state U

is close to 0 or 1 for all agents, such that many realizations consisting of all
0 or all 1 are generated).

2. The sampling procedure can also yield repeated rows in the constraint matrix;
this happens with high probability if the macroscopic state Un is close to 0
or 1 for two or more agents, leading again to rank deficiency.

3. Some constraints may be not feasible, that is, all realizations may have the
same value (0 or 1) for a given agent; again, this situation is likely to occur
when the macroscopic state Un for some agent n is close to 0 or 1.

To circumvent these problems, we will discard duplicate realizations and extend the
sample set with artificially created samples. To be specific, we circumvent the first
problem as follows. We denote by B′ the ensemble of M ′ realizations that were gen-
erated with the procedure (4.12), and write this ensemble in a different representation
where we only retain unique realizations, as well as their cardinality in the ensemble
B′,

B̃ = [um]
M̃
m=1

, g = [gm]
M̃
m=1

, (4.22)

where

gm = #{um ∈ B′} for all m such that um ∈ B̃ (4.23)

We note that, by definition, we have
∑M̃

m=1
gm =M ′.

To circumvent the second and third problem, we create artificial realizations in the
lifting step that are unlikely to be obtained by the naive sampling procedure (4.12).
First, we scan the new constraint matrix and search for duplicate rows. For each
repeated row nr, we add a realization as follows

un =

{

1 if n = nr,

0 otherwise.
(4.24)

Then, we check if there exists a row n0 of 0s or a row n1 of 1s and if so add the
following realizations respectively

un =

{

1 if n = n0,

0 otherwise,
un =

{

0 if n = n1,

1 otherwise.
(4.25)

We collect all additional realizations (4.24)–(4.25) in the set B′′ and compute the
cardinality as follows:

gm = 0, for all m such that um ∈ B′′ (4.26)
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indicating that those realizations appear with cardinality 0 in the original sampling
according to procedure (4.12) and have only been added to regularise the constraint
matrix.

A weighted lifting operator Lw(ω) is then given as the set of M = M ′ + M ′′

realizations B = B′ ∪ B′′, along with the correspondingly sampled microscopic pa-
rameter values A, which together form an operator of the type (4.3). The weights
w ∈ RM (with M =M ′ +M ′′) that will be used in the restriction Rw are such that
both (4.15) and (4.16) are satisfied, and such that the natural sampling frequencies, as
exemplified by the counters gm, are matched as closely as possible. We first compute

weights w̃ ∈ RM̃+M ′′

for all elements of B̃∪B′′ by solving the regularised constrained
minimization problem

w̃ = argmin
1

2

M̃+M ′′

∑

m=1

(

w̃m − M

M ′
gm

)2

, (4.27)

1

M

M̃+M ′′

∑

m=1

w̃mum = U , (4.28)

1

M

M̃+M ′′

∑

m=1

w̃m = 1, (4.29)

w̃m ≥ 0, 1 ≤ m ≤ M̃ +M ′′. (4.30)

In the system above, we conventionally assumed that um ∈ B̃ when 1 ≤ m ≤ M̃ and
um ∈ B′′ when M̃ < m ≤ M̃+M ′′. The choice of the goal function (4.27) ensures that
constraints (4.28) and (4.29) are not affected by the presence of additional realizations
with weights that are identically zero, that is, wm = (M/M ′)gm is a solution that
satisfies (4.29).

We then transform the weights w̃ ∈ RM̃+M ′′

back to weights w ∈ RM for the
M = M ′ + M ′′ realizations in B = B′ ∪ B′′. This is done by selecting, for each
element um ∈ B′, the (unique) index m̃∗ such that um = um̃∗

with um̃∗ ∈ B̃, and
setting wm = w̃m∗

/gm
∗

for 1 ≤ m ≤ M̃ .

Remark 4.4 (Numerical solution of the minimization problem). We solve (4.27)–
(4.29) using a single Cholesky factorization [46]. Algorithms based on the Conjugate
Gradient Method can also be employed for large equality-constrained quadratic prob-
lems [29]. In our computation, we do not explicitly require (4.30): positivity of the
weights is assessed in a post-processing step, and used to determine whether enough re-
alizations were taken (we increase M until all weights are positive). It is also possible
(albeit more expensive) to include the inequality constraints (4.30) and use iterative
methods to solve the minimization problem [46].

4.3. Variance-reduced Jacobian-vector products. Let us now discuss the
Jacobian-vector multiplication that was introduced in (4.11). As indicated before, a
problem with using Equation (4.11) directly is the presence of numerical noise, which
should be addressed by using the same random numbers in both the unperturbed
and perturbed simulations. To achieve this, we use the same realizations, microscopic
parameters and random time paths in both the perturbed and unperturbed coarse
time-stepper; the only difference is in the computation of the weights. For the per-
turbed coarse time-stepper, we replace the constrained optimization problem for the
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Fig. 4.1: Distribution of weights as a function of the total number of realizations M . Weights
are obtained by lifting a mixed state and solving the corresponding minimization problem for
values of M ranging between 103 (curve 1, magenta) and 105 (curve 2, red). The resulting
data is fitted to a Gaussian distribution. As M increases, the weights are sharply distributed
around 1. Parameters as in E1 in Table 2.1.

weights by

w̃ε = argmin
1

2

M̃+M ′′

∑

m=1

(

w̃m
ε − M

M ′
gm

)2

, (4.31)

1

M

M̃+M ′′

∑

m=1

w̃m
ε um = U + εV , (4.32)

1

M

M̃+M ′′

∑

m=1

w̃m
ε = 1, (4.33)

w̃m
ε ≥ 0, 1 ≤ m ≤ M, (4.34)

Note that only the constraint (4.32) has changed with respect to the unperturbed
optimization problem (see equation (4.28)). Since the solution of the optimization
problem depends continuously and differentiably on the right-hand side of the con-
straints, small perturbations on the right-hand side of (4.32) lead to small perturba-
tions in weights. Furthermore, since we are using the same microscopic realizations
um in the constraints of the perturbed and unperturbed minimization problems, we
have effectively imposed ω1 = ω2 in the-finite difference formula (4.11), hence the
variance of DΦ(ω1)(U)V is bounded and of O(1/M).

In the limit of infinitely many realizations (where all weights converge to 1), the
presented procedure converges to the exact Jacobian-vector product. For finite values
of M , there will be noise in the Jacobian-vector product as a result of the random
selection of a subset of all possible realizations. The procedure only prevents noise
blowup that would arise if a different selection of realizations were considered for the
perturbed and unperturbed coarse time-step.
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0.9 1.1w

2.5× 104 front
mixed state

Fig. 4.2: Distribution of weights with M = 105 realizations, for two different macroscopic
steady states: a mixed state (red) and a front (blue). Both distributions are sharply peaked
around one, albeit the distribution for fronts is not Gaussian. Parameters as in E1 (mixed
state) and E3 (front) in Table 2.1.

5. Numerical properties of the equation-free method. In this section we
show a series of numerical tests that highlight the numerical properties of the weighted
lifting and lead to an appropriate calibration of the Newton-GMRES solver. For our
tests we used a population of either 40 or 400 agents, a number of realizations varying
between 103 and 105 and different types of macroscopic steady states. Here and
henceforth we will denote by locked-in states homogeneous macroscopic states with
Un ≈ 0 or Un ≈ 1 for all n, by mixed states solutions with Un ≈ 5 for all n, and
by fronts solutions that connect two locally locked-in states. For these solutions,
which were previously found via direct numerical simulations in Figures 2.1–2.4, we
use parameters of E1–E3 in Table 2.1. Unless otherwise stated, we set a time horizon
T = 20 for the coarse time stepper.

5.1. Convergence of the weights. In our first numerical experiment, we fix
N = 40, lift macroscopic steady states with the weighted operator Lw and plot the
weight distribution as a function of the number of realizations M . By construction
(see Section 4.2), we expect weights to be sharply distributed around 1 as M tends to
infinity. In Figure 4.1, we lift a mixed state for variousM and observe that the weight
distribution is well approximated by a Gaussian and tends to a Dirac distribution as
M → ∞.

Similar results are also obtained (not shown) for locked-in states and fronts. How-
ever, we note that weights distributions associated with these states are not necessar-
ily Gaussian, as shown in Figure 4.2. We point out that for such macroscopic states,
many weights are assigned a goal equal to 0, according to Equation (4.26). It is not
surprising that the distributions for these states, for which M ′′ ≫ 1, are different to
the ones associated with a mixed state, for which M ′′ ≈ 0.

5.2. Convergence of the Jacobian-vector product. We test the numeri-
cal properties of weighted Jacobian-vector products with a second numerical experi-
ment. We select a region of parameter space in which a stable macroscopic front U

is observed (corresponding to E3 in Table 2.1) and compute a single evaluation of
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Fig. 5.1: Jacobian-vector product DF (U)V of F (U) = U −Φ
M
T (U). We use a macroscopic

front solution U and a sinusoidal perturbation V with ‖V ‖2 = 1. The unweighted lifting
produces inaccurate Jacobian-vector product evaluations, whose norm becomes unbounded
as we decrease the relative size of the perturbation ε. On the other hand, weighted lifting
preserves the spatial structure of the perturbation. For this experiment we used N = 40,
M = 104 whereas all other parameters are chosen as in E3 of Table 2.1.
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Fig. 5.2: For a front U and a unit-norm random vector V , we compute the 2-norm of
F (U + εV )−F (U) as a function of ε, using weighted and unweighted lifting operators, for
F (U) = U − ΦM

T (U). Left: if we set N = 40 and use 105 unweighted realizations, noise
affects the evaluation of the Jacobian action, whereas 102 weighted realizations are sufficient
to obtain an O(ε) curve. Right: the experiment is repeated for N = 400, showing that the
weights become effective with M = O(N) realizations.

the Jacobian-vector product DF (U)V , where F is given by (4.9), DΦ is estimated
by (4.11) and V has unit norm and a sinusoidal spatial profile. If Φ(U + ǫV ) and
Φ(U) are calculated using two independent function evaluations, the Jacobian-vector
product is severely affected by noise and completely loses the spatial structure of the
perturbation V (blue lines in Figure 5.1). Furthermore, this effect is greatly amplified
as we decrease ", as the Jacobian-vector product becomes unbounded.

On the other hand, using weighted operators and the variance-reduced Jacobian-
vector product outlined in Section 4.3, we maintain the spatial structure of the per-
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Fig. 5.3: Convergence of GMRES iterations for the problem DF (U)V = −F (U), where
U is a macroscopic front and DF (U) = I − DΦ

M
T (U), for different numbers of agents N

and numbers of realizations M . Jacobian actions are computed with weighted lifting and
ε = 10−5.

turbation and the Jacobian-vector product varies smoothly as a function of the space
coordinate x. A further confirmation is found in Figure 5.2, where we plot the 2-norm
of F (U +"V )−F (U) as a function of ". In particular, we seek the minimum number
of realizations required to obtain smooth Jacobian evaluations, that is, an O(") curve:
if N = 40, then 100 weighted realizations are sufficient to obtain a smooth Jacobian
evaluation, whereas 10000 unweighted realizations are still affected by noise (left panel
of Figure 5.2). If we increase the system size to N = 400, then 1000 weighted re-
alizations are sufficient to observe an O(") curve. The experiments for N = 40 and
N = 400 suggest that weights are effective with M = O(N) realizations.

5.3. Convergence of GMRES iterations. The next step towards the con-
struction of our Newton-Krylov solver is the solution of the linear system associ-
ated with the Jacobian DF of F . We use GMRES to solve iteratively the system
DF (U)V = −F (U) where U is a mixed state and DF is computed using weighted
operators and variance-reduced Jacobian-vector products. In Figure 5.3 we show con-
vergence plots for the GMRES solver for various numbers of realizations and system
sizes. In our computations we choose " = 10−5 for the finite-difference approximation
of the Jacobian, set model parameters as in E3 in Table 2.1 and employ the in-built
Matlab function gmres with restart = 20, tol = 10−5, maxit = 20. As we can see,
the linear problems are well behaved. As expected, the linear iterations necessary to
obtain convergence decrease as we increase the number of realizations, but increase
with the system size.

5.4. Convergence of Newton-GMRES. We now proceed to the computation
of a single front, for fixed values of the control parameters, using Newton-GMRES
method. We start our iterations with a mixed state, Un = 0.5 for all n, and converge
to a front, whose profile for various values of the number of realizations is shown in
Figure 5.4. In panels a and c of Figure 5.5 we show convergence plots of the Newton-
GMRES solver for N = 40 and N = 400, with various numbers of realizations.
In these plots we scale the residual by

√
N , so as to compare performances with

varying system sizes. The Newton steps are built around the linear solves described
in Section 5.3 and each Newton update is damped by a constant factor 0.5.
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Fig. 5.4: Macroscopic fronts computed with the Newton-GMRES solver (see also Fig-
ures 5.5(c) and 5.5(d)). The initial guess for all cases is a mixed state U(x) ≡ 0.5. The
inset on top shows that the noise in the macroscopic profile is controlled by increasing the
number of realizations.

In the low-dimensional case, N = 40, the solver achieves convergence in less than
4 iterations and then residuals plateau and begin to oscillate, as expected (panel a
of Figure 5.5). The onset of these oscillations is an indication of the best tolerance
that we can achieve with the nonlinear solver for a fixed number of realizations: such
tolerance is of O(1/

√
M), as is shown in panel b. In the high-dimensional case,

N = 400, a similar scenario occurs, albeit more iterations are needed to achieve
convergence. We point out that the experiment of Figure 5.5 represents a severe test
for the nonlinear solver, in that we have chosen a poor initial guess (we start from
a mixed state to obtain a front). During continuation, initial guesses are provided
by a tangent or secant predictor step, resulting in much faster convergence. We also
remark that the convergence of the nonlinear solver is linear, as expected, since we
are using damped Newton updates.

6. Bifurcation study of vendor lock-in model. In this section we present
the results of coarse-grained numerical bifurcation analyses of the lock-in model. The
bifurcation diagrams have been computed with a simple natural continuation method,
that is, we start from a known solution to the steady-state problem (4.9), increment
the continuation parameter and solve a new problem using the previous solution as
an initial guess. Even though this is not an optimal continuation strategy (as it does
not allow one to go past folds with a single run), we employ it here mainly for its
simplicity, keeping in mind that pseudo-arclength continuation with tangent or secant
prediction steps can easily be implemented.
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Fig. 5.5: Convergence of the Newton-GMRES solver to compute a macroscopic front solution.
The initial guess is a mixed state U(x) ≡ 0.5 and the Newton steps are damped with a
constant factor 0.5. Parameters as in E1 of Table (2.1), with the exception of α = 0.7. Panel
(a): convergence for various values of the number of realizations M , for N = 40. Panel (b):
the best achieved tolerance in the experiment of panel (a) is an O(1/

√
M). Panels (c) and

(d): the computations of panels (a) and (b) are repeated with N = 400. Solution profiles
for panels (c) and (d) are shown in Figure 5.4.

6.1. Continuation of spatially homogeneous steady states. We compute
branches of homogeneous states using weighted lifting operators for a population of
N = 400 agents. Since N is large, we can compare our results with branches of
fixed points of the approximate evolution map (3.6). In Figure 6.1 we compare a few
branches noting that discrepancies are due to the finite size of the system. We also
point out that each point on the branch is the solution of a 400-dimensional coarse
system: in principle we could have tracked the solution of a simple one-dimensional
coarse system, since the solutions we are finding are homogeneous; however, this
experiment provides a benchmark for our method and prepares us for the solution of
the spatially-dependent case.

6.2. Continuation of fronts as a function of α. In Figure 6.2 we show a
coarse bifurcation diagram of macroscopic fronts for a one-dimensional lattice with
N = 40 agents. We recall here that fronts are observed in the inhomogeneous lock-in
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Fig. 6.1: Coarse bifurcation diagram for homogeneous states. With blue dots we indicate
the result of the equation-free continuation using weighted lifting operators. Red lines cor-
respond to branches of fixed points of the approximate analytic evolution map (3.6), as in
Figure 3.1. The bifurcation parameter is the average ν̄ of quality perception qn, as reported
in Equation (2.2). Other parameters: µ̄ = 0 (left) and µ̄ = 0.04 (right), ∆µ = 0, α = 0,
ξ̄ = 0.236, ζ̄ = 0, β = 108, N = 400. For the equation-free computations we use M = 104

realizations and solve a 400-dimensional coarse system.
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Fig. 6.2: Coarse bifurcation diagram for fronts. The bifurcation parameter is the slope α of
the profile of the average quality perception qn, as reported in Equation (2.2). For large α a
stable macroscopic front is formed (solution 1). As α is decreased, the front destabilises at
a symmetry-breaking instability, generating partially locked-in states (solutions 3 and 4). A
fixed continuation step of ∆α = 0.14 has been used in the computations; other parameters
as in E3 of Table 2.1.

model, for which

qn ∼ N (µ̄(xn), ξ̄), µ(xn) = µ̄+∆µ tanh(αxn).

We choose parameters as in E3 of Table 2.1, with the exception of the slope of the sig-
moid, α, which is the continuation parameter. The computations are performed with
5×104 realizations, using a linear tolerance of 10−3, variance-reduced Jacobian-vector
products with " = 10−5, a relative nonlinear tolerance of 2 × 10−3 and continuation
steps ∆α = 0.14. As we decrease α, the stable front (labelled 1) loses stability at a
symmetry-breaking bifurcation, giving rise to two partially locked-in states (labelled 3
and 4). These solutions correspond to the ones found via direct numerical simulations
(see coarse profiles in Figure 2.4).

As expected, the number of realizations influences the continuation step size: in
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Fig. 6.3: Effect of the number of realizations M on the numerical continuation step size.
We compute one of the branches in Figure 6.2 in the proximity of the symmetry-breaking
bifurcation, with a much smaller continuation step, ∆α = 0.012. The continuation with
5× 104 realizations and nonlinear tolerance 2× 10−3 (blue) is now affected by noise, which
is reduced by setting M = 5× 105 and a tolerance of 7× 10−4 (red).

Figure 6.3 we re-compute one of the branches in Figure 6.2 in the proximity of the
symmetry-breaking bifurcation, with a much smaller continuation step, ∆α = 0.012.
The continuation with M = 5 × 104 and a relative nonlinear tolerance of 2 × 10−3

(blue curve) is now affected by noise, which can be reduced by increasing the number
of realizations to 5× 105 and set a tolerance of 7× 10−4 (red curve).

During continuation, we infer stability of a coarse solution U∗ by computing
eigenvalues of DF (U∗) = I −DΦM

T (U∗). Since both N and M are relatively small,
we form DF (U∗) using the finite difference approximation (4.11) N times and then
compute the full spectrum at once. For larger system sizes, matrix-free Arnoldi it-
erations can be employed to compute only the leading eigenvalues. In Figure 6.4 we
plot the most unstable eigenvalue as a function of the bifurcation parameter, showing
that the symmetry-breaking instability occurs at α ≈ 1.5. As a further remark on
the accuracy of the variance-reduced Jacobian calculations, we plot the full spectrum
for selected values of the continuation parameter, showing a clear separation between
the leading real eigenvalue and a tight cluster of eigenvalues at the origin.

7. Conclusion. In this paper we have computed and continued in parameter
space coarse-grained states for an ABM of consumer lock-in with heterogeneous
agents. We first considered the simple case of homogeneous agents and found an
explicit macroscopic evolution map for the expectation of the spatial average. As
expected, this coarse description leads to a scenario similar to the one found for
linearly-coupled oscillators subject to a double-well potential [5]: the first moment
map stabilises metastable locked-in states, which arise at a pitchfork bifurcation of
the coarse map; introducing a homogeneous preference for one of the two products
has the effect of breaking the pitchfork or, in the heat bath analogy, to introduce an
asymmetric double-well potential.

The more interesting and challenging case of agents split into factions with oppo-
site preferences leads to the formation of spatially-extended, monotonically-increasing
macroscopic patterns, which have been computed using a spatially-dependent coarse
description. Our analysis reveals that, as the inhomogeneity becomes less pronounced,
fronts undergo a symmetry-breaking instability. The resulting stable patterns are not
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Fig. 6.4: Eigenvalues of macroscopic front solutions on the symmetric branch of the bifurca-
tion diagram in Figure 6.2. Left: the real part of the most unstable eigenvalue is plotted as
a function of the continuation parameter α. Right: representative spectra along the branch.

fully locked-in, in that they feature pockets of resistance of each faction. An interest-
ing future extension of this model could include a more granular modulation in the
agents’ preferences: oscillatory one-dimensional inhomogeneities and two-dimensional
randomly distributed factions represent more realistic spatial configurations that can
be studied with the method presented here.

The core result of the paper is a strategy to evaluate variance-reduced Jacobian-
vector products in equation-free methods. The main idea behind our approach is
to exploit the non-uniqueness of the lifting operator to obtain a coarse time-stepper
which depends smoothly on the coarse variables. In practice, this is achieved by
using weighted averages in the restriction step and pre-computing weights during the
lifting step. We have shown that a direct consequence of using weights is that we gain
full control over the linear solves, leading to well-behaved GMRES iterations and,
ultimately, to nonlinear convergence for large-dimensional coarse descriptions.

In order to assess the efficiency of the weights, we draw a comparison between
weighted and unweighted Newton steps when the number of realizations M is fixed.
In the unweighted case, each Newton step requires 1 evaluation of ΦT

M (1 Bernoulli
sampling, M evolutions, 1 average) and then, for each GMRES step, a further evalu-
ation of ΦT

M involving M further evolutions. In the weighted case, each Newton step
requires 1 weighted evaluation of ΦT

M (1 Bernoulli sampling, M evolutions, 1 manip-
ulation of the constraint matrix, 1 linear solve, 1 weighted average) and then, for
each GMRES step, 1 linear solve and 1 weighted average. Considering the improved
GMRES and Newton-GMRES convergence, weighted operators seem more efficient,
especially when running evolution steps is expensive.

We remark that, for the case under consideration, it was not possible to make a
quantitative comparison of the efficiencies of weighted and unweighted coarse time-
steppers, since the unweighted Newton-GMRES solver failed to converge for the in-
homogeneous case. This reinforces the idea that, in large-dimensional coarse systems,
noise can be harmful and variance-reduced Jacobian evaluations become an impor-
tant ingredient in equation-free methods. Furthermore, weighted operators could be
employed also in smaller coarse systems, such as the ones deriving from Galerkin dis-
cretizations of spatially-extended systems [26] or from chemical systems of moderate
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sizes [35].

A natural question arises as to whether weighted operators are applicable to other
types of coarse-grained models. In Section 4 we have presented weighted operators
for the lock-in model, for which microscopic variables are binary numbers, but we
envisage that similar ideas will be relevant in models where the microscopic variables
are real numbers. In particular it seems plausible to assume that the minimization
problem (4.27)–(4.30) will remain valid if um ∈ RN . These aspects, together with a
more rigorous justification of weighted operators, will be the subject of future work.
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