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��������—In this paper, we implement an anomaly detection 

system using the Dempster�Shafer method. Using two standard 

benchmark problems we show that by combining multiple 

signals it is possible to achieve better results than by using a 

single signal. We further show that by applying this approach 

to a real�world email dataset the algorithm works for email 

worm detection. Dempster�Shafer can be a promising method 

for anomaly detection problems with multiple features (data 

sources), and two or more classes. 

I.� INTRODUCTION 

Intrusion Detection Systems (IDSs) play a pivotal role 

within network security [1]. IDSs are one of many tools used 

to detect attacks and intruders of computer systems. It is 

important to note that the purpose of IDSs is not to prevent 

the entry of intruders to a system, but to notify the 

administrator of any observed intruders. 

IDS techniques can be categorised as either misuse 

detectors or anomaly detectors. Misuse detection systems, 

such as Snort [2], rely on intrusion signatures to detect an 

attack. Such signatures are stored in a database, which relies 

on frequent updates to remain functional. System behaviours 

are matched against the signatures within the database. If a 

successful match is formed, an alert is generated. An 

administrator can use these alerts to investigate the potential 

problem, and generate appropriate responses. However, like 

many anti-virus scanners, misuse-detectors rely on continual 

updates of the signature database. Hence the main drawback 

with this paradigm is that it will never detect ‘day-zero’ 

intrusions to which signatures have not yet been created. 

Conversely, anomaly detection techniques generate 

profiles of normal behaviour. Deviations from the ‘normal 

profile’ result in the generation of alerts, which are used by 

the system administrator for audit purposes. The major 

advantage of anomaly detection systems is that novel attacks 

can be detected. Unfortunately, the profiles are not always 

accurate, as user behaviour changes over time. This can lead 

to the generation of false positive alerts, when previously 

unseen user behaviour occurs for legitimate reasons. The 

false positive rate can be sufficiently high that the anomaly 

detection system can be flooded by these alerts, forcing the 

administrator to either ignore the alerts or disable the system. 

Our work is part of the research to reduce the number of 

false alerts produced by anomaly detection systems.  
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A considerable number of anomaly detection systems have 

been developed. Examples include [3] who employed 

statistical and grammatical metrics to detect anomalies 

within system calls, and [4] which used an immune-inspired 

system to detect abnormal processes.  

Anomaly detection is not restricted to computer security. 

Other applications such as threat assessment and medical 

diagnosis rely on detecting deviations within dynamic 

environments. One technique used for detection is 

���������	
� ��� ����	�� [5]. This is a form of signal 

processing, where data from multiple sources is used for 

analysis. The Dempster-Shafer theory of inference is a 

statistical method, considered as a generalised Bayesian 

theory, which can be used to combine multiple streams of 

input data. We believe that the Dempster-Shafer method can 

be successfully applied to anomaly detection through 

assigning ‘belief values’ to inputs from various data sources. 

The remainder of this paper is organised as follows. 

Section II discusses the fundamentals of the Dempster-Shafer 

Theory and its advantages and disadvantages. An anomaly 

detection approach using the Dempster-Shafer theory is 

presented in III. We give some experimental results for two 

standard benchmark problems in IV and V. These two 

datasets are the Wisconsin Breast Cancer Dataset and the Iris 

dataset of the UCI Machine Learning Repository [6]. The 

experiment results for the email worm dataset (collected by 

our colleague) are described in VI. VII concludes the paper.  

II.� THE DEMPSTER-SHAFER (D-S) THEORY 

The Dempster-Shafer (D-S) theory is a mathematical 

theory of evidence, introduced in the 1960's by Arthur 

Dempster [7] and developed in the 1970's by Glenn Shafer 

[8]. The D-S Theory is viewed as a mechanism for reasoning 

under epistemic (knowledge) uncertainty. The part of the D-

S theory which is of direct relevance to our work is ��� 

�������
��� 
����	���	������	�. We present some essential 

mathematical terminologies in section A, before we 

introduce ���� �������
��� 
���� 	�� �	������	� in B. We 

introduce the advantages and disadvantages of D-S in C. 

��� �����������������
���	�	���

���	
�������
��	
����ΘΘΘΘ� is�a finite set mutually exclusive 

propositions and hypotheses about some problem domain. 

������������������������	
�������� is stated in [8] as : “If Θ 

is a frame of discernment, then a function m: [ ]1,02 →Θ  is 

called a ������
	����������������� whenever  

0)( =φ�                                                    (1)    and 
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The mass value of A (m(A)) is also called A’s �����

�
	�������������
, and it is understood to be the measure of 

the belief that is committed exactly to A.” 

�
��
�����������
�� is a belief measure of a proposition A, 

and it sums the mass value of all the non-empty subsets of A. 

This subset is also called the focal element of the ���. 

∑=
⊆ ��

������ )()(                                     (3) 

��������������������������takes into account all the elements 

related to A (either supported by evidence or unknown).  

)(1)( ������� ¬−=                                 (4) 

For the subset A, Bel(A) and Pl(A) represent upper and 

lower belief bounds, and the interval [Bel(A), Pl(A)] 

represents the belief range. The relationships between Bel 

value, Pl value and uncertainty are described in Figure 1. 
 

 
Fig. 1.  The uncertainty interval for a hypothesis [9] 
 

��� �����������
��������	���	������	��

∑−

∑

=

=∩

=∩

φ��

���

����

����

��
)()(1

)()(

)(
21

21

12
                      (5) 

We can use Dempster’s rule of combination to combine 

the mass values of all features from each individual sensor to 

achieve the overall summary mass values for each sensor. 

These summary values from all sensors are combined to give 

the summary mass values for the system. 

Initially, the ��s are used to assign the mass values to 

appropriate hypothesis. Then the resulting mass values are 

used to calculate the belief for the appropriate hypothesis. 

Finally all beliefs are combined with Dempster’s rule of 

combination to gain the overview belief for the appropriate 

hypothesis, as shown in Equation (5). 

��� �� ������������� ������	���!"�

The main advantage of D-S is that no ��
�	
� knowledge 

is required, making it potentially suitable for anomaly 

detection of previously unseen information. Another 

advantage is that a value for ignorance can be expressed, 

giving information on the uncertainty of a situation. Bayesian 

inference requires a priori knowledge and does not allow 

allocating probability to ignorance. It can only express the 

probability of an event being either abnormal or normal. It is 

our opinion that a Bayesian approach is not always suitable 

for anomaly detection because pre-existing knowledge may 

not always be provided. In particular, if the aim is to detect 

previously unseen attacks, then a system which relies on 

existing knowledge cannot be used. 

There are two major problems associated with D-S: the 

computation complexity and conflicting beliefs management. 

The computational complexity increases exponentially with 

the number of �
���� 	�� �����
������ #Θ$� If there are � 

elements in Θ, there will be up to 12 −�  focal elements for the 

mass function. The combination of two mass functions needs 

the computation of up to �2 intersections. To overcome this, 

various algorithms, such as [10] and [11], have been 

suggested to reduce the focal element number in the involved 

mass functions. For anomaly detection, the resulting 

computation complexity is low, as the �
�� 	�������
����� 

consists of only two elements (normal and abnormal). There 

are up to three focal elements of belief functions: {normal}, 

{abnormal}, and {normal or abnormal} (i.e. the uncertainty), 

resulting in low computation complexity 

The Dempster’s rule of combination redistributes the mass 

values of empty propositions to non-empty propositions, also 

known as normalization step, due to the definition of the 

mass function. This sometimes leads to erroneous results, 

which causes the conflicting management problem. In order 

to solve this problem, some alternative combination rules 

have been proposed, as in [12] and [13], but none have yet 

been accepted as a standard method. In order to illustrate this 

problem, consider the following example: a car window has 

been broken, and the culprit needs to be identified. There are 

three suspicious people (Jon, Mary, and Mike) and two 

witnesses (Witness1 and Witness2). Witness1 assigns “Jon 

broke it” with a mass value of 0.9, and “Mary broke it” with 

a mass value of 0.1; witness2 assigns “Mike broke it” with a 

mass value of 0.9, and “Mary broke it” with a mass value of 

0.1. Both witnesses assign a very small mass  ��� to “Mary 

broke it”. Applying the Dempster’s rule of combination for 

“Mary broke the window”, returns a value of 1, which is not 

accurate. This is because the mass  ��� can be affected by 

taking into account conflicting opinions of multiple sources. 

For our anomaly detection application, each �� will assign 

a non-zero mass value to {normal or abnormal} as the error 

rate; therefore we will not face any belief conflict problems. 

In summary, the D-S method is a combination of a theory 

of evidence and probable reasoning, to derive a belief that an 

event has occurred. Individual beliefs are updated and 

combined to give a belief of an event occurring in the system 

as a whole. Though a hotly debated point, D-S has 

advantages over Bayesian techniques when applied to 

anomaly detection as described above. For our application, 

each �� will assign a non-zero mass value to {normal or 

abnormal}, this avoids any belief conflict problems. 

III.� THE APPLICATION OF D-S IN ANOMALY DETECTION 

We implemented a D-S system and applied it to two 

standard benchmark problems of the UCI datasets [6], the 

Wisconsin Breast Cancer Dataset (%���) and the Iris 

Dataset, and one email dataset made by our colleague. Two 

standard benchmark dataset are chosen to compare our 

approach with the performance of other algorithms, and to 

investigate whether it is possible to achieve good results by 

combining various features using D-S. The email dataset is 

chosen, because it is in our interested application area.  

The anomaly detection system uses a training process to 
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derive thresholds from the training data, and detects an event 

as normal or abnormal (as shown in figure 2). The �� 

functions are built based on these thresholds for the purpose 

of assigning mass values. The anomaly detection approach is 

demonstrated in figure 3. The data from various sources are 

processed and sent to corresponding �� assignment 

functions. The mass values for each hypothesis are generated 

and sent to D-S combination component. This component 

uses the Dempster’s rule of combination to combine all mass 

values; and generate the overall mass values for each 

hypothesis. The data can be detected as normal or abnormal 

based on the overall mass values for each hypothesis.  
 

 
Fig. 2.  Data flow of the Anomaly Detection System 
 

All experiments for the three chosen datasets were 

executed on an Intel Pentium 4 CPU, 1.5G Hz, 256MB 

RAM, Windows 2000 platform computer. The system was 

coded using Java 2 platform, Standard Edition (J2SE) 1.4.0. 

The execution times (average running time of 10 runs) for 

the three datasets are: 30 seconds for the WBCD, 25 seconds 

for the Iris dataset, and 12 seconds for the email dataset. 

 
Fig. 3.  Anomaly Detection Approach 

IV.� EXPERIMENTS WITH THE WBCD 

��� ����%���	������
��������
�������#%���$�

The WBCD is a standard benchmark dataset of the UCI 

Machine Learning Repository [6]. This dataset is chosen for 

two objectives. One is to compare our approach with the 

performance of other algorithms. The other is to investigate 

whether it is possible to achieve good results by combining 

multiple features using D-S, without excessive manual 

intervention or domain knowledge based parameter tuning.  

The WBCD contains 699 data items: 241 malignant items 

(abnormal data), and 458 benign items (normal data). This 

dataset has nine features; all features are normalised integers 

in the range between 1 and 10. A, B, C, D, E, F, G, H and I 

are used to represent the biological features of A: Clump 

Thickness, B: Uniformity of Cell Size, C: Uniformity of Cell 

Shape, D: Marginal Adhesion, E: Single Epithelial Cell Size, 

F: Bare Nuclei, G: Bland Chromatin, H: Normal Nucleoli, 

and I: Mitoses, respectively. There are 16 instances; each 

contains a single missing (i.e. unavailable) attribute value. 

Our D-S based anomaly detection system has the ability to 

cope with this problem by omitting, i.e. not combining, the 

missing values of the corresponding data items. This is an 

advantage of D-S over other approaches, such as [14] [15], 

which have to exclude the 16 items with missing values. 

For the WBCD, the frame of discernment of the system is 

{normal, abnormal}. The �� function and the ��
���	�� 

settings are illustrated in the next section. 

��� ��������������	����
	���

We use ten fold cross validation in our experiment. The 

dataset is divided into ten subsets of approximately equal 

size (one subset size is either 69 or 70). Each time we use the 

data of one subset as test data, and the data of the other nine 

subsets as training data. The training data is used to obtain 

the modified median threshold to build the �� functions. 

The dataset size is 699, so the training data size is either 630 

or 629. The proportional distribution of the WBCD is 

65.5%:34.5% (normal: abnormal). We order the training data 

feature values from small to large based on each feature. If 

the training data size is 630, the 413
th

 small value of one 

feature is chosen as the modified median threshold. If the 

training data size is 629, the 412
th

 small value of one feature 

is chosen as the modified median threshold.  We use a 

general assumption that the lower value items tend to be 

normal data. 
 

Then the �� function for each feature is : 

)(1)(

)1( 1

�	
�����	
���

��#�	
��$ ��
���	��$#� ���

−=

+= −−

             (6).   

 

Figure 4 shows a graphical illustration of the shapes of 

functions using a sample threshold of 5. Note that for the 

problems we study, all data items are integers and hence the 

functions consist of discrete values only.      

�
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���

���

���

�

� � � � � 	 � 
 � � ��  
Fig. 4.  Part of the �� function for the WBCD, the x-axis shows feature 

values, y-axis shows mass values 
 

All thresholds for nine features are found, and the �� 

functions are built for each feature. For each data item, the 

�� functions are used to assign the mass values for each 

feature based on that feature value. For that data item, all 

mass values are combined to obtain the overall mass values 

of the hypothesis normal and of the hypothesis abnormal. If 

the mass value of the ‘abnormal’ hypothesis is bigger than 

the mass value of the ‘normal’ hypothesis, then it is classified 

as abnormal; otherwise it is classified as normal. 

��� &'��
�������
��������	
�����%����

To judge the quality of results, we compare the 

data from various 

sources/features�
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classification accuracies, based on the following definition: 

classification accuracy =
items ofnumber  Total

 items classifiedcorrectly  ofNumber . 
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Fig. 5. Classification accuracies with various features for the WBCD 
 

Figure 5 shows that feature A (classification rate 86.0%), 

D (85.7%) and I (79.3%) give the poorest performance when 

using only one feature at a time. The result when combing 

multiple features (A, D and I) together (90.0%) is better than 

using either A, D or I alone. Features B (92.7%), C (92.1%), 

and F (91.3%) are the best three features when using only 

one feature at a time. Similarly the result of combining these 

three (95.7%) is better than using either of them alone. The 

result of using all nine features (97.6%) is better than any 

other combination of features. 

Our first hypothesis that combining features using D-S 

improves accuracy is proven correct for the WBCD 

Moreover, our second assumption is also proven correct, i.e. 

a few badly chosen features do not negatively influence the 

results, as long as most chosen features are suitable. These 

two characteristics make D-S very amenable for solving real-

world IDS problems. 

��� �	��
��	��(����	���
�����	���

To appreciate the high quality of our results, we provide a 

comparison with other published results. [14] used a 

generalized rank nearest neighbour rule and achieved a 

classification rate of 96.17%; also [15] used a fuzzy 

classification method, with a best result of a classification 

rate equal to 96.7%. Both methods ignore the 16 WBCD 

data items with missing feature values. Our classification rate 

compares favourably with these being 97.6% (including all 

data with missing feature values). The ability to deal with 

missing values is important for network security problems. 

Our method has the advantage of having such ability. 

V.� EXPERIMENTS WITH THE IRIS PLANT DATASET 

��� ����)
��������������

The Iris plant dataset is another standard benchmark 

problem of the UCI datasets [6]. This dataset is chosen 

because it has fewer features and more classes than the 

WBCD. This will confirm whether D-S can work on 

problems with fewer features and more classes. 

This dataset has 150 instances with the following four 

numeric features: sepal length in cm; sepal width in cm; petal 

length in cm; and petal width in cm. The dataset also 

contains one predictable feature, namely the class label. 

These 150 instances are of three classes (plant type), )
���

"��	�*� )
���+�
���	�	�
*�and� )
���+�
�����, with each class 

containing 50 instances. 

��� ��������������	����
	���

The Iris instances distribution overlapping information, 

based on individual feature, is used to roughly classify the 

Iris data (as shown in Figure 6). A number of items are not 

classified into a single class, such as either Setosa or 

Versicolour. For such data items, we use the difference 

between a data item value and the mean value of the selected 

suitable feature to provide classification into individual 

single classes. This classification approach is achieved in 

three steps, as described below. 

In the first step, the system use �� � to assign mass 

values to all the four features of one data item based on the 

boundary information. For this data item, the system 

combines the mass values using the Dempster’s rule of 

combination, and then generates the overall mass values and 

belief values for all possible. There are seven possible 

hypotheses for the Iris dataset: {Setosa}; {Versicolour}; 

{Virginica}; {Setosa, Versicolour}; {Setosa, Virginica}; 

{Versicolour, Virginica}; and {Setosa, Versicolour, 

Virginica}. The data item is classified to the hypothesis with 

the highest belief value. If with the results of first step, the 

data item is not classified to a single class, such as {Setosa, 

Versicolour}, then the system uses the second step to classify 

it to a ������ class. In the second step, initially the most 

suitable feature is selected. Following this, the system uses 

the �� � to assign mass values based on the distance to the 

mean values of the three classes of that feature. In the third 

step, the system combines the mass values of step one and 

step two. The overall mass values and the belief values are 

calculated.  The items are classified to the hypothesis with 

the highest belief values. 

We use ten fold cross validation in our experiment. The 

dataset is divided into ten subsets of equal size, with nine out 

of ten subsets comprising training data, with the remaining 

subset used as test data. The training data is used to obtain 

the thresholds to build the �� assignment functions.  

The following parts of section V are organised as below. 

Section B.1 details how to use ����� to assign mass values 

based on the boundary information. In section B.3, we 

demonstrate the use of ���� assigning mass values based on 

the differences between a feature value and the mean feature 

values of three classes. Finally the selection of suitable 

features is described in section B.2. 
 

��,����#������
	�����������������$�������	����

Firstly, we need to find the maximum and minimum values 

for each class based on one feature of the training data. Then 

we calculate the overlapping part for the three classes, to 

obtain the boundary information for each class, based on this 

feature of the training data, as shown in Figure 6. For Figure 

6 and 7, each of the vertical lines is the value range for one 

class of one feature; the horizontal lines are used for 



 

 

 

comparison to calculate the overlap.  

 
class1, class2, class3∈ {{Setosa}, {Versicolour}, {Viginica}}. 
 

Fig. 6. Example: for one feature, how to calculate the three class overlap  
 

We use the example of Figure 6 to illustrate how to 

calculate the overlap. If the value is less than min(class2), 

and greater than or equal to min(class1), the data item must 

belong to class1. This is because all the values of the data 

items belonging to class 2 should not be less than 

min(class2). Similarly, the values of the data items belonging 

to class3 should be not less than min(class3). In this case, the 

min(class3) is bigger than min(class2), so the values of the 

data items belong to class 2 or class 3 should not be less than 

min(class2). For the same reason, data items with values 

greater than max(class2), belong to class3. Data items with 

values between min(class2) and min(class3) belong to class 1 

or class 2.  Data items with value between min(class3) and 

max(class1) belong to class 1 or class 2 or class 3. For data 

items containing value between max(class1) and max(class2) 

belong to class 2 or class 3. 
 

Fig. 7.  Example of minimum, maximum value settings for Fig. 6. 
 

In Figure 7, we set example maximum and minimum 

values, to illustrate the assignment of the mass values based 

on the boundary information. For one feature, if the feature 

value is less than min(class1)=1, then that data item is 

classified as class1. We assign m(class1)=0.9, and 

0.1)m( =Θ  based on that feature alone. As nothing is 

hundred percent accurate, we think the trustiness of this 

measurement is 0.9, and set the uncertainty ( )m(Θ ) as 0.1.  
 

For each feature, we have the �� function A:  

0.1;)m( 0.9,m(class1) ),5.2,( =Θ=−∞∈ �����

0.1;)m( 0.9,class2)  (class1m ),3,5.2[ =Θ=∪∈ �����  

1;)m( ],4,3[ =Θ∈ �����  

0.1;)m( 0.9,class3) (class2m ],5.4,4( =Θ=∪∈ �����  

0.1)m( 0.9,m(class3) ),,5.4( =Θ=+∞∈ ����� . 
 

In the first step, we apply �� function A to each feature 

of one data item, and use the Dempster’s rule of combination 

to combine the mass values of the four features. This 

generates the overall mass values for that data item. The 

overall classification is decided based on the overall mass 

values. If the data item is not classified to a single class, then 

we will use the second step.  
 

��-�����
���������	��

Suitable features must be selected in order to separate two 

or three classes using the difference between the data item 

value and the mean value of the three classes. A feature is 

required with the following characteristics: the data feature 

values of one single class are close together; and the values 

of two classes viewed as a group are far apart. This is 

achieved by calculating the standard deviation for the two 

classes, and the standard deviation for the union of these two 

classes. This is defined as the Feature Selection Value (�"+), 

shown in Equation 7. The feature with the smallest �"+ is 

chosen as the suitable feature.  

The Feature Selection Value (FSV) for n (a natural 

number) classes is: 

)(

)()()(

21

21

�

�

��������������

������������������
�"+

∪⋅⋅⋅∪∪

×⋅⋅⋅××
=       (7) 

For example, to separate the class Setosa and the class 

Versicolour, we select the feature with the smallest 

�"+.
r)Versicolousd(Setosa

lour)sd(VersicoSetosa)(

∪

×��
. 
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In the second step, a suitable feature is selected and the 

�� function B is used to assign mass values. We build �� 

function B based on the information of the absolute distances 

(defined as difference in Equation 8) between the data item 

value of the chosen feature and the mean feature value of 

each class. Here, we want to classify the data item as the 

class with the smallest difference.  

 class one of ��� ��������
���� −=            (8). 

The information of ���� is viewed as less important than 

the information of ��� �. The mass value of one affected 

hypothesis is set as 0.8, the uncertainty as 0.2.  
 

We have the following �� function B: 

�� "��	� has the smallest difference, then set   

�("��	�)=0.8, 0.2)m( =Θ ; 

�� +�
���	�	�
 has the smallest difference, then set 

�(+�
���	�	�
)=0.8, 0.2)m( =Θ ; 

�� +�
����� has the smallest difference, then set 

�(+�
�����)=0.8, 0.2)m( =Θ . 

��� &'��
�������
�������(��������)
��������������

The classification accuracy with the Iris plant dataset is 

95.47% ± 0.48% (of ten runs). Table 1 shows three out of 

ten of the experimental results (chosen randomly for 

illustrative purpose). These results are based on the whole 

application approach with detailed error information and 

results. The table label meanings are explained below. 
 

•� ‘Id’: one item’s identification number. 1-50: ids of Setosa, 

51-100: ids of Versicolour, 101-150: ids of Virginica. 

•� ‘Correct(1st)’: the number of correctly classified items 

using the 1
st
 step with the boundary information.  

min(class1)  

  class3 

class1 

  class2 or class3 

 class1 or class2 

  class1 or class2 or class3 

min(class2) 

min(class3) 

max(class2) 

max(class1) 

max(class3) class1≠ class2≠class3 

minclass1= 1 

minclass2=2.5 
minclass3=3 

maxclass2=4.5 

maxclass1=4 

maxclass3=5.5 class1≠ class2≠class3 



 

 

 

•� ‘Errors(1st)’: the number of errors caused by the first step 

which only use the boundary information. 

•� ‘In two(1st)’: the number of date items, whose results are 

not in a single class after the first step.  

•� ‘Errors(2nd)’: the errors caused by the second step which 

use the “difference” information 
 

TABLE 1 THE IRIS PLAN EXPERIMENTS USING THE WHOLE APPROACH 

1st Run of the experiments—classification accuracy=96.6667 

Id Correct(1st) Errors(1st) In two(1st) Errors(2nd) 

1-50 50 0 0 0 

51-100 35 2 ()�.�0,*12) 13 )�.01�

101-150 42 2()�.,30*,-3) 6 0 

2nd Run of the experiments—classification accuracy=95.3333% 

Id Correct(1st) Errors(1st) In two(1st) Errors(2nd) 

1-50 50 0 0 0 

51-100 33 4()�.4,*0,*15*�12) 13 )�.01�

101-150 42 2()�.,30*,-3) 6 0 

3rd Run of the experiments—classification accuracy=94.6667% 

Id Correct(1st) Errors(1st) In two(1st) Errors(2nd) 

1-50 50 0 0 0 

51-100 34 5()�.4,*40*0,*15*12) 11 )�.01�

101-150 43 2()�.,30*,-3) 5 0 
 

The data items 71, 86, 107 and 120 are wrongly classified 

in all these three runs, due to the first step of the 

classification approach. The 78 is wrongly classified in all 

three runs, due to the second step of the classification.  

In Table 2, the parameters used in the 2
nd

 run of the 

experiments for data 86 are shown. We use this example to 

show how some mistakes may occur. 86: F1-6 (classified as 

class23); F2-3.4(class13); F3-4.5(class23); and F4-1.6 (class23). 

It is classified as class 3 using the 1
st
 step, which is wrong. 

F1, F3, and F4 express belief of class23, and F2 expresses 

belief of class13. The combination result is class3. One 

plausible reason is that the training data does not include all 

the information of the test data; perhaps the parameters are 

not totally accurate. For the same reason, the data item 78 is 

wrongly classified due to the 2
nd

 step. This can be improved 

by combining 1
st
 and 2

nd
 steps together. If we use 1

st
 and 2

nd
 

step together for all the data, the expected results can be 

improved. We can also use a finer grained model to extract 

these individual features of the Iris data, which can also lead 

to better performance. 
 

TABLE 2 THE PARAMETERS OF THE TRAINING SET FOR THE DATA ITEM 86 

  ����,� ����-� ����/�

�'� 5.8 6.9 7.9 ����
�,�

#�,$� ���� 4.3 4.9 4.9 

�'� 4.4 3.3 3.8 ����
�-�

#�-$� ���� 2.3 2.0 2.2 

�'� 1.9 5.1 6.7 ����
�/�

#�/$� ���� 1.0 3.3 4.5 

�'� 0.6 1.7 2.5 ����
�5�

#�5$� ���� 0.1 1 1.4 

��� �	��
��	��(����	���
�����	���

The classification accuracy of our method applied to the 

Iris data is 95.47% ± 0.48% over 10 runs. It is similar as 

published results of other established methods (whose results 

are between 94.67% and 97.33%) [16]. This demonstrates 

the ability of D-S to successfully classify items within 

datasets comprising few features and multiple classes. 

VI.� EXPERIMENTS WITH EMAIL DATASETS 

We have confirmed the potential of D-S to produce robust, 

high quality results. Then we turn our attention to the 

problem of worm detection. Due to the lack of datasets, we 

have derived our own data suitable for the detection of email 

worms. Worm detection forms a large subset of computer 

security and provides us with a managed problem to solve. 

��� ���������������

Email dataset was created by combining a week's worth of 

emails (90 emails) from a user's sent box with outgoing 

emails (42 emails) sent by a computer infected with the 

����6�!� worm. The aim of this experiment is to correctly 

detect the 42 worm infected emails. With expert experience, 

we decide to use these attributes of each individual email: its 

sender is spoofed or not; whether it contains dangerous 

attachments, whether it contains non-dangerous attachments, 

the time interval since last email was sent. This information 

is listed in Table 3. Spoofed sender can be defined as a 

sender with a fake email address; pif: program information 

file, i.e. a dangerous file type; doc: word file (Considered as 

non-dangerous here). 
 

TABLE 3  SUMMARY OF THE EMAIL DATASET 
������� "�		����"����
� �����
�7������	������������

39-59 (worm) Yes 1 pif 

61-81 (worm) Yes 1 pif 

12, 101 No 1 doc 

Others No 0 

��� ����(	
���������	���
	�����

The four features used here are: signal1 – the time interval 

from last message sent, signal2 – the sender (spoofed-1, 

normal-0), signal3 – whether there are any dangerous 

attachment files (0 – no, 1 – yes), signal4 – whether there are 

some non-dangerous attachment files (0 - no, 1 - yes). 

Signal1 has a big range and varies from 0 to 94665, its �� 

function is presented in Figure 8, the �� functions used by 

the other three features are described in Table5. 
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Fig. 8.  �� for signal1, the x-axis shows seconds since last email 

 

With experience, the signals can be ranked in order of 

importance (high to low): signal2, signal3, signal1 and 

signal4. Threshold settings were decided following this order 

(shown in Table 4). From this information, mass value 

settings were derived, as shown in Table 5. 
 

TABLE 4 THRESHOLD SETTINGS FOR EMAIL DATASET  
����
��� ��
���	��� �����#�	
��$� �'��#�	
��$�
"�����,� 30 0.3 0.7 

"�����-� 1 0.1 0.9 

"�����/� 1 0.2 0.8 

"�����5� 1 0.4 0.6 



 

 

 

TABLE 5 MASS VALUE SETTINGS FOR EMAIL DATASET ( M( Θ )=0.01) 

  ���� �#�	
��$� �#��	
��$�

"�����,� =value 3.0)1(4.0 130 ++ −− $#� ����  1-�(�	
��)- )(Θ�  

=0 0.9 0.09 
"�����-�

=1 0.1 0.89 

=0 0.8 0.19 
"�����/�

=1 0.2 0.79 

=0 0.6 0.39 
"�����5�

=1 0.4 0.59 
 

We assign the mass values for each individual feature of 

one email using the settings in Table 5. These mass values 

for the same email are combined using the combination rule 

based on each individual hypothesis. The overall mass values 

of each hypothesis are generated. That email is classified as 

the hypothesis with the higher overall mass value. 

��� &'��
���������������(���������������

When using four signals, all 42 worm infected emails were 

detected correctly, as shown in Figure 9. As it is not always 

easy to determine a spoofed sender, we re-run the 

experiments removing this signal (Figure 10). Messages 39 

and 61 were undetected when using the three remaining 

features (i.e. signal1, signal3, and signal4). The wrongly 

classified messages are those messages sent directly after 

legitimate traffic. Hence, the time intervals since last 

message sent of the two messages appear normal, with the 

only abnormal features being the executable attachment. 

Because all the three features have similar weights, and two 

of them indicate that the emails are normal, they are wrongly 

classified as normal. This can be corrected by weighting 

these features with greater different mass values, or adding in 

more effective features. A more effective feature can be the 

number of words contained in an email. We will look into 

these issues in future experiments. 
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Fig. 9.  Results of email data using all four features 
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Fig. 10.  Results of email data using signal1, signal3, signal4 

VII.� CONCLUSIONS 

The experimental results for the WBCD (with nine 

features and two classes) show that we successfully classify a 

standard dataset by combing multiple features using the D-S 

method. The results for the Iris dataset (with four features, 

three classes) show that we can also use D-S for problems 

with more than two classes, with fewer features. Our system 

successfully detects email worms through experiments with a 

realistic email dataset. These results indicate that D-S 

method works successfully for anomaly detection by 

combing the beliefs from multiple sources. Based on these 

results, we can conclude that D-S can be a promising method 

for network security problems with multiple features (from 

various data sources) and two or more classes. 

Of course, like other classification algorithms, the initial 

feature selection influences overall performance. However, 

due to the inherent robustness of D-S, as long as there the 

majority features are suitable, our system still works, even if 

some features are poor. Furthermore, our approach works in 

situations where some feature values are missing, which is 

likely to occur in real world network security scenarios. Our 

continuing aim is to find out how D-S based algorithms can 

be used more effectively for the purpose of anomaly 

detection within the domain of network security. 
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