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Abst ract - Nurse rost ering is a com plex schedul ing probl em  that affect s hospi tal personnel  on a 
dai ly basi s al l over  t he wor ld.  Thi s paper  pr esent s a new com ponent -based approach wi th 
adapt ive perturbations,  f or a nurse schedul ing probl em  ar isi ng at a m ajor UK hospi tal.  The m ain 
idea behind this techni que is to decom pose a schedul e into it s com ponents (i. e. t he al locat ed shi ft 
pattern of  each nur se) , and then m i m ic a nat ural  evol utionar y pr ocess on these com ponent s t o 
it erat ivel y del iver  better schedul es.   The worthiness of al l com ponents in the schedul e has to be 
cont inuousl y dem onst rated i n or der f or t hem  t o r em ain t here. Thi s dem onst ration em pl oys a 
dynam ic eval uation funct ion which eval uates how well each com ponent  cont ri butes towards the 
fi nal  object ive.  Two perturbation steps are then appl ied: t he fir st  perturbation el im inates a num ber 
of  com ponents that are deem ed not worthy to stay in the cur rent schedul e; t he second perturbation 
m ay al so t hrow out , w i th a l ow l evel  of  pr obabi lit y, som e wor thy com ponent s. The el im inated 
com ponents ar e r epleni shed wi th new ones using a set  of  const ruct ive heur ist ics usi ng l ocal  
opt im alit y cr it eria.  Com putational  r esul ts usi ng 52 dat a inst ances dem onstrate the appl icabi lit y of  
the proposed appr oach in sol vi ng real -world probl em s. 
 
 
Keywords:  Nurse Rostering, Construct ive Heurist ic, Local  Search,  Adaptive Perturbation 
 
 

1   Int roduct ion 

 
Em ployee schedul ing has been wi del y st udi ed f or m ore t han 40 year s. The f ol lowing sur vey 
paper s gi ve an over vi ew of  t he ar ea: Bradl ey and M ar ti n, 1990;  Ernst  et  al .,  2004a and 2004b.   
Em ployee schedul ing can be thought  of  as the probl em  of  assi gni ng em ployees to shi ft s or duties 
over  a schedul ing per iod so that cer tain or gani zat ional  and personal  const raints are sat isf ied.  It 
invol ves the const ruct ion of a schedul e for each em ployee within an organi zat ion in or der f or a 
set  of t asks to be ful fill ed.  I n the dom ain of  heal thcar e, t his is parti cul arly chal lengi ng because of 
the pr esence of  a range of di ff erent  staf f r equi rem ents on di ff erent  days and shi ft s.  Unlike m any 
other organi zat ions,  heal thcare inst it utions work twenty- four hours a day for every si ngl e day of  
the year .  Irr egul ar shi ft work has an ef fect  on the nur ses’  well being and job sat isf act ion (M ueller 
and M cCl oskey, 1990) .  The ext ent t o whi ch t he st af f rost er sat isf ies t he st aff can i m pact 
si gni fi cant ly upon the working envi ronm ent. 
 
Autom atic appr oaches have si gni fi cant  benef it s i n savi ng adm i nistrative st aff t im e and al so 
gener al ly im prove the qual it y of t he schedul es produced.   However, unt il r ecent ly, m ost personnel  
schedul ing pr obl em s i n hospi tals wer e sol ved m anual ly ( Silvest ro and Si lvest ro, 2000) .  
Schedul ing by hand is usual ly a ver y ti m e consum i ng task.   W ithout  an autom atic tool  t o gener ate 
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schedul es and t o t est  t he qual it y of  a const ruct ed schedul e, pl anner s of ten have t o use ver y 
straightforward const raints on worki ng ti m e and idle ti m e in the recur ri ng process.   Even when 
hospi tals have com puterized syst em s, t est ing and graphical  f eatures are often used but  autom atic 
schedul e gener ation features are st ill not  com m on.  M oreover , t here is a growing real isat ion that 
the aut om ated gener ation of per sonnel  schedul es wi thin heal thcar e can pr ovi de si gni fi cant  
benef it s and savi ngs.   I n this paper , we focus on the developm ent  of new techni ques for autom atic 
nurse r ost ering syst em s.  A  gener al  over vi ew of  var ious approaches f or nur se r ostering can be 
found in Sitom pul and Randhawa (1990) , Cheang et al. ( 2003)  and Burke et al. ( 2004) . 
 
M ost r eal  wor ld nur se r ost ering pr obl em s ar e ext rem ely com pl ex and di ffi cul t.   Ti en and 
Kam iyam a (1982) , f or exam ple, say nurse rost ering is more complex than the tr avel li ng sal esm an 
probl em  due to the addi ti onal  const raint of  t otal  num ber  of worki ng days within the schedul ing 
per iod.  Since the 1960’ s, m any paper s have been publ ished on var ious aspect s of nurse rost ering.  
Early paper s (W arner and Prawda, 1972;  M ill er, Pierskal la and Rath, 1976)  attem pted to sol ve the 
probl em  by usi ng m athem atical  progr am m ing m odels.  However, com putational  di ffi cul ti es exi st 
with t hese appr oaches due to t he enorm ous si ze of  t he sear ch space.   I n addi ti on, f or m ost r eal  
probl em s, t he goal of  f inding t he ‘ optim al’  sol ution i s not  onl y com pl etely i nfeasi ble, but  al so 
largel y m eani ngl ess.   Hospi tal  adm i nistrators nor m ally want  t o qui ckl y cr eate a hi gh qual it y 
schedul e that sat isf ies al l hard const raints and as m any sof t const raints as possi ble. 
 
The above obser vat ions have led to a num ber of other attem pts to sol ve real  world nur se rost ering 
probl em s.  Sever al heur ist ic m et hods have been devel oped ( e.g., Blau, 1985;  Anzai  and M iura, 
1987) .  I n t he 1980’ s and l ater, ar tifi cial  i ntel li gence m et hods f or nur se r ost ering, such as 
const raint progr am m ing (M eyer auf ’m  Hofe, 2001) , exper t syst em s (Chen and Yeung, 1993)  and 
knowledge based syst em s (Beddoe and Petrovi c, 2006)  were invest igated with som e success.   I n 
the 1990’ s and later, m any of t he paper s tackle the probl em  with m eta-heur ist ic m ethods,  which 
include si m ulated anneal ing (Brusco and Jacobs,  1995) , var iable neighbourhood sear ch (Burke et 
al., 2004) , t abu search (Dowsland 1998;  Burke,  De Causm aecker  and Vanden Berghe,  1999)  and 
evol utionar y m et hods ( Burke et  al .,  2001;  Kawanaka et  al .,  2001) .  I n ver y r ecent  year s, t here 
have been incr easi ng interest s in the study of  m athem atical  program m ing based heur ist ics (Bard 
and Pur nom o, 2006 and 2007;  Bel iën and Dem eul em eester, 2006)  and t he st udy of  hyper -
heur ist ics (Burke et al ., 2003;  Ross, 2005)  f or t he probl em  (Burke,  Kendal l and Soubei ga, 2003;  
Özcan 2005) . 
 
This paper  t ackl es a nur se r ost ering pr obl em  ar isi ng at  a m aj or UK hospi tal  ( A ickel in and 
Dowsland,  2000;  Dowsland and Thom pson,  2000) .  I ts t arget i s t o cr eate weekl y schedul es f or 
wards of  nurses by assi gni ng each nurse one of a num ber of predef ined shi ft patterns in the m ost 
effi ci ent  way.   Besi des t he t radi ti onal  appr oach of  I nteger  Li near  Pr ogram m ing ( Dowsland and 
Thom pson, 2000) , a num ber of m eta-heur ist ic approaches have been expl ored for t his probl em .  
For exam pl e, i n ( A ickel in and Dowsl and,  2000 and 2003;  A i ckel in and W hi te, 2004)  var ious 
approaches based on genet ic al gorit hm s are present ed.  I n (Li  and A ickel in, 2004)  an appr oach 
based on a learning cl assi fi er syst em  is invest igated.  I n (Burke,  Kendal l and Soubei ga, 2003)  a 
tabu sear ch hyper heur ist ic i s i ntroduced,  and i n ( A ickel in and Li , 2006)  an est im ation of  
distri bution algorit hm  is descr ibed.   I n this paper  we will r epor t a new com ponent -based heur ist ic 
search approach with adapt ive perturbations,  which im plem ents optim izat ion on the com ponent s 
within si ngl e schedul es.  Thi s appr oach com bi nes t he f eatures of  i terat ive i m provem ent and 
const ruct ive per turbation with the abi lit y to avoi d getti ng stuck at l ocal  m inim a. 
 
The fr am ework of our new algorit hm  is an it erat ive im provem ent heur ist ic, i n which the steps of 
Evaluation, Pert urbat ion-I,  Pert urbat ion-II  and Reconst ruct ion are executed i n a l oop unt il  a 
stoppi ng condi ti on i s r eached.   I n the Eval uation st ep, a cur rent com pl ete schedul e i s f ir st  



 3 

decom posed i nto assi gnm ents f or i ndi vi dual  nur ses,  and t hen the assi gnm ent f or each nur se i s 
eval uated by a f unct ion based upon bot h har d const raints and sof t const raints.  I n t he 
Pert urbat ion-I step, som e nurses are m arked as ‘r escheduled’  and thei r assi gnm ents are rem oved 
fr om  the schedul e accor ding to the eval uating val ues of t hei r assi gnm ents.  I n the Pert urbat ion-II 
step, each rem aining nurse st ill has a sm all chance to be reschedul ed, disregar ding the eval uat ing 
val ue of  hi s/her assi gnm ent.  Fi nal ly, i n t he Reconst ruct ion st ep, a r ef ined gr eedy heur ist ic i s 
designed to repai r a broken sol ution and the obt ained com plete sol ution is fed into the Evaluat ion 
step agai n to repeat  t he loop.  
 
Our pr oposed m et hod bel ongs t o the gener al  class of  l ocal  sear ch.  I n par ti cul ar, i t i s som ewhat 
si m ilar t o the It erat ed Local  Search algorit hm  (Lourenco,  M arti n and Stutzl e, 2002) : t hey include 
a sol ution per turbat ion phase and an i m provem ent phase.   However , t hey di ff er i n t he way i n 
which these two phases ar e im plem ented:  The purpose of  perturbation in It erated Local  Search is 
to t ransf orm  one com pl ete sol ution i nto anot her com pl ete sol ution. Thi s ser ves as t he st arti ng 
poi nt f or t he local  heur ist ics which fol low. However, t he aim  of t he per turbation in our  m ethod is 
to tr ansf orm  one com plete sol ution into a parti al  sol ution which is then fed into the reconst ruct ion 
heur ist ics for r epai r. 
 
The rest  of t his paper  i s organi zed as fol lows.  Section 2 gives an over vi ew of  t he nurse rost ering 
probl em , and i ntroduces t he gener al f ram ework of our  m et hodology.   Sect ion 3 pr esent s our  
algorit hm  f or nur se r ost ering.  Benchm ar k r esul ts usi ng r eal -world dat a set s col lected f rom  a 
m ajor UK hospi tal  are presented in sect ion 4.  Concludi ng rem arks are in sect ion 5. 
 
 

2   Prel im inari es 

2.1   The Nurse Rost eri ng Probl em  
 
The nurse rost ering pr obl em  tackled in this paper  i s to create weekl y schedul es for wards of  up to 
30 nur ses at  a l arge UK hospi tal.  These schedul es have t o m eet  t he dem and f or a m i nim um  
num ber of nur ses of  di ff erent gr ades on each shi ft,  whi lst  bei ng seen t o be f ai r by t he st aff 
concer ned and sat isf yi ng wor ki ng cont ract s.  The f ai rness obj ect ive i s achi eved by m eet ing as 
m any of  t he nur ses’  r equest s as possi ble and consi dering hi storical  i nfor m ation ( e.g. pr evi ous 
weekends)  t o ensur e that unsat isf ied request s and unpopul ar shi ft s are evenl y dist ri buted.  I n our  
m odel, t he day i s par titi oned i nto t hree shi ft s:  t wo t ypes of  day shi ft  known as ‘ earli es’  and 
‘l ates’ , and a longer  night shi ft.  Due to hospi tal  pol icy,  a nurse would norm ally work ei ther days 
or ni ghts i n a given week ( but not  bot h), and because of  t he di ff erence i n shi ft  l ength, a f ul l 
week’ s work would norm ally include m ore days than night s.  However, som e speci al  nurses work 
other m ixtur es and the probl em  can hence not  si m ply be decom posed into days and nights. 
 
However, as descr ibed i n Dowsland and Thom pson (2000) , t he pr obl em  can be spl it  i nto t hree 
independent  stages.   The fir st  uses a knapsack m odel t o ensure that  t here are suf fi cient  nurses to 
m eet t he cover ing const raints.  If not , addi ti onal  nurses (agency staff) are al locat ed to the ward, so 
that t he pr obl em  t ackl ed i n t he second phase i s al ways f easi ble.  The second st age i s t he m ost  
di ffi cul t and i nvol ves al locat ing t he act ual  days or  ni ghts a nurse wor ks.   Once t his has been 
deci ded,  a thi rd phase uses a network fl ow m odel ( Ahuja et al ., 1993)  t o al locate those on days to 
‘earli es’  and ‘l ates’ .  Since stages 1 and 3 can be sol ved qui ckl y, t his paper  i s onl y concer ned with 
the highl y const rained second step. 
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The days or  night s that a nurse coul d work in one week def ine the set  of f easi ble weekl y wor k 
patterns (i. e. shi ft patterns)  f or t hat  nurse.   Each shi ft pat tern can be represented as a 0-1 vector  
with 14 el em ents, wher e t he f ir st  7 el em ents r epresent  t he 7 days of  t he week and t he l ast  7 
elem ent s the cor responding 7 ni ghts of t he week.  A  ‘1’  or ‘ 0’  i n the vect or denot es a schedul ed 
day/ni ght “wor ked” or  “not  worked”.   For exam ple, ( 1111100 0000000)  would be a pattern where 
the nur se works the fir st  5 days and no night s.  I n total, t he hospi tal  al lows just  under  500 such 
shi ft pat terns.   A  speci fi c nurse’s cont ract  usual ly al lows 50 to 100 of  t hese.  Dependi ng on the 
nurses’  pr eferences,  t he r ecent  hi story of  pat terns wor ked,  and t he over al l at tr act iveness of  t he 
pattern, a preference cost  i s al locat ed to each nurse-shi ft pattern pai r.  These val ues were set  i n 
cl ose consul tation with the hospi tal  and range fr om  0 (perfect ) t o 100 (unaccept abl e), w ith a bias 
to l ower val ues.   Due t o t he i ntroduct ion of  t hese pr efer ence cost s whi ch takes i nto account  
historic i nfor m ation ( e.g. weekends wor ked i n pr evi ous weeks) , we ar e abl e t o r educe t he 
planning horizon fr om  the or iginal  fi ve weeks to the cur rent one week without  affect ing sol ution 
qual it y. Further detai ls about  t he probl em  can be found in Dowsland (1998) . 
 
The probl em  can be form ulated as fol lows. 
 
Decisi on var iables:  
xij  =1 if nurse i works shi ft pattern j, 0 otherwise.  
 
Param eter s:  
m = Num ber of possi ble shi ft patterns;  
n = Num ber of nurses;  
g = Num ber of grades;  
ajk  =1 if shi ft pattern j cover s per iod k, 0 otherwise;  
qis  =1 if nurse i i s of grade s or higher , 0 ot herwise;  
pij  = Preference cost  of nurse i worki ng shi ft pattern j; 
Rks = Dem and for nurses with gr ade s on per iod k;  
A(i) = Set  of f easi ble shi ft pat terns for nurse i. 
 
Target f unct ion: 

M in  ∑ ∑
= ˛

n

i iAj
ijij xp

1 )(

.         ( 1) 

Subject  t o: 

},...,1{,1
)(

nix
iAj

ij ˛"=∑
˛

,        ( 2) 

},...,1{},14,...,1{,
)( 1

gskRxaq
iAj

n

i
ksijjkis ˛˛"‡∑ ∑

˛ =

.     ( 3) 

 
The const raints out li ned i n ( 2) ensur e t hat  ever y nur se wor ks exact ly one shi ft  pat tern f rom  
his/her f easi ble set .  The const raints r epresent ed by ( 3) ensur e t hat t he dem and f or nur ses i s 
ful fill ed for ever y grade on ever y day and night  and in li ne with hospi tal  pol icy m ore nurses than 
necessar y m ay work during any given period.  I n pr act ise,  t here is an acute shor tage of  nurses and 
act ual  over staffi ng is ver y r are.  Not e that t he def ini ti on of q is  al lows that higher  graded nurses 
can subst it ute t hose at  l ower gr ades i f necessar y.  Thi s pr oblem  can be regarded as a m ul ti ple-
choi ce set -cover ing probl em .  The set s are given by the shi ft pattern vector s and the obj ect ive is 
to m inim ize the cost  of t he set s needed to provide suf fi cient  cover  f or each shi ft  at  each gr ade.   
The const raints descr ibed i n ( 2) enf orce t he choi ce of  exact ly one pat tern ( set ) f rom  the 
al ternatives avai lable for each nurse.  
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2.2   G eneral  Descri pt ion of  t he Com ponent  Based H euri st ic M et hod w i th Adapt ive 
Pert urbat ion (CH AP) 
 
The basi c m ethodol ogy it erat ivel y operates the steps of Evaluation, Pert urbat ion-I, Pert urbat ion-
II and Reconst ruct ion in a loop on one sol ution (see the pseudo code pr esent ed in Figure 1).  A t 
the beginni ng of t he loop,  an Ini ti al izat ion step is used to obt ain a starti ng sol ution and ini ti al ize 
som e i nput  par am eters ( e.g. st oppi ng condi ti ons) .  I n the Eval uation st ep, t he f it ness ( i. e. t he 
degree of sui tabi lit y)  of each com ponent  i n the cur rent sol ution is eval uated under  an eval uat ion 
funct ion.  Then,  t he f it ness m easur e i s used pr obabi li st ical ly t o sel ect  com ponent s t o be 
el im inated in the Pert urbat ion-I step.  Com ponents with hi gh fit ness have a lower probabi lit y of  
bei ng el im inated.  Fur therm ore, t o escape l ocal  m i nim a i n t he sol ution space,  capabi liti es f or 
uphi ll  m oves m ust  be i ncor porated.  Thi s is car ri ed out  i n t he Pert urbat ion-II  st ep by 
probabi li st ical ly el im inating even som e super ior com ponents of t he sol ution in a total ly random  
m anner. 
 
The r esul ti ng par ti al  sol utions ar e t hen f ed i nto t he Reconst ruct ion st ep, whi ch i m plem ents 
appl icat ion speci fi c heur ist ics t o der ive a new and com pl ete sol ution f rom  par ti al  sol utions.   
Throughout  t hese it erations,  t he best  sol ution is retai ned and fi nal ly returned as the fi nal  sol ution.  
This al gorit hm  uses a greedy search st rategy t o achieve i m provem ent t hrough i terat ive 
perturbation and reconst ruct ion. 
______________________________________________________________________________  

CHAP ( ) 
{ 

t=0; 
Create an initial solution S(0) with an associate cost C(0); 
Cbest = C(0); 
While (stopping conditions not reached) { 

/* Decompose the solution into its component (i.e. shift 
   Patterns of individual nurses) */ 
S(t)={s 1, s 2,..., s n}; 
/* The Evaluation step 
Use an evaluation function to assign each component a score; 
/* The Perturbation-I step 
Eliminate some well-arranged components from S(t); 
Obtain an incomplete solution S’(t); 
/* The Perturbation-II step 
Randomly eliminate some components from S’(t); 
/* The Reconstruction step 
Add new components into S’(t) to make it complete; 
S(t)=S’(t); 
If (C(t) is better than C best ) C best =C(t); 
t = t+1; 

} 
Return the best solution with the cost C best ; 

} 

 
Figure 1: The pseudo code of t he basi c algorit hm . 

 
In sum m ary, our  m ethodol ogy di ff ers f rom  som e ot her l ocal  sear ch m ethods such as si m ulated 
anneal ing (K irkpat ri ck,  Gelatt and Vecchi , 1983)  and tabu sear ch (G lover , 1989)  i n the way that it 
does not f ol low one tr aject ory in the sear ch space.   By syst em atical ly el im inating com ponents of 
a sol ution and then repleni shi ng with new com ponent s, t his algorit hm  essent ial ly em ploys a long 
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sequence of m oves between it erations,  t hus perm itti ng m ore com plex and m ore distant changes 
between successi ve sol utions.   This feature m eans that our m ethod has the abi lit y to jum p qui te 
easi ly out of l ocal  m inim a.  Furtherm ore, unl ike popul ation-based evol utionary algorit hm s which 
need to m aintain a num ber of sol utions as parents for offspr ing propagat ion in each gener ation, 
this m ethod operates on a si ngl e sol ution at a ti m e.  Thus,  it el im inates the ext ra CPU-ti m e needed 
to m aintain a set  of sol utions.  
 

3   A  Com ponent Based H euri st ic procedure w ith Adapt ive Pert urbat ion for N urse 
Rosteri ng 

 
The basi c idea behind the m ethod is to determ ine, f or each cur rent schedul e, t he fit ness of shi ft 
patterns assi gned to indi vi dual  nurses.   The process keeps the shi ft patterns of  som e nurses that 
are well chosen (havi ng hi gh fit ness val ues)  i n the cur rent schedul e and tri es to replace the shi ft 
patterns of  ot her nur ses t hat have l ow f it ness val ues.   To enable t he al gorit hm  t o execut e 
it erat ivel y, at each it erat ion, a random ly-produced threshol d (i n the range [0, 1]) i s gener ated, and 
al l shi ft  pat terns whose f it ness val ues exceed t he t hreshol d ar e l abel led as “good pat terns” and 
sur vive in the cur rent schedul e. The rem aining shi ft patterns are label led as “bad patterns” and do 
not sur vive (becom e ext inct ).  The fit ness value therefore cor responds to the sur vival  chance of a 
shi ft pattern assi gned to a speci fi c nurse.   The “bad” shi ft patterns are rem oved fr om  the cur rent 
schedul e and t he cor respondi ng nur ses ar e r eleased,  wai ti ng f or t hei r new assi gnm ents by a 
const ruct ive heur ist ic.  Following this, t he above steps are it erated.   Thus the global  schedul ing 
procedur e is based on it erat ive im provem ent, while an it erat ive const ruct ive process is perform ed 
within. 
 
3.1   Ini ti al izat ion 
 
In this step, an ini ti al  sol ution is gener ated to ser ve as a seed for it s it erat ive im provem ent.  It i s 
well known t hat f or m ost m et a-heur ist ic al gorit hm s, t he i ni ti al izat ion st rategy can have a 
si gni fi cant  inf luence on per form ance.  Thus,  nor m ally, a si gni fi cant  ef fort wi ll  be m ade t o 
gener ate a starti ng poi nt t hat i s as good as possi ble.  For nurse rost ering, t here are a num ber of  
heur ist ic techni ques that can be appl ied to produce good starti ng sol utions.  
 
For our  m et hodology,  due t o t he f act  t hat t he r eplacem ent  r ate i n i ts f ir st  i terat ion i s r elat ivel y 
high,  t he perform ance is gener al ly independent  of t he qual it y of t he initi al  sol ution.  However, if 
the seed is al ready a relat ivel y good sol ution, t he over al l com putation ti m e will decrease.   Since 
the m ajor purpose of  t his paper  i s to dem onstrate the perform ance and gener al  appl icabi lit y of t he 
proposed m ethodol ogy,  we del iberately gener ate an ext rem ely poor  i niti al  sol ution by random ly 
assi gning a shi ft pattern to each nurse.   The steps descr ibed in sect ion 3.2 to 3.5 are execut ed in 
sequence i n a loop unt il  a st oppi ng condi ti on ( i. e. sol ution qual it y or  t he m axi m um  num ber of  
it erat ion) i s reached.  
 
3.2   Evaluat ion 
 
In thi s st ep, t he f it ness of  i ndi vi dual nur ses’  assi gnm ents, based on com pl ete schedul es,  i s 
eval uated.  The eval uation funct ion shoul d be norm alized and hence can be form ulated as  

 },,...,1{    ),()(
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W here Ei are the shi ft pattern assi gned to the i-t h nur se,  n is the num ber  of  nurses,  )(1 iEf  and 

)(2 iEf  i s the cont ri but ion of  E i t owards the pr eference and the feasi bi lit y aspect  of t he sol ution 

respect ivel y. 
 

)(1 iEf  eval uates the shi ft pattern assi gned to a nurse in term s of t he degree to which it sat isf ies 

the sof t const raints ( i. e. t his nur se’ s pr efer ence on hi s/her assi gned shi ft  pat tern).  I t can be 
form ulated as 

},...,1{    ,)(
m inm ax

m ax

1 ni
pp

pp
Ef ij

i ˛"
-

-
= ,       ( 6) 

where p ij  i s t he pr eference cost  of nur se i  wor ki ng shi ft  pat tern j  and p m ax and p m in are t he 
m axim um  and m i nim um  cost  val ues am ong t he shi ft  pat terns of  al l nur ses on t he cur rent 
schedul e, r espect ivel y. 
 

)(2 iEf  eval uates how far t he shi ft pattern assi gned to a nurse sat isf ies the hard const raints (i. e. 

cover age requi rem ent and grade dem ands).  This can be form ulated as 

},...,1{    ,)(
m inm ax
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2 ni
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Ef ij

i ˛"
-

-
= ,       ( 7) 

where cij  i s the cover age cont ri bution of  nurse i worki ng shi ft pattern j and cm ax and cm in are the 
m axim um  and m i nim um  cover age cont ri but ion val ues am ong the shi ft patterns of  al l nurses on 
the cur rent schedul e, r espect ivel y. 
 
In a cur rent schedul e, t he coverage cont ri bution of  each nurse’s shi ft pattern is it s cont ri bution to 
the cover  of  al l t hree gr ades,  whi ch can be cal cul ated as t he sum  of  gr ade one,  t wo and t hree 
cover ed shi ft s t hat would becom e uncover ed i f t he nur se does not  wor k on t his shi ft  pat tern.  
Therefore, we form ulate cij  as 
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W here q is  = 1 if nurse i i s of grade s or higher , 0 ot herwise;  
ajk  = 1 if shi ft pattern j cover s period k, 0 otherwise;  

 d ks = 1 if t here is a shor tage of nurses during per iod k of grade s (i. e. t he cover age val ue 

                     without  consider ing shi ft pattern j i s sm al ler t han dem and Rks), 0 otherwise.  
 
3.3   Pert urbat ion-I 
 
This step is to det erm ine whether t he i-t h nur ses’  assi gnm ent ( denot ed as Ei, }),...,1{ nį"  shoul d 

be retai ned for t he next  it eration or whether it shoul d be el im inated and the nur se placed in the 
queue waiti ng for t he next  r eschedul ing.  This is done by com paring his/her assi gnm ent fit ness 
F(Ei) t o a random  num ber  r s gener ated for each it eration in the range [0, 1].  If F(Ei) ≤ r s, t hen Ei 
will be rem oved fr om  the cur rent schedul e; other wise Ei w ill sur vive in it s present  posi ti on.  The 
days and ni ghts t hat t he nur ses’  shi ft  pat tern cover s ar e t hen r eleased and updat ed f or t he next  
Reconst ruct ion step (see bel ow).  By usi ng this st ep, an assi gnm ent E i w ith a larger fit ness val ue 
F(Ei) has a propor ti onal ly higher  probabi lit y of sur vi val  i n the cur rent schedul e.  This m echanism  
perform s in a si m ilar way to roul ette wheel sel ect ion in genet ic algorit hm s. 
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3.4   Pert urbat ion-II 
 
Fol lowing the Pert urbat ion-I step, t he shi ft pattern of  each rem aining nurse st ill has a chance to 
be el im inated f rom  the par ti al  schedul e at a gi ven r ate of  r m.  The days and ni ghts t hat an 
el im inated shi ft pattern cover s are t hen r eleased f or t he next  Reconst ruct ion step.  As usual  f or 
m utation oper ators, com par ed wi th the el im ination rate in t he Pert urbat ion-I st ep, t he r ate here 
shoul d be r elat ivel y sm al ler t o f aci lit ate conver gence.   O t herwise, t here wi ll  be no bi as i n t he 
sam pling, l eadi ng to a random  restar t t ype algor it hm .  From  a ser ies of exper im ents we found that 
rm ≤5.0%  yi elds good r esul ts and hence i s t he val ue adopt ed by us f or our  exper im ents.  Thi s 
process is anal ogous to the m utation operator i n a genet ic al gorit hm .  Note that  our m ethod uses 
it s Pert urbat ion-II step to el im inate som e fitt er com ponents and thus gener ate a new di ver si fi ed 
sol ution indi rect ly. 
 
3.5   Reconst ruct ion 
 
The Reconst ruct ion step takes a parti al  schedul e as the input , and produces a com plete schedul e 
as t he out put.  Si nce t he new schedul e i s based on i terative i m provem ent f rom  the pr evi ous 
schedul e, al l shi ft assi gnm ents in the par ti al  schedul e should rem ain unchanged.   Therefore, t he 
Reconst ruct ion task is reduced to assi gni ng shi ft patterns to al l unschedul ed nurses to com plet e a 
parti al  sol ution. 
 
Based on the dom ai n knowledge of nurse rost ering, t here are m any rules that can be used to bui ld 
schedul es.   For exam ple, A ickel in and Dowsland (2003)  i ntroduce three bui lding rules:  a ‘Cover’ 
rule, a ‘Contri bution’  r ule and a ‘Com bined’  r ule.  Since t he last  t wo rules are qui te si m ilar, i n 
this paper we onl y appl y t he ‘ Cover r ule and t he ‘ Com bined’  r ule t o f ul fil  t he Reconst ruct ion 
task.  
 
The ‘ Cover’  r ule i s desi gned t o achi eve t he f easi bi lit y of  t he schedul e by assi gni ng each 
unschedul ed nur se t he shi ft  pat tern t hat cover s t he m ost  num ber of uncover ed shi ft s.  For  
inst ance,  assum e that a shi ft pat tern cover s M onday to Friday ni ght  shi ft s.  Further assum e that 
the cur rent r equi rem ents for t he night  shi ft s fr om  M onday to Sunday are as fol lows: (- 4, 0, +1, - 3, 
-1, - 2, 0), where negat ive sym bol  m eans under cover  and posi ti ve m eans over -cover .  The given 
shi ft pattern hence has a cover  val ue of  3 as it cover s the night shi ft s of  M onday, Thursday and 
Friday.   Note that f or nurses of grade s, t his rule onl y count s the shi ft s requi ri ng grade s nurses as 
long as there is a si ngl e uncover ed shi ft f or t his grade.   If al l shi ft s of grade s are cover ed, shi ft s of 
grade (s-1) are count ed.  This operation is necessar y as otherwise higher  graded nurses m ight fill 
lower graded dem and fir st, l eavi ng the hi gher  graded dem and m ight unm et at al l. 
 
The ‘Com bined’  r ule is desi gned to achieve a bal ance between sol ution  qual it y and feasi bi lit y by 
going through the entir e set  of f easi ble shi ft patterns for a nurse and assi gni ng each one a scor e.  
The one with the highest  (i. e. best ) scor e is chosen.   If t here is m ore than one shi ft pattern with the 
best  scor e, t he fir st  such shi ft pattern is chosen.   The scor e of a shi ft pattern is cal cul ated as the 
weighted sum  of t he nur se’s preference cost  p ij  f or t hat parti cular  shi ft pattern and it s cont ri bution 
to the cover  of al l t hree grades.   The latter i s m easured as a weighted sum  of  grade one,  t wo and 
three uncover ed shi ft s t hat woul d be cover ed i f t he nur se wor ked t his shi ft  pat tern, i .e. t he 
reduct ion in shor tf al l.  M ore preci sel y and using the sam e notation as before, t he scor e Sij  of  shi ft 
pattern j f or nurse i i s calculat ed as 

∑ ∑
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where wp i s the weight of t he nur se’s preference cost  p ij  f or t he shi ft pattern and ws i s the weight 
of  cover ing an uncover ed shi ft of grade s.  q is  i s 1 if nurse i i s of grade s or higher , 0 otherwise.   
ajk  i s 1 if shi ft pattern j cover s day k, 0 other wise.   e ks i s the num ber of nurses needed to at l east  
sat isf y the dem and Rks if t here are st ill nurses in shor tage during per iod k of grade s, 0 other wise.   
(100−p ij ) m ust be used in the scor e, as higher  p ij  val ues are worse and the m axim um  for p ij  i s 100.  
 
Using the above two rules at t he rates of p 1 and p2 r espect ivel y, t he Reconst ruct ion step assi gns 
shi ft pat terns to al l unscheduled nurses until t he broken sol ution is com plete.   I n addi ti on, t o avoi d 
stagnat ion at l ocal  optim a, r andom ness needs to be introduced into the Reconst ruct ion steps.   This 
is achi eved by al lowing each unschedul ed nur se t o have an addi ti onal  sm al l r ate p 3 t o be 
schedul ed by a random ly-sel ected shi ft pattern.  Note that  t he sum  of p 1, p 2 and p3 shoul d be 1.   
A lso note that because we sol ve the probl em  without  r elyi ng on any prior knowledge about  which 
nurses shoul d be schedul ed ear li er and which nurses later, t he indexi ng order  of  nurses given in 
the original  data set  will be appl ied throughout  t he Reconst ruct ion step. 
 
A fter a broken sol ution i s r epai red, t he f it ness of  t his com pl ete sol ution has to be cal cul ated.   
Unfortunately, due t o t he hi ghl y-const rained nat ure of  t he pr oblem , f easi bi lit y cannot  be 
guaranteed. Hence,  t he f ol lowing penal ty f unct ion appr oach i s used t o eval uate t he sol utions 
obtained 

M in  
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where const ant w demand i s the penal ty per uncover ed shi ft s in the sol ution, and a “m ax” funct ion is 
used due to the penal izat ion of under cover ing. 
 

4   Com putat ional  Resul ts 

 
This sect ion descr ibes the com putational  exper im ents used to test  our proposed algorit hm .  For al l 
exper im ents, 52 real  data set s (as provi ded by the hospi tal ) are avai lable.   Each data set  consi sts 
of  one week’ s requi rem ents (i. e. 14 ti m e periods)  f or al l shi ft and grade com bi nations and a li st  of 
nurses avai lable together with thei r preference cost s pij  and qual ifi cat ions.   Typi cal ly, t here w ill 
be bet ween 20 and 30 nur ses per ward, 3 grade-bands and 411 di ff erent  shi ft patterns.   They are 
m oderately si zed pr obl em s com par ed t o ot her pr obl em s r epor ted i n the l it erature ( Burke et  al ., 
2004) .  The dat a was col lect ed f rom  three war ds over  a per iod of  sever al  m ont hs and cover s a 
range of  schedul ing si tuations,  e. g. som e dat a i nstances have ver y f ew f easi ble sol utions whi lst 
others have m ulti ple optim a.  A  zi p fil e cont aining al l t hese 52 inst ances is avai labl e to download 
at http:// www.cs. nott. ac.uk/ ~jpl /Nurse_Data/NurseData.zi p. 
 
4.1   A lgori thm  Detai ls 
 
Table 1 li sts detai led com putational  r esul ts of var ious approaches over  52 instances.   The resul ts 
li sted in Tabl e 1 are based on 20 runs with di ff erent  r andom  seeds.   The second last  r ow (headed 
‘Av.’) cont ains the m ean values of  al l col um ns, and the last  r ow (headed ‘% ’) shows the relative 
percent age devi ation values of  t he above m ean val ues t o the opt im al sol ution val ues.   W hen 
com puting the m ean,  a censored cost  val ue of 255 has been used if an al gor it hm  fai ls to fi nd a 
feasi ble sol ution (denot ed as N/A). The fol lowing notations are em ployed in the table:  
 

• IP: opt im al or best -known sol utions f ound by XPRESS M P,  a com m er cial  i nteger  
progr am m ing sol ver  ( Dowsland and Thom pson, 2000) ; 
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• GA-1: best  r esul t out of 20 runs of  a basi c genet ic algorit hm  (A ickel in and W hite, 2004) . 

• GA-2: best  r esul t out of  20 runs of an adapt ive GA, which is the sam e as the basi c genet ic 
algorit hm  revi si on, but it also tri es to sel f-l earn good par am eters during the runtim e starti ng 
fr om  the val ues given below (A ickel in and W hite, 2004) . 

• GA-3: best  r esul t out of 20 runs of  a m ulti- popul ation genet ic algor it hm , which is the sam e as 
the adapt ive one, but also features com pet ing sub- popul ations (A ickel in and W hite, 2004) . 

• GA-4: best  r esul t out  of 20 runs of  t he hi ll- cl im bing genet ic algorit hm , which is the sam e as 
the m ulti- popul ation genet ic al gorit hm , but it also incl udes a local  sear ch in the form  of a hi ll-
cl im ber around the cur rent best  sol ution (A ickel in and W hite, 2004) . 

• GA-5: best  r esul t out  of 20 runs of  an indi rect  genet ic algor it hm , which m aps the const raint 
sol ution space i nto an unconst rained space,  t hen sear ches w i thin t hat new space and 
event ual ly t ransl ates sol utions back i nto t he or iginal  space ( A ickel in and D owsl and,  2003) .  
Up to four di ff erent  r ules and a hi ll- cl im ber are used in this algorit hm . 

• EDA : best  r esul t out of 20 runs of  an est im ation of  dist ri bution algorit hm  (A ickel in and Li , 
2006) ; 

• LCS: best  r esul t out of 20 runs of  a Learning Classi fi er System  (Li  and A ickel in, 2004) ; 

• Con-heu:  best  r esul t out of  20 runs of  our m ethod without  t he two steps of perturbat ion; 

• CHA P: our f ul l Com ponent based Heurist ic m ethod w ith both A daptive Perturbation steps;  

• Best: best  r esul t out of 20 runs of  CHAP; 

• M ean: average resul t of  20 runs of  CHAP; 

• Inf: num ber of r uns term inating with the best  sol ution bei ng infeasi ble; 

• #: num ber of r uns term inating with the best  sol ution being opt im al; 

• ≤3: num ber  of  r uns t erm inat ing wi th t he best  sol ution being w i thin t hree cost  uni ts of t he 
opt im um .  The val ue of  t hree uni ts was chosen as i t cor responds t o t he penal ty cost  of  
vi olating t he l east  i m portant l evel  of  r equest s i n t he or iginal  f orm ulation.  Thus,  t hese 
sol utions are st ill acceptable to the hospi tal . 

 
Set I P GA GA GA GA GA EDA LCS Con CHAP (20 runs)  

  - 1 - 2 - 3 - 4 - 5   - heu Best  M ean I nf  # ≤3 
01 8 9 9 8 8 8 8 9 31 8 8.0 0 20 20 
02 49 57 57 50 50 51 56 60 100 49 54.9 0 2 3 
03 50 51 51 50 50 51 50 68 94 50 51.9 0 12 17 
04 17 17 17 17 17 17 17 17 20 17 17.0 0 20 20 
05 11 12 11 11 11 11 11 15 22 11 11.5 0 19 19 
06 2 7 7 2 2 2 2 2 20 2 2.1 0 18 20 
07 11 N/ A N/ A 11 13 12 14 31 45 11 11.5 0 12 20 
08 14 18 18 15 14 15 15 43 41 14 16.0 0 10 15 
09 3 N/ A N/ A 3 3 4 14 17 N / A  3 8.5 0 12 12 
10 2 6 6 4 2 3 2 5 13 3 3. 6 0 0 20 
11 2 4 4 2 2 2 2 2 N / A  2 2.0 0 20 20 
12 2 14 14 2 2 2 3 4 N / A  2 2.4 0 15 19 
13 2 3 3 2 2 2 3 5 103 2 2.3 0 14 20 
14 3 4 4 3 3 3 4 17 21 3 19.2 0 3 5 
15 3 6 6 3 3 3 4 5 5 3 3.0 0 20 20 
16 37 40 40 38 38 39 38 38 159 37 37.2 0 16 20 
17 9 12 12 9 9 10 9 22 N / A  9 9.2 0 18 20 
18 18 19 19 19 19 18 19 33 125 18 18.1 0 19 20 
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19 1 5 5 1 1 1 10 32 N / A  1 1.6 0 11 20 
20 7 10 10 8 8 7 7 7 36 7 14.2 0 8 8 
21 0 7 7 0 0 0 1 6 23 0 0.1 0 18 20 
22 25 43 35 26 25 25 26 38 150 25 26.9 0 6 16 
23 0 8 8 0 0 0 1 3 N / A  0 0.1 0 19 20 
24 1 4 3 1 1 1 1 1 N / A  1 1.0 0 20 20 
25 0 6 5 0 0 0 0 0 4 0 1.1 0 15 20 
26 48 N/ A N/ A 48 48 48 52 93 148 48 68.6 0 8 16 
27 2 17 17 2 2 4 28 19 N / A  3 17. 7 0 0 2 
28 63 66 66 63 63 64 65 67 N / A  63 63.3 0 11 20 
29 15 20 20 141 17 15 109 56 N / A  15 62.4 1 9 11 
30 35 44 44 42 35 38 38 41 97 35 43.3 0 5 5 
31 62 N/ A 284 166 95 65 159 123 N / A  66 69. 5 0 0 0 
32 40 51 51 99 41 42 43 42 N / A  40 45.7 0 8 15 
33 10 N/ A N/ A 10 12 12 11 15 N / A  11 12. 0 0 0 18 
34 38 42 42 48 40 39 41 70 N / A  38 42.7 0 5 14 
35 35 36 36 35 35 36 46 64 N / A  36 43. 5 0 0 2 
36 32 N/ A 36 41 33 32 45 54 198 32 41.7 0 4 5 
37 5 8 8 5 5 5 7 12 62 6 7. 0 0 0 16 
38 13 N/ A N/ A 14 16 15 25 30 121 14 46. 5 0 0 10 
39 5 9 8 5 5 5 8 13 118 5 5.9 0 5 20 
40 7 14 10 8 8 7 8 15 26 7 8.2 0 18 18 
41 54 N/ A 65 54 54 55 55 57 121 54 54.2 0 18 20 
42 38 41 41 38 38 39 41 80 51 40 41. 1 0 0 16 
43 22 24 24 39 24 23 23 58 N / A  22 23.6 0 16 17 
44 19 36 36 19 48 25 24 34 N / A  19 28.7 0 1 4 
45 3 N/ A 9 3 3 3 6 15 111 3 4.5 0 4 19 
46 3 17 10 3 6 6 7 28 N / A  3 5.8 0 2 13 
47 3 N/ A 5 4 3 3 3 3 N / A  3 3.0 0 20 20 
48 4 9 9 6 4 4 5 18 N / A  5 12. 9 0 0 5 
49 27 36 36 30 29 30 30 37 N / A  27 38.3 0 1 2 
50 107 N/ A N/ A 211 110 110 109 110 N / A  107 107.5 0 12 20 
51 74 N/ A N/ A N/ A  75 74 171 125 N / A  89 180. 9 3 0 0 
52 58 N/ A N/ A N/ A  75 58 67 85 N / A  58 85.7 1 3 4 
Av. 21. 1 79.8 65. 0 37. 1 23. 2 22. 0 29. 7 35. 5 157. 4 21. 7 28. 6 0. 1 9. 6 14. 4 
%  0 278 208 76 10 4 41 68 646 2. 7 35. 5    

Table 1: Com parison of r esul ts by var ious approaches over  52 inst ances.  
 
For al l data inst ances,  we used the fol lowing set  of fi xed param eter s in our  exper im ents:  

• Stoppi ng cr it erion: a m axi m um  iterat ion of 50, 000,  or  an opt im al/best -known sol ution has 
been found;  

• Rate of Pert urbat ion-II i n Section 3.4: r m =0.05. 

• Rates of  Reconst ruct ion in Section 3.5: p 1 =0.80, p 2 =0.18, p 3 =0.02; 

• W eight set  i n form ula (9): w p =1, w 1 =8, w 2 =2 and w3 =1; 

• Penal ty weight i n fit ness funct ion (10): w demand =200;  

 
Note that som e par am eter  val ues (i. e. t he m axi m um  num ber of  it erations,  r m, p 1, p 2 and p3) ar e 
based on our  exper ience and i ntuiti on and thus we cannot  pr ove t hey ar e t he best  f or each 
inst ance.  The r est  of  t he values ( i. e. w p, w 1, w 2, w 3 and w demand )  ar e t he sam e as those used i n 
previ ous paper s sol vi ng the sam e 52 inst ances,  and we are cont inuing to use them  for consi stency.  
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Our m ethod was coded in Java 2, and al l exper im ents were under taken on a Pentium  4 2. 1GHz 
m achine under  W indows XP.   To t est  t he r obust ness of t he pr oposed al gorit hm , each dat a 
inst ance was r un t wenty t im es by f ixi ng the above par am eter s and var yi ng t he pseudo r andom  
num ber seed at  t he begi nning.   The execut ion t im e per  r un and per dat a i nst ance var ies f rom  
sever al  m i lli seconds t o 20 seconds dependi ng on the di ffi cul ty of  t he i ndi vi dual  dat a i nst ance.   
Table 2 li sts the average runt im es of var ious approaches over  t he sam e 52 inst ances:  t he fir st  si x 
(i. e. I P, GA-1, GA-2, GA-3, GA-4 and GA -5) were run on a di ff erent  Pentium  III PC, while the 
fol lowing two (i. e. EDA and LCS) on a si m ilar Pentium  4 2.0GH z PC.  Obviousl y, t he IP is m uch 
sl ower t han any of  t he above m eta-heur ist ics.  Am ong these m eta-heur ist ic m ethods,  our algorit hm  
takes no m or e t im e al though an accur ate com par ison i n term s of  r untim e is di ffi cul t due t o t he 
di ff erent  envi ronm ents ( i. e. m achi nes,  com pi lers and pr ogram m ing l anguages)  i n use.   For  
exam ple, t he genet ic al gorit hm s are coded in C and the EDA is coded in C++.  The com parison in 
term s of  t he num ber  of  eval uations i s al so di ffi cul t because t he ot her al gorit hm s eval uate each 
candi date sol ution as a whole, while our algorit hm  eval uates parti al  sol utions as well. 
 

 IP G A- 1 G A-2 G A-3 G A-4 G A-5 EDA LCS CH AP 
Tim e (sec)  >24hour s 19 23 13 15 12 23 45 12 

Table 2: Com parison of t he average runtim e of var ious appr oaches.  
 
 
4.2   Analysi s of Resul ts 
 
The r esul ts of al l t he appr oaches i n Tabl e 1 are obt ained by using the sam e 52 benchm ar k t est  
inst ances,  w ith the bold fi gure represent ing the optim al sol ution found by a com m erci al  sof tware 
package.   Com pared with the resul ts of  t he m athem atical  program m ing approach which can take 
up to 24 hours runtim e (shown in the ‘I P’ col um n), our r esul ts (shown in the ‘Best’ col um n) are 
onl y 2. 7%  m ore expensi ve on average but  t hey ar e al l achi eved w i thin 20 seconds.   Com pared 
with t he best  r esul ts of  var ious m et a-heur ist ic appr oaches,  i n gener al  t he CHAP r esul ts ar e 
sl ightly bet ter t han t hose of  t he best -perform ing i ndi rect  genet ic al gorit hm  (with a r elative 
percent age devi ation value of 4% )  and are m uch bet ter t han t he ot hers ( w ith devi ation val ues 
fr om  10%  to 278% ). 
 
Since our  proposed m ethodol ogy uses a ‘Cover’ r ule and a ‘Com bined’  r ule in it s Reconst ruct ion 
step f or schedul e r epai ri ng, i t m ay be i nterest ing to know i f t he good per form ance of  our  
algorit hm  i s m ai nly due t o t hese t wo del icat e bui lding r ules.   To cl arif y t his, we per form ed an 
addi ti onal  set  of  exper im ents by ski ppi ng the two perturbation steps,  i. e. onl y im plem enting the 
Reconst ruct ion step to bui ld a schedul e f rom  an em pty sol ution.  This m et hod does not  yi eld a 
si ngl e f easi ble sol ution f or 24 i nst ances,  as t he ‘ Con-heu’  col um n shows.   Thi s under li nes t he 
di ffi cul ty of  t his pr oblem , and m ost  i m portant ly i t under li nes the key r oles pl ayed by t he t wo 
el im inat ion st eps i n our  f ul l m ethodol ogy,  as the Reconst ruct ion st ep al one i s not  capable of  
sol vi ng the probl em . 
 
Figures 2 and 3 show the resul ts of our m ethod and the best  i ndi rect  genet ic algorit hm  graphi cal ly 
in m ore detai l.  The bars above the y-axi s represent  sol ution qual it y out of 20 runs:  t he black bars 
show the num ber  of optim al sol utions found (i. e. t he value of  ‘ #’  i n Table 1), and the dot ted bars 
represent  t he num ber  of  good f easi ble sol utions whi ch are w i thin 3 cost  uni ts of  t hei r opt im al 
sol utions (i. e. t he val ue of  ‘ ≤3’  i n Table 1).  The bars below the y-axi s represent  t he num ber  of 
ti m es t he al gorit hm  f ai led t o f ind a f easi ble sol ution i n these 20 runs ( i. e. t he val ue of  ‘ Inf ’  i n 
Table 1).  Hence, t he less the area below the y-axi s and the m ore above,  t he bet ter t he algorit hm ’s 
perform ance.  Not e t hat ‘ m issi ng’  bar s m ean t hat, i n 20 runs,  f easi ble sol utions ar e obt ained at  
least  once,  but none of  t hem  are opt im al or of good qual it y (within 3 uni ts of optim al values) . 
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Figure 2: Resul ts fr om  CHAP. 

 
Figure 2 shows t hat f or CHAP, 21 out of 52 dat a i nst ances ar e sol ved wel l ( i. e. wi th 100%  
sol utions being within 3 uni ts of  opt im al val ues) , 42 inst ances ar e sol ved opt im ally at l east  once,  
and over al l t here are 5 infeasi ble sol utions for 3 inst ances.   For t he best  i ndi rect  genet ic algorit hm  
(shown in fi gure 3), t he resul ts are sl ightly worse:  15 data inst ances ar e sol ved well, 28 are sol ved 
to optim alit y at l east  once,  and in total t here are 56 infeasi ble sol utions for 6 dat a inst ances.  
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Figure 3: Resul ts of t he best  i ndi rect  genet ic al gorit hm  (i. e. GA-5). 
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Figure 4 shows a sum m ar y of  Tabl e 1 i n gr aphical  f orm at and gi ves an over al l com par ison of  
perform ance of  t he other  approaches with our  proposed m ethodol ogy.   The best  r esul ts for t hese 
inst ances are obtained by the IP sof tware, and in gener al, our approach perform s better t han the 
previ ous best -perform ing approach.   The basi c genet ic al gorit hm  (i. e. GA-1), t he adapt ive genet ic 
algorit hm  ( i. e. GA-2), the m ul ti- popul ation genet ic al gorit hm  ( i. e. GA-3) and even t he hi ll-
cl im bing genet ic algorit hm  (i. e. GA -4) which includes m ulti ple popul ations and an elabor ate local  
search are al l si gni fi cant ly outper form ed in term s of f easi bi lit y, best  and aver age resul ts. 
 
The other t hree approaches (i. e. t he GA-5, t he EDA and the LCS) belong to the cl ass of i ndi rect  
approaches,  i n which a set  of  heur ist ic rules,  i ncl udi ng the ‘Cover’ r ule and the ‘Com bined’  r ule 
used in our  approach,  i s used for schedul e bui lding.  Com pared w ith the EDA  and the LCS, our 
new approach perform s m uch better i n term s of t he best  and average resul ts, and sl ightly worse in 
term s of  f easi bi lit y.   Com par ed wi th t he GA- 5 whi ch per form s best  am ong al l t he heur ist ic 
algorit hm s, our approach perform s better i n al l aspect s of f easi bi lit y (99%  vs.  95% ), best  r esul ts 
(21.7 ver sus 22.0)  and average resul ts (28.6 vs.  35.6) .  I n addi ti on, it i s worth m entioni ng that t he 
GA-5 uses the best  possi ble order  of t he nur ses (which,  of cour se,  has to be found)  f or t he gr eedy 
heur ist ic to bui ld a schedul e, while our algorit hm  onl y uses a fi xed indexi ng order ing given in the 
original  data set s. 
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Figure 4: Sum m ary resul ts of  var ious search algorit hm s. 

 
 

5   Concl usi ons 

 
This paper  present s a new approach to address the hospi tal  personnel  schedul ing probl em .  The 
m ajor i dea behind this m ethod is to decom pose a sol ution into com ponents, and then to m im ic a 
natur al evol utionar y process on these com ponents to m ake it erative im provem ents in each si ngl e 
schedul e.  I n each it erat ion, an unf it porti on of  t he sol ution is rem oved.  Any broken sol ution is 
repai red by a ref ined greedy bui lding process.  
 
Taken as a whol e, t he proposed appr oach has a num ber  of  di st inct  advant ages.   Fi rst ly, i t i s 
si m ple and easy to im plem ent because it uses greedy al gorit hm s and local  heur ist ics.   Secondl y, 
due to it s features of m aintaining onl y a si ngl e sol ution at each it eration and el im inating inferior 
parts fr om  this sol ution, it can qui ckl y conver ge to local  optim a.  Thirdly, t he technique has the 
abi lit y to jum p out  of l ocal  opt im a in an ef fect ive m anner.  Final ly, t his approach can be easi ly 
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com bined w ith other  m eta-heur ist ics to achieve it s peak perform ance on sol ution qual it y if CPU-
ti m e is not t he m ajor concer n.  For exam ple, t abu sear ch can be used in the Reconst ruct ion step to 
expl ore the neighbour ing sol utions in an aggr essi ve way and avoi d cycl es by declar ing attri butes 
of  vi si ted sol utions as t abu.   I n addi ti on, si m ulated anneal ing could be used as t he accept ance 
cr it eria for t he resul ti ng sol utions after Reconst ruct ion to accept  not onl y im proved sol utions as in 
the cur rent f orm , but also worse ones with a cer tain level  of probabi lit y.  
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