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Discrete element modelling of material non-coaxiality in simple
shear flows

Jun Ai*,†, Paul A. Langston and Hai-Sui Yu

Nottingham Centre for Geomechanics, The University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

SUMMARY

We investigate the quasi-static simple shear flow of a two-dimensional assembly of cohesionless particles using
discrete element method (DEM) simulations. We focus on the unsteady flow regime where the solid would
experience significant evolution of stresses, mobilised shear strength and dilation.We construct the DEMmodel
using a discretised-wall confined granular cell where the apparent boundary is allowed to dilate or contract
synchronously with the confined solid. A rather uniform simple shear field is achieved across the whole assem-
bly, which benefits rheological studies in generalising constitutive laws for continuum methods. We examine
two aspects of the simple shear behaviour: macroscopic stress and strain rate evolution, particularly the non-
coaxiality between the principal directions of the two; and micromechanics such as evolution of fabric. For
an initially anisotropic specimen sheared under constant normal pressure, the direction of principal stress rotates
towards that of the principal strain rate, gradually reducing the degree of non-coaxiality from about 45° to
fluctuating around 0°. The rate in approaching coaxiality is slower in samples with larger initial porosity, stress
ratio and mean stress. Generally, a faster rate in approaching coaxiality in simple shear is observed in a more
dilatant sample, which often shows a larger degree of mobilised fabric anisotropy, suggesting the possible
important role of instantaneous internal friction angle. The evolution of principal fabric direction resembles that
of the principal stress direction. © 2013 The Authors. International Journal for Numerical and Analytical
Methods in Geomechanics published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Loading conditions encountered in geotechnical engineering invariably involve principal stress

rotation [1], particularly when cyclic loading is involved, for example, under earthquakes, vehicular

traffic and sea waves. Upon continuous principal stress rotation, permanent strains may accumulate

steadily even if the magnitudes of the effective principal stresses are kept constant [1]. It is therefore

important to examine the effects of principal stress rotation on the deformation of soils and to

incorporate such effects into constitutive models if reliable predictions are to be made.

Extensive evidence from laboratory has shown that the principal axes of stress and strain rates are

generally not coincident during stress rotation (e.g. [2–11]). This ‘non-coaxiality’ phenomenon is an

important part of the elastoplastic theory as the postulate of coaxiality made in coaxial plasticity [12] is

only valid for isotropic media and problematic when applied to anisotropic media. Therefore, the

constitutive relationship cannot be sufficiently formulated in the principal stress space unless

non-coaxiality is taken into account [13]. Some numerical evidence of the importance of
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including non-coaxiality in engineering applications such as soil–structure interaction and solid

flow in silos have been reported recently (e.g. [14, 15]).

Despite numerous experimental and numerical studies, the understanding of the non-coaxial behaviour,

particularly its micro-mechanism, remains limited, and the non-coaxial plasticity theory has not yet been

satisfactorily developed [16]. The non-coaxial soil stress–strain response can be studied in the laboratory

such as with simple shear apparatus [2, 8], directional shear cell [5, 6], torsional hollow cylinder [17] and

two-dimensional (2D) general stress apparatus [18, 19]. These tests allow various degrees of control of the

rotation of the principal axes of stress or strain. As well known, they suffer various amounts of

inhomogeneity in achieved stress and strain fields [13, 19, 20]. From the viewpoint of rheological study

of granular materials using a representative volume element, obviously, the global uniformity of the

geometrical and mechanical properties across the whole element is pursued. Another inherent problem

of the laboratory studies is that they cannot create accurate replicates of the physical systems on site.

Complementary numerical experiments of stress rotation by discrete approaches such as discrete

element method (DEM) simulations, though limited, have been carried out (e.g. [21–23]). It is

expected that the control of the boundary conditions could be easier in the idealised numerical

systems, and the richness of output data, particularly micromechanical information, may offer

further insights that help construct more physically realistic, such as fabric-based, non-coaxial

plasticity models [16]. At present, most existing non-coaxial constitutive models are based on

continuum mechanics and mostly heuristic assumptions (e.g. [24–26]).

This paper presents a DEM examination of non-coaxial behaviour in a granular cell undergoing

simple shear. Simple shear is one of the most common deformation patterns of particulate systems.

For example, simple shear is generally appreciated as the typical deformation mode in localised

failure zones (shear bands) of granular materials and in shaking level grounds under seismic shear

waves. It is also the dominant deformation mode in plane shear flows of granular solids [27]. Most

of the earlier DEM studies of simple shear mainly focused on steady state (or critical state)

behaviours (e.g. [27–30]). However, in such large strain regimes, the volumetric strain has been

fully mobilised, and the directions of principal stress and strain rates have already developed to be

largely coincident. In contrast, the relatively small shear strain regime is more important in

geomechanics where deformation and modulus are important factors for practical design. Previous

DEM simulations investigating non-steady regime of simple shear are largely limited to strength and

volumetric behaviour (e.g. [31–34]). Only very few studies consider the non-coaxiality [22, 35, 36].

In past DEM simulations, the shear cell commonly consisted of four geometrically rigid line-walls

forming a parallelogram, which is similar to that of the laboratory simple shear devices where the

soil specimens are enclosed by rigid platens. Consequently, some inherent limitation of the laboratory

device also exits in the numerical model; for example, the state of stress and strain in the cell is

seldom homogeneous because of the restraints of solid dilation or compaction near the wall boundaries.

We report a systematic investigation of simple shear behaviour focusing on non-coaxiality, using

the proposed ‘discretised-wall confined granular cell’. In this cell, the boundary may deform strictly

conforming to the applied strain rates as a result of its discrete nature, which avoids any spurious

boundary shear stress that distorts the contraction or dilation of the confined granular solid. Rather

uniform stress and strain fields have been achieved, which facilitates a more reliable homogenisation

for rheological study. The effects of initial porosity, stress ratio, lateral pressure ratio, mean stress on

the simple shear responses are explored. Both macro and micro-mechanical information are analysed.

The results presented here are based on 2D systems with idealised circular particles. The three-

dimensional case and the effects of particle shape on the non-coaxiality development, and that of

partially restraining particle rolling via introducing rolling resistance [37–41] are also studied, but

the results will be presented elsewhere.

2. NUMERICAL PROCEDURES

The simulations were carried out by means of the DEM [42] via Particle Flow Code 2D version

4.0 [43]. In this section, we briefly introduce our granular cell configuration, sample preparations

and loading histories.
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2.1. Granular cell configuration

2.1.1. Previous line-wall confined cell. A typical simple shear cell is of a parallelepiped configuration

(parallelogrammic in 2D, cf. Figure 1b). For a uniform stress state to occur under simple shear mode,

equilibrium demands that complementary shear stresses be developed on the vertical sides of the

element normal to the plane of deformation. This consequently requires frictional boundary

conditions. The configuration should not prohibit the enclosed solid from any dilation or contraction

under shearing. To simultaneously satisfy both conditions remains a big challenge in the laboratory;

thus, certain simplifications have to be made. For example, in the Cambridge Simple Shear

Apparatus, the two side platens are made smooth, and in the Direct Simple Shear Apparatus, the

sample is laterally wrapped by a flexible membrane. Consequently, it has been shown that the state

of stress or strain in neither of these apparatuses is homogeneous [20, 44–46]. It is worth noting that

the 1γ2ε apparatus developed by Joer et al. [19] significantly alleviates such limitations, in which

the confining platens are novelly replaced by extendable articulated arms instead of rigid platens.

The numerical hexagonal configuration used by Li et al. [47] also shows some improvement in

alleviating the arching effect near the corners.

Figure 1 shows examples of force chain network distributions in a granular sample enclosed by four

frictional line-walls as in earlier DEM studies. The line-walls are geometrically non-extendable, hence

cannot dilate or compact together with the solid. This may result in spurious relative movement

between solid and boundaries, for example, producing either excess or insufficient shear stress near

frictional boundaries (e.g. Figure 1a). Regarding simple shear simulations, there appears no report of

any successful realisation of uniform distribution of force chains. Typically, much weaker force

chains are observed near the two acute corners than in the rest of the element (cf. Figure 1b). Also,

using too large shear rates is another potential cause of non-uniformity. Moreover, incompatible

motions between two pairs of parallel walls due to inaccurate kinematic control may also induce

incorrect resultant shear stresses at the boundary.

2.1.2. Discretised-wall confined cell. In the proposed configuration, we replace the line-walls by point-

walls, that is, enclosing the granular sample by individual rigid points with inter-point gaps small enough

to prevent any particle from escaping. Hence, the boundary is made fully discrete in nature. The motion of

each boundary point is governed by the target strain rate according to its location:

ẋi ¼ ε̇ijxj (1)

where xi is the coordinate of the boundary point and ε̇ij is the target strain rate tensor. Therefore, the target

strain rate field is strictly met at the boundary, whereas that within the assembly is dependent upon

material behaviour. Any general stress, strain or mixed loading paths may be applied to the cell.

Figure 1. Non-uniform distribution of force chain network in a granular cell enclosed by rigid line-walls. (a)
Concentration of force chains at the cell corners during isotropic compression when frictional walls are used;
(b) weakened force chains in acute diagonal corners during simple shear. The line thickness is proportional

to the magnitude of the contact force.
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Prescribed strain rate components may be applied directly, whereas prescribed stress components may be

indirectly applied via strain rate components using any servo-control algorithm (e.g. [48]).

The volume enclosed by the discrete boundary points may take any shape in principle, no need to

maintain parallelepipeds/ parallelograms. Because any corners or narrow regions may enhance local

frustrations, it is always advantageous to choose a smooth and convex shape, such as the ellipse

used in our 2D simulations (Figure 2). As the relative motions between the boundary constituents

are strictly governed by the prescribed loading modes, this type of boundary configuration falls into a

‘rigid’ boundary scenario, in contrast to the ‘flexible’ boundary scenarios such as pressure-controlled

boundary [49].

Figure 2 shows the snapshots of our granular cell at various loading stages. The rather uniform

distribution of force network observed across the cell suggests a well-achieved representative

element possessing largely uniform stress and strain rate fields. It is noted that the improved

cell configuration employed here does not completely eliminate the development of non-

uniform strain fields. It only aims to mitigate those induced by inappropriate boundary control.

Non-uniform strain distribution due to strain localisation is an inherent material behaviour that

occurs spontaneously at appropriate states, hence should not (and cannot) be artificially

suppressed [22].

a) b)

c) d)

Figure 2. Simulated sample at various loading stages using discretised-wall confined granular cell. (a) Initial
cell under isotropic stress state with particles, walls and force chains shown; (b) force chain network under
vertical compression; (c) force chain network at simple shear strain γ= 0.3; (d) particle displacements field at
simple shear strain γ = 0.4. The line thickness is proportional to the magnitude of the contact force. The

length of the arrow in (d) is proportional to the magnitude of the displacement.
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2.2. Numerical samples

Our numerical samples are composed of about 4200 disks in a 2D system. The particle sizes are

uniformly distributed from 2.4 to 3.6mm, with the small ±20% polydispersity modelled to prevent

crystallisation. Hertz–Mindlin model is adopted as the contact law.

The initial samples were generated by radius expansion method [43]. Specifically, we first generated

the particle clouds within the space enclosed by the boundary wall points. The radii of the particles

were scaled down during the generation process. Once the particles were all generated, we restored

their radii back to the true sizes, allowing the particles to engage contacts and settle down under

certain numerical damping. By varying the contact friction coefficient and the confining stresses

during the process of particle settlement, various levels of porosity can be achieved.

Using identical group of particles, we prepared three specimens with different porosities at a

low isotropic stress level p = 50 kPa, namely specimen S1 (dense), S2 (mediate dense) and S3

(loose). Each sample was then subjected to isotropic and anisotropic consolidations, with their

loading paths depicted by dashed and solid lines, respectively in Figure 3. For example, the

cell status shown in Figure 2a corresponds to a stage on the horizontal dashline, whereas that

of Figure 2b to a vertical solid line. A group of derivative samples were therefore prepared

from each specimen, with their stress states denoted as solid disks in Figure 3. These

derivative samples differ in either mean stress p or stress ratio η= q/p, where q = (σ1�σ2)/2 is

the deviatoric stress and p = (σ1 +σ2)/2 is the mean stress; σ1 and σ2 are major and minor

principal stress, respectively. Simple shear tests were then carried out upon these derivative

samples. This parameterisation allows us to investigate the effect of initial mean stress and

stress ratio on the behaviour of subsequent simple shear.

The stress tensor σij across the whole cell is obtained by averaging the stress tensor of each particle

σij
kð Þ over the Np particles contained in the cell [43]

σij ¼
1

V
∑
Np

σij
kð ÞV kð Þ (2a)

where V and V (k) are the total volume of the cell and the volume of particle k, respectively. The stress

tensor of each particle was calculated from the contact forces f
cð Þ
i acting on the particle

σij
kð Þ ¼

1

V kð Þ
∑
Nc

x
cð Þ
i � x

kð Þ
i

� �

f
cð Þ
j (2b)

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000

Prepared sample for simple shear

Isotropic compression path

Anisotropic compression path

Figure 3. Schematic of partial loading history in sample preparation for each specimen. Each specimen was
first generated by radius expansion method and slightly consolidated to an isotropic state with a low mean

stress p= 50 kPa, from which further loading history described in the figure was carried out.
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where Nc is the number of contacts; x
cð Þ
i and x

kð Þ
i are the locations of contact point and particle centroid,

respectively. The aforementioned method (Eq. 2) is practically equivalent to that given by Drescher

and de Josselin de Jong [3] and Cundall et al. [50].

Our study focuses on the quasi-static flow regime. The local damping [43] is adopted to sufficiently

dissipate the kinetic energy of the system. The simple shear rate is controlled to limit the inertial

number I to prohibit potential inertial effects. The inertial number is a dimensionless measure

defined as the ratio between a micro timescale TP and a macro timescale Tγ̇ ([27], Figure 4). It is

defined in our study as

I ¼
TP

Tγ̇
¼

d
ffiffiffiffiffiffiffiffi

ρ=P
p

1= γ̇
(3)

where d, ρ, P and γ̇ are mean particle radius, assembly bulk density, mean stress and simple shear

strain rate, respectively. A flow system approaches quasi-static as I≪ 1. In our simple shear

simulations, the shear rate starts with a small magnitude and gradually increases until the inertial

number I reaches an assigned limit. Similar to some other studies (e.g. [30]), a limit inertial number

Ilim = 10�3 appears sufficiently small and is hence adopted.

For isotropic and anisotropic compression procedures, the loading rate is instead monitored via

limiting the unbalanced force ratio ξ = h f unbali/h f ci defined as the ratio of mean unbalanced force

h f unbali over the mean contact force h f ci. A small magnitude of ξ = 10�4 was shown to be adequate.

The applied strain rate is reduced by multiplying a factor once the unbalanced force ratio exceeds

the assigned threshold and increased again if ξ falls below the threshold. Such an adaptive rate

control offers a balance between computational cost and accuracy.

The principal DEM parameters used in the simulations are summarised in Table I.

3. NUMERICAL RESULTS

A granular assembly is a highly nonlinear elastic–plastic system and its behaviour strongly depends on

its past loading history. Apart from mean stress and stress ratio, our prepared derivative samples

generally also differ in other properties such as porosity. It is well known that soil behaviour such

as strength and dilation strongly depend on the initial density even at same stress state. Hence, the

pre-simple shear deformation process must be specified for any reliable conclusions on simple

shear behaviour.

Figure 4. Schematic of the physical meaning of the typical time of deformation Tγ and the confinement
imescale TP (modified after [27]).
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3.1. Isotropic and anisotropic consolidation

The initial pre-consolidated isotropic specimens S1, S2 and S3 at a mean stress level p= 50 kPa have

porosities of n = 0.175, 0.183 and 0.201, respectively. After the samples are subjected to isotropic

consolidation from p= 50 to 1000 kPa (the dashline path in Figure 3), the samples reach porosities

of n = 0.123, 0.128 and 0.141, respectively.

It is of interest to note the dimensionless mean stress, pnorm = p/G, increases from 2.86 × 10�6 to

5.72 × 10�5 within the specified range of mean stress from 50 to 1000 kPa. It has been shown that a

system may be regarded as close to the ‘rigid-particle limit’ if pnorm is smaller than the order of

10�5 [51, 52]. It suggests that our systems gradually evolve from a nearly ‘rigid-particle limit’ to

soft-particle systems along the prescribed isotropic compression procedure. Consequently, the reduction

in porosity at large stress states should be partially attributed to the overlaps between particles.

At selected levels of isotropic consolidation, the samples are subjected to anisotropic compression

with constant mean stress (solid-line paths in Figure 3). The biaxial shearing was terminated once

the specified maximum stress ratio η = 0.3 was reached. We observed that a more contractive

behaviour is associated with a looser sample or a sample with larger mean stress, which is consistent

with the experimental observations [53]. We note that the relative order of the samples with respect

to their porosities remains unchanged throughout the biaxial shearing. This maintained sequence sets

out the basis for the parametric studies of simple shear behaviour presented in the following.

3.2. Simple shear scenario

The prepared derivative samples of specimen S1, S2 and S3 at different levels of mean stress and stress

ratio were subjected to simple shear. The vertical pressure σy was kept constant during the shear,

allowing vertical dilation.

Figure 5a shows the evolution of normal stress σx and shear stress σxy on the shear plane in samples

with initial mean stress p0 = 200 kPa and stress ratio η0= 0.2. The accumulated simple shear strain γ is

calculated by

γ ¼ ∫dγ ¼ ∑Δt ε̇yxΔt
� �

(4)

where ε̇yx is the shear strain rate in the shear direction andΔt is the size of the timestep. For the initially denser

sample derived from specimen S1, the shear stress σxy curve (thick line) shows a peak at γ=0.15 before

descending to the ultimate value at sufficiently large shear strain, whereas the relatively looser samples

show no peak but a gradual increase towards the ultimate value. This behaviour is same to that in biaxial

tests or other tests where the mobilised strength depends on the soil density [53]. The normal stress σx

shows a similar trend to that of shear stress. At large shear strain, σx is largely equal to the vertical stress σy.

As shown in Figure 5b, the curve of stress ratio η exhibits a highly synchronised evolution to that of

the shear stress σxy in Figure 5a. For example, they share the identical positions of jumps, despite that

they differ in their starting values: the former always starts from zero, whereas the latter has an initial

value η0 = 0.2. The ultimate magnitude of both the coulomb stress ratio σxy /σy and the stress ratio η are

around 0.3.

Table I. Principal DEM parameters used in the simulations.

DEM parameters Symbol Value Unit

Cell diameter Dcell ~1.0 m
Particle number Np ~4200
Particle radius rp 3.0 ± 0.6 mm
Particle density ρp 2550 kg/m

3

Shear modulus G 1.75 GPa
Poisson’s ratio ν 0.22
Coeff. of sliding friction μs 0.5
Inertial number threshold Ilim 1.0 × 10

�3

Timestep Δt ~2 × 10
�7

s
Damping ratio αd 0.7
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The effect of initial density on the volumetric strain (εv= ε1+ ε2) is similar to that of other types of

shearing tests; that is, a larger initial density results in less contraction at early shearing stage and larger

dilation at larger shear strain.

The orientations of major principal stress θ
σ
and strain rate θε̇ are compared in Figure 6,

which clearly illustrates the phenomenon of non-coaxiality: a large difference exists between the two

in the early stage of shearing. It should be noted that in non-coaxial plasticity theories, ‘non-

coaxiality’ refers to plastic strain rates instead of the total strain rates as presented here. According

to the hollow cylinder test reported by Gutierrez et al. [10], the degree of non-coaxiality is slightly

smaller during stress rotation if plastic strain rates are considered, whereas the difference diminishes

at high stress ratios. A detailed and quantitative evaluation of the effect of the elastic strains requires

further study. The two orientations θ
σ
and θε̇ are calculated by

tan 2θσð Þ ¼
2σxy

σx � σy

(5a)

Figure 5. Effect of initial porosity on the evolution of stresses and dilation during simple shear: (a) stress
ratios σx/σy and σxy/σy; (b) stress ratio η and volumetric strain.
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tan 2θε̇ð Þ ¼
2ε̇yx

ε̇x � ε̇y
¼

2ε̇yx

�ε̇y
(5b)

where ε̇x (zero-valued in simple shear), ε̇y and ε̇yx are the strain rates measured from the incremental

deformation of the boundary. Alternatively, strain rate can also be evaluated from the particle

velocity field using least square fittings. Note that the velocity gradient tensor is not symmetric in

simple shear mode; hence, a global rigid rotation exists. However, the rigid rotation in a small

shearing increment is very small so that it is omitted in Eq. 5b.

The data presented in Figure 6 is from a derivative sample of specimen S3, which is a relatively

loose sample. When we ignore the spikes, the curve shows that the major principal strain rate

orientation θε̇ starts from a value slightly below 45°, then gradually goes slightly above and then

falls back to 45°. In contrast, the curve of major principal stress orientation θ
σ
is rather smooth. θ

σ

starts from zero and gradually approaches the strain rate orientation at large shear strain, which is

consistent with earlier studies [22, 36]. The predicted non-coaxiality angles are in general agreement

with the experimental simple shear test data reported by Roscoe et al. [2]. The degree of

non-coaxiality is large (>5°) within the shear strain range of γ< 0.05. Several factors that may affect

the non-coaxiality are examined in the following sections.

Figure 6. Evolution of major principal strain rate and stress orientations. (a) With shearing rate threshold
Ilim = 0.001; (b) with Ilim= 0.05. The solid thin line is strain rate measured from boundary displacement;

the dash thin line is strain rate measured from particle velocity field.
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It is of interest to discern the source of the large spikes/fluctuations in the θε̇ curves. Our tentative

interpretation below is based on the idealised scenario of particle rearrangements sketched in

Figure 4. During simple shearing, the particles from two neighbouring layers would roll and slide

over each other. Such an inter-crossing process naturally involves numerous local instabilities.

Given that the (constant) vertical stress component is servo-controlled, frequent changes in vertical

sample dimension are therefore induced. According to the governing Eq. 5b, the orientation of the

principal strain rate θε̇ strongly deviates from 45° if the relative magnitude of ε̇yx over ε̇y is small.

This suggests that a sufficiently small shear rate would inherently lead to large fluctuations in θε̇ ,

whereas a large shear rate may on the contrary reduce the fluctuations.

We sheared the same sample with various levels of shear rate by assigning a smaller or larger

limiting inertia number Ilim. The result with Ilim= 0.05, that is, 50 times larger than that in Figure 6a,

is shown in Figure 6b. We see that the fluctuations are much smaller under the larger shear rate,

which is consistent with the aforementioned corollary. Another characteristic of the fluctuations in

the curve of θε̇ is that size of spikes pointing towards zero is much larger than those pointing

towards 90° (Figure 6a). This may be caused by that the climbing up (i.e. dilating) motions of the

particles take longer than that of the snapping down (i.e. contracting) motions (Tup
p > Tdown

p ; Figure 4).

A too large shear rate produces a discrepancy between the strain rate measured from boundary

(thin solid-line) and that from internal particle velocity field (thin dashline), as shown in Figure 6b.

This indicates that the particles cannot catch up with the boundary when sheared too fast. With

sufficiently small shear rates, the two measurements are largely indistinguishable.

The non-coaxiality (θε̇ � θσ) in samples with different initial densities are compared in Figure 7. The

three derivative samples respectively from specimen S1, S2 and S3 are in the same initial stress state of

p0= 200 kPa and η0 = 0.2 before shear. Their initial porosities are 0.161, 0.167 and 0.181, respectively.

We observe a faster rate in approaching coaxiality in a sample with a larger density. As the strain rate

orientations θε̇ in the three samples are all largely 45°, the difference should mainly be due to the stress

orientations θ
σ
. The governing Eq. 5a indicates that a larger rate in increasing σxy and σx results in a

larger rate in increasing of θ
σ
. This is indeed confirmed by the evolutions of the two stress

components shown in Figure 5a where the two stress components increase faster in a denser sample.

We now examine the fabrics of the contact network in the sheared samples. The polar distributions

of contact normal direction n at three different loading stages are compared in Figure 8. The symbols

denote the measured probabilities of the contact normal orientation P(n) in the samples. The curves are

fitted second-order Fourier expansion of P(n) [54]

P θð Þ ¼
1

2π
1þ ac cos 2 θ � θcð Þf g (6a)

where ac and θc are the degree of fabric anisotropy and its principal orientation, respectively.

Figure 7. Effect of initial density on the evolution of non-coaxiality during simple shear.
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The polar distribution is rather homogeneous in all orientations at the isotropic stress state

(thin curve), and its degree of anisotropy slightly increases from ac = 0.010 to 0.037 at a stress

ratio η= 0.2 (mediate-thick curve). This developed fabric anisotropy is rather weak but

reasonable because the experienced deviatoric strain is only about εd= ε1� ε2= 0.014, which is not

sufficient to produce significant fabric changes. After a simple shear strain of γ=0.3, the fabric

anisotropy mobilises at ac=0.18 and its resulting principal direction is θc=41.5°, which is a significant

change from the initial state of simple shear.

The evolution of the fabric anisotropy and its principal orientation along simple shearing are shown

in Figure 9. Instead of repeatedly fitting them from the measurements using Eq. 6a, it has been shown

that the parameters ac and θc can be more conveniently calculated via the related fabric tensor Fij in the

2D case [55, 56]:

Fij ¼ ninj
� �

¼
1

Nc

∑c∈Vn
c
i n

c
j (6b)

where i and j designate the components in the reference frame, and Nc is the total number of contacts in

the cell volume V. The θc is given by the principal orientation of the tensor Fij, and the anisotropy

parameter is given by

ac ¼ 2 F1 � F2ð Þ (6c)

where F1 and F2 are the principal values of the fabric tensor Fij.

Figure 9a shows that, before simple shear, the degrees of fabric anisotropy are ac = 0.019, 0.037 and

0.080 for the derivative samples from specimens S1, S2 and S3, respectively. This suggests higher

fabric anisotropy develops in a sample with a higher initial porosity during the anisotropic

compression, as a result of the larger magnitude of deviatoric strain εd taken to reach the target

stress ratio.

During the early stage of simple shear, the fabric anisotropy increases faster in a denser sample,

though its initial degree of fabric anisotropy is smaller than that in a looser sample. Similar to the

development of mobilised shear stress shown in Figure 5, the fabric anisotropy in the dense sample

first reaches a peak then decreases to the ultimate value, whereas for loose samples, the fabric

anisotropy gradually increases and then fluctuates around the ultimate value (Figure 9a).

Figure 8. Polar distribution of contact normal directions at various loading stages (derivative samples from
Specimen S2). Triangles: after isotropic compression and before biaxial shearing (p= 200 kPa, η= 0);
circles: after biaxial shearing and before simple shear (p= 200 kPa, η = 0.2); squares: during simple shearing

(p0= 200 kPa, γ= 0.3); the solid lines are fitting curves using Eq. 6a.
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The evolution of principal fabric orientation θc exhibits close similarity to that of the principal stress

orientation. The curves start from about 0° and gradually approach the principal strain rate direction at

around 45°, and a looser sample exhibits a slower approach rate (Figure 9b).

3.3. Effect of initial stress ratio η0

In this section, we examine the behaviour of simple shear in samples under the same initial mean stress

but different initial stress ratios. The derivative samples of specimen S2 with a mean stress p0= 200 kPa

were studied.

We shall first examine the resultant η� p loading history. The isotropic and anisotropic compressions

are of pure stress-loading paths; therefore their loading histories are readily prescribed as have been given

in Figure 3. Simple shear mode is a mixed-loading path so that its η� p loading history is a resultant

response. As shown in Figure 10a, in all four cases with η0 ranging from 0 to 0.3, the stress ratio

increases quickly from its initial value to the ultimate value around 0.3. The mean stress p develops to

about equivalent to the servo-controlled vertical stress σy (Figure 10a), which effectively diminishes the

difference between the two normal stress components σx~σy (Figure 10b).

Figure 10b compares the evolution of stress components σxy and σx against the shear strain γ. The

rate in mobilising the coulomb shear stress ratio, that is, σxy /σy, is slower if the initial stress ratio

η0 is higher.

Figure 9. Evolution of fabric anisotropy (a) and its principal orientation (b) during simple shear
(p0= 200 kPa, η0= 0.2).
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Figure 11 shows that a larger initial stress ratio η0 results in a slower rate in approaching coaxiality.

This effect can be readily explained by examining the governing equation of the principal stress

orientation Eq. 5a: a larger initial difference between σx and σy corresponds to a smaller θ
σ
.

We observe a more contractive behaviour in a sample with a larger initial stress ratio (Figure 12). It has

been generally shown that a larger initial porosity usually corresponds to a more contractive behaviour

under shearing, for example, in biaxial shearing. Such observation appears not always true in simple

shear. We note that the initial porosity of the simple shear sample (i.e. the resultant porosity from

anisotropic consolidation) is actually lower at a higher stress ratio in the range η0=0 to 0.2. This

suggests that other fabric properties can be more important in affecting the simple shear volumetric

behaviour than the porosity that is a scalar measure.

Figure 12 also shows that the stress ratios η in four samples all increase quickly from their respective

initial values to the plateau. After shear strain γ= 0.05, the stress ratios are indistinguishable among the

four samples.

The influence of the initial stress ratio on the fabric evolution is shown in Figure 13. As a result of

previous anisotropic compression, the fabric anisotropy ac before simple shear is larger in a sample

Figure 10. Effect of initial stress ratio η0 on (a) the η� p history and (b) evolution of stress components σx

and σxy.
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with a larger initial stress ratio (Figure 13a). In samples with lower initial stress ratios (η0=0, 0.1 and 0.2),

anisotropy parameter ac increases quickly in the range γ< 0.1. For the sample with the highest initial stress

ratio (η0=0.3), ac does not increase until shear strain passes γ =0.05, after which the curves of the four

cases largely merge. The delayed development of fabric anisotropy in the more anisotropic sample

reflects that the influence of the previous loading history needs to be largely erased before the fabric

pattern conforms to the simple shear mode. The evolution of the principal fabric orientation

(Figure 13b) further confirms this effect: in samples with smaller initial stress ratios (η0≤ 0.3), the

principal fabric orientation quickly rotates to about 45°, whereas it takes much longer for a sample with

the largest initial stress ratio (η0=0.3). It is worth noting that the initial principal fabric orientation θc
deviates significantly away from 0° for samples with small initial stress ratios (Figure 13b). This is

because the deviatoric strains taken to reach the stress ratios are not sufficient to develop the fabric

orientation to the loading direction.

3.4. Effect of initial lateral pressure ratio K0

The simple shear samples presented in previous sections are all sheared with the servo-controlled normal

stress σy larger than σx. This scenario corresponds to a laboratory test scenario with an initial lateral

Figure 11. Effect of initial stress ratio η0 on the evolution of non-coaxiality during simple shear.

Figure 12. Effect of initial stress ratio η0 on the evolutions of stress ratio η and volumetric strain εv.
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pressure ratio K0=σx /σy< 1. The samples can also be sheared with K0> 1, that is, with σy<σx. In our

numerical simulations, this can be simply achieved by rotating the reference frame by 90°.

The development of stress ratios (η) and dilations (εv) along simple shearing in the two different

cases of K0 are compared in Figure 14. For cases with initial stress ratio η0= 0.2, the sample hardly

experiences any contraction before dilating in the case of K0> 1, and the overall dilation is much

larger than that in the case K0< 1. As known from the previous section, the magnitude of the

normal stress component in the simple shear direction will eventually approach that of the confining

stress. Hence, the larger dilation in the case of K0> 1 than in the case of K0< 1 may be attributed to

the lower final mean stress in the former than in the latter. For samples with initially isotropic stress,

the curves from cases K0> 1 and K0< 1 are globally indistinguishable. The influence of K0 on the

development of stress ratio η is rather small, for both cases of η0= 0 and 0.2 (Figure 14).

Figure 15 shows that K0 has a noticeable effect on the evolution of non-coaxiality. For the samples

with initially isotropic stress (η0= 0), the non-coaxiality θε̇ � θσ is initially zero but deviates to a small

non-zero value (thin solid-line and thick dashline in Figure 15a). The emergence of the slight non-

coaxiality for initially isotropic sample is due to the sample dilation under shearing that deviates the

principal strain rate orientation away from 45°. For the samples with η0 = 0.3, the case of K0> 1

exhibits a faster rate in approaching coaxiality than the case of K0< 1. The difference should be

Figure 13. Effect of initial stress ratio on the evolution of fabric anisotropy and its principal orientation
during simple shear (specimen S2, p0= 200 kPa).
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Figure 14. Evolution of stress ratio and volumetric strain during simple shear with initial lateral pressure
ratio K0< 1 and K0> 1.

Figure 15. Evolution of (a) non-coaxiality and (b) stress and strain rate directions during simple shear with
initial lateral pressure ratio K0< 1 and K0> 1.
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caused by different extents of dilation in the two cases. As also shown in Figure 15b, the direction of

strain rate in the case of K0< 1 is initially smaller than 45° due to contraction, then increases to be

larger than 45° due to dilation. In contrast, the strain rate direction in the case of K0> 1 is larger

than 45° from nearly the beginning of the shearing due to much larger potential of dilation.

Consequently, the variation in strain rate direction leads to the variation in rate in approaching

coaxiality shown in Figure 15a.

Figure 16 shows that the case of K0> 1 produces a higher degree of fabric anisotropy ac than the

case of K0< 1. The global evolutions of principal fabric orientation θc are generally not

distinguishable within the discreteness of the samples, which is similar to that in the stress ratio

developments shown in Figure 14.

3.5. Effect of initial mean stress p0

As our systems are composed of relatively ‘soft’ particles, the influence of particle elasticity may be

significant when the normalised confining stress is relatively large. Consequently, the role of mean

stress on the simple shear behaviour may not be negligible, which is therefore explored in this

section. This is also equivalent to testing the effect of particle stiffness.

We compare the results of samples with initial mean stress ranging from p0= 50 to 800 kPa in

Figures 17 and 18. We observe that a larger mean stress results in a significantly slower rate in the

development of normal stress σx and a slightly slower rate in that of shear stress σxy (Figure 17a).

This dependence of shear stress mobilisation on the mean stress may be attributed to that of the

potential of dilation as explained by Bolton [53]. Indeed Figure 17b shows that the sample is more

contractive when with larger mean stress. Figure 17c suggests a rather strong effect of the mean

stress on the evolution of non-coaxiality: larger mean stress leads to slower approach to coaxiality.

Figure 18 shows that the fabric anisotropy parameter ac during simple shear is smaller if the mean

stress is larger. The underlying mechanism may be attributed to the reduced dilation and increased

degree of connectivity associated with the larger mean stress. The effect on the principal fabric

orientation θc is, however, insignificant.

Based on the aforementioned evidence, in some aspects, a sample with a larger mean stress appears

to behave like a ‘looser’ sample, which is consistent with the observations in biaxial/triaxial tests.

Nevertheless, the trend in the evolution of the stress ratio η appears to be an exception in which

larger mean stress leads to larger peak strength (see Figure 17b in contrast to Figure 5b). This

requires further investigation.

Figure 16. Evolution of fabric anisotropy ac during simple shear with initial lateral pressure ratio K0< 1 and
K0> 1 (specimen S2, p0= 200 kPa).
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Figure 17. Effect of initial mean stress p0 on the simple shear behaviour (specimen S2, η0= 0.2). (a) Stress
components σx and σxy; (b) stress ratio η and volumetric strain εv; (c) degree of non-coaxiality.
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4. CONCLUSIONS

We have presented a DEM study of the quasi-static non-steady simple shear flows of a 2D assembly of

cohesionless particles. We abandoned the rigid plane boundary configuration that had been popularly

adopted in many earlier experimental and numerical studies, by developing a discretised-wall confined

granular cell. In such configuration, the cell boundary is discrete in nature and each segment moves

strictly conforming to the prescribed strain rate, allowing synchronised dilations between the

boundary and the confined solid. Sufficiently uniform distribution of the stress–strain across the

whole assembly has been achieved, which produces more reliable data for rheological studies to

generalise constitutive models for continuum methods dealing with much larger systems.

We have examined two aspects of the simple shear behaviour: macroscopic stress and strain rate

evolution, particularly the non-coaxiality between the principal directions of the two, and

micromechanics such as evolution of fabric. For an initially anisotropic specimen sheared under

constant normal pressure condition, the direction of principal stress rotates towards that of the

principal strain rate, gradually reducing the degree of non-coaxiality from about 45° to fluctuating

around 0°. The rate in approaching coaxiality is slower in samples with larger initial porosity, stress

ratio and mean stress. Generally, a faster approach to coaxiality in simple shear was observed in a

more dilatant sample which often shows a larger degree of mobilised fabric anisotropy, suggesting

the potentially important role of instantaneous internal friction angle. The evolution of principal

fabric direction resembles that of the principal stress direction.
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