
Hardy, Matthew and Brailsford, David and Thomas,
Peter (2004) Creating Structured PDF Files Using XML
Templates. In: ACM Symposium on Document
Engineering (DocEng2004), 27-31 October 2004,
Milwaukee, USA.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/190/1/structure04.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Creating Structured PDF Files
Using XML Templates

Matthew R. B. Hardy
EPRG

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK

mrh@cs.nott.ac.uk

David F. Brailsford
EPRG

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

Peter L. Thomas
EPRG

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK

plt@cs.nott.ac.uk

ABSTRACT
This paper describes a tool for recombining the logical structure
from an XML document with the typeset appearance of the
corresponding PDF document. The tool uses the XML
representation as a template for the insertion of the logical
structure into the existing PDF document, thereby creating a
Structured/Tagged PDF. The addition of logical structure adds
value to the PDF in three ways: the accessibility is improved (PDF
screen readers for visually impaired users perform better), media
options are enhanced (the ability to reflow PDF documents, using
structure as a guide, makes PDF viable for use on hand-held
devices) and the re-usability of the PDF documents benefits
greatly from the presence of an XML-like structure tree to guide
the process of text retrieval in reading order (e.g. when interfacing
to XML applications and databases).

Categories and Subject Descriptors
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text
Processing]: Document Preparation — Markup Languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Algorithms, Documentation.

Keywords
XML, PDF, Logical Structure Insertion.

1. INTRODUCTION
In recent years innovations in digital document formats have
introduced the possibility of hybrid representations, whereby a
document can contain both a graphically rich appearance and a
logical structure, with the ability for these representations to
interact in a useful way. One example of such a format is PDF,
where the specifications for Structured and Tagged PDF enable
logical structure to be added to a conventional PDF file. The
exploitation of this ability has been slow, due to a lack of
document production systems for creating documents with
customised embedded logical structure and also due to the lack of
tools for adding structure to the vast quantity of legacy PDF
documentation created before PDF logical structure was available.

However, many document creation systems have an internal
notion of logical structure and an ability to produce both
appearance-based documents (often as PDF) and logically
structured documents (usually in some XML-based markup). The
two distinct forms of the document tend to be created and stored
separately, with the XML application being used to store the
logically structured representation and PDF storing the
appearance-based form of the document. At present there is no
standard mechanism for correlating the information in these two
separate documents.

In what follows we assume that a document in some popular
authoring application such as MS-Word or LATEX, can be
processed in two distinct ways: firstly to produce an equivalent
version of the document in some XML-based markup (often
XHTML) and secondly, via tools such as PDFMaker or PDFTeX,
to produce an ‘appearance based’ paginated version. The
existence of the two representations offers the ability to use the
XML version of the document, which will very largely be in the
correct ‘reading order’, as a template for inserting structure into
the PDF version, where the reading order may deviate
considerably from the order in which the material is rendered onto
the page. In an earlier paper [6] we described how an XML
template document could be used to check whether the structure
tree in a corresponding Structured PDF document seemed to be
plausibly equivalent to the XML document. The plugin we
developed for this purpose was, in essence, to check whether the
XML structure had been mapped correctly to PDF structure
(possibly via some structure-aware document preparation
process). We now describe how the plugin has evolved beyond
structure verification into being capable of structure insertion.

When a PDF file possesses a structure tree there are clear benefits
in terms of being able to access the PDF content in reading order
and of knowing which logical category (e.g. heading, paragraph
etc.) each piece of PDF content belongs to. However, PDF content
is page structured by its very nature, whereas XML material is
generally not, and the PDF structure tree uses a system of pointers
to indicate the precise page and location of the material that
corresponds to a particular leaf node in the structure tree. To
complicate matters still further the PDF material itself is required
to contain back pointers into the structure tree so that damaged
PDF trees have some chance of being rebuilt from their
constituent pages and also so that PDF objects such as charts,
photographs etc can appear in several places in a rendered PDF
file and yet be implemented via a single shareable instance of the
object. This latter facility may require multiple sets of back
pointers within a structured PDF file.

FINAL DRAFT of paper accepted for:
DocEng’04, October 28–30, 2004, Milwaukee, Wisconsin, USA.

Copyright 2004 Hardy, Brailsford and Thomas

For all these reasons it will be necessary, in the next section, to
describe the page structuring of PDF material prior to considering
the PDF structure tree.

2. STRUCTURED/TAGGED PDF
A PDF document — even one without a structure tree—consists
of a number of other tree structures, which control different layout
aspects of the document. Principal among these, and the only tree

that is actually required to exist, is the Page Tree. Now this
particular tree structure is balanced, with its leaves being
groupings of four pages or thereabouts. It exists simply to provide
fast random access to individual pages so that they can be

selected, deleted, printed out and so on. In addition to the Page
Tree, there are a number of other trees that may be present in a

PDF. For example, the Outline Tree is used to represent the
hierarchically-structured bookmarks in a PDF document.

Since the introduction of the PDF 1.3 Specification [1], there has
been the ability to add logical structure to a PDF document. This

logical structure is represented by the Structure Tree and PDF

documents that contain a Structure Tree are known as Structured
PDFs. However, before the mechanisms for representing
Structured PDF can be described, it is necessary to know how
content is modelled within a PDF document.

2.1. Page Tree
The Page Tree consists of Pages Nodes and Page Nodes.

Pages Nodes are used to group pages with similar or shared
properties, but they can also be used simply to group pages for

easier internal navigation. Page Nodes are used to store the
actual content of a specific page. For each page that is displayed

in a PDF viewer, there is a corresponding Page Node within the
PDF document.

2.1.1. Page Nodes
A Page Node consists of a set of properties and resources

belonging to the current page and one or more Content Streams.
The resources and properties available for a page include fonts,
the dimensions of the page, whether the page should be rotated,
and many more.

A Page Node can also contain links to the other trees in a PDF.
How this is used with logical structure is described later, but such
cross-references can also connect pages to article threads,
annotations, etc.

2.1.2. Content Streams
It is the Content Streams that contain the actual page content
and which define its typographical appearance. A PDF stream
consists of a set of objects that are used to describe the graphical
elements that are to be painted onto the page.

These objects can either act as operators or as the content that is
being typeset. The structure of a PDF stream is very much like
that found in a PostScript [3] document. Operators manipulate the
graphics state and then paint content onto the page. Arguments
belonging to each operator appear before the operator (postfix
notation).

/ft1 1 Tf 12 0 0 12 50 50 Tm
(Hello World) Tj

Figure 1: Sample PDF Content Stream.

Figure 1 shows an example of a simple Content Stream. In the
example, a font is chosen using the Tf operator, which takes the

arguments of a font resource name, /ft1, and a point size of 1.

The Tm operator then manipulates the Text Matrix. Six
arguments are provided to the Tm operator, with the first four
specifying the scaling, rotation and skew and the last two
specifying the translation. In this case, the text is scaled by a
factor of 12 and moved to coordinates (50,50) relative to the
origin, which is at the bottom left-hand corner of the page.
Finally, the text “Hello World” is placed on the page using the Tj
operator.

It is important to note that content can be placed on the page in
any order. Although the example shown in Figure 1 rendered the
text string in a single operation, this will not always be the case.
The word “World” could have been put on the page first followed
by a command to move left by a certain amount and then another
Tj command to render the word “Hello”. It is quite common for
content to be placed on the page out of reading order and it is also
the case that individual characters are sometimes laid down out of
reading order.

2.2. Structured PDF
Structured PDF gives us the ability to apply logical structure to
the content of a PDF document. It is the job of the Structure Tree
within a PDF to contain the structure and to point to the content of
the document in the correct reading order.

Although the syntax used to represent the logical structure in PDF
is not the same as that used by XML, the conceptual model of the
logical structure is very similar. XML files can generally be
considered as a serialised representation of a tree and it is this
tree-based model that Structured PDF has emulated.

2.2.1. Structure Tree
The root node in a PDF document’s structure tree is the

StructTreeRoot Node. This node is not considered part of the
actual structure, but is used instead to specify properties of the

structure below it. Directly below the StructTreeRoot are

Element Nodes. An Element Node can contain further

Element Nodes or can refer to page content.

A PDF Element Node is logically equivalent to an element in
an XML document. Its ability to contain other elements as well as
reference the page content allows it to model the hierarchical
containment that is represented by the nesting of elements in an
XML document.

<< /Type /StructElem
 /S /Paragraph
 /P [ParentRef]
 /Pg [PageRef]
 /K [0 [ElemRef] 1]
>>

Figure 2: Sample PDF Element Node.

Figure 2 shows an example of a PDF Element Node dictionary.
PDF dictionary objects begin with ‘<<’ and end with ‘>>’. A
type is then given to the dictionary object and in the case of an

Element Node, that type is /StructElem. A subtype,
specified by /S, indicates the type of the element. In Figure 2 the
subtype of the element is /Paragraph, which might well be
equivalent to the tag <Paragraph> in a corresponding XML
document. Also contained within the dictionary is a reference to

the Element Node’s parent object. This reference can either

refer to another Element Node or to the StructTreeRoot Node.

All of the dictionary entries described above are required for any

Element Node, but there are also a number of optional entries
present in Figure 2. The /Pg entry must be present if the

Element Node directly contains page content (i.e. the equivalent
of an XML element containing #PCDATA). The value associated

with /Pg is a reference to the Page Node containing the content
(in the case of the content flowing over multiple pages, it indicates
the first page on which the content is present).

The final entry present in the above example is the /K entry which
denotes the ‘kids’ i.e. the child nodes immediately underneath the
current node. This entry can contain references to page content or

to hierarchically contained Element Nodes. In Figure 2 the /K
entry has an array of values associated with it. The first of these is

used to refer to page content, the second to an Element Node and
the third to more page content. This kind of node is equivalent to
an element containing mixed content in an XML document. The

reference to another Element Node merely points to another
dictionary object containing the type /StructElem. However,
it is the references to content that are the major difficulty for
inserting logical structure into a PDF. These values (0 and 1)

refer to Marked Content Identifiers within each page.

2.2.2. Marked Content Identifiers
So far, the mechanisms described have been well suited to
mapping XML content to Structured PDF. However, unlike XML
where tags are inserted around the content of the document, the
content in a PDF does not have to be in any particular order and
can indeed be on multiple pages and therefore in totally separate
content streams. Clearly, a mechanism is required for indicating
which content belongs to a given Element Node in the logical
structure tree.

The method used for linking content back to the logical structure
tree is known as Marked Content. Marked Content can be used in
many ways and, as its name implies, it consists of markers
inserted into the content. These can be used for any number of
purposes, but in the case of logical structure, they are used to
indicate blocks of text that logically belong together. This

grouping is done by inserting Marked Content Identifiers

(MCIDs) inside the content streams.

/ft1 1 Tf 12 0 0 12 50 50 Tm
/Paragraph <</MCID 0>>
BDC (Hello World) Tj EMC …

Figure 3: Sample Content with MCIDs.

Figure 3 shows an example of an MCID being used to mark out a

paragraph. The type of the MCID is given (/Paragraph) and

then a dictionary containing the MCID number (<</MCID 0>>).

The numbering of MCIDs starts afresh for each page, so the only

requirement is that the number be unique for each MCID on a
given page. The content being “marked up” is placed between a
BDC (Begin Demarcated Content) and EMC (End Marked
Content). In the example above, the marked content is the words
“Hello World”.

If we now re-examine the example shown in Figure 2 the purpose
of the values 0 and 1 in the /K entry becomes clear. They are

references to the value of the MCID (e.g. /MCID 0) in the
content stream. Therefore, taking the examples shown in Figure 2

and Figure 3, the Element Node of subtype /Paragraph refers

to the content “Hello Word”, then to another Element Node and
finally to some other content on the page marked as /MCID 1.

The values shown above must be on the same page (referenced by

/Pg [PageRef]). It is also possible to refer to MCIDs on
multiple pages by specifying a new page reference.

2.2.3. Attributes
A mechanism is also provided within Structured PDF for storing
attributes. As described previously, PDF is primarily based on
dictionaries containing key-value pairs. This format is ideally
suited to storing attributes, which are themselves merely key-
value pairs attached to an XML element.

To add attributes to an Element Node, a key must be added to
the Element Node’s dictionary. The key is /A and the value
can either be an inline dictionary or an indirect reference to a
dictionary (streams can also be used for attribute entries, but these
are not relevant here). The attribute dictionary can contain any
attributes that can be represented in an XML document.

2.3. Tagged PDF
Tagged PDF is a stylised usage of Structured PDF. In Structured
PDF, there are no extra requirements on either content streams or
on the logical structure of a document, whereas Tagged PDF
imposes further requirements that help standard applications such
as Acrobat to make more flexible use of the PDF material. As we
shall see, structured PDF documents are suitable for users wishing
to store some suitable abstract logical structure within a PDF
document for their own purposes. But customised structure on its
own cannot be interpreted by standardised applications such as
Acrobat Reader unless there is a way to indicate the meaning of
the custom tags in terms of the layout properties of the document.

Tagged PDF is designed to provide basic facilities in three key
areas:

1. Re-use and re-purposing of PDF Documents.

2. Accessibility of PDF Documents to people with disabilities
(especially vision-related disabilities).

3. Reflow and media generalisation of PDF Documents.

It provides the above by introducing a number of requirements on
the content and logical structure in a Tagged PDF document.
These are achieved by the three following requirements:

1. A set of Standard Structure Types (SST) must be used.
These can be used directly by the logical structure or else a
mapping must be provided to the SST from custom tag sets.

2. Explicit word demarcation is required and the content must
appear in reading order within any given content stream.

3. Mappings must be provided to the Unicode Standard [9] for
any fonts that use custom encodings.

2.3.1. Standard Structure Types & Role Mapping

Tagged PDF provides a very basic solution to the problem of
abstract logical structure by providing a default set of standard
structure types (SST). Any application that wants to make use of
logical structure within a Tagged PDF can do so as long as it is
aware of the SST. The types of logical structure element available
in the SST (as shown in Table 1) are very similar in nature to
those found in HTML. However, the tagset is slightly more
extensive than that of HTML, and is aimed at more general types
of publication.

Table 1: A Subset of the SST.

Tags Usage

P, H, H(1-6) Paragraph and Heading tags containing
textual content.

L, LI, LBody List tags describing a List, List Item and
List Body respectively.

Table, TH, TR,
TD

Table tags for display a Table, Table
Headings, Rows and Data respectively.

Document, Art,
Part, Sect, Div

Standard structure types used for grouping
content.

Figure, Form Tags representing figures and interactive
form elements.

If a user wishes to use a custom tagset that goes beyond the SST, a
mechanism known as Role Mapping is used to map the custom

tagset to the SST. By providing this RoleMap, users can retain
the advantages of standard mappings of the SST (e.g. to and from
HTML) that may be provided by software such as Acrobat, while
at the same time allowing other applications to make use of the
custom structure. For example, if a user views PDF material on a
Personal Digital Assistant (PDA) and wishes to reflow the
document, then the PDF viewer can make use of the structural
information to perform a more intelligent reflow. The export of
PDF to HTML is also greatly helped by knowing, from the PDF
structure tree, that certain material corresponds, for example, to a
table.

2.3.2. Explicit Word Demarcation & Reading Order
There is no guarantee in a traditional, non-structured, PDF file
that there is any order to the content within a content stream. This
means that we do not necessarily know which characters can be
grouped to form words, paragraphs, etc.. Therefore, there is no
default mechanism for ascertaining the reading order of content
within a traditional PDF file.

A Tagged PDF file asserts a macroscopic reading order by visiting
content streams in the order that they appear at the leaves of the
structure tree. The microscopic reading order is taken care of by
demanding that content within a single MCID must be rendered in
the order in which it is to be read and that word endings must be
clearly delineated by space characters. However, when a
traditional PDF file is produced from a typesetting program, it is
very common for there to be no space characters in the content
streams. This results from the kerning and from the hyphenation-
justification algorithms employed for flowing text onto a page.
The space between words – and even between characters – is
relatively fluid, so instead of using hard-space characters, there is
a tendency to use PDF movement operators (analogous to
PostScript moveto operators) to position individual characters,
or whole words, at the correct position on the page.

By enforcing both correct reading order and explicit word-space
characters in the content streams, a program can deterministically
produce a correct reading of the document (something especially
useful for content extraction and accessibility — e.g. programs
that read documents out loud to a blind reader).

2.3.3. Unicode Mappings
The final requirement for a Tagged PDF is that fonts have a

ToUnicode Map. When a font is embedded into a PDF file it is
often only a subset (i.e. the characters actually used) that is
embedded. Moreover, it is quite common for these embedded
fonts to use non-standard custom encodings. If a program wishes

to extract material from a PDF document, or to read it aloud, it has
to be able to interpret the entire content stream. In a custom
encoding, the glyph positions can represent any character, and the
glyph names may be non-standard, so a program processing the
content would not be able to correctly interpret the characters.
Therefore, a requirement of Tagged PDF is that the text must in
one of a number of default encodings such as

The process of deconstructing content, and then reconstructing it,
is performed directly on the document and not just as an abstract
manipulation of data. This process ensures that the guidelines for

MacRoman or
WinANSI (which the viewer can convert to Unicode internally)
or if it is a custom encoding, a mapping between each glyph and
its Unicode position must be provided.

3. PLUGIN OVERVIEW
A plugin for Acrobat has been created to take the logical structure
from an XML document and to insert that structure into an
existing, unstructured PDF document. The goal of the plugin is to
use the XML as a template for re-ordering the content in the
document into reading order and to insert explicit word
demarcation deterministically. This, combined with a number of
other alterations to the document, make the plugin capable of
converting a legacy PDF to a Tagged PDF.

This section provides an overview of the insertion and
reconstruction processes, without going into the implementation
details, which are provided in the next section.

3.1. Source XML
The first task performed when embedding the logical structure is
to obtain the source document for the logical structure. This is
stored in an external file, which is selected by the user (the user is
presented with a file selection interface).

The source XML can use any tagset, but it is not technically

possible to automatically infer a RoleMap from an abstract tagset.

Therefore, the RoleMap is embedded using a tagset defined in a
separate schema from the main content of the XML document. If

this is not present, no RoleMap is included (and therefore the
resultant PDF is Structured PDF and not Tagged PDF).

The plugin takes the logical structure from the XML file and also
caches the textual information from the same file. This is layer
used to match the cached text to the textual content of the PDF

document. The RoleMap (if present) is also cached.

At the same time as the plugin caches the textual content of the
XML document, it also creates the structure tree inside the PDF.
However, this structure framework is not linked to any content at
this point. Instead it acts as the framework to which the content
will be added later.

3.2. Ordering PDF Content
Content in a PDF can occur in any order on a page (though the
pages themselves must be ordered). Immediately after caching
the content from the XML document, the plugin must determine a
reading order.

The techniques used to perform this ordering are described in a
later section. However, the basic process is to break the content
of the document down into individual characters (this is necessary
because there is no guarantee that explicit word boundary
demarcation will be present) and then to group these characters
into lines in reading order.

Tagged PDF are met if the remainder of the information required
to create a Tagged PDF is also present.

It is important to note that the structural ordering of content is
performed on a page-by-page basis. This is to ensure that the
insertion is efficient even in large PDF documents.

3.3. Matching Content
Once the content of a page has been ordered, the task of matching
the content from the XML document to the content in the PDF has
to be performed. This is a non-trivial task because, although the
PDF content’s reading order is now known, the actual ordering of
the content in the XML and PDF versions of the document may be
very different.

One other issue with matching the content is the possible presence
of appearance artifacts1, which may have been added to the
content during the typesetting process. These artifacts must be
identified and marked as such for the logical structure to be fully
utilised.

A further issue arises with page boundaries. Since the document
is being processed a page at a time, it is impossible to know what
appears on the next page before the current page has finished
being processed. Given that logical structure in an XML
document is unlikely to take page boundaries and other layout
artifacts into account, it would be very likely, in a large document,
that a logical block of content would flow over a page boundary.
This would be represented as a single block in the XML, but as
two separate blocks of content in a PDF, so a series of partial
matches may have to be dealt with.

The direction of the matching process is from the XML to the
PDF because there is no way to know which content in the PDF
constitutes a logical block in the PDF. For the purposes of
structure insertion, the XML is taken as the more exact
representation, because it has not been altered by any of the
typesetting and layout processes that have been applied to the
PDF content.

As each block (or partial block) of content is matched, it is added
to the framework structure tree, which was created as the content
of the XML was cached. The content is then removed from the
search space so that it is not matched multiple times. In the case
of a conflicting match (e.g. where two strings from the XML are
matched) the first, sequentially, is taken to be the correct match.

3.4. Optimising Content
The process for ordering content breaks it down into individual
characters. While this was necessary in the early stages of the
process, it does greatly increase file size. To control this increase,
the characters making up the blocks of logical content are merged
to form more appropriately sized blocks (e.g. words and
sentences), once the page has been processed and the content
added into the structure tree.

It is also the case that the content may not have explicit word
boundary demarcation and even if this is present, it may not be
correct nor may it necessarily be relied upon. However the

content within the XML document may be taken as the canonical
representation of the document’s content. Moreover, the XML

1 Appearance artifacts are content artifacts that are created as part
of the typesetting process (e.g. the numbers at the start of
headings, a hyphen splitting a word across two lines, etc.).

has explicit word boundary demarcation, which can be used to
ensure that whitespace is added correctly to the document as
required by the Tagged PDF specification. Any original
whitespace is removed so as not to unduly enlarge the document
or leave incorrect content.

3.5. Insertion Process Repeated for Each Page
Once the structure insertion process is completed for a single
page, it is repeated for the next and subsequent pages.

This process is not just as simple as starting each page from
scratch. As the content in the XML is matched to the PDF, the
cached copy of the XML is discarded. However, in the case
where a content block splits over a page, it is necessary to replace
the cached XML text node with the content remaining to be
matched within that node.

3.6. Completing the Process
When all the content has been linked into the structure tree of the

document, the process is effectively complete. When a RoleMap
is present in the source (or has been added manually) and the
necessary font requirements have been met (see section 2.3.3) the
document can then be marked as a Tagged PDF.

A document is marked as being “Tagged” by adding a key to the

catalog dictionary of the PDF document. The dictionary entry
(i.e. “/MarkInfo <</Marked true>>”) is used to indicate
whether or not a PDF is a Tagged PDF (if the key is not present, it
is not a Tagged PDF).

4. IMPLEMENTATION
This section describes the key implementation details for the
Acrobat Structure Insertion plugin. Due to the complexity of the
system, only an outline of the implementation is given here.

The key details can be split into three distinct stages:

1. Processing of the logical structure from within the XML
document, including the caching of the XML content and
insertion of the logical structure framework into the PDF
document.

2. Content deconstruction and reading order reconstruction of
the existing PDF content, as well as the content caching
process.

3. Matching of the cached content from the XML to the cached
(and re-ordered) content of the PDF document, including the
linkage of the matched content to the logical structure
framework inserted as part of stage 1.

4.1. The Technologies
Before describing the three stages outlined above, it is important
to understand the mechanisms for accessing both the XML
document and the PDF document.

4.1.1. XML Processing
A Document Object Model (DOM) [10] parser was used by the
plugin for processing the XML source document. The DOM
provides a mechanism for accessing the content of an XML
document in the form of a tree. The DOM is conceptually very
similar to the model employed for representing logical structure
within Structured PDF documents.

An XML document can have only one element at the root of the
tree which hierarchically contains the lower-level nodes. These
nodes can represent elements, attributes, textual content, etc.

A DOM parser allows random access to any part of the XML
document.

The specific implementation of the DOM used for this plugin was
the one contained within MSXML 4.

4.1.2. Acrobat Plugin Programming
Adobe Acrobat provides an API [1] for extending its functionality
through the use of plugins. Plugins can access PDF documents
through the Acrobat environment and manipulate these
documents. A plugin adds extra menus, menu items, tools, etc. to
the Acrobat interface and can also register itself to handle events
that occur within Acrobat.

PDF documents are accessed through a number of layers in the
API. These layers provide different types of access to the PDF
document and Acrobat itself. The layers that are relevant to this
work are:

1. PDFEdit (PDE) Layer.

2. PDSEdit (PDS) Layer.

Objects and methods within the layers use a common syntax. For
objects a layer descriptor is attached to the type of the object (e.g.
if we are dealing text within the PDE layer, the object name would
be PDEText). The same is true for methods. Method names are
constructed using the rule <layer><object><verb><thing>.
Therefore, if we wish to obtain the textual content of a PDEText
object, we would call the method PDETextGetText.

The PDFEdit (PDE) layer gives direct access to the contents of a
PDF document. Objects found in this layer include PDEText,
PDEImage, PDEPath, etc. and these are all subtypes of the

general PDEElement object. MCIDs are represented by
PDEContainer objects. The object type of main interest to this
plugin is PDEText, as this represents textual content on a page.
The object stores the text content, its position on the page, the
style, font, etc. The PDEText objects will need to be added to
newly constructed PDEContainer objects so that they can be
linked to the structure tree.

The PDSEdit (PDS) layer gives access to the logical structure tree
contained within a Structured PDF. The root of the tree (i.e. the

StructTreeRoot) is represented by a PDSTreeRoot. Element
Nodes are represented by PDSElement objects and when a
PDSElement refers to content, it contains a reference to a
PDEContainer. The PDSEdit layer maps very closely to the
DOM.

4.2. XML Source Processing
Before performing any of the three main stages the plugin must
add itself to the Acrobat interface. The only addition is a menu
item that initiates the structure insertion process. The first stage
(i.e. processing of the XML source document) is described below.

When the user selects the menu item for the structure insertion
plugin, a class CStructBuilder is constructed. This class
handles the process of creating the logical structure within the
legacy PDF document. The CStructBuilder’s first task is to
construct a CXMLLoader class.

The CXMLLoader provides a standard, Microsoft Windows, File
Selection dialog to enable the user to select the source XML
document. The returned selection is loaded into the DOM using
the default methods available to do this.

4.2.1. Iterating Over the Tree
The algorithm used for iterating over the DOM tree is a pre-order
traversal, using a recursive depth-first tree descent algorithm [4].
This approach causes each node to be processed in the same order
that it would appear in its serialised XML form.

A PDSTreeRoot is constructed as part of the XML processing.
This is so that the logical structure framework can be inserted into
the PDF at the same time as caching the XML content.

Starting with the root of the DOM and the PDSTreeRoot, a
recursive function is called that processes the children of the
DOM root. As each node is iterated over in the DOM tree its type
is obtained and, depending on the type, a different process will be
performed. In the case of an XML element, the method calls itself
recursively. In the case of XML attributes, these are processed by
a separate function and the process continues. Finally, in the case
of text, the content is cached (this process is described later in this
section).

4.2.2. Constructing the PDF Structure Tree
For efficiency, it is important not to have to process the XML tree
more than once. Therefore, at the same time as caching the
content, the logical structure framework is created within the PDF
document.

This structure is created by the same process that performs the
recursive descent. At the root of the tree the plugin constructs a
PDSTreeRoot using the methods available in the Acrobat API.
The child of the DOM root is obtained (there can be only one) and
a new PDSElement is constructed representing this element in
the DOM tree. The PDSElement is added to the newly
constructed PDSTreeRoot. A recursive method
(insertKids) is then called with both the DOM element and
PDSElement as arguments.

This insertKids method obtains all the child nodes of the
DOM element and begins iterating over them. For constructing
the logical structure framework, only the element and attribute
nodes are of relevance. In the case that the child node is an
element node, a new PDSElement is constructed to represent
this node and added as a child to the PDSElement passed in as
an argument to the method. The insertKids method then calls
itself recursively, passing in the child element and the newly
constructed PDSElement and the process repeats itself. In the
situation where a node is an attribute node, a new PDSAttrObj
object is created to represent the attributes.

4.2.3. Caching the Content
As the plugin iterates over the DOM tree, the logical structure
framework is constructed, so there is no need to cache the entire
structure. However, since the plugin is not ready at this stage to
start performing content comparisons, it is the content that must
be cached for later access.

The issue now arises of how to cache the content without caching
the logical structure, given that the plugin will need to insert the
content into the correct place in the logical structure framework.

To solve this problem, a new struct called a nodeHolder was
created to hold the required information. The nodeHolder

stores the text node from the DOM tree as well as the
PDSElement, which will eventually contain a reference to the
content, and also an integer value. The reference to the
PDSElement prevents our needing to know any complex

hierarchical information of the text node’s position in the structure
tree.

The integer stored in a nodeHolder is another cached value,
which makes matching the content into the structure tree easier,
because there is no guarantee that the PDF content will definitely
appear in the order it appears in the XML document. As a result
of this potential mismatch (e.g. a footnote pushed to the next page
for spacing reasons), we need to know the ordering of the text
nodes as they are contained in the PDF tree. Another more
compelling reason for having the information is that if a node
contains content, intermixed with structure nodes, we have to
know how to intersperse the added content with the element nodes
already in the PDF structure tree. Therefore, an integer is used to
specify the position of the content in the PDF structure tree. The
integer is calculated by counting all the element and text nodes
belonging to the current node, as they are iterated over.

Whenever a text node is found within the DOM tree, a
nodeHolder is constructed to represent the association between
the content and the structure tree. This information is then stored
in a CArray, which is a type of linear expandable array.

Having cached the content of the XML document and built the
framework of the logical structure tree, the first stage of the XML
processing has been completed. The plugin then proceeds to
manipulate the content of the PDF into an order that can be
processed.

4.3. PDF Content Reordering
The processing of the XML was the first stage of operation for the
plugin. The second stage is to take the content of the first page
and sort it into an approximate reading order. The content of the
page is then cached, in reading order, for comparison with the
content in the XML document. Once logical structure has been
added to the first page, it moves on and repeats the process for
subsequent pages until all pages have been structured. This
section describes the processing of the content of a single page, in
order to make it ready for structure insertion, which is then
described in a later section.

4.3.1. Deconstructing the PDF Content
To add logical structure to content within a PDF document, it is

necessary to group content using MCIDs. One of the many
problems with converting PDF documents to Tagged PDF is that
access to the content is rarely at the required level of granularity.

One might assume that the level of access given to the content is
at the string level (i.e. a single PDEText object representing each
string that is displayed on the page). This is unfortunately not
always the case. The PDFEdit layer of the API does provide
access to the content of the document, but not with such fine
granularity (or at least not by default). Instead, text is grouped
into content with identical graphical properties. Therefore, a line
of text, possibly with kerning and spaces, will be represented by a
single PDETextRun (i.e. a run of text) contained within a single
PDEText element. It is quite common for all the content
belonging to a single page to be contained within one PDEText
object. However, no specific order can be relied upon and nothing
can be taken for granted with PDEText objects.It is therefore
necessary to deconstruct the page content, down to the individual
character level. The reason for this decision is that it is not
possible to rely on any given word being contained within a given
PDETextRun and yet a single PDETextRun can contain many
words, so it is necessary to deal with each character separately.

Fortunately, this approach also helps with the later algorithms for
determining reading order (see section 4.3.2).

All PDEText objects on the page are iterated over and each
PDETextRun within a PDEText object is processed. Each
character is iterated over and it, along with its graphics state, is
copied to a newly constructed PDEText object. However, if a
space character is encountered, it is not copied. This does not
affect the typeset appearance, because each copied character is
placed at a specific position on the page.

4.3.2. Constructing a Reading Order
A custom linked-list class was created for the purpose of caching
the PDEText information. Each member of the list (a
CContentBlock object) stores a PDEText object, the textual
content of the PDEText (for ease of access) and the coordinates
representing the bounding box of the content.

As each new CContentBlock is added into the list, it is
automatically sorted into order using a simple (x,y) coordinate
ordering of the baseline coordinates. This is the first stage of the
reading order calculations. Once all the content on the page has
been processed, it has also been added into the list and sorted into
a basic reading order. However, this process does not take into
account discrepancies in the baseline coordinates2 or characters
belonging to a line that do not sit on the baseline (e.g. superscript
or subscript characters).

Therefore, the next stage of processing for constructing a reading
order is to start grouping content into ‘ranges’. These ranges
represent content that is known to share the same baseline. The
ranges are calculated by iterating over the content in the linked
list, in its current ordering, and then grouping content that shares
the same y-coordinate value at the bottom of the bounding boxes.
However, it is still the case that multiple ranges might make up a
single line.

The next stage of the process is to try to group ranges that are on
the same line. At the moment all the ranges are ordered in
decreasing value of the y-coordinate (due to that being the order
of the content before the range finding). Adjacent ranges are now
compared from left to right. If the baseline of the content on the
left overlaps within the bottom eighty percent of the content to its
right, then the ranges are considered to belong on the same line.
In this case the ranges are merged and an average baseline
calculated for the two blocks of content, which is stored with the
range. This newly merged range is now compared to the range to
the right and the same process is repeated.

The above algorithm produces a set of ranges, each of which can
be considered to be a line of text in the document. Once this
process is complete it is necessary to reorder the content in the
linked list. This is performed by altering the bounding box values
to match the average values calculated when grouping the ranges.

By using the insertion algorithms for the list designed to order the
content into (x,y) ordering, we now automatically reorder the list
to match the new ordering.

2 All characters in a PDETextRun share a bounding box with
enough vertical height to contain the largest character in the run.
As it is possible for text from one line (or word) to appear in
different runs, the bounding boxes might not be the same.

4.4. XML to PDF Content Matching
The result of the previous algorithms mean that the plugin now
has a cached copy of the content from the XML source document
and a cached copy of the first page of the PDF document (in
reading order). The next stage of the insertion process is to
perform string matching between the content from the XML and
the content in the PDF.

However, the previous stages of the process have not dealt with
the issue of appearance artifacts. While the XML content can be
considered to be in a relatively clean form, the PDF content may
have typographical content that does not occur in the XML (e.g.
hyphens). Therefore, the content within the PDF must be
normalised before it can be compared.

4.4.1. Content Normalisation
The cached PDEText objects can refer to content that is an
appearance artifact. Although the plugin needs to remove these
characters for the comparison phase of the process, they cannot be
removed from the page since they are an important part of the
appearance of the document. Therefore it is necessary to create a
second cache for the content, but this time only for the normalised
content that is being used to compare the two documents.

A new array is created to store this second cache. Rather than
copying the entire PDEText object into this new cache, only the
character itself is copied. Alongside this information, its position
in the content cache is recorded (so that the plugin can reference
matched content back to the original content cache).

Each character in the linked list cache is iterated over and
processed. If the content is not considered an artifact, it is copied
to the array. Items not copied over include hyphens, whitespace
characters (spaces have already been removed, but any other
whitespace characters are now removed).

a

0
w

1
o

2
r

3
d

4
n

6
o

7
w

8

a w o r d - n o w

Figure 4: Content Normalisation Example.

Figure 4 shows an example of the content in the original cache (at
the top of the figure) and the normalised content of the new array
after processing.

There may also be special characters in the content (e.g. ligatures)
that need to be converted to ASCII/Unicode characters. It is
likely that the XML source will contain only the actual character
(ASCII or Unicode), but not a special typeset character such as a
ligature. An example of such a conversion would be to take an
‘fi’ ligature and replace it with the individual characters ‘f’ and ‘i’.
However, in the array, we associate a position with each character.
We have just added an extra character by performing this
expansion (and in more extreme cases could add many more).
Therefore, all the newly added characters are given the same
position value as the first character (e.g. in the case of the ‘fi’
expansion, if the ligature has the position 10, all the expanded
characters will contain the position 10).

It is also the case that while the XML content is likely to be in a
cleaner form than the PDF content, it will still contain characters
that will hinder the comparison — the most obvious being

whitespace characters. For the comparison stage of the plugin,
this whitespace information is irrelevant, so it is removed.

4.4.2. String Comparisons
The next stage of the matching process is to begin iterating over
the list of nodes cached from the XML and to attempt to match
these with the normalised PDF content. The content of each
cached node is compared, one at a time, against the content of the
PDF page.

String matching is a thoroughly researched area of computer
science and there are many algorithms that can be used (e.g. the
Boyer-Moore algorithm [5]). However, the requirement for the
string matching that we perform in the plugin is to match the first
occurrence of a given string, which can also include partial
matches (e.g. content flowing between pages). Therefore the
plugin uses a hybrid algorithm, adapting the principles of string
matching techniques to the specific problem.

The basic principle of the algorithm is to take a search string
passed in from the cached XML node and then to search for that
string in the array of PDF page content (constructed as part of the
normalisation process — see section 4.4.1). The main difficulty
with the content matching is in recording which parts of the string
have been matched previously, which have possibly been matched
(e.g. partial matches) and which are still unmatched.

The algorithm used to match the text is relatively simple. The
PDF content array is iterated over until the first characters of both
the search string and the PDF content match. Once this happens,
the rest of the string is tested sequentially against the content it is
being matched against. Depending on whether a match condition
is met, the algorithm either ends or continues trying to find a
match.

Once the plugin has determined that there has been a match a
range is created. A range stores the starting point of the
matched text and the end point. This is then attached to the
cached XML node whose text is being compared.

In the case of a complete match, the situation is simple. The
range indicating the matched text is stored, together with the
cached XML node. A flag is then set to indicate that the XML no
longer needs to be matched.

In the case of a partial match, the process is slightly different. Just
because part of the content has been matched does not mean that it
is automatically a valid partial match — a given character may
just have been matched by chance (in fact, this is very likely).
Therefore, for a partial match, we require at least 5% of the search
content to have been matched. In the case of a partial match, the
search does not stop; instead it continues until the search space is
exhausted. It is always the case that if we already have a partial
match, a complete match will override the partial match. If a
complete match overlaps a partial match, the partial match is
removed in favour of the complete match.

When a partial match is recorded and once the content searching
has finished for the page (and therefore the partial match is
definite), the matched component of the textual content is
removed, so that the remaining text can be used for searching on
the next page to complete the match.

4.4.3. Adding the Content to the Structure Framework
Once all the matches for the page have been calculated, the plugin
takes all the matched ranges and sorts them into positional order.
All the PDEText objects that are contained within the start and

end points of the range are added to newly constructed

PDEContainers (which represent MCIDs). The advantage of

this approach is that in-line artifacts are added to the MCID,
which is generally consider the correct approach to logical
structure. However, any content that remains after all the matched
content has been moved to PDEContainers is added to an
artifact container, which marks it out as being an appearance
artifact.

The content within each PDEContainer is then manipulated to
add space characters using the XML source content as a template
to do this.

Finally, each of the PDEContainers is added to the
corresponding PDSElement in the structure tree using the
cached information stored alongside the XML nodes. Once all of
these have been added, the logical structure insertion for the page
is complete. The process started in section 4.3 is repeated for the
each subsequent page until the entire document has had logical
structure added to it.

5. FUTURE WORK — MATHEMATICAL
MARKUP

The work described so far has added logical structure to existing
documents that have a straightforward layout and a relatively
coarse structural granularity. To illustrate the limitations of our
current plugin, and the benefits that would accrue from a more
powerful and granular treatment of specialist structure, we present
here an initial study of the embedding of logical structure to
describe mathematical expressions in technical documents. These

experiments have involved embedding MathML within the

structure tree of a PDF document. MathML is a W3C
recommendation [11] for encoding mathematical expressions in
XML. Presentational MathML was chosen since it uses an infix
notation which is close to the way that an equation will actually be
typeset and also to the way that an equation might be read aloud to
a fellow mathematician over the telephone (indeed this was one of
the design criteria for the troff mathematics pre-processor called
eqn [7])

Embedding a higher-level representation of a mathematical
expression in a document brings a number of advantages. Firstly
the content can be re-purposed, either into packages such as
Mathematica or into other document creation systems. Secondly
we can make the expression more accessible to those with
disabilities by incorporating alternative readings.

Traditional screen-readers, including the one used in Acrobat,
have trouble reading mathematical expressions out-loud.
However, once we have incorporated the expression into the
structure of the document at the appropriate level of granularity
we can embed an “Alternate Reading”, which is read out by the
screen reader instead of trying to interpret the document content.
Simply by embedding an English version of the equation in this
alternative text we have greatly improved the read-out capabilities
of mathematical expressions. Although reading mathematics is a
research topic in its own right, a usable English translation can be

easily produced with the help of MathML or LATEX math-mode
input.

x =
4c
a

Figure 5: Sample Equation.

Figure 5 shows an example of a mathematical equation and Figure
6 shows the MathML used to represent that equation.

Figure 6: Sample MathML.

The example above would fail to be properly structured by the
Structure Insertion plugin. The x, =, 4, c and a items would be
properly processed. However, the &InvisibleTimes does not
correspond to anything visible in the PDF document and hence
would not be inserted.

A demonstration of a PDF document making use of an embedded

logical structure tree, representing MathML, can be found at
<http://www.eprg.org/research/structure>.

6. CONCLUSION
For many years the gap between structure-based and appearance-
based document formats has seemed almost insurmountable. As a
result of this research, though with considerable effort, it is now
possible to merge logical structure and a graphically rich
appearance within a single document format.

This paper has described the difficulties associated with using
Structured and Tagged PDF to model logical structure and the
natural discrepancies that can occur between an XML source
document and a logically structured, final-form, PDF document.

As first sight it might seem that structure in PDF would serve only
as an aid to recovering an XML-compatible version of the original
document i.e. with the textual content streams converted to plain
unformatted #PCDATA (in XML terms). Indeed the PDF
structure tree can be used to do just that, but as we have seen, it
can also be used to traverse the PDF text streams in reading order,
with each of the text and graphic objects being rendered and
formatted correctly with the full power of the PDF rendering
model.

6.1. Structure Insertion
While the insertion of logical structure is of great benefit in the
areas of accessibility, reflow, document re-use and so on, the
majority of final-form documentation is still produced without any
form of embedded logical structure. Although technical
publishers sometimes use logically structured documents as the
starting point for their final typeset document the structural
information is nearly always lost in the document processing
pipeline.

There is also a vast quantity of legacy PDF documentation that
was created before it was possible to embed a PDF structure tree,
for which a logically structured source might exist (this would be
the case for technical publishers, who have archived SGML, or

<?xml version="1.0" encoding="utf-8"?>
<math>
<mrow>
 <mi>x</mi><mo>=</mo>
 <mfrac>
 <mrow>
 <mn>4</mn>

<mo>⁢</mo>
 <mi>c</mi>
 </mrow>
 <mrow>
 <mi>a</mi>
 </mrow>
 </mfrac>
</math>

more recently XML, sources along with the layout-based PDF
versions).

Therefore, the need for tools that can take the logically structured
source and use it to insert a structure tree into unstructured PDF
documents is obvious. Given that no such tools have previously
existed a major part of this research has been spent in developing
them. The tools created here add the benefit of a logical structure
tree, but instead of relying on standard structures (e.g. the Adobe
Standard Structured Tagset), our plugin enables customised
tagsets to be embedded, which will generally convey richer
abstractions about the content of the document.

6.2. Insertion Limitations
As we have seen, the structure insertion plugin uses a source
XML document as the basis for PDF structure insertion. There
are limitations to this approach; a number of these are general
limitations while others are specific to the matching algorithms
used.

The first limitation lies in the process used to produce the reading
order. The content matching routines take account of artifacts,
etc. occurring in the PDF content, but for a positive match to be
made, the normalised content of both documents must match
exactly. In the case of a page consisting of multiple columns, the
reading order construction algorithm will fail to produce a correct
reading order. The algorithms that determine the reading order
also make certain assumptions about the style of document. It
must be read left to right and top to bottom. Any layout decisions
that break this paradigm will cause the reading order calculations
to fail and the insertion to fail.

To remedy this situation, a more complex, AI-based, reading-
order algorithm would have to be applied. There would also be the
possibility of employing algorithms that use point size and
typeface changes, as well as x-y ordering, to more accurately
determine the semantic nature of text strings (e.g. for headings,
figure captions, etc.). Some possible algorithms well known to
the Document Recognition community are described in [8].
However, more sophisticated algorithms of this sort would now
benefit greatly from having the XML version of the document as
an extra ‘knowledge source’ giving vital clues to the correct
reading order and how page content should be grouped.

A second limitation of the processes described here lies in the
actual content matching. The approach used was rather rigid and
did not allow for any alterations in the document content, from
that expected from the source XML. The example of MathML, in
the previous section, points up very clearly the problems posed by
non-printing tags such as &InvisibleTimes, especially when
coupled with the need for a finely grained textual analysis.
Moreover, textual mismatches may often occur which are
unrelated to any issues of structural complexity. It may be the case
that last-minute corrections to the final PDF are made midway
through a document-processing pipeline, thereby causing the
source document and the final-form document to become “out-of-
sync” in various ways. If this happens, minor changes (e.g. a
spelling correction) can cause large portions of the text not to be
matched. A more robust string-matching algorithm, which is
tolerant of minor textual differences, would go a long way
towards solving this problem.

However, as proof of effectiveness of using source XML
documents as structure templates, the plugin has been a great
success. The embedded tagsets were, in the majority of
documents, inserted correctly and they greatly enhanced the
usefulness of the PDF document. A particularly noticeable
benefit was in the “Read Aloud” mechanism available in Adobe
Acrobat, which was markedly improved by the addition of logical
structure. This, in turn, was largely due to the availability of
accurate reading order and word boundary information.

7. ACKNOWLEDGEMENTS
Thanks are due to Adobe Systems Inc. for supporting Matthew
Hardy and Peter Thomas during Graduate Internships at Adobe
and also during their graduate studies generally. In particular we
thank Peter Ullmann and Phil Levy for much administrative help,
and Loretta Guarino, Dan Rabin and Richard Potter for technical
information.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Adobe Systems Incorporated. Acrobat Core API Reference.
San Jose, CA: Adobe Systems Incorporated, 2002.

Adobe Systems Incorporated, PDF Reference (Second
Edition) version 1.3, ISBN 0-201-61588-6, Addison-Wesley,
July 2000.

Adobe Systems Incorporated. PostScript Language
Reference Manual (3rd ed.). Addison-Wesley, 1999.

Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullmann
Compilers, Principles, Techniques, and Tools. USA:
Addison Wesley, 1986.

A. K. Dewdney. “Searching Strings: The Boyer-Moore
Algorithm.” in: The (New) Turing Omnibus. New York,
NY: W. H. Freeman & Co., 1993, pp. 403–407.

Matthew R. Hardy and David F. Brailsford, “Mapping and
Displaying Structural Transformations between XML and
PDF.” in: 2002 ACM Symposium on Document Engineering,
McLean, VA, November 8-9, 2002. McLean, VA, USA:
ACM Press, 2002, pp. 95–102.

Brian, W. Kernighan and Lorinda L. Cherry, “A System for
Typesetting Mathematics.” In: Comm. ACM UNIX
Programmer's Manual. Murray Hill, NJ, USA: Bell
Laboratories, 1975, pp. 151–157.

W. S. Lovegrove and D. F. Brailsford, “ Document analysis
of PDF documents: methods, results and implications.”
Electronic Publishing, Origination, Dissemination and
Design. 1995, 8(2 and 3), pp. 207–220.

Unicode Consortium, The. The Unicode Standard:
Worldwide Character Encoding, Version 1.0. USA: Addison

Wesley, 1991. Vols. 1 & 2.

World Wide Web Consortium. Document Object Model
(DOM) Level 2 Core Specification [online]. World Wide
Web Consortium, 2000. Available at:
<http://www.w3.org/TR/DOM-Level-2-Core/>

World Wide Web Consortium. Mathematical Markup
Language (MathML) Version 2.0 (2nd ed.) [online].

Available at: <http://www.w3.org/TR/MathML2/>

