
Al-Hammadi, Yousof and Aickelin, Uwe (2008) Detecting
bots based on keylogging activities. In: Proceedings of
the Third International Conference on Availability,
Security, and Reliability: March 4-7, 2008, Barcelona,
Spain. IEEE Computer Society, Los Alamitos, Calif., pp.
896-902. ISBN 9780769531021

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/981/1/al-hammadi2008a.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Detecting Bots Based on Keylogging Activities

Yousof Al-Hammadi and Uwe Aickelin

Department of Computer Science and Information Technology,

The University of Nottingham,

Nottingham, UK NG8 1BB

Email: {yxa,uxa}@cs.nott.ac.uk

Abstract—A bot is a piece of software that is usually installed
on an infected machine without the user’s knowledge. A bot
is controlled remotely by the attacker under a Command and
Control structure. Recent statistics show that bots represent one
of the fastest growing threats to our network by performing
malicious activities such as email spamming or keylogging.
However, few bot detection techniques have been developed to
date. In this paper, we investigate a behavioural algorithm to
detect a single bot that uses keylogging activity. Our approach
involves the use of function calls analysis for the detection of the
bot with a keylogging component. Correlation of the frequency of
function calls made by the bot with other system signals during
a specified time-window is performed to enhance the detection
scheme. We perform a range of experiments with the spybot.
Our results show that there is a high correlation between some
function calls executed by this bot which indicates abnormal
activity in our system.

Index Terms– API function calls, Bot, Correlation, IRC

I. INTRODUCTION

For some time now, computers face different types of attacks

by malicious programs such as viruses and worms[11][22]. A

more recent threat is the presence of large numbers of com-

promised machines, known as bots, working in a coordinated

manner [13]. A bot, a term derived from robot, is a piece

of malicious software that is installed on a user machine,

usually without his knowledge. This malicious software is

programmed to respond to various instructions remotely by

the attacker through Command and Control (C&C) structure,

often using the Internet Relay Chat (IRC) network as a

communication channel. These instructions command the bot

on the infected machine to perform malicious activities. The

malicious activities include vulnerability scans to spread the

bot to other systems, email spamming, keylogging, packet

sniffing, phishing, rootkits and identity theft.

A bot spreads and propagates to other hosts by exploiting

known vulnerabilities in operating systems and applications.

The target host is infected by different means ranging from

worms, email viruses or phishing [21]. Once the bot is installed

on a victim’s machine, it changes the system configuration

to start itself each time the system boots. A bot might have

the functionality to spread itself by sending out more emails

or scanning more computers, thus, infecting other vulnerable

machines. After that, the bot connects to the IRC server and

joins the specified Command and Control channel. Having

joined the channel, the bot either executes the channel topic as

a default command or remains inactive waiting for botmaster

commands. The botmaster communicates with the bot through

IRC protocol[1]. The IRC protocol is a preferred due to its

flexibility in the management and control of bots. Additionally,

the IRC protocol provides the attackers with anonymous

control over their bots. The botmaster can also control the bots

using different types of communications such as the HTTP

protocol or through Peer to Peer networks.

Initially, bots were used to coordinate attacks across a

network of bot-infected machines. Nowadays, most bots are

implemented with keylogging features. Keylogging is a mean

of intercepting and subversively monitoring the user activities

such as typing keystrokes and mouse clicking. The intercepted

keystrokes are either saved to a log file or sent directly to the

botmaster. The log file can be sent to the attacker through

email, ftp or accessed remotely by the attacker. Other new

features added to the keylogging bot are the ability to capture

screen shots, and mouse logging [14].

Keylogging represents a serious threat to the privacy and

security of our systems. This is because the keylogger program

can collect the user’s personal information, passwords, credit

cards or other sensitive information. Unlike other attacks

performed by the bot, keylogging is difficult to detect as it runs

in hidden mode. Many Anti-Virus packages cannot detect a

stealthy keylogger running on the system. The user has no way

to determine if his machine is running a keylogger, therefore,

he could easily become a victim of the identity theft.

The focus of bot detection research is the analysis of net-

work traffic. To the best of our knowledge, no attempt has been

made within bot detection research to detect a single bot by

monitoring Application Programming Interface (API) function

calls. In this paper, we present an algorithm to detect a single

bot in the system based on correlating different behaviours

by monitoring specified API function calls executed by the

bot to perform keylogging activity. Invoking these functions

withing specified time window might represent a security risk

to computer systems. For example, calling GetKeyboardState

or GetAsyncKeyState by a program and writing data to a file

using the WriteFile function call usually indicates a keylogging

activity. In addition, the bot is designed to send the intercepted

keystrokes to the attacker, therefore, we may notice a large

volume of outgoing traffic during this period. Correlation of

the frequency of function calls generated by the bot during a

specified time-window could indicate abnormal activity in our

system. Overall, we believe that tracking and correlating the

keyboard events with other behaviour data such as accessing

1

files or sending packets will enhance the process of bot

detection.

The aim of this paper is to investigate the effect of cor-

relating different behaviours of a single bot represented by

API function calls within specified time-window. We focus

on three types of bot behaviour: keylogging activity, file

access and outgoing traffic. Our results show that correlating

different behaviours of a single bot enhance the bot detection

mechanism.

The remainder of this paper is structured as follows: section

two presents different algorithms used to detect bots and

keylogging activities. It also shows the problems which face

the current detection systems. Section three discusses the

design and implementation of our bot detection. In addition,

it explains different types of experiments that we perform to

our bot detection. We discuss our results in section four. We

conclude and present our future work in section five.

II. RELATED WORK

There are only a few existing techniques for bots detection.

Most of these techniques use signature-based detection by

analysing network traffic [10][9]. Although analysing network

traffic using a signature-based approach is a useful mechanism

for bot detection, it becomes more difficult if the botmaster’s

commands are encrypted. Different research performed by

Binkley [7] uses anomaly-based detection to detect the be-

haviour of the bot. The anomaly detection technique looks for

the deviation from a defined normal traffic. In this section, we

will present current related work in bot detection techniques

and the associated problems.

Recent work by Barford [5] represents a good introduction

to understanding and analysing the behaviours of the bots.

Most of the research conducted in this area concentrates

on detecting botnets rather than an individual bot [10][9][2]

and, to the best of our knowledge, little research has been

performed in this area. Freiling et al. [10][13] use a non-

productive resource such as honeypot to collect bot binaries.

Their approach is based on allowing the infected honeypot to

emulate the bot activities and analysing network traffic to shut

down the remote control network. Although honeypots allow

administrators to look at security events in more detail, they

cannot detect these events without receiving activity directed

against them [3]. In addition, the process of emulating the bot

action to penetrate the remote network can be discovered if the

botnet size is relatively small. To avoid these problems, our

work focuses on monitoring API function calls generated by

the bot and correlates these function calls within a specified

time-windows to detect malicious activities. In addition, host-

based detection is used to investigate the presence of the bot

in our system.

Cooke et al. [9] detect bots by analysing the communi-

cations between bots, and the communications between bots

and their controllers. They also investigate the bots payloads

using the pattern matching of known bot commands and look

for the behavioural characteristics of bots that differ from

non-human characteristics. They conclude that bots can run

on non-standard ports and that analysing encoded packets is

very costly on high throughput networks. Hence, there are

no simple characteristics of the bots communication channels

that can be used for detection. They also discuss the approach

of detecting bots by their propagation or attack behaviour

by correlating data from different sources. However, they

have not designed a correlation algorithm to show results of

this investigation. In this paper, we present one approach of

detecting bots based on correlating the frequency of different

bot’s behaviour such as keyboard events, files access and the

amount of outgoing traffic.

An approach for the analysis of IRC usage by bots is

presented by Stephane Racine [21]. This approach detects bots

by finding inactive clients through monitoring IRC PONG

messages and assigning them to a connection. The active

clients are then classified according to the channel that they

join. This approach is successful in detecting idle IRC activity,

but suffers from high false positive rates. In addition, searching

for IRC patterns can be costly when inspecting every packet

and could slow the detection mechanism. Furthermore, apply-

ing pattern matching is difficult when data is encrypted [9]. We

believe that monitoring and correlating different API function

calls will enhance the process of bots detection through this

correlation.

Research in keylogging has shown that is difficult to detect

but the literature on this topic is also sparse. TAN [23] suggests

disabling some function calls used by the keylogger such as

SetWindowsHookEx, GetKeyboardState and GetKeyState. This

can prevent the proper functioning of keyloggers. However,

disabling these functions will prevent legitimate software from

using these functions. In our work, we monitor calls to some of

these functions and other functions. Monitoring calls to these

functions will not affect their use by legitimate programs.

Other research suggests that embedding a sequence of

random characters between successive keys typed on the

browser will make the keylogging process difficult [12]. An-

other group [6] disassembles all running processes search-

ing for SetWindowsHookEx used by some keyloggers. One

problem with this method is that the keylogger developers

can use different methods to log the user activities other

than using SetWindowsHookEx. In addition, disassembling all

processes searching for SetWindowsHookEx is a tedious task.

Our approach is based on monitoring selected API function

calls for all running processes in our system in user mode.

By monitoring these functions, we will avoid the problems

mentioned above.

III. BOT DETECTION

A. Introduction

Existing research techniques detect the presence of bots via

network monitoring. Rather than attempting to detect bots via

network monitoring, our work focuses on a single bot detection

on a machine by monitoring and correlating different activities

on the system represented by executing different API function

calls that may indicate the presence of a bot on the system.

2

The API function calls executed by the bot is monitored in

a user-based environment. Our monitoring program intercepts

API function calls in the user-based environment. Direct

invocation kernel-based API functions will not be monitored

by our intercepting program. Monitoring kernel-based API

function calls will be investigated in our future work.

In order to detect the bot in the system different bot

behaviours are correlated to have a high correlation value,

which is represented by Spearman’s Rank Correlation (SRC)

value [8]. In our case, if the Spearman’s Rank Correlation

value exceeds the threshold level of 0.5, we have a high

correlation between the two different behaviours which may

reflect malicious activity in our system. The threshold level of

0.5 or more represents a strong correlation between two events

according to the Speaman’s Rank Correlation algorithm. We

hypothesize that one behaviour may not be enough to detect

malicious activity. This is explored in section IV. For example,

one behaviour of the bot is to send the intercepted informa-

tion from the keylogging process to the botmaster once the

botmaster issues the keylogging command. The intercepted

information is sent to the botmaster if the user of the infected

machine hits [ENTER] key, or closes the active window.

This action represents normal behaviour. Correlating different

actions enhance the process of detection. We are aware that

different keyloggers use different techniques to intercept and

store the keystrokes. Our work examines a keylogging activity

as our goal is to detect a bot rather than a keylogger.

B. Aims

The aim of our experiments is to verify the notion that

correlating different behaviours of a single process which

produces multiple API function calls within a specified time-

window, indicates abnormal activity. In addition, we apply the

monitoring and correlation scheme to a normal application

(e.g. mIRC client) to verify that the normal application exe-

cutes different function calls from the malicious process which

results in having different correlation value.

C. Design and Implementation

In our research, we focus on monitoring selected API

function calls executed by bots that perform the keylogging

task and send the intercepted keystrokes directly to the IRC

channel. To accomplish this task, we implement a program to

monitor some API function calls executed by the bot when

receiving commands from the botmaster. We focus on three

types of API function calls:

• Communications Functions (CommFunc): socket,

send, recv, sendto, recvfrom, and IcmpSendEcho [20].

• File Access Functions (FileAccess): CreateFile, Open-

File, ReadFile, and WriteFile[18].

• Keyboard State Functions (KeyboardState): GetKey-

boardState, GetAsyncKeyState, GetKeyNameText, and

keybd event[19].

We have implemented a ‘hook’ program to capture the API

functions executed by the bot. Hooking API functions is the

Algorithm 1: Bot Detection Algorithm using Spearman’s

Rank Correlation (SRC)

if KeyboardState function(s) is executed (i.e. keylogging activity) then
if SRC[KeyboardState,CommFunc] > Threshold and

SRC[KeyboardState,FileAccess] > Threshold then
Strong detection

else if SRC[KeyboardState,CommFunc] <

SRC[KeyboardState,FileAccess] < Threshold then
Weak detection

else if (SRC[KeyboardState,CommFunc] < Threshold and

SRC[KeyboardState,FileAccess] > Threshold) or

(SRC[KeyboardState,CommFunc] > Threshold and

SRC[KeyboardState,FileAccess] < Threshold) then
Normal detection

else
No detection and normal activity is considered

end

process of intercepting events (messages, keystrokes, mouse)

before they reach an application[15][16].

In our work, we captured selected API functions such as

GetKeyboardState, and GetAsyncKeyState used by bots which

implement keylogging feature. For example, the spybot[5]

is used for its ability to intercept the user’s keystrokes by

invoking GetAsyncKeyState. We search for all the running

processes in our system and inject our hooking program into

the running processes. An API hook is based on modifying the

process Import Address Table [4] to point to the replacement

function instead of the original function. Thus, we were able

to capture the functions made by the bot when it receives

commands from the botmaster.

We store the captured functions in a log file for further

processing. We use a Spearman’s Rank Correlation formula [8]

to find the correlation between different behaviours of the bot

such as intercepting the user keystrokes and sending it directly

to the IRC channel within specified time-window. In addition,

we also correlate the events of intercepting the user keystrokes

and file access. Our results show that the combination of these

correlated events can indicate suspicious activity in our system.

The algorithm of detecting the bot is described in Algo-

rithm 1.

D. Architecture

To perform our experiments, we set up a small virtual IRC

network on a VMWare machine. The VMWare machine runs

under a Windows XP P4 SP2 with a 2.4GHz processor and

1GB RAM. The virtual IRC network consists of two machines.

One machine runs Windows XP Pro SP2 and it is used as an

IRC server. The other machine runs Windows XP Pro SP2 as

an infected machine with spybot [5]. We do not have to have

a large network to implement our algorithm as our work based

on detecting the behaviour of a single bot on a machine.

E. Experiments

We have performed five experiments to verify our notion.

In the first experiment (E1), we allow the spybot to connect

to the IRC server and join the channel without receiving any

commands from the botmaster. In the second experiment (E2),

we follow the same procedure as in the first experiment, but in

3

this case the botmaster issues different commands to the bot,

excluding the keylogging activity. Note that our target machine

in these experiments is an idle infected machine. That is, the

user does not use the infected machine for any activity.

In the third experiment, we allow the bot to connect to

IRC server and join the specified channel. The bot on the

infected machine monitors the user’s typing activity, but does

not send any information to the botmaster. We monitor two

scenarios of typing. In the first scenario (E3.1), the user types

long sentences while in the second scenario (E3.2), the user

types short sentences. By monitoring two typing scenarios, we

are able to show the effect of different user’s activity on our

detection scheme.

In the fourth experiment, once the bot connects to the

IRC server and joins the channel, the botmaster starts the

keylogging activity. The same procedure is taken as in the

third experiment where we have two scenarios of typing: long

sentences (E4.1) and short sentences (E4.2).

The fifth and the final experiment (E5) involves applying the

monitoring program to another application (mIRC client [17])

to verify that mIRC client behaves differently from the bot.

Each experiment is performed five times which is suffi-

cient as the results from the repeated experiments produce

only small variations by using Chebyshevs Inequality due to

network delay and through using VMWare. Therefore, we

select a random experiment from the repeated experiments as

the base experiment. Each experiment runs for 15 minutes in

order to collect a reasonable number of function calls which

reflect most of botmaster execution commands. The monitored

API functions are saved into a log file. After that, we use

a Spearman’s Rank Correlation (SRC) method to correlate

different behaviour of the bot based on the frequency of API

function calls executed by the bot in our system within a

specified time-window. In our experiments, a time-window of

ten seconds is used between function calls samples. We notice

that monitoring function calls for a time-window of 60 seconds

will have variant idle periods depends on the bot activity. An

idle period is where no bot activity is detected and zero values

are assigned. Therefore, using a time-window of ten seconds

reduces the idle periods suitably.

Our assumption is that calling GetAsyncKeyState or

GetKeyboardState functions by an unknown running program

may represent abnormal keylogging activity in our system.

However, we consider that calling these functions generate

only a ‘weak’ alert because other programs may use the same

API calls. Therefore, we use Spearman’s Rank Correlation to

correlate different types of bot behaviour which enhances our

detection algorithm to form a ‘strong’ alert.

The Spearman’s Rank Correlation correlates two different

data sets. The first data set is the outgoing traffic from our

system (i.e., total number of bytes sent to the botmaster every

ten seconds) and the frequency of GetAsyncKeyState function

calls generated. The second data set is the frequency of GetA-

syncKeyState function calls and the frequency of WriteFile

function calls generated. These function calls are important for

monitoring bot behaviour because their invocation represents

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 1. The results of experiment E1. The bot connects to the IRC server,
joins the specified channel and remains inactive waiting for the botmaster’s
commands.

abnormal behaviour within our system.

IV. RESULTS AND ANALYSIS

In this section, we analyse the results of the experiments

described in Section III-E. For all experiments, the x-axis

represents time in seconds while the y-axis represents the

normalized value of functions. The normalized function fre-

quency call values represent the total value we get during 10

seconds divided by the maximum value of the whole period

(900 seconds). In addition, we use a line graph which connects

the points to make our figures more readable.

In experiment E1, the bot is idle for the majority of the

duration. This means that no API function calls are executed

except the communication functions, specifically, send and

recv, as shown in Figure 1. From Figure 1, we notice that it

is difficult to detect the bot’s behaviour as there is no activity

in the system except the communications. We also notice that

there is a burst in the outgoing traffic. This burst is generated

due to spybot program which sends a bulk of words every

specified time intervals.

In experiment E2, the botmaster issues commands such as

info, list and passwords and the bot on the infected machine

responds to these commands. Each time the botmaster issues

a command, different API function calls are executed by the

bot. In this experiment, we noticed an increased amount of

outgoing traffic compared to experiment E1. In addition, few

WriteFile and ReadFile functions are generated during this

experiment. Conversely, no GetAsyncKeyState function calls

are generated, as shown in Figure 2.

The third experiment has two typing scenarios: (1) Long

sentences (E3.1) and (2) Short sentences (E3.2). Figure 3

represents the long sentences scenario E3.1. We notice that

even though we have many GetAsyncKeyState function calls

executed by the bot, which indicates keylogging activity,

there is almost no correlation between GetAsyncKeyState and

WriteFile. This is because the WriteFile function call is rarely

generated as it is only triggered when the user types long

sentences. To save the long sentences, the user has to press the

Enter key or close the application. In addition, no data is sent

4

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 2. The results of experiment E2. The bot receives commands from the
botmaster. The amount of outgoing traffic increases as the bot responds to the
botmaster’s commands.

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 3. The results from the third experiment - scenario E3.1. The botmaster
has not activated the keylogger command. The user on the infected machine
types long sentences.

to the botmaster which reduces the correlation value between

GetAsyncKeyState and the outgoing traffic. In scenario E3.2,

the user of the infected machine types short sentences. We

can see from Figure 4 that there is a high correlation between

GetAsyncKeyState and WriteFile function calls. This situation

is expected as each time the user types short sentences,

the functions GetAsyncKeyState and WriteFile are called to

intercept the user keystrokes and store them in a file. However,

there is still no traffic sent out and hence there is no correlation

with outgoing traffic.

In experiment 4, the botmaster starts the keylogging activity

and the intercepted keystrokes are sent to the botmaster. In this

case, we also have two typing scenarios: (1) Long sentences

(E4.1) and (2) Short sentences (E4.2). In scenario E4.1, we

expect there to be a high correlation between the outgoing

traffic and GetAsyncKeyState. However, the result from Fig-

ure 5 shows that there is a low correlation between the two.

This is because we correlate the two events (typing and saving

to a file) in two different 10 second time intervals. In addition,

the long sentences increase the idle time, and therefore reduce

the correlation value. Moreover, a low correlation between

GetAsyncKeyState and WriteFile is noticed. This situation

is expected as the user types long sentences which call few

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 4. The results from the third experiment - scenario E3.2. The botmaster
has not activated the keylogger command. The user on the infected machine
types short sentences.

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 5. The first scenario E4.1 in experiment four. The botmaster activates
the keylogger. The user on the infected machine types long sentences.

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 6. The second scenario E4.2 in experiment four. The botmaster activates
the keylogger. The user on the infected machine types short sentences.

WriteFile functions.

In the second scenario E4.2, the user types short sentences

resulting in a high correlation between the outgoing traffic

with the GetAsyncKeyState function and between the GetA-

syncKeyState function and the WriteFile function as shown

in Figure 6. The high correlation in both cases increases the

amount of evidence for a bot spying on our system.

In addition, we test our monitoring program with the mIRC

5

Time[sec]

0 100 200 300 400 500 600 700 800 900

N
o

rm
a

li
z
e

d
−

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

send GetAsyncKeyState WriteFile Bytes Sent

Fig. 7. The results from Experiment E5. The mIRC client connects to the
IRC server. The client has normal conversation and simple commands with
another client.

program. The result in Figure 7 is optimistic as the program

did not call any GetAsyncKeyState or GetKeyboardState func-

tions.

Table I represents the value of Spearman’s Rank Correlation

between the two data sets, (GetAsyncKeyState, Bytes

Sent) and (GetAsyncKeyState, WriteFile), in each

experiment. In this table, we have two sets of results. In

the first set S1, we correlate all the captured data from our

algorithm including the idle period. In this period, no activity

is seen, therefore, we assign a zero value to this period. This is

represented by the with zero column in Table I. In the second

set S2, we remove all the idle periods which have zeros and

apply the Spearman’s Rank Correlation to the new data. The

reason for having the two sets is that we notice that having the

idle periods in our data increases the correlation value. This

is because there are many places where no activity is noticed

in both data sets, which may produce inaccurate correlation.

Therefore, we wanted to investigate the effect of having no

idle periods. Although we notice a reduction of the correlation

value by 0.35 in most cases when we remove the idle periods,

it gives us more accurate results.

The API Keylogging Activity column represents the situa-

tion where the process calls any function used to intercept

the keystrokes such as GetAsyncKeyState, GetKeyboardState,

GetKeyNameText and keybd event. Calling these functions

may indicate a keylogger activity. As a result, we classify our

detection scheme into four cases:

• No detection (N/A): the case where no keylogging activ-

ity is detected.

• Weak detection (Weak): the case where a keylogging

activity is detected but a low correlation is noticed in

both data sets.

• Normal detection (Normal): the case where a keylogging

activity is detected but a high correlation is noticed in

one data set.

• Strong detection (Strong): the case where a keylogging

activity is detected but a high correlation is noticed in

both data sets.

As mentioned in section III-A, a high correlation is con-

sidered if the Spreaman’s Rank Correlation value exceeds

the threshold (0.5). Conversely, a low correlation value is

considered if the Spearman’s Rank Correlation value is below

the threshold.

From Table I, we see a perfect correlation of GetAsyncK-

eyState and WriteFile function calls in experiment E1. The bot

called neither of these functions during its inactive period. We

also notice that there is a high Spearman’s Rank Correlation

value between the outgoing traffic (Bytes Sent) and GetA-

syncKeyState because the amount of outgoing traffic is equal

each time. This traffic belongs to the PONG message generated

by the bot to avoid disconnection from the IRC server.

Therefore, the correlation value is expected to be high as well.

In experiment E2, the high Spearman’s Rank Correlation value

is due to the correlation of GetAsyncKeyState and WriteFile

which are not invoked and zero values are assigned.

In experiment E3.1, we notice a call to GetAsyncKeyState

which indicates abnormal activity. On the other hand, a low

Spearman’s Rank Correlation value is generated in both data

sets. This situation is expected because the user types long

sentences which make only a few calls to WriteFile. In

addition no information is sent to the botmaster. As a result,

a weak detection is indicated. Experiment E3.2 detects a

keylogging activity and generates a high correlation between

GetAsyncKeyState and WriteFile executed by the bot due to

typing short sentences. On the other hand, no information

is sent to the botmaster which results in normal detection

according to our classification.

Experiment E4.1 shows similar activity to experiment E3.1

where the user types long sentences, but the information is sent

to the botmaster. We expect to have a high correlation between

the outgoing traffic and GetAsyncKeyState function. The result

shows there is no significant difference from experiment E3.1.

This is because the bot sends the information when the user

finishes typing long sentences. Experiment E4.2 is the best

case for detecting keylogging activity in our system. In this

experiment, we detect the keylogging activity and we have

high correlation values for both data sets which indicates

abnormal activity running in our network.

The last experiment E5 in Table I shows the result of the

Spearman’s Rank Correlation correlation on monitoring the

mIRC client. Even though we have a high correlation value

before and after removing idle periods on both experiments,

we did not detect the use of keylogging function calls. The

high correlation value between outgoing traffic and GetA-

syncKeyState relates to the number of of idle periods due to

the delay in responding to another client’s messages.

In summary, we notice that some experiments produce

high correlation values. There are many reasons for this.

The first reason is that different events occur in different

time-windows. Therefore, our algorithm produces inaccurate

results. The second reason is that we have many idle periods

in our data sets. The idle periods increase the correlation

value which affect our detection scheme. In order to improve

our detection scheme, we need to apply a more intelligent

correlation scheme.

6

TABLE I
SPEARMAN’S RANK CORRELATION (SRC) VALUE WHICH REPRESENTS

THE CORRELATION BETWEEN TWO DATA SETS.

SRC(GetAsyncKey, SRC(GetAsyncKey,

Exper- Bytes Sent) WriteFile) Keylog. API

iments with without with without Activity Detection

zeros zeros zeros zeros existence confidence

(S1) (S2) (S1) (S2)

E1 0.863 0.671 1.000 1.000 No N/A

E2 0.648 0.498 0.967 0.897 No N/A

E3.1 0.509 0.183 0.559 0.172 Yes Weak

E3.2 0.423 -0.003 0.928 0.618 Yes Normal

E4.1 0.506 0.189 0.560 0.089 Yes Weak

E4.2 0.927 0.579 0.957 0.663 Yes Strong

E5 0.594 0.499 0.983 0.958 No N/A

V. LIMITATION OF THE ALGORITHM

As our algorithm is based on bots detection by correlating

different behaviours within specified time window, it is pos-

sible for the botmaster to evade this detection technique by

allowing the bot to wait for a random time before performing

another task. In this situation, we need to increase the time

window and search for correlation of events within this time

window. Increasing the time window may have a negative

impact on our bots detection period.

Another important issue is that we focus on detecting a bot

based on its keylogging activity. Combining other bot activities

such as SYN attack or UDP attack with the keylogging

activities can increase the correlation between different events.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we develop a program to monitor some API

function calls of the spybot. We consider the execution of these

functions within specified time-window as a security risk to

our system. We highlight that looking at API function calls

alone is not sufficient as other normal applications can call the

same functions. As a result, the need for correlating different

behaviour data is recommended. We use a Spearman’s Rank

Correlation method to correlate our captured data. Although

the Spearman’s Rank Correlation is a simple method to

examine the correlation level, the results were promising. In

addition, our results show that including idle periods in our

correlation algorithm produces inaccurate results. This is due

to the fact that most of the situations examined had a large

number of idle periods which increases the correlation value.

A more intelligent way of correlating the data is to remove the

idle periods. Although removing the idle periods reduces the

correlation value, it produces more acceptable results. It would

be even better to remove only certain idle periods, something

we will consider in our future research.

Other experiments show a weak detection decision (low

correlation values). This is because different activities occur

in different time-windows. For example, the typing process

has a different time window than writing to a file or sending

information to the attacker. We believe that choosing a correct

time-window as well as the window size to correlate our data

will have a large effect on our detection algorithm. Currently,

we are using the Artificial Immune System approach for

correlating different activities within the same time window.

For future work, we will use the Artificial Immune system

correlation algorithm to detect the Peer-to-Peer bots.

ACKNOWLEDGMENT

The authors would like to thank Etisalat College of Engi-

neering and Emirates Telecommunication Corporation - ETI-

SALAT, for providing financial support for this work.

REFERENCES

[1] M. Abu Rajab, J. Zarfoss, F. Monrose and A. Terzis, A Multifaceted
approach to understanding the botnet phenonmenon, Proceedings of the
6th ACM SIGCOMM on Internet Measurement (IMC). Rio de Janeiro,
Brazil (October 25-27, 2006) 41–52

[2] Y. Al-Hammadi and U. Aickelin, Detecting Botnets Through Log Correla-

tion, Proceedings of MonAM 2006 - IEEE/IST Workshop on Monitoring,
Attack Detection and Mitigation. Tuebingen, Germany, (September 28–29
2006) 97–100.

[3] Y. Al-Hammadi and C. Leckie, Anomaly Detection for Internet Worms, In
Proceedings to the 9

th IFIP/IEEE International Symposium on Integrated
Network Management. Nice, France, (May 2005) 133–126.

[4] API for hackers. http://sysspider.vectorstar.net/papers/api4hackers.txt
[5] P. Barford and V. Yegneswaran, An Inside Look at Botnets, Special

Workshop on Malware Detection Advances in Information Security,
Springer Verlag, (2006)

[6] M. Aslam, R. N. Idrees, M. M. Baig and M. A. Arshad, Anti-Hook

Shield against the Software Key Loggers, Proc. of Nat. Conf. of Emerging
Technologies (2004). 189–191.

[7] J. R. Binkley and S. Singh, An Algorithm for Anomaly-based Botnet

Detection, Proceedings of USENIX Steps to Reducing Unwanted Traffic
on the Internet Workshop (SRUTI) (July 2006) 43–48.

[8] G. Bancroft and G. O’Sullivan, MATHS AND STATISTICS FOR
ACCOUNTING AND BUSINESS STUDIES, 2

nd ed. Published by
McGRAW-HILL Book Company (UK) Limited. (1988) 135–139

[9] E. Cooke, F. Jahanian and D. McPherson, The Zombie Roundup: Under-

standing, Detecting, and Disrupting Botnets, In Proceedings of Usenix
Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI
05). Cambridge, MA, (July 2005) 39–44.

[10] F. C. Freiling, T. Holz and G. Wicherski, Botnet Tracking: Exploring
a Root-Cause Methodology to Prevent Distributed Denial-of-Service At-

tacks, Technical Report AIB-2005-07, RWTH Aachen University, (April
2005)

[11] L. A. Gordon, M. P. Loeb, W. Lucyshyn and R. Ric son. CSI/FBI
COMPUTER CRIME AND SECURITY SURVEY 2006, Computer Secu-
rity Institute, September, 2006.

[12] C. Herley and D. Florencio, How To Login From an Internet Cafe
Without Worrying About Keyloggers, Symposium on Usable Privacy and
Security (SOUPS) 06. (July 2006).

[13] The Honeynet Project, Know your enemy: Tracking botnets, http://www.
honeynet.org/papers/bots/ , (March 2005).

[14] N. Ianelli and A. Hackworth, Botnets as a Vehicle for Online Crime.

CERT Coordination Center, (2005).
[15] I. Ivanov, API hooking revealed, http://www.codeproject.com/system/

hooksys.asp?df=100&forumid=3602&exp=0&select=1408110
[16] Y. Kaplan, API Spying Techniques for Windows 9x, NT and 2000, http:

//www.internals.com/articles/apispy/apispy.htm
[17] mIRC client application, http://www.mirc.com.
[18] MSDN - File Management Functions, http://msdn2.microsoft.com/

en-us/library/aa364232.aspx
[19] MSDN - Keyboard Input, http://msdn2.microsoft.com/en-us/library/

ms645530.aspx
[20] MSDN - Winsock Functions, http://msdn2.microsoft.com/en-us/library/

ms741394.aspx
[21] S. Racine, Analysis of Internet Relay Chat Usage by DDoS Zombies.

Master’s Thesis. Swiss Federal Institute of Technology Zurich. (April
2004).

[22] Security Stats, http://www.securitystats.com/
[23] C. K. TAN, Windows Key Logging and Counter-Measure.

7

