
Al-Hammadi, Yousof and Aickelin, Uwe and Greensmith,
Julie (2010) Performance evaluation of DCA and SRC
on a single bot detection. Journal of Information
Assurance and Security, 5 (1). pp. 265-275. ISSN 1554-
1010

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/1284/1/al-hammadi2010b.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Performance Evaluation of DCA and SRC on a
Single Bot Detection

Yousof Al-Hammadi, Uwe Aickelin and Julie Greensmith

Intelligent Modelling & Analysis (IMA) Group
School of Computer Science, The University of Nottingham,

Wollaton Road, NG8 1BB, Nottingham, UK
{yxa,uxa,jqg}@cs.nott.ac.uk

Abstract: Malicious users try to compromise systems using new
techniques. One of the recent techniques used by the attacker is to
perform complex distributed attacks such as denial of service and to
obtain sensitive data such as password information. These
compromised machines are said to be infected with malicious
software termed a “bot”. In this paper, we investigate the
correlation of behavioural attributes such as keylogging and packet
flooding behaviour to detect the existence of a single bot on a
compromised machine by applying (1) Spearman’s rank correlation
(SRC) algorithm and (2) the Dendritic Cell Algorithm (DCA). We
also compare the output results generated from these two methods
to the detection of a single bot. The results show that the DCA has a
better performance in detecting malicious activities.

Keywords: Security, Intrusion Detection, Botnet, Bot, Dendritic
Cell Algorithm (DCA).

1. Introduction

Computer systems and networks come under frequent attack
from a diverse set of malicious programs and activity such as
viruses and worms [10]. The detection of such threat is
improving in the area of network and computer security.
Recently, a new threat has emerged in the form of the botnet.
Botnets, which are groups of distributed bots, are controlled
remotely by a central commander, termed the “botmaster”. A
single bot, a term derived from robot, is a malicious piece of
software which, when installed on a compromised host,
transforms host into a zombie machine. This zombie
machine is remotely controlled by the attacker.
Bots use different types of networking protocols for the
communication component of their Command and Control
(C&C) structure such as Internet Relay Chat (IRC), HTTP
and more recently Peer-to-Peer (P2P). In this research we
are primarily interested in the detection of bots which use
IRC protocol as they appear to be highly prevalent within the
botnet community. IRC [17] is a chat based protocol
consisting of various “channels” to which a user of the IRC
network can connect. The attacker programs his bots to
connect to the IRC server and joins the specified channel
waiting for his commands. Once the attacker joins the same
channel, he starts to issue various commands and all
available bots on that channel respond to these commands
through C&C structure. In early implementations, bots were
used to perform distributed denial of services attacks (DDoS)
using a flood of TCP SYN, UDP or ICMP “ping” packets in
an attempt to overload the capacity of computing resources.

Recent bots are developed complete with advance features
such as keylogging for closely monitoring user behaviour
including the interception of sensitive data such as
passwords, monitoring mouse clicks and the taking of
screenshots of secure websites. Many Anti-Virus packages
cannot detect a stealthy keylogging activity on the system.
The user has no way to determine if his machine is running a
keylogger, therefore, he could easily become a victim of the
identity theft.
Many existing botnet/bot techniques use different types of
signatures-based detection by analysing network traffic in
order to detect botnets as in [6][9][20]. These detection
techniques can be evaded by either changing the bot’s
signatures or encrypting the bot’s traffic when
communicating with the attacker. In addition, a bot can
connect to non-standard ports to make the detection more
difficult. Rather than detecting botnet by monitoring and
analysing network traffic looking for bots’ signatures, our
work focuses on the detection of a single bot formulated as a
host-based intrusion detection problem, and avoid the
technical problems of administrating a highly infective
network within an academic environment. To perform this
research, we rely on principles of “extrusion detection”
where we do not attempt to prevent the bot from gaining
access to the system, but we detect it as it attempts to operate
and subvert the infected host. This procedure involves
monitoring different bot’s behaviours within specified time
window such as potential keylogging activity and fast
reaction to the received network information.
In order to detect the bot on the infected machine, correlating
bots’ behavioural attributes is needed. The concept of
correlation attributes within specified time-window increases
the level of malicious behaviour activities as depending on
one process attribute may generate large number of false
alarms. This is also lead to the challenge of choosing the
right correlation algorithm which enhances the detection of
malicious program.
In previous work [2][3], we introduce two different
algorithms to correlate the behaviour of the bot running on
the infected system. In this work, we compare and evaluate
the performance of the two correlation algorithms on bot
detection, including Spearman’s rank correlation (SRC) and
the DCA. The SRC algorithm examines the correlation of
different processes behaviours by monitoring specified
function calls executed by running processes on a single
machine. DCA has been applied to many problems

Journal of Information Assurance and Security 5 (2010) 303-313

 Received December 03, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc.

particularly in the area of intrusion detection in computer
security. The DCA is a more intelligent way of fusing and
correlating information from disparate sources. The immune
inspired DCA implemented by Greensmith et at. [12] is
based on an abstract model of the behaviour of dendritic cells
(DCs) [22]. These cells are the natural intrusion detection
agents of the human body, which activate the immune system
in response to the detection of damage to host tissues. As an
algorithm, the DCA performs multi-sensor data fusion on a
set of input “signals”, and this information is correlated with
potentially anomalous “suspect entities” which we term
“antigen”. This results in information which will state not
only if an anomaly is detected, but in addition the culprit
responsible for the anomaly. Given the success of this
algorithm at detecting scanning activity in computer networks
as in [13][14], we will examine the DCA as a solution to
correlate different behaviours of a single bot running on a
machine.
The aim of this paper is to investigate the effect of
correlating bot’s behavioural attributes by applying two
specified correlation algorithms to the detection of a single
bot. For these experiments the basis of classification is
facilitated through the correlation of different activities such
as keystrokes interception, how fast the program executes
certain communication function calls and how fast is the
program react when receiving information. Our results show
that correlating behaviours exhibited by a single bot can
enhance the detection of malicious processes on the system to
determine the presence of a bot infection and to identify the
processes involved in the bot’s actions.
This paper is structured as follows: Section two discusses
existing bot detection techniques. Section three describes
detection methods that are used to detect a single bot on the
system. We present our methodology of bot detection and
explain the conducted experiments in section four. Our
results and analysis are presented in section five and we
summarize and conclude in section six.

2. Related Work

Existing research conducted in bot detection concentrates on
detecting botnets rather than an individual bot as noted by
[1][7][8]. The majority of these techniques use signature-
based approaches for botnet detection by analysing network
traffic looking for well know signatures. Although this
approach is a useful mechanism for bot detection, it is limited
if the network packet data is encrypted.
Previous work presented by Barford [4] represents a good
introduction to understanding and analysing the behaviours
of bots. Freiling et al. [8] collect bot binaries by using a non-
productive resource (honeypot), to analyse bot traffic and
infiltrate botnet by emulating bot activities.
Cooke et al. [7] performs bot detection through payload
analysis using pattern matching of known bot commands and
in addition examines a system for evidence of non-human
characteristics. While they suggested that correlating data
from different sources would be beneficial for the detection
of a single bot, they did not provide information regarding
how this correlation should be performed. Goebel and Holz
[9] monitor and classify IRC traffic based on suspicious IRC

nicknames, IRC servers and non-standard server ports using
regular expressions.
Anomaly detection plays an important rule on detecting the
presence of a bot [5], where deviations from a defined
“normal” are classed as an anomaly. An approach for
detecting bots using behavioural analysis is presented by
Racine [19] which classifies inactive clients and their
subsequent assignment to a network connection.
Gu el at. introduce the BotHunter [15], which examines the
behaviour history of each distinct host to find correlated
evidence of malware infection and the BotSniffer [16], which
correlates common bot activities such as coordinated
communication, propagation and attack in network traffic.
In summary the majority of techniques for the detection of a
single bot uses signature-based detection by analysing
network packets. These techniques are limited in case if
packet streams are encrypted. Current behaviour-based
approaches are also limited, generating high rates of false
positives, which have the potential to slow down or denial of
service a system. We believe that correlating relevant
behavioural attributes with programs potentially involved
with a bot infection can enhance the detection mechanism.

3. Bot Detection Methods

Existing research techniques detect the presence of bots via
network monitoring and analysis. Rather than attempting to
detect bots via network analysis, our work focuses on
detecting an individual bot running on a machine by
monitoring and correlating different activities on the system.
In this section, we will describe two algorithms which apply
correlation techniques to detect abnormal behaviour in our
system.

3.1 Spearman’s Rank Correlation - SRC

The Spearman’s rank correlation (SRC) algorithm to detect
the bot is described in Algorithm 1.

S1: keystrokes interception
S2: how fast the bot responds to attacker
commands
S3: how fast the bot repeats the same
communication function calls

if (KeyboardState function(s) is executed /*
i.e. keylogging activity*/)
{
if (SRC(S1,S3)>Threshold && SRC(S2,S3)>Threshold)
{

Strong Detection
}
 elseif (SRC(S1,S3)<Threshold && SRC(S2,S3)<
 Threshold)
{

Weak Detection
}
 elseif ((SRC(S1,S3)<Threshold && SRC(S2,S3)>
 Threshold) || (SRC(S1,S3)>Threshold &&
SRC(S2,S3)< Threshold))

{
Medium Detection

}
}
else

No detection and normal activity is
 considered
end

Algorithm 1. SRC Algorithm for detecting Bot.

304 Al-Hammadi, Aickelin and Greensmith

SRC is a statistical measure of correlation which uses
threshold function to describe the relationship between two
variables. In order to detect a bot in a system, different bot
behaviours are correlated to generate a high correlation value
represented by SRC value. Such behaviours include
intercepting user keystrokes, how fast the bot responds to the
attacker commands and how fast it executes same function
calls. In our case, if SRC value exceeds a certain threshold
level, a high correlation between the two different behaviours
is generated. According to SRC algorithm, the threshold
level of 0.5 or higher represents a strong correlation between
two events.
The aim of SRC experiments is to verify the notion that
correlating different behaviours of a single process indicates
abnormal activity. In addition, we apply the monitoring and
correlation scheme to a normal application to verify that the
normal application behaves differently from the malicious
process which results in having different correlation value.
The obtained results are compared with DCA results.

 3.2 The Dendritic Cell Algorithm - DCA

3.2.1 Algorithm Overview

Artificial Immune Systems (AIS) are algorithms inspired by
the behaviour of the human immune system. The biological
immune system tries to protect the body from the attack
against any invading pathogen, viruses and bacterias. AIS
have been applied to problems in computer security since
their initial development in the mid-1990’s.
A recent addition to the AIS family is the Dedritic Cell
Algorithm (DCA) implemented by Greensmith et al. [2].
DCA is inspired by the function of the Dendritic Cells (DCs)
of the innate immune system and uses principles of a key
novel theory in immunology termed the danger theory
described by Matzinger [18]. The danger theory suggests
that the DCs are the first line defense against invaders and the
response is generated by the immune system upon the receipt
of molecular information which indicates the presence of
stress or damage in the body. The interested reader can refer
to [11] for a detailed description of the DCA. In this section
we provide an overview of the operation of the algorithm.
When viewed from a computational prospective, DCs are
anomaly detector agents, which are responsible for data
fusion and generating appropriate actions in response to the
attack in the human body. In nature DCs exist in one of three
states: immature, semi-mature and mature. The initial
maturation state of a DC is immature for sensing and
processing three categories of input signals (see Table 1) and
in response produces three output signals. The three input
signals can influence the behaviour of DCs sensitivity.
The first two input signals are S1 and S2. S1 signal is derived
from the detection of pathogens while S2 signal is generated
from the unexpected cell death of damage to the tissue cells.
The third input signal is S3 which is molecules released as a
result of normal cell death. During immature lifespan
collecting signals, if the DC has collected majority of S3, it
will change state to a semi-mature state and suppress the
activation of the immune system. Conversely, cells exposed
to S1 and S2 signals transforms into a mature state and can
instruct the immune system to activate.

Signal
Name

Symbol Definitions

Pathogen
Associated
Molecular
Patterns

S1=PS A strong evidence of abnormal/bad
behaviour. An increase in this signal
is associated with a high confidence
of abnormality.

Danger
Signal

S2=DS A measure of an attribute which
increases in value to indicate
deviation from usual behaviour. Low
values of this signal may not be
anomalous, giving a high value
confidence of indicating abnormality.
S2 has less effect on the output signal
than S1 signal.

Safe
Signal

S3=SS A measure which increases value in
conjunction observed normal
behaviour. This is a confident with
indicator of normal, predictable or
steady-state system behaviour. This
signal is used to counteract the effects
of S1 and S2 signals and thus has
negative impact on the output signals.

Table 1. Signals Definition

While in immature state, DCs capture the suspect entities
(termed “antigen”) and combine them with evidence of
damage in the form of signals to provide information about
how “dangerous” a particular protein is to the host body.
Antigen collected by the semi-mature DCs are presented in a
“safe” context while antigen presented by mature DCs are
presented in a “dangerous” context.
In terms of the algorithm, the DCA is a population based
algorithm which performs anomaly detection based on the
indication of abnormality of the system by aggregating and
performing asynchronous correlation of signals with the
suspects antigen. Signal processing occurs within DCs of the
immature state. Each DC in the immature state performs
three functions as follows:
 To sample antigen by collecting antigen from an external

source and transfers the antigen to its own antigen storage
facility.

 To update input signals in which the DC collects values
of all input signals present in the signal storage area.

 To calculate temporary output signal values from the
received input signals, with the output values then added
to form the cell’s cumulative output signals.

The transformation from input to output signal per cell is
performed using a simple weighted sum (Equation 1)
described in detail in [14] with the corresponding weights
given in Table 2 (WS3). These weights determine the value
of the output and derived from preliminary observation that
defines the danger level of the input signals.

3

1
)*(

i
jk

i
SijkW

i
O (1)

Where:
 W is the signal weight of the category i
 i is the input signal category (S1=PS, S2=DS and S3=SS)
 k is the weight set index WSk as shown in Table 2 (k =1 to

305Performance Evaluation of DCA and SRC on a Single Bot Detection

5)
 Oj is the output concentrations of one of the following

signal:
 j=1 costimulatory signal (csm)
 j=2 a semi-mature DC output signal (semi)
 j=3 mature DC output signal (mat)

Signal WS1 WS2 WS3 WS4 WS5

O1(csm)
S1

S2

S3

2
1
2

4
2
6

4
2
3

2
1
1.5

8
4
0.6

O2(semi)
S1

S2

S3

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

O3(mat)
S1

S2

S3

2
1
-3

8
4
-12

8
4
-6

8
4
-6

16
8
-1.2

Table 2. Weight Sensitivity Analysis.

In the algorithm, the signal values are assigned real valued
numbers and the antigen are assigned as categorical values of
the object to be classified. The algorithm has three different
stages, the initialization stage, the data processing and the
analysis stage. In the initialization stage, the algorithm
generates DCs population where each cell is assigned a
random “migration” threshold. The input data forms the
sorted antigen and signals (S1, S2 and S3) with respect to the
time and passed to the processing stage. Each DC performs
an internal correlation between signals and antigen with
respect to a specified time window determined by the
migration threshold, signals and antigen. To cease data
collection, a DC must have experienced signals, and in
response to this express output signals. As the level of input
signal experienced increases, the probability of the DC
exceeding its lifespan also increases. The level of signal
input is mapped as a cumulative O1 value. Once O1 exceeds a
migration threshold value, the cell ceases signal and antigen
collection and is removed from the population and enters the
maturation stage. Upon removal from the population the cell
is replaced by a new cell, to keep the population level static.
A high concentration of S1 and S2 increases the probability of
immature cells to become mature cells while a more
concentration of S3 imposes the immature cells to become
semi-mature cells. Therefore, if O2 > O3 , the DC is termed
“semi-mature” cell. Antigen presented by semi-mature cell is
assigned a context value of zero. In contrast, O2 < O3 leads to
a “mature” cell and antigen presented by mature cell is
assigned a context value of one. The detection of anomaly is
based on having more mature cells than semi-mature cells in
which the antigen in a mature context is detected. The
pseudo code for the functioning of a single cell is presented
in Algorithm 2.
The final stage involves calculating an anomaly coefficient
per antigen type - termed the mature context antigen value,
MCAV once all antigen and signals are processed by the cell
population, an analysis stage is performed. The derivation of
the MCAV per antigen type in the range of zero to one is
shown in Equation 2.

input: Sorted antigen and signals
(S1=PS,S2=DS,S3=SS)
output: Antigen and their context (0/1)

Initilize DC;

foreach cell in DC population
{
 while CSM output signal (O1) < migration
threshold

 {
 get antigen;
 store antigen;
 get signals;
 calculate interim output signals;
 update cumulative output signals;
 }
 cell location update to lymph node;

 if semi-mature output (O2) > mature output(O3)
 cell context is assigned as 0 ;
 else
 cell context is assigned as 1 ;

kill cell;

 replace cell in population;
}

Algorithm 1. DCA Algorithm for detecting Bot.

The closer this value is to one, the more likely the antigen
type is to be anomalous. A threshold is applied to distinguish
between anomalous and normal type of antigen.

x
Y

x
Z

x
MCAV (2)

Where MCAVx is the MCAV coefficient for antigen type x,
Zx is the number of mature context antigen presentations for
antigen type x and Yx is the total number of antigen presented
for antigen type x.
Previously in [11], it has been shown that the MCAV for
processes with low numbers of antigen per antigen type
generates false positives alarms. In order to reduce these
false alarms, we introduced an anomaly value which is an
improvement on the MCAV, by incorporating the number of
antigen used to calculate the MCAV. This improvement is
termed the MCAV Antigen Coefficient, MAC. The MAC
value is calculated from Equation 3 and also ranges between
zero and one. As with the MCAV, the closer the MAC value
to one, the more anomalous the process.

n

i
i

Antigen

x
Antigen

x
MCAV

x
MAC

1

*
(3)

Where MCAVx is the MCAV value for process x and

x
Antigen is the number of antigen processed by process x.

306 Al-Hammadi, Aickelin and Greensmith

4. Methodology

 4.1 Overview

For the purpose of experimentation two different types of
bots are used, namely spybot [4] and sdbot [21]. These are
suitable candidate bots as they use a range of malicious
functionalities such as keylogging, SYN attack and UDP
attack which are frequently used features by bots. An IRC
client (IceChat) is used for normal conversation and to send
files to a remote host which represents normal traffic. To
provide suitable data a “hooking” program is implemented to
capture the required behavioural attributes by intercepting
specified function calls. The collected data are processed by
both the SRC algorithm and the DCA to measure the
detection performance.

 4.2 Bot Scenarios

Three different scenarios are constructed including inactive
(E1), attack (E2.1-2.3) and normal (E3) scenarios. The
attack scenario consists of three sessions: a keylogging attack
session, a flooding session and a combination session
comprising both keylogging and packet flooding.
 Inactive bot (E1): The bot on the infected host connects

to an IRC server and joins a specified channel to await
commands from its controller, though no attacking
actions are performed by this idle bot. Other normal
applications such as an IRC client, Wordpad, Notepad
and terminal emulator (CMD) processes are also running
on this host.

 Keylogging Attack (E2.1): The bot is capable of
intercepting keystrokes using various methods. Two
methods of keylogging are used including the
“GetKeyboardState” (E2.1.a) and “GetAsyncKeyState”
(E2.1.b) function calls. However, detection cannot be
performed by monitoring these function calls alone, as
some of legitimate programs often rely on such function
calls.

 Flooding Attack (E2.2): This involves performing packet
flooding using the spybot for a SYN flood attack (E2.2.a)
and the sdbot for a UDP attack (E2.2.b) which emulate
the behaviour of a machine partaking in a distributed
denial of service attack.

 Combined Attack (E2.3): In this session, both keylogging
and flooding attack (SYN flood [E2.3.a] and UDP flood
[E2.3.b]) are invoked by the bot. Note that the two
activities can occur simultaneously in this scenario.

 Normal Scenario (E3): This involves having normal
conversation between the two parties. It also includes
transferring a file of 10 KB from one host to another
through IRC client. Other applications such as Wordpad,
Notepad, cmd and the hook program are running on the
victim host. Note that no bots are used in this scenario.

 4.3 Signals

Three signal categories are used to define the state of the
system namely S1, S2 and S3 as described previously in Table
1, with one data source mapped per signal category. The
mapping of raw signals to signals for the algorithm is
determined via expert knowledge. These signals are
collected using a function call interception program. Raw

data from the monitored host are transformed into log files,
following a signal normalisation process. The resultant
normalised signals are in the range of 0 – 100.
In terms of the signal category semantics, S1 (PS) is a strong
evidence for bad behaviour on a system. Because we focus
on detecting bots performing keystrokes interception in
combination with other malicious activities, we have
classified this activity as our S1. This signal is derived from
the rate of change of invocation of selected API function
calls used for keylogging activity. Such function calls include
GetAsyncKeyState, GetKeyboardState, GetKeyNameText
and keybd_event when invoked by the running processes. To
use this data stream as signal input, the rate values are
normalised. For this process nps, (ps is referred to the PS
signal), is defined as the maximum number of function calls
generated by pressing a key within one second.
S2 (DS) is derived from the time difference between receiving
and sending data through the network for each process by
intercepting the send() and recv() function calls. Because
bots respond directly to botmaster commands, a small time
difference between sending and receiving data is observed.
In contrast, normal chat between users will have a higher
response time. As with S1 signal, the normalisation of S2

involves calculating a maximum value. For this purpose nds,
(ds is referred to the DS signal), is the maximum time
difference between sending a request and receiving a
feedback. If the time difference exceeds nds, the response
time is normal. Otherwise, the response time falls within the
abnormality range.
We set up a critical range (0 to nds) that represents an
abnormal response time. The zero value is mapped to 100
max-danger time and nds is mapped to zero min-danger time.
If the response time falls within the critical value, it means
that the response is fast and considered to be dangerous.
Finally, S3 (SS) is derived from the time difference between
two outgoing consecutive communication functions such as
[(send,send),(sendto,sendto),(socket,socket),(connect,connect
]. This observation is based on bot sending information to
the botmaster or issues SYN or UDP attacks which generates
many function calls within a short time period. Therefore we
set nss1 and nss2 (ss is referred to SS signal) as a range of a
time difference between calling two consecutive
communication functions. If the time difference is less than
nss1, the time is classified within amin-safe time. If the time
difference falls between nss1and nss2, the time is classified as
uncertain time. If the time difference is more than nss2, the
time is classified as max-safe time. By recording the time that
a bot responds to the command in most of the experiments
that we have conducted, we notice that the mean value for
bot to respond to the command is around 3.226 seconds.
Therefore, we set up a critical range for S3 signal. We divide
our critical range into three sub-ranges. The first range is
from zero to nss1where nss1=5 to allow enough time for a bot
to respond to the attack’s command. Any value that falls
within this range is considered as amin-safe time. The
second range is where there is uncertainty of response. The
uncertainty range is between nss1 and nss2 =20. The third
range is that the time difference is above nss2 and is
considered as a max-safe time. In this range, we are sure that
the time difference between two consecutive function calls is

307Performance Evaluation of DCA and SRC on a Single Bot Detection

generated as a normal response.
In case of S2 and S3 signals, this decision is based on that the
attacker design the bot to responds to the his/her command
without adding a short random delay when responding to the
commands or when flooding other hosts or network.

 4.4 Antigen

For the purpose of bot detection, antigen are derived from
API function calls, which are similar to system calls. The
resultant data is a stream of potential antigen suspects, which
are correlated with signals through the processing
mechanisms of the DC population. One constraint on antigen
is that more than one of any antigen type must be used to be
able to perform the anomaly analysis with the DCA. This
will allow for the detection of which type of function call is
responsible for the changes in the observed input signals.
The collected signals are a reflection of the status of the
monitored system. Therefore, antigen are potential culprits
responsible for any observed changes in the status of the
system. The correlation of antigen signals is required to
define which processes are active when the signal values are
modified. Any process executed a specified function calls,
the process id which causes the calls is stored as an antigen in
the antigen log file. The more active the process, the more
antigen it generates. Each intercepted function call is stored
and is assigned the value of the process ID to which the
function call belongs and the time at which it is invoked.
For the SRC algorithm experiments, only the signals (S1, S2,

S3) log file is used to detect the malicious activities. In case
of DCA, signal and antigen logs are combined and sorted
based on time. The combined file forms a dataset which is
passed to the DCA through a data processing client. The
combined log files are parsed and the logged information is
sent to the DCA for processing and analysis.

 4.5 Data Collection

A bot is already installed on the victim host, through an
accidental “trojan horse” style infection mechanism and runs
as a process whenever the user reboots the system.
An interception program is implemented and run on the
victim machine to collect the required data. Two types of log
files are produced, SigLog and AntigLog. The SigLog
presents values S1, S2 and S3 in the following format with an
example below it:

 <time> < type > <S1> <S2> <S3>
e.g. <0001> <signal> <11> <32> <89>

The AntigLog presents the intercepted API function calls
with respect to its process ID (PID) in the following format
with an example below it:

 <time> < type > <PID> <Function call name>
e.g. <0002> <antigen> <722> <GetAsyncKeyStat() >

After finishing the data collection, the SigLog is passed to
SRC algorithm for analysis. In case of DCA, the SigLog and
AntigLog are merged together and sorted with respect to the
time and the combined file is passed to the DCA for the
analysis.
Three specific types of function calls are intercepted. These
function calls are as follows:
 Communication functions: socket, connect, send, sendto,

recv and recvfrom.

 File access functions: CreateFile, OpenFile, ReadFile and
WriteFile.

 Keyboard (Keys) status functions: GetAsyncKeyState,
GetKeyboardState, GetKeyNameText and keybd_event.

The communication functions are used because the bots
needs to communicate with the botmaster in order to send or
receive information. In addition, these function calls are
used in flooding attack. The file access functions are needed
because once a bot intercept the user keystrokes, it needs to
store the intercepted data in a buffer or in a file for future
access. The keyboard status functions are needed because
many existing bots implement the keystrokes logging by
executing these functions in `user mode' level in windows
environment.

 4.6 Experiments

The aim of these experiments is to evaluate the performance
of the SRC algorithm and the DCA on detecting the bot
running on the system. Various experiments are conducted
to verify this aim. Each experiment is repeated ten times
which is sufficient, as the results from the repeated
experiments produce a small variation on standard deviation
by using Chebyshev’s Inequality. One dataset is selected
randomly from each repeated experiments and is passed to
both the SRC algorithm and the DCA. Five null hypotheses
are used for the evaluation as shown in next section.

4.6.1 Null Hypotheses

 Null Hypothesis One (H1): Data collected per dataset
are normally distributed. The Shaprio-Wilk test is used
for this assessment.

 Null Hypothesis Two (H2): The SRC algorithm is able
to detect the existence of bot when correlating different
attributes.

 Null Hypothesis Three (H3): The DCA algorithm using
the MCAV/MAC values for the normal processes are not
statistically different from those produced by the bot
process. This is verified through the performance of a
two-sided Mann-Whitney test.

 Null Hypothesis Four (H4): Variation of the signal
weights in DCA algorithm as described in Table 2
produces no observable difference in the resultant
MCAV/MAC values and the detection accuracy.
Wilcoxon signed rank tests (two-sided) are used to
verify this hypothesis.

 Null Hypothesis Five (H5): There is no difference
between the SRC algorithm and DCA in terms of
performance on detecting bot.

 4.7 System Setup

In all DCA experiments, the parameters used are identical to
those implemented in [14], with the exception of the weights.
All experiments are performed in a small virtual IRC network
on a VMware workstation. The VMware workstation runs
under a Windows XP P4 SP2 with 2.4 GHz processor. The
virtual IRC network consists of two machines, one IRC
server and one infected host machine. Two machines are
sufficient to perform these experiments as one host is
required to be infected and the other to be an IRC server to
issue commands to the bot in question. The statistical

308 Al-Hammadi, Aickelin and Greensmith

analyses are performed using R statistical computing package
(v.2.6.0).

5. Results and Analysis

Upon the application of the Shapiro-Wilk test to each of the
datasets, the resultant p-values imply that the distribution of
the datasets is not normal. Therefore, the null hypothesis one
(H1) is rejected. As a result of this, further tests with these
data use non-parametric statistical tests such as the Mann-
Whitney test, also using 95% confidence.

 5.1 Spearman’s Rank Correlation - SRC

Our assumption is that calling GetAsyncKeyState() or
GetKeyboardState() functions by an unknown running
program may represent abnormal behaviour in our system.
This is because many of the current logging techniques in
user-mode level in windows environment use these two
function calls to perform keylogging activities. However, we
consider that calling these functions generate only a “weak”
alert because other legitimate programs may use the same
API function calls. Therefore, the correlation of different
types of bot behaviour is needed to enhance the detection
confidence to form a “strong” alert.
In our experiments, we use the SRC algorithm to correlate
two different datasets. The first dataset is PS and SS signals
(S1, S3) dataset while the second dataset is DS and SS signals
(S2, S3) dataset. In both datasets, we compare S1 and S2 with
S3 because the existing of S3 suppresses the effect of other
two signals.
We analyse the results of the experiments described in
Section 4.2. Table 3 represents the SRC value between the
two datasets, (S1, S3) and (S2, S3), in each experiment. In this
table, we have two sets of results. In set Set1, we correlate
all the captured data from our algorithm including the idle
period. In this period, no activity is seen, therefore, we
assign a zero value to this period. This is represented by (Z)
columns. In set Set2, we remove all the idle periods which
have zeros (NZ columns) and apply the SRC algorithm to the
new data. The reason for having the two sets is that having
the idle periods in our data increases the correlation value.
This is because there are many places where no activity is
noticed in both datasets, which may produce inaccurate
correlation. Therefore, we wanted to investigate the effect of
having no idle periods.
The Keylogging Activity column represents the situation
where the process calls any function used to intercept the
keystrokes. As a result, we classify our API detection
confidence into three cases:
 Normal detection (Normal): Keylogging activity is not

detected and either low or high correlation value is
noticed.

 Weak detection (Weak): Keylogging activity is detected
but a low correlation is noticed in both datasets.

 Medium detection (Medium): Keylogging activity is
detected but a high correlation is noticed in one dataset.

 Strong detection (Strong): Keylogging activity is detected
but a high correlation is noticed in both datasets.

As mentioned in section 3.1, a high correlation is considered
if the SRC value exceeds the threshold (0.5). From Table 3,

if we consider Set2, we see a high correlation value between
(S1, S3) and (S2, S3) in experiment E1. This is because the bot
was inactive during all the time period. The only traffic
generated by the bot is the PONG message to avoid
disconnection from the IRC server. Therefore, the
correlation value is expected to be high as well. We consider
this situation as a “normal” case.
In experiment E2.1.a/b, the bot intercepts the user keystrokes
and sends the data to the botmaster. As a result, a high
correlation value is expected and “strong” detection is
generated.

Exper-
iment

SRC(S1,S3) SRC(S2,S3) Keylog.
Activities
existence

API
Detection
Confid.

Set1
 (Z)

Set2
(NZ)

Set1
(Z)

Set2
(NZ)

E1 0.98 0.72 0.96 0.87 No Normal
E2.1.a
E2.1.b

0.61
0.62

0.85
0.87

0.74
0.75

0.69
0.74

Yes
Yes

Strong
Strong

E2.2.a
E2.2.b

0.64
0.55

0.51
0.50

0.60
0.53

0.59
0.51

No
No

Normal
Normal

E2.3.a
E2.3.b

0.11
0.20

0.17
0.32

0.50
0.58

0.52
0.57

Yes
Yes

Medium
Medium

E3 0.99 0.50 0.97 0.58 No Normal

Table 3. The results of applying SRC on dataset signals (S1,

S3) and (S2, S3).

In experiment E2.2.a/b, we notice a high correlation value on
both datasets. This situation is expected because the attacker
issues a SYN attack and a UDP attack. The bot responds by
generating a large number of same communication function
calls for a long period. No keylogging activity is detected
during this period. As a result, a “normal” case is indicated.
This situation represents the false negative case as it
incorrectly classified as normal.
Experiment E2.3.a/b shows a combined keylogging and
SYN/UDP attack activities. The correlation value of (S1, S3)
is low compared to experiment E2.2.a/b. This is because the
bot is intercepting keystrokes and performing the SYN/UDP
attack simultaneously. As a result, the two datasets were
noisy which generate a “medium” detection case.
The last experiment E3 shows the result of applying SRC
algorithm on the IceChat client. Even though we have a high
correlation value before and after removing idle periods on
both experiments, we did not detect the use of keylogging
function calls. Notice that we do not have a “weak” scenario
in this case.
In summary, we notice that some experiments produce low
correlation values. There are many reasons for this. The first
reason is that different events occur in different time-
windows. As a result, SRC algorithm produces inaccurate
results. The second reason is that some signals are varying
differently influencing the correlation value. Meanwhile, we
have many idle periods in our datasets, increasing the
correlation value which affects our detection scheme. To
improve this, we need to apply a more intelligent correlation
scheme, as described in the next section. As a result, we can
not reject or accept the Null Hypothesis Two (H2) as we
need a strong correlation algorithm to perform a better
indication of malicious behaviour.

309Performance Evaluation of DCA and SRC on a Single Bot Detection

 5.2 DCA

The results from the DCA experiments are shown in Table 3
and Table 4. The mean MCAV and the mean MAC values
for each process are presented, derived across the ten runs
performed per scenario.

Exper-
iment

Pro-
cess

Out-
put
Antgn

mean Mann-Whitney
(p-value)

MCAV MAC MCAV MAC

E1 Bot
IRC

35
24

0.0978
0.0625

0.0578
0.0255 0.1602 0.0202

E2.1.a Bot
IRC

1329.7
59

0.4736
0.2881

0.4542
0.0122 0.0002 0.0002

E2.1.b Bot
IRC
Cmd
Note-
pad
Word-
pad

1296.2
464.9
8.9
239.4

268.8

0.5441
0.5284
0.7889
0.6916

0.8286

0.2098
0.1077
0.0031
0.0726

0.0977

0.0089
0.0002
0.0002

0.0002

0.0002
0.0002
0.0002

0.0002

E2.2.a Bot
IRC
cmd

19206
18
9.8

0.6047
0.3441
0.2889

0.6038
0.0003
0.0002

0.0002
0.0003

0.0000
0.0000

E2.2.b Bot
IRC

5790.5
19

0.4360
0.2772

0.4346
0.0009 0.0002 0.0000

E2.3.a Bot
IRC

41456
20.5

0.8218
0.5480

0.8214
0.0003 0.0002 0.0000

E2.3.b Bot
IRC
Cmd
Note-
pad
Word-
pad

22446
59.1
9.7
23.1
233.6

0.9598
0.7802
0.6300
1.0000

0.8801

0.9461
0.0021
0.0003
0.0010

0.0090

0.0000
0.0002
0.0001

0.0002

0.0002
0.0002
0.0002

0.0002

E3 IRC 135.5 0.1136 0.1136 N/A N/A

Table 4. The results of the MCAV/MAC values generated
from DCA based on signal weights (WS3). Values on bold

font are not significant.

For all scenarios E1-E3, a comparison is performed using the
results generated for the bot versus all other normal processes
within a particular session as shown in Table 4. In this table,
the computed p-values using an unpaired Mann-Whitney test
are presented, with those results deemed not statistically
significant marked in bold font. In experiment E1, no
significant differences is noticed between the resultant
MCAV values for the inactive bot and the normal IRC
process, and so for this particular scenario the Null
Hypothesis Three (H3) cannot be rejected for the reason of
having small number of antigen produced by both processes
to give an accurate description of the state of the monitored
host. This is supported by the fact that the MAC values differ
significantly for this experiment. This implies that the MAC
is a useful addition to the analysis as it allowed for the
incorporation of the antigen data, which can influence the
interpretation of the results.
Significant differences are shown by the low p-values
presented in Table 4 for experiments E2.1.a and E2.1.b for
both the MAC and MCAV coefficient values, where the
sample size is equal to ten. The differences are further
pronounced in the generation of the MAC values, further
supporting its future use with the DCA. We can conclude
therefore, that the DCA can be used in the discrimination
between normal and bot-directed processes and that the DCA
is successful in detecting keylogging activities. This trend is

also evident for scenarios E2.2.a/b and E2.3.a/b, where the
bot process MCAV and MAC values are consistently higher
than those of the normal processes, IRC and notepad
inclusive. This information is also displayed in Figure 1 and
Figure 2 respectively. This implies that in addition to the
detection of the bot itself the DCA can detect the
performance of outbound scanning activity. Therefore the
Null Hypothesis Three (H3) can be rejected as in the
majority of cases the DCA successfully discriminates
between normal and bot processes, with the exception of E1
because of the extrusion approach that we are taking.

Figure 1. The MCAV values of bot and IRC client generated
by DCA based on the weights (WS3).

Figure 2.The MAC values of bot and IRC client generated
by DCA based on the weights (WS3).

Table 5 and Table 6 include the results of the sensitivity
analysis on the weight values for the bot process. The aim of
these experiments is to examine the effect of varying weight
signals on to the DCA detection performance. Different
values have been generated randomly to see the effect of
increasing or decreasing S1, S2 and S3 weight signals for
O1=csm, O2=semi-mature and O3=mature cell.

Experiment WS1 WS2 WS3 WS4 WS5

E1 0.05 0.08 0.10 0.11 0.14
E2.1.a 0.10 0.20 0.47 0.55 0.76
E2.1.b 0.38 0.41 0.54 0.59 0.80
E2.2.a 0.55 0.31 0.60 0.93 0.93
E2.2.b 0.30 0.18 0.43 0.59 0.94
E2.3.a 0.88 0.63 0.82 0.91 0.99
E2.3.b 0.95 0.94 0.95 0.96 0.99

Table 5. Weight sensitivity analysis for the bot’s MCAV
values.

For example, in case of O1, we have increased and decreased

310 Al-Hammadi, Aickelin and Greensmith

the weight value of S1, S2 and S3 to the point that reaches the
steady state where further increase and decrease to these
values will not have a large impact on the MCAV/MAC
values.

Experiment WS1 WS2 WS3 WS4 WS5

E1 0.03 0.05 0.06 0.07 0.08
E2.1.a 0.09 0.19 0.45 0.52 0.73
E2.1.b 0.22 0.23 0.31 0.33 0.46
E2.2.a 0.55 0.31 0.60 0.92 0.93
E2.2.b 0.29 0.18 0.43 0.58 0.94
E2.3.a 0.88 0.63 0.82 0.91 0.99
E2.3.b 0.94 0.93 0.95 0.95 0.97

Table 6. Weight sensitivity analysis for the bot’s MAC
values.

The values presented in Tables 5 and 6 are mean values taken
across the ten runs per session (E1-E2). An arbitrary
threshold is applied at 0.5; values above this threshold deem
the process anomalous, and below as normal. From these
data, it is shown that changing the weights used in the signal
processing equation has significant effect on the performance
of the system. For example, in the case of session E2.1.a,
weight set WS1 produces a MAC value of 0.09 for the bot yet
produces a value of 0.73 for WS5. This increase is likely to
reduce the rate of false negatives. To further explore these
effects, the resultant data are plotted as boxplots as the data
are not normally distributed. To assess the performance of
the DCA as an anomaly detector the results for the
anomalous bot and the normal IRC client are shown for the
purpose of comparison. For these boxplots, the central line
represents the median value, with the drawn boxes
representing the interquartile ranges.
In Figure 3 the median MCAV values are presented, derived
per session across the ten runs performed for each WS
(n=50).

Figure 3. The mean MCAV values for the bot and IRC client
generated by DCA using different signal weight values (WS1-

WS3).

For the bot process, the MCAV is low for session E1, in-line
with previous results. For E1, variation in the weights does
not influence the detection results, as this process has low
activity and therefore does not generate any great variation in
the signals. Therefore, without input variation, the output
does not vary in response to changing the manner in which
the input is processed. This is also evident in Figure 4 when
using the bot’s MAC values.

Figure 4.The mean MAC values for the bot and IRC client
generated by DCA using different signal weight values (WS1-

WS3).

For all other sessions, much greater variation is observed
upon weight modification, as shown by the large interquartile
ranges produced for both MCAV and MAC values of the bot
processes. While the similar trends are shown across the
sessions in the MCAV of the IRC client, differences are
evident for the MAC value. In Figure 4 (Bot’s mean MAC
values) it is evident that all sessions have low MACs for this
process across all weight sets. Therefore as the weights are
modified, there is a greater influence on the anomalous
processes than on the normal processes. Should the arbitrary
threshold applied to the MAC values be set at 0.2 as opposed
to 0.5, then the performance of the DCA on botnet detection
is good, producing low rates of false positives and high rates
of true positives.
Finally, to verify these findings statistically, each set of
results per session per weight are compared exhaustively
using the non-parametric Wilcoxon signed rank test. For each
test performed the resultant p-value is less than 0.001. This
allows us to conclude that modification of the weights has a
significant effect on the output of the DCA when applied to
this detection problem, and leads to the rejection of Null
Hypothesis Four (H4).

 5.3 SRC Algorithm and the DCA Performance

From the results obtained, even though that both algorithms
were able to detect the malicious behaviours by correlating
different attributes, we notice that the DCA has a better
performance over the SRC algorithm when detecting the bot
by reducing the number of false alarms and classifying
processes into normal and malicious. Therefore, the Null
Hypothesis Five (H5) can be rejected.

6. Conclusion

In this work, we try to evaluate the performance of two
correlation algorithms on bots detection by correlating
different activities which inhibits malicious behaviour. After
collecting our datasets, we pass the captured data to a
Spearman’s rank correlation (SRC) algorithm. Although
SRC algorithm is a simple method to examine the correlation
level, the results were promising. However, some
experiments show a low correlation values. This is because
different activities occur in different time-windows. As a
result, high false negative values could be generated.
We applied the same datasets to the DCA to evaluate its
detection accuracy and performance in comparison to SRC

311Performance Evaluation of DCA and SRC on a Single Bot Detection

by exploring different null hypotheses. It is shown that the
DCA is capable of discriminating between bot and normal
processes on a host machine. Additionally, the incorporation
of the MAC value has a significantly positive effect on the
results, significantly reducing false positives. Finally, the
modification of the weights used in the signal processing
component has a significant effect on the results of the
algorithm. In addition, we noticed that appropriate weights
for this application include high values for the safe signal

(SS) weight which appears to be useful in the reduction of
potential false positives without generating false negative
errors. We can conclude that the performance of correlating
different activities using DCA is better than SRC algorithm.
We are now aiming to apply the DCA to the detection of
“peer-to-peer” bots, which pose an interesting problem as the
use of peer-to-peer networks increases.

Acknowledgment

The authors would like to thank Khalifa University of
Science, Technology And Research (KUSTAR) - UAE, for
providing financial support for this work.

References

[1] Y. Al-Hammadi, U. Aickelin. “Detecting botnets
through log correla-tion”, In Proceedings of MonAM
2006 - IEEE/IST Workshop on Monitoring, Attack
Detection and Mitigation, Tuebingen, Germany, pp.97-
100, 2006.

[2] Y. Al-Hammadi, U. Aickelin. “Detecting Bots Based on
Keylogging Activities”, In Proceedings of the 3rd
International Conference on Availability, Reliability
and Security (ARES2008), Barcelona, Spain, pp.896-
902, 2008.

[3] Y. Al-Hammadi, U. Aickelin, J. Greensmith. “DCA for
Bot Detec-tion”, In Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI2008),
Hong Kong, pp.1807-1816, 2008.

[4] P. Barford, V. Yegneswaran. “An inside look at
botnets”, Special Work-shop on Malware Detection,
Advances in Information Security, 2006.

[5] J.R. Binkley, S. Singh. “An algorithm for anomaly-
based botnet detection”, In Proceedings of USENIX
Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI), 2006.

[6] J. Bolliger, T. Kaufman. “Detecting bots in internet
relay chat systems”, Ph.D. thesis, Swiss Federal
Institute of Technology, Zurich, Swiss, 2004.

[7] E. Cooke, F. Jahanian, D. McPherson. “The zombie
roundup: Under-standing, detecting, and disrupting
botnet”, In Proceedings of Usenix Workshop on Steps
to Reducing Unwanted Traffic on the Internet (SRUTI
05), Cambridge, MA, pp.39-44, 2005.

[8] F.C Freiling, T. Holz, G. Wicherski. “Botnet tracking:
Exploring a root-cause methodology to prevent
distributed denial-of-service attacks”, Technical Report
AIB-2005-07, RWTH Aachen University, 2005.

[9] J. Goebel, T. Holz. “Rishi: Identify bot contaminated
hosts by irc nickname evaluation”, In Proceedings of
First Workshop on Hot Topics in Understanding
Botnets (HotBots 07), 2007.

[10] L.A. Gordon, M.P Loeb, W. Lucyshyn, R. Ricson.
“CSI/FBI computer crime and security survey 2006”,
Computer Security Institute, 2006.

[11] J. Greensmith. “The dendritic cell algorithm”, Ph.D.
thesis, The University of Nottingham, Nottingham, UK,
2007.

[12] J. Greensmith, U. Aickelin, S. Cayzer. “Introducing
dendritic cells as a novel immune inspired algorithm for
anomaly detection”, In Proceedings of the International
Conference on Artificial Immune Systems (ICARIS05),
2005.

[13] J. Greensmith and U, Aickelin “Dendritic cells for SYN
scan detection”, In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2007),
pp.49-56, 2007.

[14] J. Greensmith, U. Aickelin, G. Tedesco. “Information
fusion for anomaly detection with the dendritic cell
algorithm”, Special Issue on Biologically Inspired
Information Fusion, International Journal of
Information Fusion, 2007.

[15] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. and
Lee. “Bothunter: Detecting malware infection through
ids-driven dialog correlation”, In Proceedings of the
16th USENIX Security Symposium (Security07), 2007.

[16] G. Gu, J. Zhang, W. Lee. “Botsnifer: Detecting botnet
command and control channels in network traffic”, In
Proceedings of the 2008 Annual Network and
Distributed System Security Symposium (NDSS08),
SanDiego, CA., USA, 2008.

[17] IRC. “Internet relay chat (IRC) protocol”,
http://www.rfceditor.org.

[18] P. Matzinger. “Tolerance, danger and the extended
family,” Annual Reviews in Immunology, 12:991-1045,
2004.

[19] S. Racine, “Analysis of internet relay chat usage by
DDoS zombies”, M.S. thesis, Swiss Federal Institute of
Technology Zurich, 2004.

[20] W. Strayer, R. Walsh, C. Livadas, D. Lapsle. “Detecting
botnets with tight command and control”, In
Proceedings of the 31st IEEE Conference on Local
Computer Networks, pp. 195-202, 2006.

[21] V.L.L Thing, M. Sloman, N. Dulay. “A survey of bots
used for distributed denial of service attacks”, In
Proceedings to the 22nd IFIP International Information
Security Conference (SEC07), Sandton, Gauteng, South
Africa, 2007.

[22] J. Twycross, U. Aickelin. “Biological inspiration for
artificial immune systems”, In Proceedings of the 6th
International Conference on Artificial Immune Systems,
Santos/SP, Brazil, 2007.

Author Biographies
Yousof Al-Hammadi is a PhD student in school of computer science and
information Technology at the University of Nottingham. He received his
Bachelor degree in Computer Engineering from Etisalat College of
Engineering, UAE in 2000 and a MSc in Telecommunications Engineering
from the University of Melbourne, Australia in 2003. His research interests
focus on detecting Internet worms, IRC botnet/bots using anomaly
detection techniques where he applies the Dedritic Cell Algorithm (DCA)

312 Al-Hammadi, Aickelin and Greensmith

in order to detect IRC bots running on a system. Currently, He focuses on
applying the DCA on Peer-to-Peer (P2P) bots.

Uwe Aickelin received a Management Science degree from the University
of Mannheim, Germany, in 1996 and a European Master and PhD in
Management Science from the University of Wales, Swansea, UK, in 1996
and 1999, respectively. He worked in the Mathematics Department as a
lecturer in Operational Research at the University of the West of England in
Bristol. In 2002, he accepted a lectureship in Computer Science at the
University of Bradford. Since 2003 he works for the University of
Nottingham in the School of Computer Science where he is now a Professor
of Computer Science and leader of the IMA group.
Prof. Aickelin currently holds an EPSRC Advanced Fellowship focusing on
AIS, anomaly detection and mathematical modelling. He has been awarded
an EPSRC research funding as Principal Investigator on topics including
AIS, Danger Theory, Computer Security, Robotics and Agent Based
Simulation. Prof. Aickelin is an Associate Editor of the IEEE Transactions
on Evolutionary Computation, the Assistant Editor of the Journal of the
Operational Research Society and an Editorial Board member of
Evolutionary Intelligence.

Julie Greensmith is a Lecturer at the University of Nottingham. She
gained a BSc in Pharmacology from the University of Leeds, UK in 2002
and a MSc in Multidisciplinary Informatics in 2003, also from the
University of Leeds and completed a PhD in Computer Science at the
University of Nottingham in 2007. Her research focuses on the
development of novel AIS algorithms applied to computer security and bio-
sensing for the entertainment industry.

313Performance Evaluation of DCA and SRC on a Single Bot Detection

