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Electric field strengths andion trajectories in
sharp-edge field ionization sources
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Abstract. On the presumption that a sharp edge may be represented by a hyperbola, a
conformal transformation method is used to derive electric field equations for a sharp
edge suspended above a flat plate. A further transformation is then introduced to give
electric field components for a sharp edge suspended above a thin slit. Expressions are
deduced for the field strength at the vertex of the edge in both arrangements. The
calculated electric field components are used to compute ion trajectories in the simple
edge/flat-plate case. The results are considered in relation to future study of ion
focusing and unimolecular decomposition of ions in field ionization mass spectrometers.

1. Introduction
Sharp edges such as razor blades and etched metal foils, are being increasingly used in

field ionization mass spectrometers. The ion source in these instruments consists solely of a
sharp edge suspended parallel to, and a small distance above, a slotted cathode (Robertson
and Viney 1966). When a large potential difference is maintained between the edge and
cathode, spontaneous ionization of molecules takes place in the vicinity of the edge. A
quantitative knowledge of the electric field strength at any point in the ion source is of great
importance in the study of ion focusing, unimolecular decay of ionized molecules and
threshold field strengths for the ionization process. Equations have already been given for
two simple ion source geometries by Brailsford and Robertson (1968) on the presumption
that a sharp edge could be represented by a hyperbola of small radius of curvature. One of
these arrangements, an edge suspended above a flat plate, is used in this paper as a basis for
developing further equations applicable to the edge/slotted-plate case. The use of the
calculated electric field components in a simple computation of ion trajectories is illustrated
in §5.

2. Edge suspended above a flat plate
Although equations for this arrangement have already been given (Brailsford and

Robertson 1968) a rather more satisfactory derivation will be presented briefly here, as many
of the results are required for use in the edge/slotted-plate equations of §3.

Let z = x + iy andw=u+iv. The transformation

w = ik coshz (1)

wherek is a constant, transforms a series of lines parallel to the x axis in thez plane to a
series of confocal hyperbolae, symmetric about thev axis, in thew plane (figure 1). The
transform of the linesy = O andy = 1⁄2π in the w plane resembles two perpendicular plates
separated by a gapd. The line Re(w)= 0, Im(w) ≥ d corresponds to the liney = 0, and the
line Im(w) = O corresponds toy = 1⁄2π. A razor blade, or other sharp edge, can be approxi-
mated as a hyperbola of small radius of curvature. This hyperbola arises from a liney = y0
(wherey0∼_0) in thezplane.

† Present address: Department of Mathematics, University of Nottingham, University Park, Nottingham
NG7 2RD.
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Figure 1. Conformal transformation for edge/flat-plate arrangement. The uniform potential
distribution parallel to thex axis in thez plane is transformed to a series of confocal hyperbolae in

the w plane.

Separating real and imaginary parts from equation (1) we have

u = − k sinhx siny (2)

v = k coshx cosy. (3)

The inclusion ofi in the transformation sets up the edge/flat-plate system with symmetry in a
vertical plane (as opposed to a horizontal plane in Brailsford and Robertson 1968).

The equations of the hyperbolae in thew plane are obtained by eliminatingx from
equations (2)and (3) to give

k2 cos2 y

v2
�������� −

k2 sin2 y

u2
�������� = 1. (4)

The heightl of the hyperbola representing the edge is obtained by puttingu = 0, y = y0 in
equation (4) to give

l = k cosy0. (5)

Since the hyperbolae are symmetric about an axis their vertex radius of curvaturer v can
be found from Newton’s formula (Starr 1957), which yields

r v = l tan2 y0. (6)

Let the potential difference between the two perpendicular plates in thew plane beV.
This is also the potential difference in the ‘parallel plate capacitor’ formed by the plates
y = 1⁄2π andy = 0 in thez plane. If we now denote the horizontal and vertical electric field
components in thew plane asFu andFv respectively it is easy to show that

Fu =
(1⁄2π − y0)

− V���������
u2 cos4 y + v2 sin4 y

u siny cos3 y����������������� (7)

FV =
(1⁄2π − y0)

V���������
u2 cos4 y + v2 sin4 y

v cosy sin3 y����������������� (8)

At the vertex of the hyperbola representing the edge we have

u = 0, y = yO ∼_ 0

and thus, from equation (6) we have the further conditionr v << l.

Under these conditions, and using equation (6), we find that (7)and (8) simplify to

Fu = 0 (9)

F vertex = Fv∼_
π (r v l )

1⁄2
2V�������� (10)
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3. Sharp edge above a slotted plate
The introduction of a slot into an infinitely thin flat plate is effected by means of the

following transformation

c = w +
4w
q2
��� (11)

where

c = a + ib w = u + i v

andq is a constant. The effect of the transformation is shown in figure 2. Separating real
and imaginary parts we obtain

a = u +
4(u2 + v2)

q2 u���������� (12)

b = v −
4(u2 + v2)

q2 v���������� (13)

where

u = − k sinhx siny (14)

v = k coshx cosy (15)

as in §2.

w - plane u

v

c = w + q  /4w2

c - plane a

b

Figure 2. A further conformal transformation to convert from an edge/flat-plate to an edge/slotted-
plate arrangement. Equipotentials are shown as broken lines.

The magnitude of the slot width can be found by settingv = O in equation (12) and
requiring that (∂a /∂u)v = 0=0. This condition shows that the slot width is 2q. Transforma-
tions of the type shown in equation (11) are very common in the study of systems employing
slotted electrodes (Allard and Russell 1963, Kober 1957, Naidu and Westphal 1966). More
recently Gilliland and Viney (1968), using this transformation, obtain an expression for
vertex field strength in the edge/slotted-plate system. However, for future use in studies on
ion trajectories and flight times, as described in §5, we need a more general formulation of
the field components at any point in the edge/slot system and this is developed here.

Equations (12) and (13) can be combined to give the equation of curves in thec plane

u
a�� +

v
b�� = 2. (16)

Hence

u =
2v − b

av������ (17)

v =
2u − a

bu������ . (18)

The heighth of the curve representing the edge above the slotted plate, is obtained by
puttingu = O in equation (13) to give

h = v −
4v
q2
��� . (19)
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This curve corresponds to the undistorted hyperbola in thew plane wherev = l (see equation
(5)).

By substituting into equation (19) and rearranging we obtain

l =
2

h + (h2 + q2)
1⁄2

������������� . (20)

The positive root of the quadratic equation forl has to be taken in order thatl → as
q → 0.

The vertex radius of curvaturesv of curves in thec plane can be related to the
corresponding value ofr v in thew plane. We find

r v ∼_
4l 2 + q2

4l 2sv�������� (21)

provided that 8q2lr v<<4l 2 + q2.

The electric field componentsFaFb in thec plane are

Fa = Fu{
16u3 − 24au2 + 2u (5a2 + b2 + q2) − aq2 − ab2 − a3

2ub(a − u)������������������������������������������} (22)

Fb = Fv{
32v3 − 48vu2b + 4v (5b2 + a2 − q2) + 2bq2 − 2a2b − 2b3

16v3 − 20v2b + 2v (3b2 + a2 + − q2) + bq2
����������������������������������������������} . (23)

At the edge vertex we know that

a = 0, b = h, u = 0, v = l =
2

h + (h2 + q)
1⁄2

������������ .

These conditions, together with equation (21), will simplify equations (22) and (23) to give
the form,

Fa = 0 (24)

F vertex = Fb ∼_
π{ sv(h2 + q2)

1⁄2}
1⁄2

2V���������������� (25)

provided thaty0 ∼_ 0 which impliessv << (h2 + q2)
1⁄2. These validity conditions ensure that

the transformed profile in thec plane is very close to a hyperbolic shape, as was the case in
thew plane, Equations (25) and (10) clearly become identical asq → 0.

4. Plotting of equipotentials
In order to check that the transformations used in §§ 2 and 3 were having the desired

effect, computations were carried out on the University of London ATLAS computer, to cal-
culate the resulting equipotentials for various values ofx andy substituted into equations (2)
and (3) and also into equations (12–(15). Thus the equipotentials in the edge/flat-plate and
edge/slot arrangements were obtained. As the ATLAS computer did not have graph plotting
facilities, a graph plotting sub-routine was written into the computer program to plot out the
transformed coordinates on the computer’s line printer output. The results are shown in
figures 3 and 4. The equipotentials in both cases are labelled with the value ofy in the z
plane which generates them. The values taken for slot width, height and radius of curvature
were

q = 0.25 mm h = 0.25mm sv = 0.1µm.

These correspond closely to values encountered in practice (Brailsford 1969). The hyper-
bolic nature of the equipotentials is evident in figure 3 while figure 4 shows the nature of
field penetration through the slot in the edge/slot system.
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Edge
(y = 0) y = 0.05

y = 0.2

y = 0.4

y = 0.8

y = 1.2 π(y =    / 2)
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Figure 3. Computer calculated potential distribution in the edge/flat-plate system. Equipotentials
are labelled with the value ofy in thezplane which generates them.
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Figure 4. Computer calculated potential distribution in the edge/slotted-plate system. Equi-
potentials are again labelled with the value ofy in thezplane which generates them.

5. Computation of ion trajectories and flight times
Many experimental and numerical methods exist for determining the trajectories of elec-

trons and ions in a known potential distribution (Klemperer 1953). A particularly accurate
numerical method, due to Goddard (1944), is based solely on the equations of motion of a
charged particle in an electromagnetic field and involves no paraxial approximation. This
method was used in a pilot calculation of ion trajectories in the calculated potential distribu-
tion of the edge/flat-plate arrangement. For a two dimensional problem, in a purely electros-
tatic field and a Cartesian coordinate system (x,y), the equations of motion, for particles of
massmand chargee, simplify to

m
dt2
d2x���� = −e

∂x
∂V��� (26)

m
dt2
d2y���� = −e

∂y
∂V��� (27)

The conformal transformations of §§ 2 and 3 give the electric field components∂V /∂x and
∂V /∂y directly.
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The Goddard method performs a stepwise integration of equations (26) and (27) to give
position coordinates using a formula due to Milne (1933). A single-stage integration may
also be performed, using Weddle’s rule, to givex andy components of velocity at any point.
Denoting these velocities asx′ andy′ respectively we can write

2
1���m(x′ 2 + y′ 2) = e∆V (28)

where∆V is the potential fallen through by the ions. Equation (28) is valid for charged parti-
cles initially at rest in the potential field, and by separately evaluating the two sides of this
equation we have a means of checking the accuracy of the numerical integration.

The computer program using the above numerical integration procedure was written for
the University of London ATLAS computer using EXCHLF autocode. In the early stages of
the computation the time interval∆t used in the stepwise integration, was set at 10−14

seconds. The time interval was doubled after every 100 points computed to avoid excessive
storage and time demands on the computer. A continuous check was maintained that both
sides of equation (28) agreed to within 1%. If at any stage this was found not to be so, provi-
sion was made in the program for recalculating the relevant part of the trajectory with∆t set
at a smaller value.

Edge

Plate

A

B

C

Figure 5. Typical trajectories in the edge/flat-plate system for ions ofm /e= 45 and for three values
of initial angle relative to the horizontal axis. Initial angles (relative to horizontal axis): A, 0°;

B, 20°; C, 45°.

Three computed ion trajectories in the edge/flat-plate system are shown in figure 5 using
the following parameters:l = 0.25mm,r v = 0.1µm,V = 8600v,m /e= 45.

The ions were started off from rest at various positions on the edge hyperbola so that the
initial trajectory angles, relative to the horizontal axis, were 0°, 20° and 45°. The total flight
time from edge to plate of the 0° ions was 1.8 ns. The overall focusing effect of the
accelerating field between edge and plate can clearly be seen.

6. Discussion
The transformations described in §§ 2 and 3 give useful formulae for the electric field at

a sharp edge in the presence of two types of cathode. The electric field strengths obtained are
cross section and take no account of end effects or surface roughness. Neglect of these fac-
tors seems justified at least for razor blades (Brailsford and Robertson 1968). Gilliland and
Viney (1968) have shown that the geometrical form of the material lying behind the sharp
edge has only a small effect on the vertex field strength.

The calculation of ion trajectories, using the general equations for electric field com-
ponents given in §2, can be carried out relatively easily. Naidu and Westphal (1966) have
studied ion focusing in an electron impact mass spectrometer by regarding the ion source
and focusing system as being composed of several separate sub-units. They obtain field
components in each sub-unit by the use of appropriate conformal transformations. The
electric fields in an electron impact source are rather lower than in a field ion source, but in
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principle there is no reason why similar calculations should not be carried out for a field
ionization mass spectrometer.

The program described in §5 is presently being extended to deal with the edge/slotted-
plate configuration. Flight times of ions obtained from these studies are being used to inves-
tigate the kinetics of unimolecular decomposition of molecular ions in high fields (P. J. Der-
rick and A. J. B. Robertson, to be published).

Acknowledgments
I should like to thank my supervisor Dr. A. J. B. Robertson for his continued interest in

this work and for helpful advice. I also wish to thank Dr. B. W. Viney for valuable
correspondence and for making results available to me prior to publication. Mr. A.
Whitcombe and Mr. B. Ford helped to clarify many points in several useful discussions.
Finally, the award of a maintenance grant by the Institute of Petroleum is gratefully
acknowledged.

References
ALLARD, J. L., and RUSSELL, R. D., 1963, Brit. J. Appl. Phys.,14, 800–4.
BRAILSFORD, D. F., 1969, Ph.D. Thesis, University of London.
BRAILSFORD, D. F., and ROBERTSON, A. J. B., 1968,Int. J. Mass
Spectry. Ion Phys., 1, 75–85.
GILLILAND, J. M., and VINEY, B. W., 1968, R. Aircraft Estn. Tech. Rep. No. 68271.
GODDARD, L. S., 1944, Proc. Phys. Soc.,56, 372–8.
KLEMPERER, O., 1953, Electron Optics, 2nd Edn (London : Cambridge University Press).
KOBER, H., 1957, Dictionary of Conformal Representations (New York: Dover Publications), p. 58.
MILNE, W. E., 1933, Amer. Math. Monthly,40, 322–7.
NAIDU, P. S., and WESTPHAL, K. O., 1966, Brit. J. Appl. Phys.,17, 645–51.
ROBERTSON, A. J. B., and VINEY, B. W., 1966, Advanc. Mass Spectrom.,3,23–34 (London: Institute
of Petroleum).
STARR, A. T., 1957, Mathematics (London: Pitman) p. 115.

J. PHYS. D:APPL. PHYS., 1970, VOL. 3. PRINTED IN GREAT BRITAIN


