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Abstract: Malicious users try to compromise systems using new 
techniques. One of the recent techniques used by the attacker is to 
perform complex distributed attacks such as denial of service and to 
obtain sensitive data such as password information. These 
compromised machines are said to be infected with malicious 
software termed a “bot”. In this paper, we investigate the 
correlation of behavioural attributes such as keylogging and packet 
flooding behaviour to detect the existence of a single bot on a 
compromised machine by applying (1) Spearman’s rank correlation 
(SRC) algorithm and (2) the Dendritic Cell Algorithm (DCA). We 
also compare the output results generated from these two methods 
to the detection of a single bot. The results show that the DCA has a 
better performance in detecting malicious activities. 

Keywords: Security, Intrusion Detection, Botnet, Bot, Dendritic 
Cell Algorithm (DCA).

1. Introduction

Computer systems and networks come under frequent attack 
from a diverse set of malicious programs and activity such as 
viruses and worms [10].  The detection of such threat is 
improving in the area of network and computer security.  
Recently, a new threat has emerged in the form of the botnet. 
Botnets, which are groups of distributed bots, are controlled 
remotely by a central commander, termed the “botmaster”. A 
single bot, a term derived from robot, is a malicious piece of 
software which, when installed on a compromised host, 
transforms host into a zombie machine.  This zombie 
machine is remotely controlled by the attacker.
Bots use different types of networking protocols for the 
communication component of their Command and Control 
(C&C) structure such as Internet Relay Chat (IRC), HTTP 
and more recently Peer-to-Peer (P2P).  In this research we 
are primarily interested in the detection of bots which use 
IRC protocol as they appear to be highly prevalent within the 
botnet community.  IRC [17] is a chat based protocol 
consisting of various “channels” to which a user of the IRC 
network can connect.  The attacker programs his bots to 
connect to the IRC server and joins the specified channel 
waiting for his commands.  Once the attacker joins the same 
channel, he starts to issue various commands and all 
available bots on that channel respond to these commands 
through C&C structure.  In early implementations, bots were 
used to perform distributed denial of services attacks (DDoS) 
using a flood of TCP SYN, UDP or ICMP “ping” packets in 
an attempt to overload the capacity of computing resources. 

Recent bots are developed complete with advance features 
such as keylogging for closely monitoring user behaviour 
including the interception of sensitive data such as 
passwords, monitoring mouse clicks and the taking of 
screenshots of secure websites.  Many Anti-Virus packages 
cannot detect a stealthy keylogging activity on the system.  
The user has no way to determine if his machine is running a 
keylogger, therefore, he could easily become a victim of the 
identity theft.
Many existing botnet/bot techniques use different types of 
signatures-based detection by analysing network traffic in 
order to detect botnets as in [6][9][20].  These detection 
techniques can be evaded by either changing the bot’s 
signatures or encrypting the bot’s traffic when 
communicating with the attacker.  In addition, a bot can 
connect to non-standard ports to make the detection more 
difficult.  Rather than detecting botnet by monitoring and 
analysing network traffic looking for bots’ signatures, our 
work focuses on the detection of a single bot formulated as a 
host-based intrusion detection problem, and avoid the 
technical problems of administrating a highly infective 
network within an academic environment.  To perform this 
research, we rely on principles of “extrusion detection”
where we do not attempt to prevent the bot from gaining 
access to the system, but we detect it as it attempts to operate 
and subvert the infected host.  This procedure involves 
monitoring different bot’s behaviours within specified time 
window such as potential keylogging activity and fast 
reaction to the received network information.
In order to detect the bot on the infected machine, correlating 
bots’ behavioural attributes is needed. The concept of 
correlation attributes within specified time-window increases 
the level of malicious behaviour activities as depending on 
one process attribute may generate large number of false 
alarms.  This is also lead to the challenge of choosing the 
right correlation algorithm which enhances the detection of 
malicious program.
In previous work [2][3], we introduce two different 
algorithms to correlate the behaviour of the bot running on 
the infected system.  In this work, we compare and evaluate 
the performance of the two correlation algorithms on bot 
detection, including Spearman’s rank correlation (SRC) and 
the DCA.  The SRC algorithm examines the correlation of 
different processes behaviours by monitoring specified 
function calls executed by running processes on a single 
machine.  DCA has been applied to many problems 

Journal of Information Assurance and Security 5 (2010) 303-313

 

  
 

 
 
 Received December 03, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc.



particularly in the area of intrusion detection in computer 
security.  The DCA is a more intelligent way of fusing and 
correlating information from disparate sources.  The immune 
inspired DCA implemented by Greensmith et at. [12] is 
based on an abstract model of the behaviour of dendritic cells 
(DCs) [22]. These cells are the natural intrusion detection 
agents of the human body, which activate the immune system 
in response to the detection of damage to host tissues.  As an 
algorithm, the DCA performs multi-sensor data fusion on a 
set of input “signals”, and this information is correlated with 
potentially anomalous “suspect entities” which we term 
“antigen”. This results in information which will state not 
only if an anomaly is detected, but in addition the culprit 
responsible for the anomaly. Given the success of this 
algorithm at detecting scanning activity in computer networks 
as in [13][14], we will examine the DCA as a solution to 
correlate different behaviours of a single bot running on a 
machine.
The aim of this paper is to investigate the effect of 
correlating bot’s behavioural attributes by applying two 
specified correlation algorithms to the detection of a single 
bot.  For these experiments the basis of classification is 
facilitated through the correlation of different activities such 
as keystrokes interception, how fast the program executes 
certain communication function calls and how fast is the 
program react when receiving information. Our results show 
that correlating behaviours exhibited by a single bot can 
enhance the detection of malicious processes on the system to 
determine the presence of a bot infection and to identify the 
processes involved in the bot’s actions. 
This paper is structured as follows: Section two discusses 
existing bot detection techniques.  Section three describes 
detection methods that are used to detect a single bot on the 
system.  We present our methodology of bot detection and 
explain the conducted experiments in section four.  Our 
results and analysis are presented in section five and we 
summarize and conclude in section six.

2. Related Work

Existing research conducted in bot detection concentrates on 
detecting botnets rather than an individual bot as noted by
[1][7][8].  The majority of these techniques use signature-
based approaches for botnet detection by analysing network 
traffic looking for well know signatures.  Although this 
approach is a useful mechanism for bot detection, it is limited 
if the network packet data is encrypted.
Previous work presented by Barford [4] represents a good 
introduction to understanding and analysing the behaviours 
of bots.  Freiling et al. [8] collect bot binaries by using a non-
productive resource (honeypot), to analyse bot traffic and 
infiltrate botnet by emulating bot activities.
Cooke et al. [7] performs bot detection through payload 
analysis using pattern matching of known bot commands and 
in addition examines a system for evidence of non-human 
characteristics. While they suggested that correlating data 
from different sources would be beneficial for the detection 
of a single bot, they did not provide information regarding 
how this correlation should be performed.  Goebel and Holz 
[9] monitor and classify IRC traffic based on suspicious IRC 

nicknames, IRC servers and non-standard server ports using 
regular expressions.
Anomaly detection plays an important rule on detecting the 
presence of a bot [5], where deviations from a defined 
“normal” are classed as an anomaly. An approach for 
detecting bots using behavioural analysis is presented by
Racine [19] which classifies inactive clients and their 
subsequent assignment to a network connection.
Gu el at. introduce the BotHunter [15], which examines the 
behaviour history of each distinct host to find correlated 
evidence of malware infection and the BotSniffer [16], which 
correlates common bot activities such as coordinated 
communication, propagation and attack in network traffic.
In summary the majority of techniques for the detection of a 
single bot uses signature-based detection by analysing 
network packets. These techniques are limited in case if 
packet streams are encrypted. Current behaviour-based 
approaches are also limited, generating high rates of false 
positives, which have the potential to slow down or denial of 
service a system. We believe that correlating relevant 
behavioural attributes with programs potentially involved 
with a bot infection can enhance the detection mechanism.

3. Bot Detection Methods

Existing research techniques detect the presence of bots via 
network monitoring and analysis.  Rather than attempting to 
detect bots via network analysis, our work focuses on 
detecting an individual bot running on a machine by 
monitoring and correlating different activities on the system.  
In this section, we will describe two algorithms which apply 
correlation techniques to detect abnormal behaviour in our 
system.

3.1 Spearman’s Rank Correlation - SRC

The Spearman’s rank correlation (SRC) algorithm to detect 
the bot is described in Algorithm 1.  

S1: keystrokes interception
S2: how fast the bot responds to attacker 
commands
S3: how fast the bot repeats the same 
communication function calls

if (KeyboardState function(s) is executed /* 
i.e. keylogging activity*/ )
{
if (SRC(S1,S3)>Threshold && SRC(S2,S3)>Threshold)
{

Strong Detection
}
  elseif (SRC(S1,S3)<Threshold && SRC(S2,S3)<
  Threshold)
{

Weak Detection
}
  elseif ((SRC(S1,S3)<Threshold && SRC(S2,S3)>
  Threshold) || (SRC(S1,S3)>Threshold &&
SRC(S2,S3)< Threshold))

{
Medium Detection

}
}
else

No detection and normal activity is         
  considered
end

Algorithm 1. SRC Algorithm for detecting Bot.
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SRC is a statistical measure of correlation which uses 
threshold function to describe the relationship between two 
variables.  In order to detect a bot in a system, different bot 
behaviours are correlated to generate a high correlation value 
represented by SRC value.  Such behaviours include 
intercepting user keystrokes, how fast the bot responds to the 
attacker commands and how fast it executes same function 
calls.  In our case, if SRC value exceeds a certain threshold 
level, a high correlation between the two different behaviours 
is generated.  According to SRC algorithm, the threshold 
level of 0.5 or higher represents a strong correlation between 
two events.
The aim of SRC experiments is to verify the notion that 
correlating different behaviours of a single process indicates 
abnormal activity.  In addition, we apply the monitoring and 
correlation scheme to a normal application to verify that the 
normal application behaves differently from the malicious 
process which results in having different correlation value.  
The obtained results are compared with DCA results.

    3.2 The Dendritic Cell Algorithm - DCA

3.2.1 Algorithm Overview

Artificial Immune Systems (AIS) are algorithms inspired by 
the behaviour of the human immune system.  The biological 
immune system tries to protect the body from the attack 
against any invading pathogen, viruses and bacterias.  AIS 
have been applied to problems in computer security since 
their initial development in the mid-1990’s.
A recent addition to the AIS family is the Dedritic Cell 
Algorithm (DCA) implemented by Greensmith et al. [2].  
DCA is inspired by the function of the Dendritic Cells (DCs) 
of the innate immune system and uses principles of a key 
novel theory in immunology termed the danger theory 
described by Matzinger [18].  The danger theory suggests 
that the DCs are the first line defense against invaders and the
response is generated by the immune system upon the receipt 
of molecular information which indicates the presence of 
stress or damage in the body. The interested reader can refer
to [11] for a detailed description of the DCA.  In this section 
we provide an overview of the operation of the algorithm.
When viewed from a computational prospective, DCs are 
anomaly detector agents, which are responsible for data 
fusion and generating appropriate actions in response to the 
attack in the human body.  In nature DCs exist in one of three 
states: immature, semi-mature and mature. The initial 
maturation state of a DC is immature for sensing and 
processing three categories of input signals (see Table 1) and 
in response produces three output signals.  The three input 
signals can influence the behaviour of DCs sensitivity.
The first two input signals are S1 and S2.  S1 signal is derived 
from the detection of pathogens while S2 signal is generated 
from the unexpected cell death of damage to the tissue cells.  
The third input signal is S3 which is molecules released as a 
result of normal cell death.  During immature lifespan 
collecting signals, if the DC has collected majority of S3, it 
will change state to a semi-mature state and suppress the 
activation of the immune system. Conversely, cells exposed 
to S1 and S2 signals transforms into a mature state and can 
instruct the immune system to activate.

Signal 
Name

Symbol Definitions

Pathogen 
Associated 
Molecular 
Patterns

S1=PS A strong evidence of abnormal/bad 
behaviour.  An increase in this signal 
is associated with a high confidence 
of abnormality.

Danger 
Signal

S2=DS A measure of an attribute which 
increases in value to indicate 
deviation from usual behaviour. Low 
values of this signal may not be 
anomalous, giving a high value 
confidence of indicating abnormality.  
S2 has less effect on the output signal 
than S1 signal.

Safe 
Signal

S3=SS A measure which increases value in 
conjunction observed normal 
behaviour. This is a confident with 
indicator of normal, predictable or 
steady-state system behaviour. This 
signal is used to counteract the effects 
of S1 and S2 signals and thus has 
negative impact on the output signals.

Table 1. Signals Definition

While in immature state, DCs capture the suspect entities 
(termed “antigen”) and combine them with evidence of 
damage in the form of signals to provide information about 
how “dangerous” a particular protein is to the host body.  
Antigen collected by the semi-mature DCs are presented in a 
“safe” context while antigen presented by mature DCs are 
presented in a “dangerous” context.
In terms of the algorithm, the DCA is a population based 
algorithm which performs anomaly detection based on the 
indication of abnormality of the system by aggregating and 
performing asynchronous correlation of signals with the 
suspects antigen.  Signal processing occurs within DCs of the 
immature state. Each DC in the immature state performs 
three functions as follows:
 To sample antigen by collecting antigen from an external 

source and transfers the antigen to its own antigen storage 
facility.

 To update input signals in which the DC collects values 
of all input signals present in the signal storage area.

 To calculate temporary output signal values from the 
received input signals, with the output values then added 
to form the cell’s cumulative output signals.

The transformation from input to output signal per cell is 
performed using a simple weighted sum (Equation 1) 
described in detail in [14] with the corresponding weights 
given in Table 2 (WS3).  These weights determine the value 
of the output and derived from preliminary observation that 
defines the danger level of the input signals.





3

1
)*(

i
jk

i
SijkW

i
O  (1)

Where: 
 W is the signal weight of the category i
 i is the input signal category (S1=PS, S2=DS and S3=SS)
 k is the weight set index WSk as shown in Table 2 (k =1 to 
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5)
 Oj is the output concentrations of one of the following 

signal:
 j=1 costimulatory signal (csm)
 j=2 a semi-mature DC output signal (semi)
 j=3 mature DC output signal (mat)

Signal WS1 WS2 WS3 WS4 WS5

O1(csm)
S1

S2

S3

2
1
2

4
2
6

4
2
3

2
1
1.5

8
4
0.6

O2(semi)
S1

S2

S3

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

O3(mat)
S1

S2

S3

2
1
-3

8
4
-12

8
4
-6

8
4
-6

16
8
-1.2

Table 2. Weight Sensitivity Analysis.

In the algorithm, the signal values are assigned real valued 
numbers and the antigen are assigned as categorical values of 
the object to be classified.  The algorithm has three different 
stages, the initialization stage, the data processing and the 
analysis stage.  In the initialization stage, the algorithm 
generates DCs population where each cell is assigned a 
random “migration” threshold.  The input data forms the 
sorted antigen and signals (S1, S2 and S3) with respect to the 
time and passed to the processing stage.  Each DC performs 
an internal correlation between signals and antigen with 
respect to a specified time window determined by the 
migration threshold, signals and antigen. To cease data 
collection, a DC must have experienced signals, and in 
response to this express output signals. As the level of input 
signal experienced increases, the probability of the DC 
exceeding its lifespan also increases. The level of signal 
input is mapped as a cumulative O1 value. Once O1 exceeds a 
migration threshold value, the cell ceases signal and antigen 
collection and is removed from the population and enters the 
maturation stage.  Upon removal from the population the cell 
is replaced by a new cell, to keep the population level static.
A high concentration of S1 and S2 increases the probability of 
immature cells to become mature cells while a more 
concentration of S3 imposes the immature cells to become 
semi-mature cells. Therefore, if O2 > O3 , the DC is termed 
“semi-mature” cell.  Antigen presented by semi-mature cell is 
assigned a context value of zero.  In contrast, O2 < O3 leads to 
a “mature” cell and antigen presented by mature cell is 
assigned a context value of one.  The detection of anomaly is 
based on having more mature cells than semi-mature cells in 
which the antigen in a mature context is detected.  The 
pseudo code for the functioning of a single cell is presented 
in Algorithm 2.
The final stage involves calculating an anomaly coefficient 
per antigen type - termed the mature context antigen value, 
MCAV once all antigen and signals are processed by the cell 
population, an analysis stage is performed. The derivation of 
the MCAV per antigen type in the range of zero to one is 
shown in Equation 2. 

input: Sorted antigen and signals
(S1=PS,S2=DS,S3=SS)
output: Antigen and their context (0/1)

Initilize DC;

foreach cell in DC population
{
  while CSM output signal (O1) < migration
threshold

  {
     get antigen;
     store antigen;
     get signals;
     calculate interim output signals;
     update cumulative output signals;
  }
  cell location update to lymph node;
  
  if semi-mature output (O2) > mature output(O3) 
     cell context is assigned as 0 ;
  else
     cell context is assigned as 1 ;
  
kill cell;

  replace cell in population;
}

Algorithm 1. DCA Algorithm for detecting Bot.

The closer this value is to one, the more likely the antigen 
type is to be anomalous.  A threshold is applied to distinguish 
between anomalous and normal type of antigen.

x
Y

x
Z

x
MCAV  (2)

Where MCAVx is the MCAV coefficient for antigen type x, 
Zx is the number of mature context antigen presentations for 
antigen type x and Yx is the total number of antigen presented 
for antigen type x.
Previously in [11], it has been shown that the MCAV for 
processes with low numbers of antigen per antigen type 
generates false positives alarms.  In order to reduce these 
false alarms, we introduced an anomaly value which is an 
improvement on the MCAV, by incorporating the number of 
antigen used to calculate the MCAV. This improvement is 
termed the MCAV Antigen Coefficient, MAC. The MAC 
value is calculated from Equation 3 and also ranges between 
zero and one.  As with the MCAV, the closer the MAC value 
to one, the more anomalous the process.





n

i
i

Antigen

x
Antigen

x
MCAV

x
MAC

1

*
(3)

Where MCAVx is the MCAV value for process x and 

x
Antigen is the number of antigen processed by process x.
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4. Methodology

    4.1 Overview

For the purpose of experimentation two different types of 
bots are used, namely spybot [4] and sdbot [21].  These are 
suitable candidate bots as they use a range of malicious 
functionalities such as keylogging, SYN attack and UDP 
attack which are frequently used features by bots. An IRC 
client (IceChat) is used for normal conversation and to send 
files to a remote host which represents normal traffic.  To 
provide suitable data a “hooking” program is implemented to 
capture the required behavioural attributes by intercepting 
specified function calls.  The collected data are processed by 
both the SRC algorithm and the DCA to measure the 
detection performance.

    4.2 Bot Scenarios

Three different scenarios are constructed including inactive 
(E1), attack (E2.1-2.3) and normal (E3) scenarios. The 
attack scenario consists of three sessions: a keylogging attack 
session, a flooding session and a combination session 
comprising both keylogging and packet flooding.
 Inactive bot (E1): The bot on the infected host connects 

to an IRC server and joins a specified channel to await 
commands from its controller, though no attacking 
actions are performed by this idle bot.  Other normal 
applications such as an IRC client, Wordpad, Notepad 
and terminal emulator (CMD) processes are also running 
on this host.

 Keylogging Attack (E2.1): The bot is capable of 
intercepting keystrokes using various methods. Two 
methods of keylogging are used including the 
“GetKeyboardState” (E2.1.a) and “GetAsyncKeyState”
(E2.1.b) function calls. However, detection cannot be 
performed by monitoring these function calls alone, as 
some of legitimate programs often rely on such function 
calls.

 Flooding Attack (E2.2): This involves performing packet 
flooding using the spybot for a SYN flood attack (E2.2.a) 
and the sdbot for a UDP attack (E2.2.b) which emulate 
the behaviour of a machine partaking in a distributed 
denial of service attack.

 Combined Attack (E2.3): In this session, both keylogging 
and flooding attack (SYN flood [E2.3.a] and UDP flood 
[E2.3.b]) are invoked by the bot. Note that the two 
activities can occur simultaneously in this scenario.

 Normal Scenario (E3): This involves having normal 
conversation between the two parties.  It also includes 
transferring a file of 10 KB from one host to another 
through IRC client.  Other applications such as Wordpad, 
Notepad, cmd and the hook program are running on the 
victim host.  Note that no bots are used in this scenario.

    4.3 Signals

Three signal categories are used to define the state of the 
system namely S1, S2 and S3 as described previously in Table 
1, with one data source mapped per signal category.  The 
mapping of raw signals to signals for the algorithm is 
determined via expert knowledge.  These signals are 
collected using a function call interception program. Raw 

data from the monitored host are transformed into log files, 
following a signal normalisation process. The resultant 
normalised signals are in the range of 0 – 100.
In terms of the signal category semantics, S1 (PS) is a strong 
evidence for bad behaviour on a system. Because we focus 
on detecting bots performing keystrokes interception in 
combination with other malicious activities, we have 
classified this activity as our S1.  This signal is derived from 
the rate of change of invocation of selected API function 
calls used for keylogging activity. Such function calls include 
GetAsyncKeyState, GetKeyboardState, GetKeyNameText 
and keybd_event when invoked by the running processes. To 
use this data stream as signal input, the rate values are 
normalised.  For this process nps, (ps is referred to the PS 
signal), is defined as the maximum number of function calls 
generated by pressing a key within one second.
S2 (DS) is derived from the time difference between receiving 
and sending data through the network for each process by 
intercepting the send() and recv() function calls.  Because 
bots respond directly to botmaster commands, a small time 
difference between sending and receiving data is observed.  
In contrast, normal chat between users will have a higher 
response time.  As with S1 signal, the normalisation of S2 

involves calculating a maximum value. For this purpose nds, 
(ds is referred to the DS signal), is the maximum time 
difference between sending a request and receiving a 
feedback.  If the time difference exceeds nds, the response 
time is normal.  Otherwise, the response time falls within the 
abnormality range.
We set up a critical range (0 to nds) that represents an 
abnormal response time.  The zero value is mapped to 100 
max-danger time and nds is mapped to zero min-danger time.  
If the response time falls within the critical value, it means 
that the response is fast and considered to be dangerous.
Finally, S3 (SS) is derived from the time difference between 
two outgoing consecutive communication functions such as 
[(send,send),(sendto,sendto),(socket,socket),(connect,connect
].  This observation is based on bot sending information to 
the botmaster or issues SYN or UDP attacks which generates 
many function calls within a short time period.  Therefore we 
set nss1 and nss2 (ss is referred to SS signal) as a range of a 
time difference between calling two consecutive 
communication functions.  If the time difference is less than 
nss1, the time is classified within amin-safe time.  If the time 
difference falls between nss1and nss2, the time is classified as 
uncertain time.  If the time difference is more than nss2, the 
time is classified as max-safe time. By recording the time that 
a bot responds to the command in most of the experiments 
that we have conducted, we notice that the mean value for 
bot to respond to the command is around 3.226 seconds.  
Therefore, we set up a critical range for S3 signal.  We divide 
our critical range into three sub-ranges.  The first range is 
from zero to nss1where nss1=5 to allow enough time for a bot 
to respond to the attack’s command.  Any value that falls 
within this range is considered as amin-safe time.  The 
second range is where there is uncertainty of response.  The 
uncertainty range is between nss1 and nss2 =20.  The third 
range is that the time difference is above nss2 and is 
considered as a max-safe time.  In this range, we are sure that 
the time difference between two consecutive function calls is 
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generated as a normal response.
In case of S2 and S3 signals, this decision is based on that the 
attacker design the bot to responds to the his/her command 
without adding a short random delay when responding to the 
commands or when flooding other hosts or network.

    4.4 Antigen

For the purpose of bot detection, antigen are derived from 
API function calls, which are similar to system calls. The 
resultant data is a stream of potential antigen suspects, which 
are correlated with signals through the processing 
mechanisms of the DC population. One constraint on antigen 
is that more than one of any antigen type must be used to be 
able to perform the anomaly analysis with the DCA.  This 
will allow for the detection of which type of function call is 
responsible for the changes in the observed input signals.  
The collected signals are a reflection of the status of the 
monitored system.  Therefore, antigen are potential culprits 
responsible for any observed changes in the status of the 
system.  The correlation of antigen signals is required to 
define which processes are active when the signal values are 
modified.  Any process executed a specified function calls, 
the process id which causes the calls is stored as an antigen in 
the antigen log file.  The more active the process, the more 
antigen it generates.  Each intercepted function call is stored 
and is assigned the value of the process ID to which the 
function call belongs and the time at which it is invoked. 
For the SRC algorithm experiments, only the signals (S1, S2, 

S3) log file is used to detect the malicious activities.  In case 
of DCA, signal and antigen logs are combined and sorted 
based on time.  The combined file forms a dataset which is 
passed to the DCA through a data processing client. The 
combined log files are parsed and the logged information is 
sent to the DCA for processing and analysis.

    4.5 Data Collection

A bot is already installed on the victim host, through an 
accidental “trojan horse” style infection mechanism and runs 
as a process whenever the user reboots the system.
An interception program is implemented and run on the 
victim machine to collect the required data.  Two types of log 
files are produced, SigLog and AntigLog.  The SigLog 
presents values S1, S2 and S3 in the following format with an 
example below it:

    <time> < type > <S1> <S2> <S3>
e.g. <0001> <signal> <11> <32> <89>

The AntigLog presents the intercepted API function calls 
with respect to its process ID (PID) in the following format 
with an example below it:

     <time> < type  > <PID> <Function call name>
e.g. <0002> <antigen> <722> <GetAsyncKeyStat() >

After finishing the data collection, the SigLog is passed to 
SRC algorithm for analysis.  In case of DCA, the SigLog and 
AntigLog are merged together and sorted with respect to the 
time and the combined file is passed to the DCA for the 
analysis.  
Three specific types of function calls are intercepted. These 
function calls are as follows:
 Communication functions: socket, connect, send, sendto, 

recv and recvfrom.

 File access functions: CreateFile, OpenFile, ReadFile and 
WriteFile.

 Keyboard (Keys) status functions: GetAsyncKeyState, 
GetKeyboardState, GetKeyNameText and keybd_event.

The communication functions are used because the bots 
needs to communicate with the botmaster in order to send or 
receive information.  In addition, these function calls are 
used in flooding attack.  The file access functions are needed 
because once a bot intercept the user keystrokes, it needs to 
store the intercepted data in a buffer or in a file for future 
access.  The keyboard status functions are needed because 
many existing bots implement the keystrokes logging by 
executing these functions in `user mode' level in windows 
environment.

    4.6 Experiments

The aim of these experiments is to evaluate the performance 
of the SRC algorithm and the DCA on detecting the bot 
running on the system.  Various experiments are conducted 
to verify this aim.  Each experiment is repeated ten times 
which is sufficient, as the results from the repeated 
experiments produce a small variation on standard deviation 
by using Chebyshev’s Inequality.  One dataset is selected 
randomly from each repeated experiments and is passed to 
both the SRC algorithm and the DCA.  Five null hypotheses 
are used for the evaluation as shown in next section.

4.6.1 Null Hypotheses

 Null Hypothesis One (H1): Data collected per dataset 
are normally distributed. The Shaprio-Wilk test is used 
for this assessment.

 Null Hypothesis Two (H2): The SRC algorithm is able 
to detect the existence of bot when correlating different 
attributes.

 Null Hypothesis Three (H3): The DCA algorithm using 
the MCAV/MAC values for the normal processes are not 
statistically different from those produced by the bot 
process. This is verified through the performance of a 
two-sided Mann-Whitney test.

 Null Hypothesis Four (H4): Variation of the signal 
weights in DCA algorithm as described in Table 2
produces no observable difference in the resultant 
MCAV/MAC values and the detection accuracy. 
Wilcoxon signed rank tests (two-sided) are used to 
verify this hypothesis.

 Null Hypothesis Five (H5): There is no difference 
between the SRC algorithm and DCA in terms of 
performance on detecting bot.

    4.7 System Setup

In all DCA experiments, the parameters used are identical to 
those implemented in [14], with the exception of the weights.  
All experiments are performed in a small virtual IRC network 
on a VMware workstation.  The VMware workstation runs 
under a Windows XP P4 SP2 with 2.4 GHz processor.  The 
virtual IRC network consists of two machines, one IRC 
server and one infected host machine. Two machines are 
sufficient to perform these experiments as one host is 
required to be infected and the other to be an IRC server to 
issue commands to the bot in question.  The statistical 
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analyses are performed using R statistical computing package 
(v.2.6.0).

5. Results and Analysis

Upon the application of the Shapiro-Wilk test to each of the 
datasets, the resultant p-values imply that the distribution of 
the datasets is not normal. Therefore, the null hypothesis one 
(H1) is rejected. As a result of this, further tests with these 
data use non-parametric statistical tests such as the Mann-
Whitney test, also using 95% confidence.

    5.1 Spearman’s Rank Correlation - SRC

Our assumption is that calling GetAsyncKeyState() or 
GetKeyboardState() functions by an unknown running 
program may represent abnormal behaviour in our system.  
This is because many of the current logging techniques in 
user-mode level in windows environment use these two 
function calls to perform keylogging activities.  However, we 
consider that calling these functions generate only a “weak”
alert because other legitimate programs may use the same 
API function calls.  Therefore, the correlation of different 
types of bot behaviour is needed to enhance the detection 
confidence to form a “strong” alert.
In our experiments, we use the SRC algorithm to correlate 
two different datasets.  The first dataset is PS and SS signals 
(S1, S3) dataset while the second dataset is DS and SS signals 
(S2, S3) dataset. In both datasets, we compare S1 and S2 with 
S3 because the existing of S3 suppresses the effect of other 
two signals.
We analyse the results of the experiments described in 
Section 4.2. Table 3 represents the SRC value between the 
two datasets, (S1, S3) and (S2, S3), in each experiment.  In this 
table, we have two sets of results.  In set Set1, we correlate 
all the captured data from our algorithm including the idle 
period.  In this period, no activity is seen, therefore, we 
assign a zero value to this period.  This is represented by (Z) 
columns.  In set Set2, we remove all the idle periods which 
have zeros (NZ columns) and apply the SRC algorithm to the 
new data.  The reason for having the two sets is that having 
the idle periods in our data increases the correlation value.  
This is because there are many places where no activity is 
noticed in both datasets, which may produce inaccurate 
correlation.  Therefore, we wanted to investigate the effect of 
having no idle periods.
The Keylogging Activity column represents the situation 
where the process calls any function used to intercept the 
keystrokes.  As a result, we classify our API detection
confidence into three cases:
 Normal detection (Normal): Keylogging activity is not 

detected and either low or high correlation value is 
noticed.

 Weak detection (Weak):   Keylogging activity is detected 
but a low correlation is noticed in both datasets.

 Medium detection (Medium): Keylogging activity is 
detected but a high correlation is noticed in one dataset.

 Strong detection (Strong): Keylogging activity is detected 
but a high correlation is noticed in both datasets.

As mentioned in section 3.1, a high correlation is considered 
if the SRC value exceeds the threshold (0.5).  From Table 3, 

if we consider Set2, we see a high correlation value between 
(S1, S3) and (S2, S3) in experiment E1.  This is because the bot 
was inactive during all the time period.  The only traffic 
generated by the bot is the PONG message to avoid 
disconnection from the IRC server.  Therefore, the 
correlation value is expected to be high as well. We consider 
this situation as a “normal” case.
In experiment E2.1.a/b, the bot intercepts the user keystrokes 
and sends the data to the botmaster.  As a result, a high 
correlation value is expected and “strong” detection is 
generated.

Exper-
iment

SRC(S1,S3) SRC(S2,S3) Keylog.
Activities
existence

API 
Detection
Confid.

Set1
  (Z)

Set2
(NZ)

Set1
(Z)

Set2
(NZ)

E1 0.98 0.72 0.96 0.87 No Normal
E2.1.a
E2.1.b

0.61
0.62

0.85
0.87

0.74
0.75

0.69
0.74

Yes
Yes

Strong
Strong

E2.2.a
E2.2.b

0.64
0.55

0.51
0.50

0.60
0.53

0.59
0.51

No
No

Normal
Normal

E2.3.a
E2.3.b

0.11
0.20

0.17
0.32

0.50
0.58

0.52
0.57

Yes
Yes

Medium
Medium

E3 0.99 0.50 0.97 0.58 No Normal

Table 3. The results of applying SRC on dataset signals (S1,

S3) and (S2, S3).

In experiment E2.2.a/b, we notice a high correlation value on 
both datasets.  This situation is expected because the attacker 
issues a SYN attack and a UDP attack.  The bot responds by 
generating a large number of same communication function 
calls for a long period. No keylogging activity is detected 
during this period.  As a result, a “normal” case is indicated.  
This situation represents the false negative case as it 
incorrectly classified as normal.
Experiment E2.3.a/b shows a combined keylogging and 
SYN/UDP attack activities.  The correlation value of (S1, S3) 
is low compared to experiment E2.2.a/b.  This is because the 
bot is intercepting keystrokes and performing the SYN/UDP 
attack simultaneously.  As a result, the two datasets were 
noisy which generate a “medium” detection case.
The last experiment E3 shows the result of applying SRC 
algorithm on the IceChat client.  Even though we have a high 
correlation value before and after removing idle periods on 
both experiments, we did not detect the use of keylogging 
function calls.  Notice that we do not have a “weak” scenario 
in this case.
In summary, we notice that some experiments produce low 
correlation values.  There are many reasons for this.  The first 
reason is that different events occur in different time-
windows.  As a result, SRC algorithm produces inaccurate 
results.  The second reason is that some signals are varying 
differently influencing the correlation value.  Meanwhile, we 
have many idle periods in our datasets, increasing the 
correlation value which affects our detection scheme.  To 
improve this, we need to apply a more intelligent correlation 
scheme, as described in the next section. As a result, we can 
not reject or accept the Null Hypothesis Two (H2) as we 
need a strong correlation algorithm to perform a better 
indication of malicious behaviour.
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    5.2 DCA

The results from the DCA experiments are shown in Table 3 
and Table 4.  The mean MCAV and the mean MAC values 
for each process are presented, derived across the ten runs 
performed per scenario.

Exper-
iment

Pro-
cess

Out-
put
Antgn

mean Mann-Whitney
(p-value)

MCAV MAC MCAV MAC

E1 Bot
IRC

35
24

0.0978
0.0625

0.0578
0.0255 0.1602 0.0202

E2.1.a Bot
IRC

1329.7
59

0.4736
0.2881

0.4542
0.0122 0.0002 0.0002

E2.1.b Bot
IRC
Cmd
Note-
pad
Word-
pad

1296.2
464.9
8.9
239.4

268.8

0.5441
0.5284
0.7889
0.6916

0.8286

0.2098
0.1077
0.0031
0.0726

0.0977

0.0089
0.0002
0.0002

0.0002

0.0002
0.0002
0.0002

0.0002

E2.2.a Bot
IRC
cmd

19206
18
9.8

0.6047
0.3441
0.2889

0.6038
0.0003
0.0002

0.0002
0.0003

0.0000
0.0000

E2.2.b Bot
IRC

5790.5
19

0.4360
0.2772

0.4346
0.0009 0.0002 0.0000

E2.3.a Bot
IRC

41456
20.5

0.8218
0.5480

0.8214
0.0003 0.0002 0.0000

E2.3.b Bot
IRC
Cmd
Note-
pad
Word-
pad

22446
59.1
9.7
23.1
233.6

0.9598
0.7802
0.6300
1.0000

0.8801

0.9461
0.0021
0.0003
0.0010

0.0090

0.0000
0.0002
0.0001

0.0002

0.0002
0.0002
0.0002

0.0002

E3 IRC 135.5 0.1136 0.1136 N/A N/A

Table 4. The results of the MCAV/MAC values generated 
from DCA based on signal weights (WS3).  Values on bold

font are not significant.

For all scenarios E1-E3, a comparison is performed using the 
results generated for the bot versus all other normal processes 
within a particular session as shown in Table 4. In this table, 
the computed p-values using an unpaired Mann-Whitney test 
are presented, with those results deemed not statistically 
significant marked in bold font. In experiment E1, no 
significant differences is noticed between the resultant 
MCAV values for the inactive bot and the normal IRC 
process, and so for this particular scenario the Null 
Hypothesis Three (H3) cannot be rejected for the reason of 
having small number of antigen produced by both processes 
to give an accurate description of the state of the monitored 
host. This is supported by the fact that the MAC values differ 
significantly for this experiment. This implies that the MAC 
is a useful addition to the analysis as it allowed for the 
incorporation of the antigen data, which can influence the 
interpretation of the results.
Significant differences are shown by the low p-values 
presented in Table 4 for experiments E2.1.a and E2.1.b for 
both the MAC and MCAV coefficient values, where the 
sample size is equal to ten. The differences are further 
pronounced in the generation of the MAC values, further 
supporting its future use with the DCA. We can conclude 
therefore, that the DCA can be used in the discrimination 
between normal and bot-directed processes and that the DCA 
is successful in detecting keylogging activities. This trend is 

also evident for scenarios E2.2.a/b and E2.3.a/b, where the 
bot process MCAV and MAC values are consistently higher 
than those of the normal processes, IRC and notepad 
inclusive. This information is also displayed in Figure 1 and 
Figure 2 respectively.  This implies that in addition to the 
detection of the bot itself the DCA can detect the 
performance of outbound scanning activity. Therefore the 
Null Hypothesis Three (H3) can be rejected as in the 
majority of cases the DCA successfully discriminates 
between normal and bot processes, with the exception of E1 
because of the extrusion approach that we are taking.

Figure 1. The MCAV values of bot and IRC client generated 
by DCA based on the weights (WS3).

Figure 2.The MAC values of bot and IRC client generated 
by DCA based on the weights (WS3).

Table 5 and Table 6 include the results of the sensitivity 
analysis on the weight values for the bot process. The aim of 
these experiments is to examine the effect of varying weight 
signals on to the DCA detection performance.  Different 
values have been generated randomly to see the effect of 
increasing or decreasing S1, S2 and S3 weight signals for 
O1=csm, O2=semi-mature and O3=mature cell.  

Experiment WS1 WS2 WS3 WS4 WS5

E1 0.05 0.08 0.10 0.11 0.14
E2.1.a 0.10 0.20 0.47 0.55 0.76
E2.1.b 0.38 0.41 0.54 0.59 0.80
E2.2.a 0.55 0.31 0.60 0.93 0.93
E2.2.b 0.30 0.18 0.43 0.59 0.94
E2.3.a 0.88 0.63 0.82 0.91 0.99
E2.3.b 0.95 0.94 0.95 0.96 0.99

Table 5. Weight sensitivity analysis for the bot’s MCAV 
values.

For example, in case of O1, we have increased and decreased 
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the weight value of S1, S2 and S3 to the point that reaches the 
steady state where further increase and decrease to these 
values will not have a large impact on the MCAV/MAC 
values.

Experiment WS1 WS2 WS3 WS4 WS5

E1 0.03 0.05 0.06 0.07 0.08
E2.1.a 0.09 0.19 0.45 0.52 0.73
E2.1.b 0.22 0.23 0.31 0.33 0.46
E2.2.a 0.55 0.31 0.60 0.92 0.93
E2.2.b 0.29 0.18 0.43 0.58 0.94
E2.3.a 0.88 0.63 0.82 0.91 0.99
E2.3.b 0.94 0.93 0.95 0.95 0.97

Table 6. Weight sensitivity analysis for the bot’s MAC
values.

The values presented in Tables 5 and 6 are mean values taken
across the ten runs per session (E1-E2). An arbitrary 
threshold is applied at 0.5; values above this threshold deem 
the process anomalous, and below as normal. From these 
data, it is shown that changing the weights used in the signal 
processing equation has significant effect on the performance 
of the system. For example, in the case of session E2.1.a, 
weight set WS1 produces a MAC value of 0.09 for the bot yet 
produces a value of 0.73 for WS5. This increase is likely to 
reduce the rate of false negatives. To further explore these 
effects, the resultant data are plotted as boxplots as the data 
are not normally distributed. To assess the performance of 
the DCA as an anomaly detector the results for the 
anomalous bot and the normal IRC client are shown for the 
purpose of comparison. For these boxplots, the central line 
represents the median value, with the drawn boxes 
representing the interquartile ranges.
In Figure 3 the median MCAV values are presented, derived 
per session across the ten runs performed for each WS 
(n=50).   

Figure 3. The mean MCAV values for the bot and IRC client 
generated by DCA using different signal weight values (WS1-

WS3).

For the bot process, the MCAV is low for session E1, in-line 
with previous results. For E1, variation in the weights does 
not influence the detection results, as this process has low 
activity and therefore does not generate any great variation in 
the signals.  Therefore, without input variation, the output 
does not vary in response to changing the manner in which 
the input is processed. This is also evident in Figure 4 when 
using the bot’s MAC values.

Figure 4.The mean MAC values for the bot and IRC client 
generated by DCA using different signal weight values (WS1-

WS3).

For all other sessions, much greater variation is observed 
upon weight modification, as shown by the large interquartile 
ranges produced for both MCAV and MAC values of the bot 
processes. While the similar trends are shown across the 
sessions in the MCAV of the IRC client, differences are 
evident for the MAC value. In Figure 4 (Bot’s mean MAC 
values) it is evident that all sessions have low MACs for this 
process across all weight sets. Therefore as the weights are 
modified, there is a greater influence on the anomalous 
processes than on the normal processes. Should the arbitrary 
threshold applied to the MAC values be set at 0.2 as opposed 
to 0.5, then the performance of the DCA on botnet detection 
is good, producing low rates of false positives and high rates 
of true positives.
Finally, to verify these findings statistically, each set of 
results per session per weight are compared exhaustively 
using the non-parametric Wilcoxon signed rank test. For each 
test performed the resultant p-value is less than 0.001. This 
allows us to conclude that modification of the weights has a 
significant effect on the output of the DCA when applied to 
this detection problem, and leads to the rejection of Null 
Hypothesis Four (H4).

    5.3 SRC Algorithm and the DCA Performance

From the results obtained, even though that both algorithms 
were able to detect the malicious behaviours by correlating 
different attributes, we notice that the DCA has a better 
performance over the SRC algorithm when detecting the bot 
by reducing the number of false alarms and classifying 
processes into normal and malicious.  Therefore, the Null 
Hypothesis Five (H5) can be rejected.

6. Conclusion

In this work, we try to evaluate the performance of two 
correlation algorithms on bots detection by correlating 
different activities which inhibits malicious behaviour.  After 
collecting our datasets, we pass the captured data to a 
Spearman’s rank correlation (SRC) algorithm.  Although 
SRC algorithm is a simple method to examine the correlation 
level, the results were promising.  However, some 
experiments show a low correlation values.  This is because 
different activities occur in different time-windows.  As a 
result, high false negative values could be generated.  
We applied the same datasets to the DCA to evaluate its 
detection accuracy and performance in comparison to SRC 
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by exploring different null hypotheses.  It is shown that the 
DCA is capable of discriminating between bot and normal 
processes on a host machine.  Additionally, the incorporation 
of the MAC value has a significantly positive effect on the 
results, significantly reducing false positives. Finally, the 
modification of the weights used in the signal processing
component has a significant effect on the results of the 
algorithm.  In addition, we noticed that appropriate weights 
for this application include high values for the safe signal

(SS) weight which appears to be useful in the reduction of 
potential false positives without generating false negative 
errors.  We can conclude that the performance of correlating 
different activities using DCA is better than SRC algorithm.  
We are now aiming to apply the DCA to the detection of 
“peer-to-peer” bots, which pose an interesting problem as the 
use of peer-to-peer networks increases.
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