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Abstract 

A fine needle stylus mounted to a three
dimensional piezo system is scanned across the 
sample in x- and y-direction, while a constant 
spacing between tip and sample, i.e., constant 
tip-to-sample capacitance, i s maintained in z
direction. This i s accompli shed by vibrating the 
tip in z-directi on at 1 kHz by typically 0.1 mi
crons and by detecting the capacitance modulation 
from the shifting of the re sonance of a tuned 
1 GHz line. The horizontal resolution achieved 
so far is l imited by the tip radius at about 200 
nm and the vertical resolution is about 5 nm. The 
theoretical limits for finer tips are 7 nm and 
1 nm for horizontal and verti cal re solution, re
spectively. 
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Introduction 

For the inspection and measurement of struc
tures at a scale below the wavelength of light 
the scanning electron microscope is the normal 
choice, and for the atomic scale the tunneling 
microscope has become famous. However, there are 
important applications, where one needs non
destructive and fast inspection of samples which 
are not necessarily conductive. Thi s is diffi
cult to do with the SEM, and impossible with the 
tunneling microscope. Probably the most import
ant application of this type is the in-process 
testing of critical dimensions of integrated 
circuits on s ilicon wafers at the manufacturing 
line. As these dimension s are moving down to
wards a few tenths of a micron, the tests be
come more important and at the same time unre
liable if done with optical microscopes. The 
scanning capacitance microscope is expected 
to satisfy the above requirements. It has a 
lateral resolution equal to the diameter of the 
needle stylus, hence, is not limited by the 
wavelength of light. It does not require vacuum, 
works with somewhat reduced resolution also on 
dielectric samples and is potentially fast and 
robust. The comparison is summarized in Table 1. 

Optical SEM Tunnel Cop 

Resolution 200 3 0 .3 10nm 

Vacuum? + - + + 

Dielectric ? + - - + 

Table 1. Merit comparison of the various types 
of microscopes. 

Matey and Blanc (1985) have evaluated this 
technique for the first time by using the RCA CED 
(Capacitance Electronic Disc) VideoDisc system 
(see list of references), where a stylus of insu
l ating material and of relatively large area is 
mechanically sliding on the surface of the sample. 
The capacitance probe is formed by a metallic 
layer at the front face of the stylus. The layer 
is 0.15 micron thick and 2.5 microns wide, which 
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gives high resolution only in the scan direction, 
namely 0.1 microns. With this setup depressions 
in the top surface as low as 0.3 nm could be de
tected. 

In the work reported here, we are also 
making use of parts of a VideoDisc system for 
some of the circuits, but for a stylus we are 
using a fine point supported by a 3-dimensional 
piezo system, which potentially gives full free
dom for 2-dimensional scanning along an almost 
arbitrary sample surface without making mechani
cal contact to the surface. Because our capaci
tance probe is a fine point, we get the same re
solution in both (x- and y- ) directions. 

Apparatus 

The principle of our experimental capacitance 
microscope is shown schematically in Figure 1. 
The capacitance point probe is held at a close 
distance from the sample surface by an x-y- z 
assembly consisting of three piezo elements. 
During the x- and y-scanning the probe-to-sample 
capacitance is monitored by a high-frequency cir
cuit, and a voltage proportional to the capaci 
tance is fed back to the z-piezo to hold the point 
to sample spacing constant. This capacitance, 
typically 0.0001 pF, is a very small fraction of 
the total probe-to-ground capacitance of about 
1 pF. In order to discriminate this small frac
tion, the z-piezo is excited by a 1 kHz oscilla
tor, which via a high-voltage amplifier modulate s 
the probe-to- sample spacing typically by +50 nm . 
The modulation is detected by a capacitance detec 
tor. It consi sts of a 910 MHz tuned line which 
includes the capacitance of the point probe . The 
tuned line is driven by an oscillator with a fre 
quency of 915 MHz, i.e., at the s lope of its re
sonance curve, and the amplitude is peak detected 
and fed to a phase- sensitive amplifier (PSA). Any 
change of the probe capacitance gives a change of 

RECORDER 

X H.V. 
AMPL 

H:V. I kHz AMPL OSCILL PSA 

v- 910MHz PEAK 
RAMP TUNED DETECT LINE 

915MHz 
OSCIL 

Figure 1. Experimental apparatus of the capaci
tance microscope. 
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the resonance frequency and results in a change 
of the peak detector amplitude. The output of 
the PSA (tuned at 1 kHz) is proportional to the 
probe-to-sample capacitance . This signal is, via 
an integrator and the high-voltage amplifier, re
turned to the z-piezo. The scanning is done by 
applying suitable voltages to the x- and y-piezo 
elements . The "set level" at the integrator can 
be used to bias the z-piezo and select the desi
red probe-to-sample spacing. A recording of the 
z-voltage vs x- and y-voltages gives an image of 
the surface topography. 

The point probe and the sample can be viewed 
perpendicular to the z-direction with an optical 
microscope (not shown in the figure) i n order to 
monitor the spacing. There is also a vertical 
drive at the sample stage (not shown in the 
figure) with a linearized and calibrated piezo 
element, which allows the coarse adju stment of 
the spacing, before the feedback loop can take 
over. The calibrated piezo-driven sample stage 
can al so be used to create an accurate z-scale on 
the recorder traces by lifting the sample by a 
known amount and recording the voltage change at 
the z-piezo which is necessary to compensate for 
it. The ratio of the lifting distance and the 
voltage change i s the displacement sensitivity 
(microns/volt) of the z-piezo, called pin this 
paper . 

The simple x-y-z piezo system, as sketched 
in Fig. 1, showed some interdependence between 
the three direc t ions, which resulted in a skewed 
and curved motion of the probe, and also in a re
duced displacement sensitivity. For thi s reason, 
a small, compact 3-dimen s ional stage was con
structed with independent flexing leaf spring 
elements for the x- and for they-motion, which 
are independently driven by the x- and y-piezo 
element s . Figure 2 is a schematic drawing of 
this design. For clarity we show the x- and the 
z-motion only. 

I~ I 
BRONZE 
LEAF 
SPRINGS 

TEFLON 
/POINT PROBE 

TUNED LINE 

z-PIEZO 

Figure 2. Design principle of the piezo stage 
for the capacitance point probe. 
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Preparation of the Fine Point Probes 

Obviously, the lateral resolution of the 
capacitance microscope is only as fine as the 
probe size. For making fine points we are using 
a technique reported by Bryant et al. (1987). 
Our set-up is sketched in Figure 3. A piece of 
tungsten wire of 0.1 mm diameter is mounted by 
pressing one end into a brass pin. The etching 
is done electrolytically with an ac current in 
diluted KOH which is placed in a thin layer over 
a bath of CCl4. The wire is hanging on a mani
pulator, pin down, through the KOH layer. During 
the etching, one can observe the process with a 

MANIPULATOR 

W-WIRE 

KOH 

BRASS PIN -+---o 

AC 

Ni- ELECTRODE 

BASKET 

Figure 3. Set-up for the fabrication of the point 
probes. 

microscope and change position and current as re
quired for best results. As soon as the wire is 
etched through, the pin with the newly etched 
point falls down into the inert CCl4 and is caught 
with a suitable basket. This prevents any further 
polishing after completion and preserves the fine 
point. So far, we have produced points with radii 
as small as 0.1 microns. 

Experimental Scan Plots 

Figure 4 gives some plots of capacitance 
scans of one of our first test samples, a square 
wave grating of a 5 micron period etched about 
1 micron deep into a silicon wafer. The top scan 
was taken with a tungsten tip of 0.6 micron 
radius. We show two traces to give an indication 
of the repeatability. As can be seen by the appa
rent variation of the grating period along the x
axis, the scale in x-direction is somewhat non
uniform. This is due to the nonlinearity of the 
piezo motion. There is also a hysteresis, which 
makes it necessary to do all scans in one direc
tion. Both of these oroblems will have to be 
solved in the future by linearizing the piezo mo
tion with built-in displacement sensors and feed
back loops for the x- and y-direction. 

The middle part of Fig. 4 shows four scans 
taken with a steel needle having a tip radius, r, 
of about one micron and with four different tip
to-sample spacings, s, as set by various "set 
levels" at the integrator (see Fig. 1). The 
actual values of s were determined from the ampli
tude, Ve, of the 1 kHz signal at the output of the 
capacitance detector as will be described below. 
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As expected, the resolution increases with de
creasing spacing. 

r~0.6,um 

r~lpm 

r~\.5JJm 

s~2.5µm 

2 .0µm 

l.5µm 

1.0 µm 

8z • 0.13µm 

O.IOµm 

0.04µm 

5pm ll 
' 7777777.77771 

Figure 4. Scan plots of a 5 micron square wave 
grating etched into silicon. 

The three lower traces were taken with a 
still coarser needle of about r = 1.5 microns. 
Here the parameters are the 1 kHz excursion, c5 z , 
(in microns) of the point probe. This quantity 
was calculated from the measured ac voltage, Va, 
at the z-piezo and its displacement sensitivity, 
p. These experiments indicate, that for good re
solution one must use small spacings, s, and 
low z-excursions,oz, in particular for profile 
features of a size close to the tip radius. 

Figure 5 gives scans across a sine wave 
grating embossed in plastic and coated with 0.1 
microns of gold. The grating period is again 5 
microns. In the lower part of the figure a num
ber of x-z scans are shown, which are displaced 
from one another by steps in y-direction (voltage 
steps applied to the y-piezo) in order to get a 
two-dimensional representation, which in this 
case indicates good uniformity in y-direction. 
At the moment these scans are recorded by a pen 
type x-y recorder. Obviously, in the futur~ 
this will have to be done by computer graphics. 

In Figure 6 we show scans of a 0.4 micron 
period sine wave grating in gold coated_photo
resist taken with a probe of r = 0.25 micron. 
The four scans are for different tip-to-sample 
spacings, s. As in Fig. 4 the resol~tion in~ 
creases very critically with decreasing spacing, 
s because r is close to the grating period. The 
1'kHz z-oscillation of the probe is only 60 nm 
in this case. The actual shape of the profile is 
given by the SEM photograph of a perpendicu)arly 
cleaved cross-section of the same sample, which 
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5µn 

Figure 5. Scan plots of a 5 micron sine wave 
grating. 

05~ I 
r ~ 0 .25µm 
8z•0.06µm 

2µm 

s• 0.35;,m 

0.30;,m 

0.26 ,im 

0.25µ m 

Figure 6. SEM photograph and scan plots of a 
0.4 micron sine wave grating in gold coated 
photoresist. 

is shown at the top of the figure. The two pro
files look qualitatively alike. However, a de
tailed comparison considering qualitatively the 
x- and z-scales indicates that we have not achie
ved the full resolution. Obviously, one needs 
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finer points for profiles of these dimensions. 
In order to test the vertical resolution of 

our experimental system, shallow square wave grat
ings (etched into silicon) were scanned, and the 
results are shown in Figure 7. The periods of the 
top and the bottom sample are 5 and 10 microns, 
respectively. The measured depths can be assumed 
to be correct, because the tip was small compared 
to the grating periods in these cases. The depths 
are 10 nm and 35 nm, respectively. From the 
signal-to-noise appearance one can estimate aver
tical resolution limit of about 5 nm. 

0.5 

µm 

0 

5;,m 

Figure 7. Scan plots of shal low square wave 
gratings of 5 and 10 microns period etched into 
silicon. 

Theoretical Considerations 

The horizontal resolution demonstrated i n 
Figure 6 is obviously determined by the tip size, 
and the vertical resolution estimated from Fig. 7 
is somewhat lower than expected. For this reason, 
it i s rather important to estimate the basic reso
lution limits from theoretical considerations as a 
guide for future development efforts. The general 
problem, the ca lculation of the capacitance bet
ween a needle shaped probe and an arbitrarily 
shaped surface, is probably very involved and 
lengthy. A simplified problem, however, namely 
the approximation of the point probe by a conduc
ting sphere and of a planar conductive or di
electric sample (see insert of Fig. 8), can be 
solved exactly and has turned out to be rather 
useful. Smythe (1950) treats this problem by 
using the method of images and gives the capaci
tance, C, in the form of an infinite series of 
terms containing hyperbolic sines only 

n= oo 
C = 4 'Ir E. r sinh(a) ~ gn-1/sinh(n a) (1) 

n=1 

where e is the permittivity of free space 
(= 8.85 10-6 pF/micron) with 

and 

B 
B 

cosh(a) = s/r + 

1 
(k-1 )/(k+1) 

for conducting samples 
for dielectric samples 

where k is the relative dielectric constant. 

(2) 

(3) 

Since C is modulated by oscillating the probe in 
z-direction, one needs the derivative with respect 
to s. dC/ds is a function of (a) only, or through 
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(2), of s/r only. Hence, one can plot a univer
sal curve of dC/ds vs s/r, whi ch has been done in 
Figure 8. One can show that for a conductive 
sample and small s/r 

dC/ds~ 2 'Tr' E r/s (4) 

which is indicated as a dashed line with slope 
one in Fig. 8. If one calls the sensitivity of 
the capacitance detector Ad (in volts/pF) and its 
ac output voltage Ve one has 

(5) 

These equations have been used to determine Ad fo r 
our system. By using a flat, metallic sample, a 
needle with a large tip radius, r, (measurab le in 
the optical micro scope) and a large, measurable 

10- 2 

dC 
ds 

10- 3 

~:] 
,o-4 

CONDUCTOR 

k=3 

0 .01 0.1 s 
r 

10 

Figure 8. Theoretical curve of dC/ds vs s/r. 
C is the capacitance between a conducting sphere 
of radius rand a planar sample spaced at a 
distances from the sphere. 

spacing, s, we have calculated from the curve of 
Fig. 8 the derivative dC/ds and also measured Ve 
and Va· Then equation (5) yielded the sensitivity 
Ad= 4800 V/pF for our set-up. With Ad known one 
can now use equation (5) to determine dC/ds for 
any probe setting by measuring Va and Ve. Then 
the curve of Fig. 8 gives s/r, and with known r 
one gets the spacings. In this way we have de
termined the s values given in Fig. 4 and Fig. 6. 

Another characteristic quantity of the sys
tem is the smallest measurable tip-to-sample capa
citance, Cmin· It can be obtained, if for a known 
s/r setting (and known dC/ds) one reduces Va to 
such a level, Vamin, that Ve is just visible above 

1843 

the noise. Then one has 

Cmin = (dC/ds} P Vamin (6) 

which for our system gives 2 10- 7 pF. If the 
capacitance detector itself does not contribute 
significantly to the noise, then the noise of Ve 
is due to the shot noise, i.e., fluctuations due 
to single electrons at the tip. Then Cmin is 
the electron charge divided by the high fre
quency voltage at the tip. We estimate this 
voltage to be 0.1 to 1 volt, which gives Cmin 
1.6 10-7 to 1.6 10-6 pF. Hence, Ve is indeed 
shot noise limited. 

One can now make an estimate of the limit of 
resolution. Clearly, the resolution can be in
creased by making s/r small, because this makes 
the capacitance large and gives a high signal-to
noise ratio. Therefore we can use equation (4) 
instead of the curve in Fig. 8, considering a 
conductive sample for the moment only. Since the 
vertical oscillation amplitude of the point p Va 
cannot be larger than s, we can write equation 
(6) 

Cmin < (dC/d s ) s 

and with equation (4) 

r > Cmi n/ ( 2 ,rr €) 

which gives r>3.6 nm and an estimated hori
zontal resolution of 2 r = 7 nm. 

(7) 

(8) 

The vertical resolution can be written in 
analogy to equation (6) as being equal to Cmin/ 
(dC/ds). However, we have to set somewhat 
arbitrarily a lower limit to s, which may be dic
tated by mechanical stability considerations. 
Assumings= 1 nm, one can calculates/rand 
dC/ds and get a vertical resolution of about 
1 nm. These numbers of 7 nm and 1 nm for hori
zontal and vertical resolutions, respectively, 
have been calcu lated for conducting samples. 
Fig. 8 shows, that for dielectric samples the 
values dC/ds are lower, particularly for low s/r 
and more so for low dielectric constants. Corres
pondingly, the resolutions will be lower. 

The horizontal and vertical resolution 
limits of 7 nm and 1 nm, respectively, have to be 
compared with the experimental results in connec
tion with Figs. 6 and 7, giving resolutions of 
200 nm and 5 nm, respectively. One can see, that 
an improvement of a factor of five for the verti
cal resolution is possible, probably by improve
ments of the feedback circuits and the mechanics. 
The horizontal resolution at the moment is limi
ted exclusively by the tip radius with a good 
chance for improvement of more than an order of 
magnitude, if smaller tips are used. Therefore, 
there is also a good chance, that satisfactory 
resolutions can be obtained on dielectric samples . 

Summary 

We have reported on the construction of an 
experimental capacitance microscope. Preliminary 
results obtained with this set-up show horizontal 
and vertical resolutions of about 200 nm and 5 nm, 
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respectively. We have shown that the horizontal 
resolution is limited by the presently used point 
probe sizes. Theoretical estimates using the 
basic characteristics of our system allow the 
prediction of resolution limits of 7 nm and 1 nm 
for horizontal and vertical resolution, respec
tively, for tip radii of 3 to 4 nm. 

Acknowledgement 

The authors would like to thank B. Binggeli 
for consultation on the high frequency circuit. 

References 

Bryant PJ, Kim HS, Zheng YC, Yang R. (1987). 
Technique for Shaping Scanning Tunneling Micro
scope Tips, Rev. Sci. Instrum. 58, 1115. 

Matey JR, Blanc J. (1985). Scanning Capaci
tance Microscopy, J. Appl. Phys. 57, 1437-1444. 

RCA CED VideoDi sc, see RCA Review 39, No. 1 
(1978) and 43, NO. 1 (1982). -

SmytheWR. (1950). Static and Dynamic Elec
tricity, McGraw-Hill, New York, Toronto, London 
p. 121 and p. 203. 

Discussion with Reviewers 

U. Fischer: dC/ds, as shown in Fig. 8, has a 
rather weak dependence on distance. As a conse
quence, the shape of the tip is very important 
for capacitance microscopy, even of shallow re
lief structures, in order to obtain a high lateral 
resolution. On the other hand, the weak depen
dence yields a somewhat larger depth of field in 
compari son to other non-contact stylus micro
scopies. Therefore it could be a particular ad
vantage of capacitance microscopy to allow for a 
somewhat larger working distance as compared to 
other such microscopies. 
Authors : This is correct. For capacitance micro
scopy one needs indeed thinner, more pointed tips 
than for tunnel microscopy, which, on the other 
hand, enables us to measure deeper profiles. 
Also, with properly shaped tips, one can expect 
to be able to measure at larger distance with 
lower resolution, which could result in a Zoom 
function. 

R.W. Wijnaendts-van-Resandt: What is the effect 
of variations of relative permittivity of layers 
under the structure to be scanned? 
Authors: Variations of permittivity at or under
neath the sample surface will produce some dis
tortion of the measured profiles in z-direction. 
However, this does not influence the x-direction 
very much. Hence, linewidth measurements on in
tegrated circuit samples are not distorted by 
this. 

R.W. Wijnaendts-van-Resandt: Will it be possible 
to construct tips so that resist structures with 
very high aspect ratio (1 ,,um high, 0.25JJm wide) 
can be measured? 
Authors: We are working at present towards im
proving our system in order to be able to do just 
that. 
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J.R. Matey: The authors correctly state that it 
is impossible to image non-conductive samples with 
a tunneling microscope and offer the capacitance 
microscope as an alternative. There is a vari
ation on the tunneling microscope, the atomic 
force microscope, which can image non-conductive 
samples. How would the authors compare the capa
citance microscope with the atomic force micro
scope? 
Authors: The atomic force microscope is even 
more delicate and complicated than the regular 
tunneling microscope. The capacitance microscope 
uses much larger working distances and conse
quently is more robust. For applications of lower 
than atomic resolution, it will win out. 
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