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The biological immune system is a robust, complex, adaptive system that 

defends the body from foreign pathogens. It is able to categorize all cells (or 

molecules) within the body as self1cells or non1self cells. It does this with 

the help of a distributed task force that has the intelligence to take action 

from a local and also a global perspective using its network of chemical 
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messengers for communication. There are two major branches of the 

immune system. The innate immune system is an unchanging mechanism 

that detects and destroys certain invading organisms, whilst the adaptive 

immune system responds to previously unknown foreign cells and builds a 

response to them that can remain in the body over a long period of time. This 

remarkable information processing biological system has caught the 

attention of computer science in recent years.  

 

A novel computational intelligence technique, inspired by immunology, 

has emerged, called Artificial Immune Systems. Several concepts from the 

immune have been extracted and applied for solution to real world science 

and engineering problems. In this tutorial, we briefly describe the immune 

system metaphors that are relevant to existing Artificial Immune Systems 

methods. We will then show illustrative real1world problems suitable for 

Artificial Immune Systems and give a step1by1step algorithm walkthrough 

for one such problem. A comparison of the Artificial Immune Systems to 

other well1known algorithms, areas for future work, tips & tricks and a list 

of resources will round this tutorial off. It should be noted that as Artificial 

Immune Systems is still a young and evolving field, there is not yet a fixed 

algorithm template and hence actual implementations might differ somewhat 

from time to time and from those examples given here. 
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The biological immune system is an elaborate defense system which has 

evolved over millions of years.  While many details of the immune 

mechanisms (innate and adaptive) and processes (humeral and cellular) are 

yet unknown (even to immunologists), it is, however, well1known that the 

immune system uses multilevel (and overlapping) defense both in parallel 

and sequential fashion. Depending on the type of the pathogen, and the way 

it gets into the body, the immune system uses different response mechanisms 

(differential pathways) either to neutralize the pathogenic effect or to destroy 

the infected cells.  A detailed overview of the immune system can be found 

in many textbooks, for instance Kubi (2002). The immune features that are 

particularly relevant to our tutorial are matching, diversity and distributed 

control. Matching refers to the binding between antibodies and antigens. 

Diversity refers to the fact that, in order to achieve optimal antigen space 

coverage, antibody diversity must be encouraged according to Hightower et 

al (1995). Distributed control means that there is no central controller; 
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rather, the immune system is governed by local interactions among immune 

cells and antigens. 

Two of the most important1cells in this process are white blood cells, 

called T1cells, and B1cells. Both of these originate in the bone marrow, but 

T1cells pass on to the thymus to mature, before they circulate the body in the 

blood and lymphatic vessels. 

 

The T1cells are of three types; T helper cells which are essential to the 

activation of B1cells, Killer T1cells which bind to foreign invaders and inject 

poisonous chemicals into them causing their destruction, and suppressor T1

cells which inhibit the action of other immune cells thus preventing allergic 

reactions and autoimmune diseases. 

 

B1cells are responsible for the production and secretion of antibodies, 

which are specific proteins that bind to the antigen. Each B1cell can only 

produce one particular antibody. The antigen is found on the surface of the 

invading organism and the binding of an antibody to the antigen is a signal 

to destroy the invading cell as shown in Figure 1. 
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#��$���%�& Pictorial representation of the essence of the acquired immune system mechanism 

(taken from de Castro and van Zuben (1999): I1II show the invade entering the body and 

activating T1Cells, which then in IV activate the B1cells, V is the antigen matching, VI the 

antibody production and VII the antigen’s destruction. 

 

 As mentioned above, the human body is protected against foreign 

invaders by a multi1layered system. The immune system is composed of 

physical barriers such as the skin and respiratory system; physiological 

barriers such as destructive enzymes and stomach acids; and the immune 

system, which has can be broadly divided under two heads – Innate (non1

specific) Immunity and Adaptive (specific) Immunity, which are inter1linked 

and influence each other. The Adaptive Immunity again is subdivided under 

two heads – Humoral Immunity and Cell Mediated Immunity. 

 

Innate Immunity: The Innate Immunity is present at birth. Physiological 

conditions such as pH, temperature and chemical mediators provide 

inappropriate living conditions for foreign organisms. Also microorganisms 

are coated with antibodies and/or complement products (opsonization) so 

that they are easily recognized. Extracellular material is then ingested by 

macrophages by a process called phagocytosis. Also TDH Cells influences 
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the phagocytosis of macrophages by secreting certain chemical messengers 

called lymphokines. The low levels of sialic acid on foreign antigenic 

surfaces make C3b bind to these surfaces for a long time and thus activate 

alternative pathways. Thus MAC is formed, which puncture the cell surfaces 

and kill the foreign invader.  

 

Adaptive Immunity: Adaptive Immunity is the main focus of interest 

here as learning, adaptability, and memory are important characteristics of 

Adaptive Immunity. It is subdivided under two heads – Humoral Immunity 

and Cell Mediated Immunity. 

 

Humoral immunity: Humoral immunity is mediated by antibodies 

contained in body fluids (known as humors). The humoral branch of the 

immune system involves interaction of B cells with antigen and their 

subsequent proliferation and differentiation into antibody1secreting plasma 

cells. Antibody functions as the effectors of the humoral response by binding 

to antigen and facilitating its elimination. When an antigen is coated with 

antibody, it can be eliminated in several ways. For example, antibody can 

cross1link the antigen, forming clusters that are more readily ingested by 

phagocytic cells. Binding of antibody to antigen on a microorganism also 

can activate the complement system, resulting in lysis of the foreign 

organism. 

 

Cellular immunity: Cellular immunity is cell1mediated; effector T cells 

generated in response to antigen are responsible for cell1mediated immunity. 

Cytotoxic T lymphocytes (CTLs) participate in cell1mediated immune 

reactions by killing altered self1cells; they play an important role in the 

killing of virus1infected cells and tumor cells. Cytokines secreted by TDH can 

mediate the cellular immunity, and activate various phagocytic cells, 

enabling them to phagocytose and kill microorganisms more effectively. 

This type of cell1mediated immune response is especially important in host 

defense against intracellular bacteria and protozoa. 

 

Whilst there is more than one mechanism at work (see Farmer (1986), 

Kubi (2002) or Jerne (1973) for more details), the essential process is the 

matching of antigen and antibody, which leads to increased concentrations 

(proliferation) of more closely matched antibodies. In particular, idiotypic 

network theory, negative selection mechanism, and the ‘clonal selection’ and 

‘somatic hypermutation’ theories are primarily used in Artificial Immune 

Systems models. 
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The immune Network theory had been proposed in the mid1seventies 

(Jerne 1974). The hypothesis was that the immune system maintains an 

idiotypic network of interconnected B cells for antigen recognition. These 

cells both stimulate and suppress each other in certain ways that lead to the 

stabilization of the network. Two B cells are connected if the affinities they 

share exceed a certain threshold, and the strength of the connection is 

directly proportional to the affinity they share. 
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The purpose of negative selection is to provide tolerance for self cells. It 

deals with the immune system's ability to detect unknown antigens while not 

reacting to the self cells. During the generation of T1cells, receptors are 

made through a pseudo1random genetic rearrangement process. Then, they 

undergo a censoring process in the thymus, called the negative selection. 

There, T1cells that react against self1proteins are destroyed; thus, only those 

that do not bind to self1proteins are allowed to leave the thymus. These 

matured T1cells then circulate throughout the body to perform 

immunological functions and protect the body against foreign antigens. 
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The clonal selection principle describes the basic features of an immune 

response to an antigenic stimulus. It establishes the idea that only those cells 

that recognize the antigen proliferate, thus being selected against those that 

do not. The main features of the clonal selection theory are that: 

• The new cells are copies of their parents (clone) subjected to a mutation 

mechanism with high rates (somatic hypermutation); 

• Elimination of newly differentiated lymphocytes carrying self1reactive 

receptors; 

• Proliferation and differentiation on contact of mature cells with 

antigens. 

 

When an antibody strongly matches an antigen the corresponding B1cell 

is stimulated to produce clones of itself that then produce more antibodies. 

This (hyper) mutation, is quite rapid, often as much as “one mutation per cell 

division” (de Castro and Von Zuben, 1999). This allows a very quick 

response to the antigens.  It should be noted here that in the Artificial 
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Immune Systems literature, often no distinction is made between B1cells and 

the antibodies they produce. Both are subsumed under the word ‘antibody’ 

and statements such as mutation of antibodies (rather than mutation of B1

cells) are common.  

 

There are many more features of the immune system, including 

adaptation, immunological memory and protection against auto1immune 

attacks, not discussed here. In the following sections, we will revisit some 

important aspects of these concepts and show how they can be modelled in 

‘artificial’ immune systems and then used to solve real1world problems. 

First, let us give an overview of typical problems that we believe are 

amenable to being solved by Artificial Immune Systems. 
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Anyone keeping up1to1date with current affairs in computing can confirm 

numerous cases of attacks made on computer servers of well1known 

companies. These attacks range from denial1of1service attacks to extracting 

credit1card details and sometimes we find ourselves thinking “haven’t they 

installed a firewall”? The fact is they often have a firewall. A firewall is a 

useful, often essential, but current firewall technology is insufficient to 

detect and block all kinds of attacks. 

 

However, on ports that need to be open to the internet, a firewall can do 

little to prevent attacks. Moreover, even if a port is blocked from internet 

access, this does not stop an attack from inside the organisation. This is 

where Intrusion Detection Systems come in. As the name suggests, Intrusion 

Detection Systems are installed to identify (potential) attacks and to react by 

usually generating an alert or blocking the unscrupulous data. 

 

The main goal of Intrusion Detection Systems is to detect unauthorised 

use, misuse and abuse of computer systems by both system insiders and 

external intruders. Most current Intrusion Detection Systems define 

suspicious signatures based on known intrusions and probes. The obvious 

limit of this type of Intrusion Detection Systems is its failure of detecting 

previously unknown intrusions. In contrast, the human immune system 

adaptively generates new immune cells so that it is able to detect previously 

unknown and rapidly evolving harmful antigens (Forrest et al 1994). Thus 

the challenge is to emulate the success of the natural systems. 
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Collaborative Filtering is the term for a broad range of algorithms that 

use similarity measures to obtain recommendations. The best1known 

example is probably the “people who bought this also bought” feature of the 

internet company Amazon (2003). However, any problem domain where 

users are required to rate items is amenable to Collaborative Filtering 

techniques. Commercial applications are usually called recommender 

systems (Resnick and Varian 1997). A canonical example is movie 

recommendation. 

 

In traditional Collaborative Filtering, the items to be recommended are 

treated as ‘black boxes’. That is, your recommendations are based purely on 

the votes of other users, and not on the content of the item. The preferences 

of a user, usually a set of votes on an item, comprise a user profile, and these 

profiles are compared in order to build a neighbourhood. The key decision is 

what similarity measure is used: The most common method to compare two 

users is a correlation1based measure like Pearson or Spearman, which gives 

two neighbours a matching score between 11 and 1. The canonical example 

is the k1Nearest1Neighbour algorithm, which uses a matching method to 

select k reviewers with high similarity measures. The votes from these 

reviewers, suitably weighted, are used to make predictions and 

recommendations. 

 

The evaluation of a Collaborative Filtering algorithm usually centres on 

its accuracy. There is a difference between prediction (given a movie, 

predict a given user’s rating of that movie) and recommendation (given a 

user, suggest movies that are likely to attract a high rating). Prediction is 

easier to assess quantitatively but recommendation is a more natural fit to the 

movie domain. A related problem to Collaborative Filtering is that of 

clustering data or users in a database. This is particularly useful in very large 

databases, which have become too large to handle. Clustering works by 

dividing the entries of the database into groups, which contain people with 

similar preferences or in general data of similar type. 
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To implement a basic Artificial Immune System, four decisions have to 

be made: Encoding, Similarity Measure, Selection and Mutation. Once an 

encoding has been fixed and a suitable similarity measure is chosen, the 

algorithm will then perform selection and mutation, both based on the 

similarity measure, until stopping criteria are met. In this section, we will 

describe each of these components in turn. 

 

Along with other heuristics, choosing a suitable encoding is very 

important for the algorithm’s success. Similar to Genetic Algorithms, there 

is close inter1play between the encoding and the fitness function (the later is 

in Artificial Immune Systems referred to as the ‘matching’ or ‘affinity’ 

function). Hence both ought to be thought about at the same time. For the 

current discussion, let us start with the encoding. 

 

First, let us define what we mean by ‘antigen’ and ‘antibody’ in the 

context of an application domain. Typically, an antigen is the target or 

solution, e.g. the data item we need to check to see if it is an intrusion, or the 

user that we need to cluster or make a recommendation for. The antibodies 

are the remainder of the data, e.g. other users in the data base, a set of 

network traffic that has already been identified etc. Sometimes, there can be 

more than one antigen at a time and there are usually a large number of 

antibodies present simultaneously. 

 

Antigens and antibodies are represented or encoded in the same way. For 

most problems the most obvious representation is a string of numbers or 

features, where the length is the number of variables, the position is the 

variable identifier and the value (could be binary or real) of the variable. For 

instance, in a five variable binary problem, an encoding could look like this: 

(10010). 

 

As mentioned previously, for data mining and intrusion detection 

applications. What would an encoding look like in these cases? For data 

mining, let us consider the problem of recommending movies. Here the 

encoding has to represent a user’s profile with regards to the movies he has 

seen and how much he has (dis)liked them. A possible encoding for this 

could be a list of numbers, where each number represents the 'vote' for an 

item. Votes could be binary (e.g. Did you visit this web page?), but can also 
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be integers in a range (say [0, 5], i.e. 0 1 did not like the movie at all, 5 – did 

like the movie very much). 

 

Hence for the movie recommendation, a possible encoding is: 

{ } { } { }{ }�� �+����,�+����,�+����,���� ,...,,, 2211=  

Where �, corresponds to the unique identifier of the movie being rated 

and score to this user’s score for that movie. This captures the essential 

features of the data available (Cayzer and Aickelin 2002). 

 

For intrusion detection, the encoding may be to encapsulate the essence 

of each data packet transferred, e.g. [<protocol> <source ip> <source port> 

<destination ip> <destination port>], example: [<tcp> <113.112.255.254> 

<108.200.111.12> <25> which represents an incoming data packet send to 

port 25. In these scenarios, wildcards like ‘any port’ are also often used. 
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As mentioned in the previous section, similarity measure or matching 

rule is one of the most important design choices in developing an Artificial 

Immune Systems algorithm, and is closely coupled to the encoding scheme. 

 

Two of the simplest matching algorithms are best explained using binary 

encoding: Consider the strings (00000) and (00011). If one does a bit1by1bit 

comparison, the first three bits are identical and hence we could give this 

pair a matching score of 3. In other words, we compute the opposite of the 

Hamming Distance (which is defined as the number of bits that have to be 

changed in order to make the two strings identical). 

 

Now consider this pair: (00000) and (01010). Again, simple bit matching 

gives us a similarity score of 3. However, the matching is quite different as 

the three matching bits are not connected. Depending on the problem and 

encoding, this might be better or worse. Thus, another simple matching 

algorithm is to count the number of continuous bits that match and return the 

length of the longest matching as the similarity measure. For the first 

example above this would still be 3, for the second example this would be 1. 

 

If the encoding is non1binary, e.g. real variables, there are even more 

possibilities to compute the ‘distance’ between the two strings, for instance 

we could compute the geometrical (Euclidian) distance etc. 



� ���

 

For data mining problems, like the movie recommendation system, 

similarity often means ‘correlation’. Take the movie recommendation 

problem as an example and assume that we are trying to find users in a 

database that are similar to the key user who’s profile were are trying to 

match in order to make recommendations. In this case, what we are trying to 

measure is how similar are the two users’ tastes. One of the easiest ways of 

doing this is to compute the Pearson Correlation Coefficient between the two 

users. 

 

I.e. if the Pearson measure is used to compare two user’s u and v: 
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Where u and v are users, n is the number of overlapping votes (i.e. 

Movies for which both u and v have voted), ui is the vote of user u for movie 

i and ū is the average vote of user u over all films (not just the overlapping 

votes). The measure is amended so default to a value of 0 if the two users 

have no films in common. During our research reported in Cayzer and 

Aickelin (2002a, 2002b) we also found it useful to introduce a penalty 

parameter (c.f. penalties in genetic algorithms) for users who only have very 

few films in common, which in essence reduces their correlation. 

 

The outcome of this measure is a value between 11 and 1, where values 

close to 1 mean strong agreement, values near to 11 mean strong 

disagreement and values around 0 mean no correlation. From a data mining 

point of view, those users who score either 1 or 11 are the most useful and 

hence will be selected for further treatment by the algorithm. 

 

For other applications, ‘matching’ might not actually be beneficial and 

hence those items that match might be eliminated. This approach is known 

as ‘negative selection’ and mirrors what is believed to happen during the 

maturation of B1cells who have to learn not to ‘match’ our own tissues as 

otherwise we would be subject to auto1immune diseases. 

 

Under what circumstance would a negative selection algorithm be 

suitable for an Artificial Immune Systems implementation? Consider the 
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case of Intrusion Detection as solved by Hofmeyr and Forrest (2000). One 

way of solving this problem is by defining a set of ‘self’, i.e. a trusted 

network, our company’s computers, known partners etc. During the 

initialisation of the algorithm, we would then randomly create a large 

number of so called ‘detectors’, i.e. strings that looks similar to the sample 

Intrusion Detection Systems encoding given above. We would then subject 

these detectors to a matching algorithm that compares them to our ‘self’. 

Any matching detector would be eliminated and hence we select those that 

do no match (negative selection). All non1matching detectors will then form 

our final detector set. This detector set is then used in the second phase of 

the algorithm to continuously monitor all network traffic. Should a match be 

found now the algorithm would report this as a possible alert or ‘non1self’. 

There are a number of problems with this approach, which we shall discuss 

further in the Enhancements and Future Application Section. 
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The meaning of this step differs somewhat depending on the exact 

problem the Artificial Immune Systems is applied to. We have already 

described the concept of negative selection above. For the film 

recommender, choosing a suitable neighbourhood means choosing good 

correlation scores and hence we will perform ‘positive’ selection. How 

would the algorithm use this? 

 

Consider the Artificial Immune Systems to be empty at the beginning. 

The target user is encoded as the antigen, and all other users in the database 

are possible antibodies. We add the antigen to the Artificial Immune 

Systems and then we add one candidate antibody at a time. Antibodies will 

start with a certain concentration value. This value is decreasing over time 

(death rate), similar to the evaporation in Ant Systems. Antibodies with a 

sufficiently low concentration are removed from the system, whereas 

antibodies with a high concentration may saturate. However, an antibody can 

increase its concentration by matching the antigen, the better the match the 

higher the increase (a process called ‘stimulation’). The process of 

stimulation or increasing concentration can also be regarded as ‘cloning’ if 

one thinks in a discrete setting. Once enough antibodies have been added to 

the system, it starts to iterate a loop of reducing concentration and 

stimulation until at least one antibody drops out. A new antibody is added 

and the process repeated until the Artificial Immune Systems is stabilised, 

i.e. there are no more drop1outs for a certain period of time. 

 



� ���

Mathematically, at each step (iteration) an antibody’s concentration is 

increased by an amount dependent on its matching to each antigen. In 

absence of matching, an antibody’s concentration will slowly decrease over 

time. Hence an Artificial Immune Systems iteration is governed by the 

following equation, based on Farmer et al (1986): 
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Where: 

N is the number of antigens. 

xi is the concentration of antibody i 

yj is the concentration of antigen j 

k2 is the stimulation effect and k3 is the death rate 

mji is the matching function between antibody i & antibody (or antigen) j 

 

The following pseudo code summarise the Artificial Immune Systems of 

the movie recommender: 

 

Initialise Artificial Immune Systems 

Encode user for whom to make predictions as antigen Ag 

WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO 

 Add next user as an antibody Ab 

 Calculate matching scores between Ab and Ag 

 WHILE (Artificial Immune Systems at full size) & (Artificial 

Immune Systems not Stabilised) DO 

  Reduce Concentration of all Abs by a fixed amount 

  Match each Ab against Ag and stimulate as necessary 

 OD 

OD 

Use final set of Antibodies to produce recommendation. 

 

In this example, the Artificial Immune Systems is considered stable after 

iterating for ten iterations without changing in size. Stabilisation thus means 

that a sufficient number of ‘good’ neighbours have been identified and 

therefore a prediction can be made. ‘Poor’ neighbours would be expected to 

drop out of the Artificial Immune Systems after a few iterations. Once the 

Artificial Immune Systems has stabilised using the above algorithm, we use 
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the antibody concentration to weigh the neighbours and then perform a 

weighted average type recommendation. 
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The mutation most commonly used in Artificial Immune Systems is very 

similar to that found in Genetic Algorithms, e.g. for binary strings bits are 

flipped, for real value strings one value is changed at random, or for others 

the order of elements is swapped. In addition, the mechanism is often 

enhanced by the ‘somatic’ idea, i.e. the closer the match (or the less close the 

match, depending on what we are trying to achieve), the more (or less) 

disruptive the mutation. 

 

However, mutating the data might not make sense for all problems 

considered. For instance, it would not be suitable for the movie 

recommender. Certainly, mutation could be used to make users more similar 

to the target, however, the validity of recommendations based on these 

artificial users is questionable and if over1done, we would end up with the 

target user itself. Hence for some problems, somatic Hypermutation is not 

used, since it is not immediately obvious how to mutate the data sensibly 

such that these artificial entities still represent plausible data. 

 

Nevertheless, for other problem domains, mutation might be very useful. 

For instance, taking the negative selection approach to intrusion detection, 

rather than throwing away matching detectors in the first phase of the 

algorithm, these could be mutated to safe time and effort. Also, depending 

on the degree of matching the mutation could e more or less strong. This was 

in fact one extension implemented by Hofmeyr and Forrest (2000). 

 

For data mining problems, mutation might also be useful, if for instance 

the aim is to cluster users. Then the centre of each cluster (the antibodies) 

could be an artificial pseudo user that can be mutated at will until the desired 

degree of matching between the centre and antigens in its cluster is reached. 

This is an approach implemented by Castro and von Zuben (2001).  
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Going through the tutorial so far, you might already have noticed that 

both Genetic Algorithms and Neural Networks have been mentioned a 

number of times. In fact, they both have a number of ideas in common with 

Artificial Immune Systems and the purpose of the following, self1

explanatory table, is to put their similarities and differences next to each 

other (see Dasgupta 1999). Evolutionary computation shares many elements, 

concepts like population, genotype phenotype mapping, and proliferation of 

the most fitted are present in different Artificial Immune Systems methods.  

 

Artificial Immune Systems models based on immune networks resembles 

the structures and interactions of connectionist models. Some works have 

pointed out the similarities and the differences between Artificial Immune 

Systems and artificial neural networks (Dasgupta 1999 and De Castro and 

Von Zuben 2001). De Castro has also used Artificial Immune Systems to 

initialize the centres of radial basis function neural networks and to produce 

a good initial set of weights for feed1forward neural networks. 

 

It should be noted that some of the items in table 1 are gross 

simplifications, both to benefit the design of the table and not to overwhelm 

the reader. Some of these points are debatable; however, we believe that this 

comparison is valuable nevertheless to show exactly where Artificial 

Immune Systems fit in. The comparisons are based on a Genetic Algorithm 

(GA) used for optimisation and a Neural Network (NN) used for 

Classification. 

 

  GA 

(Optimisation) 

NN 

(Classification) 

Artificial Immune 

Systems 

Components Chromosome 

Strings 

Artificial 

Neurons 

Attribute Strings 

Location of 

Components 

Dynamic Pre1Defined Dynamic 

Structure Discrete 

Components 

Networked 

Components 

Discrete 

components / 

Networked 

Components 

Knowledge 

Storage 

Chromosome 

Strings 

Connection 

Strengths 

Component 

Concentration / 

Network 
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Connections 

Dynamics Evolution Learning Evolution / 

Learning 

Meta1

Dynamics 

Recruitment / 

Elimination of 

Components 

Construction / 

Pruning of 

Connections 

Recruitment / 

Elimination of 

Components 

Interaction 

between 

Components 

Crossover Network 

Connections 

Recognition / 

Network 

Connections 

Interaction 

with 

Environment 

Fitness Function External Stimuli Recognition / 

Objective 

Function 

Threshold 

Activity 

Crowding / 

Sharing 

Neuron 

Activation 

Component 

Affinity 

Table 1: Comparison of Artificial Immune Systems to Genetic 

Algorithms and Neural Networks. 
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The idiotypic effect builds on the premise that antibodies can match other 

antibodies as well as antigens. It was first proposed by Jerne (1973) and 

formalised into a model by Farmer et al (1986). The theory is currently 

debated by immunologists, with no clear consensus yet on its effects in the 

humoral immune system (Kuby 2002). The idiotypic network hypothesis 

builds on the recognition that antibodies can match other antibodies as well 

as antigens. Hence, an antibody may be matched by other antibodies, which 

in turn may be matched by yet other antibodies. This activation can continue 

to spread through the population and potentially has much explanatory 

power. It could, for example, help explain how the memory of past 

infections is maintained. Furthermore, it could result in the suppression of 

similar antibodies thus encouraging diversity in the antibody pool. The 

idiotypic network has been formalised by a number of theoretical 

immunologists (Perelson and Weisbuch 1997): 
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Where: 

� is the number of antibodies and � is the number of antigens. 

.� (or .�) is the concentration of antibody ��(or�-) 


� is the concentration of antigen -�

+ is a rate constant 

/� is a suppressive effect and /� is the death rate 

�-� is the matching function between antibody � & antibody (or antigen) -�

 

As can be seen from the above equation, the nature of an idiotypic 

interaction can be either positive or negative. Moreover, if the matching 

function is symmetric, then the balance between “I am recognised” and 

“Antibodies recognised” (parameters + and /� in the equation) wholly 

determines whether the idiotypic effect is positive or negative, and we can 

simplify the equation. We can simplify equation (1) above still if we only 

allow one antigen in the Artificial Immune Systems. In the new equation (2), 

the first term is simplified as we only have one antigen, and the suppression 

term is normalised to allow a ‘like for like’ comparison between the different 

rate constants. The simplified equation looks like this: 
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Where: 

/� is stimulation, /� suppression and /�� death rate 

���is the correlation between antibody � and the (sole) antigen 

.� (or .�) is the concentration of antibody ��(or�-) 


 is the concentration of the (sole) antigen�

��- is the correlation between antibodies � and - 

� is the number of antibodies. 

 

Why would we want to use the idotypic effect? Because it might provide 

us with a way of achieving ‘diversity’, similar to ‘crowding’ or ‘fitness 

sharing’ in a genetic algorithm. For instance, in the movie recommender, we 

want to ensure that the final neighbourhood population is diverse, so that we 

get more interesting recommendations. Hence, to use the idiotypic effect in 

the movie recommender system mentioned previously, the pseudo code 

would be amended by adding the following lines in italic. 
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Initialise Artificial Immune Systems 

Encode user for whom to make predictions as antigen Ag 

WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO 

   Add next user as an antibody Ab 

    Calculate matching scores between Ab and Ag ��,�!1���,��	����!1� 

 WHILE (Artificial Immune Systems at full size) & (Artificial 

Immune Systems not Stabilised) DO 

      Reduce Concentration of all Abs by a fixed amount 

      Match each Ab against Ag and stimulate as necessary 

� �������	+����+��!1�������	���+���	����!1���,��.�+$	���,��	
��+��

�+	�

 OD 

OD 

Use final set of Antibodies to produce recommendation. 

 

The diagrams in figure 3 below show the idiotypic effect using dotted 

arrows whereas standard stimulation is shown using black arrows. In the left 

diagram antibodies Ab1 and Ab3 are very similar and they would have their 

concentrations reduced in the ’Iterate Artificial Immune Systems’ stage of 

the algorithm above. However, in the right diagram, the four antibodies are 

well separated from each other as well as being close to the antigen and so 

would have their concentrations increased. 

 

At each iteration of the film recommendation Artificial Immune Systems 

the concentration of the antibodies is changed according to the formula 

given on the next page. This will increase the concentration of antibodies 

that are similar to the antigen and can allow either the stimulation, 

suppression, or both, of antibody1antibody interactions to have an effect on 

the antibody concentration. More detailed discussion of these effects on 

recommendation problems are contained within Cayzer and Aickelin (2002a 

and 2002b). 
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#��$���%�& Illustration of the idiotypic effect 
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Over the last decade, a new theory has become popular amongst 

immunologists. It is called the Danger Theory, and its chief advocate is 

Matzinger (1994, 2001 and 2003). A number of advantages are claimed for 

this theory; not least that it provides a method of ‘grounding’ the immune 

response. The theory is not complete, and there are some doubts about how 

much it actually changes behaviour and / or structure. Nevertheless, the 

theory contains enough potentially interesting ideas to make it worth 

assessing its relevance to Artificial Immune Systems. 

 

However, it is not simply a question of matching in the humoral immune 

system. It is fundamental that only the ‘correct’ cells are matched as 

otherwise this could lead to a self1destructive autoimmune reaction. 

Classical immunology (Kuby 2002) stipulates that an immune response is 

triggered when the body encounters something non1self or foreign. It is not 

yet fully understood how this self1non1self discrimination is achieved, but 

many immunologists believe that the difference between them is learnt early 

in life. In particular it is thought that the maturation process plays an 

important role to achieve self1tolerance by eliminating those T and B1cells 

that react to self. In addition, a ‘confirmation’ signal is required; that is, for 

either B1cell or T (killer) cell activation, a T (helper) lymphocyte must also 

be activated. This dual activation is further protection against the chance of 

accidentally reacting to self. 

 

Ab3 

Ab2 

Ab1 
AG 
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Matzinger’s Danger Theory debates this point of view (for a good 

introduction, see Matzinger 2003). Technical overviews can be found in 

Matzinger (1994) and Matzinger (2001). She points out that there must be 

discrimination happening that goes beyond the self1non1self distinction 

described above. For instance: 

•� There is no immune reaction to foreign bacteria in the gut or to the food 

we eat although both are foreign entities. 

•� Conversely, some auto1reactive processes are useful, for example against 

self molecules expressed by stressed cells. 

•� The definition of self is problematic – realistically, self is confined to the 

subset actually seen by the lymphocytes during maturation. 

•� The human body changes over its lifetime and thus self changes as well. 

Therefore, the question arises whether defences against non1self learned 

early in life might be autoreactive later. 

 

Other aspects that seem to be at odds with the traditional viewpoint are 

autoimmune diseases and certain types of tumours that are fought by the 

immune system (both attacks against self) and successful transplants (no 

attack against non1self). 

 

Matzinger concludes that the immune system actually discriminates 

“some self from some non1self”. She asserts that the Danger Theory 

introduces not just new labels, but a way of escaping the semantic 

difficulties with self and non1self, and thus provides grounding for the 

immune response. If we accept the Danger Theory as valid we can take care 

of ‘non1self but harmless’ and of ‘self but harmful’ invaders into our system. 

To see how this is possible, we will have to examine the theory in more 

detail. 

 

The central idea in the Danger Theory is that the immune system does 

not respond to non1self but to danger. Thus, just like the self1non1self 

theories, it fundamentally supports the need for discrimination. However, it 

differs in the answer to what should be responded to. Instead of responding 

to foreignness, the immune system reacts to danger. This theory is borne out 

of the observation that there is no need to attack everything that is foreign, 

something that seems to be supported by the counter examples above. In this 

theory, danger is measured by damage to cells indicated by distress signals 

that are sent out when cells die an unnatural death (cell stress or lytic cell 

death, as opposed to programmed cell death, or apoptosis). 

 

Figure 4 depicts how we might picture an immune response according to 

the Danger Theory (Aickelin and Cayzer (2002)). A cell that is in distress 
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sends out an alarm signal, where upon antigens in the neighbourhood are 

captured by antigen1presenting cells such as macrophages, which then travel 

to the local lymph node and present the antigens to lymphocytes. Essentially, 

the danger signal establishes a danger zone around itself. Thus B1cells 

producing antibodies that match antigens within the danger zone get 

stimulated and undergo the clonal expansion process. Those that do not 

match or are too far away do not get stimulated.  

 

Antigens 

Antibodies 

Match, but 
too far 

away 

Stimulation 

Danger 

Zone 

Danger Signal 

Damaged Cell 

Cells 

No match 

 

#��$���%"& Danger Theory Illustration 

 

 

Matzinger admits that the exact nature of the danger signal is unclear. It 

may be a ‘positive’ signal (for example heat shock protein release) or a 

‘negative’ signal (for example lack of synaptic contact with a dendritic 

antigen1presenting cell). This is where the Danger Theory shares some of the 

problems associated with traditional self1non1self discrimination (i.e. how to 

discriminate danger from non1danger). However, in this case, the signal is 

grounded rather than being some abstract representation of danger. 

 

How could we use the Danger Theory in Artificial Immune Systems? 

The Danger Theory is not about the way Artificial Immune Systems 

represent data (Aickelin and Cayzer 2002). Instead, it provides ideas about 

which data the Artificial Immune Systems should represent and deal with. 
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They should focus on dangerous, i.e. interesting data. It could be argued that 

the shift from non1self to danger is merely a symbolic label change that 

achieves nothing. We do not believe this to be the case, since danger is a 

grounded signal, and non1self is (typically) a set of feature vectors with no 

further information about whether all or some of these features are required 

over time. The danger signal helps us to identify which subset of feature 

vectors is of interest. A suitably defined danger signal thus overcomes many 

of the limitations of self1non1self selection. It restricts the domain of non1self 

to a manageable size, removes the need to screen against all self, and deals 

adaptively with scenarios where self (or non1self) changes over time. 

 

The challenge is clearly to define a suitable danger signal, a choice that 

might prove as critical as the choice of fitness function for an evolutionary 

algorithm. In addition, the physical distance in the biological system should 

be translated into a suitable proxy measure for similarity or causality in 

Artificial Immune Systems. This process is not likely to be trivial. 

Nevertheless, if these challenges are met, then future Artificial Immune 

Systems applications might derive considerable benefit, and new insights, 

from the Danger Theory, in particular Intrusion Detection Systems. 
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It seems intuitively obvious, that Artificial Immune Systems should be 

most suitable for computer security problems. If the human immune system 

keeps our body alive and well, why can we not do the same for computers 

using Artificial Immune Systems? 

 

Earlier, we have outlined the traditional approach to do this: However, in 

order to provide viable Intrusion Detection Systems, Artificial Immune 

Systems must build a set of detectors that accurately match antigens. In 

current Artificial Immune Systems based Intrusion Detection Systems 

(Dasgupta and Gonzalez (2002), Esponda et al (2002), Hofmeyr and Forrest 

(2000)), both network connections and detectors are modelled as strings. 

Detectors are randomly created and then undergo a maturation phase where 

they are presented with good, i.e. self, connections. If the detectors match 

any of these they are eliminated otherwise they become mature. These 

mature detectors start to monitor new connections during their lifetime. If 

these mature detectors match anything else, exceeding a certain threshold 

value, they become activated. This is then reported to a human operator who 
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decides whether there is a true anomaly. If so, the detectors are promoted to 

memory detectors with an indefinite life span and minimum activation 

threshold (immunisation) (Kim and Bentley 2002). 

 

An approach such as the above is known as negative selection as only 

those detectors (antibodies) that do not match live on (Forrest et al. 1994). 

Earlier versions of negative selection algorithm used binary representation 

scheme, however, this scheme shows scaling problems when it is applied to 

real network traffic (Kim and Bentley 2001). As the systems to be protected 

grow larger and larger so does self and nonself. Hence, it becomes more and 

more problematic to find a set of detectors that provides adequate coverage, 

whilst being computationally efficient. It is inefficient, to map the entire self 

or nonself universe, particularly as they will be changing over time and only 

a minority of nonself is harmful, whilst some self might cause damage (e.g. 

internal attack). This situation is further aggravated by the fact that the labels 

self and nonself are often ambiguous and even with expert knowledge they 

are not always applied correctly (Kim and Bentley 2002). 

 

How could this problem be overcome? One way could be to borrowed 

ideas from the Danger Theory to provide a way of grounding the response 

and hence removing the necessity to map self or nonself. In our system, the 

correlation of low1level alerts (danger signals) will trigger a reaction. An 

important and recent research issue for Intrusion Detection Systems is how 

to find true intrusion alerts from thousands and thousands of false alerts 

generated (Hofmeyr and Forrest 2000). Existing Intrusion Detection Systems 

employ various types of sensors that monitor low1level system events. Those 

sensors report anomalies of network traffic patterns, unusual terminations of 

UNIX processes, memory usages, the attempts to access unauthorised files, 

etc. (Kim and Bentley 2001). Although these reports are useful signals of 

real intrusions, they are often mixed with false alerts and their unmanageable 

volume forces a security officer to ignore most alerts (Hoagland and 

Staniford 2002). Moreover, the low level of alerts makes it very hard for a 

security officer to identify advancing intrusions that usually consist of 

different stages of attack sequences. For instance, it is well known that 

computer hackers use a number of preparatory stages (rArtificial Immune 

Systemsing low1level alerts) before actual hacking according to 

Hoaglandand and Staniford. Hence, the correlations between intrusion alerts 

from different attack stages provide more convincing attack scenarios than 

detecting an intrusion scenario based on low1level alerts from individual 

stages. Furthermore, such scenarios allow the Intrusion Detection Systems to 

detect intrusions early before damage becomes serious. 
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To correlate Intrusion Detection Systems alerts for detection of an 

intrusion scenario, recent studies have employed two different approaches: a 

probabilistic approach (Valdes and Skinner (2001)) and an expert system 

approach (Ning et al (2002)). The probabilistic approach represents known 

intrusion scenarios as Bayesian networks. The nodes of Bayesian networks 

are Intrusion Detection Systems alerts and the posterior likelihood between 

nodes is updated as new alerts are collected. The updated likelihood can lead 

to conclusions about a specific intrusion scenario occurring or not. The 

expert system approach initially builds possible intrusion scenarios by 

identifying low1level alerts. These alerts consist of prerequisites and 

consequences, and they are represented as hypergraphs. Known intrusion 

scenarios are detected by observing the low1level alerts at each stage, but 

these approaches have the following problems according to Cuppens et al 

(2002): 

 

•� Handling unobserved low1level alerts that comprise an intrusion 

scenario. 

•� Handling optional prerequisite actions. 

•� Handling intrusion scenario variations. 

 

The common trait of these problems is that the Intrusion Detection 

Systems can fail to detect an intrusion when an incomplete set of alerts 

comprising an intrusion scenario is reported. In handling this problem, the 

probabilistic approach is somewhat more advantageous than the expert 

system approach because in theory it allows the Intrusion Detection Systems 

to correlate missing or mutated alerts. The current probabilistic approach 

builds Bayesian networks based on the similarities between selected alert 

features. However, these similarities alone can fail to identify a causal 

relationship between prerequisite actions and actual attacks if pairs of 

prerequisite actions and actual attacks do not appear frequently enough to be 

reported. Attackers often do not repeat the same actions in order to disguise 

their attempts. Thus, the current probabilistic approach fails to detect 

intrusions that do not show strong similarities between alert features but 

have causal relationships leading to final attacks. This limit means that such 

Intrusion Detection Systems fail to detect sophisticated intrusion scenarios. 

 

We propose Artificial Immune Systems based on Danger Theory ideas 

that can handle the above Intrusion Detection Systems alert correlation 

problems. The Danger Theory explains the immune response of the human 

body by the interaction between Antigen Presenting Cells and various 

signals. The immune response of each Antigen Presenting Cell is determined 

by the generation of danger signals through cellular stress or cell death. In 
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particular, the balance and correlation between different danger signals 

depending on different1cell death causes would appear to be critical to the 

immunological outcome. The investigation of this hypothesis is the main 

research goal of the immunologists for this project. The wet experiments of 

this project focus on understanding how the Antigen Presenting Cells react 

to the balance of different types of signals, and how this reaction leads to an 

overall immune response. Similarly, our Intrusion Detection Systems 

investigation will centre on understanding how intrusion scenarios would be 

detected by reacting to the balance of various types of alerts. In the Human 

Immune System, Antigen Presenting Cells activate according to the balance 

of apoptotic and necrotic cells and this activation leads to protective immune 

responses. Similarly, the sensors in Intrusion Detection Systems report 

various low1level alerts and the correlation of these alerts will lead to the 

construction of an intrusion scenario. 
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Are Artificial Immune Systems suitable for pure optimisation? 

Depending on what is meant by optimisation, the answer is probably no, 

in the same sense as ‘pure’ genetic algorithms are not ‘function optimizers’. 

One has to keep in mind that although the immune system is about matching 

and survival, it is really a team effort where multiple solutions are produced 

all the time that together provide the answer. Hence, in our opinion Artificial 

Immune Systems is probably more suited as an optimiser where multiple 

solutions are of benefit, either directly, e.g. because the problem has multiple 

objectives or indirectly, e.g. when a neighbourhood of solution sis produced 

that is then used to generate the desired outcome. However, Artificial 

Immune Systems can be made into more focused optimisers by adding hill1

climbing or other functions that exploit local or problem specific knowledge, 

similar to the idea of augmenting genetic algorithm to memetic algorithms. 

 

What problems are Artificial Immune Systems most suitable for? 

As mentioned in the previous paragraph, we believe that although using 

Artificial Immune Systems for pure optimisation, e.g. the Travelling 

Salesman Problem or Job Shop Scheduling, can be made to work, this is 

probably missing the point. Artificial Immune Systems are powerful when a 

population of solution is essential either during the search or as an outcome. 

Furthermore, the problem has to have some concept of ‘matching’. Finally, 

because at their heart Artificial Immune Systems are evolutionary 

algorithms, they are more suitable for problems that change over time rather 

and need to be solved again and again, rather than one1off optimisations. 
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Hence, the evidence seems to point to Data Mining in its wider meaning as 

the best area for Artificial Immune Systems. 

 

How do I set the parameters? 

Unfortunately, there is no short answer to this question. As with the 

majority of other heuristics that require parameters to operate, their setting is 

individual to the problem solved and universal values are not available. 

However, it is fair to say that along with other evolutionary algorithms 

Artificial Immune Systems are robust with respect to parameter values as 

long as they are chosen from a sensible range. 

 

Why not use a Genetic Algorithm instead? 

Because you may miss out on the benefits of the idiotypic network 

effects. 

 

Why not use a Neural Network instead? 

Because you may miss out on the benefits of a population of solutions 

and the evolutionary selection pressure and mutation. 

 

Are Artificial Immune Systems Learning Classifier Systems under a 

different name? 

No, not quite. However, to our knowledge Learning Classifier Systems 

are probably the most similar of the better known meta1heuristic, as they 

also combine some features of Evolutionary Algorithms and Neural 

Networks. However, these features are different. Someone who is interested 

in implementing and Artificial Immune Systems or Learning Classifier 

Systems is likely to be well advised to read about both approaches to see 

which one is most suited for the problem at hand. 
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The immune system is highly distributed, highly adaptive, self1

organising in nature, maintains a memory of past encounters, and has the 

ability to continually learn about new encounters. The Artificial Immune 

Systems is an example of a system developed around the current 

understanding of the immune system. It illustrates how an Artificial Immune 

Systems can capture the basic elements of the immune system and exhibit 

some of its chief characteristics. 

 

Artificial Immune Systems can incorporate many properties of natural 

immune systems, including diversity, distributed computation, error 
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tolerance, dynamic learning and adaptation and self1monitoring. The human 

immune system has motivated scientists and engineers for finding powerful 

information processing algorithms that has solved complex engineering 

tasks. The Artificial Immune Systems is a general framework for a 

distributed adaptive system and could, in principle, be applied to many 

domains. Artificial Immune Systems can be applied to classification 

problems, optimisation tasks and other domains. Like many biologically 

inspired systems it is adaptive, distributed and autonomous. The primary 

advantages of the Artificial Immune Systems are that it only requires 

positive examples, and the patterns it has learnt can be explicitly examined. 

In addition, because it is self1organizing, it does not require effort to 

optimize any system parameters. 

 

To us, the attraction of the immune system is that if an adaptive pool of 

antibodies can produce 'intelligent' behaviour, can we harness the power of 

this computation to tackle the problem of preference matching, 

recommendation and intrusion detection? Our conjecture is that if the 

concentrations of those antibodies that provide a better match are allowed to 

increase over time, we should end up with a subset of good matches. 

However, we are not interested in optimising, i.e. in finding the one best 

match. Instead, we require a set of antibodies that are a close match but 

which are at the same time distinct from each other for successful 

recommendation. This is where we propose to harness the idiotypic effects 

of binding antibodies to similar antibodies to encourage diversity. 
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The following websites, books and proceedings should be an excellent 

starting point for those readers wishing to learn more about Artificial 

Immune Systems. 

 

•� Artificial Immune Systems and Their Applications by D Dasgupta 

(Editor), Springer Verlag, 1999. 

•� Artificial Immune Systems: A New Computational Intelligence 

Approach by L de Castro, J Timmis, Springer Verlag, 2002. 

•� Immunocomputing: Principles and Applications by A Tarakanov et al, 

Springer Verlag, 2003. 

•� Proceedings of the International Conference on Artificial Immune 

Systems (ICARIS), Springer Verlag, 2003. 
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•� Artificial Immune Systems Forum Webpage: http://www.artificial1

immune1systems.org/artist.htm 

•� Artificial Immune Systems Bibliography: http://issrl.cs.memphis.edu/ 

Artificial Immune Systems/Artificial Immune Systems_bibliography.pdf 
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