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Abstract

The purpose of this paper is to review two mathematical models: one for the formation
of homochiral polymers from an originally chirally symmetric system; and the other, to show
how, in an RNA-world scenario, RNA can simultaneously act both as information storage
and a catalyst for its own production. We note the similarities and differences in chemical
mechanisms present in the systems. We review these two systems, analysing steady-states,
interesting kinetics and the stability of symmetric solutions. In both systems we show that
there are ranges of parameter values where some chains increase their own concentrations
faster than others.
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1 Introduction

The origin and propagation of molecular handedness is one signature of life, and a comprehensive

and consistent description of the mechanisms by which it arose has yet to be achieved, though an

excellent starting point is the discussion of Sandars (2005). Similarly, much has been written about

the RNA world (for example, Colonna et al. 1984, Zubay, 2000), and there is a large literature on

catalytic hypercycles (see for example Eigen, 1971, Eigen and Schuster, 1979) yet there is little

published work on how such systems arose from a simpler chemical system.

The purpose of this short article is to review and compare two models of polymerisation of

relevance to the origins of life, each having complex steady-state and kinetic features. The first,

and slightly simpler, is that of chiral polymerisation (Wattis and Coveney, 2005). This is concerned

with showing that enantiomeric cross inhibition is a driving force for symmetry-breaking in chiral

polymerisation, rather than a hindering factor as had been originally thought (Joyce et al., 1984).

This work confirms the numerical results of Sandars (2003), who originally proposed a form of the

1



model we study, and similar supporting evidence has been found by Brandenburg et al. (2005a)

who has also worked on generalisations of Sandars’ model (see also Brandenburg et al. (2005b)).

An original aspect of our work is that we analyse not only the stability of the steady-state

solutions, but the stability of the kinetic solution. To do this we first derive an asymptotic approx-

imation for a symmetric solution. We identify and comment upon the range of behaviour displayed

as it evolves in time through several timescales. Once the kinetics of the symmetric solution have

been determined, we analyse its stability to random external perturbations. The results of this

show that there are some stages of the polymerisation process during which the system is more

likely to undergo a symmetry-breaking bifurcation than others.

The model of chiral polymerisation has the form of a generalised Becker-Döring system of

equations, which have been modified in various ways to explore a number of chemical systems

(Coveney & Wattis, 1996, 1998). In chiral polymerisation nonlinearity appears in a feedback

mechanism whereby an achiral substrate breaks down into two forms of chiral monomer (denoted

L1 and R1). The amount of each type of monomer produced is influenced by the total amount

of chiral polymer present in the system, the strength of this effect being controlled by a fidelity

parameter.

The second topic we review here again uses a modified Becker-Döring scheme to model the

formation of an RNA world, summarising Wattis & Coveney (1999). Here nonlinear feedback is

again of crucial importance. However, in this model the feedback does not influence the production

of monomers, rather it affects the way in which monomers polymerise. Long polymers act as

templates for polymerisation, thus allowing information to be propagated through the system.

These two systems share common features: we have already compared and contrasted the

nonlinear feedback mechanisms; however, they also exhibit competition. In chiral polymerisation

the chains compete for monomers and, when the monomer’s rate of attachment to the opposite

handed polymer exceeds that of its own, then symmetry-breaking is more likely. In the RNA-world

model polymers again compete for monomers; and despite there being no inhibition, symmetry-

breaking still occurs.

In the remainder of this section we introduce the Becker-Döring system which we use as the

basis for our more complicated models of polymerisation discussed later. Section 2 reviews the

model and results for chiral polymerisation, and Section 3 summarises a model for the formation

of an RNA world. Important common features and differences are discussed in Section 4.

1.1 The Becker-Döring system

The Becker-Döring system of equations was originally constructed to model nucleation (Becker and

Döring, 1935), but has since been applied to a wide range of aggregation phenomena. It is based on

modelling the spatially averaged concentrations cr(t) of clusters Cr which undergo cluster-monomer
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aggregation (and possibly fragmentation) processes of the form

Cr + C1 ⇀↽ Cr+1, (1)

with forward rate usually denoted ar and backward rate br+1 (possibly zero). The flux of material

from size r to r + 1 is then given by Jr = arcrc1 − br+1cr+1. The major assumption implicit in (1)

is that cluster-cluster interactions do not occur; that is, Cr + Cs → Cr+s with r > 1 and s > 1 are

ignored. The rate of change of concentration of clusters of size r is given by

dcr
dt

= Jr−1 − Jr. (2)

The concentrations of most cluster sizes depends only on those of neighbouring size and the

monomer. The monomer concentration is then given by

dc1
dt

= q(t) − J1 −
∞∑

r=1

Jr, (3)

with q(t) being the input rate of monomers, from some external or coupled system. Equation (2) is

said to be at equilibrium if the fluxes Jr are zero, and at steady-state if the fluxes Jr are non-zero

but the same for all r.

2 Chiral Polymerisation

2.1 Model

Firstly, we summarise the work of Wattis and Coveney (2005). Our model is based on that of

Sandars (2003), and shares similarities with the model studied by Brandenburg et al. (2005a). We

are concerned with the following set of coupled chemical reactions ((4), (6)–(7)) in which an achiral

substrate (S) is broken down into chiral monomers (L1 and R1) both spontaneously at a slow

rate (ε), and at a faster rate (k) by a process catalysed by the presence of homochiral polymers.

This catalytic feedback mechanism is partially selective, in that left-handed polymers catalyse the

formation of left-handed monomers more than right-handed monomers. The selectivity of this

feedback is described by the fidelity parameter f .

S
ε−→ L1, S +Q

k(1+f)
2−→ L1 +Q, S + P

k(1−f)
2−→ L1 + P,

S
ε−→ R1, S + P

k(1+f)
2−→ R1 + P, S +Q

k(1−f)
2−→ R1 +Q.

(4)

Here we use Ln to denote a chirally pure (homochiral) left-handed polymer of length n (similarly

Rn for right). The total numbers of polymers (L and R) and the mass of material in each form (Q

and P ) are then given by

L =
∞∑

n=2

Ln, R =
∞∑

n=2

Rn, Q =
∞∑

n=2

nLn, P =
∞∑

n=2

nRn. (5)
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Hence (4) describes how the mass of chirally pure polymers influences the breakdown of achiral S

into chiral monomers L1 and R1. These monomers then combine to form chirally pure polymers,

(Ln and Rn) according to the usual rules for (irreversible) polymerisation at a rate a

Ln + L1
a−→ Ln+1, Rn +R1

a−→ Rn+1. (6)

However, by the process known as enantiomeric cross inhibition, the ‘wrong’ monomer can attach

to a chain (with rate aχ) leading to a ‘spoilt’ polymer chain which can grow no further

Ln +R1
aχ−→ RLn, Rn + L1

aχ−→ LRn. (7)

The scheme of chemical reactions is summarised in Figure 1.

R1 R2 R3 R4 R5

LR2 LR3 LR4 LR5

L1 L2 L3 L4 L5

RL2 RL3 RL4 RL5

−→ −→ −→ −→ −→a a a a a

−→ −→ −→ −→ −→a a a a a

↑ ↑ ↑ ↑

↓ ↓ ↓ ↓

aχ aχ aχ aχ

aχ aχ aχ aχ

. . .

. . .

. . .

. . .

. . .

. . .

S

��3

QQs

Figure 1: Summary of the proposed model of chiral polymerisation. All steps are straightforward

additions, with the exception of the decay of the substrate S into chiral monomers L1 and R1, which

occurs by a combination of spontaneous and catalysed breakdown described by (4).

In considering the equations for the concentrations of quantities in the model (4)–(7), it is

simpler to transform to quantities which represent the total amount of monomers (µ), the total

number of polymers (N), and the total mass of material in polymeric form (M) according to

µ = L1 +R1, N = L+R, M = P +Q, (8)

and then consider separately the chiral purity of each of these quantities via

δ =
R1 − L1

R1 + L1
, θ =

R− L

R+ L
, η =

P −Q

P +Q
. (9)

The kinetic equations governing these total concentrations and purities are then

dS

dt
= S0 − 2εS − kSM, (10)

dµ

dt
= 2εS + kSM − aµ2(1 + δ2) − 1

2
aµN(1 + δθ) − 1

2
aχµN(1 − δθ), (11)

dN

dt
= 1

2
aµ2(1 + δ2) − 1

2
aχµN(1 − δθ), (12)
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dM

dt
= aµ2(1 + δ2) + 1

2
aµN(1 + δθ) − 1

2
aχµM(1 − δη), (13)

dη

dt
=

aµ2

M
(2δ − η − ηδ2) +

aµN

2M
(δ + θ − η − δθη) + 1

2
aχµδ(1 − η2), (14)

dθ

dt
=

aµ2

2N
(2δ − θ − θδ2) + 1

2
aχµδ(1 − θ2), (15)

dδ

dt
= −2εSδ

µ
− kSMδ

µ
+
kfSMη

µ
− 1

2
a(1 − δ2)(2µδ +Nθ − χNθ), (16)

where S0 is the rate at which substrate is added to the system. To a certain extent, these equations

enable us to consider the evolution of total concentrations (S, µ, N and M) separately from the

chiral purities of monomers and polymers (δ, θ, η).

2.2 Steady-state solutions

Such symmetric systems typically have a symmetric solution, as we show this system has; how-

ever, there is no guarantee that the symmetric solution is the solution which is manifested, since

the presence of nonlinearity means that there may be multiple solutions (one symmetric, others

appearing in pairs and being asymmetric). The symmetric solution may be unstable and some of

the asymmetric ones stable. An aim of this study is to determine how small the fidelity parameter

f may be and still give rise to a stable asymmetric solutions. Seeking a steady-state solution,

one immediately sees the benefit of the formulation (10)–(16). The symmetric steady-state has

δ = 0 = θ = η (S, µ,N,M being given by more complicated expressions).

However, for larger values of the fidelity parameter, f , which controls the amount of feedback

which polymers exert on the breakdown of the substrate, there are two achiral solutions. These

two solutions form a pair of ‘mirror image’ solutions; in one, right-handed monomers and polymers

dominate, the other is dominated by left-handedness. The crucial relationship linking chiral purity

(of monomers, δ), fidelity (f) and the relative strength of enantiomeric cross inhibition (χ, being

the ratio of the cross-inhibition rate aχ to the homochiral growth rate a) is

f =

(
1+10δ2+5δ4 + 2χ(1−δ2)(1+3δ2)

5+10δ2+δ4 + 2χ(1−δ2)(3+δ2)

)(
4(1+δ2) + 2χ(1−δ2)

1+6δ2+δ4 + 3χ(1−δ4)

)

. (17)

Figure 2 illustrates the bifurcation structure. From this figure we see that when the inequality

f > fc(χ) :=
2(2 + χ)(1 + 2χ)

(5 + 6χ)(1 + 3χ)
, (18)

is satisfied, there is an asymmetric steady-state solution which the system may approach. We can

also view χ as the bifurcation parameter: provided 2/9 < f < 4/5 then for small χ only the

symmetric steady-state exists, but as χ increases a bifurcation point (χ = χc) is traversed, and for

χ > χc the symmetric solution is unstable and two stable asymmetric steady-states exist. As a

function of f , the bifurcation point is at χ = χc given by

χc(f) =
10 − 21f +

√
81f 2 − 52f + 36

4(9f − 2)
. (19)
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Figure 2: Graph of the chiral purity δ against χ and f for the steady-state values given by equation

(17), for fidelity in the range 0 < f < 1 and with 0 < χ < 2.

The steady-state solution has polymeric (number- and mass-weighted) concentrations of

N =
µ(1 + 3δ2)

χ(1 − δ2)
, M =

µ[1+10δ2+5δ4 + 2χ(1−δ2)(1+3δ2)]

χ2(1 − δ2)2
, (20)

thus the average chain length M/N is

M

N
= 2 +

1 + 10δ2 + 5δ4

χ(1 − δ2)(1 + 3δ2)
. (21)

For the symmetric solution (δ = 0) we have an average chain length of M/N = 2 + 1/χ, thus long

chains are particularly unlikely if χ is large. However, if χ is large enough for a symmetry-breaking

solution to occur, then δ will be nearer ±1 and so long homochiral chains are viable. For example,

if we put δ = 1 − ν with ν small then right-handed polymer chains dominate the system with

average length 2/νχ. It is worth noting that in this case the system is also polymer-dominated:

the monomer concentration R1 is small, (with L1 even smaller, and left-handed polymers yet more

scarce).

Another noteworthy property of an achiral steady-state solution is that the chiral purity of the

polymers (θ and η) is always more extreme than that of the monomers (δ)

θ = δ

(
3 + δ2

1 + 3δ2

)

, η = δ

(
5 + 10δ2 + δ4 + 2χ(1 − δ2)(3 + δ2)

1 + 10δ2 + 5δ4 + 2χ(1 − δ2)(1 + 3δ2)

)

. (22)

Thus near symmetry (δ = 0 = θ = η) we have θ ≈ 3δ and η = (5+2χ)δ/(1+2χ). Near chiral purity

we have δ = 1− ν with ν small implying θ = 1− 1
4
ν3 and η = 1− 1

4
χν4. Thus if the monomers are

as much as ∼ 10% away from chiral purity (δ = 0.9) the polymers will be only ∼ 0.1% away from

purity.
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2.3 Stability of the steady-state solutions

To investigate whether the chiral solution is preferred over the symmetric solution, we need to

perform a stability analysis of the steady-state solution. We assume that S, µ,M,N are given by

their steady-state values, and that δ, θ, η are all small but perturbed away from zero. We then

investigate whether the perturbations δ, θ, η grow or decay. Linearising (14)–(16) about the zero

solution we obtain

d

dt





η

θ

δ



 = 1
2
aµχ





−1 1
(1+2χ)

2(1+3χ)
(1+2χ)

0 −1 3
f(1+3χ)

χ2
χ−1
χ2 − (1+5χ)

χ2









η

θ

δ



 , (23)

An analysis of this system shows that if f > fc(χ) (given by (18)) then the symmetric solution is

unstable. This steady-state analysis shows that when the enantiomeric cross-inhibition (χ) is large,

the bifurcation to an asymmetric solution occurs at moderate values of the fidelity parameter f ,

for example f > 2/9. However, when χ is small then a chiral imbalance is observed only when f is

very close to unity, in the limit of small χ, we require f > 4/5.

2.4 Kinetics of the growing solution

Differences between small and large cross-inhibition are also observed in the kinetics of the solution

as we now show. Let us consider the system initiated from a state in which all concentrations are

zero and follow the temporal evolution of the concentrations as the substrate accumulates, gives

rise to monomers and ultimately polymers. The presence of a small parameter ε in (4) means

we can find an approximate solution using the method of matched asymptotic expansions. We

consider just the system of equations for the substrate, monomer and polymers, that is (10)–(13).

We assume that the system remains in a symmetric state as it evolves, that is δ = 0 = θ = η for

all time – such a solution certainly exists. For the moment we ignore perturbations, although these

will be considered later as we examine the stability of such a solution (Section 2.5). We analyse

the cases χ≫ 1 and χ≪ 1 separately.

2.4.1 Large enantiomeric cross-inhibition (χ≫ 1)

This is the simpler case to analyse, there being only three timescales of interest. The system

starts with a long timescale, where t = O(ε−1/5), the concentrations of monomers being small,

that of polymers being very small, whilst the substrate concentration grows linearly to a large size,

upto O(ε−1/5). The timescale ends abruptly (at t = t1cε
−1/5) as the concentrations of monomer

and polymer suddenly rise due to the feedback mechanism becoming active at larger polymer

concentrations.

There follows a second, very rapid, timescale, in which all concentrations are large for a short

time (formally in this timescale t = t1cε
−1/5 + ε1/5t2 with t2 = O(1)). At the end of this timescale
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the concentrations of all quantities decay slowly (in proportion to 1/t2) towards their steady-state

magnitude. Over the third timescale, all concentrations evolve towards their precise steady-state

values (here, t = t1cε
−1/5 + O(1)). A solution in this parameter regime is illustrated in Figure 3.
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Figure 3: Plot of a numerical solution of S, µ, N and M against time for the case ε = 10−5, a = 1,

k = 0.8, S0 = 1, χ = 3.333. The dotted curve corresponds to S(t), the dashed curve to µ(t), the

upper solid curve to M(t) and the lower solid curve to N(t). The first timescale corresponds to the

region 0 < t <∼ 27, the second around t ≈ 27 − 28 and third to larger values of t.

2.4.2 Small enantiomeric cross-inhibition (χ≪ 1)

When there is little enantiomeric cross inhibition, the structure of the asymptotic solution takes

on a different form. The first timescale is identical to that above: with t = O(ε−1/5), the substrate

concentration grows large, with a small monomer concentration a smaller polymer concentration,

both of which grow rapidly at the end of the timescale, leading to its abrupt end. The second

timescale is again fast and all concentrations are large. However, in this case it ends with only the

monomer and substrate concentrations decaying to a smaller size (µ and S), while the polymer

concentrations (N and M) remain large. A third timescale follows, which is also rapid, during

which the monomer and substrate concentrations stabilise at small values. The fourth timescale is

a further long timescale, over which the number of polymers and mass in polymers slowly reduce

(but the average polymer length (M/N) increases). Finally, over a fifth timescale, all concentrations

approach their steady-state values. An example of this solution is given in Figure 4.

2.5 Kinetic stability

In the preceding section, we have described the approximate solution for the quantities S(t), µ(t),

N(t), M(t) governed by equations (10)–(13) in the case δ = θ = η = 0. Now we assume that
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Figure 4: Plot of numerical solution of S(t) (the dotted curve), µ(t) (the dashed curve), N(t) (the

lower solid curve) and M(t) (the upper solid curve). All parameters are as in Figure 4 except

χ = 0.333. The first timescale occupies the region 0 < t <∼ 25, the second and third correspond to

25.5 < t < 27 and are illustrated in the graph on the right. Timescale four can be seen on the left

graph, it corresponds to 27 < t <∼ 60 and the fifth and final timescale relates to t >∼ 60.

S(t), µ(t), N(t),M(t) are given by this approximate solution, but that at some particular point

in time, δ, θ, η are perturbed away from zero by a small amount. We investigate the stability of

the resulting system of equations for δ, θ, η, that is, we ask whether the perturbation will decay

(δ, θ, η → 0) as time increases or whether the perturbation will grow. Linearising about the solution

δ = θ = η = 0, we obtain

d

dt





η

θ

δ




= 1

2
aµ(t)





−2µ
M
− N

M
N
M

χ+ 4µ
N

+ N
M

0 − µ
N

χ+ 2µ
N

2kfSM
aµ2

(χ−1)N
µ

−2− 2kSM
aµ2









η

θ

δ




. (24)

The eigenvalues of the matrix determine the stability properties of the system. In each timescale,

we obtain the critical value for f , namely fk, above which (f > fk) the perturbation will grow.

These critical values are given in Table 1 for each timescale and in the two cases of small and large

cross-inhibition.

Note that the threshold for this kinetic instability (kf) is, in general, different from fc (18).

In the first timescale, whatever value χ takes, the instability threshold is f > fk = 1
2
. For small

cross-inhibition the threshold increases in Timescale II (that is fk >
1
2
), and in Timescales III and

IV remains with fk >
1
2

before reaching the steady-state critical value of fk = 4/5. Qualitatively

it appears that the instability becomes harder to sustain as the reaction proceeds. If f < 1
2

then

the system is always symmetric, that is in an achiral state. For 1
2
< f < 4/5 then early on in the

polymerisation process a chiral imbalance may form and persist for a short while, but later in the
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Timescale χ < χc χ > χc

TI f > fk = 1
2

f > fk = 1
2

end TII f > fk =
1

2(1 − kM/aN)
f > fk = 2

15

TIII & TIV f > fk =
N

N + χM

SSS f > fk = fc ∼ 4
5
− 34

25
χ f > fk = fc ∼ 2

9
+ 8

27
χ−1

Table 1: Table of fidelity values where the kinetic instability occurs; that is the quoted values are

fk, where the symmetric solution is unstable for f > fk.

process the imbalance will be reduced and a symmetric solution will be regained. If f > 4/5 then

a perturbation at any stage of the process will grow, and persist for all times; this means that an

achiral state will form and an excess of one handedness over the other will be observed.

When cross-inhibition is large, the fidelity threshold fk reduces from 1/2 to 2/15 at the end of

the second timescale, and then rises again, to 2/9 for the steady-state. Thus for f < 2/15, the

chirally selective feedback is so weak that a chiral imbalance can never be sustained, a perturbation

at any stage of the polymerisation process will decay and the system return to a symmetric state.

At the opposite extreme, if f > 1/2 then a chiral perturbation at any stage of the process will be

amplified and persist for all time. In between these two extremes there are two intermediate cases:

when 2/15 < f < 2/9, a perturbation will be damped in the first timescale, but in the short second

timescale a perturbation would grow (albeit briefly as it is a rapid timescale), before being damped

out as the system approaches steady-state. In the case 2/9 < f < 1/2 then any perturbation in

the first timescale will again be damped, but one introduced in the second or third timescales will

be amplified and persist for all later times.

2.6 Summary

In this model the nonlinear feedback mechanism occurs from the selective way in which chirally pure

homopolymers influence the breakdown of the achiral substrate S into chiral monomers. Once there

is an excess of one handedness of chiral polymers, this produces more monomers of that chirality,

and so the instability in the system self-perpetuates. Due to the dual role of monomers—whereby

they act both as growing units for homopolymers of their own chirality and growth inhibitors of

the opposite chirality—monomers of the subdominant handedness are more likely to be used up in

poisoning the more common handedness than forming homopolymers of their own chirality. Hence

a return to the symmetric state is unlikely once a bifurcation has taken place.

More subtly, we note that the stability region (in parameter space) for the steady-state solution

(18) illustrated in Figure 2 and given by the last line of Table 1 is not the same as the stability
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regions for the kinetic solution (given in the first three lines of Table 1). Furthermore, the kinetic

solution has different stability criteria at different stages of the reaction. We note however a

consistency in that in all the results, a large enantiomeric cross-inhibition is more favourable for

symmetry-breaking that a small cross-inhibition.

3 The origin of the RNA world

To address the problem of ‘where did the RNA-world come from?’, we propose a detailed microscopic

model of the kinetics of RNA polymerisation and self-replication. Rather than assume the existence

of closed catalytic hypercycles as Eigen (1971), Eigen and Schuster (1979), and Nuno et al. (1993)

have done, we allow open-ended catalytic networks. To model the development of an RNA-world

we introduce the notation Cγ
r to denote a chain of nucleotide bases of length r and sequence γ.

The four nucleotide bases adenosine (A), cytosine (C), guanine, and thymine (T) are thus denoted

by CA
1 , CC

1 , CG
1 and CU

1 ; a generic single-element sequence may be denoted by Cψ
1 . An exemplar

single-strand RNA pentamer sequence is CUACGG
5 . We use one of γ, θ and ξ to denote a whole

sequence of bases A,C,G,U, and a star to denote the Watson-Crick complement; thus if γ =UACGG

then γ∗ =AUGCC.

3.1 Detailed microscopic model

The main reactions that such chains can undergo are:

(i) basic chain growth

Cγ
r + Cψ

1

slow
⇀↽ Cγ+ψ

r+1 , (25)

which is in effect a Becker-Döring process and we assign this process the small rate coefficient ε;

(ii) template-based chain synthesis (in which the Watson-Crick base-pairing of ribonucleotides

on complementary chains gives rise to a catalytic effect)

Cγ
r + Cψ

1 + Cθ
s

fast
⇀↽ Cγ+ψ

r+1 + Cθ
s . (26)

While this effect occurs for all chains θ, we expect some polymers (Cθ
s ) to be more effective catalysts

than others (for example s > r). This depends on how well the chains γ and θ interact. We shall

assume that in general this effect has some average effect, to which we shall assign the rate χ; and

when the sequence θ is the Watson-Crick complement of γ + ψ we assign the process some larger

reaction rate constant α. (Note the change in notation here: χ no longer refers to a cross-inhibition

effect as it did in (7).)

(iii) inhibition or ‘poisoning’ whereby two polymer chains form a tightly-bound duplex

Cγ
r + Cθ

s
⇀↽ P γ,θ

r,s . (27)
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We neglect this effect in our present models. However, by comparing this model with that of

chiral polymerisation, we note the similarity between this mechanism and that of enantiomeric

cross inhibition (7), since the poisoned complex P γ,θ
r,s cannot grow any further. When poisoning

involves one copy of a potentially successful chain and one copy of a less successful chain, it causes

a greater relative concentration drop of less successful chains than dominant ones; thus it provides

a mechanism for preventing the replication of less successful chains.

(iv) hydrolysis, in which a long chain splits into two shorter chains. Chemically this corresponds

to the reaction

Cγ+θ
r+s → Cγ

r + Cθ
s , (28)

with rate constant η. This increases the number of chains but reduces the average chain length.

At first sight this process appears detrimental to the formation of long chains and is undoubtedly

so if η is too large; however, since growth is catalysed in this model, having a greater number of

chains confers some beneficial influence on chain growth.

(v) enzymatic replication, also known as replicase ribozymal activity, in which a third chain

(Cξ
s ) aids the growth of a chain (Cγ

r ) which is already in close contact with another chain (Cγ∗+θ∗

r+k )

acting as a template

Cγ
r + Cψ

1 + Cγ∗+θ∗
r+k + Cξ

s
⇀↽ Cγ+ψ

r+1 + Cγ∗+θ∗
r+k + Cξ

s . (29)

Cech was awarded the Nobel prize for the discovery of this kind of process in RNAs (Kruger et al.,

1982). Here the combination of γ with ψ is a subsequence of the chain γ+θ (that is γ+ψ is a subset

of γ + θ) while Cξ
s plays the rôle of a replicase ribozyme. Needless to say, some of these replicases

will have much higher efficiency than (most) of the others. We shall assign the rate constant ζ to

this mechanism.

As already noted we will be ignoring inhibition (mechanism (iii)) and for the moment we shall

also ignore hydrolysis (iv), although this will be introduced later (see Section 3.3). The remaining

effects ((i), (ii), (v)) are all of Becker-Döring form. Thus we define cγr (t) as the concentration of Cγ
r

and obtain the kinetic equations

dcγr
dt

= Jγl,−γl+γ
r−1 + Jγ−γr ,γr

r−1 −
∑

ψ=A,C,G,U

(Jψ,γr + Jγ,ψr ). (30)

The duplication of terms is due to the polymers being allowed to grow at both ends. The quantities

γ1 and γr represent the first and last elements of the sequence γ. The expression γ − γr represents

the first (r − 1) elements of γ (that is, all of γ except for the last element), while −γ1 + γ denotes

the whole of γ except for the first element.

The fluxes Jγ,ψr denote the rate at which the RNA polymer sequence γ grows due to the addition

of the monomeric nucleotide ψ

Jγ,ψr =

(

cγrc
ψ
1 − cγr c

ψ
1

cψ,γr+1

cψ,γr+1

)

ε+ αcγ,ψr+1 + χ
∑

s,θ

cθs + ζcγ,ψr+1

∑

s,θ

cθs



 . (31)
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n sequence γ

1 AAAAAAAAAA

2 AAAAAAAAAC

3 AAAAAAAAAG

4 AAAAAAAAAU

5 AAAAAAAACA

6 AAAAAAAACC
...

...

262144 AUUUUUUUUU

262145 CAAAAAAAAA
...

...

1048575 UUUUUUUUUG

1048576 UUUUUUUUUU

Table 2: Illustration of numbering the different polymers sequences of length Λ = 10. There are

N = 410 = 1048576 different RNA sequences that can be formed. In (32) these are indexed by the

symbol n.

Here, cγr ddenotes the equilibrium value of cγr ; a similar formula holds for Jψ,γr .

From here on, we shall assume that a chain and its complement have identical concentrations.

This enables the template-based growth (ii) to be described by an autocatalytic rather than a

crosscatalytic term, autocatalysis being easier to analyse mathematically. Thus instead of Cγ∗
r

catalysing the production of Cγ
r , with the assumption that the concentrations cγr = cγ∗r , in the

mathematical model we effectively have Cγ
r catalysing its own growth. Since the rates ε, α, χ, ζ, η

are not dependent on the sequence, this assumption will hold for all time if it holds at t = 0.

3.2 A macroscopic model

In previous modelling work where the formation of micelles and vesicles has been of interest

(Coveney and Wattis, 1996, 1998), we have used a coarse-graining technique to obtain results

at a macroscopic level which can be compared with experimental data. In this technique the ag-

gregation space is sampled at only a few sizes. In the current work this corresponds to retaining

only a small set of polymer lengths; for example, r = 1, 10, 20 instead of r = 1, 2, 3, . . .. This

coarse-graining technique is systematic but approximate; it has been shown to be asymptotically

exact in various cases (Wattis and King, 1998) and is being refined (Bolton and Wattis, 2003).

In one extreme coarse-grained limit, we focus on polymers of just one length Λ ∈ N, and ignore

all longer lengths (we effectively assume their concentrations are all zero), while all shorter lengths

are also ignored (that is, r = 2, 3, . . . ,Λ−1) . A new flux function which describes how Λ monomers

13



ΛX1 ⇀↽ Xγ
Λ uncatalysed, with forward-rate coeff. = ε

ΛX1 +Xγ
Λ

⇀↽ 2Xγ
Λ autocatalysis, with forward-rate coeff. = α

ΛX1 +Xθ
Λ

⇀↽ Xγ
Λ +Xθ

Λ crosscatalysis, with forward-rate coeff. = χ

ΛX1 +Xγ
Λ +Xθ

Λ
⇀↽ 2Xγ

Λ +Xθ
Λ enzymatic-catalysis, with forward-rate coeff. = ζ.

Table 3: The four effective rate processes by means of which chains are formed in our macroscopic

model (32). Reprinted with permission from J Phys Chem B 103, 4231. Copyright 1999 American

Chemical Society.

combine in a single step to form a polymer is then constructed. This polymer will be denoted by Xγ
Λ

where the subscript Λ denotes that it is composed of Λ monomers and the superscript γ represents

the sequence of monomers in the chain (for examples of γ in the case Λ = 10, see Table 2). The

kinetic equations (30)–(31) are then replaced by

dyn
dt

= 2
(
xΛ

1 − βyn
)


ε+ αyn + χ
N∑

p=1

yp + ζyn
N∑

p=1

yp




λ

, (32)

where x1 is the monomer concentration, which we have assumed is the same for all four monomer

types, and λ = Λ − 1. The variables {yn}Nn=1 describe the concentrations of the N = 4Λ different

possible sequences of polymers of length Λ; i.e. n enumerates the sequences γ. The case Λ = 10

is illustrated in Table 2 where the similarity with counting in base four is apparent, the symbols

A,C,G,U being replacements for 0,1,2,3. Working back from the kinetic equation (32) it is possible

to deduce the coarse-grained chemical processes which they describe. These are given in Table 3.

3.2.1 The symmetric solution

As an example we solve (32) in the case of irreversible polymerisation (which implies β = 0) and

a constant monomer concentration (for simplicity we put 2xΛ
1 = 1). An approximate solution to

the kinetic equations (32) can be found given the assumption that all chains occur with equal

concentrations, that is, yn(t) = Y (t), independent of n. This symmetry Ansatz leads to

Y (t) =
ε

(α+Nχ)

(
1

(1 − t/tc)1/(λ−1)
− 1

)

, where tc =
ε1−λ

(λ− 1)(α +Nχ)
. (33)

This solution is valid until Y (t) reaches O(1), when the enzymatic reaction mechanism becomes

significant and an alternative approximation is required. As with the first timescale of the chiral

polymerisation solution (sections 2.4.1 and 2.4.2), this approximation describes slow kinetics oc-

curring over a large interval of time. This timescale also has an abrupt end: as t approaches tc

catalytic effects start to dominate the uncatalysed reaction mechanisms.
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3.2.2 Kinetic stability

Even from the early time solution (33) we can demonstrate an instability of the symmetric solution.

We consider a small n-dependent perturbation ŷn(t) where yn(t) = Y (t)(1+ŷn(t)) with
∑
n ŷn(t) = 0

so that some chains have greater concentrations than others. The perturbations ŷn(t) then evolve

according to
dŷn
dt

=
ŷn(t)B(t)λ−1

Y (t)
[λY (t)(α + ζNY (t)) − B(t) ] , (34)

where B(t) = ε+αY (t)+χNY (t)+ ζNY (t)2. Now if α > Nχ/(λ−1) then the perturbations ŷn(t)

will grow in amplitude at times t > ti where

ti =

{

1 −
[
1 −

(
α +Nχ

αλ

)]λ−1
}

ε1−λ

(λ− 1)(α+Nχ)
. (35)

Note that ti < tc so there is a large interval of time ti < t < tc during which perturbations will

develop. Unfortunately the linear equation (34) does not yield an expression which links the ‘shape’

of perturbation in n-space with a growth rate. If we assume a separable solution for ŷn(t) of the

form ŷn(t) = T (t)ωn then T (t) is determined, but ωn is not, that is, all perturbations ωn have

the same growth rate. A higher order analysis is required to determine the most unstable shape

mode. Intuitively we expect a few chains to flourish, and in our model the chains which prosper

will depend on nonuniformities in initial data. Other chains will remain at low concentrations

due to competition for the available monomers from the flourishing chains. In the real world,

the autocatalytic, cross-catalytic and enzymatic rates will have some dependence on the precise

sequence of nucleotides in the polymeric chain, and these variations in rate constants will also have

a role in determining which chains replicate at the fastest rate.

This illustration shows that symmetry-breaking occurs in our account of the origins of the

RNA-world with a similar mechanism to that in chiral polymerisation. However, this model has

only used three of the five mechanisms identified at the start of this section. Given that the

inhibition mechanism (section 3.1(iii)) is similar in effect to enantiomeric cross-inhibition in chiral

polymerisation, we have some confidence that inhibition will not destroy the symmetry-breaking

phenomenon in our model of RNA sequence formation. To include hydrolysis in our model we need

a less severe approximation of equations (30)–(31).

3.3 A more refined macroscopic model

We now consider another coarse-graining approximation of (30)–(31). Instead of retaining just

monomers and one length of polymer, we now keep two lengths of polymer, namely Λ and 2Λ. For

shorter chains (length Λ), we retain the same notation as used above, namely yn (1 ≤ n ≤ N = 4Λ).

For the longer chains, we use the notation Ym,n to represent a chain whose first Λ sites exactly

correspond to that of Ym and whose second Λ sites correspond to Yn. Thus Ym,n can be viewed

as a simple concatenation of Ym and Yn. The concentrations of these quantities are referred to by
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ym,n(t), ym(t) and yn(t). For simplicity, we retain x1 as the monomer concentration—fixed at the

same value for all four nucleotide monomers. Hydrolysis then corresponds to the splitting of a long

chain into two shorter ones via Ym,n → Ym+Yn, with rate constant η. An additional benefit of this

model is that a longer chain of the form Ym,n catalyses the growth of both the shorter chains Ym

and Yn into Ym,n.

dyn
dt

= xΛ
1



ε
S
+α

S
yn+

N∑

m=1

χ
S
ym+

N,N∑

p,q=1

χ
X
yp,q+

N,N∑

p,q=1

ζ
SS
yp,qyn+

N,N,N∑

m,p,q=1

ζ
SL
yp,q(ym,n+yn,m)




λ

+

+
N∑

m=1

η(ym,n+yn,m) −
N∑

m=1

xΛ
1 yn



ε
L
+α

L
ym,n+

N,N∑

p,q=1

χ
L
yp,q+

N,N∑

p,q=1

ζ
LL
ym,nyp,q




Λ

−
N∑

m=1

xΛ
1 yn



ε
L
+α

L
yn,m+

N,N∑

p,q=1

χ
L
yp,q+

N,N∑

p,q=1

ζ
LL
yn,myp,q




Λ

(36)

dym,n
dt

= −ηym,n + xΛ
1 ym+xΛ

1 yn



ε
L
+α

L
ym,n+

N,N∑

p,q=1

χ
L
yp,q+

N,N∑

p,q=1

ζ
LL
ym,nyp,q




Λ

. (37)

Here we have once again made the assumption that polymerisation is irreversible. Note that

even the first line of the equation for yn is more complex than (32) due to the various forms of

enzymatic replication (§3.1(v)) which require a long chain to act enzymatically and either a short or

a long chain to act as a template. These two possible templates are assigned possibly different rate

constants (ζ
SS

or ζ
SL

). The spontaneous (slow) polymerisation rates of short and long polymers

are assigned small, but potentially different, rates ε
S
, ε

L
. Similarly, different autocatalytic and

cross-catalytic rates are denoted by α
S
, α

L
, χ

S
, χ

L
and χ

X
; χ

X
being the rate at which long chains

cross-catalyse the formation of short chains. These mechanisms and associated rate constants are

summarised in Table 4. Other simplifying assumptions could be made, such as ym,n(t) = yn,m(t);

however, the system is now in a form where it is possible to analyse the kinetic stability of the

uniform (symmetric) solution.

3.3.1 Symmetric solution

We first determine the symmetric solution; for this there are just two variables to find, namely

the short chain concentration (the same concentration for each sequence), and the long chain

concentration. We denote these by

ym,n(t) = Z(t), ym(t) = Y (t); (38)

when inserted into (36)–(37), these imply

Ż = −ηZ + 21−2ΛY
(
̺−ΛNY −2ΛN2Z

)Λ (
ε
L
+α

L
Z+χ

L
N2Z+ζ

LL
N2Z2

)Λ
(39)

Ẏ = 2ηNZ − 21−2ΛNY
(
̺−ΛNY −2ΛN2Z

)Λ (
ε
L
+α

L
Z+χ

L
N2Z+ζ

LL
N2Z2

)Λ
+

+2−Λ
(
̺−ΛNY −2ΛN2Z

)Λ (
ε
S
+α

S
Y+χ

S
NY+χ

X
N2Z+ζ

SS
N2Y Z+2ζ

SL
N3Z2

)λ
. (40)
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ΛX1 → Yn ε
S

uncatalysed polymerisation

Yn + ΛX1 → Yn,m ε
L

uncatalysed growth of long from short chains

Yn + ΛX1 → 2Yn α
S

autocatalysis of short chains

Ym,n + Ym + ΛX1 → 2Ym,n α
L

autocatalysis of long chains

Ym,n → Ym + Yn η hydrolysis

Ym + ΛX1 → Ym + Yn χ
S

crosscatalysis of short by short chains

Ym,n + Yk + ΛX1 → Ym,n + Yk,l χ
L

crosscatalysis of long by long chains

Ym,n + ΛX1 → Ym,n + Yk χ
X

crosscatalysis of short by long chains

Yp,q + Yn + ΛX1 → 2Yn + Yp,q ζ
SS

ribozymic synthesis of short chains

Yp,q + Ym,n + ΛX1 → Yn+Ym,n+Yp,q ζ
SL

ribozymic synthesis of short chains

Yp,q + Yn,m + ΛX1 → Yn+Yn,m+Yp,q ζ
SL

ribozymic synthesis of short chains

Yp,q+Ym,n+Ym+ΛX1 → 2Ym,n + Yp,q ζ
LL

ribozymic synthesis of long chains

Yp,q+Ym,n+Yn+ΛX1 → 2Ym,n + Yp,q ζ
LL

ribozymic synthesis of long chains

Table 4: Reactions included in the model (36)–(37), together with their corresponding forward rate

constants. Subscripts ‘S’,‘L’ denote short and long chains respectively. Reprinted with permission

from J Phys Chem B 103, 4231. Copyright 1999 American Chemical Society.

For this example we consider the case of a constant total concentration of ribonucleotides, that is

we assume ̺ = 4x1(t)+NΛY (t)+ 2ΛN 2Z(t) is constant. Although we cannot express the solution

of equations (39)–(40) in terms of elementary functions, the system has a unique solution and we

now examine its stability to perturbations.

3.3.2 Kinetic stability

To analyse the stability of the uniform (or symmetric) solution (38), we put

ym,n(t) = Z(t) + Z(t)ŷm,n(t), yn(t) = Y (t) + Y (t)ŷn(t), (41)

with ŷn(t), ŷm,n(t) ≪ 1. Inserting this into (36)–(37), we obtain a system of equations of the form

dŷn
dt

= A(t)ŷn +B(t)
N∑

m=1

(ŷm,n+ŷn,m) (42)

dŷm,n
dt

= C(t)ŷm,n +D(t)[ŷm + ŷn]. (43)

where A(t), B(t), C(t), D(t) are given by complicated expressions involving Y (t), Z(t) and all the

parameters from the model equations (36)–(37). Full details are given in Wattis & Coveney (1999).

Since (42)–(43) form a linear problem for the variables ŷn(t) and ŷm,n(t), a separable solution can

be found. To separate the temporal evolution and the n-, and (m,n)-dependence, we put

ŷn(t) = ωnSS(t), ŷm,n(t) = ωm,nSL(t). (44)
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so that the variables ωm and ωm,n determine the ‘shape’ of the perturbation in (m,n) sequence

space, and SS(t), SL(t) describe the temporal evolution of the perturbation in the short and long

chains respectively. Although it is the latter quantities we are interested in, the two problems

cannot be completely separated. To make further analytical progress, we are forced to invoke the

assumption ωm,n = K(ωm + ωn), where K is a separation constant. Thus the problem for SS(t),

SL(t) retains some information about the ‘shape’ functions ωm, ωm,n through K

d

dt



 SS

SL



 =



 A(t) 2NKB(t)

D(t)/K C(t)







 SS

SL



 . (45)

The Routh-Hourwitz criteria (Murray, 1989) which specify the conditions under which the

eigenvalues of the matrix have negative real parts imply A + C < 0 and AC > 2NBD. If these

hold then the system is stable and SS, SL both decay with increasing time. To prove the formation

of a patterned state in which some chains dominate others we have to prove either A + C > 0 or

AC < 2NBD. Note that neither of these stability criteria depend on the separation constant K.

Thus there is not one shape mode (ωn, ωm,n) which becomes unstable before the others, rather

many shape modes become unstable at the same bifurcation point. Unfortunately we are in the

same position as in section 3.2.2, in that we cannot describe the form of the solution just past the

bifurcation point. As there, we expect there to be a subset of both short and long chains which

prosper (the long chains being composed of two flourishing short chains, and if chain is in this set

of ‘successful’ replicators then so is its complement), other chains will remain at low concentrations

due to the competition for a limited supply of nucleotide bases.

After developing approximations for the quantities Y (t), and Z(t) we deduce various criteria

for the existence of an instability of the uniform solution. One such inequality is

α
S
>
N(Λε

S
+ ̺χ

S
)

(λ− 1)̺
, (46)

which can be interpreted as a lower bound on the autocatalytic rate depending both on the spon-

taneous slow polymerisation (ε
S
) and on the cross-catalytic chain growth mechanism (χ

S
). This

means that the accuracy of the templating mechanism (ii) must lie above a certain threshold. Anal-

ysis of the inequality AC < 2NBD shows that an instability can be triggered when η lies above

some threshold, that is when hydrolysis is strong enough.

3.4 Summary

We have proposed a model for RNA polymerisation containing spontaneous, catalytic and enzy-

matic mechanisms of chain growth. The model includes information on the sequence of bases and

is thus able to track information propagation through chain replication via (imperfect) templat-

ing. We have illustrated how the great complexity of the model (due to the numerous different

sequences and chain lengths) can be reduced to a simpler system which is amenable to theoretical
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analysis. For any particular chain length N there are 4N different possible sequences. If we consider

a general model which contains all possible chain lengths upto length N , then there are 3
4
(4N+1−1)

combinations. By using a coarse-graining contraction, we reduced the model so that we need only

consider one (or in a more general model, two) chain lengths. Secondly, instead of considering all 4N

possible sequences γ, we have assumed that a chain and its Watson-Crick complement occur with

equal frequency. This is an assumption which simplifies the structure of the differential equations

and slightly reduces the number of variables in the model; the resulting system of equations still has

4N−1/2 variables. By examining the stability of the symmetric solution we have shown that there

are regions of parameter space in which a spontaneous bifurcation will take place. This results in

certain chains becoming much more numerous than others; thus small external perturbations may

provide a mechanism for the initial selection of sequences which flourish and propagate and those

which are unable to replicate due to the competition for a finite supply of nucleotide monomers. In

reality, the full model may well exhibit more complex instabilities in which a chain and its comple-

ment have different concentrations. However, such a model would still suffer from the instabilities

we have found in a reduced model.

Due to the number and complexity of mechanisms in this model, there is no single parameter

which can be interpreted as a ‘fidelity’ parameter in the chiral polymerisation model. In that model,

we saw that it was a combination of large fidelity (f) and enantiomeric cross-inhibition (χ) which

caused symmetry-breaking. Here, in RNA-polymerisation it is primarily a combination primarily

of autocatalysis (the template-based chain synthesis of one chain by its complement at a rate which

we have denoted by α) and enzymatic replication (ζ) which causes symmetry-breaking; however,

the presence of hydrolysis (η) may also destabilise the uniform solution and cause a bifurcation.

4 Conclusions

The two models we have analysed both include spontaneous but slow polymerisation and some form

of autocatalysis, which acts as a nonlinear feedback mechanism. The source of the nonlinearity

differs in the two models: in chiral polymerisation, the presence of homochiral polymers amplifies

the rate at which a precursor substrate chemical is broken down into chiral monomers. In RNA

polymerisation the nonlinear feedback mechanism originates in the growth mechanisms of chains,

sequences effectively catalyse their own production since we assume that a polymer sequence and

its complement occur in equal concentrations.

Both models also display an element of competition: in chiral polymerisation, chains compete

for the monomers while the monomers have a dual role, being both agents of growth for polymers of

their own handedness and inhibitors for opposite-handed polymers. In the RNA world model there

is also competition between polymeric chains for monomers, this time with chains having a dual

role – growing themselves and acting as catalysts for the growth of other chains. In a more detailed

model, chains would also play the role of inhibitor, which we have ignored here (§3.1(iii)). The
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inhibition mechanism which we have ignored in modelling the origin of the RNA world is analogous

to enantiomeric cross-inhibition in Sandars’ model of chiral polymerisation (2003). While at first

sight this might appear to be a hindrance to the formation and persistence of an asymmetric

solution, it may in fact be a driving force for the development of chirality, since it inhibits the

growth of the chiral polymers of lower concentration to a greater extent that the more abundant

chirality.

In both chiral polymerisation and RNA self-replication there is a symmetric solution where both

enantiomers, or chains of all compositions, occur with equal concentrations. Yet in both systems

there are ranges of parameter values in which a small perturbation away from the symmetric state

grows in time, leading to the more complex and more interesting solutions which are necessary

for the emergence of life. This symmetry-breaking is most graphically seen in Figure 2 where the

steady-state solution of the chiral polymerisation model is illustrated. However, we have shown

that it is not just a steady-state feature, but that symmetry-breaking occurs during the pre-steady

kinetics: it may occur extremely early on in the polymerisation process, and persisting until a

steady-state is achieved.
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