
Reeves, Stuart (2006) The code document's structure
and analysis. TeamEthno-Online, 2 .

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/408/1/paper-revised.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

The code document’s structure

and analysis

Stuart Reeves
School of Computer Science & IT

University of Nottingham, Jubilee Campus, Wollaton Road,

Nottingham, NG8 1BB

str@cs.nott.ac.uk

April 21, 2006

Introduction

The purpose of this paper is twofold. Firstly it presents a preliminary and
ethnomethodologically-informed analysis of the way in which the growing
structure of a particular program’s code was ongoingly derived from its ear-
liest stages. This was motivated by an interest in how the detailed structure of
completed program ‘emerged from nothing’ as a product of the concrete prac-
tices of the programmer within the framework afforded by the language. The
analysis is broken down into three sections that discuss: the beginnings of the
program’s structure; the incremental development of structure; and finally the
code productions that constitute the structure and the importance of the pro-
grammer’s stock of knowledge. The discussion attempts to understand and
describe the emerging structure of code rather than focus on generating ‘re-
quirements’ for supporting the production of that structure. Due to time and
space constraints, however, only a relatively cursory examination of these fea-
tures was possible. Secondly the paper presents some thoughts on the difficul-
ties associated with the analytic—in particular ethnographic—study of code,
drawing on general problems as well as issues arising from the difficulties and
failings encountered as part of the analysis presented in the first section.

The following section discusses briefly the background to the program’s
production, which has relevance for the reader’s understanding of the ratio-
nale behind the structural decisions that were made.

The program and sittings

I came across diffusion limited aggregation (or DLA, and also known as a Brow-
nian tree) in a popular science book. The book depicted the output from a
DLA program and gave a brief description of the process involved in generat-
ing the image (as in Figure 1, which is actually the output from my program).
Diffusion limited aggregation is a process whereby ‘particles’—pixels in this

case—are stepped through a random walk, ‘sticking’ to already existing parti-
cles within a plane. The process is seeded with a pre-existing particle placed in
the centre of the plane from which the two-dimensional, plane-bound image is
generated.

Figure 1: Diffusion limited aggregation (left), meld screenshot (right)

The program was written ‘from scratch’ in Java over the course of couple of
weeks or so. Various resources were drawn on during this work, such as con-
versations, ‘workings’ in the form of sketches and diagrams (as shown in Fig-
ure 2), the Java API documentation, other implementations of DLA available
on the internet, and so on. A series of versions (this term is used sparingly for
reasons discussed shortly) was kept from the initial attempt to the final work-
ing program (0.1 through to 1.2) along with occasional compiler output and
notes that seemed particularly pertinent at the time. In order to examine the
way in which the code structure developed, and instead of examining program
development in real-time (e.g., by video or screen capture data), the differences
between these ‘versions’ were studied as a way to perform some introspective
analytical work on a data set that was already known intimately. This analysis
was done using the program meld, which is a visual diff-ing tool that pro-
vides a graphical representation of differences between two (or three) files (see
Figure 1 for a screenshot).

This ‘version numbering’—e.g., the decision and practical work of mov-
ing from version 0.1 to 0.2—was iterated according to a particular emerging
strategy of capture termed here as ‘sittings.’ A sitting came to be constituted
of at least a temporally continuous session of work at the keyboard, or at most
a small number of these sessions with minor breaks in between. It is of note
at this point, however, that the notion of a sitting is however distinct from the
term ‘version,’ as it is used in common software development parlance. A ver-
sion of a program’s code in this sense may be the result of many, many sittings
and possibly a long development process (see Figure 4 for a graphical illustra-
tion of this point).

The reasons for the sitting’s lifetime being as it was varied. A hard prob-

Figure 2: Two pages of sketches and drawings

lem may have been encountered (‘getting stuck’), bringing about the end of the
sitting, or perhaps the sitting naturally came to a conclusion as part of success-
fully ‘adding a feature.’ Equally, the program’s state at the end of the sitting
could be varied, such as it being anything from compilable and runnable to
not-compilable and not-runnable (i.e., crashing). In spite of these varied end
states, a prime feature of a sitting’s edits seemed to be that some ‘conclusion’
was reached in terms of the task-at-hand as well as the visual state of the code.
For example, syntactically incorrect or incomplete statements (’hanging lines’
of code) were not left as such. As both a byproduct of this and a further fea-
ture of the maintenance of conclusive sittings, by the end of a sitting the visual
(whitespace) structure of the code was always ‘correctly’ and consistently in-
dented, spaced and the like. From the general features detailed here, then, is
clear that creating some discernible, legible ‘tying up of ends’ or leaving the
code in an otherwise visually ‘tidy’ state seemed to be important in the conclu-
sion of a sitting.

Beginnings

The notion of the sitting is intimately linked with the programmer’s methods of
‘keeping track’ and using placeholders as part of a concerted effort to maintain
the trajectory of the code as it is worked upon. It is these issues that shall be
examined here in more detail, but it is also worth highlighting at this point that
the analysis delves into some low-level technical detail regarding the issues
this paper attempts to draw out, however this itself is an interesting point that
will be addressed in a later section.

The first ‘sitting’ resulted in the code that follows in Listing 1 (sitting 0.1).
The entire listing of this sitting has been reproduced as it contains some inter-
esting features that shall be examined. The code contains two classes: particle
and dla. The particle class is notionally correspondent to the ‘particles’ that
are randomly walked through the space. It contains a constructor that accepts
two arguments, whereas the dla class contains a constructor and the main

method (i.e., the entry point for the program). It is of note that this code was
not compiled at all during the sitting, and compilation was only performed at
the start of the next sitting some time later (and generating multiple compila-
tion errors).

The functionality the program attempts to express is as follows. When the
entry point main is processed, a new dla object is created. This dla object cre-
ates a new particle object with (unused) diameter and step arguments
set to float values of 1.0 and 0.0. The particle constructor is called dur-
ing this creation, picking a random number (r) and filtering this with condi-
tional statements through to four possible outcomes, the purpose of which is
to choose a random side of a cube to as part of the particle’s start position.
Each outcome (e.g., if (r <= 0.25d && r < 0.5d)) then assigns to the
member fields xpos and ypos a value that corresponds with a random plac-
ing along the chosen side. This is illustrated in Figure 3. After this selection,
the particle (centre) has its fields xpos and ypos directly set to zero. Fi-
nally, the Vector object particles is created and the dla constructor exits,
leading to the exit point for the whole program.

Figure 3: particle start points

Listing 1: Sitting 0.1

import java.lang.*;

class particle

{

public double xpos, ypos,

xdir, ydir;

double diameter, step;

public particle(double diameter, double step)

{

double r = Math.random();

if (r < 0.25d)

{

xpos = XMIN;

ypos = Math.random() * (YMAX - YMIN);

}

else if (r >= 0.25d && r < 0.5d)

{

xpos = XMAX;

ypos = Math.random() * (YMAX - YMIN);

}

else if (r >= 0.5d && r < 0.75d)

{

ypos = YMIN;

xpos = Math.random() * (XMAX - XMIN);

}

else

{

ypos = YMAX;

xpos = Math.random() * (XMAX - XMIN);

}

this.diameter = diameter;

this.step = step;

}

}

public class dla

{

public static final int XMIN = -100,

XMAX = 100,

YMIN = -100,

YMAX = 100;

particle centre;

Vector particles;

public dla()

{

centre = new particle(1.0f, 0.0f);

centre.xpos = 0;

centre.ypos = 0;

particles = new Vector();

}

public static void main(String[] args)

{

dla d = new dla();

}

}

Although sitting 0.1’s code here contains only 59 lines, the skeleton struc-
ture of the dla and particle classes are not radically modified by the final
sitting and indeed still persist in 1.2’s 838 lines of code. This initial sitting
‘does nothing’ (as shall be discussed shortly) and yet functions as a construc-
tional ‘sketch’ or trajectory for subsequent sittings, as well as in some sense
being the product of the programmer ‘thinking out-loud.’ It provides a struc-
tural orientation for the programmer in subsequent sittings as the program
is developed. This orientation is made available to the programmer by self-
accountable and self-legible features of the way in which the programmer con-
structs this initial sitting’s work, particularly in the use of whitespace, com-

ments, formatting and other elements of ‘good practice.’ Thus the programmer
is assisted in rapidly being able to reacquaint him/herself with some thing pre-
viously written at the next sitting. That the code does not compile is a further
indication of this sitting’s work being ‘sketchy.’

As mentioned, major parts of the code at this stage appear to ‘do noth-
ing’ and perhaps could be seen as vacuous and insubstantial. This is not nec-
essarily the case, however, as the code here exhibits a stage of development
where declaration and structure are employed to prospectively ‘scaffold’ the
next sitting by furnishing that sitting with ‘placeholders’ for further action.
Besides the non-compilable, non-runnable state of the program, this is exhib-
ited in logically ‘useless’ material, such as the particles Vector or some of
the member fields such as particle centre, the doubles diameter and
step, and so forth. These declarations serve no purpose here-and-now, how-
ever they each have a prospective dimension for the programmer’s work in
that they help orient the next sitting in which the concepts embodied by their
declarations may be logically ‘filled out.’ It is obvious that the naming of these
declarations is similarly vital for their legibility1 as well as their position within
the structure of the code (e.g., that particles is declared within the dla class
rather than within the particle class). Given that the future sitting may be
temporally distant, certain particulars and intentions developed here-and-now
within this sitting may also become fuzzy and indistinct at that later date, and
so the programmer, in their ‘tying up of ends’ at the end of the sitting, attempts
to provide enough scaffold—cultivated in these ‘useless’ declarations—to en-
sure that during the later sitting the code’s trajectory is as legible as possible.

As an example we can trace through the changes made to the ‘useless’
Vector named particles. As written in sitting 0.1, it forms a placeholder
for some kind of container for particle objects. In sitting 0.2 this container’s
type is changed from being a Vector to a Hashtable of particle objects in-
stead. Also during this sitting the constructor of the dla class is functionally
filled out, in which (as shown in Listing 2) particle objects are put() into
particles as part of a nested for loop (not shown). Thus 0.1’s declaration
of particles begins to serve a concrete logical purpose within the context of
the rest of the code.

Listing 2: The dla constructor, sitting 0.2
Hashtable particles;

public dla()

{

particle centre = new particle(1, new Point(0, 0));

particles = new Hashtable();

particles.put(centre.p, centre);

while (true)

{

// ...
particles.put(p.p, p);

}

}

Button and Sharrock’s account of programming work has highlighted the
“screen practices” of programmers (that is, practices produced from screen-
based work). In particular they pointed out that “writing code does not consist

1See [2] for a relevant discussion on temporary naming of variables.

of writing the complete code straight off” and furthermore noted how the pro-
grammer may write out the “simplest possible case first” as part of keeping
track and not visually—and thus ‘mentally’—“losing sight” of the code’s un-
folding development [2]. These screen practices are similar to the sketch-like,
“simplest case first” work practice as exhibited here in the first sitting. Rather
than write the whole detailed structure out in one pass, the programmer em-
ploys the prospective qualities of ‘useless’ declarations in order to avoid losing
sight. These prospective declarations provide legibility not just for the imme-
diate here-and-now unfolding of the code but also for future sittings and the
trajectory of the structure of the entire program. In other words they are self-
orienting (‘keeping track’) practices that exhibit and embody for the program-
mer the course of the unfolding of code.

Finally, something that is also of note for this first sitting is the nature and
role of the commonsense notion of ‘plans’ in writing code. Here Suchman’s
observation on the conflict between plans and the actual, lived work of actions
carried out ostensibly in support of such plans [7] is of relevance. Whilst large
code projects do indeed feature detailed plans in the form of specifications,
sketches, more formal diagrams (using, say, UML) and design documents (to
name a few), these plans cannot encapsulate the contingencies the program-
mer continually encounters. Plans can instead be seen as resources for action,
with the coupling between plans and actions having varying degrees of homo-
geneity. For example, unlike some forms of activity in which the conflict be-
tween plans and situated actions is more extreme and pronounced (e.g., Such-
man’s example of the kayaker), the programmer is able to use ‘sketch’ code and
‘thinking out-loud’ code (as exhibited here) to situatedly establish elements of
a ‘plan’ as part of the concrete lived work involved in programming. The code
thus can be part of the construction of a plan as well as the activity involved
in the manifestation of that plan. The development of the sittings in this study
foreground the use of plan-like sketch code that establishes and maintains a
trajectory, i.e., a plan of sorts, however it is of note that within this particular
study there are no explicit commonsense planning features such as specifica-
tions or design documents beyond a couple of hand-drawn sketches (mostly
owing to the simplicity of the task).

Incrementing

Code is often ever-developing and sometimes seemingly never finished2. Al-
though structure is fundamentally addressed by the work of the programmer,
and at times is produced ‘en masse’ (e.g., as in the creation of sitting 0.1,
where the entire initial structure was produced), incrementally adding features
is also a staple everyday practice of programming and creating structure. In-
cremental code productions accrue across multiple sittings, slowly modifying
the program and enabling the code document’s progression along its trajectory
in a closely guided way. Placeholders and otherwise ‘useless’ declarations are
prospectively employed over the course of this incremental activity.

In writing a program, the programmer often exploits the modularisation
and encapsulation facilities provided by the language’s constructs (such as
Java’s object orientation with features like classes, inheritance, polymorphism,

2See many Free Software projects for this effect.

etc.). In spite of the abstraction and separation afforded by such constructs, the
actual everyday work of writing code is a highly contingent activity in terms of
the way in which that modular structure is produced incrementally. For exam-
ple, in order to add an argument to a method, code calling the method must be
brought up-to-date with this change; this edit cannot be saved for a ‘later date’
if the programmer wishes to test run the program at the current time. Thus,
although the logical structure may be modular and abstracted, the work that
goes to make that modularity is most definitely not.

Firstly, and following on from the previous section, we shall examine a sim-
ple example that illustrates the way in which the placeholder quality of certain
declarations is exploited during incremental change. Sitting 0.2 introduces
a member field Point p into the particle class (see Listing 3). This field
was functionally conceived for storing the Cartesian point the particle ob-
ject was located at, meaning that at first it would be set with a chosen starting
point (i.e., on an ‘edge,’ see Figure 3), and then used to store the updated po-
sition according to the random walk. At this sitting the variable p again ‘does
nothing’; it is merely set in the constructor for the particle class. It is only
by sitting 0.4 that this variable is referenced anywhere else in the class (in the
step() method), and, notably during this sitting is relabelled as pos. A rea-
son for this is the visual ‘collision’ between another particle variable, pp,
that is used in the same step() method that p comes to be employed in. The
placeholder feature of p, then, is used to denote temporarily some future mem-
ber of data and piece of functionality (i.e., the particle’s current position)
that is only employed within the particle’s functional workings at a later
sitting. For the time leading up to this sitting it also does a ‘job of work’ for the
programmer in the method that calls the particle constructor. particle

objects are created in the dla class, as seen in Listing 2, enabling the program-
mer to structure particle-creation code in that class as though it were a feature
of the particle class, regardless of that part of the code ‘doing nothing.’

Listing 3: Placeholder field, sitting 0.2

Point p;

public particle(int diameter, Point p)

{

// ...
this.p = p;

}

public particle step(Hashtable particles)

{

// ...
particle pp = null;

// ...
}

The previous example examined only a few modifications between sittings
0.2 and 0.4. Listing 4 illustrates another example of incremental develop-
ment, albeit traced over the course of all the sittings3. Here the while loop
within the dla class constructor begins as a endless loop (0.2). At this stage,
the content of the loop iterates through the Hashtable of existing particle

objects, calling the particle’s aggregate() method on each and adding

3The following description of this development may be diffi-
cult to follow, and so the sittings have been made available at
http://www.mrl.nott.ac.uk/∼str/pages/dla-applet/dla.html

new particles to the Hashtable. By sitting 0.3 the loop is bounded by a
counter and literal value, and the loop’s contents are identical to 0.2. Subse-
quently in 0.4 this loop becomes bounded by a ‘hard-coded’ constant and
its contents are modified somewhat. Here in 0.4 a new particle object
is being created at the start of each loop, which is itself declared with the
edge selection procedure (as in Figure 3). This particular block of code has
been moved inside the while loop, and a further inner while loop has been
constructed. This inner while calls the step() method (i.e., to ‘step’ the
particle through its random walk) repeatedly on the particle created ear-
lier in the loop until conditions determine that it has either been aggregated
(i.e., ‘stuck’ to another already-existing particle), or ‘walked’ outside the
bounds of the square’s edges. Sitting 0.5 has the (now outer) while loop
bounded by an argument (iterations), which, some sittings later is assim-
ilated into a new aggregate() method4. By sitting 1.0, the loop’s contents
have been expanded and has been transformed into a for loop. Given this
transformation, there are, however, the vestiges of the edge selection and the
inner loop that calls step() on the particle objects repeatedly.

It is important to note that for all of the sittings after 0.2, the loop counter
variable i is not referenced by any statements within the loop; that is, the vari-
able’s use is completely self-contained with respect to the code reproduced
here.

Listing 4: Developing the loop

0.2:

public dla()

{

// ...
while (true)

{

// ...
}

}

0.3:

public dla()

{

// ...
int i = 0;

while (i < 30)

{

// ...
++i;

}

}

0.4:

public static final int PARTICLES = 1000;

public dla()

{

// ...

int i = 0;

while (i++ < PARTICLES)

{

// ...
}

4This naming is potentially confusing. Initially the particle class had an aggregate()

method, but this was later changed to be labelled step(), whereas here the dla class has a (sep-
arate) method named aggregate(). The change comes about due to the change in functionality
of each class, however there is not enough space to deal with this development in depth.

}

0.5:

public dla(int iterations, ...)

{

// ...

int i = 0;

while (i++ < iterations)

{

// ...
}

}

...

1.0:

public dla()

{

// ...
}

public void aggregate(int iterations, ...)

{

// ...
for (int i = 0; i < iterations; ++i)

{

// ...
}

}

One of the most obvious aspects of this series of code fragments is the way
in which the loop develops incrementally across sittings 0.2 to 0.5. There is
an apparent ‘slowness’ in this incremental development given the very simple
segment of code that is actually being modified. There is no technical rea-
son why its final form (i.e., 1.0’s generalised and argument-bounded for

loop) could not have been reached at the first or second sitting. Besides the
iterations argument that is added, logically there are no contingencies de-
veloped upon the surrounding code, and yet the loop’s development is ‘slow.’
The gradual changes made to the code in this sequence do not just derive from
the (virtually non-existent) logical contingencies local to the sitting, but also
from contingencies upon the way in which the program’s structure unfolds
across sittings. In other words, the surrounding code and the content of the
loop’s code has a changing state and functionality that is developed as part of
the concerted work involved in the loop itself. The loop is not developed and
does not have a trajectory that is in isolation from its local surroundings. This
is evident when we examine the loop’s placeholder qualities and its use in the
ongoing development of the code.

This sense of the loop as ‘placeholder’ can be seen as part of the program-
mer’s attempts in ‘just getting the code to work.’ The initial construction of the
while loop has the condition true, meaning that it will never exit the loop,
and given that there are no break or return statements, it could be seen as
a highly unwieldy formulation for the context of the code that surrounds it.
However, it is ‘just enough,’ adequate and fit for purpose within this sitting;
i.e., it simply does not matter at this sitting that the loop is unbounded, and
has a purely utilitarian adequacy for the task at hand within the sitting it was
produced in. But at the same time the loop also has a status as a placeholder
or scaffold for subsequent action as the loop develops in later sittings. As the
code is worked on in later sittings, bounding the loop becomes useful for lim-

iting output as print statements for debugging are introduced. Subsequently,
the loop is altered to enable bounds specified as arguments, which is imple-
mented as part of a series of other introductions of arguments into the code.
As such, then, the development of the loop is continuously contingent upon
the trajectory of the code as a whole.

Structure as a stock of knowledge

The structure of code is constituted from the constructs provided by the lan-
guage the code is written in. A program may be structurally and functionally
different from all others, and yet at a certain level is created from identical con-
structs to other programs. These constructs strictly define the basic building
blocks of structure, and, typically due to pedagogical instruction, ability and
practice, the programmer becomes skilled in expressing computational tasks
in this language of constructs. A question here to explore is how repeated (or
repetitive) instances of use of constructs across different contexts—which by
their nature are highly specific—incrementally inform and build the program-
mer’s generalised and adaptable stock of knowledge that is then consulted in
later programs.

One of the major jobs of work for the novice programmer is becoming fa-
miliar with and competent at producing semantically and syntactically correct
code statements. This is part of the novice’s development of a mastery of ‘good
practice,’ or appropriate ‘ways to do things’ in code. For example, in Java this
would involve obtaining a handle on the essential patterns of structure that can
created from basic language constructs like for, while, if, and their appro-
priate context of use, such as understanding when to use switch statements
instead of if (...) else if (...) and vice versa. In addition to also
cultivating a sense of whitespace and formatting ‘style’, the work might in-
volve developing a familiarity with Application Program Interfaces (APIs) and
essential tools of the trade (such as the Standard Template Library for C++).

Some elements of this stock of knowledge are exhibited within various sit-
tings of the DLA code, such as in the use of for loops. A for loop is a simple
control structure that enables bounded loops to be specified in a compact way,
e.g., for (int i = 0; i < 10; ++i) ... Consider the following less
typical for loop that appears in sitting 0.2. In essence, the loop here enables
the iteration through of all the ‘elements’ of the Hashtable, meaning that each
value (i.e., particle object) of the hash’s key-value pairs is processed:

Listing 5: Loop from sitting 0.2

for (Enumeration e = particles.elements(); e.hasMoreElements();)

{

particle p = (particle)e.nextElement();

// Do stuff with p ...
}

There are many different ways to extract each value from Hashtables and
Vectors5, however this particular, single technique is one that is repeatedly
used over the course of the sittings. Immediately below the code of the for

5Any Java API classes that support the elements() method can be dealt with in this way, i.e.,
iterating through a returned Enumeration object.

loop that has just been discussed, for example, is another instance of this for
loop ‘pattern,’ which in this case is used to process a Vector (named toadd):

Listing 6: Another loop from sitting 0.2

for (Enumeration e = toadd.elements(); e.hasMoreElements();)

{

particle p = (particle)e.nextElement();

// Do stuff with p ...
}

By the final sitting these two instances of for loops have been replaced by
other constructs, however in two other places within the final sitting6 these
kinds of ‘stock’ productions of loops have appeared yet again. Within the DLA
program, these characteristic formulations of loops are a product of the pro-
grammer working with certain data structures like Hashtables and Vectors.
What has been established is a certain familiarity with ‘way of doing things,’
which in this case is a ‘way of doing things with for loops and Enumerations,’
and is a doing that is repeatedly employed at different points in the ongoing
development of the DLA program’s code document. It is a tried and tested
part of the programmer’s stock of knowledge.

Repetivitity is a prime way for the programmer being able to introspectively
notice their own patterns, as in the particular use of the for loop. This kind
of repetitivity does not imply that programming becomes a drudge7, but is
rather an essential part of the construction of the stock of knowledge. This is
comparable to many craft and craft-like activities.

As experienced programmers develop their skills further, their stock of kn-
owledge can extend beyond including just certain small-scale patterns of lan-
guage constructs to favoured large-scale ‘design patterns.’ These are in a crude
sense more sophisticated ‘ways to do things’ in code. There is extensive profes-
sional recognition of the notion of these extended patterns of structure (at least
within object-oriented software design) as evidenced by the popular and well-
known account of this within object-oriented software design and construction
[6].

Summary

Some of the features highlighted within this brief examination of a relatively
small segment of the changing code document have been: the sketch-like qual-
ity of the initial sitting, and implications this has for the code’s trajectory and
structure; the code’s trajectory as an incremental accomplishment that is main-
tained and tended to over the course of a series of sittings; and finally the
role of the stock of knowledge in the programmer’s incremental production of
structure. The next section examines the analytical issues and problems this
analysis has in particular foregrounded for the author.

6ConfigReader.find() and dlac.paintComponent(), as found in 1.2.
7Turing presciently noted that

[Programming] should be very fascinating. There need be no real danger of it
ever becoming a drudge, for any processes that are quite mechanical may be turned
over to the machine itself. [9, page 18]

Analytical problems

The text denoted as ‘code’ is a steadily changing document of the programmer’s
daily work. Even given the detailed scaffolding that is part and parcel of ev-
eryday programming, code requires the vulgar competencies of the reader to
make sense of its structure and meaning. The code document is not a ‘syn-
opsised’ and peculiarly condensed record of the lived work of its production,
but rather the document is instead a synopsis and condensation of the intended
purpose of the code at the point it is examined. Typically the code’s synoptic
account of ‘work’ will not contain any information regarding the code’s trajec-
tory, unfolding structure and thus the concrete work in which it was produced.
Furthermore, all code has a context of production, whether this is as a piece of
hobbyist work or part of an industrial control program, a context which also
will have left potentially few traces within the document itself. This section
addresses the legion practical difficulties posed to the analyst when examining
the code document and everyday activity of the programmer, with reference
to the problems encountered during the analysis presented in the preceding
sections.

Vulgar competence

It is often stated or implicitly assumed within ethnographic—particularly eth-
nomethodological—studies that “the challenge for the work analyst is first and
foremost to develop vulgar competence in the field of ‘study’ ” (emphasis in
original) [3]. Developing this vulgar competence in programming poses inter-
esting problems. Programming itself is a rather singular, concentrated craft-
like activity. Although programming work is frequently done as a part of a
collaborative practice, the essence of the activity still retains strong private
components [5]. Extensive private ‘practice’ is required away from the pub-
lic collaborative sphere, in a way that is perhaps rather comparable to musical
instrument practice and preparation (see Sudnow’s account of piano skill as a
reference point [8]).

The main issue to raise in differentiating studies of programming is then
the intense and unusually socially ‘separate’ skill involved in any collabora-
tive work’s production. Whilst ethnomethodologically-informed ethnographic
workplace studies as a rule present a strong appreciation for the importance of
the analyst(s) fulfilling the unique adequacy requirement, for studies of pro-
gramming the problem is perhaps more acute. The myriad different program-
ming languages on the market, for example, pose substantial problems for the
analyst. Although the learning of a language typically cultivates ‘transferable
skills’ and establishes ‘common concepts,’ programming languages each have
their own (often arcane) specificities, and perhaps may even involve an en-
tirely different programming paradigm altogether (e.g., object oriented versus
functional programming). As such the environment available to the analyst
may well be acutely less analytically habitable than a typical workplace envi-
ronment.

Analytic roles and collaboration

The context of roles in which vulgar competence is required is also of impor-
tance. Broadly speaking there are two roles the analyst may assume: the role
of participant in the production of code; or the role of observer to that code
production.

The brief investigation and analysis presented here featured the author of
this paper as both programmer and as analyst, i.e., as a ‘participant’ in the lived
work. This dual role was performed somewhat concurrently (in the sense that
‘sittings’ were established) and mostly post-hoc. The role as programmer and
analyst was a strongly private, rather than public and/or collaborative affair.
As a result, the comprehensibility of the code document and its various sittings
were highly legible, given that the author wrote the code himself. Furthermore,
the code was not written in an isolation of accountability, but instead the writ-
ing of the code was made accountable to the audience of the study (rather than
the audience of co-programmers on a particular project, for example).

In thinking about the analyst as participant, we must also consider a more
common scenario that situates the analyst as a participant member of a team
of programmers. In this case, understanding the work of co-programmers be-
comes a more complex and quite non-trivial issue when compared to the exam-
ple of the DLA program study. For any relatively collaborative programming
project, comprehension of certain parts of co-programmers’ code is par for the
course, however the participating analyst also has the objective of understand-
ing programmer’s lived work from the code document they produce. As a result
much time may be spent getting a grasp on another’s code from that member’s
perspective.

Analysts that ‘observe’ development in a more traditional fieldwork sense
potentially encounter even greater difficulties in understanding the work of
the programmers they are examining. The code document, for all its embed-
ded legible features (whitespace, comments, structure, etc.), can often be in-
scrutable to those that are not direct participants either writing the very code
themselves or collaborating in its use in some fashion.

Another and perhaps self-evident point to be made here is that the analysis
of field data collected by the analyst might (depending upon the focus of the
study) take on a radically low-level descriptive turn of character when compared
to existing ethnographic analyses of technology, where studying records such
as log files and abstract system states in order to make sense of social interac-
tion via or around the interface is commonplace. The centrality of understand-
ing code in understanding its production will inevitably permeate through any
analytic reports, thus somewhat affecting the potential audience due to the
additional expertise that may be required in reading (i.e., reading code). Sud-
now’s account of piano skill [8] is perhaps a analogous example of the radically
low-level description that may be necessitated by any adequate excavation of
the work of programmers.

Finally, the context of the program’s production is also essential. The code
that was inspected for analysis within this paper was logically separate and
written from scratch. It was not part of a larger codebase, was largely not
a piece of code that was ‘glued’ together from other programs, it was not pro-
duced from a detailed specification, it was not a patch for an existing codebase,

it was not produced with deployment in a real-world situation in mind, and
neither was it a prototype. The way in which structure is produced in and
as the daily work of the programmer(s) as well as the analysis of that code is
contingent upon situation details such as these.

Capturing the lived work of programming

The code document alone is usually ‘not enough’ for the analyst’s work, since
it is a transient work-in-progress that continually changes as development pro-
gresses. In appreciating this issue, the relationship between the concrete lived
work of the programmer and the code document can be considered in terms
of the notion of the lebenswelt pair (as suggested in [1]). This expresses the idea
that the code document is one half of the pair, and “makes available (in prin-
ciple) for actual inspection by the reader, the real world structures of practical
action” that form the programmer’s day-to-day, ad-hoc working practices [4].
Even though programmers often are at pains to maintain the accountable fea-
tures of their code (e.g., its ‘readability’), which to some extent works in favour
of the analyst and their comprehension of the programmer’s work, the code
document lacks substantially in the kind of detail of lived work it is the an-
alyst’s job to study in the first place. This is a common problem faced in all
fields of analysis, namely the analyst’s comprehension of ‘what is really go-
ing on’ in the work practice, meaning in this case that understanding ‘what
is really going on’ in software development must also address the work sur-
rounding the code document itself. So, in order for the analyst to understand
what is happening at any moment in the unfolding process of developing code,
these unfolding changes need to be recorded in some way. This was borne out
during the problems encountered when analysing the DLA program presented
here in this study.

Due to practical issues, the data collection performed during the work of
writing the DLA program was limited, and did not consist of any screen-based
or otherwise real-time capture of the work. Neither did it extensively include
debug data and other ‘side effects’ of the work of programming, such as log-
files. In practical terms, the major problem for capturing real-time program-
ming work (whilst actually programming) was the highly disruptive nature of
that capture during what is a concentrated activity for the programmer.

Of particular relevance to enhancing the legibility of each sitting would
have been the capture of the ‘edit-compile-run’ cycle that is continually en-
gaged in and commonly understood as part of ‘normal’ development proce-
dure8. Programmers might for example edit a method or function, run the
compiler on the program, run the program and inspect the output, and then
return to edit informed by this output. The cyclic process ongoingly informs
the development of the code across and within sittings and would have be
useful for enriching an understanding of the changes between sittings.

The limited capture of sittings in this study also raise the problem of the
granularity of capture as it relates to the edit-compile-run cycle of work. The
fundamental problem for capture granularity is the scale of software under the
analytic lense. Versioning systems such as CVS can provide very high-level

8Indeed, many Integrated Development Environments explicitly recognise and support this as
part of the basic functionality they provide to the programmer.

records of the way in which code has developed, however clearly do not pro-
vide any detailed access. In this analysis, ‘sittings’ emerged as a relatively
‘natural’ way to break up the development cycle at a lower level than just ‘ver-
sions.’ However, sittings as a collection strategy may be quite artificial for other
studies, especially since they can impose order externally on whatever the nat-
ural work cycle of others may be. On the other hand, given the extended and
time-intensive production of code, ‘low granularity’ techniques such as screen-
based capture only permit the collection of a relatively small window of work
in terms of scope, whereas some sittings-like technique of capture can span a
larger time-frame. However, even with the examination of sittings, only a rela-
tively small segment of what was a small program (a mere 838 lines) was actu-
ally addressed as part of the analysis. Large-scale software projects may con-
sume many ‘man hours.’ Issues such as these become especially pertinent in a
world where massive codebases can be easily beyond a single analyst’s com-
petent understanding and familiarity. As such, a ‘multi-granular’ approach to
capture may permit the analyst to inspect code structures in-the-large as well
as the small.

Some of these various different kinds of capture are illustrated in Figure 4.

Figure 4: Different points of capture

The challenges that face the analyst have one further interesting facet to
them. Typically within more accountable environments (such as a workplace)
programmers heavily self-document their own work practices through the ma-
intenance of CVS log histories, Changelogs, inline documentation (e.g., using
Javadoc) and so on. It has been suggested that this documentation alone is
not enough to reveal the lived practices of work, and it has also been noted that
comprehension of ‘what is really going on’ can be contingent upon the right re-
sources being made available. For the programmer attempting to understand a
piece of code, comprehension is central as well. It would seem, then, that there
is a sense in which the job of capture for analysis—i.e., making lived work
available for inspection—is a similar problem to the job facing a programmer
examining others’ code work. The programmer all too often needs to obtain an
insight into the lived work of a co-programmer’s code as part of understanding
that code. Thus there is some alignment between the development of program-
mers’ tools and the analyst’s tools in studying the work of programmers.

Summary

It is obvious that writing code involves more than ‘just adding and removing
lines of text.’ Various practices are employed by the programmer in order to
structure their code. Of particular interest in this paper has been the prospec-
tive nature of the way in which code is produced ongoingly, and has particu-
larly focussed on the trajectory of the program’s code as part of a series of sit-
tings. The paper has also examined some ways in which language constructs
and the programmer’s practical experience of those constructs in a variety of
settings may build up the programmer’s working stock of knowledge about
the language in which they are writing.

The difficulties present in adequately capturing this have also been dis-
cussed. One of the most important and challenging tasks presented to the an-
alyst is developing a vulgar competence, which in this case means cultivating
a deep understanding of programming from the community of programmers’
perspective. Adequately capturing the lived work of the programmer has also
been raised as a thorny issue given the quite ‘intense’ and time-consuming
work involved in programming.

References

[1] B. Brown. Remarks on the foundations of computer science. In draft, avail-
able at http://www.dcs.gla.ac.uk/∼barry/papers/foundations.pdf (veri-
fied 24/03/06), 2005.

[2] G. Button and W. Sharrock. The mundane work of writing and reading
computer programs. In P. ten Have and G. Psathas, editors, Situated Order:
Studies in the Social Organization of Talk and Embodied Activities. University
Press of America, Boston, 1995.

[3] A. Crabtree. Methodological issues concerning the practical availability of
work-practice to EM & CA. In Proceedings of 2nd Workplace Studies Confer-
ence, in conjunction with the Language Group of the British Sociological Associa-
tion, October 2000.

[4] A. Crabtree. Doing workplace studies: Praxiological accounts —
lebenswelt pairs. TeamEthno Online, 1, 2001.

[5] C. R. B. de Souza, D. Redmiles, and P. Dourish. “Breaking the code,” mov-
ing between private and public work in collaborative software develop-
ment. In GROUP ’03: Proceedings of the 2003 international ACM SIGGROUP
conference on Supporting group work, pages 105–114, New York, NY, USA,
2003. ACM Press.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstrac-
tion and Reuse of Object-Oriented Design. Addison-Wesley, 1995.

[7] L. A. Suchman. Plans and situated actions: The problem of human-machine
communication. Cambridge University Press, 1987.

[8] D. Sudnow. Ways of the Hand: The Organization of Improvised Conduct. Rout-
ledge & Kegan Paul Ltd, 1978.

[9] A. Turing. Proposed electronic calculator. Technical report, Interdepart-
mental Technical Committee, 1945.

