
Li, Jingpeng and Aickelin, Uwe (2003) 'A Bayesian
Optimisation Algorithm for the Nurse Scheduling
Problem'. In: The 2003 Congress for Evolutionary
Computation, 2003, Canberra, Australia.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/631/1/03cec_boa.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

���������	�
���������	��������������������������������	���������

��������	�������������	�������	� !������	�������������	�"� �����#$���%��&'()�&*+$�, ������$���	�����$����������$�����%

Jingpeng Li
������������	
����������

����������������������	�

�������������

�
�������������� �

�

Uwe Aickelin
������������	
����������

����������������������	�

�������������

�!�������������� �

�

�

Abstract- A Bayesian optimization algorithm for the

nurse scheduling problem is presented, which involves

choosing a suitable scheduling rule from a set for each

nurse’s assignment. Unlike our previous work that

used GAs to implement implicit learning, the learning

in the proposed algorithm is explicit, i.e. eventually, we

will be able to identify and mix building blocks

directly. The Bayesian optimization algorithm is

applied to implement such explicit learning by

building a Bayesian network of the joint distribution

of solutions. The conditional probability of each

variable in the network is computed according to an

initial set of promising solutions. Subsequently, each

new instance for each variable is generated by using

the corresponding conditional probabilities, until all

variables have been generated, i.e. in our case, a new

rule string has been obtained. Another set of rule

strings will be generated in this way, some of which

will replace previous strings based on fitness selection.

If stopping conditions are not met, the conditional

probabilities for all nodes in the Bayesian network are

updated again using the current set of promising rule

strings. Computational results from 52 real data

instances demonstrate the success of this approach. It

is also suggested that the learning mechanism in the

proposed approach might be suitable for other

scheduling problems.

1�Introduction

Scheduling problems are generally NP-hard combinatorial

problems, and a lot of research has been done to solve

these problems heuristically (Aickelin and Dowsland,

2002 and 2003; Li and Kwan, 2001a and 2003). However,

most previous approaches are problem-specific and

research into the development of a general scheduling

algorithm is still in its infancy.

Genetic Algorithms (GAs) (Holland 1975; Goldberg

1989), mimicking the natural evolutionary process of the

survival of the fittest, have attracted much attention in

solving difficult scheduling problems in recent years.

Some obstacles exist when using GAs: there is no

canonical mechanism to deal with constraints, which are

commonly met in most real-world scheduling problems,

and small changes to a solution are difficult. To overcome

both difficulties, indirect approaches have been presented

(Aickelin and Dowsland, 2003; Li and Kwan, 2001b and

2003) for nurse and driver scheduling. In these indirect

GAs, the solution space is mapped and then a separate

decoding routine builds solutions to the original problem.

In our previous indirect GAs, learning was implicit

(‘black-box’) and restricted to the efficient adjustment of

weights for a set of rules that are used to construct

schedules. The major limitation of those approaches is

that they learn in a non-human way. Like most existing

construction algorithms, once the best weight combination

is found, the rules used in the construction process are

fixed at each iteration. However, normally a long

sequence of moves is needed to construct a schedule and

using fixed rules at each move is thus unreasonable and

not coherent with the human learning processes.

When a human scheduler works, he normally builds a

schedule systematically following a set of rules. After

much practice, the scheduler gradually masters the

knowledge of which solution parts go well with others. He

can identify good parts and is aware of the solution

quality even if the scheduling process is not completed

yet, thus having the ability to finish a schedule by using

flexible, rather than fixed, rules. In this paper, we design a

more human-like scheduling algorithm, by using a

Bayesian optimization algorithm to implement explicit

learning from past solutions. A nurse scheduling problem

with 52 real data instances gathered from a UK hospital is

used as the test problem.

Nurse scheduling has been widely studied in recent

years, and an extensive summary of the approaches can be

found in Hung (1995) and Sitompul and Randhawa

(1990). This problem is highly constrained, making it

extremely difficult for most local search algorithms to

find feasible solutions, let alone optimal ones. In our

nurse scheduling problem, the number of the nurses is

fixed (up to 30), and the target is to create a weekly

schedule by assigning each nurse one out of up to 411

shift patterns in the most efficient way. The proposed

Bayesian approach achieves this by choosing a suitable

rule, from a rule set containing a number of available

rules, for each nurse. A potential solution is therefore

represented as a rule string, or a sequence of rules

corresponding to nurses from the first one to the last.

As a model of the selected strings, a Bayesian network

(Pearl 1998) is used in the proposed Bayesian

optimization algorithm to solve the nurse scheduling

problem. A Bayesian network is a directed acyclic graph

with each node corresponding to one variable, and each

variable corresponding to the individual rule by which a

schedule will be constructed step by step. The causal

relationship between two variables is represented by a

directed edge between the two corresponding nodes.

The Bayesian optimization algorithm is applied to

learn to identify good partial solutions and to complete

them by building a Bayesian network of the joint

distribution of solutions (Pelikan et al, 1999; Pelikan and

Goldberg, 2000). The conditional probabilities are

computed according to an initial set of promising

solutions. Subsequently, each new instance for each node

is generated by using the corresponding conditional

probabilities, until values for all nodes have been

generated, i.e. a new rule string has been generated.

 Another set of rule strings will be generated in the

same way, some of which will replace previous strings

based on roulette-wheel fitness selection. If stopping

conditions are not met, the conditional probabilities for all

nodes in the Bayesian network are updated again using

the current set of rule strings. The algorithm thereby tries

to explicitly identify and mix promising building blocks.

It should be noted that for most scheduling problems,

the structure of the network model is known and all

variables are fully observed. In this case, the goal of

learning is to find the rule values that maximize the

likelihood of the training data. Thus, learning can amount

to ‘counting’ in the case of multinomial distributions.

The rest of this paper is organized as follows. Section 2

gives an overview on the nurse scheduling problem, and

the following section 3 introduces the general concepts

about graphical models and Bayesian networks. Section 4

discuses the proposed Bayesian optimization algorithm,

describing the construction of a Bayesian network,

learning based on the Bayesian network, and the four

building rules in detail. Computational results using 52

data instances gathered from a UK hospital are presented

in section 5. Concluding remarks are in section 6.

2�The Nurse Scheduling Problem

2.1�General Problem

Our nurse scheduling problem is to create weekly

schedules for wards of nurses by assigning one of a

number of possible shift patterns to each nurse. These

schedules have to satisfy working contracts and meet the

demand for a given number of nurses of different grades

on each shift, while being seen to be fair by the staff

concerned. The latter objective is achieved by meeting as

many of the nurses’ requests as possible and considering

historical information to ensure that unsatisfied requests

and unpopular shifts are evenly distributed.

The problem is complicated by the fact that higher

qualified nurses can substitute less qualified nurses but

not vice versa. Thus scheduling the different grades

independently is not possible. Furthermore, the problem

has a special day-night structure as most of the nurses are

contracted to work either days or nights in one week but

not both. However due to working contracts, the number

of days worked is not usually the same as the number of

nights. Therefore, it becomes important to schedule the

‘correct’ nurses onto days and nights respectively. The

latter two characteristics make this problem challenging

for any local search algorithm, because finding and

maintaining feasible solutions is extremely difficult.

The numbers of days or nights to be worked by each

nurse defines the set of feasible weekly work patterns for

that nurse. These will be referred to as shift patterns or

shift pattern vectors in the following. For each nurse i and

each shift pattern j all the information concerning the

desirability of the pattern for this nurse is captured in a

single numeric preference cost pij. These costs were

determined in close consultation with the hospital and are

a weighted sum of the following factors: basic shift-

pattern cost, general day/night preferences, specific

requests, continuity problems, number of successive

working day, rotating nights/weekends and other working

history information. Patterns that violate mandatory

contractual requirements are marked as infeasible for a

particular nurse and week by giving them a suitably high

pij value.

2.2�Integer Programming

The problem can be formulated as an integer linear

program as follows.

Indices:

i = 1...n nurse index;

j = 1...m shift pattern index;

k = 1...14 day and night index (1...7 are days and 8...14

are nights);

s = 1...p grade index.

Decision variables:

=
�����"#

��������������$�� ����������" ��
���

.

Parameters:

m = Number of shift patterns;

n = Number of nurses;

p = Number of grades;

=
�����"#

%��&�������������
����������������" ��
� ��

;

=
�����"#

�������������%����������������" ��
���

;

pij = Preference cost of nurse i working shift pattern j;
Rks = Demand of nurses with grade s on day/night k;

Ni = Working shifts per week of nurse i if night shifts are

worked;

Di = Working shifts per week of nurse i if day shifts are

worked;

Bi = Working shifts per week of nurse i if both day and

night shifts are worked {for special nurses};

F(i) = Set of feasible shift patterns for nurse i, where F(i)
is defined as

�"���

����������	'��%����"

�����������������"

�������%�������"

()

�*

�

�*

�

+

�

�

���

�	�

�
�

��

�

���

�

�

��

�

�

��

∀

∈∀=

∈∀=

∈∀=

=

∑

∑

∑

=

=

=

 (1)

Target function:

Minimize total preference cost of all nurses, denoted as

	��,
� ()

→∑ ∑
= ∈

�

�

���

���� �� . (2)

Subject to:

1. Every nurse works exactly one feasible shift pattern:

��
���

�� ∀=∑
∈

"�
()

; (3)

2. The demand for nurses is fulfilled for every grade on

every day and night:

∑ ∑
∈ =

∀≥
() �

""
���

�

�

�������� ������ (4)

Constraint set (3) ensures that every nurse works

exactly one shift pattern from his/her feasible set, and

constraint set (4) ensures that the demand for nurses is

covered for every grade on every day and night. Note that

the definition of qis is such that higher graded nurses can

substitute those at lower grades if necessary.

Typical problem dimensions are 30 nurses of three

grades and 400 shift patterns. Thus, the Integer

Programming formulation has about 12000 binary

variables and 100 constraints. This is a moderately sized

problem. However, some problem cases remain unsolved

after overnight computation using professional software.

3�Graphical Models and Bayesian Networks

In this section, we introduce concepts from graphical

models in general and Bayesian networks in particular.

Section 4 will then explain how we applied these concepts

to our nurse scheduling problem.

Graphical models are graphs in which nodes represent

random variables, and the lack of edges represents

conditional independence assumptions (Edwards 2000).

They have important applications in many multivariate

probabilistic systems in fields such as statistics, systems

engineering, information theory and pattern recognition.

In particular, they are playing an increasingly important

role in the design and analysis of machine learning

algorithms.

As described by Jordon (1999), graphical models are a

marriage between probability theory and graph theory.

They provide a natural tool for dealing with uncertainty

and complexity that occur throughout applied

mathematics and engineering. In a graphical model, the

fundamental notion of modularity is used to build a

complex system by combining simpler parts. Probability

theory provides the glue to combine the parts, ensuring

that the whole system is consistent, and providing ways to

interface models to data. The graph theory provides an

intuitively appealing interface by which humans can

model highly interacting sets of variables, and a data

structure that leads itself naturally to the design of

general-purpose algorithms.

There are two main kinds of graphical models:

undirected and directed. Undirected graphical models are

more popular with the physics and vision communities.

Directed graphical model, also called Bayesian networks,

are more popular with the artificial intelligence and

machine learning communities. Bayesian networks are

often used to model multinomial data with both discrete

and continuous variables by encoding the relationship

between the variables contained in the modelled data,

which represents the structure of a problem.

Moreover, Bayesian networks can be used to generate

new instances of the variables with similar properties as

those of given data. Each node in the network corresponds

to one variable, and each variable corresponds to one

position in the strings representing the solutions. The

relationship between two variables is represented by a

directed edge between the two corresponding nodes.

Any complete probabilistic model of a domain must

represent the joint distribution, the probability of every

possible event as defined by the values of all the variables.

The number of such events is exponential. To achieve

compactness, Bayesian networks factor the joint

distribution into local conditional distributions for each

variable given its parents.

Mathematically, an acyclic Bayesian network encodes

a full joint probability distribution by the product

(()-)("���")
�

� ∏
=

=
�

�

��� ��������

, (5)

where xi denotes some values of the variable Xi, pa(Xi)

denotes a set of values for parents of Xi in the network

(the set of nodes from which there exists an individual

edge to Xi), and P(xi | pa(Xi)) denotes the conditional

probability of Xi conditioned on variables pa(Xi). This

distribution can be used to generate new instances using

the marginal and conditional probabilities.

4�A Bayesian Optimization Algorithm for

Nurse Scheduling

This section discusses the proposed Bayesian optimization

algorithm for the nurse scheduling problem, including the

construction of a Bayesian network, learning based on the

Bayesian network and the four building rules used.

4.1�The Construction of a Bayesian Network

In our nurse scheduling problem, the number of the nurse

is fixed (up to 30), and the target is to create a weekly

schedule by assigning each nurse one shift pattern in the

most efficient way. The proposed approach achieves this

by using one suitable rule, from a rule set that contains a

number of available rules, for each nurse’s assignment.

Thus, a potential solution is represented as a rule string, or

a sequence of rules corresponding to nurses from the first

one to the last one individually.

We chose this approach, as the longer-term aim of our

research is to model the explicit learning of a human

scheduler. Human schedulers can provide high quality

solutions, but the task is tedious and often requires a large

amount of time. Typically, they construct schedules based

on rules learnt during scheduling. Due to human

limitations, these rules are typically simple. Hence, our

rules will be relatively simple, too. Nevertheless, human

generated schedules are of high quality due to the ability

of the scheduler to switch between the rules, based on the

state of the current solution. We envisage the Bayesian

optimisation algorithm to perform this role.

Figure 1: A Bayesian network for nurse scheduling

Figure 1 is the Bayesian network constructed for the

nurse scheduling problem, which is a hierarchical and

acyclic directed graph representing the solution structure

of the problem.

The node .("���"/"�0.1"���"/"�0) ���	 �� ∈∈ in the network

denotes that nurse i is assigned using rule j, where m is the

number of nurses to be scheduled and n is the number of

rules to be used in the building process. The directed edge

from node Nij to node Ni+1,j’ denotes a causal relationship

of “Nij causing Ni+1,j’”. In our particular implementation,

an edge denotes a construction unit (or rule sub-string) for

nurse i where the previous rule is j and the current rule is

j’. In this network, a possible solution (a complete rule

string) is represented as a directed path from nurse 1 to

nurse m connecting m nodes.

4.2�Learning based on the Bayesian Network

According to whether the structure (topology) of the

model is known or unknown, and whether all variables are

fully observed or some of them are hidden, there are four

kinds of learning (Heckerman 1998). According to

Heckerman, the learning process for the proposed

approach belongs to the category of “known structure and

full observation,” and the learning goal is to find the

variable values of all nodes Nij that maximize the

likelihood of the training date containing T independent

cases.

In the proposed approach, learning amounts to

counting and hence we use the symbol ‘#’ meaning ‘the

number of’ in the following equations. It calculates the

conditional probabilities of each possible value for each

node given all possible values of its parents. For example,

for node Ni+1,j’ with a parent node Nij, its conditional

probability is

(")2(")2

(")2

()

(")
(-)

"�"�

"�

"�

"�

����	�����	����	����	

����	����	

	�

		�
		�

��������

����

��

����

����

==+==

==
=

=

′+′+

′+

′+

′+
.(6)

Note that nodes N1j have no parents. In this

circumstance, their probabilities are computed as

�

����	

�����	����	

����	
	�

�

��

�

�

()2

()2()2

()2
()

�

��

�

�

=
=

=+=

=
= .(7)

These probability values can be used to generate new

rule strings, or new solutions. Since the first rule in a

solution has no parents, it will be chosen from nodes N1j

according to their probabilities. The next rule will be

chosen from nodes Nij according to their probabilities

conditioned on the previous nodes. This building process

is repeated until the last node has been chosen from nodes

Nmj, where m is number of the nurses. A link from nurse 1

to nurse m is thus created, representing a new possible

solution. Since all the probability values are normalized,

the roulette-wheel method is good strategy for rule

selection.

For clarity, consider the following toy example of

scheduling five nurses with two rules (1: random

allocation, 2: allocate nurse to low-cost shifts). In the

beginning of the search, the probabilities of choosing rule

1 or 2 for each nurse is equal, i.e. 50%. After a few

iterations, due to the selection pressure and reinforcement

learning, we experience two solution pathways: Because

pure low-cost or random allocation produces low quality

solutions, either rule 1 is used for the first 2-3 nurses and

rule 2 on remainder or vice versa. In essence, BOA learns

‘use rule 2 after 2-3x using rule 1’ or vice versa.

4.3�A Bayesian Optimization Algorithm

Based on the estimation of conditional probabilities, this

section introduces a Bayesian optimization algorithm for

the nurse scheduling problem. It uses techniques from the

field of modelling data by Bayesian networks to estimate

the joint distribution of promising solutions. The nodes, or

variables, in the Bayesian network correspond to the

individual rules by which a schedule will be built step by

step.

In the proposed Bayesian optimization algorithm, the

first population of rule strings is generated at random.

From the current population, a set of better rule strings is

. . .

. . .

. . .

. . .

. . .

.

N11 N12 N1,n

N21 N22 N2,n

N31 N32
N3,n

Nm-1,1 Nm-1,2 Nm-1,n

Nm,1 Nm,2
Nm,n

selected. Any selection method biased towards better

fitness can be used, and in this paper, the traditional

roulette-wheel Selection is applied. The conditional

probabilities of each node in the Bayesian network are

computed. New rule strings are generated by using these

conditional probability values, and are added into the old

population, replacing some of the old rule strings. In more

detail, the steps of the Bayesian optimization algorithm

for nurse scheduling are:

1.� Set t = 0, and generate an initial population P(0) at

random;

2.� Use roulette-wheel to select a set of promising

rule strings S(t) from P(t);
3.� Compute the conditional probabilities of each

node according to this set of promising solutions ;

4.� For the assignment of each nurse, the roulette-

wheel method is used to select one rule according

to the conditional probabilities of all available

nodes, thus obtaining a new rule string. A set of

new rule strings O(t) will be generated in this

way;

5.� Create a new population P(t+1) by replacing some

rule strings from P(t) with O(t), and set t = t+1;

6.� If the termination conditions are not met (we use

2000 generations), go to step 2.

4.4�Four Building Rules

Similar to the working pattern of a human scheduler, the

proposed schedule-constructing process uses a set of rules

to build a schedule step by step. As far as the domain

knowledge of nurse scheduling is concerned, the

following four rules are currently investigated.

4.4.1� Random Rule

The first rule, called ‘Random’ rule, is used to select a

nurse’s shift pattern at random. Its purpose is to introduce

randomness into the search thus enlarging the search

space, and most importantly to ensure that the proposed

algorithm has the ability to escape from local optimum.

This rule mirrors much of a scheduler’s creativeness to

come up with different solutions if required.

4.4.2� k-Cheapest Rule

The second rule is the ‘k-Cheapest’ rule. Disregarding the

feasibility of the schedule, it randomly selects a shift

pattern from a k-length list containing patterns with k-

cheapest cost pij, in an effort to reduce the total cost of a

schedule as more as possible.

4.4.3� Cover Rule

Compared with the first two rules, the ‘Cover’ rule and

last 'Contribution’ rule are relatively more complicated.

The third ‘Cover’ rule is designed to consider only the

feasibility of the schedule. It schedules one nurse at a time

in such a way as to cover those days and nights with the

highest number of uncovered shifts.

The ‘Cover’ rule constructs solutions as follows. For

each shift pattern in a nurse’s feasible set, calculate the

total number of uncovered shifts and would be covered if

the nurse worked that shift pattern. For simplicity, this

calculation does not take into account how many nurses

are still required in a particular shift. For instance, assume

that a shift pattern covers Monday to Friday nights.

Further assume that the current requirements for the

nights from Monday to Sunday are as follows: (-3, 0, +1, -

2, -1, -2, 0), where a negative number means undercover

and a positive over cover. The Monday to Friday shift

pattern hence has a cover value of 3, as the most negative

value it covers is -3. In this example, a Tuesday to

Saturday pattern would have a value of 2.

In order to ensure that high-grade nurses are not

‘wasted’ covering unnecessarily for nurses of lower

grades, for nurses of grade s, only the shifts requiring

grade s nurses are counted as long as there is a single

uncovered shift for this grade. If all these are covered,

shifts of the next lower grade are considered and once

these are filled those of the next lower grade. Due to the

nature of this approach, nurses’ preference costs pij are not

taken into account by this rule. However, they will

influence decisions indirectly via the fitness function.

Hence, the ‘Cover’ rule can be summarised as finding

those shift patterns with corresponding largest amount of

undercover.

4.4.4� Contribution Rule

The fourth rule, called ‘Contribution’ rule, is biased

towards solution quality but includes some aspects of

feasibility by computing an overall score for each feasible

pattern for the nurse currently being scheduled.

The ‘Contribution’ rule is designed to take into account

the nurses’ preferences. It therefore works with shift

patterns rather than individual shifts. It also takes into

account some of the covering constraints in which it gives

preference to patterns that cover shifts that have not yet

been allocated sufficient nurses to meet their total

requirements. This is achieved by going through the entire

set of feasible shift patterns for a nurse and assigning each

one a score. The one with the highest (i.e. best) score is

chosen. If there is more than one shift pattern with the

best score, the first such shift pattern is chosen.

The score of a shift pattern is calculated as the

weighted sum of the nurse’s pij value for that particular

shift pattern and its contribution to the cover of all three

grades. The latter is measured as a weighted sum of grade

one, two and three uncovered shifts that would be covered

if the nurse worked this shift pattern, i.e. the reduction in

shortfall. Obviously, nurses can only contribute to

uncovered demand of their own grade or below. More

precisely and using the same notation as before, the score

pij of shift pattern j for nurse i is calculated with the

following parameters:

•� dks = 1 if there are still nurses needed on day k of
grade s otherwise dks = 0;

•� ajk = 1 if shift pattern j covers day k otherwise ajk = 0;

•� ws is the weight of covering an uncovered shift of
grade s;

•� wp is the weight of the nurse’s pij value for the shift
pattern.

Finally, (100−pij) must be used in the score, as higher pij
values are worse and the maximum for pij is 100. Note

that (−wppij) could also have been used, but would have

led to some scores being negative. Thus, the scores are

calculated as follows:

∑ ∑
= =

+−=
3

�

�*

�

()(�##)
� �

������������ �������

 (8)

The ‘Contribution’ rule can be summarised as follows:

•� Cycle through all shift patterns of a nurse;

•� Assign each one a score based on covering uncovered
shifts and preference cost;

•� Choose the shift pattern with the highest score.

4.5�Fitness Function

Independent of the rules used, the fitness of completed

solutions has to be calculated. Unfortunately, feasibility

cannot be guaranteed. This is a problem-specific issue and

cannot be changed. Therefore, we still need a penalty

function approach. Since the chosen encoding

automatically satisfies constraint set (3) of the integer

programming formulation, we can use the following

formula, where wdemand is the penalty weight, to calculate

the fitness of solutions. Note that the penalty is

proportional to the number of uncovered shifts.

	��,#1	�!
�*

� � � �� �

→

−+ ∑∑ ∑∑∑∑

= = = == = �

�

�

�

�

�

�������������

�

�

�

���� �������

.(9)

5�Computational Results

In this section, we present the results of extensive

computer experiments and compare them to results of the

same data instances found previously by other algorithms.

Table 1 lists the full and detailed computational results of

20 runs with different random seeds, where N/A indicates

no feasible solution was found. Figures 2 summarises this

information, Figure 3 shows a single typical run and

finally Figure 4 gives an overall comparison between

various algorithms.

5.1�Details of Algorithms

The results listed in Table 1 are always based on 20 runs

with different random seeds and the last row contains the

mean value of all columns:

•� IP: Optimal or best-known solutions found with IP
software (Dowsland and Thompson, 2000);

•� GA: Best result out of 20 runs from a parallel genetic
algorithm with multiple sub-populations and
intelligent parameter adaptation (Aickelin and
Dowsland, 2000);

•� Rd: Bayesian optimization, but only the random rule
is used, i.e. equivalent to random search;

•� CP: Bayesian optimisation, where all four rules are
used (see 4.4), but no conditional probability are
computed, i.e. every rule has a 25% probability of
being chosen all the time for all nurses;

•� Op: Best result out of 20 runs of standard Bayesian
optimization, i.e. four rules and conditional
probabilities are used as described in section 4.1-4.4;

•� Inf: Number of runs terminating with the best
solution being infeasible;

•� #: Number of runs terminating with the best solution
being optimal or equal to the best known;

•� <3: Number of runs terminating with the best solution
being within three cost units of the optimum. The
value of three units was chosen as it corresponds to
the penalty cost of violating the least important level
of requests in the original formulation. Thus, these
solutions are still acceptable to the hospital.

For all data instances, the Bayesian optimisation

algorithm used a set of fixed parameters as follows:

•� Maximum number of generations = 2000;

•� Penalty weight for each uncovered unit: wdemand =200;

•� For the ‘k-Cheapest’ rule, k = 5;

•� Weight set for the ‘Contribution’ rule: w ={8,2,1,1};

•� Population size = 140;

•� Keep the best 40 solution in each generation;

•� The executing time of the algorithm is approx. 10-20
seconds per run and data instance on a Pentium 4 PC.

N.B.: These fixed parameters are not necessarily the
best for each instance. At this stage, there are based on
our experience and intuition. We have kept them the
same for consistency at this stage. When computing the
mean a censored cost value of 255 has been used when
an algorithm failed to find a feasible solution (N/A).

5.2�Analysis of Results

First, let us discuss the results in Table 1. Comparing the

computational results on various test instances, one can

see that using the random rule alone does not yield a

single feasible solution. This underlines the difficulty of

this problem. In addition, without learning the conditional

probabilities, the results are much weaker, as the CP

column shows. Thus, it is not simply enough to use the

four rules to build solutions. Overall, the Bayesian results

found rival those found by the complex multi-population

GA. For some data instances, the results are much better.

Particular impressive is the fact that in 100% of cases a

feasible solution is found. Note that independent of the

algorithm used, some data instances are harder to solve

than others due to a shortage of nurses in some weeks.

���� ,�� -�� .�� ���
�� ,	�� /� 0��

��� �� �� �&4� /+� �� #� �5� /#�

��� *5� 6#� �&4� �6� 67� #� #� #�
��� 6#� 6#� �&4� 5+� 6#� #� /� 6�

� � �+� �+� �&4� /3� �+� #� /#� /#�

�!� ��� ��� �&4� 6�� ��� #� �� �7�
�"� /� /� �&4� 6�� /� #� �+� �+�

�#� ��� ��� �&4� �#� �*� #� #� 3�

�$� �*� �6� �&4� 7/� �6� #� #� ���
�%� 3� 3� �&4� **� �*� #� #� #�

��� /� *� �&4� �/� /� #� /� �#�

��� /� /� �&4� �/� /� #� /� /#�
��� /� /� �&4� *+� 3� #� #� /�

��� /� /� �&4� �+� 3� #� #� /#�

� � 3� 3� �&4� �#/� *� #� #� +�
�!� 3� 3� �&4� 5� *� #� #� /#�

�"� 3+� 3�� �&4� 66� 3�� #� #� /#�
�#� 5� 5� �&4� �*7� 5� #� *� ���

�$� ��� �5� �&4� +3� �5� #� #� /#�

�%� �� �� �&4� �36� �#� #� #� #�
��� +� �� �&4� 63� +� #� 6� �5�

��� #� #� �&4� �5� �� #� #� /#�

��� /6� /7� �&4� 67� /7� #� #� �6�
��� #� #� �&4� ��5� �� #� #� /#�

� � �� �� �&4� *� �� #� /#� /#�

�!� #� #� �&4� 3� #� #� ��� /#�
�"� *�� *�� �&4� ///� 6/� #� #� ��

�#� /� /� �&4� �6�� /�� #� #� #�
�$� 73� 73� �&4� ��� 76� #� #� 3�

�%� �6� �*�� �&4� 3�� �#5� #� #� #�

��� 36� */� �&4� ��#� 3�� #� #� 3�
��� 7/� �77� �&4� /63� �65� #� #� #�

��� *#� 55� �&4� �#/� *3� #� #� *�

��� �#� �#� �&4� 3#� ��� #� #� ��
� � 3�� *�� �&4� 56� *�� #� #� /�

�!� 36� 36� �&4� ���� *7� #� #� #�

�"� 3/� *�� �&4� �3#� *6� #� #� #�
�#� 6� 6� �&4� /�� +� #� #� +�

�$� �3� �*� �&4� �3#� /6� #� #� #�

�%� 6� 6� �&4� **� �� #� #� 3�
 �� +� �� �&4� 6�� �� #� #� �#�

 �� 6*� 6*� �&4� �+� 66� #� #� �6�

 �� 3�� 3�� �&4� ���� *�� #� #� ��
 �� //� 35� �&4� �7� /3� #� #� �3�

 � �5� �5� �&4� +#� /*� #� #� #�

 !� 3� 3� �&4� 3*� 7� #� #� /�
 "� 3� 3� �&4� �57� +� #� #� #�

 #� 3� *� �&4� ��� 3� #� �3� /#�

 $� *� 7� �&4� 36� 6� #� #� �#�
 %� /+� 3#� �&4� 75� 3#� #� #� /�

!�� �#+� /��� �&4� �7/� �#5� #� #� #�

!�� +*� �&4� �&4� �5+� �+�� #� #� #�
!�� 6�� �&4� �&4� �36� 7+� #� #� #�

���� �&� �1� �2�� 3�� ��� �� �� (�

Table 1: Comparison of results over 52 instances.

Figures 2 and 3 show the results graphically. The bars

above the y-axis represent solution quality. The black bars

show the number of optimal, the grey near-optimal

(within three units) solutions. The bars below the y-axis

represent the number of times the algorithm failed to find

a feasible solution. Hence, the shorter the bar is below the

y-axis and the longer above, the better the algorithm’s

performance. Note that ‘empty’ bars mean that feasible,

but not optimal solutions were found.

�������
�

8/#

8�#

#

�#

/#

����������'� ����9
��	�� ����$������3

Figure 2: The Bayesian optimisation algorithm.

Figure 2 shows that for the Bayesian algorithm 38 out

of 52 data sets are solved to or near to optimality.

Additionally, feasible solutions are always found for all

data sets and hence nothing is plotted below the x-axis.

For the GA in figure 3 the results are similar: 42 data

sets are solved well, however many solutions are

infeasible and for two instances not a single feasible

solution had been identified. Both algorithms have

difficulties solving the later data sets (nurse shortages),

but BOA less so than the GA.

������!��4����)���������	�-�

8/#

8�#

#

�#

/#

����������'� ����9
��	�� ����$������3

Figure 3: The Genetic Algorithm.

The behaviour of an individual run of the Bayesian

algorithm is as expected. Figure 4 depicts the

improvement of the schedule for the 04 data instance. At

the generation of 57, the optimal solution cost 17 has been

achieved. Although the actual values may differ among

various instances, the characteristic shapes of the curves

are similar for all seeds and data instances.

��

��

��

��

��

��

	�

� �� �� �� �� �� �� 	�
�

��������

����

Figure 4: Sample run of the Bayesian algorithm.

Finally, Figure 5 compares performance of different

GAs (Aickelin and Dowsland, 2000 and 2003) with the

(Basic) Bayesian optimization algorithm presented here.

The results are encouraging: with a fraction of the

development time and simpler algorithm, the complex

genetic algorithms are outperformed in terms of

feasibility, best and average results.

Only the Hill-climbing GA, which includes an

additional local search, has a better ‘best case’

performance. We believe that once this feature is added

into the Bayesian optimization algorithm, we will see the

best possible results. Our plan is to implement a post-

processor that is similar to a human scheduler who

‘improves’ a finished schedule.

#

�#

/#

3#

*#

6#

7#

+#

�#

5#

�##

�����

�4

4%�
�

�4

:����
�

�4

;������	'

�4

�����

�94

9
��	��

<=

5�������
���������	���������

6
��
��
�
��
��
�
�2
��
�
��
��
�
	
��
�
��
��

6���������� �!����� ����

Figure 5: Summary results of various algorithms.

6�Conclusions

A new scheduling algorithm based on Bayesian networks

is presented in this paper. The approach is novel because

it is the first time that Bayesian networks have been

applied to the field of personnel scheduling. An effective

method is proposed to solve the problem about how to

implement explicit learning from past solutions. Unlike

most existing approaches, the new approach has the

ability to build schedules by using flexible, rather than

fixed rules. Experimental results from real-world nurse

scheduling problems have demonstrated the strength of

the proposed Bayesian optimization algorithm.

The proposed approach mimics human behaviour

much more strongly than a standard GA based scheduling

system. Although we have presented this work in terms of

nurse scheduling, it is suggested that the main idea of the

approach could be applied to many other scheduling

problems where the schedules will be built systematically

according to specific rules.

It is also hoped that this research will give some

preliminary answers about how to include human-like

learning into scheduling algorithms and may therefore be

of interest to practitioners and researchers in areas of

scheduling and evolutionary computation. In future, we

will try to extract the ‘explicit’ part of the learning process

further, e.g. by keeping partial solutions and learnt rules

from one data instances to the next.

Acknowledgements

The work was funded by the UK Government’s major

funding agency, Engineering and Physical Sciences

Research Council (EPSRC), under grand GR/R92899/01.

References

4�� ���"� ��� ��%� >�$����%"� ���)/###(� ?@!
�������� =��'�	�

��������� ��� �� ������ 4�������	� 4

������ ��� �� �����

A��������=��'�	"?�B�������������%������3)3(C��358�63��

4�� ���"� ��� ��%� >�$����%"� ���)/##/(� ?@�����%� >����� ��%�

<�%����� ������ 4�������	� 4

������� ���� �� :���� D������

��%� E����� �������� =��'�	"?� B������� ��� ;��������� �)6(C�

6#386�*��

4�� ���"� ��� ��%� >�$����%"� ���)/##3(� F4�� <�%����� ������

4�������	� ���� �� ����� ���%������ =��'�	"G���	
�����H�

9
��������A������)���
����(��

>�$����%"���4����%�E��	
���"�B�:��)/###(�F��������%������

$���� ���
��� �"� ��$�� �� ��%� E�'�� �����"G� B������� ���

9
���������A������������C��/68�33��

@%$��%�"�>��)/###(�?<����%�������������
������:�%�����"?�)/�%�

@%�(��
�����8I������

���%'��"� >�@��)�5�5(� F������ 4�������	�� ��� �����"�

9
��	�J��������%�:������D�����"G�4%%����8K�����

;� �	��"�>��)�55�(� F4�E�������� ���D�������$������������

��$�� �"G� <�� B��%��"� :��)@%�("� D������� ��� ���
������

:�%��"�:<E�=�����

;�����%"� B�;��)�5+6(� F4%�
������� ��� �������� ��%� 4����������

����	�C� ��� <����%������� 4�������� $���� 4

���������� ���

�������"� �������"� ��%�4���������� <��������"G����������� ���

:��������=�����

;���"�A��)�556(�F;��
�������������%�����"G�B���������������

4%	�������������C�/�8/3��

B��%��"�:�<��)@%�(�)�555(�FD�������������
������:�%��"G�:<E�

=�����

D�"�B����%��$��"�A������)/##��(�?4�L�JJ����	����%�@���������

4�������	� ���� ��� >����� ���%������ =��'�	"?� ���

=���%����� ��� �������� ��� @������������ ��	
��������

)�@�/##�("�

�����68��//"�<@@@�=�����

D�"� B�� ��%� �$��"� A������)/##�'(� F4� L�JJ�� E����� ���%�

@������������ 4

������ ���� >����� ���%�����"G� ��� �
����"�

D��������)@%��("�=���%�������������������%�@������������

��	
�������� ��������)�@��9/##�("�

�� ��6/8��6�"�

:����������	����=�'��������

D�"�B����%��$��"�A������)/##3(�F4�L�JJ��������4�������	�����

>����� ���%�����"G� @���
��� B������� ��� 9
���������

A�������*+)/(C�33*83**��

=���"�B��)�5��(�F=��'�'��������A�����������<�������������	�C�

��$�� �����=�����'��<�����"G�:����������	�����

=�� ��"�:����%����%'��"�>��)/###(�FA��������������������

9
��	�J������ 4�������	�"G� <����4D� A
���� ��� /###�#"�

�������������<���������

=�� ��"�:�"����%'��"�>����%������8=�J"�@��)�555(�F�94C�E��

�������� 9
��	�J������ 4�������	"G� <����4D� A
���� ���

55##3"��������������<���������

����	
��"� >�� ��%� A��%��$�"� ���)�55#(� F����� ���%������

:�%��C�4�����8��8��8����A��$"G�B�����������������������

;���������	�/C�7/87+��

