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Detecting Motifs in System Call Sequences

William O. Wilson, Jan Feyereisl and Uwe Aickelin
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Abstract. The search for patterns or motifs in data represents an area
of key interest to many researchers. In this paper we present the Motif
Tracking Algorithm, a novel immune inspired pattern identification tool
that is able to identify unknown motifs which repeat within time series
data. The power of the algorithm is derived from its use of a small number
of parameters with minimal assumptions. The algorithm searches from
a completely neutral perspective that is independent of the data being
analysed and the underlying motifs. In this paper the motif tracking
algorithm is applied to the search for patterns within sequences of low
level system calls between the Linux kernel and the operating system’s
user space. The MTA is able to compress data found in large system
call data sets to a limited number of motifs which summarise that data.
The motifs provide a resource from which a profile of executed processes
can be built. The potential for these profiles and new implications for
security research are highlighted. A higher level system call language for
measuring similarity between patterns of such calls is also suggested.

1 Introduction

The investigation and analysis of time series data is a popular and well studied
area of research. Common goals of time series analysis include the desire to
identify known patterns in a time series, to predict future trends given historical
information and the ability to classify data into similar clusters. Historically,
statistical techniques have been applied to this problem domain whilst Immune
System (IS) inspired techniques have remained fairly limited [1]. In this paper
we describe the Motif Tracking Algorithm (MTA), a deterministic but non-
exhaustive approach to identifying repeating patterns in time series data. The
MTA abstracts principles from the human immune system, in particular the
immune memory theory of Eric Bell [2]. Implementing principles from immune
memory to be used as part of a solution mechanism is of great interest to the
immune system community and here we are able to take advantage of such a
system. The MTA implements the Bell immune memory theory by proliferating
and mutating a population of solution candidates using a derivative of the clonal
selection algorithm [3].

A subsequence of a time series that is seen to repeat within that time series is
defined as a motif. The objective of the MTA is to find those motifs. The power
of the MTA comes from the fact that it has no prior knowledge of the time series



to be examined or what motifs exist. It searches in a fast and efficient manner
and the flexibility incorporated in its generic approach allows the MTA to be
applied across a diverse range of problems. The MTA has already been applied
to motif detection in industrial data sets [2]. Here we test its generic properties
by applying it to motif identification in system call data sets.

Considerable research has already been performed on identifying known pat-
terns in time series [4]. In contrast little research has been performed on looking
for unknown motifs in time series. A distinguishing feature of the MTA is its
ability to identify variable length unknown patterns that repeat in a time se-
ries. This focus on the detection of unknown patterns makes it an ideal tool for
investigating underlying patterns in low level system data generated from the
execution of processes on a computer system. The nature of program execution,
with the re-use of functions and methods, along with standardised programming
structures, implies a set of motifs do exist within each running process. Each
process on a system is executed by issuing sequences of system calls which are
translated by the kernel into data understandable by the underlying hardware.
All processes rely on such system calls making them of high interest to the secu-
rity community. By looking at the sequences of such system calls, we can observe
repeating motifs, which will be identifiable and explainable in terms of higher
level functions. The MTA provides an ideal mechanism to compress the data
found in these large system call data sets to a limited number of motifs which
effectively summarise that data. The motifs could then provide a resource from
which we can build a profile of executed processes. These profiles could be used
to identify sequences that indicate potentially anomalous process behaviour.

Related work on motif detection is discussed in Section 2 with details of
system calls found in Section 3. Terms and definitions used are covered in Section
4 followed by the MTA pseudo code and the problem to be addressed in Sections
5 and 6. Results and future work are found in Sections 7 and 8 before concluding
in Section 9.

2 Related Work

The search for patterns in data is relevant to a diverse range of fields, including
biology, business, finance and computer security. For example, Guan [5] addresses
DNA pattern matching using lookup table techniques that exhaustively search
the data set to find recurring patterns. Investigations using a piecewise linear
segmentation scheme [6] and discrete Fourier transforms [7] provide examples
of mechanisms to search a time series for a particular motif of interest. An
underlying assumption in all these common approaches is that the pattern to be
found is known in advance. The matching task is much simpler as the algorithm
just has to find re-occurrences of the required pattern.

The search for unknown motifs is at the heart of the work conducted by Keogh
et al. Keoghs probabilistic [8] and Viztree algorithms [9] are very successful in
identifying unknown motifs but they require additional parameters compared
to the MTA and they also assume prior knowledge of the length of the motif



to be found. Motifs longer and potentially shorter than this predefined length
may remain undetected in full. Work by Tanaka [10] attempts to address this
issue by using minimum description length to discover the optimal length for
the motif. Fu et al. [11] use self-organising maps to identify unknown patterns in
stock market data, by representing patterns as perceptually important points.
This provides an effective solution but again the patterns found are limited to a
predetermined length.

This prior awareness of the patterns to find, or their lengths, is not appropri-
ate for intrusion detection systems as by their very nature intrusion techniques
are constantly changing to avoid detection. This represents an ideal application
for the MTA as it makes no such pre-assumptions and aims to find all unknown
motifs of variable length from the data set. Security researchers have been in-
vestigating system calls for a number of years. System calls represent a low
level communication mechanism between processes and the systems’ underlying
hardware, providing a high enough level of abstraction for intelligent process
behaviour analysis and modelling. The use of system calls for anomaly detec-
tion was first introduced by Forrest et al. [12]. Their IS inspired work looks at
sequences of system calls using a sliding window mechanism. System calls are
used to generate a database of normal behaviour, i.e. self, which is consequently
used to capture anomalous behaviour, non-self.

Forrest’s work instigated a new stream of intrusion detection research, with
some researchers taking the idea of generating a database of normal behaviour
and extending it further [13]. Novel approaches to solving related issues by vary-
ing the methods and types of signals used to generate a set of normal behaviour
were also proposed [14]. Tandon et al. have looked at system call motifs as a
source for their normal behaviour profile generation, however this differs from
our approach because it uses an exhaustive search mechanism [15].

3 Intrusion Detection and System Calls

System calls are lower level functions/methods, which act as a communication
channel between higher level processes (e.g. executable commands) and the lower
level kernel of an operating system (OS). The system calls perform system actions
on behalf of a user. Each system call performs a slightly different atomic task, yet
in combination they achieve much more complex functionality. Examples of some
of the simplest system calls are the file I/O calls, such as open(), read(), write()
and close(). An application or a process can produce on average between a
dozen and thousands of system calls per execution, depending on the complexity
of the task. As such system calls are ideal data signals from a security point
of view, they provide a detailed view of a system or process operation while
avoiding complex issues such as encryption or other possible higher level evasion
mechanisms.

The focus of the MTA is to look for variable length unknown motifs in the
data. This fits nicely with system calls as we are interested in seeing if motifs
exist in system call execution sequences. Our inspiration originates from the



way that programs are written, compiled and executed. An application usually
consists of various classes, objects, methods or functions, along with variables
and constants. All these structures are high level constructs, that are processed
by lower level libraries which execute appropriate system calls accordingly. These
atomic functions, which are deterministic as they do not depend on any variable
input, are likely to form the building blocks of our motifs of interest, no matter
what application calls them. The combination of such motifs could then provide
a resource to generate a profile for a process that distinguishes a permitted
execution from a malicious one.

The MTA provides a mechanism for compressing and summarising all this
system call data into a number of repeating motifs that are prevalent in the
data. The MTA would highlight consistent patterns in the data that are un-
derstandable and of value to the user, to aid in the generation of these process
profiles. The ability of the MTA to find variable length motifs, with no assump-
tions about the data or the motifs to find, ensures it is flexible enough to carry
out such a task.

4 Motif Detection: Terms and Definitions

Whilst immunology provides the inspiration for the theory behind the MTA
(see [2] for more information), the work of Keogh et al. [8] is the inspiration for
the time series representation used by the MTA. Keogh’s Symbolic Aggregate
approXimation (SAX) technique for representing a time series was utilised. Many
of the following definitions used by the MTA are adapted from the work of Keogh
[8], as summarised below.

Definition 1. Time series. A time series T = t1,...,tm is a time ordered set
of m real or integer valued variables. In order to identify patterns in T in a fast
and efficient manner we break T up into subsequences.

Definition 2. Subsequence. “Given a time series T of length m, a subse-
quence C of T consists of a sampling of length n ≤ m of contiguous positions
from T.” [8]. Subsequences are extracted using a sliding window technique.

Definition 3. Sliding window. Given a time series T of length m, and a
subsequence C of length n, a symbol matrix S of all possible subsequences can
be built by sliding a window of size n across T, one point at a time, placing each
subsequence into S. After all sliding windows are assessed S will contain (m -
n + 1 ) subsequences. Each subsequence generated could represent a potential
match to any of the other subsequences within S. If two subsequences match, we
have found a pattern in the time series that is repeated. This pattern is defined
as a motif.

Definition 4. Motif. A subsequence from T that is seen to repeat at least
once throughout T is defined as a motif. The re-occurrence of the subsequence
need not be exact for it to be considered as a motif. The relationship between two
subsequences C1 and C2 is assessed using a match threshold r. We use the most
common distance measure (Euclidean distance) to examine the match between
two subsequences C1 and C2, ED(C1, C2). If ED(C1, C2) ≤ r the subsequences



C1 and C2 are deemed to match and thus are saved as a motif. The motifs
prevalent in a time series are detected by the MTA through the evolution of a
population of trackers.

Definition 5. Tracker. A tracker represents a signature for a motif sequence
that is seen to repeat. It has within it a sequence of 1 to w symbols that are
used to represent a dimensionally reduced equivalent of a subsequence. The
subsequences generated from the time series are converted into a discrete symbol
string using an intuitive technique described in Section 5. The trackers are then
used as a tool to identify which of these symbol strings represent a recurring
motif. The trackers also include a match count variable to indicate the level of
stimulation received during the matching process.

5 The Motif Tracking Algorithm

The MTA pseudo code is detailed in Program 1 and a brief summary of this algo-
rithm as applied to system call analysis is described in the subsequent sections.
The MTA parameters include the length of a symbol s, the match threshold r,
and the alphabet size a.

Convert Time Series T to Symbolic Representation. The MTA takes
as input a univariate time series data set consisting of system call data which
has been converted to a list of integers as described in Section 6. To minimise
amplitude scaling issues with subsequence comparisons across T we normalise
the time series. We then use the SAX representation [8] to discretise the time
series under consideration. SAX is a powerful compression tool that uses a dis-
crete, finite symbol set to generate a dimensionally reduced version of a time
series consisting of symbol strings. This intuitive representation has been shown
to rival more sophisticated reduction methods such as Fourier transforms and
wavelets [8].

Program 1 . MTA Pseudo Code

Initiate MTA (s, r, a)
Convert Time series T to symbolic representation
Generate Symbol Matrix S
Initialise Tracker population to size a
While ( Tracker population > 0 )
{

Generate motif candidate matrix M from S
Match trackers to motif candidates
Eliminate unmatched trackers
Examine T to confirm genuine motif status
Eliminate unsuccessful trackers
Store motifs found
Proliferate matched trackers
Mutate matched trackers

}
Memory motif streamlining



Using SAX we slide a window of size s across the time series T one point at
a time. Each sliding window represents a subsequence of system calls from T.
The MTA calculates the average of the values from the sliding window and uses
that average to represent the subsequence.

The MTA now converts this average value into a symbol string. The user pre-
defines the size a of the alphabet used to represent the time series T. Given T
has been normalised we can identify the breakpoints for the alphabet characters
that generate a equal sized areas under the Gaussian curve [8]. The average value
calculated for the sliding window is then examined against the breakpoints and
converted into the appropriate symbol. This process is repeated for all sliding
windows across T to generate m-s+1 subsequences, each consisting of symbol
strings comprising one character.

Generate Symbol Matrix S . The string of symbols representing a sub-
sequence is defined as a word. Each word generated from the sliding window is
entered into the symbol matrix S. The MTA examines the time series T using
these words and not the original data points to speed up the search process.
Symbol string comparisons can be performed efficiently to filter out bad motif
candidates, ensuring the computationally expensive Euclidean distance calcula-
tion is only performed on those motif candidates that are potentially genuine.

Having generated the symbol matrix S, the novelty of the MTA comes from
the way in which each generation a selection of words from S, corresponding to
the length of the motif under consideration, are extracted in an intuitive manner
as a reduced set and presented to the tracker population for matching.

Initialise Tracker Population to Size a . The trackers are the primary
tool used to identify motif candidates in the time series. A tracker comprises
a sequence of 1 to w symbols. The symbol string contained within the tracker
represents a sequence of symbols that are seen to repeat throughout T. Tracker
initialisation and evolution is tightly regulated to avoid proliferation of ineffective
motif candidates. The initial tracker population is constructed of size a to contain
one of each of the viable alphabet symbols predefined by the user. Each tracker
is unique, to avoid unnecessary duplication of solution candidates and wasted
search time.

Trackers are created of a length of one symbol. The trackers are matched to
motif candidates via the words presented from the stage matrix S. Trackers that
match a word are stimulated; trackers that attain a stimulation level ≥ 2 indicate
repeated words from T and become candidates for proliferation. Given a motif
and a tracker that matches part of that motif, proliferation enables the tracker
to extend its length by one symbol each generation until its length matches that
of the motif.

Generate Motif Candidate Matrix M from S . The symbol matrix S
contains a time ordered list of all the words, each containing just one symbol,
that are present in the time series. Neighbouring words in S contain significant



overlap as they were extracted via the sliding windows. Presenting all words in S
to the tracker population would result in potentially inappropriate motifs being
identified between neighbouring words. To prevent this issue such ‘trivial’ match
candidates are removed from the symbol matrix S. Trivial match elimination
(TME) is achieved as a word is only transferred from S for presentation to the
tracker population if it differs from the previous word extracted. This allows the
MTA to focus on significant variations in the time series and prevents excessive
time being wasted on the search across uninteresting variations.

Excessively aggressive trivial match elimination is prevented by limiting the
maximum number of consecutive trivial match eliminations to s, the number of
data points encompassed by a symbol. In this way a subsequence can eliminate as
trivial all subsequences generated from sliding windows that start in locations
contained within that subsequence (if they generate the same symbol string)
but no others. The reduced set of words selected from S is transferred to the
motif candidate matrix M and presented to the tracker population for matching.

Match Trackers to Motif Candidates. During an iteration each tracker
is taken in turn and compared to the set of words in M. Matching is performed
using a simple string comparison between the tracker and the word. We define
a match to occur if the comparison function returns a value of 0, indicating a
perfect match between the symbol strings. Each matching tracker is stimulated
by incrementing its match counter by 1.

Eliminate Unmatched Trackers. Trackers that have a match count >1
indicate symbols that are seen to repeat throughout T and are viable motif can-
didates. Eliminating all trackers with a match count < 2 ensures the MTA only
searches for motifs from amongst these viable candidates. Knowledge of possible
motif candidates from T is therefore carried forward by the tracker population.
After elimination the match count of the surviving trackers is reset to 0.

Examine T to Confirm Genuine Motif Status. The surviving tracker
population indicates which words in M represent viable motif candidates. How-
ever motif candidates with identical words may not represent a true match when
looking at the time series data underlying the subsequences comprising those
words. In order to confirm whether two matching words X and Y, containing
the same symbol strings, correspond to a genuine motif we need to apply a dis-
tance measure to the original time series data associated with those candidates.
The MTA uses the Euclidean distance to measure the relationship between two
motif candidates ED(X,Y).

If ED(X,Y) ≤ r a motif has been found. The match count of that tracker is
stimulated to indicate a match. A memory motif is created to store the symbol
string associated with X and Y. The start locations of X and Y are also saved.
For further information on the derivation of this matching threshold please refer
to [2]. The MTA then continues its search for motifs, focusing only on those
words in M that match the surviving tracker population in an attempt to find



all occurrences of the potential motifs. The trackers therefore act as a pruning
mechanism, reducing the potential search space to ensure the MTA only focuses
on viable candidates.

Eliminate Unsuccessful Trackers. The MTA now removes any unstim-
ulated trackers from the tracker population. These trackers represent symbol
strings that were seen to repeat but upon further investigation with the under-
lying data were not proven to be valid motifs in T.

Store Motifs Found. The motifs identified during the confirmation stage
are stored in the memory pool for review. Comparisons are made to remove any
duplication. The final memory pool represents the compressed representation of
the time series, containing all the re-occurring patterns present.

Proliferate Matched Trackers. Proliferation and mutation are needed to
extend the length of the tracker so it can capture more of the complete motif. At
the end of the first generation the surviving trackers, each consisting of a word
containing a single symbol, represent all the symbols that are applicable to the
motifs in T. The complete motifs in T can only consist of combination of these
symbols. This subset of trackers is therefore stored as the mutation template for
use by the MTA.

Proliferation and mutation to lengthen the trackers will only involve sym-
bols from the mutation template and not the full symbol alphabet, as any other
mutations would lead to unsuccessful motif candidates. During proliferation the
MTA takes each surviving tracker in turn and generates a number of clones equal
to the size of the mutation template. The clones adopt the same symbol string
as their parent.

Mutate Matched Trackers. The clones generated from each parent are
taken in turn and extended by adding a symbol taken consecutively from the
mutation template. This creates a tracker population with maximal coverage of
all potential motif solutions and no duplication. The tracker pool is fed back
into the MTA ready for the next generation. A new motif candidate matrix M
consisting of words with two symbols is now formulated to present to the evolved
tracker population. In this way the MTA builds up the representation of a motif
one symbol at a time each generation to eventually map to the full motif.

Given the symbol length s we generate a word consisting of two consecutive
symbols by taking the symbol from matrix S at position i and that from posi-
tion i+s. Repeating this across S, and applying trivial match elimination as per
Section 5, the MTA obtains a new motif candidate matrix M in generation two,
each entry of which contains a word of two symbols, covering a length of 2 x s.

The MTA continues to prepare and present new motif candidate matrix data
to the evolving tracker population each generation. The motif candidates are
built up one symbol at a time and matched to the lengthening trackers. This
flexible approach enables the MTA to identify unknown motifs of a variable



length. This process continues until all trackers are eliminated as non matching
and the tracker population is empty. Any further extension to the tracker pop-
ulation will not improve their fit to any of the underlying motifs in T.

Memory Motif Streamlining. The MTA streamlines the memory pool,
removing duplicates and those encapsulated within other motifs to produce a
list of motifs that it associates with T.

6 Detection of System Call Patterns

This paper demonstrates that an execution of a process shall produce a sequence
of system calls containing a number of motifs of variable lengths and these shall
be identifiable by the MTA. Such motifs should re-occur when the same or similar
processes are run. The motifs in system call sequences can be used in various
security applications, for example as a data reduction tool for behaviour profiling
within an Intrusion Detection System (IDS).

In our experiments we have two machines connected by a local network. The
client machine (Windows XP machine running an SSH client PuTTY version
0.57) connects to the server machine (Debian Linux) which then performs ac-
tions based on commands sent by the client. Our experiments use a VMware
virtual machine, running a Debian Linux distribution, v.3.3.5-13, with a Linux
kernel, v.2.4.27-2, as our SSH server. The SSH daemon process (OpenSSH 3.8.1p1
Debian-8.sarge.6) is monitored along with all its children, using the standard
strace utility. All system calls generated by the SSH daemon and its child pro-
cesses are logged and stored in separate files based on their process ID (PID).

The following sequence of actions is executed to generate our data set. The
client connects to the server and an SSH session is established. The following
commands, chosen at random, are then issued by the client: ls, ls, ls -lsa, pwd,
ls, ps, ps aux, ls -lsa, chmod a+x file, chmod a+x directory, ls -lsa, chmod a-x
file. The client then disconnects from the SSH server.

The PID files generated are concatenated to produce one file. During con-
catenation the PID file from the child with the smallest PID is added to the
parent data, this is then repeated for each remaining child process. Concatena-
tion results in a single data set containing system call names with their respective
arguments. The data is further pre-processed by converting the individual sys-
tem call names to their appropriate Linux OS id numbers and removing their
arguments. This generates a one dimensional data set comprising a sequence of
8,040 system call numbers.

From the data set generated it can be observed that a small sequence of sys-
tem calls relating to one particular monitored child process is repeated across a
large proportion of the data. This process looks after the SSH terminal operation
for the duration of the whole SSH session. Repeated read() and write() calls and
various real time system call actions are performed over and over again. Due to
the basic nature of this repeating sequence, it is not deemed of interest to our
analysis. Instead we focus on the last 1,000 system calls from the data set, to in-



vestigate motifs that occur during the last seven commands issued by the client.
The data set generated is available at http://cs.nott.ac.uk/∼jqf/MTA scdata.dat.

7 Results

Having introduced the MTA we now provide some experimental results which
examine the ability of the MTA to identify motifs present in system call data.
As defined in Section 6 the data set examined consists of 1,000 system calls
represented by an ordered list of 1,000 integers. A bind threshold r = 0 was
set since system call sequences need to match identically. Symbol length s and
alphabet size a values were varied to investigate the sensitivity of the MTA to
these parameters. The MTA was written in C++ and run on a Windows XP
machine with a Pentium M 1.7 Ghz processor with 1.0 Gb of RAM.

7.1 System Call Motifs Identified by the MTA

In this scenario a = 10 to give a large alphabet diversity and s took the values
10, 20 and 40. To evaluate the impact on speed and accuracy the MTA was
run with trivial match elimination (TME) and with no trivial match elimination
(NTME). We focus on significant motifs whose length exceeds 40 system calls
to enable fair comparison across different values of s. With s = 10 and NTME
eight motifs are identified. Table 1 lists these motifs with the number of system
calls they encompass and the start locations where they occur in the data set.

Motif 1 dominates the data set, it consists of 280 system calls and occurs
twice in the data set from locations 386 and 717. Figure 1 presents the list of
system calls from location 350 to 1,000 and motif 1 is clearly evident in this
sequence. From the commands issued during the SSH session (Section 6), we
observe the existence of motifs within the command list itself as there are repe-
titions of the ls and chmod commands. From the MTA’s analysis of the system
call data set, motif 1 relates to the repetition of these two observed commands.
The ls commands contain the same arguments (-lsa) across both repetitions,
whilst the chmod command includes execute permissions for all users to a file in

Table 1. List of motifs found by the MTA

Motif No. Length Start Locations

1 280 386, 717

2 80 0, 227

3 70 8, 160, 235

4 50 198, 262

5 50 668, 950

6 40 39, 191, 266, 324

7 40 619, 668, 950

8 40 77, 120



Fig. 1. Illustration of system calls 350 to 1,000, highlighting the occurrence of Motif 1
from system call 386 to 665 and 717 to 996

the first occurrence and removes those same privileges from the file during the
second occurrence. Motif 1 represents two processes occurring in succession at
two different time points within the overall SSH session. Motif 1 also contains
other sub-motifs such as motif 7. Motif 7 occurs at three different positions as
seen from Table 1. This motif represents the chmod command that was executed
three times during the session, each time with different arguments. The motifs
found by the MTA are a super-set of those evident in the original command list,
validating the accuracy of the MTA. The existence of motif 7 shows that appli-
cations with varying arguments (i.e. performing different actions), have atomic
motifs that could be used for data reduction in a security application.

Motif 2 is the second largest motif, which has two repetitions in the data set.
It relates to the execution of the ps command. This command occurred twice in
succession, with different arguments, spawning a new process each time. Motif 2
represents 80 system calls that are identical across these two spawned processes.
Motifs 3, 4 and 8 partly overlap with motif 2 indicating a subset of system calls
from motif 2 that is consistent across all these motifs. However this subset occurs
with a higher frequency than motif 2, representing similarities between atomic
parts of the ps processes not fully captured by the motif 2. This highlights parts
of the process execution that are more dynamic and input dependent and which
need to be dealt with when considering an IDS.

Motif 6 again relates to a component of the ps command. At a lower level,
the ps command reads a number of small files from the /proc/ directory of the
Linux OS and prints the read information onto the screen. This information
shows the running processes on the system to the user. From this a recurring
sub-pattern of open(), read() and close() system calls with various arguments is
observed. This sub-pattern is largely dependant on the input of the ps command.
In this case it is the number of running processes on the monitored system,
which in turn is the number of files in the aforementioned /proc/ directory. The



motifs generated by the MTA are formed by such atomic system call sequences.
The randomness in the input, which results in motifs of variable lengths is of
major importance when considering IDS systems. For this purpose a system call
expression language is proposed which, besides giving the MTA an alternative
representation to assess system call similarity, gives security researchers a regular
expression type language for describing system call motifs at a higher level. This
language is described in more detail in Section 8.

In the above analysis we have focused on significant motifs with sequences
exceeding 40 system calls. The advantage of using the MTA on system call data
and not the command list becomes apparent when we look at the shorter motifs
that are generated, as these indicate atomic motifs that are found across varying
command instructions. One such motif, referred to as Z, has a length of 30 system
calls and occurred five times at positions 387, 620, 669, 718 and 951. Motif Z
relates to the re-occurrence of a sequence that occurs during the initialisation of
newly spawned processes executed across the commands ls -lsa, chmod a+x file,
chmod a+x directory, ls -lsa and chmod a-x file respectively. Each C application
under Linux, when it starts, calls and loads the standard C library, libc. The
occurrences of motif Z corresponds to the loading of this library. Thus the MTA
has found a motif that is present but embedded across differing commands. This
approach of using system calls as input to the MTA, and not the commands,
would aid in the detection of exploits that are far smaller than the commands
themselves. An example of such an exploit is the SQL slammer worm which is
only 376 bytes long, compared to the text segment of the chmod command of
29,212 bytes.

7.2 Sensitivity to Changes in the Symbol Length s

In total 961 of the 1,000 system calls are identified as being part of one or more of
these eight motifs. From these results it is clear the MTA is able to successfully
identify a reduced set of motifs from the large system call data set. By varying
the value of s and the use of trivial match elimination we can examine the
sensitivity of the MTA and assess its ability to retain knowledge of these eight
motifs. The results of this sensitivity analysis can be seen in Table 2.

Table 2 shows the total number of motifs found and the execution time of
the MTA for the various values of s. In addition a measure of the quality of
the motifs found is included by multiplying the identified length of the motif

Table 2. Sensitivity of the MTA to variations in the symbol length s

Motifs found Execution time (sec) Motif quality measure

s NTME TME NTME TME NTME TME

10 8 6 315.8 262.0 1,490 1,230

20 5 4 56.9 26.5 1,140 940

40 4 3 12.1 1.9 960 720



by the identified frequency and summing for all motifs found. Any omissions in
the length or frequency of the complete motif will cause a decline in this quality
measure.

As the symbol length s increases, the number of motifs detected declines. This
appears logical as a higher s implies the search is less fine grained. Introducing
TME also reduces the number of motifs found. TME significantly reduces the size
of the motif candidate matrix M resulting in fewer candidates being examined.
TME is key to the dimensionality reduction of the original data set leading to
a fast search process, however it would appear that its inclusion does lead to a
loss in detection accuracy.

Given NTME, the MTA is only able to identify four of the eight motifs (1,
2, 6 and 7) if s rises from 10 to 40. The quality measure also indicates that, of
the motifs found, there appears to be a loss in the detection of the full length
or frequency of occurrence. The quality measure falls from 1,490 to 960. Of the
four motifs still detected we lose 40 system calls from motif 1 and we only detect
two of the three repetitions of motif 7. However raising the symbol length from
10 to 40 results in a 96.2% reduction in the MTA execution time, taking only
12.1 seconds compared to 315.8.

7.3 Sensitivity to Changes in the Alphabet Size a

Adjusting the alphabet size alters the symbol set used to represent the time
series. Reducing a means a greater diversity of sequences are now grouped to-
gether as similar. TME with a reduced alphabet set should lead to a larger
number of trivial match eliminations, leading to a faster but potentially less ac-
curate search. This hypothesis is confirmed when we look at Table 3 which lists
the motifs found for various alphabet sizes. In this scenario s = 20, r = 0 and a
took the values 10, 8, 6, and 4.

Table 3 shows the alphabet size has no impact on the detection ability of the
MTA if there is NTME. The five motifs detected when s = 20, a = 10 (Table 2)
are always found and have the same quality measurement. However the search
time of the MTA with NTME improves by 30.1% as a is reduced from 10 to 4.

With TME activated, changes to a have a more significant impact on the
motifs detected. Reducing a from 10 to 8 causes the MTA to lose track of motif 8
but it now finds motif 2. As motif 2 is longer than motif 8 we get an improvement

Table 3. Sensitivity of the MTA to variations in the alphabet size a

Motifs found Execution time (sec) Motif quality measure

a NTME TME NTME TME NTME TME

10 5 4 56.9 26.5 1,140 940

8 5 5 48.0 19.8 1,140 1,140

6 5 3 43.3 16.1 1,140 860

4 5 5 39.8 6.3 1,140 1,140



in the overall motif quality measure from 940 to 1,140. Reducing a further from
8 to 4 causes the MTA to lose motif 6 but gain knowledge of motif 4. Thus we
see that TME causes a change in the location in search space where the MTA
conducts its search, resulting in less consistent results.

One could imply that this inconsistency due to trivial match elimination is
detrimental to this particular search problem but this need not be the case. As is
evident from Table 3 trivial match elimination significantly improves the search
time of the MTA and the results from including trivial match elimination are
still satisfactory. When a=4 activating trivial match elimination results in the
MTA still finding five motifs but it reduces the search time by 84.2% from 39.8
seconds to 6.3 seconds and with no loss to the quality of those five motifs found.

7.4 Summary Discussion of Results

From these results it is apparent that the MTA is able to identify motifs that are
present in this system call data set. The MTA can compress the original data set
of 1,000 system calls down to eight repeating motifs. A trade off between speed
and accuracy becomes apparent as the user is able to adjust the parameters
of the algorithm to speed up the search process at the cost of a reduction in
detection capability, allowing a flexible search mechanism.

The sensitivity to changes in s and a noted here is due to the nature of system
call data. In this paper we group system calls together as similar by averaging
their system call values over a fixed sized window. These are then grouped by
boundary conditions and represented by a symbol which is then subject to trivial
match elimination. With system calls there is no real relationship between two
separate system call values, i.e. system call 2 is not twice as large as system
call 1. Therefore one could argue that a more appropriate representation may
be more suitable as is discussed in Section 8.

The results show that the MTA, developed to identify motifs in financial and
industrial data sets, is successful in identifying motifs in system call data due to
its generic and flexible approach. It provides a useful tool to compress a large
data set into small subset of repeating patterns that are of immediate value to
the user.

8 Future Work

The difficulty with analysing system call sequences for the purposes of intrusion
detection is that the variety of sequences generated is largely dependant on the
diversity of the application’s input. This potential variety sidesteps most forms
of pattern detection as long as the detection mechanism is not able to encode the
variations in a manner that is granular enough to be able to distinguish between
normal and anomalous patterns. To address this issue, as part of our future work
we propose a system call expression language (SCEL), which acts as a higher level
regular expression type language consisting of constructs representing atomic
system call motifs of meaningful actions.



An example of this language can be presented using motif Z of length 30 as
described in Section 7. In the SCEL motif Z could be represented by a higher
level construct, such as lib loading(libc). Where lib loading represents a partic-
ular set of motifs for that action and (libc) denotes the class to which those
motifs belong. Similar constructs could be devised for other operations which
contain atomic motifs, representative of a higher level functionality. The mo-
tifs 2, 3, 4, and 8 in Table 1 indicate the re-occurrence of the open(), read()
and close() system calls. These three calls could now be represented as one
file read(small) construct to be used for files below a certain size threshold.
In addition a file read(large) construct containing a wild card for the number
of read() system calls between the open() and close() calls can be generated for
instances when reading larger files, where numerous read() calls are executed de-
pending on the file’s size. When reading such a file an attribute of the language
construct could denote the number of motifs present in an observed process.

For example lib loading(libc)[1], file read(small)[*], other(*)[*] could
denote a complete ps command being executed. This language tool would prove
of value to a user as it focuses on a high level of abstraction while maintaining the
ability to conduct fine grained analysis of system calls. This new representation
for system call similarity could now also be used as input for the MTA to enhance
its motif detection ability.

9 Conclusion

The search for patterns or motifs in data represents a generic problem area that
is of great interest to a huge variety of researchers. By extracting motifs that
exist in data we gain some understanding as to the nature and characteristics
of that data, so that we can benefit from that knowledge. The motifs provide
an obvious mechanism to cluster, classify and summarise the data, placing great
value on these patterns.

Little research has been performed looking for unknown motifs in time series.
The MTA takes up this challenge using a novel immune inspired approach to
evolve a population of trackers that seek out and match motifs present in a time
series. The MTA uses a minimal number of parameters with minimal assump-
tions and requires no knowledge of the data examined or the underlying motifs,
unlike other alternative approaches.

In this paper the MTA was applied to motif detection in system call data.
The MTA was shown to compress the data set into a limited number of motifs
that provide good coverage of the original data set resulting in a minimal loss of
information. The authors propose that these motifs highlight repeating or atomic
functions that can be used to build profiles of “system behaviour”. These profiles
could then assist in tasks such as anomaly detection or behaviour classification.

The authors provide information on a system call expression language that
addresses system call granularity issues for computer security applications in the
future. In its current form we believe the MTA offers a valuable contribution to
an area of research that at present has received surprisingly little attention.
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