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Gap junctions and emergent rhythms

S Coombes and M Zachariou

Abstract Gap junction coupling is ubiquitous in the brain, particularly between the

dendritic trees of inhibitory interneurons. Such direct non-synaptic interaction al-

lows for direct electrical communication between cells. Unlike spike-time driven

synaptic neural network models, which are event based, any model with gap junc-

tions must necessarily involve a single neuron model that can represent the shape

of an action potential. Indeed, not only do neurons communicating via gaps feel

super-threshold spikes, but they also experience, and respond to, sub-threshold volt-

age signals. In this chapter we show that the so-called absolute integrate-and-fire

model is ideally suited to such studies. At the single neuron level voltage traces for

the model may be obtained in closed form, and are shown to mimic those of fast-

spiking inhibitory neurons. Interestingly in the presence of a slow spike adaptation

current the model is shown to support periodic bursting oscillations. For both tonic

and bursting modes the phase response curve can be calculated in closed form. At

the network level we focus on global gap junction coupling and show how to analyze

the asynchronous firing state in large networks. Importantly, we are able to deter-

mine the emergence of non-trivial network rhythms due to strong coupling instabili-

ties. To illustrate the use of our theoretical techniques (particularly the phase-density

formalism used to determine stability) we focus on a spike adaptation induced tran-

sition from asynchronous tonic activity to synchronous bursting in a gap-junction

coupled network.
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1 Introduction

Gap junction coupling is known to occur between many cell types, including for

example pancreatic-β cells [13], heart cells [15], astrocytes [6] and neurons [22].

In this latter context, these junctions are primarily found between inhibitory cells

[26]. Interestingly, interneurons are known to play a key role in the generation of

hippocampal and cortical rhythms, such as those at gamma frequency (30–100 Hz)

[9, 21]. Gap junctions allow for the direct electrical communication between cells,

and without the need for receptors to recognize chemical messengers are much

faster than chemical synapses at relaying signals. The synaptic delay for a chem-

ical synapse is typically in the range 1–100 ms, while the synaptic delay for an

electrical synapse may be only about 0.2 ms. There is now little doubt that gap

junctions play a substantial role in the generation of neural rhythms [28, 5], both

functional [25, 1, 28, 5] and pathological [17, 51]. One natural question therefore is

how does the presence of gap junction coupling affect synchronous neuronal firing

[40, 24, 4]. Independent experimental studies have proposed that gaps synchronize

neuronal firing even in the absence of chemical synapses [16, 37]. However, other

studies have demonstrated that synchrony can result from the interplay of electrical

and chemical signaling and that gaps alone are not sufficient for obtaining syn-

chronous activity [47, 7]. Contradictory results have been reported in the case of in-

spiratory motorneurons, where gaps desynchronize neural activity whereas synaptic

inhibition alone promotes synchrony [8]. From a theoretical perspective the theory

of weakly coupled oscillators has often been used to understand how gap junction

coupling promotes synchrony or anti-synchrony depending on the nature of the neu-

ral oscillator and the shape of the action potential [46, 35, 42, 32, 18, 36, 31, 41]. By

its very nature, however, this sort of approach cannot tackle gap induced variations

in single neuron firing rate and is thus not ideally suited to answering questions

about how the strength of gap-junctions contributes to coherent neuronal behavior.

Thus we are led to the search for a tractable network model that can be analyzed

in the strong coupling limit. In this chapter we show how one can make progress

in the strong coupling regime for a certain class of spiking neuron model that mim-

ics the behavior of fast-spiking interneurons. Importantly we are able to quantify a

transition from asynchronous tonic spiking to synchronized bursting oscillations in

a large globally gap junction coupled network.

The layout of this chapter is as follows. In section 2 we introduce our single

neuron model of choice, namely a nonlinear integrate-and-fire model, with a piece-

wise linear nonlinearity. We show that this model can mimic the behavior of a fast-

spiking interneuron whilst being analytically tractable. In illustration we calculate

periodic orbits and the phase response curve in closed form. A simple model of

spike adaptation is used to augment this basic model so that it can also fire in a

burst mode. Next in section 3 we pursue the analysis of large globally gap junction

coupled networks. The focus here is on asynchronous states that generate a constant

mean field signal. These are calculated in closed form and provide the starting point

for a subsequent stability analysis. This makes use of ideas originally developed by

van Vreeswijk [48] for the study of synaptic interactions. Importantly we are able to
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generate the instability borders in parameter space beyond which an asynchronous

state is unstable to periodic temporal perturbations. Direct numerical simulations

confirm the correctness of our calculations and show that the dominant solution to

emerge beyond an instability is one where the mean-field signal shows a classical

bursting signature. Moreover, neurons in this state are synchronized at the level of

their firing rate, but not at the level of individual spikes. Finally in section 4 we

discuss natural extensions of the work in this chapter.

2 The absolute integrate-and-fire model

The presence of gap-junctional coupling in a neuronal network necessarily means

that neurons directly ‘feel’ the shape of action potentials from other neurons to

which they are connected. From a modeling perspective one must therefore be care-

ful to work with single neuron models that have an accurate representation of an

action potential shape. On the other hand it is also desirable to work with a model

that can be analyzed. A recent paper [12] advocates the use of piece-wise linear

planar models. As an alternative we consider here the use of a nonlinear integrate-

and-fire (IF) model. Indeed the quadratic IF model is a common choice for com-

putational studies (and unlike the leaky IF model does generate an action potential

shape). However for arbitrary time-dependent forcing formal closed solutions are

not known. A somewhat overlooked tractable nonlinear IF model is that of Kar-

bowski and Kopell [30], with a voltage dynamics given by

v̇ = f (v)+ I, (1)

subject to v → vr if v = vth. Here the function f (v) has a shape like |v− vs| and

hence the name absolute integrate-and-fire (aif) model, for some switch value vs.

The firing times T n, n ∈ Z, are defined according to

T n = inf{t | v(t) ≥ vth ; t ≥ T n−1}. (2)

Because of the choice of a piece-wise linear from of the nonlinearity the aif model

can be explicitly analyzed. To see that it is capable of generating behavior consistent

with that of a fast-spiking interneuron we compare it with a more detailed biophysi-

cal model. A generic model for a neocortical fast-spiking interneuron is that of Wang

and Buzsáki [52] (originally developed to describe CA1 hippocampal interneurons).

The kinetics and maximal conductances, which are Hodgkin and Huxley style, are

chosen so that the model displays two salient features of hippocampal and neocorti-

cal fast-spiking interneurons. The first being that the action potential is followed by

a brief after-hyperpolarization, and the second that the model fires repetitive spikes

at high frequencies. A plot of the response of this model to constant current injection

is shown in Fig. 1. In the same figure we also show response of the aif model with

the choice
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Fig. 1 Top: Periodic orbit in the Wang-Buzsáki model with constant current injection I = 1. Bot-

tom: Periodic orbit in the aif model with vr = −25, vs = −50, vth = 25, α = 0.03 and I = 1.

f (v) =

{
(v− vs) v > vs

−α(v− vs) v ≤ vs

, α > 0. (3)

It is clear that an appropriately parametrized aif model can indeed capture the

essential spike shape and frequency response of the more detailed biophysical

model. Note that for accurate numerical computation of the spike times where

v ≥ vs (and solutions diverge as et ) it is useful to consider the transformed vari-

able x = ln(1+ v− vs) and solve the dynamical system ẋ = 1+(I −1)e−x and then

match to solutions with v < vs.

2.1 Spike adaptation

As well as supporting a tonic mode of spiking some interneurons have been reported

to exhibit bursting [14, 53, 38]. With this in mind we show that by incorporating a

form of spike adaptation [49] the aif model can exhibit both tonic and bursting

behavior. For simplicity we shall henceforth work with the explicit choice f (v) = |v|.
In more detail we write

v̇ = |v|+ I −a, ȧ = −a/τa, τa > 0, (4)

subject to the usual IF reset mechanism as well as the adaptive step a(T m) →
a(T m)+ ga/τa, for some ga > 0. For sufficiently small ga the model fires tonically

as shown in Fig. 2. Since the model is now a 2D (discontinuous) dynamical system

it is also useful to view orbits in the (v,a) plane, where one can also plot the system

nullclines, as shown in Fig. 3. For larger values of ga the model can also fire in a

burst mode as shown in Fig. 4. The mechanism for this behavior is most easily un-

derstood in reference to the geometry of the phase-plane, as shown in Fig. 5. First
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Fig. 2 Tonic firing in the aif model with spike adaptation. Here τa = 3, vr = 0.2, vth = 1, I = 0.1
and ga = 0.75.

consider that the dynamics after reset is such that the adaptive current is sufficiently

strong so as to pull the trajectory toward the left hand side of the voltage nullcline.

Then if the separation of time-scales between the v and a variables is large (namely

that τa is large), then the trajectory will slowly track this nullcline (a = I − v) un-

til it reaches v = 0, where there is a switch in the dynamics (from f (v) = −v to

f (v) = +v). After the switch the neuron is able to fire for as long as threshold can

be reached – namely until a becomes so large as to preclude further firing. Thus, it

is the negative feedback from the adaptive current that ultimately terminates a burst,

and initiates a slow phase of subthreshold dynamics.

To solve the full nonlinear dynamical model it is convenient to break the phase

space into two regions separated by the line v = 0, so that in each region the dynam-

ics (up to threshold and reset) is governed by a linear system. If we denote by v+

and v− the solution for v > 0 and v < 0 respectively, then variation of parameters

gives us the closed form solution

Fig. 3 A periodic orbit in the

(v,a) plane corresponding to

the tonic spiking trajectory

shown in Fig. 2. Also shown

is the voltage nullcline as well

as the value of the reset.
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Fig. 4 Burst firing in the aif model with spike adaptation. Here τa = 75, vr = 0.2, vth = 1, I = 0.1
and ga = 2.

v±(t) = v±(t0)e
±(t−t0) +

∫ t

t0

e∓(s−t)[I −a(s)]ds, (5)

with initial data v±(t0) and t > t0. For example, considering the ∆ -periodic tonic

solution shown in Fig. 3 , where v > 0 always, then we have that a(t) = ae−t/τa ,

with a determined self-consistently from a(∆)+ga/τa = a, giving

a =
ga

τa

1

1− e−∆/τa
. (6)

Hence, from (5), the voltage varies according to

v(t) = vre
t + I(et −1)−

aτa

1+ τa

(et − e−t/τa). (7)

The period is determined self-consistently by demanding that v(∆) = vth. A plot of

the firing frequency f = ∆−1 as a function of ga is shown in Fig. 6. From this we see

Fig. 5 A periodic orbit in the

(v,a) plane corresponding to

the bursting trajectory shown

in Fig. 4.
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Fig. 6 Frequency of tonic

firing as a function of the

strength of adaptation ga for

the parameters of Fig. 2.
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that the frequency of tonic firing drops off with increasing adaptation, as expected.

Note that one may also construct more complicated orbits (such as tonic solutions

which visit v < 0, period doubled tonic solutions, bursting states etc.) using the ideas

above. The main effort being in piecing together trajectories across v = 0.

2.2 Phase response curve

It is common practice to characterize a neuronal oscillator in terms of its phase

response to a perturbation. This gives rise to the notion of a so-called phase re-

sponse curve (PRC). For a detailed discussion of PRCs we refer the reader to

[19, 20, 27]. Suffice to say that for a weak external perturbation, such that (v̇, ȧ) →
(v̇, ȧ)+ ε(A1(t),A2(t)), and ε small, then we can introduce a phase θ ∈ [0,1) along

a ∆ -periodic orbit that evolves according to

θ̇ =
1

∆
+ εQT (A1(t),A2(t)). (8)

The (vector) PRC, is given as Q∆ , where Q obeys the so-called adjoint equation

dQ

dt
= −DFT (t)Q, (9)

and DF(t) is the Jacobian of the dynamical systems evaluated along the time-

dependent orbit. To enforce the condition that θ̇ = 1/∆ for ε = 0 we must choose

initial data for Q that guarantees QT (v̇, ȧ) = ∆−1. For a continuous trajectory this

normalization condition need only be enforced at a single point in time. However,

for the aif model with adaptation there is a single discontinuity in the orbit (at reset)

and so Q is not continuous. We therefore need to establish the conditions that ensure

Q(∆+) = Q(0). Introducing components of Q as Q = (q1,q2) this is equivalent to

demanding continuity of dq1/dq2 at reset.
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Fig. 7 Adjoint Q for the tonic spiking orbit shown in Fig. 3.

For the orbit given by (7) with v > 0 the Jacobian is simply the constant matrix

DF =

[
1 −1

0 −1/τa

]
, (10)

and the adjoint equation (9) may be solved in closed form as

q1(t) = q1(0)e−t , q2(t) = q2(0)et/τa +q1(0)
τa

1+ τa

[et/τa − e−t ]. (11)

The condition for continuity of dq1/dq2 at reset yields the relationship

q2(0)

q1(0)
=

q2(∆)

q1(∆)
= −

τa

1+ τa

, (12)

whilst the normalization condition gives

q1(0)[vr + I −a]−q2(0)
a

τa

=
1

∆
. (13)

The simultaneous solutions of (12) and (13) then gives the adjoint in the closed form

Q(t) =
κ

∆
e−t

[
1

−τa/(1+ τa)

]
, t ∈ [0,∆), (14)

and κ = [vr + I − aτa/(1 + τa)]
−1. A plot of the adjoint for the tonic orbit (7) is

shown in Fig. 7. Note that the orbit and PRC for other periodic solutions (crossing

through v = 0) can be obtained in a similar fashion.
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3 Gap junction coupling

To model the direct gap junction coupling between two cells, one labeled post and

the other pre, we introduce an extra current to the right hand side of v̇ in the form

ggap(vpre − vpost), (15)

where ggap is the conductance of the gap junction. Indexing neurons in a network

with the label i = 1, . . . ,N and defining a gap junction conductance strength be-

tween neurons i and j as gi j means that neuron i experiences a drive of the form

N−1 ∑
N
j=1 gi j(v j −vi). For a phase locked state then (vi(t),ai(t)) = (v(t−φi∆),a(t−

φi∆)), (v(t),a(t)) = (v(t +∆),a(t +∆)), (for some constant phases φi ∈ [0,1)) and

we have N equations distinguished by the driving terms N−1 ∑
N
j=1 gi j(v(t + (φi −

φ j)T )−v(t)). For globally coupled networks with gi j = g maximally symmetric so-

lutions describing synchronous, asynchronous, and cluster states are expected to be

generic [2]. Here we shall focus on asynchronous states defined by φi = i/N. Such

solutions are often called splay or merry-go-round states, since all oscillators in the

network pass through some fixed phase at regularly spaced time intervals of ∆/N.

3.1 Existence of the asynchronous state

Here we will focus on a globally coupled network in the large N limit. In this case

we have the useful result that network averages may be replaced by time averages.

In this case the coupling term for an asynchronous state becomes

lim
N→∞

1

N

N

∑
j=1

v(t + j∆/N) =
1

∆

∫ ∆

0
v(t)dt, (16)

which is independent of both i and t. Hence, for an asynchronous state every neuron

in the network is described by the same dynamical system, namely

v̇ = |v|−gv+ I −a+gv0, ȧ = −a/τa, (17)

where

v0 =
1

∆

∫ ∆

0
v(t)dt. (18)

Once again we may use variation of parameters to obtain a closed form solution for

the trajectory:

v±(t) = v±(t0)e
±(t−t0)/τ± +

∫ t

t0

e∓(s−t)/τ± [Ig −a(s)]ds, (19)

where τ± = 1/(1∓g) and Ig = I +gv0. A self-consistent solution for the pair (∆ ,v0)
is now obtained from the simultaneous solution of the two equations v(∆) = vth
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Fig. 8 Period ∆ and constant

mean field signal v0 as a

function of gap strength g.

Other parameters as in Fig. 3
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and v0 = ∆−1
∫ ∆

0 v(t)dt. For example an orbit with v > 0 is easily constructed and

generates the two equations

vth = vre
∆/τ+ + Igτ+(e∆/τ+ −1)−aτ(e∆/τ+ − e−∆/τa), (20)

v0 = −Igτ+ +
1

∆

{
τ+[e∆/τ+ −1][vr + Igτ+ −aτ]+aττa[1− e−∆/τa ]

}
, (21)

where 1/τ = 1/τ+ + 1/τa. A plot of (∆ ,v0) as a function of the gap strength g is

shown in Fig. 8.

3.2 Stability of the asynchronous state

Here we use a phase reduction technique, first developed by van Vreeswijk [48] for

synaptic coupling, to study the stability of the asynchronous state. To do this we

first write the coupling term N−1 ∑
N
j=1 v j(t) in a more convenient form for studying

perturbations of the mean field, namely we write

lim
N→∞

1

N

N

∑
j=1

v j(t) = lim
N→∞

1

N

N

∑
j=1

∑
m∈Z

u(t −T m
j ), (22)

where T m
j = m∆ + j∆/N. Here u(t) = 0 for t < 0 and is chosen such that v(t) =

∑m∈Z u(t −m∆), ensuring that v(t) = v(t + ∆). For arbitrary values of the firing-

times T m
j the coupling term (22) is time-dependent, and we may write it in the form

E(t) =
∫ ∞

0
f (t − s)u(s)ds, f (t) = lim

N→∞

1

N
∑
j,m

δ (t −T m
j ), (23)

where we recognize f (t) as a firing rate. We now consider perturbations of the mean

field such that E(t) (the average membrane voltage) is split into a stationary part
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(arising from the asynchronous state) and an infinitesimal perturbation. Namely we

write E(t) = v0 + ε(t), with small ε(t). Since this perturbation to the asynchronous

oscillator defined by (17) is small we may use phase reduction techniques to study

the stability of the asynchronous state.

In terms of a phase θ ∈ [0,1) along the asynchronous state we can write the

evolution of this phase variable in response to a perturbation in the mean field as

dθ

dt
=

1

∆
+gΓ (θ∆)ε(t), (24)

where Γ is the g-dependent voltage component of the adjoint for the asynchronous

state. This can again be calculated in closed form using the techniques developed in

section 2.2, and takes the explicit form

Γ (t) =
κ(g)

∆
e−t/τ+ , (25)

where κ(g) = [vr/τ+ + Ig −aτa/(1 + τa)]
−1. In fact we need to treat N phase vari-

ables θi, each described by an equation of the form (24), which are coupled by the

dependence of ε(t) on these variables. To make this more explicit we write

ε(t) =
∫ ∞

0
δ f (t − s)u(s)ds, (26)

and use a phase density description to calculate the dependence of the perturbed

firing rate δ f on the phases. We define a phase density function as the fraction of

neurons in the interval [θ ,θ +dθ ] namely ρ(θ , t) = N−1 ∑ j δ (θ j(t)−θ). Introduc-

ing the flux J(θ , t) = ρ(θ , t)θ̇ , we have the continuity equation

∂ρ

∂ t
= −

∂J

∂θ
, (27)

with boundary condition J(1, t) = J(0, t). The firing rate is the flux through θ =
1, so that f (t) = J(1, t). In the asynchronous state the phase density function is

independent of time. Considering perturbations around this state, (ρ,J) = (1,∆−1),
means writing ρ(θ , t) = 1+δρ(θ , t), with a corresponding perturbation of the flux

that takes the form δJ(θ , t) = δρ(θ , t)/∆ +gΓ (θ∆)ε(t). Differentiation of δJ(θ , t)
gives the partial differential equation

∂tδJ(θ , t) = −
1

∆
∂θ δJ(θ , t)+gΓ (θ∆)ε ′(t), (28)

where

ε(t) =
∫ ∞

0
u(s)δJ(1, t − s)ds. (29)

Assuming a solution of the form δJ(θ , t) = eλ tδJ(θ), gives

ε(t) = δJ(1)eλ t ũ(λ ), (30)
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Fig. 9 Spectrum for the asynchronous state. Eigenvalues are at the positions where the red

and blue curves intersect. Parameters as in Fig. 3 with g = 0.5. Left: ga = 1.5, with (∆ ,v0) =
(4.0575,0.46685). Right: ga = 2.5, with (∆ ,v0) = (6.6757,0.39433). Note the unstable mode with

ω ∼±1 in the right hand figure.

where ũ(λ ) =
∫ ∞

0 u(t)e−λ tdt. In this case ε ′(t) = λε(t). Equation (28) then reduces

to the ordinary differential equation

d

dθ
δJ(θ)eλ∆θ = gλ∆Γ (θ∆)δJ(1)ũ(λ )eλ∆θ . (31)

Integrating (31) from θ = 0 to θ = 1 and using the fact that δJ(1) = δJ(0) yields

an implicit equation for λ in the form E (λ ) = 0, where

E (λ ) = eλ∆ −1−gλ∆ ũ(λ )
∫ 1

0
Γ (θ∆)eλθ∆ dθ . (32)

We see that E (0) = 0 so that λ = 0 is always an eigenvalue. Writing λ = ν + iω
then the pair (ν ,ω) may be found by the simultaneous solution of ER(ν ,ω) = 0 and

EI(ν ,ω) = 0, where ER(ν ,ω) = Re E (ν + iω) and EI(ν ,ω) = Im E (ν + iω).
For the adjoint calculated given by (25) a simple calculation gives

∫ 1

0
Γ (θ∆)eλθ∆ dθ =

κ(g)

∆

1

∆

e∆(λ−1/τ+) −1

(λ −1/τ+)
. (33)

For the calculation of ũ(λ ) we use the result that
∫ ∞

0 u(t)e−λ tdt =
∫ ∆

0 v(t + s)e−λ tdt,

for some arbitrary time-translation s ∈ [0,∆), with v(t) the splay solution, defined

for t ∈ [0,∆). In contrast to the calculations in [12] for continuous periodic orbits,

those of the aif model are discontinuous and so one must carefully treat this extra

degree of freedom. Since we do not a priori know the phase of the signal v(t) with

respect to the time origin of the oscillator model we simply average over all possible
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Fig. 10 A plot of (ν ,ω),
where E (ν + iω) = 0, as a

function of ga, with other

parameters as in Fig. 9. Note

the bifurcation at ga ∼ 2.1,

where ν crosses zero from

below with a non-zero value

of ω .
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phases and write

ũ(λ ) =
1

∆

{∫ ∆

0
v(t + s)e−λ tdt

}
ds. (34)

For the splay solution of section 3.1 a short calculation gives

ũ(λ )

eλ∆ −1
=

vr + Igτ+ −aτ

λ −1/τ+

τ+

∆
(e−∆(λ−1/τ+) − e−λ∆ )− Igτ+

e−λ∆

λ

−
aτ

λ +1/τa

τa

∆
(e−∆(λ+1/τa) − e−λ∆ ), Re λ < 1/τ+. (35)

For λ ∈ R the condition for an eigenvalue to cross through zero from below is

equivalent to the occurrence of a double zero of E (λ ) at λ = 0. However, it is easy

to show that E
′(0) 6= 0 so that no instabilities can arise in this fashion. Examples of

the spectrum obtained from the zeros of E (λ )/(eλ∆ − 1) are shown in Fig. 9 (the

remaining zeros of E (λ ) being at λ∆ = 2πin, n ∈ Z).
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Fig. 11 Curves showing solutions of E (iω) = 0 obtained by tracking the bifurcation point in

Fig. 10. Parameters as in Fig. 9. Left: τa = 75. Right: g = 0.5. Beyond an instability point of the

asynchronous solution one typically sees the emergence of synchronized bursting states, as shown

in Fig. 12.
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Here we see that for fixed g and increasing ga a pair of complex conjugate eigen-

values crosses through the imaginary axis at a non-zero value of ω . This signals

the onset of a dynamic instability, which is more easily quantified with the aid of

Fig. 10 which tracks the first pair (ν ,ω) to pass through ν = 0 as a function of ga.

Until now we have assumed that the splay state exists for all parameters of choice.

However, because the underlying model is described by a discontinuous flow then

there is also the possibility that a non-smooth bifurcation can occur. For example a

splay state with v ≥ 0 may tangentially intersect the surface v = 0, where there is a

switch in the dynamics for v. In this case a new orbit will emerge that can either be

tonic or bursting. The conditions defining this non-smooth bifurcation are v(t∗) = 0

and v̇(t∗) = 0 for some t∗ ∈ (0,∆). For the splay state considered here we find that

a dynamic instability, defined by E (iω) = 0, is always met before the onset of a

non-smooth bifurcation.

By tracking the bifurcation point ν = 0 in parameter space it is possible to map

out those regions where the asynchronous state is stable. We do this in Fig. 11 which

basically shows that if an asynchronous state is stable for fixed (g,τa) then it can

always be destabilized by increasing ga beyond some critical value.

1

100

0 500 1000 1500 2000t

0

0.5

1

0 500 1000 1500 2000

E

t

Fig. 12 A plot showing an instability of the asynchronous state in a network with N = 100 neu-

rons, starting from random initial conditions. Here ga is switched from the value in Fig. 9 left

(asynchronous state stable) to that in Fig. 9 right (asynchronous state unstable) at t = 500. Note

the emergence of a synchronized bursting state. The lower plot shows the time variation of the

mean-field signal E(t) = N−1 ∑
N
i=1 vi(t), as well as the value of v0 – the mean field signal for the

asynchronous state (dashed and dotted lines). Parameters as in Fig. 9.



Gap junctions and emergent rhythms 15

To determine the types of solutions that emerge beyond the instability borders

we have performed direct numerical simulations. Not only do these confirm the

correctness of our bifurcation theory, they show that a dominant emergent solution

is a bursting mode in which neurons are synchronized at the level of their firing

rates, but not at the level of individual spikes (within a burst). An example of a

network state that switches from asynchronous tonic spiking to synchronized burst-

ing with a switch in ga across the bifurcation point is shown in Fig. 12. Here we

plot both a raster diagram showing spike times as well as the mean field signal

E(t) = N−1 ∑
N
i=1 vi(t) for a network of 100 neurons. Interestingly the plot of the

mean field signal suggests that bursting terminates roughly at the point where it

reaches the value of v0 for the unstable asynchronous orbit.

4 Discussion

In this chapter we have shown how the absolute integrate-and-fire model is ideally

suited for the theoretical study of gap junction coupled networks. One such network

where theory may help shed further light on function is that of the inferior oli-

vary nucleus, which has extensive electrotonic coupling between dendrites. Chorev

et al. [11] have shown that in vivo intracellular recordings from olivary neurons

(of anesthetized rats) exhibit subthreshold oscillations of membrane voltage, orga-

nized in epochs, lasting from half a second to several seconds. If recorded, spikes

were locked to the depolarized phase of these subthreshold oscillations. Thus it is

of interest to probe the way in which neurons supporting both subthreshold oscil-

lations and spikes use gap junction coupling to coordinate spatio-temporal patterns

for holding and then transferring rhythmic information to cerebellar circuits [50].

The techniques we have developed here are ideally suited to this task.

At the level of the single neuron we have shown how to construct both the pe-

riodic orbit and the phase response curve. This is particularly useful for the de-

velopment of a weakly coupled oscillator theory for network studies, for both gap

and synaptic coupling, as in the work of Kazanci and Ermentrout [31]. However,

we have chosen here to instead pursue a strongly coupled network analysis. The

tractability of the chosen model has allowed the explicit calculation of the asyn-

chronous state, including the determination of its linear stability, in large globally

gap junction coupled networks. In the presence of a simple form of spike adap-

tation we have quantified a bifurcation from asynchrony to synchronized bursting.

Interestingly burst synchronization has been observed in both cell cultures and brain

areas such as the basal ganglia. For a review of experiments and theory relating to

burst synchronization we refer the reader to the article by Rubin [44]. One natural

progression of the work in this paper would be to analyze the properties of bursting

in more detail, and in particular the synchronization properties of bursts relating to

both gap and synaptic parameters. Techniques for doing this are relatively under-

developed as compared to those for studying synchronized tonic spiking. However,

it is well to point out the work of Izhikevich [29], de Vries and Sherman [13] and
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Matveev et al. [39] in this area, as well as more recent numerical studies [43, 45].

The development of such a theory is especially relevant to so-called neural signa-

tures, which consist of cell-specific spike timings in the bursting activity of neurons.

These very precise intra-burst firing patterns may be quantified using computational

techniques discussed in [33]. We refer the reader to [34] for a recent discussion

of neural signatures in the context of the pyloric central pattern generator of the

crustacean stomatogastric ganglion (where gaps are known to play a role in rhythm

generation).

From a biological perspective it is important to emphasize that gaps are not the

static structures that we have suggested here by treating gap strength as a single pa-

rameter. Indeed the connexin channels that underlie such junctions are dynamic and

are in fact modulated by the voltage across the membrane. Baigent et al. [3] have

developed a model of the dependency between the cell potentials and the state of

the gap junctions. In this context the state of an individual channel corresponds to

the conformation of the two connexons forming the pore. Of the four possible states

(both open, both closed or one open and one closed), the scenario where both are

closed is ignored. Because each cell-cell junction is composed of many channels, the

state of the junction is determined by the distribution of channels amongst the three

different states. Thus it would be interesting to combine the model we have pre-

sented here with this channel model and explore the consequences for coherent net-

work behavior. Another form of gap junction modulation can be traced to cannabi-

noids. Gap junction coupling can be found among irregular spiking GABAergic

interneurons that express cannabinoid receptors [23]. Interestingly, the potentiation

of such coupling by cannabinoids has recently been reported [10]. All of the above

are topics of current investigation and will be reported upon elsewhere.
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