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Abstract. Using asymptotic methods, we investigate whether discrete breathers are

supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component)

two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within

an electrical transmission lattice. A third-order multiple-scale analysis in the semi-

discrete limit fails, since at this order, the lattice equations reduce to the (2+1)-

dimensional cubic nonlinear Schrödinger (NLS) equation which does not support stable

soliton solutions for the breather envelope. We therefore extend the analysis to higher

order and find a generalised (2 + 1)-dimensional NLS equation which incorporates

higher order dispersive and nonlinear terms as perturbations. We find an ellipticity

criterion for the wave numbers of the carrier wave. Numerical simulations suggest

that both stationary and moving breathers are supported by the system. Calculations

of the energy show the expected threshold behaviour whereby the energy of breathers

does not go to zero with the amplitude; we find that the energy threshold is maximised

by stationary breathers, and becomes arbitrarily small as the boundary of the domain

of ellipticity is approached.

PACS numbers: 05.45.-a, 05.45.Yv

1. Introduction

Discrete breathers (DBs, or simply, breathers) are time-periodic and spatially localised

exact solutions of the equations of motion for a network of coupled nonlinear oscillators.

In this paper we investigate the form, properties and behaviour of breathers in two

dimensional systems with square symmetry by using asymptotic expansions to determine

the governing equation of an envelope which modulates a plane wave. A perturbed

nonlinear Schrödinger equation is obtained. The resulting approximations to breathers

are used as initial conditions in numerical simulations of the Fermi-Pasta-Ulam (FPU)

lattice [1], and the breather modes are observed to persist with very little change of

shape over a considerable period of time. A detailed description of structure of paper is

given at the end of this section; the remainder of this section is given over to a review

of the relevant literature on discrete breathers.
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The discreteness of the lattice paired with its nonlinearity allows for the existence

of DB solutions in a lattice. Specifically, in order to be long-lived, a breather’s

frequency (and that of its harmonics) must avoid resonances with the phonon band.

The discreteness of the system gives rise to gaps and cut-offs in the phonon spectrum,

while the nonlinearity allows for the shifting of the frequency of the breather (and its

harmonics) outside of the phonon band, thus avoiding resonances. There is a large

body of work on DBs (sometimes referred to as anharmonic localised modes, localised

oscillations, nonlinear localised excitations etc.). Much of the early work is heuristic,

being based on approximate analytic methods such as the Rotating Wave Approximation

[2], or numerical procedures, for instance [3]. Ovchinnikov [4] gives an early discussion

of DBs; for a comprehensive review of the subject, see, for instance, Flach [5].

Early work on discrete breathers in higher dimensional systems includes that

of Takeno [6], who introduces lattice Green’s functions to find approximations to

breather solutions in one-, two- and three-dimensional lattices. A similar method

is applied in [7] to find the properties and profiles of localised modes in general d-

dimensional lattices. Other authors present numerically-obtained breather solutions in

two-dimensional lattices. For example, Burlakov et al. [8] find breather solutions in a

two-dimensional square lattice with cubic and quartic nonlinearity, and Bonart et al. [9]

show numerical simulations of localised excitations in one, two- and three-dimensional

scalar lattices (that is, lattices with one degree of freedom at each site). The stability

of these modes is also investigated. In addition, Tamga et al. [10] and Ovchinnikov &

Flach [11] also address higher dimensional systems using analytical approaches.

In 1994 Mackay and Aubry [12] extended the interest in DBs by rigorously

establishing the existence of stationary breathers, not only in one-, but also in higher-

dimensional systems. They began by considering a specific model, namely a one-

dimensional Hamiltonian lattice with linear coupling between nearest neighbours, and

a nonlinear on-site potential (the Klein-Gordon lattice is an example of such a model).

The existence of DB solutions is established by the method of an anti-continuum limit,

first introduced by Aubry and Abramovici [13]. The remarkable aspect of the proof is

that it holds provided only rather weak hypotheses are met. Of direct relevance to the

present work, it is shown that breathers can exist in lattices of any dimension, subject

to only minimal additional constraints.

The origins and features of localised excitations in Klein-Gordon lattices are

investigated by Flach & Willis [14, 15]. Flach et al. [16] show that the existence and

fundamental properties of localised excitations carry across from one-dimensional to two-

dimensional lattices. They argue that the theory described in [14, 15] holds regardless of

lattice dimension. Hence the existence of DBs is predicted in three-dimensional lattices

and higher. In fact, this conjecture is confirmed by Mackay and Aubry’s work [12].

While some fundamental properties such as the existence of DBs are not affected

by lattice dimension, other properties do depend strongly upon this, for instance, the

energetic properties of DBs. We briefly describe results on d−dimensional hypercubic

lattices of N sites. For Hamiltonian systems, stationary breathers occur in one-
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parameter families. Suitable parameters include, for instance, the energy E, frequency

ωb, or amplitude of the breather. In many systems, breathers of arbitrarily small

amplitude can be found, although this is not necessarily so (see Aubry et al. [17], for

example). In the limit of small amplitude, DBs typically widen and approach the

solutions of the linearised lattice equations. However, the breather frequency must also

be nonresonant with the phonon band, that is, ωq/ωb /∈ N. These two requirements

can be fulfilled only if the breather frequency ωb tends to an edge ωq of the phonon

spectrum as amplitude tends to zero. This observation suggests a link between discrete

breathers and phonon modes, namely that breathers appear through a bifurcation from

a phonon mode. So far, this has been proved only for specific one-dimensional lattices

(see James [18]), and numerical work supports the conjecture in others (Sandusky &

Page [19]). Assuming this conjecture to be true, Flach [20] calculates the energy Ec at

which this bifurcation occurs. The quantity Ec represents the minimum energy of DBs

in the lattice. One might expect Ec = 0 as occurs in one-dimensional lattices; however,

in higher dimensions it is possible that Ec > 0. Then no breathers with energies E in

the range 0 < E < Ec exist. For an infinite lattice, as N → ∞, different limiting values

of Ec are obtained depending on the dimension of the lattice: as described by Flach et

al. [21], one obtains Ec ∼ N1−2/d. Thus for d < 2, breathers of arbitrarily small energy

can be found. However, for d ≥ 2, breather energies do not approach zero even as the

amplitude tends to zero. In other words, there exists a positive lower bound on the

energy of DBs. In calculating Ec, Flach [20] assumes the on-site and nearest-neighbour

interaction potentials to be infinitely differentiable. Kastner [22] obtains estimates for

the energy Ec in the degenerate case where the interaction and on-site potentials are

not smooth but only twice continuously differentiable (that is, C2 but not C3). In this

unusual case, it can be shown that Ec ∼ N1−4/d. Hence, in the limit N → ∞, for d < 4,

such systems can support breathers of arbitrarily small energy. However, for d ≥ 4,

there exists a positive lower bound on the energy of DBs.

We mention an interesting series of papers by Marin, Eilbeck and Russell who

investigate breather mobility in two-dimensional lattices with differing geometries. Their

work is motivated by the observation of dark lines or “tracks” along crystal directions

in white mica (see Russell [23]). An extensive account of the track forming process is

given by Marin et al. [24], who also posit that breather modes are responsible for track-

creation. Marin et al. [25] numerically simulate the hexagonal Potassium planes within

mica. Their results suggest that moving breathers do exist, and that the lattice exhibits

a strong directional preference whereby breathers travel only along lattice directions.

Breathers are easily generated in the lattice by imparting an initial velocity to a few

consecutive atoms. After an initial transient (wherein a small amount of energy is

radiated), a robust breather, slightly elongated in shape, emerges and travels with

almost no further change in shape. The breather is stable against lateral spreading,

with perhaps one or two atoms oscillating in the direction perpendicular to the line of

travel. Along the breather path, typically no more than three or four consecutive atoms

oscillate. The initial velocities can be directed as much as ±15◦ from a lattice direction,
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and a moving breather still emerges along the crystal axis. Larger deflections (around

±30◦) result in two breathers, each moving along the nearest lattice axes. However, it

is not possible to generate breathers which travel in directions other than these. Similar

results (termed “quasi-one-dimensional” effects, see Russell & Collins [26]) are obtained

by Marin et al. [27] in a later study on two- and three- dimensional lattices with different

geometries.

While a good deal literature is available for breathers in higher-dimensional systems,

much of the rigorous work is not concerned with determining profiles of breather

solutions; such work has been extensive for one-dimensional systems (see Remoissenet

[28], Kivshar & Malomed [29]). The aim of this paper is thus to provide analytical

results on the profiles of breathers in a higher dimensional system.

In the next section, we aim to find a leading order asymptotic form for a restricted

class of breather solutions for the two-dimensional FPU equation, namely, those of

small amplitude and with slowly varying envelope. We apply the method of multiple

scales to (2.3), much the same as in our earlier work on breather solutions in one-

dimensional FPU lattices (Butt & Wattis [30]). Unfortunately, while the multiple scales

approach is extremely productive for the one-dimensional case, a similar analysis is

made more complicated by the presence of two spatial dimensions. This is because, at

third order, the two-dimensional FPU lattice equations reduce to a scalar cubic two-

dimensional nonlinear Schrödinger (NLS) equation. Unlike its one-dimensional analogue

for which analytic formulae for soliton solutions are known (and give the form of the

breather envelope), the cubic NLS equation over R
2 does not support stable soliton

solutions, only the unstable Townes soliton (Chiao et al. [31]). When subjected to small

perturbations, these may blow up (the amplitude diverges in finite time), or disperse

completely. However, it is known that unstable Townes solitons may be stabilised by

including higher order effects in the model. In Section 3 we extend our asymptotic

analysis to incorporate higher order dispersive and nonlinear terms. We show that the

two-dimensional ETL equations reduce to a generalised nonlinear Schrödinger equation

which includes terms known to stabilise the breather solution. We carry out extensive

numerical simulations (presented in Section 4), demonstrating the stability and long-

lived nature of breathers in the two-dimensional FPU system. In Section 5, we review

the progress made in this tentative multiple-scale approach to finding breathers in two-

dimensional systems. Some of the principal difficulties that have arisen are discussed,

and we outline the ways in which these may be overcome.

2. A two-dimensional Fermi-Pasta-Ulam lattice

2.1. Preliminaries

In the present work, we investigate whether discrete breathers are supported by a scalar

(one-component) two-dimensional electrical transmission lattice (ETL). This lattice

comprises a square configuration of repeating units, each made up of two linear inductors
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and a nonlinear capacitor. It is straightforward to show that the evolution of charge

stored by each capacitor is governed by a two-dimensional version of the Fermi-Pasta-

Ulam (FPU) equations, which we now show form a natural extension of the classic

one-dimensional system studied by Fermi et al [1]. Breathers in one-dimensional FPU

systems have been studied extensively; this system is described by

H =
∑

n

1
2
s2
n + V (rn+1 − rn), (2.1)

which implies

d2rn
dt2

= V ′(rn+1 − rn) − V ′(rn − rn−1), (2.2)

where V (·) is some interaction potential. The anti-continuum limit method of Mackay

and Aubry [12] is inapplicable for such systems, since FPU lattices do not possess an

uncoupled limit in which trivial breathers can be found. Nevertheless, early numerical

and analytical work, much of it admittedly ad hoc, suggested that DBs are indeed

supported by 1D FPU lattices (see for instance, Takeno et al. [2]). A rigorous existence

proof for DB solutions is given by James [18].

A reformulation of (2.2) using qn := rn+1 − rn yields

d2qn
dt2

= V ′(qn+1) − 2V ′(qn) + V ′(qn−1). (2.3)

From this form, a second Hamiltonian form distinct from (2.1) becomes apparent,

namely

H̃ =
∑

n

1
2
(pn+1 − pn)

2 + V (qn). (2.4)

In this form, the nearest-neighbour coupling and nonlinearity have been separated; the

coupling now appearing in a harmonic term and the nonlinearity involving only one site.

We now show that H̃ (2.4) and H (2.1) are numerically equal even though they

appear to arise from different Hamiltonian formulations. We introduce forward and

backward difference operators δ± defined by δ+Φn = Φn+1 −Φn and δ−Φn = Φn−Φn−1.

Then δ2, defined by δ2Φn = Φn+1 − 2Φn + Φn−1, satisfies δ2 = δ+δ− = δ−δ+.

Hamilton’s equations applied to (2.4) imply q̇n = −δ2pn. Since qn := δ+rn we have

δ+ṙn = δ+δ−(−pn), so ṙn = sn = C− δ−pn for some quantity C, independent of n. Now

consider 2(H̃ − H) =
∑
n(pn+1 − pn)

2 −∑
n s

2
n; then 2(H̃ − H) = −∑n C (assuming

that both H and H̃ are finite, and that limn→±∞ pn = 0). Hence, we deduce C = 0, and

so H = H̃.

2.2. Derivation of model equations

The two-dimensional electrical transmission lattice (ETL) comprises a network of

repeating unit sections, each consisting of two identical linear inductors and a nonlinear

capacitor. The arrangement is illustrated in Figure 2.1. We define lattice nodes by

the locations of capacitors. The area surrounding the (m,n)th capacitor of the two-

dimensional ETL is illustrated in Figure 2.2.
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Figure 2.1. The two-dimensional electrical transmission lattice (2D ETL)

Vm+1,nVm−1,n

Vm,n

Vm,n+1

Vm,n−1

Im,nIm−1,n

Jm,n

Jm,n−1

Figure 2.2. Enlarged view of the 2D ETL at the (m, n)th node

The variable Vm,n(t) denotes the voltage across the (m,n)th capacitor, Qm,n(t)

denotes the charge stored on the (m,n)th capacitor, Im,n(t) denotes the current through

the (m,n)th inductor that lies horizontally in the plane of the lattice, and Jm,n(t)

denotes the current through the (m,n)th inductor that lies in the plane of the lattice

perpendicular to Im,n. First, the equations governing voltage Vm,n, current Im,n and

Jm,n, and charge Qm,n in the lattice are derived. Considering the section of the lattice

shown in Figure 2.2 and applying Kirchoff’s law, the difference in shunt voltage at the

(m,n)th and (m+ 1, n)th sites is given by

Vm+1,n − Vm,n = −LdIm,n
dt

, (2.5)

and the difference in shunt voltage at the (m,n)th and (m,n+ 1)th sites is given by

Vm,n+1 − Vm,n = −LdJm,n
dt

, (2.6)
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where the inductance L is a constant. Since the total charge is conserved, we also have

that

Im−1,n + Jm,n−1 − Im,n − Jm,n =
dQm,n

dt
. (2.7)

Using (2.5), (2.6) and (2.7), we find that

(δ2
m + δ2

n)Vm,n = L
d2Qm,n

dt2
, (2.8)

where δ2
m and δ2

n denote the second difference operators defined by δ2
mAm,n = Am+1,n −

2Am,n + Am−1,n and δ2
nAm,n = Am,n+1 − 2Am,n + Am,n−1 respectively.

The nonlinear capacitance is a function of the voltage, and for small voltages, the

capacitance-voltage relationship can be approximated by a polynomial expansion

C(Vm,n) = C0(1 + 2αVm,n + 3βV 2
m,n + 4γV 3

m,n + 5δV 4
m,n), (2.9)

where C0, α, β, γ and δ are constants. Since the capacitance Cm,n is defined by

Cm,n = dQm,n/dVm,n, it follows that

Qm,n = C0(Vm,n + αV 2
m,n + βV 3

m,n + γV 4
m,n + δV 5

m,n). (2.10)

Hence (2.8) becomes

(δ2
m + δ2

n)Vm,n = LC0(Vm,n + αV 2
m,n + βV 3

m,n + γV 4
m,n + δV 5

m,n)
′′, (2.11)

where the prime denotes differentiation with respect to time. By choosing a suitable

timescale, we may put LC0 = 1 without loss of generality.

We choose to rewrite the equations (2.11) in terms of the variable Qm,n instead of

Vm,n. The reason for this is that (2.11) takes on the more familiar form of the one-

dimensional FPU lattice equations (2.2). Firstly, Vm,n must be found in terms of Qm,n.

Equation (2.10) is a quintic polynomial in Vm,n which must be inverted to give Vm,n in

terms of Qm,n. Since we are interested only in leading order solutions to (2.11), we may

approximate the exact expression for Vm,n by a quintic polynomial in Qm,n. Hence we

assume the following expansion for Vm,n

Vm,n = V (Qm,n) ∼
Qm,n

C0
+
a′Q2

m,n

C2
0

+
b′Q3

m,n

C3
0

+
c′Q4

m,n

C4
0

+
d′Q5

m,n

C5
0

, (2.12)

where a′, b′, c′ and d′ are combinations of α, β, γ and δ obtained by substituting the

expansion for Vm,n (2.12) into (2.10) and matching coefficients of corresponding powers

of Qm,n. Proceeding thus, we find that

a′ = −α,
b′ = −β + 2α2,

c′ = −γ − 5α(α2 − β),

d′ = −δ + 6αγ − 21α2β + 3β2 + 14α4. (2.13)

Finally, rewriting (2.11) in terms of Qm,n gives the equations governing charge Qm,n in

the lattice

d2Qm,n

dt2
= (δ2

m + δ2
n)[Qm,n + aQ2

m,n + bQ3
m,n + cQ4

m,n + dQ5
m,n], (2.14)
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where a = a′/C0, b = b′/C2
0 , c = c′/C3

0 and d = d′/C4
0 . Equation (2.14) is a two-

dimensional analogue of the well known one-dimensional FPU equations (Fermi et al.

[1]). It is worth noting that the lattice equations (2.14) can be derived from the following

Hamiltonian

H̃ =
∑

m,n

1
2
(Pm+1,n − Pm,n)

2 + 1
2
(Pm,n+1 − Pm,n)

2 + F(Qm,n), (2.15)

where F(Qm,n) satisfies F ′(Qm,n) = V (Qm,n) (see (2.12)), and Pm,n, Qm,n are

canonically conjugate momenta and displacement of the system, with

dQm,n

dt
= −

(
δ2
m + δ2

n

)
Pm,n,

dPm,n
dt

= −F ′(Qm,n). (2.16)

The Hamiltonian (2.15) is analogous to the Hamiltonian (2.4) of the one-component

system; however, we have been unable to find a Hamiltonian of the two-dimensional

system which is analogous to the one-dimensional form (2.1).

2.3. Asymptotic analysis

We seek breather solutions of the system of equations (2.14). Of course, no explicit

analytic expression can be found for breather solutions, and so asymptotic methods are

used to determine an approximate analytic form. We apply the method of multiple

scales, and introduce new variables defined by

X = ǫm, Y = ǫn, τ = ǫt and T = ǫ2t. (2.17)

We look for solutions of the form

Qm,n(t)=ǫeiψF (X, Y, τ, T ) + ǫ2G0(X, Y, τ, T ) + ǫ2eiψG1(X, Y, τ, T )

+ ǫ2e2iψG2(X, Y, τ, T ) + ǫ3H0(X, Y, τ, T ) + ǫ3eiψH1(X, Y, τ, T )

+ ǫ3e2iψH2(X, Y, τ, T ) + ǫ3e3iψH3(X, Y, τ, T ) + ǫ4eiψI1(X, Y, τ, T )

+ ǫ4e2iψI2(X, Y, τ, T ) + ǫ4e3iψI3(X, Y, τ, T ) + ǫ4e4iψI4(X, Y, τ, T )

+ ǫ5eiψJ1(X, Y, τ, T ) + · · · + c.c., (2.18)

where the phase, ψ, is given by km+ ln+ ωt. We substitute the ansatz (2.18) into the

governing equations (2.14) and equate coefficients of each harmonic frequency at each

order of ǫ. This yields the following equations

O(ǫeiψ):

ω2F = 4 sin2(1
2
k)F + 4 sin2(1

2
l)F, (2.19)

O(ǫ2eiψ):

ωFτ = FX sin k + FY sin l, (2.20)

O(ǫ2e2iψ):

ω2G2 = [sin2 k + sin2 l]G2 + a[sin2 k + sin2 l]F 2, (2.21)
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O(ǫ3eiψ):

2iωFT + Fττ = FXX cos k + FY Y cos l

− 8a
[
sin2(1

2
k) + sin2(1

2
l)
]
[F (G0 +G0) + FG2]

− 12b
[
sin2(1

2
k) + sin2(1

2
l)
]
|F |2F, (2.22)

O(ǫ4e0):

G0ττ = G0XX +G0Y Y + a
(
|F |2

)
XX

+ a
(
|F |2

)
Y Y

. (2.23)

A quick inspection of equations (2.19)-(2.23) reveals that (2.19) is the dispersion relation

for the system (2.14). Since we are interested only in solutions for which F 6= 0, F can

be cancelled from (2.19), giving the dispersion relation for the system

ω2 = 4 sin2(1
2
k) + 4 sin2(1

2
l). (2.24)

Equation (2.20) gives the relationship between the temporal and spatial derivatives of

F , and from it we deduce that F is a travelling wave of the form

F (X, Y, τ, T ) ≡ F (Z,W, T ) (2.25)

where Z = X−uτ , W = Y −vτ . The horizontal and vertical velocities of the wavepacket

F are u = −(sin k)/ω and v = −(sin l)/ω respectively; these definitions, together with

(2.24) enable the elimination ofG1 from (2.22). The angle of propagation of the envelope

(Ψ) is given by tan−1(v/u) = tan−1(sin k/ sin l). We expect (2.22) to reduce to a version

of the nonlinear Schrödinger equation in F (as occurred in the one-dimensional FPU

analysis). Before this can be done, the quantities G0 and G2 must be found in terms of

F . The former is found easily from the algebraic equation (2.21). However, in general,

the partial differential equation (2.23) cannot be solved for G0, save for two special

cases. These two cases are detailed in the following sections.

2.4. The lattice with a symmetric potential

By a symmetric potential, we mean one for which F ′(−Q) = −F ′(Q), that is, one for

which F ′(Q) has odd symmetry and F(Q) is even. This corresponds to a = c = 0 in

(2.12) and (2.14), and F(Q) has only fourth-order and sixth-order nonlinear terms in

addition to the harmonic term. In this case, it is immediately clear that G0 = G2 = 0,

since a vibration controlled by a symmetric potential cannot contain any even harmonics.

It remains to find Fττ in terms of FZZ , FZW and FWW using (2.25), and then

substituting into (2.22) gives

2iωFT + [u2−cos k]FZZ + [v2−cos l]FWW + 2uvFZW + 3bω2|F |2F = 0.

(2.26)

Equation (2.26) is a two-dimensional NLS equation with cubic nonlinearity. The

presence of mixed derivative terms of the form FZW in (2.26) complicates matters.
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The equation can be reduced to a standard form by eliminating the mixed term FZW .

This is done by introducing the transformation of variables

ξ =
Z√

u2 − cos k
and

η =
−uvZ + [u2 − cos k]W√

(u2 − cos k)[cos k cos l − u2 cos l − v2 cos k]
, (2.27)

which maps (2.26) to the equation

2ωiFT + ∇2F + 3bω2|F |2F = 0, (2.28)

where the Laplacian operator is defined by ∇2F = Fξξ + Fηη. Equation (2.28) has the

same form as (3.1) with D = 1/2ω and B = 3bω/2. Since the differential operator in

(2.28) is isotropic, we will seek radially symmetric solutions of this equation of the form

F = eiλTφ(r) where r2 = ξ2 + η2. Approximations to φ(r) can be generated using the

method outlined in the appendix.

2.5. Determining the domain of ellipticity

The two-dimensional NLS equation (2.26) admits different types of solution depending

on whether the equation is elliptic or hyperbolic. By definition, the equation is elliptic

when u2v2 < (u2 − cos k)(v2 − cos l). We aim to determine the region D of (k, l)-

parameter space (which is the two-torus T 2 = [0, 2π]× [0, 2π]) in which this inequality is

satisfied. Substituting for u, v and ω from (2.24) and (2.25), the condition for ellipticity

is

sin4
(

1
2
k
) [

1 − 2 sin2
(

1
2
l
)]

+ sin4
(

1
2
l
) [

1 − 2 sin2
(

1
2
k
)]
< 0. (2.29)

Since the function on the left hand side of (2.29) is symmetric in k and l about π,

it is only necessary to consider one-quarter of the two-torus T 2, namely the subspace

[0, π] × [0, π].

Defining θ and σ by θ = sin2(1
2
k) and σ = sin2(1

2
l), then 0 ≤ θ, σ ≤ 1 and the

condition for ellipticity (2.29) becomes

θ2(1 − 2σ) + σ2(1 − 2θ) < 0. (2.30)

Substituting θ = ρ cos ζ , σ = ρ sin ζ , into (2.30) leads to the inequality

ρ <
1

2 cos ζ sin ζ(cos ζ + sin ζ)
. (2.31)

It is straightforward to show that π/8 ≤ ζ ≤ 3π/8, (since 0 ≤ θ, σ ≤ 1). The

inequality (2.31) defines in parametric form the curve in (ρ, ζ)-space which constitutes

the boundary of the region where the equation (2.26) is elliptic; this boundary is shown

in Figure 2.3(a). Reverting back to the variables θ and σ, the boundary of the region of

ellipticity of (2.26) in (θ, σ)-space can be found; this is the shaded area shown in Figure

2.3(b) and Figure 2.3(c) shows the domain of ellipticity in (k, l) space.
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(a) Boundary of region of ellipticity in

(ρ, ζ)-space

ρ = 0.5 ρ = 1 ρ = 1.5

ζ = π/8

ζ = 3π/8

(b) Region of ellipticity shown in (θ, σ)-

space

θ

σ

0 1

2
1

1

2

1

(c) Domain D in (k, l)-space

k

l

0 π 2π

π

2π

D

Figure 2.3. The domain D in which the NLS equation (2.26) is elliptic.

2.6. The lattice with an asymmetric potential

When an asymmetric potential is considered, equation (2.22) can be reduced to an NLS

equation for F for the special case k = l = π. In this case, the partial differential

equation (2.23) can be solved to give G0 explicitly in terms of F . Since G0 is a higher

order correction term to the leading order quantity F , it also travels at the same velocity

as F , that is, G0(X, Y, τ, T ) ≡ G0(Z,W, T ). Rewriting (2.23) in terms of the variables



Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice 12

Z and W yields

(u2−1)G0ZZ + (v2−1)G0WW + 2uvG0ZW = a(|F |2)ZZ + a(|F |2)WW .(2.32)

Since k = l = π implies that v = c = 0, we have ∇2G0 = −a∇2|F |2 and hence

G0 = −a|F |2, where the operator ∇2 defined by ∇2
(Z,W ) ≡ ∂ZZ + ∂WW is equivalent to

∇2
(X,Y ) ≡ ∂XX + ∂Y Y . Clearly G2 = 0 from (2.21). Substituting for G0 in (2.22) gives

iFT +

√
2

8
∇2F +

√
2(3b− 4a2)|F |2F = 0, (2.33)

which is a two-dimensional NLS equation in F (X, Y, T ). As with (2.28), we will be

seeking radially symmetric solutions of the form F = eiλTφ(r) where r2 = X2 + Y 2.

3. Townes solitons and stabilisation by higher-order terms

3.1. Townes solitons

In Sections 2.4 and 2.6, we have seen that it is possible to reduce the lattice equations

(2.14) to a two-dimensional NLS equation in F , where F determines the form of the

envelope of a breather solution. At this point, one might consider proceeding as in the

one-dimensional case (see for example, Butt & Wattis [30]) and using a soliton solution

for F to substitute back into the ansatz (2.18). This in turn would give a leading order

analytic form for the charge Qm,n. However, this approach cannot be used directly

for the two-dimensional case because the two-dimensional cubic nonlinear Schrödinger

equation does not support stable soliton solutions. It is worth reviewing briefly the

scalar two-dimensional nonlinear Schrödinger equation and generalisations of it.

Firstly, we summarise the relevant results on the phenomenon of blow-up or self-

focusing of solutions F (x, T ) (x ∈ R
d, T ∈ [0,∞) and F (x, T ) ∈ C) of the scalar

d-dimensional NLS equation

iFT +D∇2F +B|F |2F = 0. (3.1)

For an in-depth account of the NLS equation and self-focusing, see Sulem & Sulem

[32]. There are two distinct cases of (3.1), namely the anomalous dispersion regime in

which caseDB > 0, also known as the focusing NLS equation; and the normal dispersion

regime where DB < 0, also known as the defocusing NLS equation. It is well known that

all solutions of the defocusing NLS equation exist globally, that is, for all T ∈ [0,∞).

However, in this case, it is also known that (3.1) admits no localised solutions. In

particular, the defocusing NLS equation does not admit soliton solutions. Since we are

interested only in soliton solutions of (3.1), we will concern ourselves primarily with the

focusing NLS equation (that is, the anomalously dispersive regime for which BD > 0).

In any dimension d ≥ 2, solutions of the focusing NLS equation with smooth initial

conditions can become singular in a finite time. This is known as blow-up, or self-

focusing. In physical terms, the amplitude of a wavepacket becomes infinite at a single

point called the focus, and this is accompanied by radial contraction of the wavepacket.

Of central importance is the establishment of conditions under which the formation
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of a singularity either occurs or is prevented. Some useful theorems regarding global

solutions (those which exist for all T ∈ [0,∞)) and local solutions (existence only for a

finite time interval [0, T ), for some T > 0) are presented by Strauss [33]. It is well known

that for d = 1, the competing effects of nonlinearity and dispersion in (3.1) may balance

each other, giving rise to long-lived solitonic structures (Remoissenet [34]). This is not

so for systems with d ≥ 2. We will be concerned only with d = 2, the so-called critical

dimension, in which there exists a very fine balance between focusing and dispersive

effects.

For systems of any dimension d, there are two invariants associated with solutions

of (3.1), namely the Hamiltonian H and the power N , given respectively by

H =
∫∫ {

D|∇F |2 − 1
2
B|F |4

}
d2x and N =

∫∫
|F |2 d2x. (3.2)

Using the variance identity, the “uncertainty principle” and the invariance of H, it can

be shown that H < 0 is a sufficient condition for blow-up (see Sulem & Sulem [32] for

further details). For the two-dimensional case, a necessary condition for blow-up is that

the initial power N0 = N (0) must exceed some critical threshold Nc, that is, N0 ≥ Nc,

where Nc is a number that depends only upon the dimension. Typically, for B = D = 1,

Nc ≈ 1.862 (Fibich & Papanicolaou [35]). The focusing NLS equation in R
2 (3.1)

supports a one-parameter family of soliton solutions of the form F (x, T ) = eiλTR0(r),

where r = |x|, known as Townes solitons (see Chiao et al. [31]). Townes solitons are

highly unstable since they have H = 0 and N = Nc. Clearly a tiny perturbation could

give H < 0 or N > Nc, leading to blow-up (or H > 0 and N < Nc leading to decay).

3.2. Stable soliton solutions of generalised NLS equations

The cubic NLS equation (3.1) exhibits behaviour that is impossible in the context of our

spatially discrete system: in a discrete system, the focusing of all the system’s energy

at a single point will not lead to blow-up, in a discrete system the amplitude would not

diverge. In Section 4 we present numerical simulations which suggest that long-lived

breather modes are supported by the scalar two-dimensional Fermi-Pasta-Ulam lattice.

We therefore conclude that the cubic two-dimensional NLS equation does not correctly

capture the actual dynamics of the two-dimensional Fermi-Pasta-Ulam lattice.

In applications, the phenomenon of blow-up is prevented by for instance,

dissipation, or higher order effects (see Rasmussen & Rypdal [36] for a useful review).

When blow-up arises in an evolution equation, it indicates a failure of the model of

the system under consideration, or equivalently, that the assumptions made in deriving

the model are not valid. Of direct relevance to our work, as suggested by Kivshar

& Pelinovsky [37], in quasi-continuum models such as ours, where discreteness is

approximated by a continuous variable, the effects of higher-order dispersion play a

vital role, and therefore must be included.

In particular, we are interested in collapse arresting, whereby the blowing-up of

a localised solution may be prevented by some extra mechanism. Of course, this in

itself is not enough to guarantee the existence of robust soliton solutions, since it does
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not preclude the possibility of decay through dispersion or dissipation. Hence it is

also important to check for soliton regularisation or soliton management, which ensures

robustness follows collapse inhibition. In fact, various mechanisms for suppression of

wave collapse have now been found (see for example, the work of Schjødt-Eriksen et al.

[38] or Abdullaev et al. [39]). Consequently, it is known that unstable Townes soliton

solutions of the cubic scalar two-dimensional NLS equation may be stabilised through

a variety of mechanisms. We concern ourselves only with those mechanisms which are

relevant and applicable to lattice models. For instance, it was shown by Karpman [40]

that an additional higher order dispersion term can have a stabilising effect. Specifically,

the generalised two-dimensional NLS equation with higher order dispersion

iFT +D∇2F +B|F |2F + P∇4F = 0, (3.3)

can support stable soliton solutions when PD < 0. Of greatest relevance to us is a

result of Davydova et al. [41], whom establish the existence of stable solitons for a

generalised two-dimensional NLS equation which incorporates higher order dispersion

and an additional quintic nonlinear term, namely

iFT +D∇2F +B|F |2F + P∇4F +K|F |4F = 0. (3.4)

The possibility of stable soliton solutions is investigated in both the anomalous (BD > 0)

and normal (BD < 0) dispersive regimes. It is found that stable soliton solutions exist

in both regimes.

Both of these results are established using a variational method described more fully

by Kuznetsov et al. [42]. In this method, one seeks localised standing wave solutions

of the form eiλTφ(x) (λ > 0) of the NLS equation in question. By defining an action

integral S(φ) = H(φ) + N (φ) (H is the Hamiltonian for the relevant NLS equation),

it is shown that soliton solutions of the NLS equation correspond to extrema (actually

expected to be minima) of this action integral. Minima of S are then identified, using

a procedure developed by Derrick [43]. Once the existence of soliton solutions has been

proved, their stability properties must then be established. Again, as described by

Kuznetsov et al. [42], the functional S(F ) = H(F ) + N (F ) constitutes an appropriate

Lyapunov function (up to some constant quantity rendering it positive definite). Soliton

stability follows upon applying Lyapunov’s theorem.

Further insight can be gained by considering a virial relation for (3.4). One defines

an effective “beam” radius reff by

r2
eff(T ) =

1

N
∫∫

r2|F (x, T )|2 d2x. (3.5)

Differentiating (3.5) with respect to time reveals whether the radius of a soliton grows

without limit (soliton dispersal) or decreases to zero (blow-up) as time evolves. In

particular, the effect of the individual parameters on soliton stability becomes clear.

In fact, by analysing r̈eff, Davydova et al. show that the term proportional to PK is

the dominant term, and provided PK > 0, this corresponds to a defocusing term. In

other words, if PK > 0, the dominant term provides a “repulsive force” which prevents
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collapse in both regimes. Hence stable soliton solutions can be found in the parameter

regime PK > 0 for both anomalous and normal cases.

3.3. Higher order asymptotic analysis for stationary breathers

In the light of comments made in Section 3.2, we extend our analysis of (2.14) to fifth-

order and reduce the lattice equations (2.14) to a generalised nonlinear Schrödinger

equation which also includes higher order terms. The principal task is to determine

whether the new terms are stabilising, and in particular, whether the generalised NLS

equation admits stable soliton solutions. For the general case of moving breathers, the

equations are extremely complicated, hence we simplify matters by considering only

those cases we are able to solve for, namely, stationary breathers (k = l = π implying

u = v = 0), and symmetric potentials (a = c = 0) as in Section 2.4.

For stationary breathers, only one extra timescale is used, T = ǫ2t, and we consider

specific wavenumbers k = π and l = π. In this case, for a symmetric potential

(a = c = 0), the ansatz (2.18) takes the much simplified form

Qm,n(t) = ǫeiψF (X, Y, T ) + ǫ3e3iψH3(X, Y, T ) + · · ·+ c.c., (3.6)

where exp(iψ) = exp(iωt + iπm + iπn) = (−1)m+n exp(iωt). Substituting the ansatz

(3.6) into equations (2.14) yields the following set of equations.

O(ǫeiψ):

ω2 = 8 ⇒ ω = 2
√

2, (3.7)

O(ǫ3eiψ):

2iωFT + FXX + FY Y + 24b|F |2F = 0, (3.8)

O(ǫ3e3iψ):

9ω2H3 = 8H3 + 8bF 3 ⇒ H3 = 1
8
bF 3, (3.9)

O(ǫ5eiψ):

FTT = − 1
12
FXXXX − 1

12
FY Y Y Y − 80dF 3F

2 − 24bF
2
H3

− 3b[F 2FXX + 2FFFXX + 4FFXFX + 2FF 2
X ]

− 3b[F 2F Y Y + 2FFFY Y + 4FFY F Y + 2FF 2
Y ]. (3.10)

We aim to combine the higher order terms of (3.10) with the cubic two-dimensional NLS

equation (3.8). Firstly, the term FTT in (3.10) is eliminated by differentiating (3.8) with

respect to T and substituting. Once an expression for FTT is found, the combination

(3.8) and (3.10) becomes

4
√

2 iFT + ∇2F + 24b|F |2F + ǫ2
[

5
96
∇4F − (51b2 − 80d)|F |4F

]

− 1
6
ǫ2FXXY Y + 9

4
bǫ2∇2(|F |2F ) − 3

4
bǫ2(2|F |2∇2F + F 2∇2F ) = 0. (3.11)

In other words, the lattice equations (2.14) reduce to the generalised two-dimensional

NLS equation (3.11) for the envelope F . To our knowledge, this equation has not been



Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice 16

studied in the literature, and therefore we are unable to say conclusively whether it

supports stable soliton solutions. We note that the first line of (3.11) is identical to the

two-dimensional NLS equation (3.4) studied by Davydova et al. [41], and includes known

stabilising terms. Anomalous dispersion corresponds to b > 0 and the condition PK > 0

reduces to 80d > 51b2. The effects of the other correction terms remain unknown. At

the time of writing, we have been unable to find a variational form for (3.11), hence the

methods outlined by Kuznetsov et al. [42] and Davydova et al. [41] cannot be applied

directly. In fact, given the complexity of (3.11), a more suitable approach might be

to apply the modulation theory for perturbed NLS equations, covered in great depth

by Fibich & Papanicolaou [44, 35]. This approach reduces a perturbed NLS equation

to a simpler set of equations in which one can (in principle) determine the effect of

small perturbations upon focusing. In particular, Fibich & Papanicolaou [44, 35] derive

results on the focusing properties of classes of perturbative terms. Depending upon the

specific perturbation terms present, one of several different outcomes can result. For

instance, blow-up may occur, or on the other hand, it may be prevented completely. In

addition, one might find a solitary wave solution which undergoes small oscillations in

radial width. Analysis of (3.11) using one of the above methods is the subject of future

work. For now, we rely on Davydova’s criteria for soliton existence, and supplement our

theoretical work with numerical simulations of the lattice equations (2.14).

4. Numerical results

In this section, the equations governing charge Qm,n in the lattice, (2.14), are solved

numerically. Equations (2.14) comprise an infinite set of coupled second-order nonlinear

ordinary differential equations. In order to solve these numerically, we consider these

equations defined on a square lattice of N ×N sites. (To allow for computation within

reasonable times, typically we consider lattices for which N ≤ 50). The numerical

algorithm used to solve the equations is based on a fourth-order Runge-Kutta scheme,

implemented by MATLAB. Firstly, the system of N 2 second-order ordinary differential

equations is converted to an equivalent system of 2N 2 first-order equations. The variable

Pm,n is introduced, where Pm,n = dQm,n/dt (note that this definition differs from (2.16)).

Equations (2.14) are thus equivalent to

dQm,n

dt
= Pm,n, and

dPm,n
dt

= (δ2
m + δ2

n)[Qm,n + aQ2
m,n + bQ3

m,n + cQ4
m,n + dQ5

m,n],

m, n = 1, 2, . . . , N. (4.1)

4.1. Boundary conditions

Selecting the site (1,1) to lie at the lattice site at the bottom left hand corner of

the square arrangement in Figure 4.1, the remaining lattice sites are labelled with a

coordinate pair (m,n) denoting their relative horizontal and vertical positions. That
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is, site (m,n) denotes the site which lies in the mth column across and in the nth row

up. The charge stored on each capacitor depends on the charge stored on the capacitors

located at the four nearest neighbouring sites, namely, the capacitors at either side and

above and below (looking at the lattice from above, see Figure 4.1). Equations (4.1)

are defined at interior lattice sites, but sites along the boundary are missing at least

one neighbour (two neighbours are missing for each of the corner sites). We impose

periodic boundary conditions for the lattice such that it is effectively “wrapped around”

in both the horizontal and vertical directions, so that the lattice is in effect a two-

torus. The physical significance of this is that a disturbance moving horizontally to

the right (left) within the lattice disappears from the far right (left) hand edge of the

lattice and reemerges from the left (right) hand edge, with similar properties in the

vertical direction. In terms of fictitious points along the lattice boundary we impose the

following boundary conditions (illustrated in Figure 4.1)

PN+1,n = P1,n, Pm,N+1 = Pm,1, P0,n = PN,n, Pm,0 = Pm,N ,
QN+1,n = Q1,n, Qm,N+1 = Qm,1, Q0,n = QN,n, Qm,0 = Qm,N . (4.2)

Q1,1 QN,1

Q1,N QN,N

Q1,1QN,1

Q1,N QN,NQm,N

Q1,nQN,n

Q1,N

QN,1

QN,N

Q1,1 Qm,1

Figure 4.1. Boundary conditions for the two-dimensional ETL

4.2. Breather energy

In this section, we discuss the calculation of the energy of breathers in the two-

dimensional ETL. Since the 2D ETL is a lossless network, the total electrical energy is

conserved. For small currents and small voltages, the leading order energy in one unit
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of the lattice is

e(0)m,n ∼ 1
2
C0V

2
m,n + 1

4
L(I2

m,n + J2
m,n + I2

m−1,n + J2
m,n−1). (4.3)

Thus the leading order expression for the total electrical energy in the lattice is (see

Figure 2.2)

E(0) ∼
∑

m,n

e(0)m,n =
∑

m,n

1
2
C0V

2
m,n + 1

2
L(I2

m,n + J2
m,n). (4.4)

We present a leading order asymptotic estimate of the breather energy E (0) (4.4) using

the leading order expression for Qm,n (A.8). Two separate cases are considered. For

both, since we aim to determine only a leading order estimate, it follows from (2.12) that

Vm,n ∼ Qm,n/C0. Hence, the first term of the summand in (4.4) is simply Q2
m,n/(2C0).

The currents Im,n and Jm,n may also be found in terms of Vm,n and Qm,n. By (2.5)–

(2.6), since LC0 = 1 and to leading order Q = C0V , we have İm,n = −(Qm+1,n −Qm,n)

and J̇m,n = −(Qm,n+1 − Qm,n). Hence by (2.16) with F(Q) = Q2/2, we obtain

Im,n = Pm+1,n−Pm,n and Jm,n = Pm,n+1 −Pm,n, and so LI2
m,n = (1/C0)(Pm+1,n−Pm,n)

2

and LJ2
m,n = (1/C0)(Pm,n+1 − Pm,n)

2. Thus E(0) = (1/C0)H̃ with H̃ as given by (2.15).

The details of the evaluation of E(0) are slightly different for stationary and moving

breathers; we consider each in turn below.

4.2.1. Stationary breathers In this case, k = l = π, and from (A.8), the leading order

from of the breather is

Qm,n ∼ 2ǫα cos Θ sech(βr), (4.5)

where ω = 2
√

2 is the leading order breather frequency, Ω = ω + ǫ2λ is the breather

frequency including the first correction term, λ parameterises the amplitude of the

breather (see Appendix A for more details), Θ = πm+ πn + Ωt describes the phase of

the linear wave, and r =
√
X2 + Y 2 = ǫ

√
m2 + n2 is a scaled distance from the centre

of the breather. Since Vm,n ∼ Qm,n/C0, the equation for the current Im,n (2.5) becomes

Qm+1,n −Qm,n ∼ −LC0
dIm,n

dt
= −dIm,n

dt
. (4.6)

Substituting the expression forQm,n (4.5) into the right hand side of (4.6) and integrating

with respect to t gives the current

Im,n ∼ −4ǫα

ω
sin Θ sech(βr), (4.7)

where we have taken the constant of integration to be zero, and Ω ∼ ω to leading order.

In a similar manner, taking (2.6) and integrating gives

Jm,n ∼ −4ǫα

ω
sin Θ sech(βr), (4.8)

Hence overall, the energy E(0) in (4.4) is given by

E(0) ∼
∑

m,n

2ǫ2α2

C0

cos2 Θsech2(βr) +
16Lǫ2α2

ω2
sin2 Θsech2(βr). (4.9)
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Recall that ω2 = 8, and also that LC0 = 1 or equivalently, L = 1/C0. The sum in (4.9)

therefore simplifies considerably and becomes

E(0) ∼
∑

m,n

2ǫ2α2

C0
sech2(βr). (4.10)

Since the variables X = ǫm and Y = ǫn vary slowly with m,n, so does r and we can

justifiably replace the sum in (4.10) by an integral. Hence, the energy E(0) is given by

E(0) ∼ 2α2

C0

∫∫
sech2(β

√
X2 + Y 2) dXdY, (4.11)

Upon calculating the integral in (4.11), we find that

E(0) ∼ 4π log 2

C0

α2

β2
=

8πD log 2(2 log 2 + 1)

BC0(4 log 2 − 1)
, (4.12)

after substituting for α and β from (A.5). This can be approximated by E(0) ≈
23.452D/BC0. In the general case of the asymmetric potential for which stationary

breathers have been found, we compare (2.33) with (A.1) we find D = 1/4
√

2 and

B =
√

2 (3b − 4a2), thus E(0) ≈ 2.935/(3b − 4a2)C0. Note that this leading-order

expression is independent of breather amplitude λ, illustrating the threshold energy

requirement for breathers in two-dimensional systems; that is, no matter how small the

amplitude of a breather (2ǫα), the energy required to create it is an O(1) quantity.

4.2.2. Moving breathers In this case, the leading order form of the breather is given

by (A.8). Again, the first term of the summand in (4.4) is Q2
m,n/(2C0), and the current

Im,n is given by (4.6). The expression for Qm,n (A.8) is substituted into (4.6), only this

time, the left hand side is not easily integrated with respect to time. To overcome this,

we note that in (A.8), the variable r varies slowly in time compared to the phase of

the oscillatory component Φ = km+ ln + Ωt. Integration by parts of (4.6) using (4.5)

(
∫
f ′(t)g(ǫt)dt = [f(t)g(ǫt)]−ǫ ∫ f(t)g′(ǫt)dt) then implies that to leading order we have

Im,n ∼ −2ǫα

ω
sech(βr)[(cos k − 1) sinΦ + sin k cos Φ]. (4.13)

Similarly, using (2.6), the current Jm,n is given by

Jm,n ∼ −2ǫα

ω
sech(βr)[(cos l − 1) sinΦ + sin l cos Φ]. (4.14)

The total energy for moving breathers is therefore given by

E(0) ∼
∑

m,n

2ǫ2α2

C0

cos2 Φsech2(βr)

+
2Lǫ2α2

ω2
sech2(βr)

[
{(cos k − 1) sin Φ + sin k cos Φ}2

+ {(cos l − 1) sin Φ + sin l cos Φ}2
]
. (4.15)

We now approximate the term in square brackets by noting that the average values of

cos2 Φ and sin2 Φ are 1
2
, whilst the average value of sin Φ cos Φ is zero; the term then

simplifies to ω2/2. Hence, overall, (4.15) becomes

E(0) ∼
∑

m,n

2ǫ2α2

C0

sech2(βr), (4.16)
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which is the same expression as the for the energy of a stationary breather (4.10);

however, here the definition of r, is given by (A.7) so the expression for E (0) is more

complex than that used in (4.11). We now replace the double sum over all (m,n)

by an integral over (ξ, η) and evaluate, (via the substitutions ǫ(m − ut) = R cos ζ ,

ǫ(n− vt) = R sin ζ) to obtain

E(0) ∼ 4πα2 log 2

β2C0ω

√
ω2 cos k cos l − cos k sin2 l − cos l sin2 k. (4.17)

From (A.5) we note that the ratio α/β is independent of the envelope parameter λ;

hence, as with stationary breathers, the energy of moving breathers does not depend on

the breather amplitude, and so there is a threshold minimum energy required to create a

moving breather. The expression (4.17) is strictly positive in the region of ellipticity (see

Figure 2.3), has a maximum at k = l = π (which corresponds to stationary breathers)

and decays to zero at the edge of the domain of ellipticity. Thus the energy threshold

for moving breathers is lower than that for stationary breathers. The threshold becomes

small as the boundary of the domain of ellipticity is approached.

In section 2 we were only able to find moving breathers for the case of symmetric

potential. Thus, assuming a = 0, we compare (2.28) with (A.1) to find D = 1/2ω(k, l)

and B = 3bω(k, l)/2. Equation (4.17) thus implies

E(0) ∼ 8π(1 + 2 log 2) log 2

3 bC0 ω3(4 log 2 − 1)

√
ω2 cos k cos l − cos k sin2 l − cos l sin2 k .

(4.18)

4.3. Numerical results for symmetric potentials

Here we present results of numerical simulations of the lattice equations (2.14) for a

range of different parameter values, namely symmetric potentials, that is a = c = 0.

Systems with asymmetric potentials (a, c 6= 0) are covered in Section 4.4.

Numerical calculation of conserved quantities is a useful technique for assessing the

accuracy of numerical routines. Also, since breathers are spatially localised waveforms,

it follows that their energy is also localised. As we shall see, a plot of the cell energy

em,n yields a smooth peak, the centre of which reveals the breather position, which may

otherwise be difficult to determine from a plot of the charge Qm,n. Plots of cell energy

are particularly useful when dealing with moving breathers. To overcome the difficulties

outlined above, we choose not to calculate the physically relevant electrical energy given

by (4.4). Instead, we note that to leading order, each node displays simple harmonic

motion. Hence we define a cell’s nondimensional“linear energy” e
(lin)
m,n as

e(lin)
m,n = 1

2

(
dQm,n

dt

)2

+ 1
2
ω2Q2

m,n, (4.19)

where ω = ω(k, l) is the expected frequency of the breather as determined by the

dispersion relation (2.24). The total energy El is then the sum of the energies of the

unit cells over the entire lattice, that is, El =
∑
m,n e

(lin)
m,n , and this forms a leading
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order approximation of the dimensional energy E(0) (4.4) via E(0) = El/C0. This is the

quantity that we calculate in our numerical work. We shall see that determining em,n
and El helps us in describing the smooth envelope of oscillations and define accurately

a position for the localised breather modes.

4.3.1. Stationary breathers in the anomalous dispersive regime. Firstly, we seek

stationary breathers in the anomalous dispersion regime – from (3.11), this corresponds

to b > 0. We also impose k = l = π so that the velocities u and v are both zero.

Following the discussion in Section 3.2, stable solitons are expected when PK > 0;

since P = 5ǫ2/96, this inequality corresponds to K > 0, or 51b2 < 80d; as an example,

we set b = d = 1. The remaining parameters are lattice size N = 30, ǫ = 0.2 and λ = 1.

The variational parameters (A.5) are calculated as α = 1.0517 and β = 3.1399. The

breather frequency is ω + λǫ2 = 2.868, and hence the period of oscillation is T = 2.190.

Figure 4.2(a) shows the initial profile of the breather at the centre of the lattice (as

is the case for all our simulations), at which time it is calculated that the breather

energy El = 15.6346. The breather is also shown after it has completed thirty complete

oscillations in Figure 4.2(c). At both times, a plot of the cell energy em,n is also shown

(Figures 4.2(b) and (d)). We observe that the breather is a long-lived mode, which

remains highly localised with almost no spreading in any direction, even after long

times. Note also that the values obtained for El do not fluctuate greatly, and even after

30T , ∆El = 0.2059, that is ∆El/El = 0.013.

4.3.2. Breather moving along a lattice direction. We now show a simulation of a moving

breather, which moves along the lattice direction parallel to the m−axis (see Figure 4.3).

If Ψ denotes the angle made with the direction of travel with the m−axis, then it is

clear that tanΨ = v/u = sin(l)/ sin(k). We choose wavenumbers k = π/2 and l = π, so

that u = −1/
√

6 ≈ −0.40823, v = 0, Ψ = 0◦, ω =
√

6 and T =
√

2/3π. Also, we set

b = d = 1 (that is, we consider the anomalous dispersion regime, with PK > 0. The

remaining parameters are N = 30, ǫ = 0.1 and λ = 1. The variational parameters α

and β are 1.1301 and 2.9220 respectively. The initial profile of the breather is shown

in Figure 4.3(a), where the orientation of the internal oscillations can be seen clearly.

Note also that the breather envelope is not radially symmetric, rather, it is elongated in

the n-direction. This is because, in (k, l) parameter space, the breather lies very close

to the boundary of the region of ellipticity D shown in Figure 2.3(c). Clearly, this is a

long-lived mode, suffering no appreciable degradation even after sixty seconds or more,

and leaving behind very little radiation as it almost completes a circuit of the lattice.

Figure 4.3(b) shows the breather as it approaches the left hand edge of the lattice. It is

not possible to read the exact position of the breather from a plot of Qm,n(t) with great

precision. Nevertheless, one may observe that by this time, the breather has traversed

approximately ten sites. The theoretical value for the velocity is calculated as −0.40823

units per second, by which time the breather should have travelled 9.5 units, which is in

good agreement with the measured value. Figure 4.3(c) shows the breather disappearing



Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice 22

0
5

10
15

20
25

30

0

5

10

15

20

25

30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

mn

Q
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(b) Plot of em,n, El=15.6346
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(c) Profile at 30T = 65.714
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(d) Plot of em,n, El=15.8405

Figure 4.2. Stationary breather in the anomalous dispersive regime.

from the left hand edge and reappearing from the right, owing to the periodic boundary

conditions. After approximately sixty seconds, the breather has completed nearly a full

circuit, remaining localised with almost no spreading, only leaving a little radiation in

its wake, (see Figure 4.3(d)). It is not clear from these simulations whether the shedding

of radiation is due to a short-term transient effect as our approximate initial conditions

adjust to the true shape of a travelling breather, or whether the breather will continue

to lose energy as it moves through the lattice.

4.3.3. Breathers moving at Ψ = 45◦ to the lattice. As mentioned after (2.25), the angle

of propagation of the envelope Ψ is given by tan−1(sin(l)/ sin(k)). In order to investigate

the direction Ψ = 45◦, we choose k = l. Bearing the results of the previous simulation

in mind, we choose a point in (k, l)-parameter space not too near the boundary of

ellipticity, otherwise the breather envelope will be elongated in one direction. Hence,
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(b) Profile at t = 9.084T = 23.3030
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(c) Profile at t = 17.04T = 43.7172
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(d) Profile at t = 24.70T = 63.3464

Figure 4.3. Breather moving along a lattice direction, Ψ = 0◦.

we select k= l= 3π/4, and for the same reasons as before, we set b = d = 1, N = 30,

ǫ = 0.1 and λ = 1. The variational parameters are α = 1.0941 and β = 3.0180, and the

horizontal and vertical velocities are both −0.2706 units per second. The breather starts

at the centre of the lattice (not shown), and is shown at times 40, 60 and 80 seconds in

Figure 4.4. It can be seen that the breather remains a localised coherent structure even

after 80 seconds, without any obvious degradation as it completes a whole loop.

We wish to track the position of the breather at each stage of its motion. A plot of

the cell energy em,n against m,n allows the position of the breather to be determined.

As an example, a plot of em,n at t = 20 is given in Figure 4.4(e). In practise, greater

accuracy can be achieved through the use a plot of e3
m,n since this is more sharply peaked

than em,n (see Figure 4.4(f)). The horizontal and vertical displacement of the breather
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Time horizontal vertical av. horiz. av. vert.

(s) displacement displacement velocity velocity

20 s –4 units –4 units –0.2 units s−1 –0.2 units s−1

40 s –9 units –9 units –0.225 units s−1 –0.225 units s−1

60 s –16 units –16 units –0.267 units s−1 –0.267 units s−1

80 s –21 units –21 units –0.2625 units s−1 –0.2625 units s−1

Table 1. Summary of breather motion (Ψ = 45◦)

is recorded every twenty seconds, and the average speed is computed along with the

direction of motion. Table 1 summarises the motion of the breather. Clearly, tanΨ = 1

and hence Ψ = 45◦. The final computed value for the velocities is −0.2625 units per

second, which is very close to the theoretical prediction of −0.2706 units per second (a

relative error of 3%).

4.3.4. Breather moving at Ψ = 20◦ to the lattice. Following the work of Marin et al.

[24], a natural question to consider is whether the lattice supports breathers moving in

directions which are not axes of symmetry of the lattice. Since the angle of propagation

of the envelope Ψ is tan−1(sin(l)/ sin(k)), it is easily verified that within the region

D shown in Figure 2.3(c), any angle Ψ ∈ [0, 2π] is possible. In other words, from

the asymptotic analysis of Section 2.3 it appears that there is no restriction upon the

direction in which breathers may travel in the lattice. Our numerical work supports this

hypothesis. This is in stark contrast to the scenario reported for the two-component

lattice by Marin et al. [24].

We have tried propagating breathers in a range of directions, including at an angle

Ψ = 20◦ to the m-axis, shown in Figure 4.5. The numerical scheme was initiated

with k = 3π/4 and l = 2.881 radians. It may be checked that for this choice of

wavenumbers, the theoretical values for u and v are −0.2609 and −0.0950 respectively,

and the calculated angle of travel is indeed 20◦. Also, this point in (k, l)-space lies

well within the region of ellipticity; the linear carrier wave has a frequency ω = 2.710

and so the time period for an oscillation is T = 2.318. Once more, we set b = d = 1,

N = 30, ǫ = 0.1 and λ = 1, and the breather is initially located at the centre of the

lattice. The variational parameters are α = 1.0743 and β = 3.0737. Figure 4.5 shows

the breather at times t = 40, 75, 120 and 160 seconds. Clearly the breather moves

through the lattice and preserves its form remarkably well, leaving behind very little

radiation as it moves, nor spreading noticeably in any direction. The motion of the

breather is summarised in Table 2. The final measurement for the average velocities u

and v are −0.2594 and −0.0969 units per second respectively, yielding relative errors of

1% and 2%. The direction of travel is measured to lie at 20.479◦ to the lattice. These

results suggest that breathers can propagate at any direction in the lattice.
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(a) Profile at t = 8.318T = 20
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(b) Profile at t = 16.64T = 40
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(c) Profile at t = 24.95T = 60
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(d) Profile at t = 33.27T = 80
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(e) Plot of em,n at t = 8.318T = 20
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(f) Plot of e3
m,n at t = 8.318T = 20

Figure 4.4. Breather moving at Ψ = 45◦ to the lattice: t = 40, 60 and 80 seconds.



Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice 26

0

5

10

15

20

25

30

0
5

10
15

20
25

30
−0.2

−0.1

0

0.1

0.2

m
n

Q

(a) Profile at t = 17.26T = 40
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(b) Profile at t = 32.35T = 75
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(c) Profile at t = 51.77T = 120
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(d) Profile at t = 69.02T = 160

Figure 4.5. Breather moving at Ψ = 20◦ to the lattice.

Time horiz. vert. av. horiz. av. vert. tanΨ Ψ

(s) disp. disp. vel. (units/s) vel. (units/s)

40 s –10 –3 –0.25 –0.075 0.3 16.70◦

75 s –19 –6.5 –0.2533 –0.0867 0.3421 18.89◦

120 s –31 –11 –0.2583 –0.09167 0.3548 19.54◦

160 s –41.5 –15.5 –0.2594 –0.0969 0.3735 20.48◦

Table 2. Summary of breather motion (Ψ = 20◦)
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4.4. Numerical results for asymmetric potentials

The above numerical results all feature symmetric potentials, namely, those for which

a = c = 0 so that V (−Q) = −V (Q) (2.12). We now present results of a simulation

for which the potential function is asymmetric. Recall from Section 2.6 that the lattice

equations (2.14) can be reduced to a cubic two-dimensional NLS equation in F (2.33)

for asymmetric potentials for the special case k = l = π which corresponds to the case

of stationary breathers (u = v = 0). The breather frequency ω and period T are 2.868

and 2.190 respectively. Equation (2.33) has the same form as (3.1) with D =
√

2/8

and B =
√

2(3b− 4a2). Applying the same method as outlined in Appendix A, soliton

solutions of (2.33) have the form (A.6), where D =
√

2/8, B =
√

2(3b − 4a2), and

r =
√
ξ2 + η2 =

√
X2 + Y 2. Also from Section 2.6, G0 = −a|F |2 and G2 = 0, and so

Qm,n can be found to second order,

Qm,n(t) = 2ǫα cos[πm+πn+(ω+ǫ2λt)] sech(βr)−2aǫ2α2 sech2(βr).(4.20)

Surprisingly the presence of the quadratic nonlinearity (a 6= 0) does not generate any

second harmonic term (G2 = 0), but does cause a small shift of the oscillation to lower

Q values.

The anomalous dispersive regime corresponds to the region in (a, b)-parameter space

where 3b > 4a2. We set a = 1, b = 2, c = 0 and d = 1. The remaining parameters

are assigned the values N = 40, ǫ = 0.1 and λ = 1, and the variational parameters are

α = 1.2880 and β = 3.1399. The breather is initially situated at the centre of the lattice

(not shown), at which time the energy El is 23.6712. The breather is shown after it has

completed ten, thirty and forty complete oscillations (see Figure 4.6). Again, it can be

seen from the corresponding plots of em,n that the breather remains localised, with very

little loss of form, even after almost ninety seconds. As with static breathers in the lattice

with a symmetric potential, very little energy is shed in the form of radiation. Note

that the breather energy El remains more or less unchanged, and after forty oscillations,

∆El/El = 0.01.

4.5. Breather collisions

One can gain insight as to breather stability and robustness by simulating collisions

between two (or more) breather modes. In particular, we propose to investigate

the robustness of breathers by simulating the collision of two breathers. Interesting

questions include: whether the breathers retain their form following a collision, whether

the velocities are altered significantly, whether stability depends upon the relative

orientation of incoming breather paths, etc.

The first collision is between a breather is initially located towards the left-hand

edge of the lattice, at the grid point (7.5, 15). and a breather near the right-hand edge

of the lattice, at the point (22.5, 15). We observe what happens when the two breathers

move towards one another parallel to the m-axis, and interact. For this reason, we

choose kL = 5π/4, lL = π, and kR = 3π/4, lR = π; hence ω = 2.7229 and T = 2.3075.
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(a) Profile at t = 10T = 21.905
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(b) Plot of em,n, E=23.4796

0

10

20

30

40

0

10

20

30

40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

mn

Q

(c) Profile at t = 30T = 65.714
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(d) Plot of em,n, E=23.9433
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(e) Profile at t = 40T = 87.619
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(f) Plot of em,n, E=23.8096

Figure 4.6. Stationary breather in the anomalous dispersive regime for an asymmetric

potential.
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(b) Profile at t=11.48T=26.489
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(c) Profile at t = 19.2T = 44.3041
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(d) Profile at t=30.62T=70.6554

Figure 4.7. Colliding breathers interact and separate.

The corresponding velocities of the LH and RH breather are 0.2597 and −0.2597 units

per second respectively. The initial configuration of the lattice is shown in Figure 4.7(a).

The breathers approach and undergo a complicated interaction as they collide, as shown

at various intervals in Figure 4.7. They then pass through one another and begin to

separate, as seen clearly in Figure 4.7(d). Here, they can be seen as two visibly distinct

structures in the lattice, after having emerged with very little overall change. Clearly,

energy is shed during the collision, but this is to be expected since the FPU system in

general is known not to be integrable. Measurements reveal that the velocities of both

breathers are preserved even after collision. The picture becomes complicated for longer

times because of the periodic boundary conditions meaning that the breathers emerging

from the first collision will collide again at the boundary.
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5. Discussion

In this paper our aim has been to find criteria for the existence of breathers in the

two-dimensional Fermi-Pasta-Ulam equation (2.14). In carrying out a small amplitude

asymptotic expansion, we have found various conditions on the lattice interaction

parameters a, b, c, d, and on the form of the carrier wavenumbers k and l. We have also

found a particular modified NLS equation (3.11) which requires more detailed analysis.

The results have been supplemented and supported by numerical simulations.

Equation (2.14) comprises a system of infinitely many coupled second-order

nonlinear ordinary differential equations. Exact breather solutions of this system

cannot be found explicitly. If an analytic approach is to be employed, a continuum

approximation must be applied at some stage, otherwise the system of equations is

not amenable to analysis. In one-dimensional systems, few difficulties arise, since the

resulting continuum PDE, the one-dimensional NLS equation is essentially well-behaved,

being integrable and having explicit soliton solutions (Butt & Wattis [30]).

In Sections 2.4 and 2.6, we have showed that by applying the method of multiple-

scales in conjunction with a continuum approximation the two-dimensional Fermi-Pasta-

Ulam equation (2.14) can be reduced to a cubic NLS equation at third-order. As

explained in Section 3.2, this continuum partial differential equation exhibits blow up

and dispersion. We have shown that these problems may be overcome by including

higher-order effects. Our motivation comes from a review of results available for

generalised NLS equations which incorporate higher-order nonlinearity and dispersion.

The NLS equation (3.1) is generic in that it describes the envelope of a wavepacket

in a model which takes into account nonlinearity and dispersion at the lowest orders. It

thus arises in a whole variety of contexts, ranging from deep-water gravity waves (Yuen

& Lake [45]), to nonlinear optics (Chiao et al. [31]), to plasma physics, Zakharov [46].

However, the derivation of higher order equations yields many possible perturbations,

not all of which have been considered in the literature. Generality of the cubic

two-dimensional NLS equation is lost when higher-order terms are included. For

some perturbations it is known that blow-up is suppressed, and stable solitons exist.

Unfortunately the higher-order equation we derive (3.11) has several perturbing terms,

and as far as we are aware, only some of the perturbing terms have been previously

studied in the literature. Our equation (3.11) is derived by applying a fifth-order

multiple-scale analysis to the two-dimensional Fermi-Pasta-Ulam equations (2.14). The

analysis of (3.11), namely the rigorous determination of which parameter values (if any)

support stable soliton solutions is left for future work. We mentioned in Section 3.3

that the modulation theory described by Fibich and Papanicolaou [44, 35] might be

suitable for analysis of (3.11). On the other hand, if a variational formulation can be

found for (3.11), then the methods of Kuznetsov et al. [42] could be applied. Of course,

a numerical analysis of the modified NLS equation is another possible approach, but

then one may as well bypass analysis of the continuum equation (3.11), and instead

numerically solve the lattice equations (2.14) to begin with.
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There are other possibilities which may be pursued in addition. We mention the

work of Tamga et al. [10], who apply a simple one-term multiple-scale expansion to

a two-dimensional lattice. They show that the lattice equations can be reduced to a

cubic two-dimensional NLS equation at third order, which they recognise “cannot be

used to predict the time evolution” of nonlinear localised modes. They instead consider

modulational instability of their NLS equation, and (aided by numerical simulations),

show that localised modes exist in the regions where a uniform solution is unstable. As

pointed out by Marin et al. [25], the drawback to this approach is that the “nonlinear

localised modes” identified cannot reliably be identified as discrete breathers. The

authors of [25] thus describe the modes as “breathing solitary waves,” rather than

discrete breathers.

Several interesting breather properties are presented in the numerical results of

Section 4. Firstly, we note that stationary and moving breathers appear to be long-

lived modes of the lattice; their profiles do not change over time and they shed very

little energy as they evolve. We have shown this to be true for a range of different

parameter values, including asymmetric as well as symmetric potentials. The fact that

breather modes are observed to reform following collisions supports the claim that these

modes are robust structures. One of the more surprising results that emerges from

the numerics is that there appears to be no restriction upon the direction in which

breathers can travel in the lattice, in contrast to the scenario reported by Marin [24, 25]

for two-component two-dimensional lattices. We have found, for instance, breathers

which move at 20◦ to the lattice, suffering no appreciable distortion or spreading, even

after relatively long times. In fact, we have obtained breathers moving at many other

angles not parallel to the lattice axes, though we have not presented results of those

simulations here. Breathers which move along the lattice direction are elongated in

the direction perpendicular to their motion. Previous work on the two-dimensional

lattice analysed here has focused on other types of excitation. In [47] Eilbeck found

highly accurate numerical approximations to the shape of travelling solitary plane waves.

These were also found to travel at any angle to the lattice, and showed a more subtle

angle-dependence in their amplitude-speed characteristics which was explained using

high-order quasi-continuum expansions [48].

In Section 4 we have also derived an asymptotic expression for the energy of

stationary and moving breathers. This has the expected form that the energy does

not vanish as the amplitude becomes arbitrarily small. Rather, there is a threshold

energy required to create a breather, in agreement with the results of Flach et al [21].

We have provided formulae for these energy thresholds (sections 4.2.1 and 4.2.2), and

contrary to what one might expect, the energy threshold for moving breathers is smaller

than that for stationary breathers. It is independent of the breather amplitude, but is

dependent on the wavenumbers, and becomes vanishingly small as one approaches the

boundary of the domain of ellipticity.

Detailed analyses of the mobility of breathers have been undertaken by a number

of authors, see [49, 50, 51] for examples of such studies of one-dimensional breathers.
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Aubry and Cretegny analyse the stability of a breather using Floquet multipliers and

find highly mobile breathers at the instability thresholds of the immobile breathers [50].

Flach and Willis [49] consider the separatrix between immobile and mobile breathers

using a simple Hamiltonian system of the three coupled oscillators at the centre of a

breather. From the form of this separatrix, they deduce that no simple Peierls-Nabarro

(PN) potential can be constructed. Flach and Gorbach [51] analyse the stability of the

Page mode (a breather whose centre lies between two lattice sites) and the Seivers-

Takeno mode (a breather whose centre lies at a lattice site). They find that if the

FPU potential has no cubic term then the Page model is stable and the Sievers-Takeno

mode is unstable, the type of situation one might expect from an approach based on

Peierls-Nabarro (PN) energetics. However, if the FPU potential has a non-trivial cubic

component, Flach and Gorbach find that both modes are unstable. This result suggests

that defining PN energies for slowly-moving breathers is less useful than for travelling

waves. Where PN energies have been calculated for moving breathers (such as in [52]),

their complicated form indeed makes interpretation difficult, confirming the speculation

of Flach and Willis in [49]. We argue that any analysis of breather mobility in terms

of PN energies would require the kinetic energy as well as potential energy to included

(as carried out in [52]) and further, if possible, the kinetic energy to be separated into

two components – one due to internal oscillations of the breather and a component

for the bulk motion of the breathers position. The concept of Peierls-Nabarro energies

for moving breathers is more difficult in higher-dimensions than for one-dimensional

systems; since, depending on the direction of motion through the lattice, a breather

may not be periodic at all, or may be periodic with a very long period.
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Appendix A. Approximate analytic formulae for Townes solitons

Unfortunately, analytic formulae are not known for the family of Townes soliton

solutions of (3.1), and therefore some other method must be used to generate an

approximate analytic solution. We use the Rayleigh-Ritz variational method to do

this. Suppose we look for time-harmonic radially symmetric solutions of (3.1) of the

form F (x, T ) = eiλTφ(r), where r = |x| =
√
ξ2 + η2. Substituting for F in (3.1) yields

−λφ+D∇2φ+Bφ3 = 0, (A.1)

where ∇2 = ∂2/∂ξ2 + ∂2/∂η2. Equation (A.1) has a variational structure, and the

corresponding action integral E has the form

E(φ) =
∫

1
2
λ|φ|2 + 1

2
D|∇φ|2 − 1

4
B|φ|4d2r. (A.2)
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We use a radially symmetric trial solution of the form φ = α sech(βr), where α and β

are parameters to be determined and r =
√
ξ2 + η2. Substituting this form for φ into

(A.2), and evaluating the integral (using Maple to evaluate the resulting integrals) gives

an expression for E in terms of the variational parameters α and β. It can be shown

that

E(α, β) =
D(1 + 2ln2)

12
α2 − Q(4ln2 − 1)

24

α4

β2
+
λln2

2

α2

β2
. (A.3)

The soliton solution corresponds to a stationary point of the action E , and therefore the

parameters α and β are determined by the equations

∂E
∂α

=
∂E
∂β

= 0. (A.4)

Differentiating E with respect to β results in an equation for α2 from which α is found,

and once α is known, β can be determined from the equation ∂E/∂α = 0, yielding

α =

√
12λln2

B(4ln2 − 1)
and β =

√
6λln2

D(2ln2 + 1)
. (A.5)

Hence an approximate form for the Townes soliton solution of (3.1) is

F =

√
12λ log 2

B(4 log 2 − 1)
exp(iλT ) sech

(√
6λ log 2

D(2 log 2 + 1)

√
ξ2 + η2

)
. (A.6)

As an example, let us consider the lattice with a symmetric potential, whose

envelope is governed by (2.26). On seeking a solution of the form F = eiλTφ(r) with

r2 = ξ2 + η2 we find

r2 = ξ2 + η2 =
[v2 − cos l]Z2 + [u2 − cos k]W 2 − 2uvZW

cos k cos l − u2 cos l − v2 cos k
. (A.7)

Substituting the soliton solution for F (A.6) into the lattice ansatz (2.18) gives the

leading order analytic expression as

Qm,n(t) = 2ǫα cos[km+ ln+ (ω + ǫ2λ)t] sech(βr), (A.8)

where α and β are given in (A.5), Z = ǫ(m − ut), W = ǫ(n − vt), u = − sin k/ω,

v = − sin l/ω and ω2 = 4 sin2(k/2) + 4 sin2(l/2).

For the lattice with asymmetric potential, since only the case k = l = π is considered

and u = v = 0, the transformation (2.27) reduces to the trivial ξ = Z = X, η = W = Y .
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