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Examining the Classification Accuracy of TSVMs with Feature Selection 
in Comparison with the GLAD Algorithm

Hala Helmi, Jonathan M. Garibaldi and Uwe Aickelin 
  
Abstract- Gene expression data sets are used to classify 
and predict patient diagnostic categories. As we know, it 
is extremely difficult and expensive to obtain gene 
expression labelled examples. Moreover, conventional 
supervised approaches cannot function properly when 
labelled data (training examples) are insufficient using 
Support Vector Machines (SVM) algorithms. Therefore, 
in this paper, we suggest Transductive Support Vector 
Machines (TSVMs) as semi-supervised learning 
algorithms, learning with both labelled samples data and 
unlabelled samples to perform the classification of 
microarray data. To prune the superfluous genes and 
samples we used a feature selection method called 
Recursive Feature Elimination (RFE), which is supposed 
to enhance the output of classification and avoid the local 
optimization problem. We examined the classification 
prediction accuracy of the TSVM-RFE algorithm in 
comparison with the Genetic Learning Across Datasets 
(GLAD) algorithm, as both are semi-supervised learning 
methods. Comparing these two methods, we found that 
the TSVM-RFE surpassed both a SVM using RFE and 
GLAD.  

I. INTRODUCTION  

Data mining techniques have traditionally been used to 
extract hidden predictive information in many diverse 
contexts. Usually datasets contain thousands of examples. 
Recently the growth in biology, medical science, and DNA 
analysis has led to the accumulation of vast amounts of 
biomedical data that require in-depth analysis. 

 
After years of research and development, many data 

mining, machine learning, statistical analysis systems and 
tools are available to be used in biodata analysis. 
Consequently, this paper will examine a relatively new 
technique in data mining. This technique is called 
Transductive Supervised Support Vector Machines [2], also 
named Semi-Supervised Support Vector Machines S3VMs, 
located between supervised learning with fully-labelled 
training data and unsupervised learning without any labelled 
training data [1].  In this method, we used both labelled and 
unlabelled samples for training: a small amount of labelled 
data and a large amount of unlabelled data. 
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The purpose of this paper is to observe the performance of 
Transductive SVMs combined with a feature selection 
method called Recursive Feature Elimination (RFE), which 
is used to select molecular descriptors for Transductive 
Support Vector Machines (TSVMs).  
 

The paper is organized as follows: section 2 provides a 
literature review on Support Vector Machines, Transductive 
Support Vector Machines and finally Recursive Feature 
Elimination. In section 3, the TSVM algorithm combined 
with RFE is detailed, as well as a brief summary of the 
GLAD algorithm based on a recently published paper [3] 
which aims to compare the prediction accuracy of these two 
algorithms. Section 4 is dedicated to comparing and 
analysing the experimental results of both algorithms 
(TSVM and GLAD). Finally, a summary of the results and 
discussion will be presented in section 5. 

II. BACKGROUND  

A. Support Vector Machines  

Support Vector Machine (SVMs), as a supervised 
machine learning technique, perform well in several areas of 
biological research, including evaluating microarray 
expression data [4], detecting remote protein homologies [5] 
and recognizing translation initiation sites [6]. SVMs have 
demonstrated the ability not only to separate the entities 
correctly into appropriate classes, but also to identify 
instances where established classification is not supported by 
the data [7]. SVMs are a technique that makes use of training 
that utilizes samples to determine beforehand which data 
should be clustered together [4]. 

B. Tranductive Support Vector Machines 

Transductive learning is a method strongly connected to 
semi-supervised learning, where semi-supervised learning is 
intermediate between supervised and unsupervised learning. 
Vapnik introduced Semi-Supervised Learning for Support 
Vector Machines in the 1990s. His view was that 
transduction (TSVM) is preferable to induction (SVM), 
since induction needs to solve a more general problem 
(inferring a function) before solving a more detailed one 
(computing outputs for new cases) [8] [9]. 

 
Transductive Support Vector Machines attempt to 

maximize the hyperplane classifier between two classes 
using labelled training data; at the same time this forces the 
hyperplane to be far away from the unlabelled samples.  
TSVMs seem to be a perfect semi-supervised learning 
algorithm because they combine the regularization of 
Support Vector Machines with a straight forward 
implementation of the clustering assumption [10]. 



C. Recursive Feature Elimination 

Most prediction model algorithms are less effective when 
the size of the data set is large. There are several methods for 
decreasing the amount of the feature set. From among these 
methods we selected a technique called Recursive Feature 
Elimination (RFE). The basis for RFE is to begin with all the 
features, select the least useful, remove this feature, and then 
repeat until some stopping condition is reached.  

 
Finding the best subset features is too expensive, so RFE 

decreases the difficulty of feature selection by being 
„greedy‟ [11]. 

III. METHODS 

This section of the paper is focused on describing TSVM-
RFE, the problem motivated by the task of classifying 
biomedical data.  The goal is to examine classifier accuracy 
and classification errors using the Transductive Support 
Vector Machines method, in order to determine whether this 
method is an effective model when combined with Recursive 
Feature Elimination (RFE) compared with the Genetic 
Learning Across Datasets (GLAD) algorithm. 

A. Support Vector Machines  

The purpose of SVMs is to locate a classifier with the 
greatest margin between the samples relating to two different 
classes, where the training error is minimized. Therefore, to 
achieve this we used a set of 券-dimensional training samples 散 噺 岶捲沈岼沈退怠陳   labelled  岶芝沈岼沈退怠陳  and their mapping 岶 岫捲沈岻岼沈退怠陳  via 
kernel function:  圭盤捲沈 ┸ 捲珍匪 噺   岫尺赦岻脹   盤捲珍匪ƍ 

 SVM has the following primal form:   
                 岫敬┸ 決┸ つ怠┸ ┼ ┸ つ陳岻 押敬押椎椎 髪   系 布 つ沈陳

沈退怠  

                ┺    
            褐沈退怠陳 ┺  芝日 岫敬鐸  岫渓 茅 尺赦岻ƍ 髪  決岻  半 な 伐 つ沈 ┸ つ沈   半 ど         岫な岻  

 
The SVM predictor for samples  , as shown below, was 

settled on by the vector inner product between the 敬 and the 
mapped vector  岫 岻, plus the constant 決. 芝 噺 慧傾契 岫敬鐸  岫姉岻ƍ 髪  決岻 

The predictor actually corresponds to a separating 
hyperplane in the mapped feature space. The prediction for 
each training samples  辿 is connected with a violation term 
つ辿. The   is a user-specified constant to manage the penalty 
for these violation terms.  

 
The parameter   in the above (1) points to which kind of 

norm of 敬 is assessed. It is usually set to 1 or 2, resulting in 
the 1-norm ( 怠-SVM) and 2-norm SVM ( 態-SVM) 
respectively. The 1-norm and 2-norm TSVMs have been 
discussed in [12] and [13].  

B. Transductive Support Vector Machines  

In this paper, we are using the extended SVM technique 
of transductive SVMs and we methodically adept the 2- 
norm for the TSVM.  

The standard setting can be illustrated as:  
                岫芝怠茅┸ ┼ ┻ ┸ 芝谷茅┸  ┸  ┸ つ怠┸ ┼ ┸ つ鱈┸つ怠茅岻 なに 押 押態態 髪     布 つ辿鱈

辿退怠 髪  茅 布 つ棚茅谷
棚退怠            ┺    褐辿退怠鱈 ┺  芝套 岫 鐸  岫 茅 尺赦岻ガ 髪   岻  半 な 伐 つ辿┸ つ辿   半 ど 

       褐棚退怠谷 ┺  芝宕茅 岾 鐸  盤 茅  棚茅匪ガ 髪   峇  半 な 伐 つ棚茅┸ つ棚茅   半 ど            岫に岻   
 

Where each 芝棚茅 is the unknown label for  棚茅 which is one 
of the   unlabelled samples; compared with SVM (1), the 
formulation (2) of the TSVMs takes the unlabelled data into 
consideration by representing the violation terms つ棚茅 caused 

by forecasting each unlabelled pattern   岫 棚茅岻 into 芝棚茅. The 
penalty for these violation terms is controlled by a new 
constant  茅 labelled with unlabelled samples, while   
consists of labelled samples only. 
 

Precisely solving the transductive problem needs a 
search of all potential assignments of 芝怠茅┸ ┼ ┻ ┸ 芝谷茅 and 
identifying the various terms of つ茅 which are regularly 
intractable for large data sets.  It is worth mentioning the  態-
TSVM implemented in the SVMLight [18] [8].  

C. Recursive Feature Elimination 

Recursive Feature Elimination (RFE) has the advantage 
of decreasing the number of redundant and recursive 
features. RFE decreases the difficulty of feature selection by 
being greedy. 

  
To extend SVM feature selection techniques to 

transductive feature selection is specifically straightforward, 
as we can produce TSVM-RFE by iteratively eliminating 
features with weights calculated from TSVM models. We 
can explain the TSVM-RFE approach as the following 
standard process. 
1. Pre-process data and calculate filtering scores 慧違. 

Moreover, optionally further normalize data. This 
approach first filters some features based on scores like 
Pearson correlation coefficients. 

2. Adjust 渓 as an all-one input vector. 
3. Set 渓 華  渓 茅 慧違. Set part of the small entries of 渓  zero 

according to a proportion/threshold, and probably 
discrete non-zero 渓  to 1. 

4. Obtain a (sub-) optimal TSVM as calculated by cross- 
validation accuracy (2). 

5. For RFE approaches, estimate feature weights 慧違 from the 
model in step 4 according to:  担ガ 噺 伐 怠態  デ g辿 g棚 芝辿 芝棚   岫 辿【鱈辿┸棚  辿担岻鐸 岫 棚┸  棚担岻ガ 髪 デ g辿   岫ぬ岻樽辿退怠    



Where 岫 辿【 辿担岻  indicates the input samples  件 with feature 建 removed. The weight of the 建-th feature can be clarified as

   担 噺 紐】ッ  担】 噺 謬弁 伐  担ガ 弁 
The following estimation suggested in [11] is easier to 
measure.  担態 蛤  布 g辿 g棚 芝辿 芝棚   岫鱈

辿┸棚退怠  辿担岻鐸 岫 棚担岻ガ 

Specifically, the feature weights are identical to the 敬 if the 
SVM is built upon a linear kernel. 

Return to step 3 unless there is an acceptable number of 
features/iterations. Output the closing predictor and features 
highlighted by large values of  . 

 
Step 3 comprises selecting a proportion/number of 

features according to a threshold cutting the vector  . For 
filtering scores and the RFE method, the vector   is changed 
to a binary vector. Then the  茅    has the effect of pruning 
or deactivating some features. 

 
The threshold is usually found to prune a (fixed) 

number/proportion of features at each iteration. The value of 
the remaining features is then measured by the optimality of 
the TSVM model obtained in step 4. We then apply cross-
validation accuracy as the performance measure for the 
TSVM algorithm. For a subset of features selected by 
choosing a threshold value, we extend the model search 
upon the free parameters, such as [ ┸  茅j 岫   岻┸  岫    岻峅  
and choose the preferable parameter set which results in the 
highest cross-validation accuracy. 

D. Genetic Learning Across Datasets (GLAD) 

The GLAD algorithm is different from prior algorithms 
of semi-supervised learning. The GLAD algorithm has been 
applied as a wrapper method for feature selection. A Genetic 
Algorithm (GA) was implemented for generating a 
population of related feature subsets. The labelled data and 
the unlabelled data samples were computed separately. 
Linear Discriminant Analysis (LDA) and K-means (K = 2) 
for these two data forms of cluster algorithms were used 
[14].  A distinctive two-term scoring function resulted to 
independently score the labelled and unlabelled data 
samples. Generally, the score was calculated as a weighted 
average of the two terms as shown below. 

      噺     抜       狸叩但奪狸狸奪辰 髪 岫な 伐  岻抜      探樽狸叩但奪狸狸奪辰               岫ね岻 
       

As the typical leave-one-out-cross-validation accuracy 
for the labelled training samples, they identified the labelled 
data samples score. The unlabelled data samples score 
consists of two terms: a cluster separation term and a steady 
ratio term.             嫌潔剣堅結 通津鎮銚長勅鎮鎮勅鳥 噺 デ 弁系沈 伐 系珍弁沈貯珍デ 弁系沈 伐 系珍弁 髪 デ な軽寵日  デ 弁 沈珍 伐 系沈弁珍沈沈貯珍 伐 

                   俵 な券頂 布                 岫講沈 伐 講奪淡丹日岻態沈          岫の岻 
                                  辿 = centroid of cluster; ヾ辿 = ratio of data in cluster    ┹ ヾ奪淡丹套  = 

expected ratio in cluster    ;  大套 = number of data samples in 
cluster  ;  達 = number of clusters. 

IV. EXPERIMENTS AND RESULTS 

This section discusses the results of the experiments 
which were carried out in order to assess the effectiveness of 
the classification model accuracy proposed in the previous 
section. 

A. Datasets  

 Leukaemia (AML-ALL): including 7129 probes, 
two variants of leukaemia are available: acute 
myeloblastic leukaemia (AML), 25 samples; and 
acute lymphoblastic leukaemia (ALL), 47 samples 
[15]. 

 Lymphoma (DLBCL): consisting of 7129 genes 
and 58 DLBCL samples. Diffuse large B-cell 
lymphoma (DLBCL) and 19 samples of follicular 
lymphoma (FL) [16]. 
 

 Chronic Myeloid Leukaemia (CML): contained 
30 samples (18 severe emphysema, 12 mild or no 
emphysema) with 22,283 human gene probe sets 
[17]. 

B. TSVM Recursive Feature Elimination (TSVM-RFE) 
Result 

 Leukaemia (AML-ALL): the results for the 
Leukaemia ALL/AML dataset are summarized in 
Figure 1 in the diagram on the left. TSVM-RFE 
gave the smallest minimal error of 3.68%, and 
compassionately smaller errors compared with 
SVM-RFE: 3.97% for 30, 40, ..., 70 genes. 
Interestingly, in our experiments both methods gave 
the lowest error when 60 genes were used. This 
provided a reasonable suggestion for the number of 
relevant genes that should be used for the 
leukaemia data. 

 Lymphoma (DLBCL): the results for the 
Lymphoma (DLBCL) dataset are summarized in 
Figure 1 in the middle diagram. TSVM-RFE gave 
the smallest minimal error of 3.89%, and quite 
firmly smaller errors compared to the SVM-RFE: 
4.72% for 30, 40, ..., 70 genes. For TSVM, the 
methods gave the lowest error for 60 genes, while 
SVM methods gave the lowest error at 50 genes 
with 4.72% compared to 4.97% for 60 genes. This 
could give a sensible suggestion for the number of 
relevant genes that should be used for the 
lymphoma (DLBCL) data. 

 



 
Figure 1: Testing error for three data sets. The 5-fold cross-validated pair t-test shows the SVM-RFE and the TSVM-RFE 
have relative differences when comparing the two methods at the confidence rate of 95% (Linear kernel, C = 1).  

 Leukaemia (CML): lastly, the TSVM-RFE and 
SVM-RFE results for the Leukaemia (CML) dataset 
are provided in Figure 1 in the diagram on the right. 
TSVM-RFE gave the smallest minimal error of 
6.52%, and critically smaller errors in contrast to the 
7.85% SVM-RFE for 30, 40, ..., 70 genes. Both 
algorithms showed the lowest error when 50 genes 
were used. This presented a sensible proposal for the 
number of related genes that should be used for the 
Leukaemia (CML) data. 

C. Comparing the TSVM Algorithm result with the GLAD 
Algorithm  

Implementing Genetic Learning Across Datasets involved 
conducting three experiments using previous datasets, each 
addressing a different cancer diagnostic problem: ALL/AML 
for disparity in diagnosis; in CML a dataset predicting the 
response of imatinib; and in DLBCL for forecasting outcome.  

 
In the AML-ALL dataset, the accuracy range using only 

labelled samples was 73.46%. Combining unlabelled samples 
with labelled samples increased the range to 75.14%. Adding 
unlabelled samples increased the accuracy from 59.34% to 
65.57% in the CML experiments. The addition of the 
unlabelled samples to the unlabelled samples for DLBCL 
raised the accuracy from 49.67% to 55.79%. This shows that 
the GLAD algorithm outperformed the SVM-RFE and TSVM-
RFE in some cases when we made use of the labelled data only 
without gene selection. In Table 1, for example the AML-ALL 
dataset, the GLAD algorithm gives 73.46% while SVM-RFE 
and TSVM-RFE accuracy are 52.8% and 55.6% respectively. 
 

However, in the second dataset DLBCL showed that 
GLAD algorithm accuracy was 49.67% and SVM-RFE 55.8%. 
Furthermore, the third dataset of CML, SVM-RFE gave 
59.02% without gene selection, while GLAD gave 59.34%.  
On the other hand, TSVM exceeded GLAD when making use 
of unlabelled data along with labelled data and selecting genes. 
The results are shown in Table 1. 

For instance, for the CML dataset using all the samples 
without gene selection TSVM gave 72.6% when selecting 
genes based on REF, TSVM exceeded 93.48%, while GLAD 
gave 65.57% with gene selection. In the same vein, the 
accuracy for the DLBCL dataset achieved 96.11% by TSVM 
with gene selection.   

On the other hand, the GLAD algorithm gave 55.79% with 
gene selection. As well as this, the TSVM with the AML-ALL 
dataset with gene selection gave 96.32% while the GLAD 
algorithm gave 75.14%. This means that the TSVM performed 
better than the GLAD algorithm, and the performance with 
gene selection showed a superior result. 
 

Table 1: Accuracy obtained with SVM-RFE, 

TSVM-RFE and GLAD 

 

V. CONCLUSION 

This paper has investigated topics focused on semi-
supervised learning. This was achieved by comparing two 
different methods for semi-supervised learning using 
previously classified cancer datasets. 

 
The results on average for semi-supervised learning 

surpassed those for supervised learning. However, this shows 
that the GLAD algorithm outperformed SVM-RFE when we 
made use of the labelled data only. On the other hand, TSVM-
RFE exceeded GLAD when unlabelled data along with 
labelled data were used; it performed much better with gene 
selection and performed well even if the labelled dataset was 
small.  

Dataset 
  SVM-RFE 

Accuracy 
(labelled) 

TSVM-
RFE 

Accuracy 

GLAD 
Accuracy 

ALL-AML     
Without 
Selection 

7219 Genes,  
72 Samples 

52.8% 55.6% 73.46% 
(labelled) 

With 
Selection 

60 Genes, 
72 Samples 

96.03% 96.32% 75.14% 

DLBCL     
Without 
Selection 

7219 Genes, 
77 Samples 

55.8% 57.1% 49.67% 
(labelled) 

With 
Selection 

60 Genes, 
77 Samples 

95.03% 96.11% 55.79% 

CML     

Without 
Selection 

22,283 
Genes, 
30 Samples 

59.02% 72.6% 59.34% 
(labelled) 

With 
Selection 

50 Genes, 
30 Samples 

92.15% 93.48% 65.57% 
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On the other hand, TSVM still had some drawbacks when 
increasing the size of the labelled dataset, as the performance 
did not significantly improve accordingly. Moreover, when the 
size of the unlabelled samples was extremely small, the time 
complexity was correspondingly high. 

 
As with almost all semi-supervised learning algorithms, 

TSVM showed some instability, as some results of different 
runs were not the same. This occurred because unlabelled 
samples may have been wrongly labelled during the learning 
process. If we find a way in future to select and eliminate the 
unlabelled sample first, we can then limit the number of newly- 
labelled samples for re-training the classifiers. 
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