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Information Fusion for Anomaly Detection with the Dendritic Cell

Algorithm

Julie Greensmith, Uwe Aickelin and Gianni TedescoSchool of Computer Science,University of Nottingha

Abstract

Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system,

providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they

perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on

the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control

mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when

the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell

Algorithm is successful at detecting port scans.
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1. Introduction

Denritic Cells (DCs) are natural anomaly de-
tectors. In this paper we present a Dendritic Cell
Algorithm (DCA) approach to information fusion,
combining key elements of immunological theory
with the engineering principles of data fusion. In
the human immune system, DCs have the power
to suppress or activate the immune system by cor-
relation of signals representing their environment,
combined with locality markers in the form of an-
tigens. Antigens are proteins in structure and are
any protein to which the immune system can po-
tentially respond. These cells are responsible for the
detection of pathogens in the human body through
the correlation of information (in the form of mo-
lecular signals) within the environment. By using
an abstraction of DC behaviour, similar detection
properties are shown, resulting in an algorithm
capable of performing anomaly detection. The res-
ultant algorithm uses a set of weights derived or the
processing of input signals from actual immunolo-
gical data, generated through an interdisciplinary

collaboration with immunologists[32].
DCs in particular are suitable as inspiration for

intrusion detection for two reasons. Firstly, DCs
themselves perform an intrusion detection role
within the human immune system. Secondly, DCs
perform their function with low rates of false pos-
itives and high rates of true positives - properties
essential to any anomaly detection technique. In
essence, DCs are multisensor data fusion agents
through processing environmental molecular sig-
nals. This makes them ideal inspiration for the
development of a data fusion algorithm.

The DCA was introduced in 2005[9] and has
demonstrated potential as a classifier for static
machine learning data [9], as a simple port scan
detector under experimental conditions[11] and in
real time[10]. Our results show that the DCA can
successfully detect anomalous processes forming
a port scan attack. The DCA is inspired by the
human immune system and is termed an artificial
immune system (AIS). While the majority of AIS
algorithms do not perform data fusion, idiotypic
network models are used for the purpose of robotic
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control [12]. Although belonging to the field of arti-
ficial immune systems, the DCA differs from other
immune inspired anomaly detection algorithms in a
number of significant ways:
– The algorithm is based on cutting edge experi-

mental immunology.
– DCs combine multiple signals to assess the current

context of their environment.
– Asynchronolsly DCs sample another data stream

(antigen) to be combined with the fused signals.
– The correlation between context and antigen

leads to the detection of anomalies.
– Unlike other anomaly detection algorithms, there

is no pattern matching based on string similarity
metrics.
The aims of this paper are threefold: to model

artifical DCs drawing inspiration from the DCs of
the human immune system; to present a resultant
algorithm through a formalised description; and to
apply the algorithm to an example anomaly detec-
tion problem. As this algorithm is a novel algorithm,
it is not yet fully characterised. As a result, fine
grained analysis of the selection of weights and com-
parison to other standard techniques are not dis-
cussed in this paper. Please refer to [8] for further
experiments.

In this paper The DCA is applied to the detection
of a port scan, which forms a convenient small-scale
computer security problem. Section 2 contains relev-
ant background information regarding the problem
of port scans and current scanning detection tech-
niques. Section 3 presents the biological inspiration
of the DCA, a summary of relevant developments in
immunology, and rudimentary DC biology. This is
followed by Sections 4 and 5, describing the abstrac-
tion process, a formalised description of the DCA
and its implementation as an anomaly detector. This
is followed by experimentation with its application
as a port scan detector. Section 6 includes a sensitiv-
ity analysis of a selection of parameters. The paper
concludes with a discussion of the results of the port
scan investigation and suggestions for future work.

2. Anomaly Detection and Port Scanning

One notable application area of multi-sensor data
fusion is anomaly detection, a technique used in In-
trusion Detection, which uses behaviour based ap-
proaches to detect abuse and misuse of computer
systems. Traditional approaches to computer secur-
ity have relied on signature based approaches for

the detection of intruders. Network based intrusion
detection systems (IDS) such as Snort[25] cross ref-
erence patterns of network packets against a data-
base of known intrusions. If a packet matches any
of the signatures contained in the database an alert
is generated, notifying the user of a potential intru-
sion. One problem with signature based approaches
is that slightly modified intrusions or brand-new in-
trusions are not detected as they are not contained
within the database resulting in false negatives.

Anomaly detection offers an alternative approach,
by using a defined database of ‘normal’, either in
terms of machine behaviour or user behaviour. Data
at run time is compared against the normal profile
and suffiecient deviation causes the generation of
alert. This is demonstrated through the research of
the negative selection algorithm[13]which forms the
majority of anomaly detection research within arti-
ficial immune systems. Unfortunately, defining what
is normal is non-trivial and has a tendency to change
over time, giving rise to systems with a high rate
of false positives. To overcome the problems of false
positives, a whole host of methods have been em-
ployed. This frequently involves adding a dynamic
profiler to account for expected changes in the nor-
mal profile, or the use of more and disparate data
sources. It is worthy of note that

In computer security, anomaly detection has been
applied to a wide range of problems. This includes
the detection of trojans, viruses, rootkits, network
expoits, and distributed denial of service. As an ap-
plication of anomaly detection in computer secur-
ity, we examine the problem of detecting port-scans.
They are a key tool in initiating an attack, and are
frequently used in ‘insider attacks’ which are per-
formed by authorised users.

2.1. General Principles of Port Scanning

Port Scanning is a technique of network carto-
graphy. It is used by system administrators to check
specified hosts on their network for availability and
to monitor services in use. However it can be sub-
verted for more malicious purposes. Port scanning
tools such as ‘Network Mapper’ (nmap) [23] can re-
veal information about hosts responding on a given
set of network addresses. This information may be
used by attackers to discover a set of target hosts
which are operating services likely to be vulnerable
to attack. It can also be used for an attacker to learn
and understand the topology of a network in order
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to launch an attack such as a distributed denial of
service.

A host on an IP network has one or more IP ad-
dresses. Each IP address has a range of 216 TCP
ports and 216 UDP ports. Ports are simply a way
of multiplexing many different types of communica-
tion through a single network address. This is why it
is possible to download mail and surf the web at the
same time. A program running on a network host
may listen for requests on one or more (address, pro-
tocol, port) tuples. Many services typically listen for
requests on standard port numbers (such as TCP
port 80 for the HTTP service), though in reality,
a service can be located on any port number. Port
scanning involves probing a host to discover poten-
tial exploitable ports.

Instances of port scans differ from each other
through a number of important properties. At a
high level of abstraction there are two distinctions
to be made. Firstly, modern networks are comprised
of suites of various network protocols which offer
different kinds of endpoints which can be useful to
map. This work restricts discussion to IP networks
in which there are IP address, TCP port and UDP
port endpoints. Scans which map out these different
types of endpoints use different methods. Secondly,
attackers rarely wish to scan every possible end-
point reachable from their network, so a subset of
endpoints are selected for mapping. The way in
which the scope of the scan is restricted leads to a
differing ‘scan footprint’.

Once a scanner has created a list of endpoints,
a probe is performed on each endpoint in order to
obtain the scan results. As mentioned, various probe
techniques are available depending on what kind of
endpoint is being probed and for what information.
The three main types of probe are:

(i) Host probe: Determining if a given network
address is assigned to a host

(ii) Port probe: Determining if a service is listen-
ing at an (address, protocol, port) tuple

(iii) Service probe: Determining what kind of ser-
vice is running over an (address, protocol,
port) tuple

Host probes are typically carried out by sending
ICMP echo requests to the IP address being queried.
For this reason host scans are usually referred to as
“ping scans” after the name of the UNIX program
for sending these packets. If a host is associated with
the queried IP address it may respond with an ICMP
echo reply. However many systems simply do not
respond to echo requests due to the potential for

abuse. For this reason TCP probes may be sent to
a port likely to be un-filtered (such as TCP port
80) and any response at all from that address is
considered positive. If there are intervening routers
between the scanner and the target host an ICMP
host unreachable message may be generated for any
traffic sent to an inactive address.

In the TCP/IP protocol suite, UDP and TCP
port probes are possible. TCP port scans occur with
much higher frequency than other types of scan.
The simplest type of TCP probe connects to a port
on a remote address and if the connection succeeds
immediately closes the connection. A more stealthy
approach, termed a “SYN scan” simply sends the
first packet of the three-way handshake and uses the
response packet to distinguish between open and
closed ports. This usually requires super-user priv-
ileges. The only available technique for probing UDP
ports is to send a packet containing random data to
a UDP port on a remote host. If the port is open no
response will be generated and if the port is closed
an ICMP port unreachable error message is gener-
ated. Service scans are typically carried out after
a port scan and lead to knowledge of the the type
and version of operating system and network service
software running on a remote host. In fact, the ex-
act behaviour elicited by a host as a response to any
of these probe types can be used in determining the
operating system type and version.

These probing techniques may be combined with
lists of endpoints to perform different types of scan.
Three classes of scan footprint suffice to describe any
particular scan type:

(i) Horizontal Port Scan: Here the attacking host
scans a range of IP addresses using the same
port. This can reveal a set of ‘live’ hosts on a
network with a specific open port. This is also
used in several scanning worms based attacks.
According to Staniford et al [27] this is the
most common type of scan footprint.

(ii) Vertical Port Scan: The attacking host sends
several packets to the same IP address across a
range of ports. This is used to target a specific
host to examine any open ports or to uncover
vulnerable running services. This can also be
used to retrieve detailed information on the
OS of the victim host.

(iii) Block Scan: This is a hybrid method combin-
ing a range of addresses with a range of ports.
This is also used to target specific hosts. It is
also used to generate ’hit-lists’ for future at-
tacks. Block scans can potentially take a very
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long time, hence the results of a ping scan may
be used to dramatically reduce the number of
endpoints to be probed.

Port scans may seem innocuous, but they can be
used for malicious purposes. It is reasonable to use
a port-scan as a model of an intrusion given that
they frequenly play some role in an attack, be it a
targeted exploit or a scanning worm. Staniford et
al are quoted as saying “... we detect in practice
that almost all of them [unsolicited scans] come from
compromised hosts and are very likely to be hostile”.
Suprisingly, port scan detection appears to be an
under-researched area, while port scanning occurs
frequently as a pre-cursor for more serious attacks.
The detection of an ICMP ping scan forms the focus
of the remainder of this section.

2.2. Port Scan Detection

Previous work in this area is suprisingly somewhat
sparse. A number of IDS have the capability to de-
tect some types of port scan[28,27,24] but most have
so far relied on the assumption that X events occur
within time frame Y . For example, Spice by Stani-
ford et al [27]produces an alert every time a single
IP connected to more than 15 hosts within time win-
dow Y . However, these types of technique cannot be
used to detect stealthy scans which do not produce
enough events within the specified time window.

The detection of scanning worms is a closely re-
lated and comparatively well researched area. Scan-
ning worms frequently use port scans to generate a
list of vulnerable hosts for propagation. Schecter et
al [26]use a technique called reverse sequential hypo-
thesis testing. This is based on connection analysis
which determines the probability of a connection be-
ing anomalous. These data are combined with net-
work flow information and the data sources correl-
ated. Detection of scanning using the worm detec-
tion approach resulted in the detection of all but
the stealthiest scans, namely those with a very slow
scanning rate.

A worm detection technique pertinent to ICMP
scan detection is the use of ICMP destination
unreachable errors (Type 3 error) to detect the
propagation of worms across a network. Bakos et
al [2] used the capture and analysis of ICMP pack-
ets and packet flow to identify ‘blooms’ of ICMP
traffic across a network. They assume that a high
rate of Type 3 errors is indicitive of a worm. Early
detection of scanning worms was achieved in the

preliminary results presented. More details regard-
ing the use of this technique in a realistic network
scenario under more noisy test conditions have not
been reported so far.

The idea of detecting the response to a scan as
opposed to the scan itself is similar to the danger
detection mechanisms which inspires the DCA. As
opposed to examining incoming data to see if you
are the recipient of a scan based attack, the outgoing
data can be used to detect if your host is infected and
is now scanning the local subnet. This approach is
known as extrusion detection and has proven effect-
ive in the prevention of spam across a medium size
network [4]. It has been shown that a high propor-
tion of attacks, especially within a corporate setting,
can originate from within the organisation itself as
a result of misuse out of malice or ignorance. The
detection of ‘insider-attacks’ is a pertinent problem,
to which extrusion detection may prove useful.

2.3. Port Scanning Summary

Port scanning is both a useful tool for network ad-
ministration and maliciously for use in the discovery
of vulnerable hosts. Different types of scan are used
for different purposes, with the most common type
of scans based on the TCP protocol across a range of
IP addresses, namely horizontal scans. ICMP ping
scans are also popular as they are a very fast way of
gaining network topology information, which can be
used in future attacks. Detection techniques for port
scans frequently rely on the assumption of detecting
a number of events occuring within a time window.
This is not effective in detecting more sophisticated
scans. Scanning worm detection involves a number
of the same principles. Alternative approaches in-
clude backward scan detection where the response of
scanned hosts is used in place of detecting the port
scan packets. ‘Extrusion detection’, where outgoing
packets are examined, is useful for the detection of
spam and could be used for the detection of insider
attacks.

3. The Immune System: A DC’s Perspective

The human immune system is a complex and ro-
bust system, viewed as a homeostastic protection
agent[5]. It seeks out harmful pathogens, clearing
them from the body and performing maintenance
and repair. Classically the immune system is sub-
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divided into two distinct systems: the innate and
adaptive immune system.

The innate immune system contains a variety of
cells including macrophages and DCs amongst oth-
ers, [15]. The innate immune system is the first line
of defence against attack from invading organisms.
The cells of the innate system express proteins on
their surface, called receptors, and have the abil-
ity to detect and dispose of pathogens via ingestion
through phagocytosis. The selectivity of the recept-
ors for pathogenic material evolved within the devel-
opment of our species and is passed down through
the generations[7].

The adaptive immune system consists of two
classes of cell, T-cells and B-cells. They differ from
innate cells as their receptors are generated over
the lifetime of the individual, not through the de-
velopment of the species. The fine tuning of these
receptors, performed during childhood, plays a key
role in adaptation to previously un-encountered
threats. For example, T-cells are selected in their
early stage of development. Antigens, made of pro-
tein and derived from self cells, are presented to
the naive T-cells. Those cells with a high affinity
or can bind strongly to self antigen are deleted,
leaving a set of detectors with receptors specifically
designed to detect antigens which do not belong
to the host. This forms the core of the self-nonself
theory proposed in 1959 (described in [15]).

Since the 1970s immunology has developed in a
number of significant ways. It was proposed that T-
cell binding to pathogenic antigens is incapable of
initiating immune activation without the presence
of a second signal[15]. Investigation into vaccine de-
velopment highlighted the need to add stimulatory
molecules derived from pathogens (adjuvants) to in-
noculations in order for the process to be effective.
Antigens in the innocculation have different struc-
tures than antigens belonging to self, yet an adverse
response is not observed.

In addition to adjuvants, the immune system does
not react to ‘friendly’ bacteria in the intestines, des-
pite their prevalence. In the case of autoimmune dis-
eases such as multiple sclerosis, the immune system
reacts destructively against the body’s own cells.
Why should a system which has been filtered against
self reactivity, respond actively to ‘self’ without any
obvious cause? Self-nonself could not account for
these imporant effects, so researchers turned their
attentions to the cells of the innate immune system
for answers.

In 1989, immunologist Charles Janeway and his

collegues proposed the infectious nonself model[14].
This is a two signal model that states that only
antigens presented with co-stimulatory molecules
(CSMs) can activate T-cells. T-cells do not reside
in tissue, but are stored in lymph nodes, where they
are given antigen by antigen presenting cells, which
include DCs. Janeway showed that when DCs are
exposed to ‘signals’, forming a class of molecules
known as pathogen associated molecular patterns
(PAMPs), matching T-cells became activated[14].

PAMPs are exogenous signals which are molecules
produced exclusively by pathogens. The receipt of
PAMPs is thought to enhance the binding between
T-cell and DC. Foreign antigens are not recognised
unless they are accompanied by PAMP signals which
confirm their status as nonself. This explained why
stimulatory adjuvants are necessary for immunisa-
tions to be successful. Unfortunately, the infectious
nonself model can not explain the phenomena of
autoimmunity.

The Danger Theory was proposed by controver-
sial immunologist Polly Matzinger in 1994[18]. She
stated that the immune system is controlled by the
detection of damage to the body, not the detection of
antigen structures or bacterial products. Matzinger
proposes that signals do not come from exogenous
sources, but are endogenous and produced by the
cells of the tissue themselves. These endogenous sig-
nals are termed danger signals. The danger theory
also proposes that the cells of the innate immune
system can actively suppress an immune response
in the absence of danger in the tissue. This is medi-
ated through the recognition of ‘tissue context’ de-
rived based on the balance between two types of cell
death: necrosis and apoptosis[6].

Under healthy conditions, cells still die. Apoptosis
or planned cell death regulates growth and develop-
ment. During apoptosis the cell’s internal contents
are gracefully degraded. Genetic material is cut into
orderly fragments and destructive enzymes known
as lysosomes or ‘suicide-sacs’ digest the cell from the
inside out. This prevents any loss of membrane in-
tegrity. Eventually the apoptosing cell shrinks and
produces output signals e.g. tissue necrosis factor
alpha.

DCs are sensitive to an increase in the signals of
apoptosis and are attracted to the dying cell. Even-
tually the cell is found by a DC and ingested. Very
little debris is left in the tissue and during this pro-
cess. If the cell is ingested by an DC, the protiens
contained within the cell are presented to the im-
mune system as antigen in a ‘safe’ context, as the
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cell died of a normal process. The immune system is
then tolerised to antigens with the same structure.
This dynamic process is known as the mechanism of
peripheral tolerance[20].

Not all cells die in this clean and controlled
manner, as in the case of cell death as a result of
injury. Cell stress can occur through irradiation,
shock, hypoxia or pathogenic infection, leading to
the death of the cell via necrosis. Unlike apop-
tosis the internal cell contents degrade chaotically
and the cell membrane loses its integrity. Irregular
fragments of DNA are produced and oxidised to
become uric acid crystals, with heat shock proteins
and other hydrophobic compounds released from
the cell. These molecules were previously separated
from the tissue fluid by the cell membrane and form
the danger signals[20]. Dendritic cells are sensitive
to changes in concentration of the molecules re-
leased as a result of necrosis. Upon the detection
of danger, the DC migrates from the tissue and
presents any collected debris as antigen to T-cells,
causing activation.

To summarise, danger theory states that the im-
mune system is activated by DCs upon receipt of
danger signals. DCs have the ability to combine sig-
nals from apoptosis, necrosis and PAMPs, and to use
this information to instruct the immune system to
respond appropriately. Unlike the assertions of self-
nonself, this model emphasises that signals from the
environment dictate the behaviour of the immune
system, not the structure of antigens. Dendritic cells
are the natural data fusion agents which have the
ability to combine both endogenous and exogenous
signals with antigen to detect invading pathogens
and to maintain tolerance[22].

3.1. Introducing Dendritic Cells

To derive an algorithm based on the danger theory
it is necessary to understand the mechanisms used
by DCs to detect pathogens. DCs belong to a family
of cells known as macrophages, whose function is to
clear the tissue of debris. Unlike other macrophages,
DCs have a specialised role as professional antigen
presenting cells and control the activation state of
T-cells in the lymph nodes. The term “dendritic
cell” refers to the fact that they can have long finger
like projections which resemble dendrites. They are
a class of cell, which exist in three distinct states:
immature (iDC), semi-mature(smDC) and mature
(mDC), shown in Figure 1. The state of differenti-

ation is determined by the relative signal concentra-
tion they receive while in the tissue.

Immature DC ‘Semi-mature’ DC Mature DC

Fig. 1. Immature , ‘Semi-mature’ and Mature Dendritic Cells

ESMicrograph picture (see acknowlegements)

3.2. Immature DCs (iDC)

On arrival in the tissue, DCs are found in an im-
mature state[17]. Here, iDCs collect debris, some of
which is used as antigen. Antigens are complexed
with an auxilliary molecule necessary for T-cell
binding and are transported to the cell membrane
for presentation. In addition to antigen processing,
DCs can sense the various signals that may be
present in the tissue through receptors expressed
on the cell’s surface. These receptors are sensit-
ive to PAMPs, danger signals and ‘safe signals’.
The relative proportions and potency of the differ-
ent signals determines the iDC’s terminal state of
differentiation. Receipt of signals causes changes
to the function, morphology and behaviour of the
iDC. The result of exposure to signals causes the
production of molecules called cytokines which can
either activate or suppress the immune system. It
is important to note that iDCs cannot present an-
tigen directly to or activate T-cells directly as they
do not produce the necessary cytokines.

3.3. Mature DCs (mDC)

DCs which have the ability to both present anti-
gen and activate T-cells are termed mature DCs. For
an iDC to become an mDC, the iDC must be exposed
to a greater quantity of either PAMPs or danger
signals than safe signals. Exposure to signals takes
place during the iDCs antigen collection stage. Suffi-
cient exposure to PAMPs and danger signals causes
the DC to cease antigen collection and migrate from
the tissue to the lymph node. The high concentra-
tion of T-cells in the lymph nodes increases the prob-
ability of a successful antigen match between DC
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and T-cell. During the migration, the iDC changes
morphologically to become a mDC by developing
whispy finger-like projections which gives them an
increased surface area. This further increases the
probabiltiy of binding with a T-cell[22]. An increase
in surface area makes the mDC more suitable for
antigen presentation rather than collection.

Most importantly, mDCs produce an inflammat-
ory cytokine called Interleukin-12, which stimulates
T-cell activation. Additionally the mDC produces
costimulatory molecules (CSMs), which are known
to facilitate the antigen presenting process [21].
PAMPs and danger signals detected in the tissue
while in the immature phase are thought to be re-
sponsible for the production of Interleukin-12 and
CSMs.

3.4. Semi-mature DCs (smDC)

Under apoptotic conditions, exposure to safe sig-
nals diverts the iDC to a terminal state known as
‘semi-mature’. They appear morphologically very
similar to mDCs and can present antigen, yet they
do not have the ability to activate T-cells. Instead
of secreting Interleukin-12, the smDC produces
Interleukin-10.

Interleukin-10 suppresses T-cells which match the
presented antigen. Antigens collected with safe sig-
nals are presented in a tolerogenic context and lead
to unresponsiveness to those antigens. Evidence sug-
gests that safe signals have a greater influence on
DCs than PAMPs and danger signals, and can act-
ively inhibit the production of Interleukin-12 while
increasing production of Interleukin-10[32]. This is
a natural mechanism designed to stop the immune
system over reacting to antigens. In essence, the im-
mune system expends considerable time and energy
preventing reactions to harmless antigen or self an-
tigen.

3.5. Summary

Dendritic cells are antigen presenting cells which
have the power to control the adaptive immune re-
ponse. DCs initial function is to collect debris from
the tissue called antigen. Instructions to the adapt-
ive immune system are derived based on the relative
signal concentration found in the tissue where im-
mature DCs reside, represented in Figure 2. Three
signal categories have been discovered. Pathogenic-
ally derived PAMPs and danger signals from dying

Semi-mature

Mature 

Immature

-collect antigen
-receive signals
-in tissue

-present antigen
-produce costimulation
-provide tolerance cytokines
-in lymph node

-present antigen
-produce costimulation
-provide reactive cytokines
-in lymph node

Safe Signals

Danger Signals
PAMPS

Fig. 2. An abstract view of DC maturation and signals re-

quired for differentiation. CKs denote cytokines.

cells cause the DC to mature and present antigen
to the effector T-cells. Conversely, signals collected
as a result of apoptotic death cause the DC to ma-
ture to a different ‘semi-mature’ state. The smDCs
cannot activate T- cells, but cause presentation of
antigens in a tolerogenic context, vital to the pre-
vention of autoimmunity. The mechanism by which
DCs process signals is intricate, and the three sig-
nal concentrations are fused within the cell to influ-
ence the resulting output of CSMs, Interleukin-10
and Interleukin-12. This output informs the immune
system how to respond appropriately.

4. From in vivo to in silico

Through close collaboration with immunologists
[32], we have abstracted what we believe to be the
essential features of DC biology. DCs are examined
from a cellular perspective, which includes the dif-
ferentiation states, interaction with signals and an-
tigen. Representations of signals, antigen and the
different DC states form the core of this abstraction.
The following properties of DC function are used,
and summarised in Figure 2:
– Signals and Antigen:
(i) Exposure to signals initiates maturity of an iDC

not the collection of antigen.
(ii) The quantity of output signals produced is de-

termined by processing input signals from the
environment, and can be viewed as an interpret-
ation of the relative input signal strength.
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(iii) Input signals to a DC are either PAMPs derived
from pathogenic signatures, danger signals from
damaged tissue or safe signals from normal cell
death.

(iv) Overall decision of tolerance or activation is dic-
tated by the combined behaviour of a popula-
tion of DCs.

– Immature DCs:
(i) iDCs can differentiate to become either mDCs

or smDCs.
(ii) The path of differentiation is dictated by the

complement of signals to which an iDC is ex-
posed.

(iii) Each iDC can sample multiple antigens, which
are internalised and re-presented with cytokines
reflecting the context.

– Semi-Mature DCs:
(i) Safe signals suppress the production of the ma-

ture output signal.
(ii) The smDCs produce a different output signal

which confirms that the presented antigen was
collected in a normal environment.

– Mature DCs:
(i) Both mDCs and smDCs can present antigen by

producing costimulatory molecules.
(ii) The mDCs produce an output signal which con-

firms that the presented antigen were collected
in a context of danger and damage

5. The Dendritic Cell Algorithm

The DCA is an algorithm which uses a population
of agent-like, software-based artificial DCs which
combine data from disparate sources. This descrip-
tion of the DCA is based on an implemented version
of the algorithm made possible through the use of
the libtissue framework[31].

5.1. Libtissue

The Danger Project [1] has produced a vari-
ety of research outcomes alongside the DCA:
the development of danger theory and DC based
immunology[32]; a framework for developing im-
mune inspired algorithms called libtissue[31]; an
investigation into the interactions between the in-
nate and adaptive immune system; artificial tissue
[3] and the application of a naive version of the
DCA for the security of sensor networks. Libtissue
is the API used within the Danger Project for the

testing of ideas and algorithms, as shown in the
works of Twycross [29] and Greensmith et al [10].
Libtissue is a library implemented in C which

assists the implementation and testing of immune
inspired algorithms on real-world data. It is based
on principles of innate immunology[30] [31], through
the use of compartmentalisation, and uses tech-
niques from modeling, simulation and artificial-life.
It allows researchers to implement algorithms as a
collection of cells, antigen and signals interacting
within a specified compartment. The implement-
ation has a client/server architecture, with com-
munication perfromed via sockets using the SCTP
protocol. This architecture separates data collec-
tion using clients, from data processing on a server,
as shown in Figure 3.

antigen

response

signal

antigenstore

signalstore

compartment

cells

clients server

systrace

signalcollector

(AIS,DCs)

Fig. 3. Architecture used to support the DCA. Input data
are processes via signal and antigen clients. The algorithm
utilises this data and resides on a server.

Input data are processed using libtissue cli-
ents, which transform raw data into antigen and
signals. Algorithms can be implemented within the
libtissue server, as libtissue provides a conveni-
ent programming environment. Antigen and signal
sources can be added to libtissue servers, facilitat-
ing the testing of the same algorithm with a number
of different data sources. Input data from the client
passed to and represented in a compartment con-
tained on a server known as a tissue compartment.
This is a space in which cells, signals and antigen
interact. Each tissue compartment has a fixed-size
antigen store where antigen provided by libtissue

clients is placed. The tissue compartment also stores
levels of signals, set either by the input clients or
cells.
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5.2. Abstract View of the DCA

The DCA is implemented as a libtissue tissue
server. Input signals are combined with a second
source of data, such as a data item ID, or pro-
gram ID number. This is achieved through using
a population of artificial DCs to perform aggreg-
ate sampling and data processing. Using multiple
DCs means that multiple data items in the form
of antigen are sampled multiple times. If a single
DC presents incorrect information, it becomes in-
consequential provided that the majority of DCs
derive the correct context. The sampling of data is
combined with context information received during
the antigen collection process.

Different combinations of input signals result in
two different antigen contexts. Semi-mature antigen
context implies antigen data was collected under
normal conditions, whereas a mature antigen con-
text signifies a potentially anomalous data item. The
nature of the response is determined by measuring
the number of DCs that are fully mature, represen-
ted by a value, MCAV - the mature context antigen
value. If the DCA functions as intended, the closer
this value is to 1, the greater the probability that the
antigen is anomalous. The MCAV is used to assess
the degree of anomaly of a given antigen. By apply-
ing thresholds at various levels, analysis can be per-
formed to assess the anomaly detection capabilities
of the algorithm.

The DCA has three stages: initialisation, update
and aggregation. Initialisation involves setting vari-
ous parameters and is followed by the update stage.
The update stage can be decomposed into tissue up-
date and cell cycle. Both the tissue update and cell
cycle form the libtissue tissue server. Signal data
are fed from the data-source to the tissue server
through the tissue client. A graphical representation
of this process can be seen in Figure 4.

The tissue update is a continuous process,
whereby the values of the tissue data structures
are refreshed. This occurs on an event-driven basis,
with values for signals and antigen updated each
time new data appears in the system. Antigen data
enters tissue update in the same, event driven man-
ner. The updated signals provide the input signals
for the population of DCs.

The cell cycle is a discrete process occurring at a
user defined rate. In this paper, one cell cycle is per-
formed per second. Signal and antigen from the tis-
sue data structures are accessed by the DCs during
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- Storage area for data
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(network �ow)

Fig. 4. Illustration of the DCA showing data input, continu-
ous sampling, the maturation process and aggregate analysis.

the cell cycle. This includes an update of every DC
in the system with new signal values and antigen.
The cell cycle and update of tissue continues until a
stopping criteria is reached, usually until all antigen
are processed. Finally, the aggregation stage is ini-
tiated, where all collected antigen are subsequently
analysed and the MCAV per antigen derived.

5.3. Parameters and Structures

The algorithm is described using the following
terms.
– Indices:

i = 0, ..., I input signal index;
j = 0, ..., J input signal category index;
k = 0, ...,K tissue antigen index;
l = 0, ..., L DC cycle index;
m = 0, ...,M DC index;
n = 0, ..., N DC antigen index;
p = 0, ..., P DC output signal index.
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– Parameters:
I = number of input signals per category;
J = number of categories of input signal;
K = number of antigen in tissue antigen vector;
L = number of DC cycles;
M = number of DCs in population;
N = DC antigen vector size ;
P = number of output signals per DC;
Q = number of antigens actually sampled per DC
for one cycle;
R = maximum number of antigen collected per
DC for one cycle (DC antigen receptors) ;
Tmax = tissue antigen vector size.

– Data Structures:
DCm={s(m), a(m), ōp(m), t(m)}- a DC within
the population;
T = {S, A} - the tissue;
S = tissue signal matrix;
sij = a signal type i, category j in the signal
matrix S;
A = tissue antigen vector;
ak = antigen k in the tissue antigen vector;
s(m) = signal matrix of DC(m);
a(m) = antigen vector of of DC(m);
op(m) = output signal p of o DC(m);
ōp(m) = cumulative output signal p of DCm;
t(m) = migration threshold of DCm;
wijp = transforming weight from sij op.

S SSS

DC DCDC DC... ......

j=0 j=3j=2j=1 Tissue
update

Cell  
cycle0 1 2  m

Signal matrix

Antigen vector

DC population

S SSS1

a 0 a 1 a 2 aN

432
DC input signal matrix

DC antigen store

Output signals

Migration threshold value
M

DC

a 0 a 1 a 2 aK

m

o o o0 1 2

Fig. 5. Tissue and Cell Update components, where Si,j is
reduced to Sj .

The data structures are represented graphically
in Figure 5. Each DCm transforms each value of
s(m) to op(m) using the following equation with

suggested values for weightings given in Table 1
and presented in Figure 6. Both the equation and
weights are derived from observing experiments
[32]performed on natural DCs for the purpose of
their relative derivation. In the DCA each compon-
ent of the antigen vector provides the capacity for
storage of individual antigen. Although each DC
samples the same input antigen vector, each DC
samples a different component, potentially contain-
ing an antigen.Each DC samples the same input
signal matrix and each ‘component of the signal
matrix.

op(m) =

∑

i

∑

j 6=3

Wijpsij(m)

∑

i

∑

j 6=3

|Wijp|
∀p

Table 1
Weights used for signal processing

wijp j = 0 j = 1 j = 2

p = 1 2 1 2

p = 2 0 0 3

p = 3 2 1 -3

The tissue has containers for signal and antigen
values, namely S and A. In the current implement-
ation of the DCA, there are three categories of sig-
nal (j = 2) and 1 signal per category (i = 0). The
categories are derived from the three signal model
of DC behaviour described in Section 2 where: s0,0

= PAMP signals, s0,1 = danger signals, and s0,2 =
safe signals. An antigen store is constructed for use
within the tissue cycle where all DCs in the popula-
tion collect antigen, which is also introduced to the
tissue in an event driven manner.

The cell cycle maintains all DC data structures.
This includes the maintenance of a population of
DCs, which form a sampling set of size M . Each DC
has an input signal matrix, antigen vector, output
signals, and migration threshold. The internal val-
ues of DCm are updated, based on current data in
the tissue signal matrix and antigen vector. The DC
input signals, s(m) use the identical mapping for sig-
nal categories as tissue s and are updated every cell
cycle iteration. Each s(m) for DCm is updated via
an overwrite every cell cycle. These values are used
to calculate output signal values, op(m), for DCm,
which are added cumulatively over a number of cell
cycles to form ōp(m), where p = 0 is costimulatory
value, p = 1 is the mature DC output signal, and
p = 2 is the semi-mature DC output signal. With
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Fig. 6. A representation of the three calculations performed
by each DC per update cycle, to derive the cells outputs
through fusing together the signal inputs.

each cell update, DCs sample R antigens from the
tissue antigen vector A.

5.4. The DCA

The following pseudocode shows the initialisation
stage, cycle stage, tissue update and cell cycle.
initialise parameters

{I, J,K,L,M,N,O, P, Q}
while (l < L)

update A and S
for m = 0 to M

for 0 to Q
DCm samples Q antigen from A

for all i = 0 to I and all j = 0 to J
sDC

ij = sij

for n = 0 to N
DCm processes aDC

nm

for p to P
compute op

ōp(m) = ōp(m) + op

if o0(m) > tm
DCm removed from population

DCm migrate, print antigen and

context

DCm reset antigen vector and all

signals

l++

analyse antigen and calculate MCAV

5.5. Antigen Aggregation

Once DCm has been removed from the popula-
tion, the contents of a(m) and values ōp(m) are
logged to a file for the aggregation stage. Once com-
pleted, s(m), a(m) and ōp(m) are all reset, and
DCm is returned to the sampling population. The
re-cycling of DCs continues until the stopping condi-
tion is met (l = L). Once all data has been processed
by the DCs, the output log of antigen-plus-context
is analysed. The same antigen is presented multiple
time with different context values. This information
is recorded in a log file. The total fraction of ma-
ture DCs presenting said antigen (where ō1 > ō2)
is divided by the total amount of times the antigen
was presented namely ō1/(ō1 + ō2) . This is used to
calculate the mean mature context antigen value or
MCAV.

5.6. Signals and Antigen

An integral part of DC function is the ability to
combine multiple signals to influence the behaviour
of the cells. The different input signals have differ-
ent effects on cell behaviour as described in Section
3. The semantics of the different category of signal
are derived from the study of the influence of the
different signals on DCs in vitro. Definitions of the
characteristics of each signal category are given be-
low, with an example of an actual signal per cat-
egory. This categorisation forms the signal selection
schema.
– PAMP - si0 e.g. the number of error messages gen-

erated per second by a failed network connection
(i) a signature of abnormal behaviour e.g. an error

message
(ii) a high degree of confidence of abnormality asso-

ciated with an increase in this signal strength
– Danger signal - si1 e.g. the number of transmitted

network packets per second
(i) measure of an attribute which significantly in-

creases in response to abnormal behaviour
(ii) a moderate degree of confidence of abnormality

with increased level of this signal, though at a
low signal strength can represent normal beha-
viour.

– Safe signal - si2 E.g. the inverse rate of change of
number of network packets per second. A high rate
of change equals a low safe signal level and vice
versa.

(i) a confident indicator of normal behaviour in a
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predictable manner or a measure of steady- be-
haviour

(ii) measure of an attribute which increases sig-
nal concentration due to the lack of change in
strength

Signals, though interesting, are inconsequential
without antigen. To a DC, antigen is an element
which is carried and presented to a T-cell, without
regard for the structure of the antigen. Antigen is
the data to be classified, and works well in the form
of an identifier, be it an anomalous process ID[10] or
the ID of a data item [9]. At this stage, minimal anti-
gen processing is performed and the antigen presen-
ted is an identical copy of the antigen collected. De-
tection is performed through the correlation of an-
tigen with fused signals. By processing of antigen,
this refers to the process by which antigen is col-
lected and presented for analysis by the DCs - it is
noteworthy that no changes are made to the actual
value of the antigen, it is sampled whole.

The DCA could be interpreted as a neural network
if its goal was to purely classify based on weighed
sums alone. However the algorithm is not designed
for the purpose of classification, but sorts input data,
in the form of antigen, through the use of data-fused
signals. The signals are aggregated through time and
across a population of cells, which is different to the
processing performed by a series of neural networks.

6. PSI: Ping Scan Investigation

The purpose of this investigation is as follows:
(i) To apply the DCA to anomaly detection

through bio-inspired data fusion.
(ii) To show how the system responds to the modi-

fication of signal mappings.
(iii) To understand the sensitivity of the system

parameters and the sensitivity of the weights
of the signal processing function.

In this paper, port scanning is used as a model
intrusion, and is described in Section 2. The DCA
is applied to the detection of an outgoing port scan
across a range of IP addresses, based on the ICMP
‘ping’ protocol. It is assumed that it is possible for
the attacker to gain access to the machine using a
password cracking utility.

The type of scan used in this investigation is an
nmap ICMP ‘ping’ scan. This type of scan is partic-
ularly suitable for the purpose of these experiments
as it is suitable for use on a network as it uses min-
imal network resources and is a short duration scan

(10-30 seconds in duration). Ping scans involve a
victim machine, connected to a medium sized sub-
net of 100-200 machines, which has been subverted
by our hypothetical intruder. The premise is that
the intruder has logged into the victim machine re-
motely via ssh and aims to retreive a list of hosts
running within a similar IP address range. During
the scan, the victim machine sends ICMP probes to
other hosts, specified at run time. The nmap scan
program reports back on the status of the scanned
addresses as either appearing to be down or up. This
allows an attacker to generate a list of hosts cur-
rently running within a range of IP addresses. This
scan does not require root privileges and is one of
the fastest scans available. Ping scans also retrieve
DNS information, resolving the IP address of avail-
able hosts.

6.1. Data Sessions

Two types of data session are used in this invest-
igation. An attack session consists of a ping scan
embedded within a 70 second ssh session. Four pro-
cesses (running programs) of interest are identified
in these sessions for the purpose of analysis includ-
ing: ssh demon; bash shell; nmap scan program; and
the pts sshd process which is the parent of the nmap
scan. The ssh demon and the bash shell are normal
process which occur in the attack session. The scan
uses a range of 1020 IP addresses across a class C
network. The normal session also involves a remote
log in via ssh, and also contains the transfer of a
file from the victim machine to a remote server, via
scp. Again, four processes of interest are identified:
bash shell; sshd; x-forwarding agent; secure copy of
a 2.5MB file. Ten datasets are generated for both
the attack and normal protocols.

6.2. Signals

Three signal categories are used, with one sig-
nal per category throughout this investigation. The
signals used are defined in Section 3, where they
are placed in context with their biological inspira-
tion. Signals are collected from kernel statistics us-
ing bash scripting, and are processed, normalised
and combined with antigen to form a log file. All sig-
nals are normalised real-values within a range of 0-
100 for the PAMP and danger signal and 0-10 for the
safe signal. It is important to note that preliminary
examinations of the input signal data indicate that
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analysis of the signals individually is insufficient to
indicate anomalies [11], which is further highlighted
in the DCLite experiment.

The PAMP signal is generated from the rate of
ICMP destination unreachable errors recieved per
second. When a ping scan is used, ICMP packets
are sent to the machines specified. Frequently the
range of machines is specified as a block, for example
XX.XX.20.1-254 would scan all addresses on the
‘.20’ subnet 1 . It is likely that numerous machines
within that range will not accept ping probes and
hence a DU error is sent back to the scanning ma-
chine, as a signature of suspicious activity.

The danger signal is derived from the number of
sent network packets per second. An increase in net-
work traffic sent from the machine can be an indic-
ator of anomalous behaviour. However, under cer-
tian circumstances, such as uploading files via a tor-
rent client or over peer-to-peer networks, this is not
as useful.

To complement this signal, the safe signal is de-
rived using the first order derivative of packets/s,
namely the rate of change of packets/s. This is based
on the assumption that anomalous traffic produces
‘bursty’ rates of sending, whereas uploading large
files will not have such a variable rate of change.
To derive the safe signal, a maximum value for rate
of change is defined. The more variable the rate of
change, the greater the decrement of the maximum
value. This is the inverse rate of change of packets
per second. This counters an increased danger signal
value under ‘normal’ conditions, and may assist in
reducing false positives. A sketch of the input signals
for both sessions is represented in Figure 7, where
0-50 seconds shows signals during a ping scan and
51-75 seconds shows the normal file transfer.

6.3. Antigen

In these experiments the signals are used to detect
the anomalous nmap process and its sshd parent in
the attack scenario, and actively prevent a response
to the scp file transfer. This cannot be acheived by
signals alone, as antigen is required to correlate the
signals to the active culprit processes. During each
session, all processes spawned by the controlling ssh
sessions are monitored using the strace tool. Each
of the processes is assigned a number identifier (PID)

1 Full IP addresses not given, adhering with our organisa-

tion’s security policy
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Fig. 7. A sketch of the input signals for both attack and
normal sessions, where the left hand side of the figure rep-
resents the attack dataset, and the right normal.

by the operating system. To run, each process in-
vokes the use of system calls. The more active the
process, the more system calls it makes. As antigen,
each system call is captured and converted into an
antigen, with a value of the PID to which the sys-
tem call belongs. In a similar manner to the signals,
output of this process is logged and combined with
the signal data to form the datasets for these exper-
iments. The multiplicity of input antigen facilitates
the function of the algorithm, encompassing a DCs
ability to collect and process multiple antigen frag-
ments of identical structure.

6.4. Experiments

As shown in Section 5, the algorithm implemen-
ted with libtissue has numerous parameters. It is
necessary to understand the effect on the system by
changing these parameters in order to understand
the behaviour of the DCA. The experiments per-
formed assist in clarifying these effect, and fall into
three convenient categories:
Series-1: Investigate signal mappings: does incor-
rect data mapping influence the detection rates?

Series-2: Sensitivity of libtissue related parameters:
which parameters can influence the system and at
what value?

Series-3: Sensitivity of the weights of the signal
processing equation: how to these weights relate
to each other and what effect on detection arises
from variation in the values?
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6.5. Series-1

The aim of this series is to change the input signal
mappings to assess the validity of this implement-
ation. The mapping of the input signal category to
the raw data attributes is controlled primarily by the
weights of the signal processing equation. By per-
forming experiments such as switching the PAMP
and safe signal we predict that the system would re-
spond with a very high rate of false positives. This
information is used to validate the use of this al-
gorithm on this particular problem. Three input sig-
nals are used in series-1 inclusive of one PAMP sig-
nal (s0,0), one danger signal (s0,1,) and one safe sig-
nal (s0,2). In order to understand the principles of
mapping signals to categories each chosen input for
the signals is used per category.

The permutations of this experiment are shown
in Table 2. We hypothesise that the DCA will not
lose detection accuracy when the incorrect mapping
involves the PAMP and danger signal, as these sig-
nals affect the DCs in a similar manner. Conversely
a mapping reversal between the danger and safe sig-
nal may result in a poor performance as they are
treated differently in the signal processing function.
All experiments in this series are tested using all 20
attack and normal datasets, with three repeats of
each run per dataset. Similar experiments involving
combinations of 2, 3 and 4 input signals are presen-
ted in [11], to which the interested reader should
refer.
Table 2
Experiment codes and signal mappings

Experiement Code S0,0 S0,1 S0,2

M1 P D S

M2 D P S

M3 S D P

M4 P S D

M5 S P D

M6 D S P

6.6. Series-2

Numerous parameters within libtissue are used
to define the behaviour of the artificial DC and the
properties of the compartments. As a result several
values which may influence the system need to be in-
vestigated to assist in understanding the algorithm.
A summary of the series-2 experiment is presented

in Table 3. The ten attack datasets are used for this
series, providing examples of both normal and an-
omalous data, with three repeats of each run per
dataset. Four key libtissue parameters are investig-
ated:

(i) Number of DCs created (C)
(ii) DC antigen vector size (N)
(iii) Number of DC antigen receptors (R)
(iv) Size of tissue antigen vector (Tmax)

Table 3

Experiment codes and default parameter settings

Experiement Code Parameter Values

C 10; 100; 200; 500

N 1; 2; 5; 10; 25; 50; 100

R 1; 2; 5; 10; 20

Tmax 50; 500; 1000; 5000; 10000

6.7. Series-3

Essentially, each DC in the sampling population
performs data fusion through combining multiple
signals from disparate sources to produce output sig-
nals, which are then correlated with data in the form
of antigen. The combination of the input signals is
achieved using the signal processing equation de-
scribed in Section 5, where processing is performed
three times on the the input signals to produce three
different output signals. Initially the weights chosen
for this purpose were derived from empirical bio-
logical data. Indeed, the inter-relationship between
the weights (as shown in Table 4) remains inspired
by these data, with all weights deriving from the
weight of the PAMP signals. Two weights are invest-
igated, W1 and W2.

Preliminary tests and prior experience with
the DCA indicate values for W1 and W2 should
lie within a range of 0 and 20 if the maturation
threshold is 60 (+/- 50%). An exhaustive search of
the following values is performed: 0.5; 1; 2; 4; 8; and
16. This results in a total of 36 experiments. One
attack dataset is selected at random for use with
three runs performed per parameter combination.

6.8. Parameters and Settings

All experiments are performed on an AMD Ath-
lon 1GHz Debian linux machine (kernel 2.4.10). The
algorithm is implemented within the libtissue
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Table 4
Derivation and interrelationship between weights in the sig-

nal processing equation

Output Signal Input Signal Weight

o0 s0,0 W1

s0,1 W1/2

s0,2 W1 * 1.5

o1 s0,0 0

s0,1 0

s0,2 1

o2 s0,0 W2

s0,1 W2/2

s0,2 W2 * -1.5

Table 5
Default parameter settings

Name Symbol Value

Number of signals per category I 1

Number of signals categories J 3

Max number of tissue antigen K 500

Number of cells M 100

Max number of antigen per DC N 50

Number of output signals per DC P 3

Number of DC antigen receptors Q 1

framework, implemented in C (gcc 4.0.2) with in-
terprocess communication facilitated by the SCTP
protocol. All signals are derived using signal col-
lection scripts, with values taken from the ‘proc’
filesystem. Unless stated otherwise, default para-
meters for all experiments are presented in Table 5.

6.9. Results

In this section results for all experimental series
are presented, showing that the DCA can be used as
a ping based port scan detection system. In all exper-
iments the MCAV coefficient is employed to assess
the behaviour and function of the DCA. The MCAV
is the mature context antigen value and is a num-
ber between zero and one. The closer this value is to
one, the higher the probability that the monitored
process is anomalous as more antigen are presented
in by the algorithm in the mature context i.e. the
anomalous context. Each type of antigen is given
a MCAV coefficient value which can be compared
against a threshold. Once a threshold is applied, it
is then possible to classify antigen as either ‘normal’

or ‘anomalous’ and therefore the relevant rates of
true and false positives can be shown. This calcu-
lation is used throughout this section. The results
of each series of experiments are presented with the
relevant statistics shown.

6.9.1. Series-1
The graph presented in Figure 8 represents a

summary of results for the attack datasets used with
the original and correct mapping (M1). MCAVs
generated by the two anomalous processes are 0.82
(with a standard deviation, stdev, of 0.11) for the
nmap process and 0.67 (stdev.= 0.22) for the parent
pts process. All statistical tests are performed us-
ing a paired t-test, where p = 0.05, used whenever
‘statistical significance’ is stated. These values are
statistically significantly higher than the MCAVs
produced for the normal processes. The bash
MCAV is 0.02 (stdev=0.04) and the sshd MCAV is
0.18 (stdev=0.24). The variance (stdev divided by
MCAV) values are also larger for the two normal
processes in contrast the the anomalous items.
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Fig. 8. MCAV values for all processes and all mappings for
the attack datasets. Ten attack datasets are used, each point
representing a mean of 30 values, as number of runs per
dataset =3.

Figure 8 shows the MCAVs generated per pro-
cess for each mapping, across the 10 attack datasets.
The intended mapping (M1) is used as a baseline to
which all other mappings are compared. The results
for M1 and M2 are similar, with high MCAVs for the
anomalous processes and low values for the normal
items. Statistically, significant differences are shown
between the MCAVs the bash process, as the bash
MCAV in M1 is 0.02 as opposed to 0.27 for M2. This
implies that incorrect mapping between PAMP and
danger signals would not impair detection, save for a
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slight increase in the rate of false positives. M3 pro-
duced significantly higher MCAV for the two nor-
mal processes than M1, yet only minor differences
in the detection of the anomalous processes. Incor-
rect mapping of safe signals as PAMPs leads to an
increased rate of false positives.

In M4 the MCAVs for the anomalous processes
are significantly smaller (p > 0.05) and significantly
larger for the normal processes when compared to
the results of M1. For example, the MCAV for nmap
in M4 is 0.64, which is significantly lower than the
0.82 reached using M1. This trend is also shown
in M6, with a nmap MCAV of 0.61 (stdev=0.37).
M5 exhibited a similar increase in the MCAV of
the normal processes, yet interestingly produced the
highest MCAV for the anomalous processes, with
the lowest standard deviation for the detection of
the nmap process. However, normal MCAV values
are significantly higher than observed in M1. All
MCAVs for this experiment are shown with their
standard deviations in Table 6.

Table 6
MCAV values for each experiment across each dataset.

Expt. Attack

nmap pts bash sshd

mean stdev mean stdev mean stdev mean stdev

M1 0.82 0.04 0.67 0.11 0.18 0.22 0.02 0.24

M2 0.86 0.27 0.78 0.12 0.28 0.27 0.19 0.35

M3 0.90 0.04 0.62 0.13 0.99 0.33 0.96 0.02

M4 0.64 0.29 0.29 0.29 0.20 0.28 0.54 0.05

M5 0.96 0.03 0.90 0.10 0.63 0.32 1.00 0.00

M6 0.61 0.37 0.08 0.06 0.40 0.21 0.97 0.05

For the normal datasets, similar trends are evid-
ent, as shown in Figure 9. M1 shows very low MCAVs
for all processes, indicating a low rate of false pos-
itives. M2 is similar, also producing low values for
all processes of interest. The scp process produced
a higher MCAV of 0.22 in M2, though this is not
statistically significant. M3 produced the maximum
MCAV of 1 for all processes, while M4 produced
values over 0.5. Experiment M5 produced interest-
ing results. Despite poor performance for the attack
dataset, high values of MCAV are not present in
the normal dataset. The MCAV for the M5 scp is
0.13, which is not significantly different to the res-
ults found for M1. M6 produces similar results to
M3, but the MCAVs are not as high (statistically
significant, p > 0.05).
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Fig. 9. Response varied signal mappings for the normal ses-

sions. Each processes of interest is represented individually.
Values represent mean MCAV coefficients from ten datasets,
where number of runs = 3.

6.9.2. Series-2
In this series, various DCA parameters are as-

sessed. Cell numbers parameter results are presented
in Figure 10. This shows MCAVs per process, and
each experiment is represented within each process.
A high value of MCAV is shown for the nmap process
for all values of cell number above 100. Where the
number of cells is equal to 10, the MCAV is greatly
reduced, from 0.9 to 0.1. The standard deviations
of these values increases from 0.3 in C10, to 0.1 for
all other cell numbers. Similarly no significant dif-
ference was found between C100, C200 and C500
for any of the processes. C10 also produced higher
MCAVs for the normal processes than for any other
cell number.

The DC antigen vector size parameter results are
summarised in Figure 11. No significant differences
are found when this parameter is varied, for any of
the processes of interest. Marginally impaired per-
formance is shown when this size is set to 100, but
this was shown to not be significant. One explan-
ation for this parameter’s insensitivity is that the
number of antigen is less influential than the signals
they are collected. Further analysis is performed us-
ing the number of antigens processed to understand
exactly the reasons for this effect.

Hence, investigations in to the number of antigen
sampled by one DC per iteration (number of antigen
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Fig. 11. DC antigen vector size MCAV per process for the
attack datasets

receptors) is performed, and the results are presen-
ted in Figure 12. This shows no significant difference
in the MCAV values for the detection of the two
anomalous processes. Data regarding the MCAVs
of the normal processes suggests that an increased
number of antigen receptors can lead to higher than
desired MCAVs. This is supported by the actual val-
ues, where MCAV for the bash process is 0.38 in R20
as opposed to 0.22 in R2. This difference is statist-
ically significant, demonstrated through the use of
a paired t-test (p >0.05).

The results for the tissue vector size, shown in
Figure 13, are similar to the receptor results, in that
no significant differences were shown for the nmap,
pts and sshd processes. Again, differences were most
pronounced for the bash process with a MCAV of
0.28 for T50 and 0.08 for T500. The results show
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Fig. 12. Number of antigen receptors MCAV per process for
the attack datasets

that the DCA is robust to changes in controlling
parameters, provided that their values lie within a
sensible range.
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Fig. 13. MCAV per process

6.9.3. Series-3
Figures 14 to 17 show the MCAVs generated by

the weights sensitivity analysis. The resultant sur-
face maps are produced by plotting the two con-
trolling weights, W1 and W2 on the x- and y-axes
respectively, and the MCAV per process present on
the z-axis. The two anomalous processes are shown
in Figure 14 and 15. The surfaces created in these
figures show that MCAV values for these processes
lie consistently above 0.8. This indicates that the de-
tection of anomalous processes is insensitive to the
values of the weights.

Figures 16 and 17 show the results for the sshd
and bash processes. Figure 16 exhibits most vari-
ation within these four graphs. Peaks of high MCAV
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in excess of 0.8 are shown when W1 = 1 and W2 <
8. A similar peak is evident in Figure 17. This graph
also shows that once both parameters are above 4,
the MCAV for the normal processes is small. This
implies an effect on the system, which further in-
vestigation will clarify.

7. Analysis

In experiment M1 distinct differences are shown
in the behaviour of the algorithm for the detection
of normal and anomalous processes. The MCAV for
the anomalous processes is significantly larger than
the MCAV of the normal. This is encouraging as it
shows that the DCA can differentiate between two
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different types of process based on environmentally
derived signals. In experiment M2 the PAMP and
danger signals were switched. In comparison with
the results presented for experiment M1, the MCAV
for the anomalous process is not significantly differ-
ent (paired t-test p < 0.01). However, in experiment
M2, the standard deviations of the mean MCAVs
are generally larger and is especially notable for the
nmap process. Potentially, the two signals could be
switched (through accidental means or incorrect sig-
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nal selection) without altering the performance of
the algorithm significantly.

Experiment M3 involved reversing the mapping
of safe and PAMP signals. The safe signal is gener-
ated continuously when the system is inactive and
when mapped as a PAMP constantly generated full
maturation in the artificial DCs, shown by the high
MCAV value for all processes indiscriminately. In-
terestingly, in M3 the MCAV value for the anom-
alous processes in the attack datasets is lower than
the normal process’ value. For the normal dataset,
all processes are classified as anomalous, all result-
ing in a MCAV of 1. Similar impeded performance
is shown for M6, caused by the incorrect mapping
of a PAMP as a safe signal. The input PAMP signal
is strong, yet does not occur throughout. Therefore,
not enough suppression is present when the PAMP
is mapped.

M5 also produced interesting results - while it did
not have such a marked effect on the anomalous pro-
cesses, it produced high MCAVs for normal items in
the attack dataset, but not in the normal dataset.
Under ‘normal’ scenarios this mapping functions as
the danger signals are counter-balanced by the safe
signals, resulting in low MCAVs. As the PAMP sig-
nal is infrequent, insufficient signal to cause full mat-
uration is present.

The intended signal mapping produced good res-
ults, showing that the DCA is capable of performing
information fusion and anomaly detection. Chan-
ging the mapping of signal meaning with data source
has shown that the correct mapping is ideal. How-
ever, if the PAMP signal is mapped as a danger
signal, performance is not sacrificed. Alternatively,
PAMPs mapped as safe signals produced the worst
results, indicating that care must be taken when
selecting a mechanism of suppression. These data
also suggest that suppression is a key part of the
system, which supports parts of Matzinger’s danger
theory[19] in reference to peripheral tolerance.

The parameters investigated in series-2 have little
influence on the output of the system. For example,
varying the DC antigen vector size does not produce
any results which are significantly different in this
respect. Similar trends are shown for the number of
receptors and the number of cells. Exceptions to this
include very low values of cells, storage and recept-
ors. The values originally used as default paramet-
ers have in many cases produced the most consist-
ent results. This is highlighted in the cell numbers
experiments, DC antigen vector size and number of
receptors. This is no coincidence as these values, ini-

tially derived from biological information[32], and
are designed to work together. This may account for
some of the robustness seen with these parameters.

Series-3 has provided valuable insight into the
behaviour of the DCA. The results in Figures 14
and 15 show that the DCA is insensitive to changes
in weights within the signal processing equation,
as little variation is shown across the spectrum of
values. Significant variation is evident in Figures
16 and 17 suggesting that incorrect weight values
may lead to increased values of MCAV for normal
processes. The relationship between the two values
suggests that higher values for the weight produce
lower MCAVs. One reason for this may be linked to
the number of update cycles a cell performs. W1 is
the controlling weight for output signal o0, which is
matched against the DCs migration thresholds. The
sooner this threshold is exceeded, the shorter the
time a cell spends sampling signals. For this partic-
ular dataset, using a threshold of 60 (+/- 50%), a
W1 value of over 4 and W2 value of above 8 yields
the best result in both cases. This implies that a
tighter temporal coupling between signals and an-
tigen produces lower MCAVs for normal processes.
To confirm this, a similar analysis will be performed
using longer scans in future work.

8. Conclusions and Future Work

In this paper the DCA is described in detail and
interesting facets of the algorithm are presented.
The DCA combines inspiration from the immune
system with principles of information fusion to
produce an effective anomaly detection technique.
The importance of careful signal selection has been
highlighted through signal mapping experiment.
The DCA is somewhat robust to misrepresentation
of the activating danger and PAMP signals, but
care must be taken to select a suitable safe signal
as an indicator of normality. Incorrect mapping of
safe signals can result in impeded performance as
shown with our results.

The algorithm has various parameters, and it
is shown that the DCA is insensitive to changes
in these parameters. Provided that the values are
within a sensible range, the algorithm performs
well on the task of detecting a ping based port
scan. Sensitivity analysis is also performed. The
detection of the anomalous processes is robust to
changes in the signal processing weights, though
large variations are shown in the incorrect detection
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of normal processes. For the ping scan investigation,
larger weights are preferable. This implies that bet-
ter performance is given if the time spent sampling
signals by the DC is shorter.

The DCA is a new development in artificial im-
mune systems, and as yet has not been extensively
tested. Its unique methods of combining multiple
signals and correlating the combined values with a
separate antigen data-stream work well for the pur-
pose of port scan detection. However, this makes the
system difficult to compare, as other techniques can-
not use data of this type, such as standard machine
learning techniques or signature based IDS. Plus,
individual signals alone are insufficient to produce
classification[10].

The general applicability of the algorithm to a
variety of problems is unexplored. This could be
initially characterised through the DCA’s applica-
tion to a range of portscans, and then by its ap-
plications to other time-dependent datasets. This
has thus far included applications within sensor net-
works, as shown by Kim et al [16]. They used the
suggested signal mapping schema as shown in sec-
tion 5.6.

Future work with the algorithm includes its ap-
plication to SYN scan detection, where we hope it
will produce competitive solutions with other port
scan detectors. Such experiment will require the use
of multiple signals per category, with a view to a
full implementation as a host based port scan de-
tector. The introduction of adaptive signals or vari-
able weights may be necessary once multiple signals
per category are used. Although the relative weighs
used in the signal processing equation are part of
the abstract model, some adaptive mechanism for
controlling the values of these weights may be bene-
ficial to the sensitivity of the system. The algorithm
may also be applied to other detection or data cor-
relation problems such as the analysis of radio signal
data from space, sensor networks, internet worm de-
tection and other security and defence applications.
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