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Nonlinear breathing modes at a defect

By Jonathan AD Wattis

Theoretical Mechanics, School of Mathematical Sciences, University Park,

University of Nottingham, Nottingham NG7 2RD, UK

Recent molecular dynamics (MD) simulations of Cubero et al. (1999) of a DNA
duplex containing the ‘rogue’ base difluorotoluene (F) in place of a thymine (T)
base show that breathing events can occur on the nanosecond timescale, whereas
breathing events in a normal DNA duplex take place on the microsecond timescale.
The main aim of this paper is to analyse a nonlinear Klein-Gordon lattice model of
the DNA duplex including both nonlinear interactions between opposing bases and
a defect in the interaction at one lattice site; each of which can cause localisation
of energy. Solutions for a breather mode either side of the defect are derived using
multiple-scales asymptotics and are pieced together across the defect to form a
solution which includes the effects of the nonlinearity and the defect. We consider
defects in the inter-chain interactions and in the along chain interactions. In most
cases we find in-phase breather modes and/or out-of-phase breather modes, with
one case displaying a shifted mode.

Keywords: Localisation, defect, lattice model, breathers

1. Introduction

In the context of the internal dynamics of DNA chains, ‘breathing’ refers to the
opening of base-pairs, that is, a motion in which the hydrogen bonds between
complimentary bases are temporarily broken. This allows the bases to pivot around
the backbone and become exposed to the solvent. Such motion was demonstrated
and analysed in hydrogen exchange studies on polynucleotides and transfer RNA
by Englander et al. This analysis together with that of Mandal et al. suggested
that on averages, bases spent 5% of the time in an open state, and that there was a
surprisingly slow timescale of a second for such motions. Mandal et al. speculated
that the reason for this was an enthalpic and possibly an entropic barrier. We shall
be concerned with the low energy phenomenon whereby such motion is localised in
space, only occurring to one or a few base pairs at a time.

With the aim of studying denaturation in particular, Peyrard and Bishop (1989)
and (1990) have applied the discrete sine-Gordon equation to the motion of DNA
chains; however, such models lack realism, since the interchain bond strength varies
along DNA—AT base pairs having only two hydrogen bonds whilst CG pairs have
three. Salerno addresses this limitation in his account (1991) of numerical sim-
ulations of kinks in a modified DSG system. Peyrard & Farago (2000) use the
Kullback-Leibler divergence deduced from the Shannon entropy to analyse the lo-
calisation in a Klein-Gordon lattice. Their numerical simulations show that at finite
temperature the lattice contains ‘hotspots’, where breathers exist and are mobile,
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2 J.A.D. Wattis

and ‘cold regions’ where the energy density is small. Cold regions act as barriers
which confine the breathers to hot spots.

Olson et al. (1993) and (2000), Matsumoto & Olson (2002) and Chen et al.

(2000) analyse models valid at a scale larger than atomistic yet with potential
functions which include sequence-dependent structural information. This is crucial
if realistic models of DNA chains are to be constructed and used for simulations at
the mesoscopic level. However, much of this work is concerned with the flexibility
and curvature of the double helix as a whole (due to twist, roll, tilt, rise, slide and
shift in the terminology of Yakushevich) and less concerned with the motion of
individual bases relative to their complimentary bases on the other strand, such as
occur in breathing events (and in the stagger, stretch, shear, buckle, opening and
propellor twist motions).

The need for mesoscopic models which treat DNA at the level of bases is vital
since, even with current computing power, all-atom molecular dynamics simulations
are limited to a few nanoseconds and the order of 10 base pairs, whereas there
are many interesting dynamical phenomena involving thousands of base pairs and
occurring on timescales of microseconds upto milliseconds. Over these larger scales
solvent friction becomes relevant, thus useful models at this scale will need to include
stochastic forcing terms due to the presence of a heat bath.

Breathing events caused by point defects have been observed in DNA simulations
by Cubero et al. (1999), and modelled by Wattis et al. (2001) using a linear model.
The aim of the current paper is to consider more general types of defect, and
extend the model to include the nonlinear form of the inter-strand interactions.
The derivation of breather solutions of nonlinear Klein-Gordon systems involves
asymptotic expansions which lead to the nonlinear Schrodinger equation (NLS)
equation: thus the work of Sukhorukov et al. (2001) is relevant to the current
study. They analysed the effect of point defects in NLS equations of the form iψt +
ψxx + ψ[F (|ψ|2) + δ(x)G(|ψ|2)] = 0, in which δ(x) is the Dirac delta (generalised)
function satisfying δ(x) = 0 for all x 6= 0 and

∫
δ(x)f(x)dx = f(0).

From the analyses of the crystal structure of DNA sequences containing a long
run of A bases, Nelson et al. (1987) found ‘bifurcated hydrogen bonds’ that is bonds
which form diagonally across the major groove in addition to the normal Watson-
Crick complimentary bonds. Such diagonal interactions can be incorporated into
ladder-type such as those used here, and have been described in earlier work of
Wattis (1998). Heinemann & Alings (1989) note that the relative orientation of
bases (for example, their helical twist and propellor twist) depends on the context
of the bases; it is not simply dependent on the base itself, but depends on the
neighbouring bases. Timsit (1999) analyses the fidelity of DNA replication, and
its dependence on the DNA sequence, deducing that ‘the structural properties of a
DNA sequence ... can contribute to replication errors’ and hence ‘may be connected
to both genetic functions and dysfunctions’. One example of this is the presence
of mismatches in a (CA)n tract which can be seen in an examination of the major
groove; however, enzymes scan the minor groove and this shows no evidence of
mismatches.

In the remainder of this section we introduce the model, and review two sim-
pler models both of which show energy localisation, but caused by entirely different
mechanisms. In Sections two and three we show how to analyse a model and deter-
mine the localised modes when both mechanisms are present. Section two covers
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Nonlinear breathing modes due to a defect in a DNA chain 3

Figure 1. Illustration of the ladder model of DNA.

(Horizontal lines denote along-chain interactions modelled by linear springs with constant

k; vertical lines marked γ denote the inter-chain interactions modelled by nonlinear force-

displacement relationship. Displacements of the upper chain are denoted by un(t) and of

the lower chain by vn(t). )
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the case of inhomogeneities in the inter-chain interactions, in Section three we anal-
yse defects in the along-chain interactions, and the combined defect is analysed in
Section four. Section five shows the non-existence of stationary localised modes in
a case where there is a step-change in the interaction parameters, and the paper
concludes with a discussion of the results in Section six.

(a) Model

We model each base in the DNA as a separate point mass attached to three other
bases – one in each direction along the same chain, and one on the complementary
chain. This last bond is modelled by nonlinear force-displacement relationship with
coefficients γ, η, ν; the along-chain interactions are modelled by linear springs with
spring constant k. The Hamiltonian is then

H =
∑

n

1
2mnu̇

2
n + 1

2mnv̇
2
n + 1

2k
(u)
n+ 1

2

(un+1 − un)2 + 1
2k

(v)
n+ 1

2

(vn+1 − vn)2

+ 1
2γn(un − vn)2 − 1

3ηn(un − vn)3 − 1
4νn(un − vn)4, (1.1)

where un denotes the transverse displacement from equilibrium of one chain and vn

of the other chain. We assume that there are no longitudinal displacements. From
the Hamiltonian we obtain the equations of motion

mnün= k
(u)
n+1

2

(un+1−un) − k
(u)
n−1

2

(un−un−1) − γn(un−vn) + ηn(un−vn)
2 + νn(un−vn)

3,

mn̈vn= k
(v)
n+1

2

(vn+1−vn) − k
(v)
n−1

2

(vn−vn−1) + γn(un−vn) − ηn(un−vn)
2 − νn(un−vn)

3,

for the motion of the atoms on each chain of the double helix. This model can
be simplified by using the substitution un = 1

2 (xn + yn), vn = 1
2 (xn − yn) or,

equivalently, xn = un + vn, yn = un − vn. To fully separate the equations we

require k
(u)
n = k

(v)
n for all n. This corresponds to assuming that the strength of the

interactions along each chain is independent of the bases involved. We thus assign
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4 J.A.D. Wattis

kn = ku
n = kv

n.

mnẍn = kn+ 1
2
(xn+1 − xn) − kn− 1

2
(xn − xn−1), (1.2)

mnÿn = kn+ 1
2
(yn+1 − yn) − kn− 1

2
(yn − yn−1) − 2γnyn + 2ηny

2
n + 2νny

3
n.

Under this transformation, the xn variables denote the bulk motion of the double
helix, that is the overall motion of the two chains; whilst the yn(t) variables denote
the chain separation distances, i.e. the breathing motion of the chain. The equation
for the former variables is linear, but the latter is nonlinear, and it is this more
complex equation which we shall concentrate on for the remainder of this paper. We
are interested in the possible existence of impurity modes centred near a variation
in the parameters, which will be assumed to occur at n = 0. Since the mass of all
bases is approximately the same, we will remove mn by rescaling the time variable
and redefining the spring constants kn, γn, ηn and νn.

The main type of spatial modulation analysed in this paper is the local inho-
mogeneity, or point defect, where at one, or a small number of sites the lattice
parameters take on different values, but far away all parameters are uniform. Typ-
ical inhomogeneities of this form are defects, which have the form

kn+ 1
2

= k+k̂δn,0, γn = γ+γ̂δn,0, ηn = η+η̂δn,0, νn = ν+ν̂δn,0, (1.3)

where δi,j is the Kronecker delta function satisfying δi,j = 0 if i 6= j and δi,j = 1 if
i = j. Thus our system of equations

ÿn = k(yn+1 − 2yn + yn−1) − 2γyn + 2ηy2
n + 2νy3

n, (1.4)

holds at all n, except n = 0, where we have

ÿ0 = k(y1 − 2y0 + y−1) − 2γy0 + 2ηy2
0 + 2νy3

0 − 2γ̂y0 + 2η̂y2
0 + 2ν̂y3

0 + k̂(y1 − y0),
(1.5)

and at n = 1, where equation (1.4) is modified by the addition of k̂(y0 − y1). The
Hamiltonian which generates this system of equations is

H =
∑

n

{
1
2 ẏ

2
n + 1

2k(yn+1−yn)2 + γy2
n − 2

3ηy
3
n − 1

2νy
4
n

}
+

+γ̂y2
0 − 2

3 η̂y
3
0 − 1

2 ν̂y
4
0 + 1

2 k̂(y1−y0)
2. (1.6)

We use small amplitude asymptotics to derive analytic approximations to solutions
of this system. Clearly the types of oscillation observed will depend on the relative
size of the wave to the inhomogeneity. For small amplitudes, there are coherent
modes in which, to leading-order, the bases oscillate in a simple harmonic fashion
due to the first three terms in the Hamiltonian, with the anharmonic terms (η and
ν) determining the spatial shape of the mode. If γ̂ ≪ ε where ε is the amplitude of
the mode then such a mode is expected to persist, however if ε≪ γ̂ then one may
expect the presence of the inhomogeneity to dominate the spatial structure of any
coherent oscillation. When γ̂ ∼ ε then the two effects are of equal importance and
it is this regime which we shall focus on in this paper. The second, and less studied
inhomogeneity is that of a transition from one set of parameter values in n ≤ 0 and
another set of values in n > 0.
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Nonlinear breathing modes due to a defect in a DNA chain 5

Table 1. Parameter values following the fitting shown in Figure 2.

(Eg 2 indicates the parameters used in examples of the out-of-phase modes)

Parameter AT AF Eg 2 units

k 0.038 0.042 J m−2

γ 0.0515 0.035 J m−2

η 0.047 0.034 ×1010 J m−3

ν −0.010 −0.0080 −0.1 ×1020 J m−4

νin

eff 0.22 0.18 ×1020 J m−4

νout

eff 0.26 0.21 −0.28 ×1020 J m−4

Before we analyse the interaction of breathers with defects, we first summarise
the behaviour of a chain with all linear interactions and a single point defect, which
can cause energy localisation. We then also summarise the methodology for finding
breathers in a homogeneous system with nonlinearity, that is where the parameters
are independent of spatial position (n).

(b) Parameterisation of model

We parameterise this model in a similar way to that explained in Wattis et al.

(2001). We use the molecular dynamics package amber to measure the energy of the
interchain-potential and the along-chain potential in a series of test configurations.
These configurations have the form of a single base-pair being displaced by a given
amount and all other base pairs left at equilibrium, i.e. yn = 0 for all n except
n = 0 where y0 6= 0 and a range of values of y0 are used. This corresponds to
u0 = 1

2y0 and v0 = − 1
2y0 with all other un = 0 = vn in (1.1). The energy in the

along-chain interactions is then Ealong = 1
2ky

2
0 and in the inter-chain interactions

is Einter = 1
2γ0y

2
0 − 1

3η0y
3
0 − 1

4ν0y
4
0 . Fitting this to the data generated from gnuplot

yields the values given in Table 1, where the conversion factor 1 Kcal M−1Å−2 =
0.6955 × 10−3 J m−2 is used and we assume that all bases have the same mass of
307/NA g, where NA is Avogadro’s number, giving m= 0.5 × 10−24 kg.

The linear spring constants γ for the AT and the AF base pair are significantly
different from those derived in the earlier work (Wattis et al. 2001) due to the addi-
tion of non-harmonic terms in the inter-chain interactions which improve accuracy
over an increased range of displacements. Parameters for the AF basepair differ
most from AT in the constant γ, where the ratio is 0.68, the ratios being 0.74 and
0.8 for the cubic and quartic terms respectively.

(c) Localisation in a linear model with impurity

Here we summarise the results of Wattis et al. (2001); in which a model of the

form (1.4)–(1.5) is solved with η = ν = 0 = k̂; the defect in the along-chain inter-
actions (k) being considerably smaller than that in γ. Being linear and sufficiently
simple, the model is fully solvable, that is, all the normal modes of the system
can be found; both their frequencies and their spatial structure were determined.
The majority are delocalised modes, in which displacements are spread around the
lattice, but there are also a couple of modes which show increased displacements at
the defect site. The calculations were carried out for a finite lattice with periodic
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6 J.A.D. Wattis

Figure 2. Potential energy (in Kcal M−1) against bond length (in Å).

(Left: fit of the harmonic along-chain interaction potential to data from amber. Right: fit

of the nonlinear inter-chain interaction potential to data from amber; in each case data

and fit for both the defective AF base pair and for a normal AT base pair are given.)

-500

-450

-400

-350

-300

-250

-200

1.5 2 2.5 3 3.5 4 4.5 5

k data for AF
k fit for AF

k data for AT
k fit for AT

-15

-10

-5

0

5

10

15

20

1.5 2 2.5 3 3.5 4 4.5 5

h data for AF
h fit for AF

h data for AT
h fit for AT

boundary conditions, and results illustrated for a system of 12 base pairs. Statis-
tical information about the behaviour of the system was determined by inserting
1
2kBT of energy into each mode and observing how the displacements of each base
pair varied over time. Although a qualitative observation, it is clear that the defect
site displayed greater displacements than base pairs away from the defect; the RMS
deviation also shows this.

Measurements of displacement were taken at 1 picosecond intervals for 10 nanosec-
onds, and histograms of frequency against size of displacement were calculated.
These histograms displayed a clear Gaussian shape. If a breathing event was de-
fined as an opening of 11.5Å, it was found that the AF base pair breathed four times
in the 10 ns simulation, as was observed in the simulations of Cubero et al.(1999),
also from the Gaussian distribution it can be extrapolated that an AT breathing
event would happen approximately four times a microsecond. A second test of the
data is to calculate the free energy of opening based on the ratio of time spent open
to close, this gave a value of 4.2 Kcal/mol. If a breathing event is defined as an
opening distance of 4.8Å then the energy of opening is reduced to 1 Kcal/mol. Such
results are surprisingly good given the approximation of complex inter-base inter-
actions by harmonic potential energy functions, and that the results are based on
the extrapolation of distributions from rare breathing events. In the current paper
nonlinearity prevents performing such a detailed normal mode analysis.

(d) Localisation in a homogeneous nonlinear model

Here we summarise the method of multiple scales asymptotics as originally
outlined for the current problem by Remoissenet (1986). The method of multiple
scales is a method of solving problems in which the quantities of interest vary
over widely differing timescales. It draws on ideas from both the WKBJ method
and the boundary layer theory for constructing uniformly valid approximations. In
its simplest form, it is useful for solving ordinary differential equations which are
close to resonance; in such systems a quantity oscillates on one timescale, while its
amplitude of oscillation slowly varies over a much longer timescale. Multiple scales
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Nonlinear breathing modes due to a defect in a DNA chain 7

techniques can find how the amplitude changes over the slow timescale, due to the
combined effects of resonance and higher-order nonlinear terms. For an introduction
to these techniques, see Bender & Orzsag (1978).

In our system of equations we require three timescales, to fully resolve the
kinetics of the breathing motion, and to determine the shape of the wave, we need
to use multiple-scales in space as well as time. We assume the solution of (1.4) takes
the form

yn(t) = εeiωt+inpF (x, τ, T ) + ε2e2iωt+2inpG(x, τ, T ) + ε2H(x, τ, T ) + c.c. (1.7)

where τ = εt, x = εn, T = ε2t, and c.c. stands for complex conjugate. We thus have
two space scales (n and x) and three timescales (t, τ and T ). Substituting (1.7)
into (1.4) and equating terms of the same order in ε and the same leading order
frequency (eiωt) leads to

O(εeiωtF ) : ω2 = 2γ + 2k(1 − cos p)

O(ε2e0iωt) : 0 = −2γH + 2η|F |2

O(ε2eiωt) : 2iωFτ = 2ikFx sin p

O(ε2e2iωt) : −4ω2G = −2γG+ 2ηF 2 − 2kG(1 − cos 2p)

O(ε3eiωt) : 2iωFT +Fττ = 6ν|F |2F + 4η(FH+FH∗+F ∗G) + kFxx cos p.

(1.8)

We thus have

ω2 = 2γ + 4k sin2(1
2p), G =

−ηF 2

3γ + 8k sin4(1
2p)

, H =
η|F |2
γ

, (1.9)

from the first, second and fourth equations above, and two equations for F (x, τ, T ).
The O(ε2eiωt) equation implies

F (x, τ, T ) = F (x− uτ, T ) = F (z, T ), where u =
−k sin p

ω
. (1.10)

Thus to obtain modes which are stationary and centred near n = 0 (x = 0) we
require u = 0, which implies z ≡ x. and either p = 0 or p = π; the former we refer
to as ‘in-phase breathers’ and the latter, ‘out-of-phase breathers’.

For general p the velocity u is nonzero and the O(ε3eiωt) equation implies

2iωFT = (k cos p− u2)Fzz + νeff(p)|F |2F, (1.11)

which has the form of a nonlinear Schrödinger equation (NLS), in which

νeff(p) = 6ν +
8η2

γ
− 4η2

3γ + 8k sin4(1
2p)

. (1.12)

The moving soliton solution of (1.11) is F = Ae−iΩT+iRzsech(β(z − cT )) where

β = A

√
νeff(p)

2(k cos p−u2)
, R =

−ωc
k cos p−u2

, Ω =
A2νeff(p)(k cos p−u2)−2ω2c2

4ω(k cos p− u2)
.

(1.13)
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8 J.A.D. Wattis

In order for β to be real, there are restrictions on p. In the next sections we seek
the forms of stationary localised modes in which energy is localised near the defect.

For static (u = c = 0) in-phase (p = 0) solutions, we find Ω = A2νin
eff/4ω,

β = A
√

(νin
eff/2k), u = R = 0, ω =

√
2γ, and νin

eff = 6ν + 20η2/3γ. Thus

yn ∼ 2εAsech

(
εA(n−n0)

√
νin
eff

2k

)
cos

(√
2γ

(
1− ε2A2νin

eff

8γ

)
t

)
+ (1.14)

+
2ηε2A2

γ
sech2

(
εA(n−n0)

√
νin
eff

2k

)[
1 − 1

3 cos

(√
2γ

(
1− ε2A2νin

eff

8γ

)
t

)]
.

This solution corresponds to the low frequency breather since it lies just below
the dispersion relation for linear waves. Note that this solution exists only for
ν > −10η2/9γ. For static (u = c = 0) out-of-phase (p = π) solutions, we find

F = Ae−iA2νout
eff T/4ωsech

(
Ax

√
−νout

eff

2k

)
, (1.15)

where u = R = 0, ω =
√

2γ + 4k and νout
eff = 6ν + 8η2/γ − 4η2/(3γ+8k), and thus

yn∼2εA(−1)nsech

(
εA(n−n0)

√
−νout

eff

2k

)
cos

(√
2γ+4k

(
1 − ε2A2νout

eff

8γ+16k

)
t

)
+ (1.16)

+
2ε2A2η

γ
sech2

(
εA(n−n0)

√
−νout

eff

2k

)[
1− γ

3γ+8k
cos

(
2
√

2γ+4k

(
1− ε2A2νout

eff

8γ+16k

)
t

)]
,

for the discrete Klein-Gordon breather mode. This is a high-frequency breather
since it lies just above the dispersion relation for small amplitude linear waves; it
exists only for ν > −2η2(5γ+16k)/3γ(3γ+8k).

2. A point defect in the inter-strand interaction

We now construct the solution for a breather in a nonlinear system in which there is
also a defect. We shall assume initially that there is a point defect in γ at n = 0, and
that all other parameters are uniform across the whole lattice. We define a solution
y+

n (t) which is defined for all n and will be the solution to the equation of motion in
n ≥ 1; similarly y−n (t) is defined for all n and is the solution in n < 0. Each satisfies
the homogeneous equation (1.4) but not the equation at n = 0. The solutions y±n (t)
thus have the form (1.14) or (1.16) with amplitudes A± and displacements n0 = n±.

In order for the frequencies of y±n to be the same we require A2
− = A2

+. Applying
the equation (1.4) at n = 1 means that y0 = y+

0 and applying (1.4) at n = −1
implies y0 = y−0 ; thus we have y+

0 = y−0 and so A− and A+ must have the same
sign and so are equal. We define A = A+ = A−, and the remainder of this section
is involved with determining n±.

We know that y+
n satisfies

ÿ+
n = k(y+

n+1 − 2y+
n + y+

n−1) − 2γy+
n + 2η(y+

n )2 + 2ν(y+
n )3, (2.1)
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Nonlinear breathing modes due to a defect in a DNA chain 9

for all n, and we wish to find n± such that at n = 0 we have

ÿ+
0 =k(y+1 −2y+0 +y−−1)−2γy+0 +2η(y+0 )2+2ν(y+0 )3−2γ̂y+0 +2η̂(y+0 )2+2ν(y+0 )3, (2.2)

taking the differences of these two equations yields the condition

0 = ky−−1 − ky+
−1 − 2γ̂y+

0 + 2η̂(y+
0 )2 + 2ν̂(y+

0 )3. (2.3)

(a) In-phase breathers at a defect in γ

For in-phase breathers the solution can be written as

y±n (t) = 2εA±sech(θA±(n−n±)) cos(W±t) +

+
2ε2A2

±η

γ
sech2(θA±(n−n±))(1− 1

3 cos(2W±t)) + . . . (2.4)

in the regions n > 0 and n < 0, where

W± =
√

2γ

(
1 − ε2A2

±ν
in
eff

8γ

)
, θ = ε

√
νin
eff

2k
. (2.5)

By considering the equation of motion at n = ±1 we obtain the condition y+
0 = y0 =

y−0 and hence sech(Aθn+) = sech(Aθn−); there are two cases to consider: n+ = n−

and n+ = −n−. The former yields y+
n ≡ y−n and so there is no modification to the

wave form by the presence of the defect, this leads to the contradiction γ̂ = 0. Thus
we have n+ = n0, n− = −n0, and using (2.3) we find γ̂ = kθA tanh(θAn0) which
simplifies to

n0 =
1

εA

√
2k

νin
eff

tanh−1

(
γ̂

εA

√
2

kνin
eff

)
. (2.6)

With this definition equation (2.4) can be rewritten, the leading order term becomes
yn = 2εAsech(θA(n0 + |n|)) cos(Wt) + O(ε2).

For small amplitude defects, where γ̂ ≪ ε, the quantity n0 is linearly related
to the amplitude of the defect and εn0 ∼ γ̂/ε ≪ 1. However, since the oscillation
has a width of O(ε−1), only when the width is altered by an amount of this size
that the effect of the defect is noticed at leading order, that is n0 = O(ε−1) is the
interesting size of defect. This corresponds to a defect of strength γ̂ = O(ε). For
breather-defect combinations satisfying γ̂/ε≪ 1 the defect will be almost invisible
to the breather, whereas for γ̂/ε≫ 1 the defect will radically alter the shape of the
breather, and there is a smooth transition between these two limits which occurs
when γ̂/ε = O(1).

There is an abrupt change in yn+1 − yn at the defect, observable as a ‘sharp
corner’ in the profile of the wave as illustrated in Figure 3(a); parameter values
are given in Table 1. Negative values of γ̂ lead to single-humped modes with a
sharp corner at n = 0 (corresponding to n0 < 0), whereas γ̂ > 0 gives n0 > 0
yielding double-humped solutions with maxima both sides of n = 0, namely at
n = ±n0. As γ̂ → −εA√(kνin

eff/2), we have n0 → −∞ and the shape of the solution
approaches the e−λ|n| observed in the linear chain with a defect (Wattis et al. 2001).
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10 J.A.D. Wattis

Figure 3. In-phase breather modes.

((a) Illustrations for bγ = −0.01 J m−2 (single-humped) and bγ = 0.04 J m−2 (double-

humped), with parameter values εA = 0.4 Å. (b) Illustration of the breather mode for

bγ = −0.016 J m−2, with amplitude determined by the energy of the mode being 1

2
kBT ,

compared with the solution of the linear system (3.28) in Wattis et al. (2001).)
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As γ̂ → εA
√

(kνin
eff/2) we have n0 → ∞, and for larger values of γ̂ such solutions

cease to exist.
The energy in these solutions can be calculated and the energy contained in

such a mode observed would typically be kBT/2 where kB is Boltzmann’s constant
(1.38× 10 J K−1) and T is the Temperature, which we shall take as 293 K so that
kBT = 4.1× 10−21 J. The energy of the solution can be calculated by substituting
the solution (2.4) into (1.1). To leading order, we obtain

H =
4γε2A

θ

(
1 +

γ̂

kθA

)
, (2.7)

and by putting H = 1
2kBT we gain the amplitude

εA =
kBTθ

8εγ
− εγ̂

kθ
. (2.8)

The solution so determined is illustrated in Figure 3(b), although it should be noted
that in this case the calculated amplitude is large enough that the condition εA≪ 1
is of dubious validity. A comparison with the solution of the linear problem (given
by equations (3.28) and following from Wattis et al. (2001)) are shown and denoted
by yl, from which it is seen that the inclusion of nonlinear terms produce a dramatic
reduction in the width of the breathing mode, but little difference is made to its
amplitude.

(b) Out-of-phase breathers at a defect in γ

Here we define the out-of-phase breather solutions y+
n and y−n to be valid in

n ≥ 1 and n ≤ −1 respectively, by

y±n (t) = 2(−1)nεA±sech(θA±(n−n±)) cos(W±t) + (2.9)

+
2ε2A2

±η

γ

(
1 − γ

3γ+8k
cos(2W±t)

)
sech2(θA±(n−n+)) + . . .
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Nonlinear breathing modes due to a defect in a DNA chain 11

Figure 4. Out-of-phase breather modes.

(Parameters: bγ = −0.02 J m−2, A = 0.3 Å, single-humped and denoted by y−; and

bγ = 0.02 J m−2, A = 0.4 Å, double-humped and denoted by y+.)
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where

W± =
√

2γ + 4k

(
1 − ε2A2

±ν
out
eff

8γ+16k

)
, θ = ε

√
−νout

eff

2k
. (2.10)

The argument proceeds as for in-phase breathers. The condition W+ = W− implies
A2

+ = A2
− as before; and by considering the equation (1.4) at n = ±1 we obtain

the condition y0 = y+
0 = y−0 . Hence A+ and A− must have the same sign and so

A = A− = A+: it then only remains to determine n±. The condition y+
0 = y−0

implies n+ = n−, which ultimately leads to a contradiction, or n+ = −n−. We
define n0 = n+ = −n− and determine n0 from the condition (2.3) which implies

n0 =
−1

θA
tanh−1

(
γ̂

θAk

)
. (2.11)

Again the crucial size of defect is when γ̂ becomes O(ε), the size of displacements
±n0 ∼ O(1/ε) are the same order of magnitude as the width of the wave, so are
noticeable at leading order. For smaller defects the displacements n± = ±n0 scale
linearly with the defect strength according to n0 ∼ 2γ̂/ε2A2νin

eff but are negligible
at leading order. Breathers of the form (2.9) with (2.11) are illustrated in Figure
4. The lines corresponding to y1 are the leading order approximations (correct
to O(ε)) which are symmetric about the zero displacement line; y2 indicates the
approximation including the first correction terms (correct to O(ε2)). The trailing ±
indicates the sign of γ̂. Parameter values are given in Table 1. Figure 5 illustrates the
spatiotemporal form of both the in-phase and out-of-phase single-humped breather
solutions.

3. A point defect in the along-chain interactions

In this case we consider the case where there is one base-pair interaction where
the spring constant is given by k + k̂ instead of k. We assume that the inter-chain
interactions (γ, η, ν) are uniform along the chain. Equation (1.4) holds at all sites
except n = 0 and n = 1. As in the previous section we define two solutions denoted
by y±n , each defined for all n but only relevant in one half of the domain. We have
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12 J.A.D. Wattis

Figure 5. Illustration of in-phase (left) and out-of-phase (right) breather modes.
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yn = y+
n at all sites n ≥ 1 and yn = y−n when n ≤ 0. If we are considering in-phase

modes, y±n are given by by (1.14) with A = A± and n0 = n±; for out-of-phase
modes, then y±n are given by (1.16). At sites n = 0, 1 we have to satisfy

ÿ0 = k(y1 − 2y0 + y−1) + k̂(y1 − y0) − 2γy0 + 2ηy2
0 + 2νy3

0 , (3.1)

ÿ1 = k(y2 − 2y1 + y0) − k̂(y1 − y0) − 2γy1 + 2ηy2
1 + 2νy3

1 . (3.2)

These lead to conditions on A±, n±. By subtracting (1.4) at n = 0, 1 from each of
the above equations we obtain the conditions

y+
1 − y−1 = − k̂

k
(y+

1 − y−0 ) = y+
0 − y−0 . (3.3)

Requiring the temporal frequency W to be the same in n ≥ 1 and n ≤ 0 implies
A2

+ = A2
− for both in- and out-of-phase breathers.

(a) In-phase breathers at a defect in k

Applying the condition y+
1 − y−1 = y+

0 − y−0 from (3.3) we obtain

sech(θAn+) tanh(θAn+) = sech(θAn−) tanh(θAn−), (3.4)

from which we deduce that n+ and n− have the same sign. By analysing (3.4) we
find three possible solutions

eθAn+ =
eθAn

− + 1

eθAn
− − 1

if n− > 0; eθAn+ =
1 − eθAn

−

1 + eθAn
−

if n− < 0, (3.5)

or n+ = n−; however, this last option implies y+
n = y−n , that is the solutions in

n ≥ 1 and n ≤ 0 are identical and leads to the contradiction k̂ = 0, thus we ignore
this possibility from hereon. A second condition, ky+

0 + k̂y+
1 = (k + k̂)y−0 , derived

from (3.3) determines n− and hence n+; for n± < 0 we have the solution

n− =
1

θA
log(

√
2 − 1) − k̂

2(k+k̂)
, n+ =

1

θA
log(

√
2 − 1) +

k̂

2(k+k̂)
, (3.6)
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Figure 6. In-phase breather modes for a defect in the along-chain interactions.
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and for n± > 0 we have

n− =
1

θA
log(

√
2 + 1) − k̂

2(k+k̂)
, n+ =

1

θA
log(

√
2 + 1) +

k̂

2(k+k̂)
. (3.7)

We see that to leading order, the offset of the waves is the same in both n ≥ 1 and
n ≤ 0, that is n± = O(1/ε), specifically ± log(1 +

√
2)/θA so that the wave crosses

the inhomogeneity at its point of inflection. There are O(k̂) corrections to the shift
of the wave, and these are different in the regions n ≥ 1 and n ≤ 0.

Figure 6 shows the form of the breathers in the case k̂ = 0.008 (on the left)

and k̂ = −0.008 (on the right). Note that in the former case, where the interaction
is stronger (larger spring constant) at the defect, the wave has a slightly increased

width, whereas when the interaction is weaker (k̂ < 0) the wave is narrowed. To

make this effect observable, the value of k̂ used in Figure 6 is twice that for an
AF bond; the other parameters being as given in Table 1 with εA = 0.5 Å. lines
denoted y1± denote the leading order term approximation to yn(0) and yn(π/W ),
those denoted y2± include the O(ε2) correction terms also. The trailing + indicates
n± > 0 and − indicates the case n± < 0.

(b) Out-of-phase breathers at a defect in k

This case is similar to the γ-defect modes rather than the in-phase k-defect
mode. If we seek translations of the wave by amounts n± = n0 + n̂±, where n̂±

are small corrections to n0 we find the two conditions y+
1 − y+

0 = y−1 − y−0 and

ky+
0 + k̂y+

1 = (k + k̂)y−0 lead to

sech(θAn+)[2 + θA tanh(θAn+)] = sech(θAn−)[2 + θA tanh(θAn−)] (3.8)

4k̂ + (k − k̂)θA tanh(θAn−) = (k + 3k̂)θA tanh(θAn+). (3.9)

The former is automatically satisfied at leading order (and yields n̂− = n̂+ − 1

at the first correction term), and the latter yields n0 = (−1/θA) tanh−1(2k̂/kθA).

Thus when k̂ = O(ε) we find solutions in which n± = O(1/ε) as illustrated in
Figure 7, for the parameter values in Table 1 (with ν = −0.1); the left-hand graph

is for k̂ > 0 and the right-hand for k̂ < 0.
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Figure 7. Out-of-phase breather modes for a defect in the along-chain interactions
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4. Defect in both inter-chain and along chain parameters

In the above analyses we have seen two types of defect mode: in most cases we
observe a symmetric mode with a corner at the defect; and in the case of a defect in
the along-chain potential (k), a pair of mirror image shifted modes were obtained.
We now address the question of which type of mode occurs in a system with defects
in both interactions—as occurs in a DNA strand with a rogue AF-base pair (see
parameters in Table 1). We aim to find the defect modes associated with defects of
the form

ÿ1 = k(y2 − y1) − (k + k̂)(y1 − y0) − 2γy1 + 2ηy2
1 + 2νy3

1,

ÿ0 = (k + k̂)(y2 − 2y1 + y0) − 2(γ + γ̂)y0 + 2ηy2
0 + 2νy3

0 , (4.1)

ÿ−1 = (k + k̂)(y0 − y−1) − k(y−1 − y−2) − 2γy−1 + 2ηy2
−1 + 2νy3

−1,

that is with k± 1
2

= k + k̂ and γ0 = γ + γ̂ in (1.2). By comparing each of the above
equations with (2.1) we obtain the conditions which hold at the defect, namely

(k + k̂)y0 = ky+
0 + k̂y+

1 = ky−0 + k̂y−−1. (4.2)

(a) In-phase breather at a defect in k and γ

For an in-phase solution we define our solution by yn = y+
n in n > 0, yn = y−n

in n < 0 with y±n as in (2.4) and y0 to be determined by (4.2); not that y0 is
not either of y±0 ). Seeking a shifted solution, that is where n+ = n0 + n̂+, and
n− = n0 + n̂− with n̂± ≪ n0 yields a contradiction (since the correction terms n̂±

also satisfy n̂+ = n̂−, and so the there is no modification to the wave); whereas
seeking a corner solution, by substituting n+ = n0 + n̂+ and n− = −n0 + n̂− into
the equation for y0 ultimately leads to (2.6) for the leading order term, n0. Thus
the modes in this case will have the same form as those displayed in Figure 3.

(b) Out-of-phase breather at a defect in k and γ

For an out-of-phase solution we define our solution by yn = y+
n in n > 0, yn = y−n

in n < 0 with y±n as in (2.9) and y0, as above, determined by (4.2). Again we find
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a corner solution with n+ = n0 + n̂+ and n− = −n0 + n̂− and n0 given by

n0 =
−1

θA
tanh−1

(
γ̂ + 4k̂

kθA

)
. (4.3)

This generalisation of (2.11), yields a mode similar to those in Figures 4 and 7.

5. A step change in the interaction parameters

There is one other type of parameter changes we now consider: that is where the
parameters k, γ, η, ν take one set of values in n < 0 and another in n ≥ 0, we refer
to this scenario as a step change in the parameters. In most cases considering the
dispersion relation in n ≥ 0 gives two frequencies for which there exist station-
ary localised modes, the in-phase breather solution and the out-of-phase breather
solution. When considering the region n < 0 these two types of breather then cor-
respond to different frequencies, and so it is impossible to piece together a single
mode across the step-change. An alternative way of thinking about this scenario is
to consider a frequency for which there is a localised mode in n > 0, then for the
same frequency, in n < 0 this would correspond either to a mode in the interior of
the dispersion relation (i.e.0 < p < π which would give rise to a moving breather
mode), or be outside the dispersion altogether.

There is one exception to this general rule, that is when only the along chain
interactions (k) take different values in n < 0 and n ≥ 0; here the frequency of
the in-phase breather does not depend on k so will be the same in both regions.
Defining the solution in n ≥ 0 by y+

n with θ = θ+ = ε
√

(νin
eff/2(k+k̂)), and that in

n ≤ 0 by y−n with θ = θ−= ε
√

(νin
eff/2k) in n < 0, we have

ÿ+
n = (k + k̂)(y+

n+1 − 2y+
n − y+

n−1) − 2γy+
n + 2η(y+

n )2 + 2ν(y+
n )3, (5.1)

for all n, including n = 0 and at n = 0 we also have

ÿ+
0 = (k + k̂)(y+

1 − y+
0 ) − k(y+

0 − y−0 ) − 2γy+
0 + 2η(y+

0 )2 + 2ν(y+
0 )3; (5.2)

taking the difference of the latter and the former at n = 0 gives

k(y+
−1 − y−−1) = k̂(y+

0 − y+
−1). (5.3)

This, and y+
0 = y−0 determine the two unknowns: n±. As with earlier cases, matching

the frequencies in the two regions leads to A2
+ = A2

− and the condition y+
0 = y−0

implies that the signs of A+ and A− must be the same, and so A+ = A− =

A. Applying the condition y+
0 = y−0 using (2.4) leads to n+ = ±n−

√
(1 + k̂/k).

Applying the second condition (5.3) leads to the contradictory conclusions of k̂ = 0

or k̂ = −k, i.e. no change in parameter values across n = 0, or there being no
along-chain interactions at all on one side of n = 0. Thus there are no localised
breather modes at a site where the interaction parameters (γ, k, η, ν) have a step
change from one set of values in n > 0 to different values in n ≥ 0.
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6. Conclusions

The main aim of this paper has been to derive the form of breather solutions in sim-
ple models of DNA which contain both nonlinear interactions and inhomogeneities.
Each of these on its own can cause localisation of energy, and we have shown how
the two effects interact. The inhomogeneities considered have been of the form of
point defects affecting only one base pair interaction, or one along-chain bond. In
these systems we derived expressions for the form of stationary breathers at or near
such sites. There are typically two modes which satisfy the criteria of being station-
ary at the defect that is a low frequency ‘in-phase’ mode and a higher frequency
‘out-of-phase’ mode, corresponding to the top and bottom edges of the dispersion
relation. These modes exist for point defects in the inter-chain interactions and for
the along-chain interactions.

In the penultimate section we have also considered inhomogeneities in which
one half of the lattice is governed by one set of parameter values and the other
half by a different set of values. In such systems it is, in general, not possible to
construct stationary breather modes.

We have found shifted modes for k-defects (that is, in the along chain inter-
actions) with an in-phase mode; and corner modes for γ-defects (that is, in the
inter-chain interactions) and out of phase k-defects both these types of mode were
observed by Sukhorukov et al. (2001) in an NLS system. We expect these results to
be indicative of the behaviour of systems in which the inhomogeneities in lattice pa-
rameters are ‘smeared out’ over several lattice sites, rather than the abrupt changes
we have considered here. With realistic DNA parameters and 1

2kBT energy in such
a mode, we are at the limit of applicability of the small amplitude asymptotic ex-
pansion. Nevertheless we see that the combined effect of nonlinearity and defect
causes a narrower oscillation than was seen in the pure linear system analysed pre-
viously (Wattis et al. 2001). While the out-of-phase breather mode gives another
mechanism for high-frequency breathing in Klein-Gordon systems, the parameters
required to realise it do not include those found in DNA,

Future work should be aimed at determining the stability of these solutions, we
expect the double-humped solutions to be unstable and the single-humped to be
stable. The form of localised modes for longer stretches of alternative parameters
would also be interesting, for example as occurs in a sequence of TATA base pairs
in a DNA strand which is predominantly composed of C’s and G’s.

I am grateful to Sarah Harris and Charlie Laughton for useful conversations. I also
thank the referees for comments on the manuscript and pointing out additional references.
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