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Modal Control of Vibration in Rotating Machines and Other

Generally Damped Systems
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Abstract

Second order matrix equations arise in the description of real dynamical systems. Traditional

modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system

matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms

in the modal damping matrix. This has particular importance for systems containing skew-symmetry

in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a

method to utilise modal control using the decoupled second order matrix equations involving non-

classical damping is proposed. An example of modal control sucessfully applied to a rotating system

is presented in which the system damping matrix contains skew-symmetric components.

Keywords: modal control, second order systems, general damping, non-proportional damping, rotordy-

namics

1 Introduction

Traditional control approaches, such as pole placement methods [1], deal with the physical system in

first order state space form. The ambitions of this paper are to control the physical system in second

order form. Very little literature is available in regards to direct second order control, see for example

[2]. Many obvious advantages over first order control are available: 1.) Physical insight of the system is

preserved. 2.) Computational efficiency, since the dimension of the second order system is smaller than

that of the state space form. 3.) Symmetry and structure of the systems can be preserved where desired.

Many structural and dynamic systems are described by the second order equations of motion

M0 q̈(t) + D0 q̇(t) + K0 q(t) = fphy(t) · (1)

where M0,D0,K0 ∈ R
n×n are the system mass, damping and stiffness matrices respectively, q(t) ∈ R

n

the vector of physical coordinates and fphy(t) ∈ R
r the vector of applied forces. For the sake of brevity

this paper assumes that forces are available at all locations and as a consequence r = n.

Modal control is a particular control method in which the physical response of a system is divided into

modes associated with their corresponding natural frequencies. A standard control approach is to move
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the natural frequencies into a stable region. The essence of modal control is that since the eigenvectors

of a system do not contribute to the asympotic stability of a system then any effort expended on altering

them represents wasted effort. This is the control approach utilised in this paper.

Traditional modal control for second order systems such as the Independent Modal Space Control

(IMSC) method [3] proposed by Meirovitch and Baruh utilise the mass normalised left and right eigen-

vectors, ΦL and ΦR, to diagonalise the system matrices. The coordinate transformation q(t) = ΦR qm(t)

is applied and the system matrices pre-multiplied by the transpose of the left eigenvectors, ΦL
T

From

ΦL
T M0 ΦR q̈m + ΦL

T D0 ΦR q̇m + ΦL
T K0 ΦR qm = ΦL

T fphy · (2)

one has

I q̈m + Γ q̇m + Λ2 qm = ΦL
T fphy · (3)

where qm(t) represents the modal coordinates of the system. For ease of reading the time script has been

removed.

The new damping matrix Γ is assumed diagonal with any remaining off-diagonal terms in the modal

damping matrix traditionally discarded [4]. However, for rotating systems involving substantial gyroscopic

terms ignoring these terms is in effect ignoring the gyroscopic terms themselves. Thus, it is proposed here

to use the Structure Preserving Transformations (SPTs) developed by Garvey et al [5, 6] to diagonalise

the second order system matrices and decouple the system equations of motion without need to discard

any terms involved in the description of the system.

2 Structural Preserving Transformations

The notion of the Lancaster Augmented Matrices (LAMs) are introduced here such that the system may

be represented in state space form. For a second order system there exists three LAMs which can be

produced by inspection to be,

A0 =





0 K0

K0 D0



 , A1 =





K0 0

0 −M0



 , A2 =





−D0 −M0

−M0 0



 · (4)

The LAMs allow the second order system to be represented in a reduced form

Ak−1 qA − Ak q̇A = fA(3−k) k = 1, 2 · (5)

The vectors qA and fA(3−k) may be defined

qA :=





q

q̇



 fA1 :=





fphy

0



 fA2 :=





0

fphy



 · (6)
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A Structural Preserving Transformation (SPT) is a coordinate transformation applied to the LAMs

representing a bijective mapping between linear systems. The specific nature of the transformation allows

the preservation of the appropriate structure within the LAMs. The SPTs are defined simply by left and

right 2n × 2n transformation matrices, TL and TR respectively, allowing the definition

TT
L Ak TR = Bk ∀ k = 0, 1, 2 · (7)

Thus the new LAMs are represented by Bk containing the new second order system matrices K1,D1,M1.

The structure of the SPTs can be shown to have the following form

TL =





FL −
1
2 GL DT

0 −GL MT
0

GL KT
0 FL + 1

2 GL DT
0





−1

TR =





FR −
1
2 GR D0 −GR M0

GR K0 FR + 1
2 GR D0





−1

· (8)

where FL,FR,GL,GR ∈ R
n×n are arbitrary pre-defined matrices subject to the necessary constraint

FR GT
L + GR FT

L = 0 · (9)

The SPTs can be shown to yield the relationship between the old and new coordinate sets through

the use of filters. The modal system (qm, fmod) is related to the original system through the relationship

qm = U0 q + U1 q̇ (10)

q̇m = U0 q̇ + U1 q̈ (11)

fmod = V0 fphy + V1 ḟphy (12)

where

[

U0 U1

]

=
[

I 0

]

TR
−1 (13)

[

VT
0 VT

1

]

=
[

I 0

]

TL (14)

Evidently knowledge of the physical accelerations is required.

3 Diagonalising Structural Preserving Transformations

We wish to decouple the original equations of motion such that the new system matrices K1,D1 and M1

are diagonal. It is possible to choose a non-unique SPT such that the entries in the new LAMs become

diagonal. Such an SPT is referred to as a diagonalising SPT (DSPT) and a 4 step process of calculating

the DSPT is presented here.

1. Calculate the left (ΨL) and right (ΨR) eigenvectors of reduced system

A0 qA − A1 q̇A ·
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2. Calculate the n single degree of freedom (SDOF) systems corresponding to conjugate eigenvalue

pairs, λj(1,2) = α ± iβ, found in part 1.

dj = λj1 + λj2 , kj =
(λj2 + λj1)

2
− (λj2 − λj1)

2

4
, mj = 1 · (15)

j = 1, · · · , n.

3. Knowing the new diagonal system matrices form the new LAMs B0 and B1 representing the new

diagonal system and calculate their corresponding left (ΘL) and right (ΘR) eigenvectors.

4. Since the two reduced systems have identical Jordan form appropriate scaling of the eigenvectors

yields the following equality

ΨT
L A0 ΨR = Λ = ΘT

L B0 ΘR ΨT
L A1 ΨR = I = ΘT

L B1 ΘR · (16)

where Λ is the diagonal matrix of corresponding eigenvalues and I is the identity matrix. Thus we

may recognise that to get from the original LAM to the new LAM the following condition must be

satisfied

(

ΘL
−T ΨL

T
)

A0

(

ΨR ΘR
−1

)

= B0 · (17)

thus TR =
(

ΨR ΘR
−1

)

and TL =
(

ΨL ΘL
−1

)

.

It may be noted that the above process for finding the diagonalising SPT only requires one eigenvalue

solution problem. The eigenvectors of the diagonal LAMs, ΘL and ΘR, have a sparse form such that

their calculation is trivial.

4 Independent Modal Control

To facilitate true independent modal control the modal equations of motion must be decoupled both

externally and internally [7]. We have so far shown how to decouple the unforced equations of motion

but the diagonalised system matrices remain coupled by the control forces unless the controller is designed

independently such that the controller matrix remains decoupled. In practice this means that the force

controller must be designed in the modal space. We can thus define the modal equations of motion as

M1 q̈m + D1 q̇m + K1 qm = fmod · (18)

with K1,D1,M1 ∈ R
n×n the diagonal modal system matrices and qm ∈ R

n the modal coordinates.

Equation (18) represents n single degree of freedom (SDOF) systems corresponding to each mode of

vibration. It is possible to use proportional-derivative control to directly affect the modal stiffness and

damping properties of these modes. A controller of this form is introduced
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fmod = Gk qm + Gd q̇m · (19)

Gk and Gd represent the diagonal modal stiffness and damping gains matrices. Direct additon to the

modal damping and stiffness matrices represents direct pole placement and has the advantage of being

able to directly affect the poles of the system.

In general as many modes can be controlled as actuators available. As previously stated for the

purpose of this paper the number of actuators is set to the number of modelled modes without loss of

generality. For conventional second order control the modal force can be typically converted back into the

physical domain fairly easily as illustrated by Baz and Poh [8]. For the SPT approach we have already

defined the left filter and can see that the physical and modal forces are related by the relationship

fmod = V0 fphy + V1 ḟphy · (20)

We can rearrange equation (20) to give the physical force in regards to the modal force

ḟphy = V−1
1 (fmod − V0 fphy) · (21)

Since the modal filter illustrated by equation (21) represents a first order filter a necessary requirement

is for the real eigenvalue components of V−1
1 V0 > 0 for the filter to be stable.

5 Numerical Example

As a numerical example a finite element model of a rotor-disc system is considered with four degrees of

freedom at each node (2 translational, 2 torsional). The rotor-disc system is illustrated in figure 1.

Figure 1: Example 1, Rotor-Disc system

The system is constructed from steel with Young’s modulus, E = 200 GPa and density ρ = 7800

kg/m3. The model is split into 13 equal-length elements of 0.1m and the discs have dimensions
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Disc Disc 1 Disc 2 Disc 3

Node 3 6 11

Thickness (m) 0.05 0.05 0.06

Inner diameter (m) 0.10 0.10 0.10

Outer diameter (m) 0.24 0.40 0.40

The bearings at each end of the rotor system are deliberately non-symmetric in the x-y directions

with stiffness and damping properties

Bearing Bearing 1 Bearing 2

Stiffness Kxx (MN/m) 50 50

Stiffness Kyy (MN/m) 70 70

Stiffness Dxx (N/m/s) 500 500

Stiffness Dyy (N/m/s) 700 700

Control forces can be applied at node 8 in the x and y-directions and similarly the displacements in

the x-direction at this node are observed. For computational ease guyan reduction [9] is used to reduce

the model to 6 degrees of freedom. The system is operated at 2,500 rpm.

As many modes can be controlled as actuators are available, thus the model allows for 2 modes to

be controlled. It is decided to control the first two modes of vibration since these dominate the system

response.
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Figure 2: Example 1 SPT response to initial conditions: control off

The single degree of freedom systems corresponding to the first two modes in modal space are
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q̈m1 + 0.37850 q̇m1 + 1.4467× 105 qm1 = fm1 (22)

q̈m2 + 0.32708 q̇m2 + 1.5772× 105 qm2 = fm2 (23)

Optimal control is used to minimise the modal kinetic and potential energies such that controller

gains are

Gk =





4.9999 0 0 · · · 0

0 4.9999 0 · · · 0



 , Gd =





4.1096 0 0 · · · 0

0 4.1570 0 · · · 0



 (24)

The response of the system with the controller on is illustrated in figure 3.
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Figure 3: Example 1 SPT response to initial conditions: control on

As expected the response of the system decays much faster than that for the uncontrolled system

with the displacement converging to zero much more rapidly. This is due to tageting the first two modes

of vibration of the system which dominate the system response. The modal control technique is indeed

sucessfully applied to bring the system under control.

6 Conclusions

It has been shown in this paper how to apply modal control to non-classically damped systems without

throwing away system information. It has been demonstrated through examples that individual modes

can be controlled.
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The premise of this paper is to introduce possible new methods into the area of rotating machinery

where skew-symmetry and gyroscopic coupling can be found in the system damping matrices. Conven-

tional techniques maintain that skew-symmetry be ignored for the techniques to be usable.

Usually, systems require reduction in size due to numerical considerations. Traditional Guyan re-

duction models do not take into account damping properties. Alternative methods such as balanced

truncation [4] traditionally place the system into state space form before reduction, thus destroying the

second order properties of the system. Few methods have been developed to reduce the models in size

for second order systems. Currently the methods for reducing second order systems appear to involve

the use of state space form to balance the grammians [10]. It would thus be beneficial to develop second

order model reduction methods that take into account damping whilst preserving second order form.
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