
Gu, Feng and Greensmith, Julie and Aickelin, Uwe
(2008) Further exploration of the Dendritic Cell
Algorithm: antigen multiplier and time windows. In:
Artificial immune systems: 7th international conference,
ICARIS 2008, Phuket, Thailand, August 10-13, 2008:
proceedings. Lecture notes in computer science (5132).
Springer, pp. 142-153. ISBN 9783540850717

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/989/1/gu2008a.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Further Exploration of the Dendritic Cell

Algorithm: Antigen Multiplier and Time

Windows

Feng Gu, Julie Greensmith and Uwe Aickelin

School of Computer Science, University of Nottingham, UK
{fxg,jqg,uxa}@cs.nott.ac.uk

Abstract. As an immune-inspired algorithm, the Dendritic Cell Algo-
rithm (DCA), produces promising performance in the field of anomaly
detection. This paper presents the application of the DCA to a standard
data set, the KDD 99 data set. The results of different implementation
versions of the DCA, including antigen multiplier and moving time win-
dows, are reported. The real-valued Negative Selection Algorithm (NSA)
using constant-sized detectors and the C4.5 decision tree algorithm are
used, to conduct a baseline comparison. The results suggest that the
DCA is applicable to KDD 99 data set, and the antigen multiplier and
moving time windows have the same effect on the DCA for this partic-
ular data set. The real-valued NSA with contant-sized detectors is not
applicable to the data set. And the C4.5 decision tree algorithm provides
a benchmark of the classification performance for this data set.

1 Introduction

Intrusion detection is the detection of any disallowed activities in a networked
computer system. Anomaly detection is one of the most popular intrusion detec-
tion paradigms and this involves discriminating between normal and anoma-
lous data, based on the knowledge of the normal data. Compared to tradi-
tional signature-based detection, anomaly detection has a distinct advantage
over signature-based approaches as they are capable of detecting novel intru-
sions. However, such systems can be prone to the generation of false alarms.
The Dendritic Cell Algorithm (DCA) is an Artificial Immune Systems (AIS)
algorithm that is developed for the purpose of anomaly detection. Current re-
search with this algorithm [6, 4] have suggested that the DCA shows not only
excellent performance on detection rate, but also promise in assisting in reducing
the number of false positive errors shown with similar systems.

To date, the data used for testing the DCA have been generated by the
authors of the algorithm. While this approach provided the flexibility to ex-
plore the functionality of the algorithm, it has left the authors open to the
criticism that the performance of the DCA has not been assessed when applied
to a more standard data set. In addition to examining the performance of the
DCA, such application allows for comparison with more established techniques.

For this purpose, the KDD Cup 1999 (KDD 99) data set [7] is chosen as the
benchmark for evaluation, as it is one of the most widely used and understood
intrusion detection data sets. This data set was originally used in the Interna-
tional Knowledge Discovery and Data Mining Tools Competition. During the
competition, competitors applied various machine learning algorithms, such as
decision tree algorithms [12], neural network algorithms [10] and clustering and
support vector machine approaches [2]. In addition to these traditional machine
learning algorithms, a range of AIS algorithms have been applied to this data
set, such as real-valued Negative Selection Algorithm (NSA) [3].

The aim of this paper is to assess two hypotheses: Hypothesis 1, the DCA
can be successfully applied to the KDD 99 data set; Hypothesis 2, changing the
‘antigen multiplier’ and the size of ‘moving time windows’ have the same effect on
the DCA. We also include a preliminary comparison between the DCA, the real-
valued NSA using constant-sized detectors (C-detector) and the C4.5 decision
tree algorithm to provide a basic benchmark. This paper is organized as follows:
Section 2 provides the description of the algorithm and its implementation; the
data set and its normalization are described in Section 3; the experimental setup
is given in Section 4; the result analysis is reported in Section 5; and finally the
conclusions are drawn in Section 6.

2 The Dendritic Cell Algorithm

2.1 The Algorithm

The DCA is based on the function of dendritic cells (DCs) of the human immune
system, using the interdisciplinary approach described by Aickelin et al. [1],
with information on biological DCs described by Greensmith et al. [5]. The
DCA has the ability to combine multiple signals to assess current context of the
environment, as well as asynchronously sample another data stream (antigen).
The correlation between context and antigen is used as the basis of anomaly
detection in this algorithm. Numerous signal sources are involved as the input
signals of the system, generally pre-categorized as ‘PAMP’, ‘danger’ and ‘safe’.
The semantics of these signals are shown as following:

– PAMP: indicates the presence of definite anomaly.
– Danger Signal (DS): may or may not indicate the presence of anomaly,

but the probability of being anomalous is increasing as the value increases.
– Safe Signal (SS): indicates the presence of absolute normal.

The DCA processes the input signals associated with the pre-defined weights to
produce three output signals. The three output signals are costimulation signal
(Csm), semi-mature signal (Semi) and mature signal (Mat). The pre-defined
weights used in this paper are those suggested in [5], as shown in Table 1. The
equation for the calculation of output signals is displayed in Equation 1,

Oj =

2
∑

i=0

(Wij × Si) ∀j (1)

where Oj are the output signals, Si is the input signals and Wij is the trans-
forming weight from Si to Oj .

PAMP Danger Signal Safe Signal

S0 S1 S2

Csm O0 2 1 3

Semi O1 0 0 3

Mat O2 2 1 -3
Table 1. Suggested weights for Equation 1

The DCA introduces individually assigned migration thresholds to determine
the lifespan of a DC. This may make the algorithm sufficiently robust and flexible
to detect the antigens found during certain time periods. For example, in real-
time intrusion detection there are always certain intervals between the time when
attacks are launched and the time when the system behaves abnormally. The
use of variable migration thresholds generates DCs whom sample different time
windows, which may cover the intrusion intervals.

An individual DC sums the output signals over time, resulting in cumulative
Csm, cumulative Semi and cumulative Mat. This process keeps going until the
cell reaches the completion of its lifespan, that is, the cumulative Csm exceeds the
migration threshold, the DC ceases to sample signals and antigens. At this point,
the other two cumulative signals are assessed. If the cumulative Semi is greater
than the cumulative Mat value, the cell differentiates towards semi-mature state
and is assigned a ‘context value’ of 0, and vice versa - greater cumulative Mat
results in the differentiation towards mature state and a context value of 1. To
assess the potential anomalous nature of an antigen, a coefficient is derived from
the aggregate values across the population, termed the ‘MCAV’ of that antigen.
This is the proportion of mature context presentations (context value of 1) of
that particular antigen, relative to the total amount of antigens presented. This
results in a value between 0 and 1 to which a threshold of anomaly, termed
‘MCAV threshold’, may be applied. The chosen value for this threshold reflects
the distribution of normal and anomalous items presented within the original
data set. Once this value has been applied, antigens with a MCAV which exceeds
this threshold are classified as anomalous and vice versa. To clarify the algorithm
a pictorial representation is present in Figure 1.

2.2 The Implementation

The general function of the system is to read data instances of the data set and
then output the MCAV of each type of antigens. In order to implement this
function, three major components are implemented:

– Tissue: processes the data source to generate antigens and signals, in each
iteration Tissue stores the antigens into random indexes of an antigen vector
and updates current signals to a signal vector.

‘Tissue’

S
1

S
2

S
3

S
n

......

Ag
1

Ag
2

Ag
3

Ag
n

- Storage area for data

Signal Matrix

‘Mature’‘Semi-Mature’

Antigen

Maturation

Phase

Analysis

Data Sampling

Phase

Input Data

Immature Dendritic Cell Population

collected data
(process IDs)

more danger
signals

more safe
signals

behavioural signals
(network �ow)

Fig. 1. The illustration of the DCA processes

– DCell: manages the DC population and interacts with Tissue to process the
antigens and signals.

– TCell: interacts with DCell to produce the final results.

Two additional functions, antigen multiplier and moving time windows, are
added into the system for the purpose of optimization. The DCA requires multi-
ple instances of identical antigens, termed the ‘antigen type’, so processing across
a population can be performed in order to generate the MCAV for each antigen
type. The antigen multiplier is implemented to overcome the problem of ‘antigen
deficiency’, that is, insufficient antigens are supplied to the DC population. As
one antigen can be generated from each data instance within a data set such
as KDD 99, the antigen multiplier can make several copies of each individual
antigen which can be fed to multiple DCs.

The inspiration of applying moving time windows is from processes seen in
the human immune system. The signals in the immune system persist over time,
thus they can influence the environment for a period of time. The persistence of
the signals can be presented by the cascade of signals within their affective time
period. Due to missing time stamps in the KDD 99 data set, tailored window
sizes for each data instance are not applicable, and a fixed window size is applied.
The new signals of each iteration are calculated through Equation 2,

NSij =
1

w

i+w
∑

n=i

OSnj ∀j (2)

input : antigens and pre-categorized signals
output: antigen types plus MCAV

initialize DC population;
while incoming data available do

update tissue antigen vector and signal vector;
randomly select DCs from DC population;
for each selected DC do

assign a migration threshold;
while cumulative Csm<=migration threshold do

get and store antigens;
get signals;
calculate interim output signals;
update cumulative output signals;

end

if cumulative Semi<=cumulative Mat then
cell context=1;

else
cell context=0;

end

log antigens plus cell context;
terminate this DC and add a naive DC to the population

end

end

while TCell analysis is not completed do

for each antigen type do
calculate MCAV;

end

log antigen types with corresponding MCAV;
end

Algorithm 1: Pseudocode of the implemented DCA.

where NSij is the new signal value of instance i in category j, w is the window
size, and OSnj is the original signal value of instance n in category j.

In brief the DCA combines multiple sources of input data in the form of pre-
categorized signals and antigens. This input is processed across a population of
DCs to produce the MCAV which is used to assess if an antigen type is normal
or anomalous. Antigen multiplier and moving time windows are added to the
algorithm to adapt the KDD 99 data set for use with this algorithm, as well
as to assess the hypothesis of they having the same effect on the DCA. The
pseudocode of the implemented DCA is shown in Algorithm 1.

3 The KDD 99 Data Set and Normalization Processes

3.1 The Data Set

The KDD 99 data set is derived from the DAPRA 98 Lincoln Lab data set [8] for
the purpose of applying data mining techniques to the area of intrusion detection.

The DAPRA 98 data set contains two data sources, which are the network sniffer
data from the sniffer placed between a router and the outside gateway and the
Solaris system audit data from the Solaris audit host. The KDD 99 summarizes
the two data sources into connections (data instances), each connection has 41
features (attributes), which can be grouped into four categories [11]:

– Basic Features: derived from the packet headers without inspecting the
payload.

– Content Features: from the assessment of TCP packets by using domain
knowledge of intrusion detection.

– Time-based Traffic Features: from the statistical analysis to captures the
properties with a time window of two seconds.

– Host-based Traffic Feature: from the statistical analysis of the properties
over the past 100 connections.

The KDD 99 is one of the few labeled data sets available in the field of
intrusion detection. The data instances are labeled as normal connections or
attack types, and the attacks can be grouped into four categories: Denial of
Service (DOS), Remote to Local (R2L), User to Root (U2R) and Probe. The
data set used in this paper is the 10% subset of the KDD 99 data set that
is commonly used by other researchers. It consists of 494021 data instances,
which are relatively massive. The whole data set would be more computational
extensive, and hence much more difficult to handle, especially for the real-valued
NSA with C-detector and the C4.5 decision tree algorithm. Both algorithms
require training stage, the large the data set is, the longer the training would
take. The 10% subset is statistically compared with the whole data set, and it
features the similar ratio of the normal connections and the attacks.

3.2 Normalization of the Data Set

As anomaly detection is a two-class classification, the labels of each data instance
in the original data set are replaced by either ‘normal’ for normal connections or
‘anomalous’ for attacks. Due to the abundance of the attributes, it is necessary
to reduce the dimensionality of the data set, to discard the irrelevant attributes.
Therefore, information gains of each attribute are calculated and the attributes
with low information gains are removed from the data set. The information gain
of an attribute indicates the statistical relevance of this attribute regarding the
classification [11]. The information gain, termed Gain(S, A) of an attribute A

relative to a collection of examples S, is defined as Equation 3 [13],

Gain(S, A) ≡ Entropy(S) −
∑

v∈V alues(A)

(
|Sv|

|S|
Entropy(Sv)) (3)

where V alues(A) is the set of all possible values for attribute A, and Sv is the
subset of S for which attribute A has value v. The entropy of S relative the

2-wise classification, termed Entropy(S), is defined as Equation 4 [13],

Entropy(S) ≡

2
∑

i=1

−pilog2pi (4)

where pi is the proportion of S belonging to class i.

The histograms of the remainder attributes are assessed for the normalization
of the DCA, to abstract the knowledge of both normal and anomalous. Based
on the characteristics of the input signals, ten numeric attributes are grouped
into the categories as follows:

– PAMP: serror rate, srv serror rate, same srv rate, dst host serror and dst
host rerror rate.

– DS: count and srv count.

– SS: logged in, srv different host rate and dst host count.

Let x be the value of an attribute, if it is certain that anomalies appear when
x ∈ [m, n], this attribute can either be PAMP or DS; otherwise if normality
arises in this range, this attribute can be SS. The value of this attribute is then
normalized into the range from 0 to 100 through linear normalization defined by
Equation 5,

f(x) =

0 x ∈ [0, m)
x

n−m
× 100 x ∈ [m, n]

100 x ∈ (n, +∞)
(5)

where f(x) is the normalization function. The average of the multiple attribute
values in each signal category is the value of that category. In addition, the other
data steam of the DCA, the antigens, are created by combining three nominal
attributes, which are protocol, service and flag. Multiple instances of each antigen
type can generated through this way, which satisfies the requirement of the DCA
for multiple observations of each antigen type. It makes sense in the case of both
human immune system and intrusion detection: since antigens with the same
pathogenic patterns can invade the human immune system over and over again;
and attacks with the same patterns can be launched discretely over time in a
networked computer system.

The ten attributes selected for the signals in the DCA are chosen to represent
the detectors and antigens in the NSA. These attributes are normalized into
the range from 0 to 1, using max-min normalization, thus the data space is
a unitary hypercube [0, 1]10. The data set is then rearranged to generate ten
subsets through 10-folder cross-validation. The training data is made of the nine
folders and the testing data is made of the one folder in each subset. The self set
of the NSA is derived from all the normal data instances in the training data,
and the antigens are the data instances in the testing data. The input data of
the C4.5 decision tree algorithm contains the same attributes as those of the
NSA but without normalization, and the labels of normal and anomalous are
provided for the purpose of training.

4 Experimental Setup

Both the DCA and the NSA are implemented in C++ with the g++ 4.2 com-
plier, and the C4.5 decision tree algorithm is performed in Weka [14], which is
a collection of machine learning algorithms for data mining tasks. The experi-
ments are run on a PC on which Ubuntu Linux 7.10 with a kernel version of
2.6.22-14-generic is installed. The receiver operating characteristics (ROC) anal-
ysis is performed to evaluate the classification performance of the DCA and the
NSA. The true positive (TP) rate, false positive (FP) rate, true negative (TN)
rate and false negative (FN) rate of each experiment are calculated, and the rel-
evant ROC graphs are plotted as well. Three sets of experiments are performed:
various DCA versions (E1), the real-valued NSA using C-detector (E2), and the
C4.5 decision tree algorithm (E3).

In all experiments related to the DCA, the size of the DC population is
set as 100 and it is constant as the system runs. The migration threshold of
an individual DC is a random value between 100 and 300, to ensure this DC
to survive over multiple iterations. The ‘perfect MCAV’ of an antigen type is
calculated based on the labels of the original data set, normal is equivalent to
context value 0 and anomalous is equivalent to context value 1. To generate the
classification results of the DCA and the ‘perfect classification results’ from the
perfect MCAVs, a MCAV threshold of 0.8 is applied. The MCAV threshold is
derived from the proportion of anomalous data instances of the whole data set ,
which is equal to 80%. The classification results of the DCA are then compared
with the perfect classification results, to assess the TP, FP, TN and FN. Three
experiments of E1 are performed corresponding to the DCA versions as following:

– E1.1: the basic version of the DCA.
– E1.2: the system with antigen multiplier, the antigens are multiplied by 5,

10, 50 and 100.
– E1.3: the system with moving time windows, the window size is respectively

equal to 2, 3, 5, 7, 10, 100 and 1000.

For each single experiment, ten runs are performed and the final result is the
average of the ten runs. In order to make the results from different experiments
more comparable, a fixed sequence of random seeds for ten runs is used. For E1.2
and E1.3, the two-sided Mann-Whitney test is performed to assess if various
parameters can make the results statistically different from each other. The
statistical significance α is set as 0.05, thus giving a confidence of 95% to either
accept or reject the null hypothesis.

E2 includes a range of experiments of the NSA, as the data space increases
from two dimensional to ten dimensional. According to the parameters men-
tioned in [9], the self radius is equal to 0.1 and the detector amount is increased
to 1000 because of the large size of the data, and the matching rule used is the
Euclidean distance matching. The results produced by the algorithm are com-
pared to the labeled testing data, namely the ‘perfect result’, to perform the
ROC analysis. The final results of each dimension is the average of ten subsets.

The experiment setup of C4.5 decision tree algorithm are as follows: the clas-
sifier chosen in Weka is J48, which is a class for generating an unpruned or a
pruned C4.5 decision tree; the test option of the classification is set as 10-folder
cross-validation.

Category Parameter TP Rate TN Rate FP Rate FN Rate

E1.1 - 0.7375 1 0 0.2625

E1.2 5 0.75 1 0 0.25

E1.2 10 0.74375 1 0 0.25625

E1.2 50 0.75 1 0 0.25

E1.2 100 0.75 1 0 0.25

E1.3 2 0.75 1 0 0.25

E1.3 3 0.75 1 0 0.25

E1.3 5 0.74375 1 0 0.25625

E1.3 7 0.75 1 0 0.25

E1.3 10 0.75625 1 0 0.24375

E1.3 100 0.71875 0.96 0.04 0.28125

E1.3 1000 0.7 0.979592 0.0204082 0.3
Table 2. The ROC results of the experiments in E1

Data Dimension TP Rate TN Rate FP Rate FN Rate

2 0.98367 0.42944 0.37055 0.01633

3 0.23462 0.71834 0.08165 0.76538

4 0.08971 0.79289 0.00711 0.91029

5 0 0.79993 0.00007 1

6 0 1 0 1

7 0 1 0 1

8 0 1 0 1

9 0 1 0 1

10 0 1 0 1
Table 3. The ROC results of the experiments in E2

5 Result Analysis

The results of E1 are shown in Table 2, which indicate the antigen multiplier
cannot consequentially enhance the system performance. The signals associated
with the misclassified antigens are generated incorrectly from the original data
set, thus the DCs always assign wrong context values no matter whether the
antigens are multiplied or not. Moreover, the moving time windows cannot sig-
nificantly improve the system performance either. Due to the limitation of the

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data Dimension

T
ru

e/
F

al
se

 P
os

iti
ve

 R
at

e

True Positive Rate
False Positive Rate

Fig. 2. Results of the real-valued NSA with C-detector across different dimensionality

data set, the tailored window sizes of each data instance that may result in
better system performance are not applicable. Furthermore, the Mann-Whitney
test suggests a 95% confidence to accept the null hypothesis, that is, the results
of all the experiments in E1 are not statistical different from each other.

The results of E2 are shown in Table 3, and the ROC results E2 from two
dimensional to ten dimensional are shown in Figure 2. The algorithm produces
acceptable results when the data space is two dimensional. But as the dimen-
sionality increases, the classification performance is getting worse and worse.
The algorithm cannot detect any anomalies when the the data space is six di-
mensional or more. As the dimensionality of the data space increases, the search
space grows exponentially, thus it is becoming more and more difficult to gener-
ate sufficient detectors that can effectively cover the space of non-self.

The ROC graph of the results in E1 and E2 when the dimensionality is ten
is shown in Figure 3. The results of the DCA are located on the top-left corner
of the graph, showing that all versions the DCA can successfully detect around
75% true anomalies over all actual anomalies as well as produce no or few false
alarms. The real-valued NSA with C-detector cannot produce any useful results,
as it fails to detect any anomalies. Moreover, as expected the C4.5 decision tree
algorithm produces superb results, the true positive rate is 0.988 and the false
positive rate is 0.008. This algorithm is designed specifically for the purpose of
data mining, its classification performance is supposed to be better than the
other two algorithms that are designed for the purpose of anomaly detection.
But in terms of false positive rate, the classification performances of the DCA
and the C4.5 decision tree algorithm are comparable with each other.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

●
●
●
●
●●

● DCA
NSA
C4.5

Fig. 3. The ROC graph of E1, E2 and E3 as data space is ten dimensional

6 Conclusions and Future Work

This paper presents the algorithm behaviors of the DCA, when it is applied to
a standard data set, the KDD 99 data set. The results show that the DCA is
able to work with the data set and produce reasonable performance, therefore
Hypothesis 1 is accepted. Moreover, the DCA is an unsupervised learning al-
gorithm, it does not require training with normal data instances. It acquires
the knowledge of normal and anomalous through the categorization of signals
based on basic statistical analysis. Besides, it is not constrained by high dimen-
sionality of the data sets. Thus the DCA is applicable to large data sets with
high dimensionality. The real-valued NSA with C-detector has poor classification
performance on the high dimensional KDD 99 data set, it could not manage to
detect any anomalies as the dimensionality increases up to six or more. There-
fore, this algorithm is not applicable to the data sets with hight dimensionality.
As a specialized machine learning algorithm, the C4.5 decision tree algorithm
produces excellent results, it provides a benchmark showing the ideal results of
the KDD 99 data set.

Due to limitations of the data set, the DCA could not be optimized by either
antigen multiplier or moving time windows. First of all, it is only possible to
generate one unique antigen from each data instance, leading to the insufficient
observations of each antigen type by relative DCs, the problem cannot be solved
with the antigen multiplier. Furthermore, the time stamps of each connection are
unavailable, thus it is impossible to apply tailored window sizes in the system,
and hence the advantage of the moving time windows is not fully utilized. Even

though, both antigen multiplier and moving time windows have the same effect
on the DCA for this particular data set, and hence Hypothesis 2 is accepted.

Some future directions of DCA research can be: first of all, to perform more
rigorous comparisons between the DCA and other AIS algorithms; Secondly, to
apply the DCA to other data sets, to further explore the limits of the DCA and
to understand the antigen multiplier and moving time windows; Thirdly, to add
more features to the DCA, to make the algorithm more adaptive and flexible.

References

1. U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod. Danger Theory: The
Link between AIS and IDS. Proceedings of the 2nd International Conference on
Artificial Immune Systems (ICARIS), LNCS2787:147–155, 2003.

2. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric frame-
work for unsupervised anomaly detection: Detecing intrusions in unlabled data.
In D. Barbara and S. Jajodia, editors, Applications of Data Mining in Computer
Security, chapter 4. Kluwer, 2002.

3. A. Gonzalez and D. Dasgupta. Anomaly Detection Using Real-Valued Negative
Selection. Genetic Programming and Evolvable Machines, 4(4):383–403, 2004.

4. J. Greensmith and U. Aickelin. DCA for SYN Scan Detection. In Genetic and
Evolutionary Computation Conference (GECCO), pages 49–56, 2007.

5. J. Greensmith, U. Aickelin, and S. Cayzer. Introducing Dendritic Cells as a Novel
Immune-Inspired Algorithm for Anomaly Detection. Proceedings of the 4th Inter-
national Conference on Artificial Immune Systems (ICARIS), LNCS3627:153–167,
2005.

6. J. Greensmith, J. Twycross, and U. Aickelin. Articulation and Clarification of
the Dendritic Cell Algorithm. Proceedings of the 5th International Conference on
Artificial Immune Systems (ICARIS), LNCS4163:404–417, 2006.

7. S. Hettich and S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Tech-
nical report, Irvine, CA: University of California, Department of Information and
Computer Science., 1999.

8. MIT Lincoln Lab Information System Technology Group. The 1998 Intrusion
Detection Off-line Evaluation Plan. http://www.ll.mit.edu/IST/ideval/data/1998/,
March 1998.

9. Z. Ji and D. Dasgupta. Applicability Issues of the Real-Valued Negative Selecion
Algorithms. In Genetic and Evolutionary Computation Conference (GECCO),
pages 111 – 118, 2006.

10. N. Kayacik, G. amd Zincir-Heywood and M. Heywood. On the Capability of
an SOM based Intrusion Detection System. Proceedings of International Joint
Conference on Neural Networks, 3:1808– 1813, 2003.

11. N. Kayacik, G. amd Zincir-Heywood and M. Heywood. Selecting Features for
Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection
Datasets. In Third Annual Conference on Privacy, Security and Trust (PST), 2005.

12. I. Levin. KDD-99 Classifier Learning Contest: LLSoft’s Results Overview.
SIGKDD Explorations, 1(2):67–75, 2000.

13. T. M. Mitchell. Machine Learning. McGraw-Hill Series in Computer Science.
McGraw-Hill, 1997.

14. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2nd edition, 2005.

