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Abstract: - Network intrusion detection systems are themselves becoming targets of attackers. 

Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of 

false  alerts  sent  by  the  attacker.  Although  these  types  of  attacks  are  very  hard  to  stop 

completely, our aim is to present techniques that improve alert throughput and capacity to 

such an extent that the resources required to successfully mount the attack become prohibitive. 

The  key  idea  presented  is  to  combine  a  token  bucket  filter  with  a  real-time  correlation 

algorithm.  The proposed algorithm throttles alert  output  from the IDS when an attack is 

detected. The attack graph used in the correlation algorithm is used to make sure that alerts 

crucial to forming strategies are not discarded by throttling.

Key-Words: - Intrusion Detection Systems, Intrusion Alert Correlation, Attack Graphs, Denial 

of Service Attacks, Token Bucket Filter

1   Introduction
As global awareness of information security issues 

has increased, so has the proliferation of intrusion 

detection  technology.  Network  intrusion  detection 

systems  (NIDSs  or  simply  IDSs)  are  quickly 

becoming  a  crucial  part  of  the  Internet  security 

infrastructure.

Back in  March 2001,  there was a media furore[1] 

when  the  FBI  Internet  crime  division  issued  a 

warning  concerning  the  then  unreleased  Stick[2] 

program  which  “essentially  disarms  intrusion 

detection  systems.”  The  tool  automated  what  we 

shall call the alert flood attack.

The  attack  works  because  each  time  an  intrusion 

detection system raises an alert it must make some 

attempt  to  communicate  the  information  to  an 

operator. This communication channel can therefore 

become  the  target  of  a  denial  of  service  attack 

because, like all  communication channels,  it  has a 

fixed  capacity.  If  this  channel  can  become 

overwhelmed  with  bogus  data,  an  attacker  can 

quickly achieve complete neutralization of intrusion 

detection capability.

There are, in fact, numerous possible types of denial 

of service attack against a network IDS[3], but we 

will focus on this particular attack type.

A great deal of research has gone in to techniques 

for  reducing  false  positive  alarms  generally.  One 

such technique is alert correlation. The aim of alert 

correlation  is  to  analyse  the  alert  stream  and 

discover strategies or  attack scenarios using some 

kind  of  model  of  possible  attacker  strategies[4]. 

One  quite  intuitive  type  of  model  is  an  attack 

graph[5,6,7].  The  advantage  of   this  kind  of 

correlation is that alerts which do not (yet) conform 

to a threatening attack strategy are not displayed.

We  propose  a  novel  algorithm  to  protect  NIDSs 

from  alert-flooding  attacks.  The  algorithm 

combines  a  throttling  algorithm,  namely  a  token 

bucket  filter,  with  an  existing  real-time  alert 

correlation algorithm. The aim is to reduce alerting 

throughput in the face of an alert flood attack, while 

minimising the chances of missing important alerts. 

The key to our approach is using the attack graph to 

inform  the  throttling  algorithm  so  that  they  key 

alerts which make up threatening strategies are not 

dropped by the the sensor.

The  next  section  of  this  paper  will  present  the 

relevant  background  for  the  proposed  techniques. 

The  alert  flood  attack  is  defined  and  current 

approaches are examined. The real-time correlation 

algorithm  our  solution  is  based  on  is  also 

introduced.  In  section  3,  a  modified  correlation 

algorithithm  is  presented  which  uses  throttling 



techniques to curb alert flood attacks. In section 4 

some  experimental  data  is  presented  in  order  to 

demonstrate the effectiveness of our technique. We 

finish  by  presenting  a  summary  and  some 

concluding remarks.

2   Background
The pattern matching[8] model is currently the most 

commonly used methodology for detecting intrusion 

attempts. In this model the NIDS is configured with 

a  database  of  known  attack  patterns  (also  called 

signatures). An example of a signature is shown in 

Listing 1. This signature alerts on traffic generated 

by  the  well-known  “BackOrifice”  trojan  horse 

program and detects any incoming packets destined 

to  user  datagram  protocol  (UDP)  port  31337, 

containing  a  specific  sequence  of  bytes  anywhere 

within its payload.

alert udp $EXTERNAL_NET any ->
 $HOME_NET 31337 (msg:"BACKDOOR  
 BackOrifice access";
 content: "|ce63 d1d2 16e7
 13cf39a5 a586|";)

Listing 1: A Sample Rule as used e.g. by Snort.

2.1 Alert Flooding

Alert flooding attacks are achieved by transmitting 

packets that simulate intrusion attempts and which 

the IDS will  recognise as true attacks.  Taking the 

example  signature  in  Listing  1,  an  attacker  must 

craft a UDP packet, set the destination port to 31337, 

include the sequence of bytes given in the signature 

and flood the target network with these packets.

The  possible  ramifications  of  this  type  of  attack 

against an IDS are threefold:

1. Sensor  storage  becomes  full,  preventing 

further logging.

2. Sensor exceeds maximum alert throughput, 

causing  alerts  to  be  lost,  or  the  sensor  to 

cease functioning.

3. The  analyst  becomes  deluged  with  false 

information  and  becomes  unable  to 

distinguish real attacks from the false ones.

Because of  this,  attackers may use the alert  flood 

attack  as  a  way  to  conceal  genuine  malicious 

activities.

The  alert  flooding  technique  has  been  automated, 

and hence popularised, by tools such as Stick and 

Snot [9] which read in signatures directly from the 

freely available  Snort  [10]  IDS.  Each  packet  sent 

could also have crucial  fields  such as source and 

destination  address  modulated  by  adding  random 

data into them. This random noise makes it difficult 

to block the attack using a simple packet filter or 

firewall.

Alert  floods can also be exacerbated by the  poor 

alerting performance of IDS systems in general. A 

quick examination of the Snort system reveals that, 

in  its  preferred  output  mode  (called  “unified”), 

Snort flushes its buffers needlessly in at least two 

places. This causes a reduction in the effectiveness 

of the buffering and on UNIX like systems results 

in  added  system  call  overhead  for  every  logged 

alert.

Performance  in  this  area  can  be  understandably 

overlooked by the IDS system designer.  After all, 

good engineering practice tells  us  to optimise  for 

the  common case,  and,  in  the  world  of  intrusion 

detection, an alert is not usually the common case. 

In fact, on a high-speed network it should be a very 

rare event indeed.

Perhaps  the  simplest  way  to  reduce  data  output 

while  maintaining  the  same  intrusion  detection 

capability  is  to  make  minor  modifications  to  the 

signatures to make sure that the IDS is as terse as 

possible.  Such  modifications  are  often  used  to 

reduce the number of false positive alerts generated. 

In fact generally speaking, signatures are usually a 

subtle compromise between allowing false negative 

and false positive alerts.

One way to make the IDS less verbose is to fine-

tune  signatures  to  examine  only  those  packets 

destined  for  the  relevant  hosts.  Let  us  consider 

BIND,  DNS  server  software  infamous  for  its 

security  vulnerabilities.  In  this  situation,  the 

signatures may be modified to only look for BIND 

exploits  if  the  destination  address  on  the  packet 

matches  a  pre-defined  list  of  DNS  servers.  Of 

course,  the operator  may actually be interested to 

know that someone is attempting a BIND exploit on 

a workstation or a web server. That is to say, this 

approach tips the false alarm compromise towards 

the  false  negative  side.  Interestingly  this  problem 

also  comes  up  when  designing  attack  graph  for 

correlation algorithms.

The  Snort  team addressed  the  problems  of  wide 

spread  proliferation  of  automated  alert  flooding 

tools like Stick and Snot in their 1.8 release. Their 

solution was to implement a Transmission Control 



Protocol  (TCP)  state  tracking  system  which  they 

called “stream4”. 

By keeping track of TCP connection states, stream4 

is able to ignore any segments which are not part of 

such a conversation. In order to make the IDS raise 

an alert the attacker is now forced to transmit at least 

three  segments,  rather  than  just  one.  More 

importantly,  because  the  three-way  handshake 

requires two hosts to be communicating, the external 

attacker must find a host on the monitored network 

willing to participate. This might be prevented by a 

firewall blocking connections.

Currently  most  systems keep  track  of  TCP states. 

This is mainly to protect against desynchronisation 

attacks  such  as  those  described  by  Ptacek  and 

Newsham[3], but there is also the additional benefit 

of  making  sure  that  there  is  no such short  cut  in 

carrying  out  an  alert  flooding  attack.  Further  to 

performing TCP state tracking, it is also possible to 

track  any  application  layer  state,  enabling  us  to 

remove  shortcuts  even  for  protocols  running  over 

stateless transports such as UDP.

While this is a definite improvement, it cannot cover 

all cases: For example, some signatures must ignore 

state  information  as  some  exploits  can  exist  as  a 

single packet  (i.e.  statelessly);  or  because in other 

cases, they work over inherently stateless protocols. 

As  we  describe  in  the  next  section,  token  bucket 

filters  combined with attack graph correlation can 

improve the situation.

2.2 Token Bucket Filter

A token bucket filter is an algorithm for controlling 

the rate of flow of data. Token bucket filters have 

traditionally been used in a number of applications 

where  rate  limiting  has  been  needed.  Some  good 

examples are:

1. Network  bandwidth  management 

systems[11].

2. Flood  protection  in  network  chat  /  text 

conferencing systems such as Internet Relay 

Chat.

3. Flow control in network transport protocols 

[12].

4. Flood  protection  for  programs  that  log 

externally  generated  events  such  as  UNIX 

syslog.

A token  bucket  filter  has  two parameters,  bucket 

size, and token rate [13].

Tokens are generated at the token rate and stored in 

a buffer called the “bucket'” If the bucket becomes 

full, the extra tokens are just discarded. Each alert 

that arrives must have a token to pass through the 

filter. Any alert that does not have a token is called 

“over-limit” and does not pass the filter. If the alert 

rate is less than the token-rate then credit is allowed 

to  accumulate  in  the  bucket.  This  stored  credit 

allows for the alert-rate to temporarily exceed the 

token rate (or “burst”).

2.3 Attack Graph Correlation

Wang  et  al  provide  a  unified  approach  to 

correlating, predicting and reasoning about missed 

alerts in [14]. The approach works in real-time and 

uses  an  in-memory  data  structure  to  perform the 

correlation. The correlation algorithm is robust in 

the face of missing alerts from the underlying IDS.

An  in-memory  data  structure  called  a  “queue 

graph”  (QG)  is  introduced.  In  order  to  avoid 

keeping  unnessecary  alerts  in  memory,  only  the 

latest alert for a given exploit vertex is stored in this 

structure. That is to say that the correlation between 

such matching alerts is left as implicit. This allows 

the  algorithm  to  be  run  in  real-time  without 

necessetating the usual sliding correlation window 

approach which would allow an attacker to use an 

alert  flood  attack  to  introduce  false  negative 

correlations.

In this system, attack graphs are defined as directed 

acyclic graphs (DAGs) having two distinct types of 

vertices,  security  conditions  and  exploits  (see 

Figure 1). Exploit vertices are (vuln,src,dst) tuples. 

The src and dst fields are used to tie the exploit to 

specific  combinations of  vulnerable  and attacking 

hosts, wildcards may be used. These vertices may 

represent  one  or  more  possible  alert  types.  A 

function “f” is introduced which maps alerts to an 

exploit vertices in the attack graph.

Security  conditions  vertices  refer  to  prerequisites 

and  consequences  of  exploits.  Thus  edges 

connecting a condition to an exploit are prerequisite 

relations  and  those  connecting  an  exploit  to  a 

condition are consequence relations.



Figure 1: A Sample Attack Graph

Attack  graphs  are  generated  automatically  with 

TVA,  the  topological  vulnerability  assessment 

tool[15] which links together the output of Nessus, 

IDS rules and a vulnerability database. In order to 

do this a function which maps alerts to exploits is 

introduced. In this way the correlation algorithm is 

vulnerability-centric.  That  is  to  say  it  will  not 

correlate  exploits  against  machines  which  are  not 

defined as being vulnerable to them. These graphs 

are distinct from those  used by Ning et al in that 

they  contain  not  just  the  causal  relationships 

between attacks  but  also a  database of  vulnerable 

hosts on the network.

An IDS (in this case Snort) is set up to send its alerts 

directly to the correlation component. The way the 

attack graph is used by the correlation component is 

to treat each exploit vertex in the graph as a queue. 

Alerts  are  placed  in  their  requisite  queue  and  a 

breadth first search is performed in the graph to find 

previous  exploits  which  would  correlate  with  the 

current one. If a queue is found and is non-empty 

then a correlation is generated. If a queue is empty, 

the  algorithm  can  either  stop  or  hypothesise  a 

missing attack and carry on.

If  the  edges in  the graph are directed forwards in 

time,  rather  than  backwards,  predictions  can  be 

generated in much the same way as correlations.

The QG structure is actually an enhanced version of 

the attack graph. A tree is created for each exploit 

vertex in the graph.  In these  trees,  the  correlation 

and  prediction  edges  are  all  precalculated.  This 

effectively  means  that  correlation  and  prediction 

can be done in linear time by searching in a tree 

rather  than  quadratic  time  by  performing breadth 

first  search  in  the  attack  graph  and  this  is  what 

makes  the  algorithm  suitable  for  real-time 

application.

The output of the algorithm is a correlation graph 

which can contain a mix of real and hypothesised 

alerts and security conditions.  Readers are urged to 

consult the original paper for the full details[14].

3   Strategic Data Reduction
We  have  described  the  alert  flood  attack  in  the 

previous  sections  as  fundamentally  a  resource 

exhaustion attack. In this section we will outline an 

approach  to  reduce  exposure  to  the  attack  by 

combining  alert  throttling  with  attack  graph 

correlation.

Consider  the  case  of  a  human IDS operator  as  a 

resource that cannot cope with having to examine 

many thousands of bogus alerts at the rate at which 

a sustained attack can produce them.

There  are  two approaches  to  solving  this  type  of 

problem: one is to increase the amount of resources 

at your disposal, the other is to reduce the amount 

of resources required. While it is conceivable that 

one could scale the sensor hardware to be fully able 

to cope with alert floods at a given rate for a given 

length  of  time  it  seems  rather  more  complex  to 

scale the human operator.

Taking  the  approach  of  minimising  the  resources 

required, alert data could be reduced by throttling 

the  alert  stream  to  a  fixed  rate.  This  could  be 

achieved by applying a token bucket filter either per 

signature,  per  attack  type,  globally,  or  even  in  to 

complex hierarchies as in HTB3[15]. The burstiness 

feature of the TBF algorithm means that alerts are 

only discarded under sustained high rate of alerts. 

However such approaches run the risk of dropping 

important alerts which can even assist an attacker in 

concealing their malicious activities.

The key to our approach is to allow the correlation 

algorithm  to  interpose  between  the  signature 

matching,  and output  components of  the IDS. By 

doing this,  a  token bucket  filter  can be placed at 

each queue in the QG structure and overlimit alerts 

can be discarded.

In order that the user may be informed of dropped 

alerts we can use a kind of “run length encoding” 



(RLE) to represent a string of alerts. RLE is a simple 

compression  technique  which  replaces  recurring 

sequences  of  symbols  (called  runs)  with  a  single 

symbol  and  a  run  count  N.  To  decompress,  one 

simply copies the symbol into the output stream  N 

times. This is an approach familiar to UNIX users 

who have ever tried to flood the syslog program and 

seen its “last message repeated N times” warning.

To implement RLE compression in our case, we first 

assume that all alerts going through the same token 

bucket filter are identical. Then all that is required is 

to  add  a  counter  to  the  queues  in  the  QG  data 

structure  and  increment  that  counter  for  all  over-

limit alerts. When there is enough credit in the token 

bucket  to  permit  new alerts,  we  dequeue the   the 

alert and the counter, allowing them to add a node in 

the  output  graph  and  to  be  logged  to  permanent 

storage.  This  allows  for  some  minimal 

reconstruction  of  lost  packets  by  just  using  the 

information in the attack graph.

Two questions  then  arise.  Firstly  what  to  do  with 

alerts not mapping to vertices in the queue graph; 

and secondly what parameters to use for the token 

bucket filters.

For  those  alerts  which  do  not  map  in  to  exploit 

nodes, we cannot be sure that we are missing alerts 

vital  to  some  strategy.  Since  the  QG  algorithm 

assumes a complete attack graph anyway we could 

discard all such alerts. A more prodent approach is 

taken in our case, and that is to apply a token bucket 

filter to such alerts on a per-signature basis.

As for the parameters of the TBFs, for those alerts 

which map to vertices in the attack graph, we could 

drop  all  implicitly  correlating  alerts  and  keep  the 

same strategies. However it is seen as a benefit to 

keep  alerts  where  possible,  here  we  envisage  that 

token  rates  of  greater  than  one  or  two  alerts  per 

second need not be used. For other alerts however, 

there is, of course, a trade-off between data fidelity 

and efficiency.

In the next section, we will show that this technique 

scales  up  such  that  it  effectively  nullifies  the 

computational effect of an alert flood attack.

4   Empirical Data
We can perform a simple test with the Firestorm[16] 

system  running  off-line  against  a  tcpdump[17] 

capture file containing an alert flood attack captured 

by Shmoo Group at  a defcon CTF event[18].  The 

attack consists of a repeated ICMP flood at a rate of 

around 7,343 packets per second. 

We  perform 2  tests  and  in  both,  we  have  a  full 

signature database loaded containing around 1,600 

signatures, with the network data read directly from 

the  hard  disk.  The  test  machine  was  a  3.2GHz 

Pentium-IV running Linux 2.6 with 1GB of RAM. 

The results shown are an average of three iterations 

for both runs to factor out any random fluctuations 

such as may be caused by disk seek latency.

The first run (#1) is a control run using firestorm + 

QG  algorithm.  The  second  run  (#2)  is  identical 

except  for  the  addition  of  token  bucket  filtering. 

Two sets of filters are used:

1. The set of filters for each exploit vertex in 

the attack graph.

2. The set of filters for each rule which does 

not map to a vertex in the attack graph. 

Each of these filters is set to 2 alerts per second and 

a  burst  of  20  alerts.  These  parameters  are  rather 

arbitrary  but  are  probably  best  set  based  on  the 

operators experience of  the baseline  alert  rate  for 

the network.

# Data Size 

(KB)

Alerts CPU Time Run Time

1 475,229 300,741 13.131 18.476

2 1,092 696 12.153 12.817

Table 1: Experimental Results.

As we can see in Table 1, the amount of data logged 

was reduced by several orders of magnitude and the 

run time decreased disproportionately to the CPU 

time.  While  the  run time was reduced by around 

30%, the CPU time only reduced by around 10%. 

This  indicates  that  the  Firestorm  process  is  not 

wasting as much time waiting for  I/O completion 

when the token bucket filter is enabled,

The number of alerts output is reduced by orders of 

magnitude.  In  the  experiment  the  communication 

channel between the IDS and the operator is simply 

an on-disk alert spool so the available bandwitdth is 

high. In a real world deployment, on the other hand, 

it is likely that alerts would be transmitted across a 

network  adding  further  latency  and  bandwidth 

constraints.  In  these  deployments  we  expect  even 

greater gains in performance.



From these results it is shown that we can effectively 

boost  performance  and  therefore  sensor  capacity, 

allowing the IDS to carry on working during an alert 

flood  rather  than  becoming  overwhelmed  and 

possibly exhausting the storage on the sensor. Even 

if the attack contained twice as many packets in the 

same space of time, it would not double the amount 

of data logged as the token rate is fixed.

5   Summary and Conclusions
Alert  flooding  is  a  problem  that  will  probably 

always  exist  with  intrusion  detection  systems  and 

one that cannot be eliminated entirely. However, we 

have shown that it is possible to drastically reduce 

the effects  by recognising an attack and throttling 

excess alerts.

We  have  further  shown  that  real-time  alert 

correlation  algorithms  can  be  used  to  provide  a 

useful  context  for  throtting  alerts  such  that  key 

attacks  are  not  missed,  such  an  approach  solves 

problems with either technique used in isolation.

Without the correlation system interceding between 

the signature matching and alerting components of 

the IDS it  is not possible for it  to decide if alerts 

may be logged or not and without having strategic 

information available to the throttling algorithm, it 

could drop crucial alerts.

Further  investigation  is  required  in  to  producing 

optimal token bucket filter configurations and how 

best to  handle those alerts which do not map on to 

any exploit vertices in the attack graph.
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