
Tedesco, Gianni and Aickelin, Uwe (2005) Strategic Alert
Throttling for Intrusion Detection Systems. In: 4th
WSEAS International Conference on Information
Security, 2005, Tenerife, Spain.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/625/1/05wseas_alert_correlation.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Strategic Alert Throttling for Intrusion Detection Systems

Gianni Tedesco and Uwe Aickelin

The School of Computer Science & IT

The University of Nottingham

Jubilee Campus, Wollaton Road, Nottingham

United Kingdom

{gxt,uxa}@cs.nott.ac.uk

Abstract: - Network intrusion detection systems are themselves becoming targets of attackers.

Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of

false alerts sent by the attacker. Although these types of attacks are very hard to stop

completely, our aim is to present techniques that improve alert throughput and capacity to

such an extent that the resources required to successfully mount the attack become prohibitive.

The key idea presented is to combine a token bucket filter with a real-time correlation

algorithm. The proposed algorithm throttles alert output from the IDS when an attack is

detected. The attack graph used in the correlation algorithm is used to make sure that alerts

crucial to forming strategies are not discarded by throttling.

Key-Words: - Intrusion Detection Systems, Intrusion Alert Correlation, Attack Graphs, Denial

of Service Attacks, Token Bucket Filter

1 Introduction
As global awareness of information security issues

has increased, so has the proliferation of intrusion

detection technology. Network intrusion detection

systems (NIDSs or simply IDSs) are quickly

becoming a crucial part of the Internet security

infrastructure.

Back in March 2001, there was a media furore[1]

when the FBI Internet crime division issued a

warning concerning the then unreleased Stick[2]

program which “essentially disarms intrusion

detection systems.” The tool automated what we

shall call the alert flood attack.

The attack works because each time an intrusion

detection system raises an alert it must make some

attempt to communicate the information to an

operator. This communication channel can therefore

become the target of a denial of service attack

because, like all communication channels, it has a

fixed capacity. If this channel can become

overwhelmed with bogus data, an attacker can

quickly achieve complete neutralization of intrusion

detection capability.

There are, in fact, numerous possible types of denial

of service attack against a network IDS[3], but we

will focus on this particular attack type.

A great deal of research has gone in to techniques

for reducing false positive alarms generally. One

such technique is alert correlation. The aim of alert

correlation is to analyse the alert stream and

discover strategies or attack scenarios using some

kind of model of possible attacker strategies[4].

One quite intuitive type of model is an attack

graph[5,6,7]. The advantage of this kind of

correlation is that alerts which do not (yet) conform

to a threatening attack strategy are not displayed.

We propose a novel algorithm to protect NIDSs

from alert-flooding attacks. The algorithm

combines a throttling algorithm, namely a token

bucket filter, with an existing real-time alert

correlation algorithm. The aim is to reduce alerting

throughput in the face of an alert flood attack, while

minimising the chances of missing important alerts.

The key to our approach is using the attack graph to

inform the throttling algorithm so that they key

alerts which make up threatening strategies are not

dropped by the the sensor.

The next section of this paper will present the

relevant background for the proposed techniques.

The alert flood attack is defined and current

approaches are examined. The real-time correlation

algorithm our solution is based on is also

introduced. In section 3, a modified correlation

algorithithm is presented which uses throttling

techniques to curb alert flood attacks. In section 4

some experimental data is presented in order to

demonstrate the effectiveness of our technique. We

finish by presenting a summary and some

concluding remarks.

2 Background
The pattern matching[8] model is currently the most

commonly used methodology for detecting intrusion

attempts. In this model the NIDS is configured with

a database of known attack patterns (also called

signatures). An example of a signature is shown in

Listing 1. This signature alerts on traffic generated

by the well-known “BackOrifice” trojan horse

program and detects any incoming packets destined

to user datagram protocol (UDP) port 31337,

containing a specific sequence of bytes anywhere

within its payload.

alert udp $EXTERNAL_NET any ->
 $HOME_NET 31337 (msg:"BACKDOOR
 BackOrifice access";
 content: "|ce63 d1d2 16e7
 13cf39a5 a586|";)

Listing 1: A Sample Rule as used e.g. by Snort.

2.1 Alert Flooding

Alert flooding attacks are achieved by transmitting

packets that simulate intrusion attempts and which

the IDS will recognise as true attacks. Taking the

example signature in Listing 1, an attacker must

craft a UDP packet, set the destination port to 31337,

include the sequence of bytes given in the signature

and flood the target network with these packets.

The possible ramifications of this type of attack

against an IDS are threefold:

1. Sensor storage becomes full, preventing

further logging.

2. Sensor exceeds maximum alert throughput,

causing alerts to be lost, or the sensor to

cease functioning.

3. The analyst becomes deluged with false

information and becomes unable to

distinguish real attacks from the false ones.

Because of this, attackers may use the alert flood

attack as a way to conceal genuine malicious

activities.

The alert flooding technique has been automated,

and hence popularised, by tools such as Stick and

Snot [9] which read in signatures directly from the

freely available Snort [10] IDS. Each packet sent

could also have crucial fields such as source and

destination address modulated by adding random

data into them. This random noise makes it difficult

to block the attack using a simple packet filter or

firewall.

Alert floods can also be exacerbated by the poor

alerting performance of IDS systems in general. A

quick examination of the Snort system reveals that,

in its preferred output mode (called “unified”),

Snort flushes its buffers needlessly in at least two

places. This causes a reduction in the effectiveness

of the buffering and on UNIX like systems results

in added system call overhead for every logged

alert.

Performance in this area can be understandably

overlooked by the IDS system designer. After all,

good engineering practice tells us to optimise for

the common case, and, in the world of intrusion

detection, an alert is not usually the common case.

In fact, on a high-speed network it should be a very

rare event indeed.

Perhaps the simplest way to reduce data output

while maintaining the same intrusion detection

capability is to make minor modifications to the

signatures to make sure that the IDS is as terse as

possible. Such modifications are often used to

reduce the number of false positive alerts generated.

In fact generally speaking, signatures are usually a

subtle compromise between allowing false negative

and false positive alerts.

One way to make the IDS less verbose is to fine-

tune signatures to examine only those packets

destined for the relevant hosts. Let us consider

BIND, DNS server software infamous for its

security vulnerabilities. In this situation, the

signatures may be modified to only look for BIND

exploits if the destination address on the packet

matches a pre-defined list of DNS servers. Of

course, the operator may actually be interested to

know that someone is attempting a BIND exploit on

a workstation or a web server. That is to say, this

approach tips the false alarm compromise towards

the false negative side. Interestingly this problem

also comes up when designing attack graph for

correlation algorithms.

The Snort team addressed the problems of wide

spread proliferation of automated alert flooding

tools like Stick and Snot in their 1.8 release. Their

solution was to implement a Transmission Control

Protocol (TCP) state tracking system which they

called “stream4”.

By keeping track of TCP connection states, stream4

is able to ignore any segments which are not part of

such a conversation. In order to make the IDS raise

an alert the attacker is now forced to transmit at least

three segments, rather than just one. More

importantly, because the three-way handshake

requires two hosts to be communicating, the external

attacker must find a host on the monitored network

willing to participate. This might be prevented by a

firewall blocking connections.

Currently most systems keep track of TCP states.

This is mainly to protect against desynchronisation

attacks such as those described by Ptacek and

Newsham[3], but there is also the additional benefit

of making sure that there is no such short cut in

carrying out an alert flooding attack. Further to

performing TCP state tracking, it is also possible to

track any application layer state, enabling us to

remove shortcuts even for protocols running over

stateless transports such as UDP.

While this is a definite improvement, it cannot cover

all cases: For example, some signatures must ignore

state information as some exploits can exist as a

single packet (i.e. statelessly); or because in other

cases, they work over inherently stateless protocols.

As we describe in the next section, token bucket

filters combined with attack graph correlation can

improve the situation.

2.2 Token Bucket Filter

A token bucket filter is an algorithm for controlling

the rate of flow of data. Token bucket filters have

traditionally been used in a number of applications

where rate limiting has been needed. Some good

examples are:

1. Network bandwidth management

systems[11].

2. Flood protection in network chat / text

conferencing systems such as Internet Relay

Chat.

3. Flow control in network transport protocols

[12].

4. Flood protection for programs that log

externally generated events such as UNIX

syslog.

A token bucket filter has two parameters, bucket

size, and token rate [13].

Tokens are generated at the token rate and stored in

a buffer called the “bucket'” If the bucket becomes

full, the extra tokens are just discarded. Each alert

that arrives must have a token to pass through the

filter. Any alert that does not have a token is called

“over-limit” and does not pass the filter. If the alert

rate is less than the token-rate then credit is allowed

to accumulate in the bucket. This stored credit

allows for the alert-rate to temporarily exceed the

token rate (or “burst”).

2.3 Attack Graph Correlation

Wang et al provide a unified approach to

correlating, predicting and reasoning about missed

alerts in [14]. The approach works in real-time and

uses an in-memory data structure to perform the

correlation. The correlation algorithm is robust in

the face of missing alerts from the underlying IDS.

An in-memory data structure called a “queue

graph” (QG) is introduced. In order to avoid

keeping unnessecary alerts in memory, only the

latest alert for a given exploit vertex is stored in this

structure. That is to say that the correlation between

such matching alerts is left as implicit. This allows

the algorithm to be run in real-time without

necessetating the usual sliding correlation window

approach which would allow an attacker to use an

alert flood attack to introduce false negative

correlations.

In this system, attack graphs are defined as directed

acyclic graphs (DAGs) having two distinct types of

vertices, security conditions and exploits (see

Figure 1). Exploit vertices are (vuln,src,dst) tuples.

The src and dst fields are used to tie the exploit to

specific combinations of vulnerable and attacking

hosts, wildcards may be used. These vertices may

represent one or more possible alert types. A

function “f” is introduced which maps alerts to an

exploit vertices in the attack graph.

Security conditions vertices refer to prerequisites

and consequences of exploits. Thus edges

connecting a condition to an exploit are prerequisite

relations and those connecting an exploit to a

condition are consequence relations.

Figure 1: A Sample Attack Graph

Attack graphs are generated automatically with

TVA, the topological vulnerability assessment

tool[15] which links together the output of Nessus,

IDS rules and a vulnerability database. In order to

do this a function which maps alerts to exploits is

introduced. In this way the correlation algorithm is

vulnerability-centric. That is to say it will not

correlate exploits against machines which are not

defined as being vulnerable to them. These graphs

are distinct from those used by Ning et al in that

they contain not just the causal relationships

between attacks but also a database of vulnerable

hosts on the network.

An IDS (in this case Snort) is set up to send its alerts

directly to the correlation component. The way the

attack graph is used by the correlation component is

to treat each exploit vertex in the graph as a queue.

Alerts are placed in their requisite queue and a

breadth first search is performed in the graph to find

previous exploits which would correlate with the

current one. If a queue is found and is non-empty

then a correlation is generated. If a queue is empty,

the algorithm can either stop or hypothesise a

missing attack and carry on.

If the edges in the graph are directed forwards in

time, rather than backwards, predictions can be

generated in much the same way as correlations.

The QG structure is actually an enhanced version of

the attack graph. A tree is created for each exploit

vertex in the graph. In these trees, the correlation

and prediction edges are all precalculated. This

effectively means that correlation and prediction

can be done in linear time by searching in a tree

rather than quadratic time by performing breadth

first search in the attack graph and this is what

makes the algorithm suitable for real-time

application.

The output of the algorithm is a correlation graph

which can contain a mix of real and hypothesised

alerts and security conditions. Readers are urged to

consult the original paper for the full details[14].

3 Strategic Data Reduction
We have described the alert flood attack in the

previous sections as fundamentally a resource

exhaustion attack. In this section we will outline an

approach to reduce exposure to the attack by

combining alert throttling with attack graph

correlation.

Consider the case of a human IDS operator as a

resource that cannot cope with having to examine

many thousands of bogus alerts at the rate at which

a sustained attack can produce them.

There are two approaches to solving this type of

problem: one is to increase the amount of resources

at your disposal, the other is to reduce the amount

of resources required. While it is conceivable that

one could scale the sensor hardware to be fully able

to cope with alert floods at a given rate for a given

length of time it seems rather more complex to

scale the human operator.

Taking the approach of minimising the resources

required, alert data could be reduced by throttling

the alert stream to a fixed rate. This could be

achieved by applying a token bucket filter either per

signature, per attack type, globally, or even in to

complex hierarchies as in HTB3[15]. The burstiness

feature of the TBF algorithm means that alerts are

only discarded under sustained high rate of alerts.

However such approaches run the risk of dropping

important alerts which can even assist an attacker in

concealing their malicious activities.

The key to our approach is to allow the correlation

algorithm to interpose between the signature

matching, and output components of the IDS. By

doing this, a token bucket filter can be placed at

each queue in the QG structure and overlimit alerts

can be discarded.

In order that the user may be informed of dropped

alerts we can use a kind of “run length encoding”

(RLE) to represent a string of alerts. RLE is a simple

compression technique which replaces recurring

sequences of symbols (called runs) with a single

symbol and a run count N. To decompress, one

simply copies the symbol into the output stream N

times. This is an approach familiar to UNIX users

who have ever tried to flood the syslog program and

seen its “last message repeated N times” warning.

To implement RLE compression in our case, we first

assume that all alerts going through the same token

bucket filter are identical. Then all that is required is

to add a counter to the queues in the QG data

structure and increment that counter for all over-

limit alerts. When there is enough credit in the token

bucket to permit new alerts, we dequeue the the

alert and the counter, allowing them to add a node in

the output graph and to be logged to permanent

storage. This allows for some minimal

reconstruction of lost packets by just using the

information in the attack graph.

Two questions then arise. Firstly what to do with

alerts not mapping to vertices in the queue graph;

and secondly what parameters to use for the token

bucket filters.

For those alerts which do not map in to exploit

nodes, we cannot be sure that we are missing alerts

vital to some strategy. Since the QG algorithm

assumes a complete attack graph anyway we could

discard all such alerts. A more prodent approach is

taken in our case, and that is to apply a token bucket

filter to such alerts on a per-signature basis.

As for the parameters of the TBFs, for those alerts

which map to vertices in the attack graph, we could

drop all implicitly correlating alerts and keep the

same strategies. However it is seen as a benefit to

keep alerts where possible, here we envisage that

token rates of greater than one or two alerts per

second need not be used. For other alerts however,

there is, of course, a trade-off between data fidelity

and efficiency.

In the next section, we will show that this technique

scales up such that it effectively nullifies the

computational effect of an alert flood attack.

4 Empirical Data
We can perform a simple test with the Firestorm[16]

system running off-line against a tcpdump[17]

capture file containing an alert flood attack captured

by Shmoo Group at a defcon CTF event[18]. The

attack consists of a repeated ICMP flood at a rate of

around 7,343 packets per second.

We perform 2 tests and in both, we have a full

signature database loaded containing around 1,600

signatures, with the network data read directly from

the hard disk. The test machine was a 3.2GHz

Pentium-IV running Linux 2.6 with 1GB of RAM.

The results shown are an average of three iterations

for both runs to factor out any random fluctuations

such as may be caused by disk seek latency.

The first run (#1) is a control run using firestorm +

QG algorithm. The second run (#2) is identical

except for the addition of token bucket filtering.

Two sets of filters are used:

1. The set of filters for each exploit vertex in

the attack graph.

2. The set of filters for each rule which does

not map to a vertex in the attack graph.

Each of these filters is set to 2 alerts per second and

a burst of 20 alerts. These parameters are rather

arbitrary but are probably best set based on the

operators experience of the baseline alert rate for

the network.

Data Size

(KB)

Alerts CPU Time Run Time

1 475,229 300,741 13.131 18.476

2 1,092 696 12.153 12.817

Table 1: Experimental Results.

As we can see in Table 1, the amount of data logged

was reduced by several orders of magnitude and the

run time decreased disproportionately to the CPU

time. While the run time was reduced by around

30%, the CPU time only reduced by around 10%.

This indicates that the Firestorm process is not

wasting as much time waiting for I/O completion

when the token bucket filter is enabled,

The number of alerts output is reduced by orders of

magnitude. In the experiment the communication

channel between the IDS and the operator is simply

an on-disk alert spool so the available bandwitdth is

high. In a real world deployment, on the other hand,

it is likely that alerts would be transmitted across a

network adding further latency and bandwidth

constraints. In these deployments we expect even

greater gains in performance.

From these results it is shown that we can effectively

boost performance and therefore sensor capacity,

allowing the IDS to carry on working during an alert

flood rather than becoming overwhelmed and

possibly exhausting the storage on the sensor. Even

if the attack contained twice as many packets in the

same space of time, it would not double the amount

of data logged as the token rate is fixed.

5 Summary and Conclusions
Alert flooding is a problem that will probably

always exist with intrusion detection systems and

one that cannot be eliminated entirely. However, we

have shown that it is possible to drastically reduce

the effects by recognising an attack and throttling

excess alerts.

We have further shown that real-time alert

correlation algorithms can be used to provide a

useful context for throtting alerts such that key

attacks are not missed, such an approach solves

problems with either technique used in isolation.

Without the correlation system interceding between

the signature matching and alerting components of

the IDS it is not possible for it to decide if alerts

may be logged or not and without having strategic

information available to the throttling algorithm, it

could drop crucial alerts.

Further investigation is required in to producing

optimal token bucket filter configurations and how

best to handle those alerts which do not map on to

any exploit vertices in the attack graph.

References:

[1] ZDNet UK News.
http://news.zdnet.co.uk/internet/se

curity/0,39020375,2085099,00.htm

[2] G. Coretex. “Fun With Packets: Designing a

Stick.” Endeavor Systems Inc., 2002.

[3] T. H. Ptacek and N. N. Newsham. "Insertion,

Evasion and Denial of Service: Eluding Network

Intrusion Detection.” Secure Networks Inc., 1998.

[4] Xinzhou Qin. Wenke Lee. “Attack Plan

Recognition and Prediction Using Causal

Networks”. Proceedings of Annual Computer

Security Applications Conference, 2004.

[5] Peng Ning. Yen Cui, and Douglas S Reeves.

“Constructing Attack Scenarios through Correlation

of Intrusion Alerts.” Proceedings of the 9th ACM

Conference on Computer & Communications

Security. 2002. pp. 245-254.

[6] Peng Ning, Dingbang X, Christopher G. Healey,

Robert and St. Amant. “Building Attack Scenarios

through Integration of Complementary Alert

Methods.” Proceedings of the 11th Annual Network

and Distributed System Security Symposium, 2004,

pp. 97-111.

[7] Oleg Sheyner, Joshua Haines and Somesh Jha.

“Automated Generation and Analysis of Attack

Graphs.” Proceedings of the IEEE Symposium on

Security and Privac,. 2002. pp. 273.

[8] "The Science of Intrusion Detection System

Attack Identification." Cisco Systems.2002,
http://www.cisco.com/warp/public/c
c/pd/sqsw/sqidsz/prodlit/idssa_wp.
htm
[9] Sniph. “snot “. 2001.

[10] Marty Roesch. "Snort - Lightweight Intrusion

Detection for Networks". USENIX 13th Systems

Administration Conference, 1999.

[11] G. Woodruff, R. Rogers and P. Richards. "A

congestion control framework for high-speed

integrated packetized transport." IEEE Globecomm,

88. 19988.

[12] R. Wade, M. Kara and P.M. Dew. "Study of a

Transport Protocol Employing Bottleneck Probing

and Token Bucket Flow Control." Fifth IEEE

Symposium on Computers and Communications,

2002.

[13] J. Turner. "New directions in communications

(or which way to the information age?)" IEEE

Communications Magazine,Vol.24, No.10, pp. 8-15.

[14] Lingyu Wang, Anyi Liu and Sushil Jajoda.

“An Efficient Unified Approach to Correlating

Hypothesising, and Predicting Intrusion Alerts.”

Proceedings of European Symposium on Computer

Security, 2005. pp. 247-266.

[15] Sushil Jajodia, Steve Noel and Brian O’Berry.

“Topological analysis of network attack vulnerability.”

Managing Cyber Threats: Issues, Approaches and

Challenges, 2005. Springer. pp. 248-266.

[16] Martin Devera. "Hierarchical token bucket

theory." 2002.
http://luxik.cdi.cz/~devik/qos/htb
/manual/theory.htm
[17] Gianni Tedesco. 2005. Firestorm IDS.
http://www.scaramanga.co.uk/firest
orm/
[18] Leres Van Jacobson, Craig McCanne and

Steven McCanne. “tcpdump”. Lawrence Berkeley

National Laboratory.

[19] Shmoo Group. “CCTF Defcon Data”. 2001.
http://www.shmoo.com/cctf/

