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Abstract- A Bayesian optimization algorithm for the 

nurse scheduling problem is presented, which involves 

choosing a suitable scheduling rule from a set for each 

nurse’s assignment. Unlike our previous work that 

used GAs to implement implicit learning, the learning 

in the proposed algorithm is explicit, i.e. eventually, we 

will be able to identify and mix building blocks 

directly. The Bayesian optimization algorithm is 

applied to implement such explicit learning by 

building a Bayesian network of the joint distribution 

of solutions. The conditional probability of each 

variable in the network is computed according to an 

initial set of promising solutions. Subsequently, each 

new instance for each variable is generated by using 

the corresponding conditional probabilities, until all 

variables have been generated, i.e. in our case, a new 

rule string has been obtained. Another set of rule 

strings will be generated in this way, some of which 

will replace previous strings based on fitness selection. 

If stopping conditions are not met, the conditional 

probabilities for all nodes in the Bayesian network are 

updated again using the current set of promising rule 

strings. Computational results from 52 real data 

instances demonstrate the success of this approach. It 

is also suggested that the learning mechanism in the 

proposed approach might be suitable for other 

scheduling problems. 

1�Introduction 

Scheduling problems are generally NP-hard combinatorial 

problems, and a lot of research has been done to solve 

these problems heuristically (Aickelin and Dowsland, 

2002 and 2003; Li and Kwan, 2001a and 2003). However, 

most previous approaches are problem-specific and 

research into the development of a general scheduling 

algorithm is still in its infancy. 

Genetic Algorithms (GAs) (Holland 1975; Goldberg 

1989), mimicking the natural evolutionary process of the 

survival of the fittest, have attracted much attention in 

solving difficult scheduling problems in recent years. 

Some obstacles exist when using GAs: there is no 

canonical mechanism to deal with constraints, which are 

commonly met in most real-world scheduling problems, 

and small changes to a solution are difficult. To overcome 

both difficulties, indirect approaches have been presented 

(Aickelin and Dowsland, 2003; Li and Kwan, 2001b and 

2003) for nurse and driver scheduling. In these indirect 

GAs, the solution space is mapped and then a separate 

decoding routine builds solutions to the original problem. 

In our previous indirect GAs, learning was implicit 

(‘black-box’) and restricted to the efficient adjustment of 

weights for a set of rules that are used to construct 

schedules. The major limitation of those approaches is 

that they learn in a non-human way. Like most existing 

construction algorithms, once the best weight combination 

is found, the rules used in the construction process are 

fixed at each iteration. However, normally a long 

sequence of moves is needed to construct a schedule and 

using fixed rules at each move is thus unreasonable and 

not coherent with the human learning processes. 

When a human scheduler works, he normally builds a 

schedule systematically following a set of rules. After 

much practice, the scheduler gradually masters the 

knowledge of which solution parts go well with others. He 

can identify good parts and is aware of the solution 

quality even if the scheduling process is not completed 

yet, thus having the ability to finish a schedule by using 

flexible, rather than fixed, rules. In this paper, we design a 

more human-like scheduling algorithm, by using a 

Bayesian optimization algorithm to implement explicit 

learning from past solutions. A nurse scheduling problem 

with 52 real data instances gathered from a UK hospital is 

used as the test problem. 

Nurse scheduling has been widely studied in recent 

years, and an extensive summary of the approaches can be 

found in Hung (1995) and Sitompul and Randhawa 

(1990). This problem is highly constrained, making it 

extremely difficult for most local search algorithms to 

find feasible solutions, let alone optimal ones. In our 

nurse scheduling problem, the number of the nurses is 

fixed (up to 30), and the target is to create a weekly 

schedule by assigning each nurse one out of up to 411 

shift patterns in the most efficient way. The proposed 

Bayesian approach achieves this by choosing a suitable 

rule, from a rule set containing a number of available 

rules, for each nurse. A potential solution is therefore 

represented as a rule string, or a sequence of rules 

corresponding to nurses from the first one to the last. 

As a model of the selected strings, a Bayesian network 

(Pearl 1998) is used in the proposed Bayesian 

optimization algorithm to solve the nurse scheduling 

problem. A Bayesian network is a directed acyclic graph 



with each node corresponding to one variable, and each 

variable corresponding to the individual rule by which a 

schedule will be constructed step by step. The causal 

relationship between two variables is represented by a 

directed edge between the two corresponding nodes. 

The Bayesian optimization algorithm is applied to 

learn to identify good partial solutions and to complete 

them by building a Bayesian network of the joint 

distribution of solutions (Pelikan et al, 1999; Pelikan and 

Goldberg, 2000). The conditional probabilities are 

computed according to an initial set of promising 

solutions. Subsequently, each new instance for each node 

is generated by using the corresponding conditional 

probabilities, until values for all nodes have been 

generated, i.e. a new rule string has been generated. 

 Another set of rule strings will be generated in the 

same way, some of which will replace previous strings 

based on roulette-wheel fitness selection. If stopping 

conditions are not met, the conditional probabilities for all 

nodes in the Bayesian network are updated again using 

the current set of rule strings. The algorithm thereby tries 

to explicitly identify and mix promising building blocks. 

It should be noted that for most scheduling problems, 

the structure of the network model is known and all 

variables are fully observed. In this case, the goal of 

learning is to find the rule values that maximize the 

likelihood of the training data. Thus, learning can amount 

to ‘counting’ in the case of multinomial distributions. 

The rest of this paper is organized as follows. Section 2 

gives an overview on the nurse scheduling problem, and 

the following section 3 introduces the general concepts 

about graphical models and Bayesian networks. Section 4 

discuses the proposed Bayesian optimization algorithm, 

describing the construction of a Bayesian network, 

learning based on the Bayesian network, and the four 

building rules in detail. Computational results using 52 

data instances gathered from a UK hospital are presented 

in section 5. Concluding remarks are in section 6. 

2�The Nurse Scheduling Problem 

2.1�General Problem 

Our nurse scheduling problem is to create weekly 

schedules for wards of nurses by assigning one of a 

number of possible shift patterns to each nurse. These 

schedules have to satisfy working contracts and meet the 

demand for a given number of nurses of different grades 

on each shift, while being seen to be fair by the staff 

concerned. The latter objective is achieved by meeting as 

many of the nurses’ requests as possible and considering 

historical information to ensure that unsatisfied requests 

and unpopular shifts are evenly distributed. 

The problem is complicated by the fact that higher 

qualified nurses can substitute less qualified nurses but 

not vice versa. Thus scheduling the different grades 

independently is not possible. Furthermore, the problem 

has a special day-night structure as most of the nurses are 

contracted to work either days or nights in one week but 

not both. However due to working contracts, the number 

of days worked is not usually the same as the number of 

nights. Therefore, it becomes important to schedule the 

‘correct’ nurses onto days and nights respectively. The 

latter two characteristics make this problem challenging 

for any local search algorithm, because finding and 

maintaining feasible solutions is extremely difficult. 

The numbers of days or nights to be worked by each 

nurse defines the set of feasible weekly work patterns for 

that nurse. These will be referred to as shift patterns or 

shift pattern vectors in the following. For each nurse i and 

each shift pattern j all the information concerning the 

desirability of the pattern for this nurse is captured in a 

single numeric preference cost pij. These costs were 

determined in close consultation with the hospital and are 

a weighted sum of the following factors: basic shift-

pattern cost, general day/night preferences, specific 

requests, continuity problems, number of successive 

working day, rotating nights/weekends and other working 

history information. Patterns that violate mandatory 

contractual requirements are marked as infeasible for a 

particular nurse and week by giving them a suitably high 

pij value. 

2.2�Integer Programming 

The problem can be formulated as an integer linear 

program as follows. 

 

Indices: 

i = 1...n nurse index; 

j = 1...m shift pattern index; 

k = 1...14 day and night index (1...7 are days and 8...14 

are nights); 

s = 1...p grade index. 

 

Decision variables: 
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Parameters: 

m = Number of shift patterns; 

n = Number of nurses; 

p = Number of grades; 
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pij = Preference cost of nurse i working shift pattern j; 
Rks = Demand of nurses with grade s on day/night k; 

Ni = Working shifts per week of nurse i if night shifts are 

worked; 

Di = Working shifts per week of nurse i if day shifts are 

worked; 

Bi = Working shifts per week of nurse i if both day and 

night shifts are worked {for special nurses}; 

F(i) = Set of feasible shift patterns for nurse i, where F(i) 
is defined as 
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Target function: 

Minimize total preference cost of all nurses, denoted as 
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Subject to: 

1. Every nurse works exactly one feasible shift pattern: 
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2. The demand for nurses is fulfilled for every grade on 

every day and night: 
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Constraint set (3) ensures that every nurse works 

exactly one shift pattern from his/her feasible set, and 

constraint set (4) ensures that the demand for nurses is 

covered for every grade on every day and night. Note that 

the definition of qis is such that higher graded nurses can 

substitute those at lower grades if necessary. 

Typical problem dimensions are 30 nurses of three 

grades and 400 shift patterns. Thus, the Integer 

Programming formulation has about 12000 binary 

variables and 100 constraints. This is a moderately sized 

problem. However, some problem cases remain unsolved 

after overnight computation using professional software. 

3�Graphical Models and Bayesian Networks 

In this section, we introduce concepts from graphical 

models in general and Bayesian networks in particular. 

Section 4 will then explain how we applied these concepts 

to our nurse scheduling problem. 

Graphical models are graphs in which nodes represent 

random variables, and the lack of edges represents 

conditional independence assumptions (Edwards 2000). 

They have important applications in many multivariate 

probabilistic systems in fields such as statistics, systems 

engineering, information theory and pattern recognition. 

In particular, they are playing an increasingly important 

role in the design and analysis of machine learning 

algorithms. 

As described by Jordon (1999), graphical models are a 

marriage between probability theory and graph theory. 

They provide a natural tool for dealing with uncertainty 

and complexity that occur throughout applied 

mathematics and engineering. In a graphical model, the 

fundamental notion of modularity is used to build a 

complex system by combining simpler parts. Probability 

theory provides the glue to combine the parts, ensuring 

that the whole system is consistent, and providing ways to 

interface models to data. The graph theory provides an 

intuitively appealing interface by which humans can 

model highly interacting sets of variables, and a data 

structure that leads itself naturally to the design of 

general-purpose algorithms. 

There are two main kinds of graphical models: 

undirected and directed. Undirected graphical models are 

more popular with the physics and vision communities. 

Directed graphical model, also called Bayesian networks, 

are more popular with the artificial intelligence and 

machine learning communities. Bayesian networks are 

often used to model multinomial data with both discrete 

and continuous variables by encoding the relationship 

between the variables contained in the modelled data, 

which represents the structure of a problem. 

Moreover, Bayesian networks can be used to generate 

new instances of the variables with similar properties as 

those of given data. Each node in the network corresponds 

to one variable, and each variable corresponds to one 

position in the strings representing the solutions. The 

relationship between two variables is represented by a 

directed edge between the two corresponding nodes. 

Any complete probabilistic model of a domain must 

represent the joint distribution, the probability of every 

possible event as defined by the values of all the variables. 

The number of such events is exponential. To achieve 

compactness, Bayesian networks factor the joint 

distribution into local conditional distributions for each 

variable given its parents. 

Mathematically, an acyclic Bayesian network encodes 

a full joint probability distribution by the product 
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where xi denotes some values of the variable Xi, pa(Xi) 

denotes a set of values for parents of Xi in the network 

(the set of nodes from which there exists an individual 

edge to Xi), and P(xi | pa(Xi)) denotes the conditional 

probability of Xi conditioned on variables pa(Xi). This 

distribution can be used to generate new instances using 

the marginal and conditional probabilities. 

4�A Bayesian Optimization Algorithm for 

Nurse Scheduling 

This section discusses the proposed Bayesian optimization 

algorithm for the nurse scheduling problem, including the 

construction of a Bayesian network, learning based on the 

Bayesian network and the four building rules used. 

4.1�The Construction of a Bayesian Network 

In our nurse scheduling problem, the number of the nurse 

is fixed (up to 30), and the target is to create a weekly 

schedule by assigning each nurse one shift pattern in the 

most efficient way. The proposed approach achieves this 

by using one suitable rule, from a rule set that contains a 

number of available rules, for each nurse’s assignment. 

Thus, a potential solution is represented as a rule string, or 



a sequence of rules corresponding to nurses from the first 

one to the last one individually. 

We chose this approach, as the longer-term aim of our 

research is to model the explicit learning of a human 

scheduler. Human schedulers can provide high quality 

solutions, but the task is tedious and often requires a large 

amount of time. Typically, they construct schedules based 

on rules learnt during scheduling. Due to human 

limitations, these rules are typically simple. Hence, our 

rules will be relatively simple, too. Nevertheless, human 

generated schedules are of high quality due to the ability 

of the scheduler to switch between the rules, based on the 

state of the current solution. We envisage the Bayesian 

optimisation algorithm to perform this role. 

 

 
Figure 1: A Bayesian network for nurse scheduling 

 

Figure 1 is the Bayesian network constructed for the 

nurse scheduling problem, which is a hierarchical and 

acyclic directed graph representing the solution structure 

of the problem. 

The node .("���"/"�0.1"���"/"�0) ���	 �� ∈∈  in the network 

denotes that nurse i is assigned using rule j, where m is the 

number of nurses to be scheduled and n is the number of 

rules to be used in the building process. The directed edge 

from node Nij to node Ni+1,j’ denotes a causal relationship 

of “Nij causing Ni+1,j’”. In our particular implementation, 

an edge denotes a construction unit (or rule sub-string) for 

nurse i where the previous rule is j and the current rule is 

j’. In this network, a possible solution (a complete rule 

string) is represented as a directed path from nurse 1 to 

nurse m connecting m nodes. 

4.2�Learning based on the Bayesian Network 

According to whether the structure (topology) of the 

model is known or unknown, and whether all variables are 

fully observed or some of them are hidden, there are four 

kinds of learning (Heckerman 1998). According to 

Heckerman, the learning process for the proposed 

approach belongs to the category of “known structure and 

full observation,” and the learning goal is to find the 

variable values of all nodes Nij that maximize the 

likelihood of the training date containing T independent 

cases. 

In the proposed approach, learning amounts to 

counting and hence we use the symbol ‘#’ meaning ‘the 

number of’ in the following equations. It calculates the 

conditional probabilities of each possible value for each 

node given all possible values of its parents. For example, 

for node Ni+1,j’ with a parent node Nij, its conditional 

probability is 
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Note that nodes N1j have no parents. In this 

circumstance, their probabilities are computed as 

�

����	

�����	����	

����	
	�

�

��

�

�

()2

()2()2

()2
()

�

��

�

�

=
=

=+=

=
= .(7) 

 

These probability values can be used to generate new 

rule strings, or new solutions. Since the first rule in a 

solution has no parents, it will be chosen from nodes N1j 

according to their probabilities. The next rule will be 

chosen from nodes Nij according to their probabilities 

conditioned on the previous nodes. This building process 

is repeated until the last node has been chosen from nodes 

Nmj, where m is number of the nurses. A link from nurse 1 

to nurse m is thus created, representing a new possible 

solution. Since all the probability values are normalized, 

the roulette-wheel method is good strategy for rule 

selection. 

For clarity, consider the following toy example of 

scheduling five nurses with two rules (1: random 

allocation, 2: allocate nurse to low-cost shifts). In the 

beginning of the search, the probabilities of choosing rule 

1 or 2 for each nurse is equal, i.e. 50%. After a few 

iterations, due to the selection pressure and reinforcement 

learning, we experience two solution pathways: Because 

pure low-cost or random allocation produces low quality 

solutions, either rule 1 is used for the first 2-3 nurses and 

rule 2 on remainder or vice versa. In essence, BOA learns 

‘use rule 2 after 2-3x using rule 1’ or vice versa. 

4.3�A Bayesian Optimization Algorithm 

Based on the estimation of conditional probabilities, this 

section introduces a Bayesian optimization algorithm for 

the nurse scheduling problem. It uses techniques from the 

field of modelling data by Bayesian networks to estimate 

the joint distribution of promising solutions. The nodes, or 

variables, in the Bayesian network correspond to the 

individual rules by which a schedule will be built step by 

step. 

In the proposed Bayesian optimization algorithm, the 

first population of rule strings is generated at random. 

From the current population, a set of better rule strings is 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . . . . . . . . . . 

N11 N12 N1,n 

N21 N22 N2,n 

N31 N32 
N3,n 

Nm-1,1 Nm-1,2 Nm-1,n 

Nm,1 Nm,2 
Nm,n 



selected. Any selection method biased towards better 

fitness can be used, and in this paper, the traditional 

roulette-wheel Selection is applied. The conditional 

probabilities of each node in the Bayesian network are 

computed. New rule strings are generated by using these 

conditional probability values, and are added into the old 

population, replacing some of the old rule strings. In more 

detail, the steps of the Bayesian optimization algorithm 

for nurse scheduling are: 

1.� Set t = 0, and generate an initial population P(0) at 

random; 

2.� Use roulette-wheel to select a set of promising 

rule strings S(t) from P(t); 
3.� Compute the conditional probabilities of each 

node according to this set of promising solutions ; 

4.� For the assignment of each nurse, the roulette-

wheel method is used to select one rule according 

to the conditional probabilities of all available 

nodes, thus obtaining a new rule string. A set of 

new rule strings O(t) will be generated in this 

way; 

5.� Create a new population P(t+1) by replacing some 

rule strings from P(t) with O(t), and set t = t+1; 

6.� If the termination conditions are not met (we use 

2000 generations), go to step 2. 

4.4�Four Building Rules 

Similar to the working pattern of a human scheduler, the 

proposed schedule-constructing process uses a set of rules 

to build a schedule step by step. As far as the domain 

knowledge of nurse scheduling is concerned, the 

following four rules are currently investigated. 

 

4.4.1� Random Rule 

The first rule, called ‘Random’ rule, is used to select a 

nurse’s shift pattern at random. Its purpose is to introduce 

randomness into the search thus enlarging the search 

space, and most importantly to ensure that the proposed 

algorithm has the ability to escape from local optimum. 

This rule mirrors much of a scheduler’s creativeness to 

come up with different solutions if required. 

4.4.2� k-Cheapest Rule 

The second rule is the ‘k-Cheapest’ rule. Disregarding the 

feasibility of the schedule, it randomly selects a shift 

pattern from a k-length list containing patterns with k-

cheapest cost pij, in an effort to reduce the total cost of a 

schedule as more as possible. 

4.4.3� Cover Rule 

Compared with the first two rules, the ‘Cover’ rule and 

last 'Contribution’ rule are relatively more complicated. 

The third ‘Cover’ rule is designed to consider only the 

feasibility of the schedule. It schedules one nurse at a time 

in such a way as to cover those days and nights with the 

highest number of uncovered shifts. 

The ‘Cover’ rule constructs solutions as follows. For 

each shift pattern in a nurse’s feasible set, calculate the 

total number of uncovered shifts and would be covered if 

the nurse worked that shift pattern. For simplicity, this 

calculation does not take into account how many nurses 

are still required in a particular shift. For instance, assume 

that a shift pattern covers Monday to Friday nights. 

Further assume that the current requirements for the 

nights from Monday to Sunday are as follows: (-3, 0, +1, -

2, -1, -2, 0), where a negative number means undercover 

and a positive over cover. The Monday to Friday shift 

pattern hence has a cover value of 3, as the most negative 

value it covers is -3. In this example, a Tuesday to 

Saturday pattern would have a value of 2. 

In order to ensure that high-grade nurses are not 

‘wasted’ covering unnecessarily for nurses of lower 

grades, for nurses of grade s, only the shifts requiring 

grade s nurses are counted as long as there is a single 

uncovered shift for this grade. If all these are covered, 

shifts of the next lower grade are considered and once 

these are filled those of the next lower grade. Due to the 

nature of this approach, nurses’ preference costs pij are not 

taken into account by this rule. However, they will 

influence decisions indirectly via the fitness function. 

Hence, the ‘Cover’ rule can be summarised as finding 

those shift patterns with corresponding largest amount of 

undercover. 

4.4.4� Contribution Rule 

The fourth rule, called ‘Contribution’ rule, is biased 

towards solution quality but includes some aspects of 

feasibility by computing an overall score for each feasible 

pattern for the nurse currently being scheduled. 

The ‘Contribution’ rule is designed to take into account 

the nurses’ preferences. It therefore works with shift 

patterns rather than individual shifts. It also takes into 

account some of the covering constraints in which it gives 

preference to patterns that cover shifts that have not yet 

been allocated sufficient nurses to meet their total 

requirements. This is achieved by going through the entire 

set of feasible shift patterns for a nurse and assigning each 

one a score. The one with the highest (i.e. best) score is 

chosen. If there is more than one shift pattern with the 

best score, the first such shift pattern is chosen. 

The score of a shift pattern is calculated as the 

weighted sum of the nurse’s pij value for that particular 

shift pattern and its contribution to the cover of all three 

grades. The latter is measured as a weighted sum of grade 

one, two and three uncovered shifts that would be covered 

if the nurse worked this shift pattern, i.e. the reduction in 

shortfall. Obviously, nurses can only contribute to 

uncovered demand of their own grade or below. More 

precisely and using the same notation as before, the score 

pij of shift pattern j for nurse i is calculated with the 

following parameters: 

•� dks = 1 if there are still nurses needed on day k of 
grade s otherwise dks = 0; 

•� ajk = 1 if shift pattern j covers day k otherwise ajk = 0; 

•� ws is the weight of covering an uncovered shift of 
grade s; 

•� wp is the weight of the nurse’s pij value for the shift 
pattern. 

Finally, (100−pij) must be used in the score, as higher pij 
values are worse and the maximum for pij is 100. Note 

that (−wppij) could also have been used, but would have 

led to some scores being negative. Thus, the scores are 

calculated as follows: 
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The ‘Contribution’ rule can be summarised as follows: 

•� Cycle through all shift patterns of a nurse; 

•� Assign each one a score based on covering uncovered 
shifts and preference cost; 

•� Choose the shift pattern with the highest score. 

4.5�Fitness Function 

Independent of the rules used, the fitness of completed 

solutions has to be calculated. Unfortunately, feasibility 

cannot be guaranteed. This is a problem-specific issue and 

cannot be changed. Therefore, we still need a penalty 

function approach. Since the chosen encoding 

automatically satisfies constraint set (3) of the integer 

programming formulation, we can use the following 

formula, where wdemand is the penalty weight, to calculate 

the fitness of solutions. Note that the penalty is 

proportional to the number of uncovered shifts. 
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5�Computational Results 

In this section, we present the results of extensive 

computer experiments and compare them to results of the 

same data instances found previously by other algorithms. 

Table 1 lists the full and detailed computational results of 

20 runs with different random seeds, where N/A indicates 

no feasible solution was found. Figures 2 summarises this 

information, Figure 3 shows a single typical run and 

finally Figure 4 gives an overall comparison between 

various algorithms. 

5.1�Details of Algorithms 

The results listed in Table 1 are always based on 20 runs 

with different random seeds and the last row contains the 

mean value of all columns: 

•� IP: Optimal or best-known solutions found with IP 
software (Dowsland and Thompson, 2000); 

•� GA: Best result out of 20 runs from a parallel genetic 
algorithm with multiple sub-populations and 
intelligent parameter adaptation (Aickelin and 
Dowsland, 2000); 

•� Rd: Bayesian optimization, but only the random rule 
is used, i.e. equivalent to random search; 

•� CP: Bayesian optimisation, where all four rules are 
used (see 4.4), but no conditional probability are 
computed, i.e. every rule has a 25% probability of 
being chosen all the time for all nurses; 

•� Op: Best result out of 20 runs of standard Bayesian 
optimization, i.e. four rules and conditional 
probabilities are used as described in section 4.1-4.4; 

•� Inf: Number of runs terminating with the best 
solution being infeasible; 

•� #: Number of runs terminating with the best solution 
being optimal or equal to the best known; 

•� <3: Number of runs terminating with the best solution 
being within three cost units of the optimum. The 
value of three units was chosen as it corresponds to 
the penalty cost of violating the least important level 
of requests in the original formulation. Thus, these 
solutions are still acceptable to the hospital. 

For all data instances, the Bayesian optimisation 

algorithm used a set of fixed parameters as follows: 

•� Maximum number of generations = 2000; 

•� Penalty weight for each uncovered unit: wdemand =200; 

•� For the ‘k-Cheapest’ rule, k = 5; 

•� Weight set for the ‘Contribution’ rule: w ={8,2,1,1}; 

•� Population size = 140; 

•� Keep the best 40 solution in each generation; 

•� The executing time of the algorithm is approx. 10-20 
seconds per run and data instance on a Pentium 4 PC. 

N.B.: These fixed parameters are not necessarily the 
best for each instance. At this stage, there are based on 
our experience and intuition. We have kept them the 
same for consistency at this stage. When computing the 
mean a censored cost value of 255 has been used when 
an algorithm failed to find a feasible solution (N/A). 

5.2�Analysis of Results 

First, let us discuss the results in Table 1. Comparing the 

computational results on various test instances, one can 

see that using the random rule alone does not yield a 

single feasible solution. This underlines the difficulty of 

this problem. In addition, without learning the conditional 

probabilities, the results are much weaker, as the CP 

column shows. Thus, it is not simply enough to use the 

four rules to build solutions. Overall, the Bayesian results 

found rival those found by the complex multi-population 

GA. For some data instances, the results are much better. 

Particular impressive is the fact that in 100% of cases a 

feasible solution is found. Note that independent of the 

algorithm used, some data instances are harder to solve 

than others due to a shortage of nurses in some weeks. 
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Table 1: Comparison of results over 52 instances. 

 

Figures 2 and 3 show the results graphically. The bars 

above the y-axis represent solution quality. The black bars 

show the number of optimal, the grey near-optimal 

(within three units) solutions. The bars below the y-axis 

represent the number of times the algorithm failed to find 

a feasible solution. Hence, the shorter the bar is below the 

y-axis and the longer above, the better the algorithm’s 

performance. Note that ‘empty’ bars mean that feasible, 

but not optimal solutions were found. 

�������
�

8/#

8�#

#

�#

/#

����������'� ����9
��	�� ����$������3
 

Figure 2: The Bayesian optimisation algorithm. 

Figure 2 shows that for the Bayesian algorithm 38 out 

of 52 data sets are solved to or near to optimality. 

Additionally, feasible solutions are always found for all 

data sets and hence nothing is plotted below the x-axis. 

For the GA in figure 3 the results are similar: 42 data 

sets are solved well, however many solutions are 

infeasible and for two instances not a single feasible 

solution had been identified. Both algorithms have 

difficulties solving the later data sets (nurse shortages), 

but BOA less so than the GA. 
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Figure 3: The Genetic Algorithm. 

The behaviour of an individual run of the Bayesian 

algorithm is as expected. Figure 4 depicts the 

improvement of the schedule for the 04 data instance. At 

the generation of 57, the optimal solution cost 17 has been 

achieved. Although the actual values may differ among 

various instances, the characteristic shapes of the curves 

are similar for all seeds and data instances. 
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Figure 4: Sample run of the Bayesian algorithm. 

Finally, Figure 5 compares performance of different 

GAs (Aickelin and Dowsland, 2000 and 2003) with the 

(Basic) Bayesian optimization algorithm presented here. 

The results are encouraging: with a fraction of the 

development time and simpler algorithm, the complex 

genetic algorithms are outperformed in terms of 

feasibility, best and average results. 

Only the Hill-climbing GA, which includes an 

additional local search, has a better ‘best case’ 

performance. We believe that once this feature is added 

into the Bayesian optimization algorithm, we will see the 

best possible results. Our plan is to implement a post-

processor that is similar to a human scheduler who 

‘improves’ a finished schedule. 



#

�#

/#

3#

*#

6#

7#

+#

�#

5#

�##

�����

�4

4%�
�

�4

:����
�


�4

;������	'

�4

�����

�94

9
��	��

<=

5�������
���������	���������

6
��
��
�
��
��
�
�2
��
�
��
��
�
	
��
�
��
��

6���������� �!����� ����

 

Figure 5: Summary results of various algorithms. 

6�Conclusions 

A new scheduling algorithm based on Bayesian networks 

is presented in this paper. The approach is novel because 

it is the first time that Bayesian networks have been 

applied to the field of personnel scheduling. An effective 

method is proposed to solve the problem about how to 

implement explicit learning from past solutions. Unlike 

most existing approaches, the new approach has the 

ability to build schedules by using flexible, rather than 

fixed rules. Experimental results from real-world nurse 

scheduling problems have demonstrated the strength of 

the proposed Bayesian optimization algorithm. 

The proposed approach mimics human behaviour 

much more strongly than a standard GA based scheduling 

system. Although we have presented this work in terms of 

nurse scheduling, it is suggested that the main idea of the 

approach could be applied to many other scheduling 

problems where the schedules will be built systematically 

according to specific rules. 

It is also hoped that this research will give some 

preliminary answers about how to include human-like 

learning into scheduling algorithms and may therefore be 

of interest to practitioners and researchers in areas of 

scheduling and evolutionary computation. In future, we 

will try to extract the ‘explicit’ part of the learning process 

further, e.g. by keeping partial solutions and learnt rules 

from one data instances to the next. 
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