m The Uniyersitg of
A | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Jago, Mark (2006) Rule-based and Resource-bounded:
A New Look at Epistemic Logic. In: Workshop on Logics
for Resource Bounded Agents, 7 - 11 August 2006,
ESSLLI 2006, Malaga, Spain. (In Press)

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/396/1/RBA-paper.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk



mailto:eprints@nottingham.ac.uk

Rule-based and Resource-bounded:
A New Look at Epistemic Logit

Mark Jago

Abstract

Syntactic logics do not suffer from the problems of logicadrascience but are often thought to lack
interesting properties relating to epistemic notions. &yuking on the case of rule-based agents, | develop
a framework for modelling resource-bounded agents and shatthe resulting models have a number
of interesting properties.

1 Introduction

Logical omniscience is a well-documented problem for epist logics based on a possible worlds seman-
tics (first presented in Hintikka’'s seminighowledge and Belief21]). In this paper, | concentrate on the
concept of belief, as believing is a necessary condition on knowigg Belief is defined as truth in all
epistemically accessible worlds and as a consequencef Isetlosed under consequence and agents auto-
matically believe all valid sentences. This is clearly imigkible as a general analysis of befieGeveral
authors take the view that, in a number of situations, Idgicaniscience is unproblematic, “in particular
for interpretations of knowledge that are often approprfat analyzing distributed systems ... and certain
Al systems.” However, “it is certainly not appropriate te thxtent that we want to model resource-bounded
agents” [16, p. 41]. | will therefore take as my starting pdhe requirement that the beliefs of resource-
bounded agents be modelled accurately.

To avoid the problem of logical omniscience, a syntacticrapph is required: that is, one which takes
the truth-conditions of belief ascriptions to be given,eadt in part, in terms of sentende€ontrary to
the impression one receives from the logical literaturetastic accounts of belief receive support from
the current philosophical literatufeAn objection is that syntactic epistemic logics merely gige‘ways
of representingknowledge [and belief] rather thanodellingknowledge [and belief]”. If so, the thought
runs, “[o]ne gains very little intuition about knowledge [eelief] from studying syntactic structures” [15,
p. 320]. The syntactic approach “lacks the elegance andii@w@appeal of the semantic [possible worlds]
approach” [14, p. 40]. My aim in this paper is therefore toger an elegant and intuitively appealing
syntactic logic of belief which allows us to accurately mbesource-bounded reasoners.

The key idea is to model inference as a nondeterministiclsyegtep process. Each time an inference
rule is applied and a new belief derived, the agent movesimiew belief state. This is a very fine-grained
notion of belief change. It allows models to be built in whipdrfectly rational reasoning is possible, in the
sense that the agent’s logical abilities need not be deplatany way, but in which logical omniscience
never arises. This framework models agents that, as [22itha® neither logically omniscient nor logi-
cally ignorant. The lesson to be taken is that, in order toehoghl Al agents without making unrealistic
assumptions about their resource bounds, an epistemizoggt be able to represent an agent’s reasoning
at the level of individual inferences (the title of the pajsentended to reinforce this point). My strategy in
this paper is to investigate step-by-step inference in plfied setting. The only inferential action that will
be modelled here is the act of deriving new beliefs from oldgiga generalised version af)odus ponens

*Thanks to Natasha Alechina for incisive comments, to Briagdn for guidance and to three anonymous referees for thied.og
for Resource Bounded Agents workshop for their helpful ssggns.

1See [34, 35, 24] for discussions of logical omniscience atated problems.

2Many authors seem to dispute this claim, especially [2716415]. However, none of the approaches presented thetengén
solve the problem. See [24]. The approach baseavaarenesgiven in [14] unwittingly concedes the point (see [24].

3See Perry [30, 31] and Corazza [11, 10] for accounts of baliéérms of an accepted sentence. Further support comes from
accepting théanguage of thought hypothesisee Fodor [17, 18].



Actions such as making assumptions or instantiating axicimerma are not modelled here (but see [24] in
which such actions are modelled in the current framework).

| take as a working example a prominent case from the Al liteea the case ofule-based agents
These agents consist of a program—a set of condition-actilss—and a rule interpreter. Rule-based
agents have been more or less ignored by the literature steagc logié but play an important role in
other areas of Al. There are several rule-based agent ectinies available, e.g. SOAR [26] anadvS
AGENT [33] which allow a great degree of abstraction in specifyiiedpaviour. Rule-based programming
extensions are also increasingly being offered as addeomddting, lower-level, agent toolkits, e.g., JADE
[7] and FIPA-OS [32]. Rule-based behaviour is also playingmnaportant réle in analysing domains such
as business. Business rules (statements that define oraiorest aspect of a business [9], eegery visitor
of the conference gets a 20 per cent discount on the first gtqulurchasg are being used by companies
to analyse the behaviour and improve the efficiency of thegiress. As the business rules community
puts it, “business rules are the very essence of a businbsy.define the terms and state the core business
policies. They control or influence business behavioury®tate what is possible and desirable in running
a business—and what is not” [9].

In general, a rule-based agent’s program will contain domhiaction rules of the form

Pi,...,Pp = Q1,...,0m

P, are the conditionq); the resulting actions, and eaeh Q; may contain unbound variables or possibly
even logical connectives.Here, | treat both rules in the agent’s program and literalsl In its working
memory as beliefs (the working memory does not play a sigmificdle in the formalism). In the modal
systems discussed below, an agent’s rules are represented states of those models. An equivalent
formulation could be given by encoding rules as conditiom$he arcs between states. Intuitively, it makes
sense to encodeferencerules as conditions on arcs and beliefs as the sentencesrsegpy states (the
question is whether to treat the rules that appear in thetagengram as inference rules). On the alternative
formulation, each rule is treated as an inference rule iovits right whereas on the account presented here,
rules are formulae and the agent reasons using a generaisedf modus ponens

Ay A Ay e A = )
)

In this way, agents are modelled as having many beliefs alydtlo& one rule of inference.

| focus on an agent’s reasoning process by assuming thagjére has an initial stock of beliefs (which
might be observations) that are neither revised nor addedther than by firing rules and adding their
consequents as new beliefs. | make three further simptjfsgstrictions: (i) to rules which produce a single
action; (ii) to propositional rules and (iii) to rules whiclantain no disjunctions (thus, on agents who have
no disjunctive beliefs). The first two are inessenfiéij) is a restriction on the expressiveness of the logic
presented here, but is by no means a limitation of the gefraraework’

The remainder of the paper proceeds as follows. In sectidmpBesent syntax and semantics for a
logic which models a single rule-based agent and then, ithose8, discuss the properties of such models.
In section 4, | consider an agent with a fixed program and, aticse 5, present an axiomatization and
complexity analysis of the resulting logic. Related andifatwork is discussed in sections 6 and 7.

2 Modelling Rule-Based Agents

We fix a denumerable set of propositioRs= {p1,p2 ...}. A literal is either a proposition or its negation;
literals are written\;, A2 .... Rules are of the form\y,..., A, = X and in general rules are denoted
P, P1, P2, - - .. Since it is often useful to know which belief a rule adds wkieed, we use the abbreviation

4A notable exception is [25]; see section 6.

SFor example, in the ‘definition’ rulper son(z) = man(z) vV woman(z).

6Because negation may only appear before a predicate—time @dmes not believe the negation of any rule—a program in kvhic
rules contain unbound variables can be modelled using anderable set of propositions, so long as both the set of ptsicand
the set of constants is denumerable (in any practical case will be finite). Using a propositional logic allows us teeua far more
readable notation without limiting the underlying logictHa@sults given below also hold for the predicate case. Addbat deals
with predicate-style rules is considered in [4].

Disjunction is ignored here merely to reduce the complesdtthe presentation. See [24] for the extended framewodtuding
disjunctions.



cn(p) for A, given thatp = (A\1,...,\, = )). The agent'snternal languageZ” over P contains only
rules and literals; no other formulae are considered veethed. SinceP will be fixed throughout, the
superscript may be informally dropped. Arbitrary formutdeC are denoted, o, . . ..

The modal languag#1.£”, which is used to reason about the agent’s beliefs, is boithfformulae of
L7 (again the superscript may informally be droppe#).C contains the usual propositional connectives
-, A, V, —, the ‘O’ modality and a belief operatdd. Given a literal\ and a rulep, ‘BX’ and ‘Bp’ are
primitive wiffs of ML, and all primitive wffs are formed in this way. #; and¢, are bothM L wifs, the
complex wffs of M L are then given by

P | PL AP | P1V 2| P — P2 | O

The dual modality 2’ is introduced by definitiont¢ ¥ -O-¢. Note that the primitive formulae of1L
are all of the formBa’, where ‘o’ is a £-formula, hence the problem of substitution within beliehtexts
does not arise in logics based an L.

Models are graphs of states, with each arc representingrayetia an agent’s belief state. Although
time is not explicitly represented in these models, eaclisahought of as a transition from an agent’s belief
state at one time to a (possible) belief state at a future mbmdime, arrived at by firing a rule and adding
its consequent as a new belief. A modélis a structurdS, T, V') whereS is a set of states]’ C S x S
is a transition relation on states; alid: S — 2~ is thelabelling function assigning a set of sentences of
the agent’s internal language to each state. Where thergasisition froms to s, s’ will be said to be a
successoof s; s’ is reachablgrom s when there is a sequence of statess; - - - s,, s’ such that each is the
successor of the one before.

Definition 1 (Labelling) Given a modelM = (S,T,V), a sentencex € L is said tolabela states € S
whena € V(s). Given models = (S,T,V) and M’ = (S, T", V') (which need not be distinct), states
s € Sands’ € S’ are said to be label identical, writtesicv- s', whenV (s) = V/(s').

The definition of a formula of ML being true, or satisfied, by statén a modelM (written M, s I ¢) is
as follows:

M, sk Baiff a € V(s)

M, sk =g iff M,slf ¢

M, sl ¢1 A o iff M, sl ¢ andM, s I ¢

M, sl ¢y V o iff M, s Ik ¢y or M, s Ik ¢o

M, sk ¢1 — ¢o iff M, slff ¢ or M, s |- ¢o

M, s I O¢ iff there exists a state’ € S such thafl'ss’ andM, s’ IF ¢

Such models are known as Kripke modeldd,'s I+ ¢’ is read ass supports the truth of in M, or s
supportsy for short (if it is clear which model is being talked aboutheldefinitions of global satisfiability
and validity are standard, and these notion extend to seferfoulae in the usual way. Statess’ € S are
said to bemodally equivalenin M, writtens «~ s’, when{¢ | M, s |- ¢} = {¢p | M, s’ IF +}.

Because these models are common to modal logics in gerferplneed to be restricted in certain ways
to model rule-based agents. In particular, the rules whichgent believes do not change; rules are neither
learnt nor forgot. This is standard practise in rule-basksyatems ¢f conditionS4 below). Secondly]’
must relate statesandu when some rule can be fired at, andu is just like s except the agent has gained
one new belief, the consequentofHere,p is said to be ar-matching rule.

Definition 2 (Matching rule) Letp be a rule of the form\,, ..., A\, = A. pis then said to be-matching,
for some state € S, iff p € V(s), eachAq,..., A, € V(s) butA & V(s).

Wheneverp is s-matching for some state then the agent can move into a new stati& which it has
gained a new beliefu is said toextends by that new belief, namelyn(p).

Definition 3 (Extension of a state) For any rulep and states;, v € S, u extendss by cn(p) iff V(u) =

V(s)U{cn(p)}.



If there are no matching rules at a state (and so no rule icstato fire), that state is terminating
stateand has a transition to itself (or to another identical statéch amounts to much the same in modal
logic). This ensures that every state has an outgoing transin other words{" is aserial relation. As a
consequence, the question ‘what will the agent be doing aftgcles?’ may always be answered, even if
the agent ran out of rules to fire in less thanycles.

Definition 4 (Terminating state) A states is said to be a terminating state in a mod#l iff no rule p is
s-matching.

Transitions relate terminating states to identically lEukterminating states and, whenever there is a match-
ing rulep at a states, a transition should only be possible to a statghich extends by cn(p). We capture
such transition systems in the cl&&¢for single agent models).

Definition 5 The classS contains precisely those moddlg which satisfy the following:

S1 for all statess € S, ifarule A1, ..., )\, = \is s-matching, then there is a staté € S such thatl'ss’
ands’ extends by \.

S2 for any terminating state € S, there exists a stat€ € .S such thatV'(s’) = V(s) andT'ss’

S3 for all statess, s’ € S, T'ss’ only if either(i) there is ans-matching rule\, ..., \, = X\ ands’ extends
s by A; or (i) s is aterminating state antf (s) = V(s').

S4 for all rules p and states, u € S, p € V(s) iff p € V(u).

Itis clear that this definition ensures tHats a serial relation for any modadll € S. For any state € S,
either there is at least one matching rule or there is nothérfarmer caseS1 ensures that is related to
some extension of itself bY'; otherwise,s is a terminating state and is related to an identically lallel
state byT".

There may, of course, be many matching rules at a given stagifor each there must be a statsuch
thatT'su. Each transition may be thought of as corresponding to teatagnondeterministic choice to fire
one of these rule instances»¢’ may then be read as ‘after some such choicejll hold.” We can think of
the agent’s reasoning as a cycle: (i) match rules agaiesalg; (i) choose one matching rule; (iii) add the
consequent of that rule to the set of beliefs; repeat. Bynihgidiamonds (or boxes), e.g>0 <’ we can
express what properties can (and what will) hold after soynsach cycles. We can abbreviate sequences of
n diamonds (om boxes) as>™ andO” respectively. (1" ¢, for example, may be read ag is guaranteed
to hold aftern cycles.” Note that the agent’s set of beliefs grows monaialty state by state and that the
agent never revises its beliefs, even if they are internadlgnsistent.

Example

Before investigating the properties that models in theschabave, an example may help to illustrate the
concepts that have been introduced. Typically, the rulegl@abased programs will contain variables which
are matched against the contents of the agent’s working metag@roduce instances of the rule. In this
example, the agent’s program contains just two rules:

R1 PremiumCustomer(z), Product(y) = Discount(z,y, 10%)
R2 Spending(z, >1000) = PremiumCustomer(z)

However, a first-order language is not needed to model tleéstagnstead, we can consider the language
that contains all instances of the rules and all grounddisethat appear in these instanées.
Now suppose that the agent’s initial working memory corgalre beliefs

Product(iBook) Spending(Jones, >1000) Product(Sunglasses)
When the agent begins executing, R2 can be matched against to produce

Spending(Jones, >1000) = PremiumCustomer(Jones) (1)

8When considering a prograf (section 4) or the axiomatization given in section 5, we nalst assume that the set of constants
used to instantiate the variables in rules is finite.



Since no other instances of either R1 or R2 are possibles thdien a unique next state in which
PremiumCustomer(Jones)

is added to the agent’s working memory. At the agent’s negkegyR1 can be matched agaidshes and
eitherSunglasses or iBook to produce the instances

PremiumCustomer(Jones), Product(Sunglasses) = Discount(Jones, Sunglasses, 10%) (2)

PremiumCustomer(Jones), Product(iBook) = Discount(Jones, iBook, 10%) 3

Note that (1) is no longer counted as a matching rule instasigee its consequent has already been added
to the working memory. The agent can then move into a statehichwthe working memory contains
eitherDiscount(Jones, Sunglasses, 10%) or else contain®iscount(Jones, iBook, 10%) in addition

to its previous contents. If the agent fires (2), addiigcount(Jones, Sunglasses, 10%) to working
memory, (3) remains a matching rule instance atidcount(Jones, iBook, 10%) is added at the next
state. Similarly, if the agents fires (3), addifgoduct(iBook) = Discount(Jones, iBook, 10%), then
(2) remains matching. There is then a next state adblirgount(Jones, Sunglasses, 10%) to working
memory. Figure 1 shows a branching time model in which nevefsehre added to the working memory
(only new beliefs are shown). The agent can defdecount(Jones, iBook, 10%) in 2 cycles, whereas it
must deriveitin 3 cycles. If this model & and its root, then)M, s I GCDiscount(Jones, iBook, 10%)
andM, s IF ooODiscount(Jones, iBook, 10%).

{Product(iBook), Spending(Jones, 0), Product(Sunglasses)}

PremiumCustomer(Jones)

Discount(Jones, iBook, 10%) Discount(Jones, Sunglasses, 10%)

Discount(Jones, Sunglasses, 10%) Discount(Jones, iBook, 10%)

Figure 1: New literals added ¢ M/

3 Properties of Models

Now we need to know, how well do these models capture a rudedbagent’s reasoning process? Below |
give a number of simple yet powerful results. Firstly, thisra strong relationship between the way states
are labelled, the modal formulae which hold at those statd®esimulation. Secondly, models havbelief
convergence@roperty. The remainder of section is fairly technical.

When a bisimulation relatio holds between statess’, we write s « 5.9 Intuitively, all bisimilar
models describe the same reasoning process. It is somatonesnient to work with models in which the
transition relatioril” forms a tree on the statés Such models are known &ee models

Proposition 1 Some standard properties of modés= (S, T, V) and M’ = (5", T',V'):
a. Foralls € Sands’ € §', s = s’ impliess «w &'. [8, p.67]
b. Every modeM has a bisimilar tree model (obtained by unravellihg).

c. Any satisfiable formula of depthd is satisfiable in a tree model of height no greater thian

9See, for example, [8] for an explanation of bisimulation.



d. (Hennessy-Milner Theorem) M and M’ are image finité? then,s «~ s’ impliess » s’ for all
se€ Sands’ € S.[8, p.69]

These are standard properties of all Kripke models. Fronaid)(b), whenever we are working with a
model M, we can always switch to a tree moddl which satisfies the same formulae {if, s I+ ¢, then
there is a state’ € M’ : M’, s’ I ¢.) The converse to (b) does not hold in genétalc) gives a restricted
version of the converse to (b). | now list a few propertiesahhinodelsM € S in particular possess (|
don'’t give a proof here as each proof is more or less immeydiate

Proposition 2 (Properties ofS Models) Assume that a modall = (S, V, T is a tree model with root.
Then:

a. For all statess, s’ of depthn, |V (s)| = |V (s)|. If V(r) is finite ands, s’ are not terminating states,
then|V(s)| =n+ |V (r)|.

b. If V(r) is finite, thenl/(s) is finite for all s € S.
c. If s~ s” ands, s’ are not terminating states, therands’ are of the same depth.
d. All siblings of terminating nodes are also terminatingine.

e. If two childrens; andss of s are such thal/(s;) — {\1} = V(s2) — {\2} then each has a child
such thatV (s’) = V(s) U {A1, A2}

Lemma 1 For tree models\/, M’ € S and statess in M, s’ in M’ if s« s andT'su, then there is a
u’ € S’ such thatl's'u’ andu <~ u'.

Proof: If sis a terminating state then this is trivial; so assume thatighnot the case. Then there is an
s-matching rulep such thatt’ (u) = V(s){ cn(p)}. Sinces«~r~ ', p is alsos’-matching, hence there is a
u’ such thafl's'v’ andV (u') = V(s") U {cn(p)}; henceu < u'. o

Theorem 1 For any models\/, M’ € S and all statess in M ands’ in M’: s« s’ iff s e 8.

Proof: Clearly,s «~ s’ impliess <~ s’. The converseM, s I ¢ iff M’, s’ I+ ¢, wheneves «rs', is
shown by induction on the complexity @f The base case is trivial so assume that I- ) iff M’, v I
forallv € S,v" € S’ andvy of lower complexity than) whenevew «z~v’. The cases for Booleans are
also trivial, so considep := <. Thens«w s’ andM, s I- O implies that there is a staiee S such
thatTsu and M, u I 1. By lemma 1, there is a staté € S’ such thatl's'v’ v’ «~s’. By hypothesis,
M’ v I- 1 and hencél’, s’ I &¢. The converse holds by a similar argument, henees s'. -

Theorem 2 For any models\/, M’ € S and all statess in M ands’ in M': s e~ &' iff s = &,

Proof: From proposition 1(a)s = s’ impliess «~ s’, so it only remains to show the converse. Assume
s «~ s’ and that there is a € S such thafl'su; we must show that there is a statec S’ such thafl”s'v’
andu « u’. If s is a terminating state, this is trivial; so assume thia non-terminating. There must be
an s-matching rulep. Sinces’ «~ s, p must also bes’-matching and so, b$1, there is a state’ € 5’
such thafl”s'v’ extendings’ by cn(p). Henceu' «c~~ s’ and so, by theorem 1, «~ s'. -

Corollary 1 LetM = (S,T,V) € S. For anys, s’ € S and any descendamtof s, if s~ s’ then there
is a descendant’ of u such thatu «wew u'.

Proof: The proofis immediate from theorem 2. o

We can thus partition states into equivalence classes € [s| whenevers «~z~s') and transform any
model M into a bisimular modelM = just by comparing the labels on statesiih The domain ofM/=

is the set of label equivalence classeslihsuch thatl™=[s][u] wheneverT'su andV=([s]) = V(s) for
somes € [s]. Any formula satisfiable il is then satisfiable id/=, and M= has the handy property that
[s] evevs [u] implies[s] = [u].

10A model is image finite ifl J, g {u | Tsu} is finite.

Gjven a modelM, we can construct a modally equivalent modélcontaining an infinite branch for which there can be no
bisimulationZ : M =« N (if we suppose there is, we will eventually come to a point loa infinite branch inV for which the
corresponding point id/ has no successor; hence they cannot be bisimilar states).



Definition 6 Let M = (S,T,V) € S andn € N. DefineT™su to hold iff there are states; - - - s,, such
thats = sp,u = s, and, for each < n, T's;, Sp+1.

Now we show that models i8 have the property dielief convergence

Theorem 3 (Belief Convergence)For any modelM = (S, T,V) € S, any stater € S and anyn € N, if
T"rs andT™ru, then there is a state reachable froms andw«’ reachable from: such thats’ «ve~ ',

Proof: Without loss of generality, consider a tree modiele S whose rootis-. Lets, u both be reachable
fromr in afinite number of transitions. Then there are equinumesetsX, Y such thal/(s) = V(r)UX
andV (u) = V(r)UY . Now consider the subbranch franto s: for each transitiofl"vv’ on the branch, pick
av-matching rule such that’ extends by cn(p). Enumerate the selected ruje®r which cn(p) ¢ V(u)
asp1,...,p, (fromr to s). Itis easy to see that there must be a stateeachable fromu, on the branch
that results from firing firsp; and then ... and thep,. ThusV (v) = V(u) U {cn(p1),..., cn(pn)} =
Vw)UX ' =V(u)UX =V(r)UY U X. By similar reasoning, there must be a stéteeachable frons
with V(s) =V (s)UY =V (r)UX UY. Hences' «~c~u'. 4

4  Finite Models and Programs

Because of our motivating interest in resource boundedmessyill sometimes want to restrict ourselves
to models in which each state is labelled by only finitely maiformulae, for these are the sentences
representing the agent’s basic explicit beliefs, of whinl eeal agent may have only finitely many at any
one time. We capture this intuition in the clasdiofte memory models

Definition 7 (Finite memory model) A modelM € S is a finite memory model iif () is finite for each
s € S. C/™ is the set of all finite memory models in some class

An interesting feature of finite memory models3ris that each is bisimilar to a finite state modeSnThis
is thefinite model property

Theorem 4 (Finite Model Property) For any finite memory modell = (S, T,V) € S/™, there is a
modelM’ containing only finitely many states and a bisimulatién M = M’.

Proof: For any states € S, if V(s) is finite, s may only have finitely many children, each of which
are labelled by only finitely many formulae. L& be the set of rules which label each state 8 all
states are labelled by precisely the same rules); cle@ry finite. Then any state € S can have at
most|{cn(p) | p € R}| matching rules. Thus a finite memory model with infinitely matates must
have an infinite branch, on which only a finite initial segmengenerated by matching rules, i.e. only
the firstn states on the branch are non-terminating states, for sore|{cn(p) | p € R}|. By S3ii,
s« s whenevefl'ss’ ands, s’ are terminating states. A mod&l’ can be obtained by selecting the first
terminating state on each branch in/, removing all the descendantssdind adding a transitiofiss. M’
satisfiesS2 and is clearly bisimilar ta\/. Moreover, since occurred on a finite initial segment of a branch
in M, M’ only contains branches of finite length. It follows thdt only contains finitely many states

The above has been a general characterisation of rule-bgseds which execute fixed but unspecified
set of rules. However, we are often interested in restgotinr attention to agents reasoning with a specific
set of rules. Following the usual terminologypebgramis simply a finite set of rules. One of the uses of
the current approach is testing for properties of partiqgntagrams'? Given a progran® for the agent, we
can define a subclass; as containing just those models3nin which the agent believes all the rulesfn
and no further rules.

Definition 8 (The classS) LetR be a program (i.e. a finite set of rules). A modél= (S, T,V) € Sy
iff M € S and, for all states € S, R C V(s). AnL-formula¢ is said to beS -satisfiable iff it is satisfied
at some state in some modeM < Sx.

12| [24] | discuss adding additional temporal operators aath puantifiers froncomputational tree logi¢CTL), a common input
language for model checking technology. This extensiamwalrule-based programmers to use current model checlkthgaéogy to
verify their programs.



Each clas$r is a subclass db and each model iB is in exactly one clasS%. S and its subclasses differ
with respect to (semantic) entailment and satisfiabiltyR 1= {p = ¢}, thenBp A =By is S-satisfiable
but notSx-satisfiable; similarly®Bgq is aSk -consequence but notsxconsequence @p. The remainder
of this section surveys some properties of the cissincluding a decidability result.

Theorem 5 LetR be a programg be anyM L formula andn = |{cn(p) | p € R}|. If ¢ is Sg-satisfiable
at all, then it is satisfiable in a finite modéf € S containing at mosh™ states.

Proof: Suppose is satisfiable at in a model inSg; then it is satisfied by a tree mod®l € Si whose
root is s (proposition 1). ByS3, any stateu in M can have at mogtR| children. Now, take any state

in M of depthn. No p € R can bes-matching, for otherwise, some ancestorsahust have extended its
parentby some ¢ {cn(p) | p € R}; but S3 prohibits this. Then any state at depttor greater must be a
terminating state. There is then a modél € S forming a rooted directed acyclic graph, bisimilarib,

in which s ~cv~u impliess = u (e.g. by taking equivalence classes frai as described above). For any
states in M, |{s’ | T'ss'}| < n and, for states, u’ at depthn or greater’uu’ impliesu = u'. Therefore
M’ can contain at most™ states. 4

In any state in amodéll € Sg, only the labelsinthe sef® and{\1,..., A\, A | (A1,..., A\n = A) € R}
can have any effect on which rules do and do not match at th&. sThus, it is only these formulae that
affect the structure th&t forms onS. Labels that are not from these sets may be removed withamigihg
which states are accessible from which in the model. We carbate this with standard techniques to get
a notion of filtration forSiz models.

Definition 9 (R-filtration) LetI be closed under both subformulae and negation; and set
Lr = RU{O&|BOL€F}U{)\1,...,)\H,)\| (/\1,,)\n:>)\) GR}
AnR-filtration of M = (S, T, V) throughI is then a modeMr = (S, T, Vr) whereVr(s) = V(s) N Lr.

Filtration here is rather different than in regular modajito Here, we must ensure that rules and the beliefs
needed for them to match are not removed from states whentes fience the use dfr.

Lemma 2 LetI" be as abovelM = (S,T,V) € Sg and Mr be theR-filtration of M throughI". Then for
anyp € I"'ands € S: M, s+ ¢ iff Mp, s Ik ¢.

Proof: By induction on the complexity ab. If ¢ is an ML primitive this is trivial. So assume that, for
all ¢ € T of complexityk < n and any state € S: M, s IF v iff M~ s |- 4. We show this holds for all
¢ € T of complexityn. Theonly if direction is trivial; in theif direction, consider these cases:

¢ := —p. ThenM, s ¥ + and, by hypothesis\it, s ¥ ), henceMr, s IF ¢.
¢ =11 Ao, ThenM, s Ik 1p1 and M, s I- 1o, By hypothesisMr, s IF 1 andMr, s I- 15, hence

Mr, s IF ¢.
¢ := 1. Then there is @’ € S such thatM, s’ I+ ¢ andT'ss’. By hypothesisMr, s’ IF 3 and
henceMr, s IF ¢.

The other Boolean cases are similar; it follows that, s I- ¢. 4

Lemma 3 LetI" be as above) € S and Mt be theR-filtration of M throughI'. ThenMr € Sx.

Proof: It follows from lemma 2 that any rulg is s-matching inM iff it is s-matching inMr and that
p € Vr(s)iff p € V(s). SinceT is common to both\/ andMr, S1-4 are satisfied and hendér € Sz .-

Definition 10 Letsub(¢) be the set of subformulae ¢fi.e.:
sub(Ba) = {Ba}
sub(—9) = sub(G) = sub(¢)
sub( A1) = sub(¢V 1) = sub(¢ — ) = sub(¢) U sub(1))



and letCl(¢) be sub(¢) closed under negation.

Theorem 6 (Finite Memory Property) Let R be a program andy be any ML formula. If ¢ is R-
satisfiable, then it is satisfiable in a finite memory madek S%".

Proof: Assume thafl/, s satisfiesp. Let Mr be theR-filtration of M throughl’ = Ci(¢). By lemma 2,
Mr, s IF ¢ and, by lemma 3Mr € Sgk. SinceCl(¢) andR are both finite}/ (s) is finite for everys € S,

henceMr € S{{". -

Theorem 7 (Decidability) Let R be a program and be anyM £ formula. Then it is decidable whether
¢ is Sr-satisfiable.

Proof: Supposep is R-satisfiable; then it is satisfied at the roodf some tree modell € Si. Let Mr

be theR-filtration of M throughl' = CI(¢). By inspecting the proof of theorem 8/, r I ¢, M € S-f{”
andVr(r) = V(s) N Lr, with L1 as definition 9. Letv = |[{cn(p) | p € R}|. By inspecting the proof of
theorem 5, a modél{{. can be obtained that has at maststates (e.g. by taking equivalence classes from
Mr, as described above). Thusgithas anS-model, one can be found by considering each model with no
more them™ states whose root is labelled by a subse £pf SinceLr is bounded by the size gfandR,

we have an upper bound on the search for a model. We therefeesdterminating algorithm that will find
anSx model forg if one exists. a

5 Axiomatization and Complexity

Given some such prograf, it is easy to axiomatize the logic of the clé&g. The abbreviation
match(A, .., A = A) £ BAL A+ ABA, A —BA

is helpful. The axiom system shown in figure 2 is called. A6 says that, when a belief is added, it must

have been is added by some matching rule instané& iA7 says that, if all matching rule instances in the

current state argy, . .., p,, then each of the successor states should contain the emrgexf one of those
instances.

Cl all classical propositional tautologies
K o(¢ — ) — (0¢ — Ov)

Al Bp wherep € R
A2 -Bp wherep € R
A3 Ba — OB«

A4 B(A1,..., An = A) ABALA--- ABA, = OBA
A5 &(BaABB) — BaV Bj

A6 OBa — (BaV \/ BA1 A--- ABA)
Alseeny An=>AER A=«

A7 matchpi A --- A matchp, A /\ —matchp — D(Bcn(pl)\/---\/Bcn(pn)) n>1
PFPi<n PER

A8 OT

¢ ¢—1
mp 22 =%

¥

¢

N 06

Figure 2: Axiom schemes fot




A derivationin A% is defined in a standard way, relativel® ¢ is derivable from a set of formulae
I' (writtenT" % ¢) iff there is a sequence of formulag, ..., ¢, whereg,, = ¢ and eachy; is either an
instance of an axiom schema, or a membel' 0fr is obtained from the preceding formulae My or N.
Suppose an agent's prografcontains the ruleg,, ..., p,. This agent is guaranteed to reach a state in
which it believesx in k steps, starting from a state where it beliexes. .., A\, iff

Bpi A...ABpy, ABALA...AB), = 0"Ba

is derivable inAr (again,0« is an abbreviation fonO - - - Oa, k times). We now show thak is the
logic of the clas$Sx (the proofs of lemmas 4 and 5 are standard).

Lemma 4 (Lindenbaum lemma) Any set of formula& can be expanded to &% -maximal consistent set
r+.

A canonical modeM ™ = (S, T, V) is built in the usual way. States if1are Ar-maximal consistent sets;
Tsuiff {¢ | O¢ € s} C u (or equivalently, iff{Cd | ¢ € u} C s). Finally,V(s) = {a € L | Ba € s}, for
eachs € S.

Lemma 5 (Existence and Truth lemma) For any¢ and any state in M ™: (i) if there is a formula®¢ €
s then there is a state in M such thatl'su and¢ € u; and (i) M=, s I- ¢ iff ¢ € s.

Lemma 6 Let M be a canonical model and let € £ ands,u € S. Then (i) ifT'su anda € V(u) but
a ¢ V(s), thenV (u) = V(s) U {a};and (ii) « in part (i) must be a literal.

Proof: Part (i) follows from the definition ofif-’ together with the truth lemma and the fact that states are
closed under axiom&3 andA5. The former axiom ensures thats a subset of;, the latter ensures that
is the only new belief. For part (i), if we supposewere some rule we would havee R and sox € s,
contrary to hypothesis. —

Theorem 8 (Completeness)A % is strongly complete with respect to the cl&s: given a progranik, a
set of M L-formulael” and anM L-formulag, I' IFg ¢ only ifI" -z ¢.

Proof: Expandl to aAr-maximal consistent s&* from which we build a canonical moda&¥f™. From
the truth lemma, it follows that/™, '+ I- I. It remains only to show that/™ is in the clasS, i.e. that
M7 satisfiesS1-S4. S4 is clearly satisfied; the remaining cases are:

M7 satisfiesS1: Assume there is as-matching rulep. Given the truth lemma, it is easy to see that each
of its antecedents is a membersgfwhereas its consequent is né#4 and the existence lemma guarantee
an accessible statewhich, given lemma 6, is the extensionby cn(p).

M7 satisfiesS2: Suppose is a terminating state. By axiod8, there is an accessible state By axiom
A6, o € V(s') impliesa € V(s) for any literala (this holds because there are no matching rules.dt
then follows from axiom#\1-A3 thatV (s’) = V(s), henceS2 is satisfied.

M7 satisfiesS3: Supposel'su for statess, u in M™. By definition,{¢ | O¢ € s} C u. By axiomA7,
there must be one literal believedqnbut not ins, namely the consequent of eitheror ... orp,. Then
by the argument just used, it follows thats the extension of by this new belief. -

Theorem 9 Given a particular progranik, the problem of deciding whether a formulas satisfiable in a
modelM € Sg is NP-complete.

Proof: Clearly the problem is NP-hard. Let= |[{ cn(p) | p € R}|. From theorem 5, an$x-satisfiable
sentence has a tree modél/ € Sy containing no more than™ states which, given the proof of theorem
6, is no larger tham¢|n™. Given any Kripke structur@{’, states in M’ and a modal formula, it takes
time polynomial in the size o/’ andt to check whethed!’, s I 1 [8]. The crucial point here is that
|R|, and hencex™, is constant irSz. Thus, we can guess a model € Sy of size no greater thajp|n™
and check whethep is satisfied at the root a¥/ in time polynomial in|¢|. It follows that the problem of
deciding whethet is Sy -satisfiable is in NP. -



One of the main practical uses of models in a clBgss to check whetheR satisfies certain properties,
specified as an input formuta One may want to check a range of different programs agaiddfeaent
property: for example, suppose a developer requires art agech can never move into a state in which
¢ holds. On discovering that is Sz, -satisfiable, she must reje®;. If R, is the next generation of
the program, thew needs to be checked f&x,-satisfiability. The evolution fronR; to R, may have
added a large number of rules to the program. This examphdipigs that it is not just the scalability of
satisfiability checking giveg as an input that should concern us. How the problem scalésthtsize of
the agent's program is also cructdl.An interesting problem to consider, therefore, is the orat thkes
botha formulag and a progranik as its input and determines whethgeis Sk satisfiable. | call this the
S-SAT problem. The complexity of the problem should be inigegted in terms of R| and|¢| rather than
in terms of|¢| alone.

Theorem 10 S-SAT is in PSPACE.

Proof: The proof is similar to the proof that the K-satisfiabilityoptem has a PSPACE-implementation
in [8]. An S-Hintikka set over a program® and a set is like a standard Hintikka set but, in addition,
contains all instances of axiom schenfels-A8 over>.. A witness sets then defined as in [8]. The key
result is that &5-Hintikka setH overR andY is Si-satisfiable iff there is a witness set generatedby
overR andX. A formulag can then be tested for satisfiability by settfig= Cl(¢) U {Ba | o € CI(R)}.

A correct algorithm calledvitnesscan then be given which returtisie on inputH, R, X iff H is aSg-
satisfiableS-Hintikka set overR andX. The final stage establishes thétnesshas an implementation on
a non-deterministic Turing machine that only requires sgaalynomial in|¢| and|R|. Since NPSPACE =
PSPACE, this establishes tH4SAT is in PSPACE. The full proof is given in [24]. -

6 Related Work

Early work in epistemic logic on rule-based system, inflehby work in Al, is found in Konolige’s
Deduction Model of Belief25]. As here, semantics is given in terms of sets of formukath B;« true iff
agent hasa in its belief set. Each agents assigned a set of deduction rufgswhich need not be logically
complete (and in fact must not be to avoid closure of beliefarrclassical consequence). A belief set is
then obtained by closing an agent’s knowledge base undeil@s. This is what [13] term a “final tray”
model of belief (p. 1), reporting what an agembuld derive, given unlimited time and memory. Agents
with a functionally complete set of deduction rules are ¢ffi@re modelled as believing all tautologies and
all consequences of their beliefs and so logical omniseiéa@nly avoided by considering agents with
depleted logical ability.

In [22, 23], Ho Ngoc Duc presents an epistemic logic basedyoranhic logic. Ifr is an inference
rule that the agent can use, thén is the usual dynamic modality ‘after executing (i.e. reasgrsing)
r, it is possible that ...’ where the blank will usually be fillevith a belief ascription. Ho introduces a
future modality(F), defined as the iterated set of all choices of actions. ., r,, available to the agent:
F = (rpU---Ur,)* (F)Bg then says that the agent can come to believedtaid[F|B¢ says that the
agent must believe thatat some point in the future. The notion of the future here s thn idealised one,
considering all the states in a temporally unbounded reaggmocess. For example jifis a propositional
(modality-free) tautology, the(¥")Bp is a theorem. It is not even correct to redd)Bp as ‘the agent can
believep at some point in the (idealised) future’ (just consider adbgy p so large thaho agent could
come to hold the sentence in its memory). Th& operator thus ignores resource bounds.

This highlights an important point. Avoiding logical omaignce is not an end in itself. Evidently,
what is therefore required is a logic which not only avoidgi¢éal omniscience, but that captures gtages
of reasoning are captured, rather than just the idealisddant. Step logic [13] attempts to overcome
this problem by indexing beliefs by time points steps Each step corresponds to a cycle in the agent’s
reasoning. Step logic deduction rules take the form:

t: oy - ap
t+ 1: o

13In fact, this can often be the more important factor of the, tigothe size of many programs currently in use far exceedsitre
of the formulae that it is useful to check for satisfiability.



However, a semantics is not provided for any step logic iry.[B8minimal possible worlds semantics for
step logic are found in [29] and [12]. Belief is defined as atieh between a world and a set of sets of
worlds, based on Scott-Montague (or neighbourhood/mihisteuctures; an axiomatization is found in
[29]. However, agents are modelled as believing all prafwsl tautologies and their beliefs as closed
under equivalence. This is a limitation of Scott-Montagemantics, which deals with thatensionsof
believed sentences (equivalent sentences necessardyidetical intensions). Grant, Kraus and Perlis
provide a first-order axiomatization and model theory fepsiogic in [20]. Not all of the models they
describe are adequate representations of an agent'shétighat a particular model may contain ‘extra’
sentences not derivable from the agent’s previous bekefsordingly, they introduce the notion &howl-
edge supported model$his suggests that the framework is not ideally suited toefilmg belief obtained
by rule-based reasoning.

Timed Reasoning Logic (TRL) is introduced in [5, 6]. The fedsion modelling different rule applica-
tion and conflict resolution strategies in rule-based sgstduilding on the step logic approach. Semantics
are provided in terms of syntactiocal models TRL uses labelled formulae rather than the modal met-
alanguage adopted here. In [36], TRL is used to model assompased reasoning in resource-bounded
agents. Such ways of reasoning cannot be modelled by stip ilogvhich implications must be deal with
by forming instances of Hilbert axioms. One major differefietween TRL and the present approach is
that an agent’s current state together with its rules detezsna unique next state. It is thus not possible
to distinguish between the beliefs that an agent can demra those it must derive in a certain number of
steps. This is a limitation of TRL (and step logic) that hasrbaddressed int he present work.

Agotnes [1] considers a logic @ifiite syntactic epistemic statess with TRL and the Deduction Model,
the semantics is based on sets of sentences. An unusuakfef{d] is that syntactic operators takets
of sentences as their arguments{¢1, . .., ¢,, } says that agernitbelieves at least that, . . ., ¢,, are true.
Similarly,<7;{¢1, . . ., ¢, } says that agentbelieves at the most that, . . . , ¢,, are true. The syntax of what
an agent believes at a time thus closely follows the senmnficsemantics is provided by game-theoretic
structures, allowing expressive ATL modalities to be impmoated in the logic. Given a set of agefts
the path quantifie{G) allows sentences to express co-operation between menthérsooachieve some
result. This approach forms the basis of [3] and [2].

7 Future Work

This paper has presented a basic framework for modellirgslvabed agents in a simplified, monotonic
setting. One of the principal applications of the logic thas been developed is to verify that a rule-based
program satisfies certain criteria. To this end, the additibcomputational tree logic (CTL) modalities
would constitute an increase in expressivity and allow #®ulting language to be used as an input to
model checkers. Note that tRe modality discussed here corresponds to the CTL modality (EX ¢
holds iff ¢ holds at the next step of some branch). This is a minor amentioédhe syntax; the models
themselves remain identical. The aim in this paper was eitlglto restrict attention to a single rule-based
agent. As with most modal logics, it is surprisingly easy ddl anultiple agents to the formalism (add a
valuationV; for each agent and plausible rules about communication between ageets)43.

A more challenging development would be to drop the moneattyniequirement. Nonmonotonic rea-
soning is important in many areas of Al: see [19]. In fact, adjydeal of practical reasoning is nonmono-
tonic. Makinson comments that “almost all of our everydasaning is nonmonotonic; purely deductive,
monotonic inference takes place only in rather specialeodst notably pure mathematics” [28, p. 19].
Nonmonotonic reasoning in rule-based systems can arisaumder of ways. One is when certain condi-
tions determine which rule should be fired in the next cycidugdions can arise in which may fire but,
if the agent were to know more informatiomwould not be fired. The resulting consequence relation is
nonmonotonic.

Another route to nonmonotonicity in rule-based systems @onsider rules of the form

Pi,...,Phn = ~Q

where ~Q instructs the agent to remogefrom its working memory. Firing such a rule does not lead
to a new belief; but it can lead to the agent having one lessfbeAmending the current framework to
allow for such nonmonotonic rule-based inference woulddase its applicability in many areas of Al. A
starting point is to amend the requirement that one statndstanother when there is a transition to the



first from the second. Instead, defineanendoperation &’ on 2% x £ such thatX o p = X U {p} and
X o ~p = X — {p}. Then, whenever there is aamatching rulep, there is a state such thatl'su andu
amends: by cn(p). In this system, the order in which rules fire matters. Moegpoi is no longer the case
that if " entails¢ thenT" U {¢} entails¢. It would be interesting to see which of the properties dised
above hold of this logic; this is left for future work.

8 Summary

This paper presents a framework for modelling resource thedmeasoners that derive new beliefs from
old through inference. The approach is designed to hantiegince rules of many types. The example of
rule-based programs was chosen here as it allows a simgedsfor the framework. The resulting models
of rule-based agents have a number of interesting propettie equivalence between label identity, modal
equivalence and bisimulation, and the belief convergenmegsty. When a particular program is specified,
a logic with a decidable satisfaction relation is obtaingldich can be easily axiomatized. The interesting
satisfiability problem in the resulting logics is in PSPACE.

Not all reasoners are rule-based in the restricted sensehgse. Many agents revise their beliefs (and
indeed their rules); conclusions can be withdrawn as wellsaerted; agents reason inductively and abduc-
tively as well as deductively; agents make assumptionsema/bat follows. These forms of reasoning have
not been addressed here. Nevertheless, resource-bowadethers using any of these forms of reasoning
will amend their set of beliefs in a step-by-step way acaugdo their chosen set of rules. By treating these
transitions from one belief state to the next as the founddir a semantics, a fine-grained account of
resource-bounded reasoning is possible in which the pmubtd logical omniscience never arise.
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