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Abstract

Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to

the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in

functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use

a modeling approach to explore the way in which this can arise and to highlight the important role that local population

dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is

taken to be of the Wilson–Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical

connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed

theoretical study. We have calculated graph–theoretic measures of functional network topology from numerical simulations of

model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the

correlation between structural and functional connectivity. We document a profound and systematic dependence of the

simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly

coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This

theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in

diseases through changes in local dynamics.

Introduction

Modern brain imaging methods allow the quantitative study of both

local activity dynamics and the interdependency between activities in

anatomically distant areas. The latter, known as functional connectiv-

ity (FC) analysis, is of growing interest in the clinical and

experimental neuroscience community.

Functional connectivity refers to the temporal synchronization of

neural activity in spatially remote areas. It is widely believed to be

significant for the integrative processes in brain function. FC is

typically assessed using brain activity data acquired during a relaxed

resting condition, although it can also be assessed from measurements

taken during a particular task. The resting condition poses minimal

demands on experimental preparation and the measured subject whilst

still providing reliable information about a range of brain networks

(Shehzad et al., 2009; Smith et al., 2009).

In practice, it is evaluated using a range of statistical techniques

fitted to the particular measurement modality, including high temporal

resolution methods such as electroencephalography and magnetoen-

cephalography as well as high spatial resolution methods such as

functional magnetic resonance imaging. For the latter, simple linear

dependence measures (linear correlation) are suitable (Hlinka et al.,

2011a) while for the former, more time-resolved, data modality,

elaborate methods of synchronization assessment such as mean phase

coherence (quantifying the phase synchronization) are commonly

used.

As malfunction of integration of neural information, further

affecting cognitive and emotional processing, is believed to be central

to many psychiatric and neurological diseases, a range of studies has

investigated the differences in FC in patients with specific disease

compared to healthy subjects. Although the description of such

differences is still far from complete, many specific results for

particular diseases have already been reported. We refer the reader to

the Discussion section and recent reviews for more details (Bassett &

Bullmore, 2009; Sporns, 2011).

While FC analysis as a data processing method seems to be

effective in the detection of consistently synchronized networks of

brain areas, there is an ongoing discussion regarding the origin of the

specific observed patterns. The very structure of the anatomical

connections between remote brain areas, termed structural connectiv-

ity (SC), is the most widely discussed potential contributor to the

observed spatial pattern of FC. However, the extent to which it

determines the FC is not known (Honey et al., 2010), with reports of

various degrees of predictability (see Ghosh et al., 2008; Daffertshofer

& van Wijk, 2011; or Honey et al., 2010 and references therein).

In view of the situation described above, we contribute in this paper

to the discussion of the relation between SC and FC by describing the

role of mutual synchronizability of brain subunits modelled as neural

oscillators. We have illustrated this general argument by systemati-

cally studying changes under parametric variation in a network model

based on coupled neural populations. We have further assessed the
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associated changes in the FC topology, relating this to the hypothesis

of increased randomization of brain networks in disease. Finally, we

have related the results to theory-based predictions of changes in

global network synchrony.

Materials and methods

Model description

To investigate the relationship between SC and FC in brain networks,

we constructed a phenomenological model using standard compo-

nents. In particular, we considered a network of interacting neural

populations, coupled by a specific matrix of connections.

For simplicity, we assumed a parcellation of the cerebral cortex into

functional areas, such that each area corresponds to a functional unit

that can be represented by a single instance of a localized neural

population model. We also assumed that the approximate structure of

neural connections between the functional areas was available in the

form of a connectivity matrix.

Each cortical area in the model is represented by a Wilson–Cowan

(Wilson & Cowan, 1972) node – a model of two interacting

populations of neurons. This represents a simple (but historically

important and well recognised) example of an oscillatory neural

population model, convenient here for ease of introduction, analysis

and simulation. In principle for detailed simulations it could be

replaced with other choices of neural mass models such as developed

by Jansen & Rit (1995), Marten et al. (2009) and Liley et al. (2010),

which are more amenable to accurately describing real EEG and fMRI

time-series data. Denoting the activity of the two Wilson–Cowan local

populations by u and v the network equations are written as:

_ui ¼ �ui þ f ðc1ui � c2vi þ P þ e
X

j

wijujÞ

_vi ¼ �vi þ f ðc3ui � c4vi þ QÞ

ð1Þ

where f(x) = 1 ⁄ (1 + exp ()x)) and represents a population firing rate

function. Here wij > 0 with wii = 0 and reflects the anatomical

(structural) activity pattern in a system of N nodes [each described

by the pair (ui, vi)]. This is defined by the matrix bij with entries 0 or 1

where we set wij ¼ bij=
P

k bik(so that the input to each node is

normalised). The constants c1, …, c4 denote the strength of interaction

between sub-populations within a node. For the current analysis we

chose c1 = c2 = c3 = 10 and c4 = )2 as in Hoppensteadt & Izhikevich

(1997). For e = 0 the network dynamics decouples into a set of

identical nodes, each of which may oscillate or be at rest depending on

initial data and the values of the system parameters.

Bifurcation analysis

A linear stability analysis of the node dynamics shows that oscillations

may arise via a Hopf bifurcation. The locus of these Hopf bifurcations

(HB) in the (P, Q) parameter plane is shown in Fig. 1, as well as the

locus of saddle-node (SN) bifurcations of fixed-points (as the system

may have either one or three rest states). The diagram shows only the

main skeleton of the bifurcation structure of the system (though see

Hoppensteadt & Izhikevich, 1997, for more detail).

Structural connectivity

For exploration of the relation between SC and FC, we considered

three types of connectivity matrices. The first is modular connectivity,

where the network consists of several modules that are fully connected

inside and have no connections between them. The second is an

example of a quasi-realistic scenario, where we chose the parcellation

of the cerebral cortex and the SC matrix in agreement with Honey

et al. (2007) as 47 areas of macaque cortex together with an

anatomical connectivity matrix collated in the CoComac database

(Kotter, 2004). The third is a random binary matrix produced by the

Maslov–Sneppen algorithm (Maslov & Sneppen, 2002), preserving

the number of connections of each node (degree sequence) and

therefore also the overall network density of the macaque matrix. The

structural matrices are shown in Fig. 2.

Simulations of the model

The dynamics of the model were simulated using in-house Matlab

scripts. To facilitate the detection of stable solutions, a small amount

of additive white Gaussian noise with variance r = 0.01 was added

independently to the u variable of each node and the system integrated

using the Euler–Murayama method, with a time step dt = 0.1.

Parameters P and Q were varied in the intervals ()6, 6) and

()12, 0) respectively with increments of 0.25. The coupling strength

was fixed to e ¼ 1.

For each parameter setting, a run of the model of length T = 10 000

was simulated, with random initial conditions for u and v variables of

all nodes chosen uniformly from the interval (0,1). For FC analysis,

the first 1000 steps were discarded to allow for initial transients. An

example of the system behaviour is shown in Fig. 3. All the local

populations show oscillations, with a typical period of approximately

50 time units.
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Fig. 1. Bifurcation diagram for an isolated Wilson–Cowan node in the (P, Q)
plane. Here HB denotes Hopf bifurcation and SN a saddle node of fixed-points
bifurcation. Here c1 = c2 = c3 = 10 and c4 = )2. Also shown are plots of H(h)

(solid red line) at three different points in the (P, Q) plane. At points a
((P, Q) = ()2.5, )8.5)) and c ((P, Q) = (2.5, )3.5)) we find H’(h) < 0 and at
point b ((P, Q) = ()1.5, )6)) H’(h) > 0. The green dashed line is the h axis
(H = 0). A breakdown of FC (loss of synchrony) is predicted at points a and c
(for weak coupling between nodes).

A B C

Fig. 2. SC matrices for (A) modular connectivity, (B) brain anatomical

connectivity (CoComac database; Kotter, 2004) and (C) random connectivity
with the conserved degree sequence of (b). A nonzero entry at the position with
coordinates i, j denotes the existence of anatomical link from the j-th to the i-th
network node.
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Measurement of FC

For assessment of FC we employed two commonly used measures. As

a primary measure, the simple linear (Pearson’s) coefficient of

correlation of the time series was used. As the model supports

nonlinear oscillations, we also computed the mean phase coherence

(Mormann et al., 2000). The computation of mean phase coherence

requires first determining the instantaneous phase of each signal at

every time point, which was carried out by applying a Hilbert

transform and reading out the angle of the complex output. The phase

coherence of the two signals is then quantified as the temporal stability

of the phase difference udiff(t) = u1(t) - u2(t). The mean phase

coherence thus is defined as:

R ¼
1

N

X

N�1

j¼0

eiudiff jDtð Þ

�

�

�

�

�

�

�

�

�

�

ð2Þ

and we refer the reader to (Mormann et al., 2000) and the references

therein for details.

Graph–theoretical measures

For the purposes of studying functional networks, the graph–theoretic

approach is commonly used (Bullmore & Sporns, 2009). Here we

used standard methods to compute some of the most commonly used

graph–theoretic network characteristics (:) average path length,

clustering coefficient and small-world index. We include only a brief

description; see Bullmore & Sporns (2009) for details.

First, the FC matrix was binarized by choosing a threshold and

keeping only links that held above-threshold connectivity values. For

our simulations, we chose the value of the threshold such that the

density of the resulting graph was equal to that of the underlying SC.

One can compute a distance matrix Dij holding for each pair of

nodes the length of the shortest connecting path (minimal number of

links necessary to go through to get from i to j). By averaging this over

all node pairs, one obtains the average path length L, one of the key

graph–theoretical measures.

For each node one can also compute its local clustering coefficient

c, defined as the ratio of the existent links between its neighbours to

the total number of such possible links. By averaging this coefficient

over all nodes, one obtains the (global) clustering coefficient C.

To facilitate comparability, these characteristics are often related to

the expected values for a corresponding random graph (commonly the

Erdos–Renyi random graph, conserving the number of links, is used.).

Thus we obtained relative coefficients k ¼ L=Lrand and c = C ⁄Crand.

A widely discussed network property is so called small-worldness;

see Watts & Strogatz (1998) for an original discussion of the concept.

A key property of a ‘small-world’ network is that it has similar

average path length, but increased clustering coefficient compared to a

corresponding random graph. These properties are summarized by the

small-world index r ¼ c=k suggested in Humphries & Gurney (2008).

SC–FC agreement

The level to which SC overlaps with the FC can be conveniently

captured by the Jaccard similarity coefficient of the non-diagonal

entries of the binary SC and FC matrices. This is the relative

number of links that are shared by the SC and FC matrices with

respect to the total number of links that appear in at least one of

the matrices. Such a ratio is a natural measure of connectivity

matrix overlap, ranging from 0 for matrices with no common links

to 1 for identical matrices.

Computation of stability

To provide a theoretical background and interpretation of numerical

results, we consider the following theoretical arguments.

Synchronization phenomena in neuroscience have been extensively

studied from a theoretical perspective using weakly coupled oscillator

theory (Hoppensteadt & Izhikevich, 1997). This theory allows us to

predict the stability of specific dynamic oscillatory network solutions.

In the following we outline the method, and use it to derive a heuristic

model for the prediction of parameter sets that will yield a high degree

of correlation between SC and FC.

Transformation of the model

We may rewrite the model given by Eqn (1) in the matrix form

_X ¼ �X þ f ðWeX þ RÞ ð3Þ

with X = (u1, …, uN, v1, …, vN), R = (P, …, P, Q, …, Q) and

We ¼
c1IN þ ew �c2IN

c3IN �c4IN

� �

ð4Þ

where w has components wij and IN is the N · N identity matrix so

that W = <2N·2N. Using the linear transformation Y = WX + R we

obtain a similar model, though with the term in e appearing additively:

_Y ¼ �Y þ Rþ W0f ðY Þ þ e
w 0

0 0

� �

ð5Þ

This is in a more convenient form for applying standard phase

reduction techniques.

Node number

T
im

e

10 20 30 40

100

200

300

400

500

600

700

800

900

1000

Fig. 3. Example segment of time series of the model for a network of 47
population nodes connected by the CoComac network of connections; the u-

variable is shown for each node.
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Phase reduction

Writing Y in component form as Y = (x1, …, xN, y1, …, yN) means

that Eqn. 5 takes the form

_xi ¼ �xi þ P þ c1f ðxiÞ � c2f ðyiÞ þ e
X

j

wijf ðxjÞ

_yi ¼ �yi þ Qþ c3f ðxiÞ � c4f ðxiÞ

ð6Þ

For e = 0 we look for oscillatory solutions with a common

trajectory such that (xi(t), yi(t)) = (x(t + hiT), y(t + hiT)), for some

arbitrary phase-shifts hi 2 [0, 1),where (x(t), y(t)) is a T-periodic

solution of

_x ¼ �xþ P þ c1f ðxÞ � c2f ðyÞ

_y ¼ �y þ Qþ c3f ðxÞ � c4f ðyÞ
ð7Þ

For weak coupling (small e) we may then invoke the theory of

weakly coupled oscillators to obtain a description of the network

dynamics in terms of a set of phase variables that evolve according to

_h ¼
1

T
þ e

X

j

wijHðhi � hjÞ ð8Þ

for i = 1, …, N. Here the phase interaction function (which is 1-

periodic) is given by a temporal average of the product of the phase

response vector of oscillator i and the interaction from oscillator j.

The former can be found once the periodic orbit has been determined

(by solving the so-called adjoint equation) and the latter merely

requires writing f(xj) in the form f(x(t + hjT)). The numerical

machinery for constructing the phase interaction function is conve-

niently implemented in XPPAUT (Ermentrout, 2002). Note that this

approach differs significantly from that in Daffertshofer & van Wijk

(2011), which constructs a phase-oscillator network by linearizing

around an unstable fixed point. Instead we have used the notion of

phase response, which is the appropriate technique for describing

systems with large amplitude oscillations such as those seen in

Wilson–Cowan networks.

From the set of ordinary differential Eqn (8) it is particularly easy to

determine the stability of the synchronous state (hi = h for all i), which

is key in determining FC. We introduce the N · N matrix Ĥwith

components:

Ĥij ¼ H 0ð0Þ wij � dij
X

k

wik

" #

ð9Þ

where H¢(h) = dH(h) ⁄ dh. The stability of a general phase-locked

solution of the system of oscillators depends on the eigenspectra of the

Jacobian Ĥijof the linearized perturbation equation. In particular,

while one eigenvalue is always zero, the solution is stable if all the

remaining eigenvalues have negative real parts. For a synchronous

solution, the phase differences are all zero. A sufficient condition for

the instability of the synchronous state is that Tr Ĥ>0 (as this would

require at least one eigenvalue to have positive real part). Given that

wij > 0 and wii = 0 we would therefore expect to see a breakdown in

global synchrony if H¢(0) < 0. Similarly, for a globally coupled

network ("i „ j; wij = c), the matrix has a very simple form and the

non-zero eigenvalues are easily shown to be )1 (with N)1 degen-

eracy). Therefore, the synchronous solution is stable if H¢(0) > 0 and

unstable if H¢(0) < 0.

This provides us with conditions for global synchrony, that is,

synchrony of all neural oscillators. However, we are mostly interested

in complex patterns of partial synchrony. Computation of conditions

for these is impractical, as these differ in principle for each particular

synchrony pattern and each underlying SC. Nevertheless, the above

analysis can provide a heuristic condition regarding the stability of

synchronous patterns in agreement with the underlying SC.

In particular, the same stability condition H¢(0) > 0 as for globally

coupled networks also trivially holds for an isolated sub-network of

two coupled oscillators. Thus wherever H¢(0) > 0 holds in parameter

space, the nodes connected by a structural link will tend to

synchronize. On the other hand, we expect to see a disagreement

between SC and FC if H¢(0) < 0.

Some examples of H (obtained using XPPAUT) are shown in

Fig. 1. At the points labelled a and c we predict a breakdown of FC [as

H¢(0) < 0], which is consistent with our direct numerical simulations

of the full model. For more extensive computation of H¢(0) as a

function of parameters P and Q, an in-house interface to the Matlab-

based continuation package MATCONT (http://www.matcont.ugent.

be/) was used.

Heuristic prediction of SC–FC agreement

For networks with complex SCs, total agreement of SC and FC may

be impossible. Moreover, many candidate phase-locked solutions

might be available for testing, rendering detailed treatment cumber-

some. Nevertheless, we propose that a general tendency towards

agreement between SC and FC might be determined from the pair-

wise phase interaction function. In particular, we conjecture that when

the phase interaction function is such that the bi-synchronized solution

is stable, this would promote synchrony within those pairs of nodes in

the networks that are coupled, further leading to increased agreement

between SC and FC.

Results and statistical analyses

SC–FC agreement

For all three types of SC, the variation of the SC–FC agreement within

the (P, Q) parameter plane in the numerical simulations showed

somewhat noisy but clearly non-random structure, which was to a

large degree stable across the SC types and FC measures. See Fig. 4

for values of the agreement.

Graph–theoretic properties of FC

The network-level effects of variation of the FC within the (P, Q)

plane were assessed using a selection of commonly used graph–

theoretic measures. Again, there was a clear structure of the

dependence on (P, Q) parameters, affecting strongly the clustering

coefficient and also the characteristic path length, leading to changes

of the small-world index r; see Fig. 5. The (P, Q)-dependence pattern

was related to the one observed for the SC–FC agreement. In

particular, the areas of increased clustering and small-world index

(with respect to random network) generally overlapped with the areas

of increased SC–FC agreement.

Stability of synchronized solution

Numerical computation of the pair-wise phase interaction function

outlined in Materials and Methods allows the determination of

the stability of the fully synchronized (in-phase) solution.
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In particular, the positive sign of H¢(0) corresponds to stability

while a negative sign of H¢(0) to instability of synchrony. The

values of H¢(0) as function of P and Q are plotted in Fig. 6,

suggesting an overall large central area of synchrony instability

with two roughly triangular areas of instability, at the lower left and

upper right corner of the limit cycle region delineated by the

bifurcation lines.

For a network consisting of two independent and internally fully

coupled modules, synchrony among all nodes within each module is

from theory given by the sign of H¢(0), while the synchrony between

them is predicted as random and asymptotically zero as they are

completely independent. This theoretical argument predicts perfect

agreement of the FC matrix with the underlying structure for positive

H¢(0) and zero agreement for negative H¢(0). This is confirmed by

simulations; see Fig. 7.
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Fig. 4. Agreement between the SC and FC as measured by the Jaccard similarity coefficient of the connectivity matrices. (Left) Measuring FC by correlation; (right)
measuring FC by mean phase coherence; (top) CoComac SC; (bottom) random SC.
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Fig. 5. Graph–theoretical properties of FC measured by mean phase coherence as function of parameters P and Q of the Wilson–Cowan model.
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Fig. 6. Stability of synchronous solution for weakly coupled network of
Wilson–Cowan oscillators with global coupling. H¢(0) is shown; note that its
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Note that this also suggests that the strength of coupling e = 1 is

sufficiently small for the predictions of the weak coupling theory to

approximately hold.

Discussion

The current study has documented how FC within a network of neural

populations crucially depends on the parameters of the populations.

Moreover, the drastic consequences of this dependence for the

agreement between SC and FC, as well as for the global functional

network properties, has been investigated. Importantly, a link to the

theory of weakly coupled oscillators has been established. In particular,

in the parameter regions where the synchronous solution is predicted to

be stable, the FC resembles the underlying SC. On the other hand, in

areas of instability of synchronous solutions (for pair-wise or fully

coupled networks) the network shows a richer pattern of activity,

generally independent of the underlying structural connections. While

several specific choices had to be made for the purpose of this study, we

expect that the main results hold under more general conditions.

There is an increasing interest in analyzing brain FC alterations

using graph–theoretical approaches. For example, such techniques

have been applied to electrophysiological data for a variety of diseases

including Alzheimer’s dementia (Stam et al., 2007), major depression

(Leistedt et al., 2009) and schizophrenia (Rubinov et al., 2009). We

refer the reader to recent reviews for more details (Bassett &

Bullmore, 2009; Sporns, 2011). In particular the latter review

highlights the notion of randomization (loss of specific complex

properties of brain connectivity) as an important potential common

mechanism for FC disruption in brain disease. As various diseases

have been shown to have such randomizing effects on brain FC, the

instability arising from variation in population properties may have

direct relevance for understanding the way diseases affect brain

activity dynamics, being a candidate mechanism for FC disruption in

the absence of (or as a precursor to) notable changes in the anatomical

connectivity or local dynamics.

Model parameter settings

Within our high-level model, the values of some parameters could

not be directly informed by biology. The strength of the coupling e

was chosen for convenience (and set to unity). For weaker coupling,

longer time series would have to be simulated to achieve robust

statistical sampling of the process, which would pose an impractical

demand for both memory and computational time especially in

combination with the requirement to cover a two-parameter plane.

Importantly, even though the coupling strength was not ‘negligible’,

the weak coupling theory stability prediction still proved relevant for

understanding the FC topology. A small amount of noise was also

implemented in the model. We have not investigated the parametric

variation of the results with noise levels so only note that, while we

have obtained similar results for decreased or moderately increased

noise levels, under very strong noise, synchronisation is, as expected,

less robust.

The role of node heterogeneity in the formation of FC has recently

been studied by Daffertshofer & van Wijk (2011). We have observed

very similar results for both a network with homogenous nodes and a

network where a random fluctuation in the P parameter drawn from

interval (0, 0.01) was added to each node. This confirms that the effect

does not require strictly homogeneous node properties. As the node

heterogeneity introduces several more degrees of freedom, which

would require additional space to explore and describe, the role of the

heterogeneities will be reported upon elsewhere.

Model choice

In the Wilson–Cowan model considered, the parameters P and Q were

conveniently chosen for exploration of the dependence of FC on

parameter variation. In the original formulation, these correspond to

the background level of non-specific input to the two node subpop-

ulations. In this context our findings could be interpreted as the

potential effect of global increase or decrease in excitatory or

inhibitory transmission, leading to deviation from the optimal modus

of function and breakdown or randomization of FC pattern. More

generally, P and Q can be interpreted as general modulators of the

local input response.

FC assessment

The choice of methods for FC assessment is still a matter of intense

research and debate even within the experimental community. The

mean phase coherence used in this paper is among those most widely

used for quantification of dependence of electrophysiological signals.

On the other hand, while many nonlinear methods have been recently

tested in this respect, it has been confirmed that linear correlation is

generally sufficient for the assessment of FC for functional magnetic

resonance imaging data (Hlinka et al., 2011a). Our model output is

generally closer (though not equivalent) to a local field potential and

therefore means phase coherence is the method of first choice.
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Fig. 7. Agreement of FC and SC for a purely modular network as a function of model parameters P and Q. (Left) Measuring FC by correlation; (right) measuring
FC by mean phase coherence. Note the good agreement with Fig. 6 (stability of synchronous solution), which can be directly proven for weak coupling.
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Nevertheless, we also include the results for the linear correlation

measure as it is widely known and also commonly used in studies of

interactions within complex dynamic systems. In general, the results

using both measures have shown marked similarities, although they

also offer to some extent complementary information due to their

differential sensitivity with respect to out-of phase synchrony. In

particular, linear correlation can show negative values for prevalently

anti-phase synchronized oscillations while mean phase coherence can

show positive ones, reflecting the strength of synchronization. The

differences between these measures constitute a still widely neglected

but important subject for further study.

Graph–theoretic network characteristics

In the present study, the overall effect of changing system parameters

on the FC pattern has been studied on several levels. Apart from the

consequences for the structure–function relationship, the global

topology alterations have been probed using a selection of widely

used graph–theoretic measures. There was a pronounced variability

particularly in the clustering coefficient and small-world index with

respect to the degree-matched random graph, suggesting a potential

mechanism for the breakdown of FC towards increased randomness in

specific areas.

The binarization threshold for the FC was conveniently chosen to

preserve the density of the structural matrix. Although a change in the

threshold would lead to quantitative alterations in the graph–theoret-

ical measures, the specific threshold choice (within reasonable limits)

does not strongly affect the general qualitative results that we

obtained.

Of note, although graph–theoretical approaches are commonly

applied for the characterisation of both SC and FC and are believed to

provide important qualitative and quantitative information about the

topology of the corresponding graphs, the interpretation of the path-

based measures in FC matrices is not as straightforward as with SC

due to the abstract nature of these paths. The problem is discussed in

more detail in Rubinov & Sporns (2010).

It has recently also been shown that a FC approach using common

measures introduces some bias into the graph topology, namely a

spurious tendency towards increased clustering and small-worldness

(Hlinka et al., 2011b). However, this is not crucial in the current

context as long as it is the parameter-dependent relative variation

rather than the exact quantitative values of the graph measures that is

interpreted.

The specific interpretation of graph–theoretic measures in the

context of brain function is an ongoing topic of research outside the

scope of the current paper; see e.g. Bullmore & Sporns (2009) and

Rubinov & Sporns (2010) for reviews.

Relating SC and FC

We have observed that the agreement between SC and FC was

crucially modulated by the parameter regime. In particular, in

agreement with our intuitive theoretical argument, high values of

agreement were observed in the analytically derived parameter area

corresponding to pairwise synchronizability of local dynamics, while

low values were observed in areas that correspond to instability of

pairwise synchrony (compare Fig. 6 with Fig. 4).

For purely modular networks (Fig. 7), this agreement was perfect

up to some noise due to finite-size simulation effects. For a random

network, the patterns were qualitatively similar as for a more realistic

brain network, although the prediction was weaker. This is probably

related to the tendency towards modular architecture in real brain

networks; see also Honey et al. (2007). The specific role of modularity

in the formation of FC is a complex topic requiring further research.

The robustness of the brain network results was confirmed with

additional simulations using an alternative SC matrix (cat cortex; see

Scannell et al., 1999); see Fig. S1.

Note that the similarity of matrices can be quantified by a range of

methods. The Jaccard similarity coefficient is preferable for its

conceptual simplicity (effectively being a relative number of shared

links). Although only results using the Jaccard similarity coefficient

are presented in this paper, other measures such as Pearson correlation

coefficient were tested in an exploratory fashion and offered

qualitatively similar results.

In general, experimental studies support the idea that structural

connections, when present, are substantially predictive of the presence

or strength of functional connections, although this relation may be

only moderate in available data. In computational models, even

stronger agreement of SC and FC has been reported in some cases; see

e.g. Ghosh et al. (2008), while the potential for their decoupling has

been discussed elsewhere (Daffertshofer & van Wijk, 2011).

Although the investigation here was not aimed at fitting a particular

experimental dataset, we were able to confirm that the values of the

structure–function agreement in the synchronization regime were of

similar order as those generally reported in the experimental literature,

suggesting substantial, but far from perfect, agreement.

Experimental establishment of the relation of structure and dynam-

ics (or function), though progressing, is still complicated by method-

ological difficulties with in vivo measurements of SC (Hagmann et al.,

2008). On the other hand, modeling studies are relatively scarce,

include specific and widely differing assumptions and therefore offer

only partial answers. The isolated reports differ in whether they predict

high similarity between SC and FC as well as in the expected

reliability of this prediction; see e.g. Daffertshofer & van Wijk (2011),

Honey et al. (2010) and Ghosh et al. (2008).

Thus, understanding the potential and observed changes in FC in

disease would benefit from embedding previous studies into a broader

framework, the aim being an improved theoretical understanding of

the principles of the emergence of FC patterns from the dynamic

activity of local nodes coupled through long-range anatomical

connections.

In this context, it seems reasonable to assume that the extent of the

relationship might in fact strongly depend on some key system

parameters. In this paper we document such dependence using a basic

computational neuroscience model and provide a tentative explanation

of a major source of this variability through the stability analysis of

synchronized behaviour.

The argument presented is applicable to a wide class of oscillator-

based neural models. Importantly, the desynchronization mechanism

of FC disruption we have described, through its decoupling from the

SC substrate, may play a role in the topological changes observed in

brain FC in disease. In particular, the topology of FC was shown to

potentially drastically change without a notable change of the

underlying structural substrate or local dynamic behaviour.

For simplicity we have not included axonal transmission delays in

the model. However, these can potentially play a significant role in

shaping FC, particularly for resting-state networks. For a review we

refer the reader to Deco et al. (2011). Moreover, the inclusion of

delays in neural mass models is known to allow for a richer repertoire

of response, including chaotic behaviour (Coombes & Laing, 2009).

In the phase-reduced description the presence of a delay would

manifest itself as a phase shift. For small enough delays this can be

described by a phase shift in the phase interaction function, as in
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Daffertshofer & van Wijk (2011). Interestingly, time delays can cause

the stability of the synchronous state to switch periodically as they are

increased (Campbell & Kobelevskiy, 2012).

The Wilson–Cowan model was chosen as a widely known example

of a neural population model with exemplary oscillatory dynamics,

also suitable for its simplicity. Of course, more sophisticated and

biologically realistic models would have to be studied to provide more

specific, potentially quantitative, predictions regarding the effects of

variation of particular physiological variables due to brain disease or

other factors modulating brain function. Related to this, it would be

beneficial to complement this work in future with more accurate

forward models that connect the local neural activity to the variables

observed in experimental brain measurements using diverse

brain imaging methods (Bojak et al., 2010). In such detailed

modelling, realistic levels of noise and signal conduction delays

should be implemented; they have already been shown to contribute to

the reproduction of realistic FC patterns in specific models (Ghosh et

al., 2008).

The described phenomena leave many open questions. For instance,

while we have shown that the predictive power of pair-wise synchrony

stability for the structure–function agreement is strong across widely

varying topologies, it may be parametrically modulated by the

network topology or other parameters of the dynamic model. For

instance, this prediction should intuitively be very precise for sparse

networks formed by many isolated node doublets, while for denser

and more complex connectivity matrices it should provide rather an

approximate heuristic estimate (and we should instead analyze the full

Jacobian matrix of the system); this dependence may be of interest for

the investigation of real data.

Conclusion

In conclusion, the current paper contributes to the study of large-

scale patterns of brain activity dynamics and its alterations in disease

by documenting the profound effects of subtle changes of param-

eters within local nodes on the FC topology. For a specific model,

we have identified regions of breakdown of the FC pattern

characterized by increased randomization and decreased resemblance

to the underlying structural coupling pattern. This was further

related to theoretical predictions by correspondence to the param-

eter-regions of instability of pair-wise synchronous solutions. Further

work is ongoing that will formulate a more rigorous theoretical

framework for explaining FC patterns and their alterations in brain

disease.
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Additional supporting information can be found in the online version

of this article:

Fig. S1. Agreement between the structural and simulated functional

connectivity as measured by the Jaccard similarity coefficient of the

connectivity matrices. Left: quantifying functional connectivity by

correlation; Right: quantifying functional connectivity by mean phase

coherence; Top: cat cortex structural connectivity; Bottom: random

structural connectivity. Visualization as in Figure 4 of the article that

presents results for macaque structural connectivity matrix.
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