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Abstract. The structured representation of cases by attribute graphs in a Case-Based Reasoning
(CBR) system for course timetabling has been the subject of preeisesrch by the authors. In

that system, the case base is organised as a decision tree and the retrieval process chooses those
cases which are sub attribute graph isomorphic to the new case. The drawback of tlaahappr

that it is not suitable for solving large problems. This paper presents a mudtijgeal approach

that partitions a large problem into small solvable sub-problems by recursivelyirngpthe
unsolved part of the graph into the decision tree for retrieval. The adaptation comigines th
retrieved partial solutions of all the partitioned sub-problems and employs a graph deuristi
method to construct the whole solution for the new case. We present a methodology which is not
dependant upon problem specific information and which, as such, representsaactapyhich
underpins the goal of building more general timetabling systems. We also explore thengqpfestio
whether this multiple-retrieval CBR could be an effective initialisatieethod for local search
methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significals$ @
obtained from a wide range of experiments. An evaluation of the CB&msysipresented and the
impact of the approach on timetabling research is discussed. We see that the approadeetbes in

represent an effective initialisation method for these approaches.

Keywords: Timetabling problems, Case-Based Reasoning, Attribute graph, SchedulitemsoHill climbing,

Tabu search, Simulate annealing, Graph heuristic method
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Introduction

Timetabling Problems

Timetabling problems arise in many contexts including transportatsports events employee
rostering' 4, and educational timetabling' ” They have been the subject of active recent red=ateh
.12 This important research field continues to attract the attention of the scientifimunity as
problems become more complex and as new breakthroughs provide bgteofvgalving them (for
example se& ** 5§ Economic efficiency, costs and resource utilisation are also important drivers for
improved timetable generation.

A general timetabling problem consists of assignimyraber of events (exams, courses, meetings, etc)
into a limited number of timeslots (periods of time) and venues, whilst minimisingigkations of a
given set of constraints. Associated conatsaare usually classified into two typésrd constraints

and soft constraints. Hard constraints should under no cirstamces be violated (e.g. no person is
assigned to two or more events simultaneously). Soft constraints are desirable but not essatisifyl t
(e.g. two events should/should @ consecutive, one event should occur before another, etc).

Course timetabling is a multi-dimensional assignment problem where courses are assignstordas
and timeslots Early approaches to timetabling have included integer linear prograMrairdy graph
colouring techniqué® *° More recently, various meta-heuristic techniques have been very successful in
a wide range of timetabling problems. In course timetabling, Tabu Search was ateeStignd
employed in solving real-world problefhsind the results were encouraging. Simulated Annealing has
also been investigated for course timetabling proffeisThe Great Deluge algorithm was employed
with some succe&s Genetic Algorithms and Evolutionary Algorithms have been studied widely by
researchefs ?® #’in course/school timetabling and approaches that involve hybridising GAs with local
search techniques, sometimes called Memetic AlgorfthAihave shown promising results in general
university timetabling. Constraint-based techniques have also been employed widely in tin#t3bling
32 Complexity issues in course timetabling have also been studied in spu&d* A wide variety of
research papers on different types of timetabling are also av&ilabté ' 2 In this paper we
investigate CBR for course timetabling. In particular we present redvieval and adaptation
mechanisms and test their effectiveness in computational experiments based m@vious pvork® *

The research presented in this paper is partbtivated by the goal of developing timetabling
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approaches that are less dependent on problem specific information than the current state tifadrt and

could, therefore, operate on a wide range of problems. Another motivation is thef giesleloping

effective initialisation methods for the more widely studied local search approaches

Case-Based Reasoning

Case-based reasoning (CBR¥® is a knowledge-based paradigm where new problems are solved by
using previous experience or knowledge. Previously solved problems and their gooshscdng
stored asource cases in a case base. New problems are solved by searching for the most similar source
cases and reusing/adapting their solutions or problem solving strategies.

Aamodt and PlaZa presented a CBR framework where 4 “REs” describe the problem solving process
that is represented by CBR. They are RETRIEVAL, REVISON, REUSE and RETWe illustrate

the CBR system scheme in Figure 1. The new problem to solve is input into the CBR agsdte
compared with the source cases by using a particular similarity measure. The solutions of the most
similar source case aretrieved and will usually berevised by employing rules or heuristics. The
adapted solution is thereused for the problem in hand. More retrieval may need to be carried out if the
adapted solution is unsuitable (for whatever reason). Some CBR sys@mnsthe newly solved
problems as new source cases thus the CBR systsrthe ability to learn new knowledge throughout

its lifecycle. For a more detailed treatment of CBR see Leake (£996)

FIGURE 1 ABOUT HERE.

In CBR, a similarity measure is used to assess the similarity between the prothemdimnd the
source cases. In most CBR systems, cases are usually represented by a liseefdkat pairs which
represents the values of different features of the problem. The similarity measure canduk atefin
nearest neighbourhood approach which sums the differences of values of the’feéttisemted that

in complex problem domains, the issue of case representatiorticsifaaly important® and usually it

leads to more complex similarity measures. The casesl to be described in such a way that the
comparisons between them lead to retrieved source cases which are applicable feptiodleens.

The intuitive motivation for exploring CBR for timetabling come about by observing that iredhe
world, newly generated timetables are often baseprevious similar timetables. Indeed, altering “last
year's timetable” is an approach favoured by mémetabling officers in schools and universities

across the world. A paper which analyses the results of a questionnaite wds completed by
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administrators in 56 British universities clearly demonstrates that (at least in termgtabting) the

practice of “re-using part of last year's timetable” is employed by a significant number of the
universities that respond&dOf course, there is no guarantee thsit year’s timetable represents a high
quality solution. Indeed, in many cases it will not. However, it is often thethas a significant amount

of effort is expended in universities to produce a “good” timetable (where “good” is defineé by th
user’s view of what they require). In subsequent years they often “tweak” this’‘gomethble because

they know (or at least believe) that it is good aneatwe minimise effort. This work is motivated by
situations where institutions have generated a high quality solution and re-use assitutlan each

year.

In this particular paper, we work with specially constructed timetabling problems. We are moving
towards real world problems. However, because of the nature of case baseithgeasofirst need to

work with data whose structure we understand (unlike the situation with real world psphlearthis is

what we are undertaking in this paper. Our go&bisnderstand how case based reasoning might work

on large problems whose structure we understand. Blaeisdthat by doing this, we are better placed to
develop a system that can work well when we later apply it to real world data.

We believe that CBR is a valuable technique for timetabling problems that usually haviexcomp
constraint features as it indirectly puts emphasis on constraint-directed search (in thatdedsby
solutions to “similar problems”). Current state of the art scheduling methodology tends to incorporate
very specific information into the general meta-heuristic mefiotis** > The standard formulations

of the basic meta-heuristic approaches are, of course, quite general in that they can be (and)have been
applied to a wide range of problems. However, in order to be implemented on those prablems,
considerable amount of research expertise and prgireg effort had to be employed. There is often a
significant amount of problem specific information hard coded into the methods. Once these approaches
are developed they cannot usually be applied tor gtgblems without significant redesign. Indeed, in

the case of examination timetabling, Carter and Laporte point out that many exam timetabling systems
have been developed for different instances of theegaroblem i.e. they are specifically developed for

the institution in which they were built

The main point is that while the meta-heuristic methodologies are in themselves geegnadqthre
significant “tailoring” by experts to enable them to be applied to real problems. Once tailored, these

approaches are often far too problem specific to be transferred to other probleméieSmifstraints
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are altered then usually the method needs to be altered and this is often a very challenging and

demanding task. However, case based reasoningagps do not have such “specific” information

hard coded into them. So a timetabling methodology which draws upon case based reasoning holds
promise for being more generally applicable (wiit further re-design and programming effort) and

this was another motivation for studying this approach. There are many real world cases where one
institution’s “good” constraint is another institution’s “bad” constraint. Differestitutions have very
different ideas about what constitutes a good timetable. This point is clearly concluded (in the case of
examination timetabling). It is possible to handle different constraints in meta-heuristic methods but

by doing so we make the method more and more specific to those constraints. The more we do it, the
less likely the method can be re-used in another situation. The point with CBR is thatitrédiant

upon constraint specific information in the same way and so there is potentiagjfeatar level of
generality. A large amount of work on CBR has been conducted in a wide range of problemsdomain
which are usually ill-structured including plannjrdesign, advisory services, diagnosis and h&alth
There is a growing body of literature on methods that attempt to raise the level of generality of
optimisation/search systeffs

Another major motivation for our approach is to istigate whether or not CBR offers promise as an
initialization method for local search approachegtviihave been widely applied in course timetabling

(and indeed in a range of other scheduling problems). The overall question we are seeking to answer
here is whether it is worthwhile to build a CBR systto provide us with a “good” solution which can

be “fine tuned” by a local search appehdo generate a “very good” solution.

As mentioned above, timetabling problems are,afrse, a type of scheduling problem. Over the last
decade or so there have been a few publications that specifically investigate CBRda@cbeduling
problems. The CBR scheduling systems that have been described in the literature inelude t
SMARTDplan systeff that models the abstraction of problems of airlift management; the Clavier
systenf® for a real-world autoclave management and loading problem; the CBR-1 ¥ystere a case

base was organised as a semantic net forrdignb shop scheduling; and the CABINS systethat

models the heuristic repair actioas cases to interi@ely repair schedules in job shop scheduling.
Studies of some other approaches have also been carried out for steel pridtretititional travelling
salesman problerts single machine scheduling probléfhsurse rosterif§ * dynamic shop floor

problems® and production control problefis Some work also addresses research issues in the
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applications of CBR systems to a wide rangesaifeduling environments and has presented general

frameworks® *° To our knowledge, no other research has been reported that has investigated CBR

specifically for educational timetabling problems except our own idPk

Problem Decomposition in Timetabling and CBR

Decomposition and partition technigihave been studied with some success in timetabling problems,
which are usually very large and complex. The basic idea is to decompose the problem into a set of sub-
problems that are small enough to be easily sobyedsing simple approachebhen these (hopefully

high quality) sub-solutions will be combined to provide a solution ffier driginal problem. The
difficulty, of course, is in “re-constructing” the sub-solutions to generate a “final’isoltd the whole
problem. The method has to avoid making assi@gms in “earlier” sub-problems which lead to
situations where events in later sub-problems cannot be assigned to any timeslot wéthidog brard
constraints. Cart€} presented an algorithm in course timetabling that decomposed the courses into
relatively independent clusters, which can be solved more easily using reasonablyapipnpbeches.
Robert and Herf? decomposed course timetabling problems into a series of easier assignment type
sub-problems. Weaftealso studied decomposing the timetabling data to produce shorter flexible length
timetables. Burke and NewiIpresented a multi-stage algorithm in an evolutionary approach that
decomposed examination timetabling problems by using graph colouring heuristicsheasub-
problems were solved by using a memetic apprach

In CBR, decomposition techniques have been mostly employed successfully in alesigtanning
domains where the cases were decomposed by sub-goals or abstraction and the lasally

organised hierarchicafl§f %

A Previoudly Presented Structured CBR Approach

In previous work the authors have shown that a structured CBR appré&atorked well in solving
course timetabling problems but was incapable o¥iging good solutions for large problems. This is
mainly because the case base storing the cases represented as attribute graphs growtysighéita
the size of the cases increases. In this paper, @gepr an approach that partitions large timetabling
problems into smaller solvable sub-problems whose solutions can be obtained byngetraitiple

cases from the case base. It draws upon the structured CBR appfach
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The next section presents a brief introductiotthi® structured CBR system. The new partitioning and

adaptation approaches within this structured CBR system are then described. Congbutati
experiments on the new approaches are reported amalysed. This is followed by concluding

comments and directions for future work.

The Structured CBR Approach

Structured Casesin CBR

In many traditional CBR papers, a feature list is employed to representc@ibessimilarity between

cases is obtained by the nearest-neighbour apptbatitalculates a weighted sum of the similarities
between each pair of features in each case. However, Mantaras arii jtiatad out that the feature

list representation is the most severe limitation of existing CBR systems for knowigtge-r
applications with higher-order relations between features. Timetabling problems are constraint
satisfaction problems that typically have a wide range of related constraints. Therefore the traditional
case representation cannot capture all of the complex constraints which often signiietanttyine the
solutions. Timetabling problems require chumore complex case representations.

Structured representation has been successfully employed in CBR in some complex application areas.
Borner et al. employed a structural similarityeasure to assess the maximal common sub-graphs
between casé&Sin a design task. In the literature, different approaches have been used to determine the
required structure for complex cases. In particular, researchers have utilised sem&htigraphs® *°

and tree€. The FABEL project provided more information on structured CBR. GebHardt
categorised the existing CBR systems employing stredtcases into five gups: restricted geometric
relationships, graphs, semantic nets, model-based similarities and hierarchically staiotiiaeities.

In our approach, attribute graphs are employetiaindle the level of knowledge required to tackle
course timetabling problerfis * The constraints are represented by edges between each pair of
courses, which are represented by vertices. The retrieved$s described in this paper is based on the
information about the constraints and attempts to find structurally similar cases for reeisever-

riding motivation is that previous timetables with similar constraints will provide a sensiblegstartin

point for solving a new timetabling problem.
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Attribute Graph Representation and Retrieval Process

Attribute graphs have been used by the authors to structurally represent the requireroeatsein
timetabling problentS. Attributes associated with vertices and edges are shown in Table 1 and Table 2
respectively.

TABLE 1 AND TABLE 2 ABOUT HERE.

As an illustrative example, Figure 2 presents part of an attribute graph representing &iroetabéng
problem. The notation x:y denotes the label x of an attribute and ite yaMathB is labelled 0
meaning that it should be held just once a weakA andMathA (labelled 1 with values 2 and 3) will

be held 2 and 3 times per week, respectiviedypB andPhysics are labelled 2 and 3 respectively with
values 2, which means that they should/should nadséggned into timeslot 2, respectively. The edge
labelled 4 denotes thabA should be held befoleabB if possible.MathB andPhysics should be held
consecutively whild_.abB and MathA should not. Courses adjacent to edges labelled 7 should not be
held simultaneously. In our approach, room conssamtourse timetabling are considered separately

in the adaptation phase after a set of potential candidate solutions are obtamethdr@BR
methodology.

FIGURE 2 ABOUT HERE.

The case base is built as a decision tree, storing cases represented by attribdfe Ajtahbspossible
(partial) permutations of the courses in the cases are stored hierarchically by clustering the ones
representing the similar (sub) attribute graphs utttesame node in the tree. The goal of the retrieval
process is to find cases that are structurally similar (have similar consttaints) new case. In the
retrieval, branch and bound is used to reduce the size of the search tree by cutting the branghes storin
graphs or sub-graphs that are not similar to those of the new case. The new case is afatsfied
decision tree to a set of nodes with similar graphsubrgraphs, which are then reused in attempting to
solve the new case. The similarity measure takes into account the cost of the adaptation v retr
case to meet the requirements of the new problem. Different levels of valuescobthare assigned
empirically to the substitions, deletions and insertions of veeticor edges in the new cases to make
them the same as the retrieved cases. They are assigned to approximate the cost feretingeslif
between sub-graphs and tested upon the differemgentiake for retrieving reusable and applicable
sub-graphs. More details about the decision treaittigopand the retrieval process are presented in our

previous worR®.
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Partitioning Large Timetabling Problems by Multiple-Retrieval

Multiple-Retrieval Approach
The previous retrieval procé8setrieves those cases from the case base that are graph or sub-graph
isomorphic, or that have similar graphs or sudpfis with the new case. Good results on a large
number of experiments provided clear evidence tlicate that this approach takes less effort to get
high quality solutions based on the retrieved structurally similar cases. It workkdh veelving
problems that are smaller or almost the same size as the cases in the case base. However, in solving
problems that are much larger, the small case®vett by employing this approach are incapable of
providing much help in finding a good solution. The case base only stores relativelgasesll as the
size of the decision tree that stores all the possible permutations of the attribute graphs increases
significantly when the number or the size of the cases increases. With only limitedohelp &ingle
retrieved case with a small matched part, the system may not be able to find good solutions for large
timetabling problems.
These observations provide the motivation for developing the new multiple-retrieval approach
presented in this paper. In the new approach, in egobval, cases that are similar to part of the un-
matched new case are retrieved and the matched part oéwhease is partitioned from it as a sub-
problem. The partition is made by performing the retrieval process recursively. Travecetrievals
partition the problem into smaller solvable sub-peats based on the retrieval process employed in the
previous CBR systeifi A schematic diagram illustrating the process is presented in Figure 3.
FIGURE 3 ABOUT HERE.
A new graph is produced to represent the remaining part of the new case in each retrieval based on that
of the last retrieval cycle. In each iteration, fblkowing steps are performed on the attribute graph of
the new problem:
(1) The matched part of the attribute graph of the new case in the last cycle is replacedeby a
vertex. The attribute of the vertex is set as 0 (ordinary course).
(2) The super vertex in the new attribute graph keeps the edges that are originally adjacent to the
matched vertices. When there is more than one edge between a vertex in an un-matched sub-
graph and the matched vertices, then the attributes of the newly combined edges are decided

by the following predefined priorities:
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* In order to preserve the feasibility of the final solution, the label 7 that denotes conflict

has the highest priority and overwrites the other label.
* In other cases, the new attribute of the new edge will be set as one of the original ones.
By setting conflict as the highest priority, we can guarantee that the combined final solutions (the
combining process is shown in the next section) will always be feasiblesétsfy the hard
constraints). The newly generated attribute graphs structurally represent the relationships between th
matched and un-matched part of the original graph. The attributes of the combinedpaigesnate
(but do not exactly represent) the previous attributee possible violations of soft constraints will be
fixed in the adaptation phase. Figure 4 illustrates how the new attribute graphs are generated. The
vertices 1, 2 and 5 that match a case in-tth retrieval are combined into a super vertgfoStheith
retrieval. All the edges adjacent to these matched vertices are now adjaceiht ®ach retrieval, the
matched part of the problem is partitioned asué-problem that may be solved by adapting the
retrieved cases for it. The same process is carried out for itie retrieval. This process stops when
no more matched cases can beee&d for a newly produced graph.
FIGURE 4 ABOUT HERE.
This multiple-retrieval approach is carried out oa #ame decision tree and partitions the problem by
utilizing the case base rather than by employing fixed rules. It generates sub-problems automatical
depending upon the cases in the case base. Usuallytham one possible match can be found for each
sub-problem that is partitioned. The most similar cases are used to generate a riurabdidate
timetables. The one with the lowest penalty (calculated by formula (2) belowgdteseas the best
solution for the new timetabling problem.
The similarity measure in the new multiple-retriegpproach is shown in formula (1). The individual
similarity between each sub-problem and the retrieved cases for it is calculated in the same way as when
using single retrievai, considering the costs ofetlsubstitutions, deletions aimbertions of the vertices
and edges. In our approach we assign costs by their effect on adaptation: substittgianeclosver
than deletion and insertion costs; deletion costs are lower than insertionT¢t@stosts are set based
upon experience. The sum of all the individual similarities is divided by the sum of the overaiih costs
all retrievals (P + A + D) and subtracted from 1, as shown below:
r n m k
(2 Pt 23+ 2 d))

S(t,.t,) =1- L b=0 i=0
fota) r(P+A+D)

(1)

10
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The notation used in formula (1) is described as follows:

r is the number of retrievals that need to be carried out on the new case until no more sufisproble
can be partitioned from it;

py is the cost of substituting a vertex or edge of the new gasithtthe corresponding vertex or
edge in the retrieved casdrt every retrieval;

d; and aare the costs of deleting and inserting a vertex or edge into or from the neyy case t

n is the number of the matched vertices and edges in every retrieval;

m and k are the numbers of vertices and edges needed to be inserted into or deleted from the new
case {, respectively;

P is the sum of the substitution cost of every fagpair of vertices or edges between new case t
and retrieved casg t

D and A are the sums of costs of inserting and deleting all of the vertices or edges into or from the

new case, respectively.

Adaptation on Multiple Retrieved Cases

Generating sub-solutions. Before generating the whole solution we need to identify the sub-solutions
based on each retrieved case. The sub-solution for each sub-problem is firstly obtained by gubstitutin
every matched course in the retrieved solution and deleting all the courses that are not Magrhed

we will have a set of sub-solutions for all the subbems. After this we will have a set of partial sub-
solutions for all the sub-problems. We can expect that the super vertices are either in the solutions of
the sub-problems, or in the list of un-matched vertices.

Combining sub-solutions. Starting from the sub-solution of the last sub-problem, we substitute the
super vertices in all of the sub-problems with their corresponding sub-solutions. This process is
repeated until all of the sub-solutions are combined into a final solution (without any super vertices left)
for the original new case. The combined solution is guaranteed to be feasible as we never release the
constraints and all the sub-problems are feasible.

Figure 5 illustrates the combining process. Suppose we have obtaingl #rel jth sub-solutions

based upon the retrieved cases foritheandjth sub-problems partitioned in Figure 3. We present the

sub-solutions as lists of courses in timeslots, represented as boxes in Figure 4. Gisesgtisns are

11
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combined by substituting the corresponding super vertey shejth sub-solution) 3 6]7,9. Then we

substitute Sby theith sub-solutio 1. After substituting all the super vertices, a partial solution
combining all the sub-solutions is generated for the original new case.
FIGURE 5 ABOUT HERE.
The combined partial solution is adapted to generate thesfihation. The adaptation process uses the
following basic timetabling method to allocate raoand improve the CBR generated solution, taking
into consideration the soft constraints presented in Table 1 and Table 2.
1. All the courses in the combined solution are assigned to the smallest feasible rooms available;
2. All the courses that cannot be assigned to rooms or violate the soft constraints are wtschedul
and inserted into an unscheduled list. The courses that are not yet scheduled are also collected;
3. The courses in the unscheduled list are ttestheduled by a graph heuristic method with
tournament selection considering the room constraints, which we will explain below.
Graph heuristic with tournament selection. The graph heuristic with tournament selection (G
used to schedule the courses in the unscheduled list one by one to the first anmeéstmam with no
violations of any constraints (penalty-free). Tournansehéction is used to select the first course every
time from a randomly chosen subset of coursethefunscheduled list sorted decreasingly by their
importance (number of constraints with the other courses). Those courses that cannghbd assi
penalty-free timeslot will be scheduled to the timeslots that lead to the lowest penakiyl #ifi others
have been scheduled. When a tie is met, the course is randomly assigned to an availalileAimeslo
course will be left as unscheduled if it cannotsbbeduled without violating a hard constraint or no
room is available.
The GHT approach forms the basis of the Optime examination timetabling system which has been
commercially implemented in institutions in Australia, France, New Zealand, UK and the Us#eOp
is being marketed by eventMap Ltd (a companychvtis a spin out of the Automated Scheduling,
Optimisation and Planning Group at University of Mgham). It quickly produces solutions that the
users consider to be of high quality. Future worik @nrich the case base with other “good” solutions
but we must keep in mind that one institutiog&d solution is another institution’s bad solution.
Penalty function. The penalty function given in formula (2) is used to evaluate every timetable
generated in the experiments carried out in the next section.

Penalty(t) = 100 U(t) + 5 S(t) (2)

12
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U(t) is the number of courses not scheduled. Theyaasigned a high cost of 100. Violations of soft

constraints, indicated by S(t), are assigned a relatively low cost of 5.

Experiments and Results

We have carried out an extensive series of experiments on specially constructed datahéetstage,

we need to analyse the behaviour of the multiple-regtti@pproach on data that has been constructed in

a systematic way. We are specifically not working with real data at this stagasbewe do not
understand the structure of arbitrary large realldvdata sets. In order to understand how the CBR
approach is working we need to specifically construct the data so that we understanctine sBy
experimenting with data whose structure we understand we are better placed to develop a system that
can work well when we later apply it to real wbdata. We have no say over the structure of the real
world data but if data is causing a CBR system to act in a certain way, wdonbedaware of the
structure of that data in order to understand why. The point is that if we constructaheel&now

what we have and have a better chance of understanding what features areaplalgnt we just take
arbitrary real world data sets we have no idea about the specific structure of these problemdland it
be so much more difficult to understand how they are affecting the system during the development
stage.

A large number of experiments have been carried out to solve timetabling problems of different size on
case bases with different types and sizes of cases. We define two types of cases in thesase bas
simple and complex (of small or large size). In clergases, every course has at most 4 (and at least
1) constraints. Courses in simple cases have at3n@std at least 1) constraints. Small cases have 6 to
10 courses and larger cases havedl@5 courses. Attributes tfie courses are randomly generated.
The solutions of these cases in the case basebti@ed by using Graph Heuristic with Tournament
Selection (GHT}. Recall that this method is currently implemented in a commercial system.

Nine sets of new cases are considered each wittifdent new cases of the same size. The first of
these sets has 10 courses; the second has 15 courses and so on up to 50 coursesisTiee® kT

solve these cases from scratch. These solutions are then compared with those froriptae etmidtval

CBR approach on different case bases.

13
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The second major aspect of our exipents explores the employment of the multiple-retrieval CBR as

the initialisation approach for Hill Climbing, Simulated Annealing andul&earch in order to
determine whether CBR might provide solutions which are a good starting point for meta-heuristic

methods.

Case Baseswith Simple Cases

The first group of experiments is carried out on aofease bases containing 5, 10 or 15 simple cases
of small or large size ( 2 = 6 case bases in all). All the nevees are then input to these 6 case bases
to be solved by using the multiple-retrieval approach with adaptation employing the GHT. These
solutions are compared with those generated from scratch by the same @H€. 6-ipresents two
charts and a table displaying the average penalties of the timetables of 20 different newezatesfin

the nine sets on the 6 case bases, and those generated by GHT alone. The curves in the chart are
logarithmic trendlines that are drawn based on tiselt® that are plotted in the chart. Rather than
showing precise curves of the result points, they present the trends of theeperfdlte timetables for
cases over a range of sizes. The best average result for each new case type is highlighted in the table.
FIGURE 6 ABOUT HERE.

We can see that the multiple-retrieval CBR approach with GHT as the adaptetioodnproduces
lower penalty timetables than those obtained by using the GHT alone to generate the tiffinetables
scratch. It is observed from the trendlines of the results from the charts that the pehdhies o
timetables obtained by using the CBR approach with different essslare close to each other but, in
general (7 out of 9), case bases with larger cases provide timetables with bligindlly penalties on

average over the 20 different new cases.

Case baseswith Complex Cases

Another set of experiments has been undertakenenitie sets of new cases to investigate the use of
case bases with complex cases. Figure 7 shows the average penalties of the tiottabéss from
case bases with 5, 10 or 15 large and small complex cases. Again, in general, caséthases!
cases provide better results than those with larges @seut of 9). In all of these cases, GHT on its
own obtained solutions with a higher penalty value than the CBR approachs#®iGHT as the

adaptation method.
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FIGURE 7 ABOUT HERE.

Comparison and Evaluation on Case Bases with Small Cases

From all the experiments carried out on different case bases, we can observe that sagihblasth

large and small cases provide better results than those obtained by the GHT without empdoying th
CBR approach. CBR with case bases of smaller cases has better performance inlteverspehalty
timetables for the new cases of different size than CBR with large caseserSuhlgraphs in the
retrieved multiple sub-solutions seem to provide a better basis for the adaptation to produce timetables
of higher quality. Timetables combined from larger sub-solutions also have lower penaltidsten
obtained by the GHT method alone. However, the sub-solutions provided by retrieving larger cases are
much more likely to be destroyed in the adaptation to fulfil the new constraints of the new cases and
thus reusing smaller sub-solutions yields bettsulte than when reusing larger sub-solutions upon
solving the same problems.

The results of our experiments on case bases of small simple and complex casesratedlin Figure

8. We can see that CBR with case bases of complex cases provides better results tipaodiose

by case bases of simple cases. Also, our previous®tebtswed that complex cases in the case base
provide more scheduling structures and lead to a higher proportion of successful retrievals than those
from simple cases. So by building a case base of small complex cases, the muligva-reBR
approach will perform the best in reusing previsuogll scheduling structures to provide a good basis

for generating high quality timetables.

FIGURE 8 ABOUT HERE.

Comparison of Retrieval Time on Different Case Bases

The retrieval time of the multiple-retrieval CBRpmpach varies on different case bases for different

new cases. We do not present the solution times otaé@apas they are justfew seconds in the worst

case. The experiments are run on a Pentium Il 800 Hz PC with 128MB memory. The overall retrieva
times for new problems on the case bases with simple and complex cases are presented in Figure 9,
showing that retrieval in case bases with small cases takes longer than with largRetsigesl in the

case base with 5 small cases requires the longest time because the case base will @ibwdb-sm

15



Journal of Operations Resear ch Society, 2005.advanced online publication availalitem
May 2005

solutions in every retrieval. Thus more retrievals on the case base are neeldeché&w case. Also the

decision tree built from complex cases is much larger than that built from simple cases bdeager

number of sub-graph structures is stored indéeision tree. Thus retrieval on the decision tree built

from small complex cases takes much more time. With the limited number of schedulictures that

5 simple cases can provide, more time is needed to find a match from the case base. Large cases
provide larger sub-solutions for the new cases andléassretrievals are needed so retrievals in case
bases of large simple course cases need less time.

FIGURE 9 ABOUT HERE.

The retrieval time for case bases of complex cases shows a similar pattern to that of siespl€hma

longest retrieval time is needed for the case base with 5 small complex cases. The sas@riase
complex cases are much larger than those of simple cases, so the retrievaldimgerishan that for

the simple cases addressing the same new case.

Multiple-Retrieval CBR asthe Initialisation M ethod for Local Search (Meta-)Heuristics

The results of our experiments led to a natural question: would the suggesteab@®Rch provide a

good starting point for local search (meta-)heuristics such as Hill Climbing, Tabu Search and Simulated
Annealing. The motivation here is that the CBR approach might be able to generate good solutions
which local search could then “fine tune”. With this question in mind, we carried out anottudr set
experiments to investigate the possibility of employing the multiple-retr@B& with small complex

cases as an initialisation method for local search methods. We compare the resultssfrosthtbd

with results that employ initialisation by GHT alone. The table in Figure 10 prebenfenalties of
timetables generated by local search methods with the multipleved CBR and with GHT as the
initialisation methods. The figures presented in parentheses give the number of netliatasasnot

obtain feasible solutions by the specific methods. The best average results over gtrallgras with

all of the methods are presented in bold in the table. Due to the fact that not all of the new cases can
obtain feasible solutions by Hill Climbing, we present only the results Bonulated Annealing and

Tabu Search in the chart in Figure 10. We can observe that all the local search method#tiplith mu
retrieval CBR as the initialisation method significantly outperform local searttodgewith GHT as
initialisation. Recall that GHT is a highly effective method which is commercially implemémted

institutions around the world. The multiple-retrieval CBR does indeed provide a goawhsteitit for
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the local search methods for these problems. It is particularly interesting that nreltiigleal CBR

with small complex cases as an initialisation method for Simulated Annealing providestthesbis
over all the other methods investigated in this paper.

FIGURE 10 ABOUT HERE.

Conclusions

This work demonstrates the value of investigating CBR for solving course timetabling problems. The
knowledge implicitly embedded in previous high quality timetables is modelled and stored in a case
base to help provide good qualitynetables quickly and to avoid a large amount of computation and
searching time. The multiple-retrieval CBR can be employed on timetabling mobfaifferent sizes.

Large timetabling problems are tackled by a partitioning process that is carried out recucsively
automatically decompose the problems into smadelvable sub-problems. The solutions of the
partitioned sub-problem can be obtained by adapting high quality timetables from the retrieved
problems that have similar constraints. High qualitheduling structures in the sub-solutions found by
multiple retrievals are retained after the combination in the adaptation phase. These strumtigtes pr
good scheduling blocks for the final solution of tiev problem. By employing this approach, cases in
the case base that are much smaller than the nelvlepr to be solved can be reused repeatedly for
solving parts of the new problem and thus the dms® does not have to contain a large amount of
large cases. This avoids the memory problem that plagues many structured CBR systems.

For every sub-problem that has been partitioned, there are always some retrieved cases (though wi
different similarities) for reuse. The differences between the retrieved cases and parts of the new
problem are recorded and provide the adaptation information, leading to an efficient adaptation-guided
retrieval. Thus the retrieved cases are guaranteed to be adaptable. A similarity measurgotakes
consideration how difficult it is to adapt these blocks in the retrieved cases according to tbaatiffer
recorded to fulfil the constraints of the original problem.

One of the main motivations for the research described in this paper is the goal of devaloping
timetabling system that can operate at a higher level of generality than current tegloaolegpport.

Such systems would, of course, be much less resdntensive to implement and would be applicable

to a wider range of problems. The aim here is not (necessarily) to beat the well-stathidueuristic
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approaches that tend to be very problem specific. Rather, the aim is to develop systearsdkat c

with a wider range of problems and yet can still produce solutions that are corapethlthe problem
specific meta-heuristics. Meta-heuristic approaches to solve timetabling problems can be sensitive to
initial parameter settings. The CBR approach, of course, has no such drawbacks, and as auch, it m
offer significant opportunities in the development of fundamentally more general
timetabling/scheduling systems.

On the other hand, research into meta-heuristiethods has provided significant advances in
timetabling technology. In addition, Burke, Newall and W&amed Corne and Ro%shave shown that
appropriate initialisation strategies can improvedherall performance of timetabling meta-heuristics.
Another potential impact that CBR could have on timetabling research is in its employsnant a
initialisation method for meta-heuristic methods. We have demoegtiathis paper that the multiple-
retrieval CBR approach obtains good sub-solutions for the new problem and provides a good
initialisation strategy for local search (meta-)heuristics such as Hill Climbing, Tabu Search and
Simulated Annealing. Indeed, the CBR approach is able to employ past egpeateout solving
“similar” problems to provide a high quality solution to the problem in hand. The deeath (meta-

)heuristics are then able to take such solutions and “fine-tune” them to provide further impitoveme

Some Future Resear ch Directions

A large number of experiments have been carried othisrpaper. Future work will include testing our
multiple-retrieval CBR system on sets of real-world benchmark course timgtatata. A range of
benchmark course timetabling problems have been made available at
http://www.idsia.ch/Files/ttcomp2002/ and http://iridia.ulb.ac.be/~msampels/ttmn.data/. Thdsenprob

have been recently addressed®id® ""and®* ® We are currently putting together some more
benchmark course timetabling problems. They are availaliiéat/www.asap.cs.nott.ac.uk/themes/tt

and the authors welcome further contributions from other timetabling researchersit @search in

course timetabling is trying to provide a CBR mechanism that can be easily adapted to solve a range of
course timetabling problems. We also believe that, because of the general modellingusethdte

basic mechanism of our structured multiple-retric®8R approach will be applicable in a range of
problems (where the problems can be modelled as attribute graphs) like educational exam timetabling,

and other types of constraint satisfaction problems.
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Of course, a major research question for future work is how to employ CBR for largeorkhl-

problems because the decision tree can grow exponentially. However, there is sommgmrent
research work which can help to deal with this problem. Some metstice methods including
Memetic Algorithm&” ® that have been studied recently for graph matching may be potentially
beneficial for the sub-graph matching in our CBR apph, but this hypothesisas to be tested as the

subject of future work.
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Figure 1 A Case-Based Reasoning Framework
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Figure 2 A Course Timetabling Problem Represented by the Attribute Graph
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Label Attribute Value(s) Notes
0 Ordinary course N/A Takes place once a week
1 Multiple course| N (No. of timeg) Takes place N times a week
2 Pre-fixed courseg S (Slot No.) Assigned to timeslot S
3 Exclusive course S (Slot No.) Not assigned to timeslot S

Table 1 Vertex Attributes of Course Timetabling Problems
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Label Attribute Value(s) Notes
4 Before/after 1 or O (direction Before or after another course
5 Consecutive N/A Be consecutive with each other
6 Non-consecutive| N/A Not consecutive with each other
7 Conflict N/A Not assigned simultaneously

Table 2 Edge Attributes of Course Timetabling Problems
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Figure 1 A Case-Based Reasoning Framework

Figure 2 A Course Timetabling Problem Represented by the Attribute Graph

Figure 3 Schematic Diagram of the Multiple-Retrieval CBR System

Figure 4 New Attribute Graph Generated after Each Retrieval

Figure 5 Combining the Solutions of the Sub-problems

Figure 6 Penalties of Timetables by using GHT alone and CBR with (ieitt, sight: large) Simple Cases

Figure 7 Penalties of Timetables by using GHT alone and CBR with (iedtt, sight: large) Complex Cases

Figure 8 Penalties of Timetables by using GHT alarie @BR with (left: simple, righ complex) Small cases

Figure 9 Retrieval Time on Case Bases (Left: simple cases; Right: corapés) ¢

Figure 10 GHT and Multiple-Retrieval CBR with Small Complex Cases as theikatiah Methods for Local

Search Methods
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