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Abstract

Objective: Vitamins C and E have protective features in many disease states associated with

enhanced oxidative stress. The aim of this study was to investigate whether vitamins C and/or E

modulate hyperglycaemia-induced oxidative stress by regulating enzymatic activities of

prooxidant i.e. NAD(P)H oxidase and/or antioxidant enzymes, namely endothelial nitric oxide

synthase (eNOS), superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx), using

coronary microvascular endothelial cells (CMEC).

Methods: CMEC were cultured under normal (5.5 mM) or high glucose (22 mM) concentrations

for 7 days. The enzyme activities were determined by specific assays. The levels of O2
- and

nitrite were measured by cytochrome C reduction and Griess assays, respectively.

Results: Hyperglycaemia did not alter eNOS activity or overall nitrite generation, an index of

NO production. However, it increased NAD(P)H oxidase and antioxidant enzyme activities

(p<0.05). Specific inhibitors of NAD(P)H oxidase i.e. phenylarsine oxide (PAO, 0.1-3 M) and

4-(2-Aminoethyl)benzenesulfonyl fluoride (AEBSF, 5-100 M) and vitamins C and E (0.1-1

M) significantly reduced prooxidant and antioxidant enzyme activities in CMEC exposed to

hyperglycaemia (p<0.01). The differences in enzyme activities were independent of increases in

osmolarity generated by high glucose levels as investigated by using equimolar concentrations of

mannitol in parallel experiments.

Conclusions: Vitamins C and E may protect CMEC against hyperglycaemia-induced oxidative

stress by concomitantly regulating prooxidant and antioxidant enzyme activities.
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Introduction

Nitric oxide (NO), generated from amino acid L-arginine within healthy endothelium by

endothelial type of nitric oxide synthase (eNOS), plays a pivotal role in the regulation of normal

vascular tone [1]. The characteristics of endothelium change in several pathological conditions

including diabetes mellitus leading to a phenomenon called “endothelial dysfunction” which is

characterised by impaired endothelial cell function. Although the actual causes of this pathology

are unknown, several mechanisms have thus far been proposed. These include inefficient

utilisation of substrate L-arginine by NOS [2], an abnormal NOS activity due to inadequate

availability of co-factor tetrahydrobiopterin (BH4) [3], concurrent release of endothelium-derived

vasoconstrictors by cyclooxygenase (COX) pathway [4] and scavenging of NO by advanced

glycation end-products (AGEs) [5].

In recent years, enhanced oxidative stress status arising from excess release of reactive oxygen

species (ROS) has been documented in diabetic animals and cells cultured under high glucose

conditions [6,7] and associated with the pathogenesis of diabetic endothelial dysfunction. ROS

may be generated as a result of prolonged exposure of cells to hyperglycaemia that results in

non-enzymatic glycation of plasma proteins [8] which then undergo further spontaneous

reactions to produce free radicals such as superoxide anion (O2
-), the foundation molecule of

other ROS [9]. O2
- is also formed by enzymatic activities of COX, xanthine oxidase (XO),

uncoupled eNOS and NAD(P)H oxidase [3,10,11]. Amongst these enzymes NAD(P)H oxidase

enzyme system has attracted much of the attention. It has been characterised as the main source

of ROS in coronary microvascular endothelial cells (CMEC) [12] and has later been coupled to

oxidative stress-mediated endothelial dysfunction in the central retinas of type II diabetic rats

[13].
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Under physiological conditions, O2
- is converted to hydrogen peroxide (H2O2) by superoxide

dismutases (SODs) [14] and upon generation H2O2 itself is further metabolised to H2O by

catalase and glutathione peroxidase (GPx) [14]. However, under hyperglycaemic conditions the

levels of O2
- may be elevated as a consequence of glycosylation and hence inactivation of SODs

[15]. O2
- readily scavenges NO to diminish its vasoprotective effects and produces vascular

smooth muscle (VSM) contractions in the absence of intracellular antioxidants such as

glutathione and cysteine [16,17]. Depletion of these antioxidants in diabetic conditions is a

common occurrence as demonstrated in aortic endothelial cells isolated from diabetic rabbits

[18] and in CMEC cultured with 22 mM D-glucose-containing media for 7 days [19]. Taken

together the currently available data imply that the elevation of antioxidant levels in diabetic

states may be critical in suppressing hyperglycaemia-induced oxidative stress generation and

thus initiation and/or progression of endothelial dysfunction. Several recent studies including our

own have supported this hypothesis in that treatments of diabetic patients with antioxidants such

as allopurinol and incubation of CMEC grown under hyperglycaemic conditions with free radical

scavengers e.g. Tiron displayed beneficial in vivo and in vitro effects, respectively [19,20]. A

growing body of evidence has revealed that vitamins C and E, in addition to other intracellular

antioxidants such as glutathione, also improve endothelial function in human subjects and in

animal models of diabetes mellitus [21-23]. Moreover, they are associated with increases in NO

generation and total antioxidant status and also with reduction in blood pressure [24,25].

Although both antioxidant vitamins are known to stimulate NO generation and have prominent

ROS-scavenging effects, the underlying mechanisms of their putative beneficial actions remain

to be determined. The present study was therefore set out to investigate whether vitamins C

and/or E modulate redox state in CMEC exposed to hyperglycaemic conditions via regulation of
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the enzymatic activities of prooxidant i.e. NAD(P)H oxidase and antioxidant enzymes i.e. eNOS,

total SOD, catalase and GPx.

Materials and Methods

Isolation and Characterisation of CMEC

CMEC were isolated from 12- to 14-week-old Wistar rat hearts as previously described [26].

Briefly, two hearts were mounted and perfused retrogradely on a constant-flow Langendorff

system with 0.04% collagenase. The ventricles were then chopped and collagenase digestion was

quenched by the addition of bovine serum albumin to the perfusate. CMEC were obtained by

sedimentation of myocytes and incubated in 0.01% trypsin at 37°C for the prevention of non-

endothelial cell attachment. Cells were then activated by washing in calcium and suspended in

Medium 199 (Life Technologies) supplemented with 10% foetal calf serum, 10% newborn calf

serum, benzylpenicillin 250 U/ml, streptomycin 250 g/ml, amphotericin B 12.5 g/ml and

gentamicin 50 g/ml. Cell suspensions were plated and incubated at 37°C under 5% CO2. After 1

h incubation, unattached cells were washed off with saline and remaining cells were cultured to

confluence.

For different experiments, CMEC were cultured for 7 days in the growth medium containing

either 5.5 mM (normal) or 22 mM (high) D-glucose. CMEC were also cultured with 5.5 mM D-

glucose + 16.5 mM L-glucose and 5.5 mM D-glucose + 16.5 mM mannitol in order to

investigate the effects of extracellular glycation and increased osmolarity. Growth medium was

changed on a daily basis and all experiments were performed on CMEC up to and including

passage number 5. Cultured CMEC were characterised by their typical "cobblestone"

morphology and their ability to form capillary-like tubes on the Matrigel [27].
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Measurement of NOS activity

NOS activity was measured by the conversion of L-[3H]-arginine to L-[3H]-citrulline. Briefly,

CMEC were homogenised, on ice, in TRIS buffer (50 mM, pH 7.4) containing leupeptin (0.2

M), pepstatin A (1.5 mM) and phenylmethylsulfonyl fluoride (PMSF, 1 mM). Samples were

incubated at 37oC for 30 min in the presence of calmodulin (30 nM), NADPH (1 mM), H4B (5

M), Ca2+ (2 mM), L-valine (50 mM) and a mixture of unlabelled (0-5 M) and L-[3H]-arginine

(10 mM) (Amersham Pharmacia). To assess the contribution of iNOS (calcium-independent

isoform) to overall NOS activity Ca2+ was replaced with EGTA (1 mM). Reactions were

terminated by the addition of 1 ml HEPES (20 mM, pH 5.5) containing EDTA (1 mM) and

EGTA (1 mM). Newly formed L-[3H]citrulline, neutral at pH 5.5, was separated from the

incubation mixture by cation exchange resin (Dowex AG 50 W-X8, Bio-Rad) and quantified

using a liquid scintillation counter. Results were expressed as pmol L-citrulline/mg protein/min.

Nitrite Detection

Nitrite levels were measured by Griess reaction as an index of NO generation following

conversion of nitrate to nitrite by nitrate reductase [28]. An aliquot of the cellular homogenate

was mixed with an equal volume of Griess reagent (sulfanilamide 1% w/v,

naphthylethylenediamine dihydrochloride 0.1% w/v and orthophosphoric acid 2.5% v/v) and

incubated at room temperature for 10 min prior to measurement of absorbances at 540 nm. The

amount of nitrite formed was compared to those of known concentrations of sodium nitrite and

normalised to the protein content of the respective flask.

Measurement of NAD(P)H oxidase activity and detection of O2
-
levels

O2
- levels were measured by cytochrome C reduction assays. Briefly, CMEC were collected

in Hanks’ balanced salt solution (HBSS) at a density of 20 x 106 cells/ml. Aliquots (250 µl)
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containing 50 µM cytochrome C were then incubated for 60 min at 37°C. O2
- generation was

measured as the superoxide dismutase (10 µg/ml)-inhibitable reduction of cytochrome C and

monitored as the change in absorbance at 550 nm using a Cobas-Fara centrifugal analyser.

Absorbances were recorded for 12 min with 90 seconds intervals and production of O2
- was

calculated as pmoles O2
- per 106 cells after subtracting background values measured at 550 nm.

NAD(P)H oxidase activity was measured in similar experiments where the aforementioned

specific inhibitors of other ROS-generating enzymes i.e. L-NAME (0.1 mM), rotenone (50 M),

allopurinol (100 M) or indomethacin (50 M) were added to aliquots during 60 min incubation

period prior to determining O2
- generation.

SOD Assay

SOD activity was measured by a reaction dependent upon the inhibition of cytochrome C by

endogenous SOD in cellular homogenates using a Cobas-Fara centrifugal analyser. The O2
-,

required for reduction, was generated by a reaction of xanthine-XO. One unit of XO activity was

defined by the amount of homogenate required to inhibit, by 50%, the rate of cytochrome C

reduction. For assay of total SOD activity, 0.1 mM xanthine was dissolved in 50 mM NaCO3

buffer. A dilute stock solution was added to a 10 M solution of cytochrome C, 50 M xanthine,

0.1 mM EDTA and 50 mM sodium carbonate to produce a change in absorbance of 0.0250/min

at 550 nm at pH 10.

Catalase Assay

The activity of catalase was determined by a photometric method where the activity was

determined by monitoring the decomposition of H2O2 at 240 nm in the presence of methanol

which produces formaldehyde which in turn reacts with Purpald (4-amino-3-hydazino-5-

mercapto-1,2,4-triazole) and potassium periodate to produce a chromophore. Quantification was
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performed in comparison to the results obtained with catalase solutions of known activities (31.2,

15.6, 7.8 and 3.9 U/ml) and formaldehyde standards (25, 50, 100, 200 M).

GPx Assay

The activity of GPx was determined in cellular homogenates using a method developed by

McMaster et al [29]. riefly, a fresh solution containing 0.3 U/ml glutathione reductase, 1.25

mM reduced glutathione and 0.19 mM NADPH in 50 mM potassium buffer (pH 7.4) was

prepared. Homogenates of 100 g total protein were added to this solution and incubated for 3

minutes prior to addition of 12 mM t-butylhydroperoxide to commence the reaction.

Absorbances were read at 340 nm for 4 min. Activities were calculated as nmole glutathione/mg.

Evaluation of Cell Viability

A small aliquot of cells cultured under different conditions was incubated with 0.1% trypan

blue for a few minutes and viewed under a light microscope. Dead cells were permeable to

trypan blue and thus become coloured. By counting 100 cells, the percentage of viable cells was

calculated.

Statistical Analysis

Results were presented as mean ± SEM. Numbers (n) indicated throughout the article denote

the number of separate CMEC isolations and individual experiments. Statistical analyses were

performed by both Student's t-test and ANOVA where appropriate. P <0.05 was considered

statistically significant.

Results

Effects of vitamins C and E on prooxidant and antioxidant enzyme activities

The current study revealed greater prooxidant i.e. NAD(P)H oxidase and antioxidant i.e. total

SOD, catalase and GPx enzyme activities in CMEC cultured with high (22 mM) compared to
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normal (5.5 mM) glucose concentrations for 7 days (P<0.05 for each enzyme). However, the

treatment of CMEC with antioxidant vitamins C (0.1-1 M) and E (0.1-1 M) alone or in

combinations (0.1/0.1 M and 1/1 M vitamin C and vitamin E, respectively) significantly

reduced these enzyme activities (Table 1). Equimolar concentrations of L-glucose or mannitol

did not have any impact on enzyme activities as compared to cells grown under normoglycaemic

conditions (P>0.05) (Table 1).

Hyperglycaemia failed to alter eNOS and iNOS activities in CMEC as assessed by L-[3H]-

arginine to L-[3H]-citrulline conversion assay (P>0.05). However, the addition of vitamins C and

E alone or in combination to the culture medium significantly enhanced eNOS activity without

altering iNOS activity in both normoglycaemic and hyperglycaemic CMEC (P<0.05) (Fig. 1A-

B). Equimolar concentrations of L-glucose or mannitol did not have any impact on eNOS or

iNOS activities compared to cells cultured under normoglycaemic conditions (P>0.05) (data not

shown).

Effects of vitamins C and E on nitrite and O2
-
generation

In accordance with the observed increases in enzyme activities, hyperglycaemia enhanced O2
-

generation (P<0.05) but did not alter nitrite production as compared with CMEC cultured under

normoglycaemic conditions (P>0.05) (Table 2). However, the use of vitamins C (0.1-1 M) and

E (0.1-1 M) alone or in combination (0.1/0.1 M and 1/1 M) significantly enhanced nitrite

generation and reduced O2
- production in hyperglycaemic CMEC (P<0.05) (Fig. 2A-B).

Equimolar concentrations of L-glucose or mannitol did not have any impact on nitrite generation

compared to cells grown under normoglycaemic conditions (P>0.05) (data not shown).

Effects of NAD(P)H oxidase inhibitors on nitrite and O2
-
generation and antioxidant

enzyme activities
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Incubations of CMEC with one of the two structurally-unrelated inhibitors of NAD(P)H

oxidase i.e. either PAO (0.1-3 M) or AEBSF (5-100 M) reduced antioxidant enzyme activities

in hyperglycaemic CMEC (P<0.05). While decreases in enzyme activities were dose-dependent

in case of PAO, they were independent of the dose of AEBSF used in the experiments.

Moreover, treatments of hyperglycaemic CMEC with PAO and AEBSF diminished O2
-

availability but increased nitrite generation (P<0.05) (Table 2). These alterations were not

observed in CMEC cultured in equimolar mannitol or L-glucose (Table 2).

Effects of hyperglycaemia on CMEC viability

There were no significant differences in CMEC viability between cells cultured in different

concentrations of glucose as assessed by trypan blue exclusion assay. Approximately 8611% vs

789% of normoglycaemic and hyperglycaemic cells were viable, respectively (P>0.05).

Discussion

The endothelium releases a large number of vasoactive substances including NO to maintain

normal vascular tone [1]. Endothelial NOS (eNOS) is associated with production of moderate

levels of NO in healthy endothelium while inducible NOS (iNOS) is coupled to excess

generation of NO, endothelial cell damage and atherosclerosis in a number of disease settings

including diabetes mellitus [30,31]. The inhibitors of iNOS such as aminoguanidine have

therefore proven to be critical in preventing diabetic endothelial dysfunction [32]. Despite being

a constitutively expressed isoform, the expression and activity of eNOS are affected by many

pathological conditions associated with enhanced oxidative stress status such as genetic

hypertension [33]. However, the regulation of eNOS in diabetes mellitus remains ambiguous as

both enhanced and diminished expression of eNOS have thus far been reported [2,6,7,31].

Recent data have shown that the bioavailability of NO under diabetic conditions is also
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determined by ROS, in particular O2
- which readily scavenges NO to reduce its biological half-

life [16]. Although lower concentrations of free radicals may be beneficial in endothelial

adaptation to ensure vasomotion control, their higher concentrations may induce several

intracellular pathways such as phosphatases and transcription factors e.g. NFB to disrupt

endothelial integrity by producing other potent ROS like the hydroxyl radical via Fenton reaction

[34]. NAD(P)H oxidase has recently been characterised and shown as the main source of free

radicals in CMEC [12]. Hyperglycaemia-mediated oxidative stress generation may be further

exacerbated by the inadequacy of antioxidant enzymes SODs that dimutate O2
- to H2O2 and

catalase and/or GPx that metabolise H2O2 to H2O [14].

In light of the currently available data, the present study aimed to investigate whether vitamins

C and E alone or in combination maintain a well-balanced oxidative status, a prerequisite for

normal endothelial cell function, by regulating prooxidant and antioxidant enzyme activities in

CMEC. To study the combinations of vitamin C and E were important in relation to findings

indicating that vitamin C, apart from being a free radical-scavenger, is required for regeneration

of vitamin E to its active form [35]. Putative beneficial effects of antioxidant vitamins may be

attributed to their ability to (i) scavenge free radicals; (ii) regulate NO synthesis or release; (iii)

regulate ROS generation; and (iv) regulate antioxidant enzyme activities that metabolise ROS.

It is known that low molecular weight antioxidants such as urate and thiols along with

vitamins C and E constitute the first line of defence against oxidative stress in the extracellular

environment by scavenging free oxygen radicals and hence preventing oxidation of proteins and

lipids [36]. Although consistent beneficial effects of vitamin C have been reported in diabetic

patients, animal models of diabetes mellitus and cell culture models, similar studies with vitamin

E have produced contradictory findings [21-23]. For instance, the Cambridge Heart Antioxidant
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Study (CHAOS) revealed a marked reduction in non-fatal myocardial infarction in patients

received 400-800 IU of vitamin E/day compared to patients receiving placebo [21]. However, the

subsequent Heart Outcomes Prevention Evaluation (HOPE) study failed to confirm the beneficial

effects of vitamin E [37].

The present study has demonstrated similar rates of cellular viability, eNOS and iNOS

activities as well as nitrite (the stable end-product of NO) production between CMEC cultured

with high (22 mM) and normal (5.5 mM) glucose concentrations for 7 days. These findings are

in support of a recent study demonstrating similar levels of eNOS and iNOS protein expressions

and nitrite generation in CMEC cultured under identical conditions that were used in the current

study [19]. In the present study, the incubation of CMEC with combinations of vitamins C and E

or solely with vitamin C or E significantly enhanced nitrite generation and eNOS activity but

failed to alter iNOS activity in both sets of cells without dramatically altering cellular viability

rates. Similar results with vitamin C have also been reported under in vivo conditions in that

long-term dietary intake of vitamin C by apolipoprotein E (apoE)-deficient mice have been

associated with significant increases in eNOS but not iNOS activities and nitrite generation in

apoE-deficient mice aortas [38]. These increases may in part be assigned to the ability of vitamin

C to spare intracellular thiols to stabilise NO through controlling the formation of biologically

active S-nitrosothiols and also to its ability to increase the intracellular levels of eNOS co-factor

i.e. BH4 [39,40]. Vitamin E-mediated significant elevations in endothelial NO release and

endothelial function have been documented in diabetic rat aorta [23]. The increases in these

parameters were more likely to be a consequence of inhibitory effects of vitamin E on LDL

oxidation via suppression of protein kinase C-mediated phosphorylation of muscarinic receptors

on endothelial cells rather than its regulatory action on eNOS [41].
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In the present study, marked increases in basal levels of O2
- and NAD(P)H oxidase activity

have been determined in CMEC cultured in hyperglycaemic versus normoglycaemic medium for

7 days. Since ROS, under hyperglycaemic conditions, may also be generated by the polyol

pathway, eicosanoid synthesis, protein kinase C activation and non-enzymatic glycation of

plasma proteins [8,9], it was critical to investigate the extent of NAD(P)H oxidase activity to

overall ROS generation in CMEC grown under high glucose concentrations. Hence, two

structurally distinct and specific NAD(P)H oxidase inhibitors, namely PAO (0.1-3 M) and

AEBSF (5-100 M), were used in this study. Both agents reduced antioxidant enzyme activities

and O2
- levels but increased nitrite production in CMEC cultured with high glucose

concentrations thereby indicating NAD(P)H oxidase as the main source of ROS in CMEC

exposed to hyperglycaemic conditions. These data are in good agreement with those of several

previous studies showing that antioxidants and free radical scavengers such as probucol and

Tiron improve endothelial function in hyperglycaemic CMEC and in the thoracic aortic rings

from SHR [19,25].

The impacts of vitamins C and E on free radical generation were also investigated in this

study. Treatments with both vitamins C and E reduced both O2
- production and NAD(P)H

oxidase activity selectively in CMEC cultured with high glucose concentrations. These data

confirm the previous findings pertaining to regulatory effects of these vitamins on NAD(P)H

oxidase activity in SHR aortas and also their well-known free radical-scavenging effects [25].

Although the mechanisms by which vitamins C and E may modulate NAD(P)H oxidase activity

have not been investigated in the current study, both the transcriptional and post-translational

modification of NAD(P)H oxidase by vitamins have previously been associated with its

regulation [42]. In addition to these, vitamin E may mediate the interactions between membrane-
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bound and cytosolic components of NAD(P)H oxidase to form fully active enzyme upon

induction [42].

The current study has shown that hyperglycaemia elicits significant increases in total SOD,

GPx and catalase activities in rat CMEC. The increases in these antioxidant enzyme activities are

in keeping with their well-known induction in response to oxidative stress and have also been

previously reported in human endothelial cells [43] and in patients with type II diabetes mellitus

[44]. The results of the current study are also supportive of our recent study demonstrating

enhanced expression of CuZn-SOD, Mn-SOD and catalase protein levels in rat CMEC cultured

with high compared to normal concentrations of D-glucose for 7 days [19]. The increases in

antioxidant enzyme protein expressions in the former study and in activities in the current study

are independent of changes in osmolarity and extracellular glycation as assessed in parallel

experiments where equimolar concentration of mannitol or L-glucose were substituted with D-

glucose. Although a recent study has shown that gene transfer of CuZn-SOD failed to improve

the endothelium-dependent vascular relaxation in carotid arteries from diabetic rabbits [45],

another study using a cell-permeable SOD has shown to enhance basal and agonist-stimulated

endothelium-dependent vascular relaxant responses in diabetic rat aorta [6]. These data indicate

that the former findings may be due to inability of CuZn-SOD to penetrate VSM layer or due to

glycosylation and therefore inactivation of SODs by high glucose levels [46]. Although putative

mechanisms by which vitamins C and E may modulate antioxidant enzyme activities remain

largely unknown, a recent study has revealed that transcriptional, translational and post-

translational regulations as major determinants of local antioxidant enzyme levels in the renal

cortex of diabetic rats [47].
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In conclusion, the present study indicates that hyperglycaemia-mediated oxidative stress in

CMEC does not appear to arise from alterations in eNOS activity or NO availability. However,

exaggerated synthesis and release of ROS in particular O2
- may contribute to pathogenesis of this

phenomenon and increases in activity of antioxidant enzymes may be an adaptive response of

CMEC to meet the biological demand exerted by hyperglycaemic oxidative stress. Our data

demonstrate that elevation of intracellular levels of antioxidant vitamins C and E to the levels

that can effectively scavenge O2
- levels [48] may provide beneficial cellular effects by regulating

pro- and antioxidant enzyme activities in diabetic states.
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Figure Legends

Fig. 1. (A) The levels of endothelial Nitric Oxide Synthase (eNOS) activity in coronary

microvascular endothelial cells (CMEC) grown under normoglycaemic (NG, 5.5 mM D-glucose)

conditions and hyperglycaemic (22 mM D-glucose) conditions in the absence and presence of

vitamins C and E alone or in combination. (B) The levels of inducible Nitric Oxide Synthase

(iNOS) activity in coronary microvascular endothelial cells (CMEC) grown under

normoglycaemic (NG, 5.5 mM D-glucose) conditions and hyperglycaemic (22 mM D-glucose)

conditions in the absence and presence of vitamins C and E alone or in combination. Data from 4

separate experiments are expressed as mean  SEM. *P<0.05 difference compared to NG group.

Fig. 2. (A) The levels of nitrite in coronary microvascular endothelial cells (CMEC) grown under

normoglycaemic (NG, 5.5 mM D-glucose) conditions and hyperglycaemic (22 mM D-glucose)

conditions in the absence and presence of vitamins C and E alone or in combination. (B) The

levels of superoxide anion (O2
-) in coronary microvascular endothelial cells (CMEC) grown

under normoglycaemic (NG, 5.5 mM D-glucose) conditions and hyperglycaemic (22 mM D-

glucose) conditions in the absence and presence of vitamins C and E alone or in combination.

Data from 4 separate experiments are expressed as mean  SEM. *P<0.05 difference compared

to NG group and #
P<0.05 difference compared to HG group.
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Table 1 Effects of antioxidant vitamins C and E on prooxidant (NAD(P)H oxidase) and antioxidant enzyme activities

NAD(P)H Oxidase

(pmoles/106 cells)

Total SOD

(mU/mg protein)

Catalase

(U/mg protein)

GPx

(mU/mg protein)

5.5 mM Glucose (NG) 28  862 ± 105 4.16 ± 0.63 239 ± 16

22 mM Glucose (HG) 59 * 1230 ± 145* 7.76 ± 0.91* 585 ± 24*

NG + 16.5 mM L-Glucose 26  802 ± 80 4.65 ± 0.67 243 ±17

NG + 16.5 mM Mannitol 26  821 ± 95 4.71 ± 0.60 256 ± 21

Vitamin C (0.1 M) 33 † 395 ± 50*† 1.93 ±0.26*† 367 ± 18*†

Vitamin C (1 M) 29 † 365 ± 43*† 1.94 ±0.20*† 350 ± 24*†

Vitamin E (0.1 M) 35 † 425 ± 55*† 1.98 ± 0.28*† 351 ± 21*†

Vitamin E (1 M) 26 † 413 ± 50*† 2.05 ±0.30*† 337 ± 26*†

Vitamin C +E (0.1 + 0.1 M) 31 † 380 ± 55*† 2.00 ± 0.19*† 345 ± 11*†

Vitamin C + E (1 + 1 M) 26 † 345 ± 40*† 1.89 ± 0.21*† 350 ± 15*†

Results are expressed as means S.E.M. (n=4). *P<0.05 difference compared to NG group, † P<0.05 difference compared

to HG group.
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Table 2 Effect of NAD(P)H oxidase inhibitors on nitrite and O2
- production and pro- (NAD(P)H oxidase) and anti-oxidant enzyme

activities

Nitrite

(nmol/mg protein)

O2
- levels

(pmoles/106 cells)

NAD(P)H Oxidase

(pmoles/106 cells)

Total SOD

(mU/mg protein)

Catalase

(U/mg protein)

GPx

(mU/mg protein)

NG 14.21 ± 0.56 51  28  862 ± 105 6.10 ± 0.94 289 ± 53

HG 14.89 ± 0.63 114 * 61 * 1230 ± 145* 9.12 ± 1.11* 685 ± 73*

L-Glucose 14.09 ± 0.48 47  26  813 ± 80 6.27 ± 0.92 301 ± 55

Mannitol 13.91  50  26  821 ± 95 5.95 ± 0.90 280 ± 48

PAO (0.1 M) 16.36 ± 0.67*† 65 ± 8† 35 ± 5† 934 ± 95† 7.01 ± 0.83† 354 ± 59†

PAO (3 M) 18.37 ± 0.72*† 56 ± 7† 32 ± 5† 878 ± 83† 6. 65 ± 0.76† 331 ± 50†

AEBSF (5 M) 15.78 ± 0.61*† 71 ± 9† 37 ± 5† 975 ± 98† 7.01 ± 0.79† 365 ± 58†

AEBSF (100 M) 16.03 ± 0.69*† 69 ± 8† 35 ± 5† 943 ± 86† 6.96 ± 0.77† 350 ± 45†

NG, 5.5 mM D-glucose; HG, 22 mM D-glucose; L-Glucose and Mannitol, 5.5 mM D-Glucose and 16.5 mM L-glucose or 16.5 mM

mannitol, respectively; PAO, phenylarsine oxide; AEBSF, 4-(2-Aminoethyl)bebzenesulfonyl fluoride. Results are expressed as means

S.E.M. (n=4). *P<0.05 difference compared to NG group, † P<0.05 difference compared to HG group.


