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Abstract

This paper explores, both with empirical datiad with
computer simulationsthe extentto which modularity
characteriseexperts’ knowledge.We discussa repli-
cation of Chase and Simon(4973) classic method of
identifying ‘chunks’, i.e., perceptualpatterns stored
in memory and usedas units. This method usesdata
about the placement of pairs of items in a mentaigk
and consists of comparing latencies betweenthese
items and the number and typérelations they share.
We then compare the human datih simulations car-
ried out with CHREST, a computer mod#| perception
and memory. We showhat the model, basedupon the
acquisition of a large numberof chunks, accountsfor
the humandatawell. This is taken as evidencethat
human knowledge is organised in a modular fashion.

Introduction

An important goal oftognitive scienceis to understand
the characteristics of knowledge, in particulae way it
is acquired and usedlo achievethis goal, researcthas
employeda number of methods, including artificial
laboratory experiments, such as nonseykable learn-
ing, andcollectionof naturalisticdata,such as experts
functioningin their naturalenvironments. It is gener-
ally acceptedhat knowledgeconsistsof different types
(declarative, procedural, episodic) and titsitacquisition
follows a power law of learning. In addition, it has
often been proposed that knowledgensdular,consist-
ing, for example, of productions (e.g., Newdl90) or
of perceptual chunks (e.g., Chase & Simon, 1973).

The goal of this paperis to explore, both with em-
pirical dataandwith computersimulations,the extent
to which modularity characterisehhuman knowledge,
andin particularexperts’ knowledge.We first describe
the conceptof modularity, and then show how it has
beenusedin expertiseresearch. This leadsus to de-
scribe the CHREST architectunghich acquiresknowl-
edge bygrowing a discriminationnet encodingchunks.
Next, we present data aimed at characteritiegoroper-
ties of experts’chunks, and comparethem with those
acquiredoy CHREST. The comparisonresultsin an
excellentfit betweenthe modelandthe humandata.In
the conclusion,implicationsfor the modularity of hu-
man knowledge in general are drawn.

Modularity of Knowledge

Several formalisms, both modular and non-modular,
have been developed in cognitive science to exblan
humans represent and implement knowledgsamples
of modularrepresentationare production systems,se-
mantic networks, and discrimination netExamplesof
non-modularrepresentationgre distributed neural net-
works, holograms, and variowmsathematicalepresenta-
tions based on matrix algebra. This classification
should be considered with caution, howew@n the one
hand, production rules, for example, &ypically organ-
isedin problemspacegqe.g., Newell, 1990), and their
interdependencecan be considerable, which counts
against strict modularity. On the other hand, it cduéd
arguedthat, in non-modularrepresentationsmodules
emergeas the systemdevelopsor learns (e.g., Rumel-
hart & McClelland, 1986).

Modular knowledge organisationhas attracted much
interestin computerscienceand artificial intelligence,
given the importanceof how knowledgeis indexed,
structured,organised,and retrieved (e.g., Lane et al.,
2000). In artificial intelligence, modularity has been
defined as'the ability to add, modify, or deleteindivid-
ual datastructuresmore or less independentlyof the
remainderof the databasethat is, with clearly circum-
scribedeffectson what the system‘knows’ " (Barr &
Feigenbaum1989, p. 149). While a strong argument
canbe madethat it is easierto understandnodularand
decomposablsystemsthan systemsthat do not share
these properties (e.g., Simath69), andthat the value
of these propertiesasbeendemonstratedh fields such
as software engineering,it is an empirical question
whetherhumanknowledgeis modularor not. A rich
source of data abotihis questionhasbeengainedfrom
researchinto expertbehaviour,to which we now turn
our attention.

Chess Experts’ Knowledge

In his seminalstudy, De Groot (1946/1965)subjected
chessplayers to a number of problem-solving and
memory experiments. The surprising resudts that, in
a choice-of-a-movéask, therewas no large skill differ-
encein variablessuch as depth of search,number of
moves considered, or search heuristiogployed. How-
ever, a clear differencewas found in a memory task
where a chess position wpsesentedor a few seconds.
Masters could recall the entire position almpsifectly,



while weaker players could recall only a handful of
pieces. De Groot concludedthat expertisedoesnot re-
side in any superior abilities but in knowledge.

Continuing de Groot's research,Chaseand Simon
(1973) carriedout a study destinedto have a huge im-
pact incognitive science. They usedtwo tasks In the
recall task, basedon de Groot's (1965) method,a chess
position was presented féive secondsand playershad
to reconstruct amany piecesas possible. In the copy
task, the stimulus board remained view, andthe goal
wasto reconstrucit onto a secondempty board. As
the stimulus andhe reconstructiorboardscould not be
fixated simultaneously, Chase and Simon used the
glancesbetweenthe boardsto detectmemory chunks.
Comparingthe latenciesbetweensuccessivepiecesin
the copy and recall tasks, they inferred that piecesre-
placed with less than 2 seconds’ interval belongethe
samechunk, andthat piecesplacedwith an interval of
more than Xecondselongedto differentchunks. Fi-
nally, they showed that the chudlkfinition basedupon
the latencies between tvguccessivgieceswas consis-
tent with a definition based upon the patterrsefantic
relations (attack, defence, proximity, colour, dppe of
piece) sharedby thesetwo pieces. This converging
evidencewas usedto infer the chunksusedto mediate
superiorperformanceandto explorehow they allowed
masterdgo find good movesdespitetheir highly selec-
tive search. A numberof otherexperimentatasks(re-
viewed in Gobet& Simon, 1998) have brought con-
verging evidence for the psychological reality of
chunks, as defineditherby latencyin placementor by
number of relations between pieces.

Simon and Gilmartin (1973) developeda computer
program (MAPP; Memory-Aided Pattern Perceiver)
implementing some of Chase and Simon’s ideas.
MAPP is based upoEPAM (ElementaryPerceiverand
Memorizer; Feigenbaum& Simon, 1984), a theory
developedto accountfor empirical phenomenawhere
chunking (i.e., acquisition of perceptualunits of in-
creasingsize) is seenas essential. The basicidea in
MAPP wasthat long-termmemory(LTM) is accessed
through a discriminationnet, and that, once elicited,
LTM chunksare storedin short-termmemory (STM)
through a pointer. MAPP’s relatively low recall per-
formance—slightly better than a good amateur,ibfigt
rior to an expert—was attributed to the snralimberof
nodes,abouttwo thousandstoredin its LTM. MAPP
simulatedseveralresults successfully:increasein per-
formanceas a function of the number of chunksin
LTM; kind of piecesreplaced;and contentsof chunks.
However, inadditionto its failure in simulating expert
behaviour,the program had several limitations (De
Groot & Gobet,1996). In particular,the chunkswere
chosen by the programmersand not autonomously
learnt, andhe programmadeincorrectpredictionsfor a
number of experiments that were later caroel These
limitations were removedin the CHREST program
discussed below.

CHREST

CHREST (Chunk Hierarchyand REtrieval STructures;
De Groot & Gobet,1996; Gobet& Simon, 2000)is a
cognitive architecturesimilar to MAPP. CHREST
originally addressethigh-level perception,learning and
memory, but various problem-solving mechanisms
have beenimplementedrecently. It is composedof
processedor acquiring low-level perceptual informa-
tion, an STM, attentionalmechanismsa discrimina-
tion net for indexing items in LTM, and mechanisms
for making associationsin LTM such as production
rulesor schemas. STM mediateshe flow of informa-
tion processingetweenthe model’'scomponents. The
centralprocessingpf CHREST revolvesaroundthe ac-
quisition of a discrimination net basedon high-level
perceptual features picked up aitentionalmechanisms
and on the creation of links connecting nodethcf net
together.

After the simulatedeye hasfixated on an object, fea-
tures are extractedand processedn the discrimination
net, andthen, basedupon the output of the discrimina-
tion, a further eye fixation is made,and so on. STM
operatesas a queueithat is, the first elementsto enter
are alsathe first to leave.STM hasa limited capacity,
which consists of fouchunks(Cowan,2001; Gobet&
Simon, 2000). Processings constrainecdby a number
of restrictions,including time parameterssuch as the
time to fixate a chunkin LTM (8 s) and capacity pa-
rameters such as the four-chunk limit of STM.

The discriminatiomet consistsof nodes, which con-
tain images (i.e., the internalrepresentatiorof the ex-
ternal objects; images corresponddbaseand Simon’s
chunks); the nodesare interconnectedy links, which
containtests allowing items to be sortedthrough the
net. Learning happensas follows: once an item has
been sorted through the net, it is compawethe image
in the nodereachedlIf the item and image agree but
thereis moreinformationin the item than the image,
then familiarisation occurs,in which further informa-
tion from the item is added to the image. If tteam and
image disagreein some feature, then discrimination
occurs, in which a new node and a nl@wk are addedto
the net. Basedon empirical data,it hasbeenestimated
that discrimination requires about 8 s dathiliarisation
about 2 s.

In additionto theselearning mechanismsCHREST
hasmechanismdor augmentingsemanticmemory by
the creationof schemagknown as templates) and of
lateral links connectingnodestogether(Gobet, 1996);
for example,theselinks canbe createdwvhennodesare
sufficiently similar (‘similarity links’), or when one
node can act as the condition of anothede (‘condition
links’). The creationof theselinks is consistentwith
the emphasison processinglimits presentin both
EPAM and CHREST, in that all nodes uded creating
new links must be in STM.



Table 1:Copy, recall ané priori chess relations probabilities, for combinations of the five chess relations: /
(A), Defence (D), Spatial Proximity (P), Same Colour (C), and Same Piece (S).

COPY
Relations GAME RANDOM
WITHIN BETWEEN WITHIN BETWEEN
- .037** d72%* .086** . 129*
A .005** .006 .031 .054**
P .000 .006 .037**  .059**
C .148** .278 152** 203**
S .016** .056** .040**  .049**
AP .000* .000 .056** .069**
AS .000 .000 .003 .005*
DC .104** 133 072  077*
PC .084** .067** .059** .046**
PS .002 .006 .044*  .064**
CSs 115 .094 .135* .105
APS .000 .000 .013* .013
DPC .109** .078 123** .064**
DCS .048** .017** .000 .000
PCS .196** .039** 27 .039**
DPCS |.137* .050** .023** . 023**
#obser-
vations 1283 180 1114 389

RECALL A priori
Probabilities
GAME RANDOM GAME RANDOM
<2sec >2sec <2sec >2sed
.052**  190** .051* .284 .335 297
.004** 024 .000* .054 .016 .024
.001 .006 .033** .041* .004 .010
132** 247 .136**  .189 .255 .297
.040** ,102* .059** .054 .154 144
.001 .003 .015 .027 .005 .028
.004** 003 .000 .000 .001 .001
.059** .084** .044 .068* .035 .024
.049**  060* .066** .081** |.019 .009
.006 .012 .018 .027 .006 .010
11 .057* .059* .041 .096 .108
.001 .000 .018 .014 .001 .007
.093** .084* .118*  .081* .048 .028
.033* .012** .015** .000 .002 .001
.202** .060** .232** .041** | .011 .007
.213**  .054** .136** .000 .013 .007
1563 332 272 74

Note: * means p<.01, *meansp<.001 (both two-tailed). The statisticalsignificancelevels are based
on thezvalues that were computed using the following formula (assuming the normal approxitoation

the binomial distribution):

_ Po-Pe
T s.e.

\ [pe (1-pe)
, where s. e. [ ——————
sample sizé

and where gis the observed probability and fhea priori (expected) probability.

CHREST canreproducea numberof featuresof the
behaviour of skilled and unskilled chess players in
memory experiments, such as theye movementsthe
size andhumberof chunks,the numberandtype of er-
rors, and the differential recall of game aaddomposi-
tions (De Groot & Gobet, 1996; Gobet & Simon,
2000). As a psychologicatheory, CHREST has sev-
eral strengths. It is parsimonious, with féwe parame-
ters. It provides absolute quantitative predictions, for
exampleaboutthe numberof errors committedor the
time takenby a subjectto carryout a task. Together
with EPAM, it simulatesn detail a numberof empiri-
cal phenomendrom various domains,such as verbal
learning, context effects in letter perception,concept
formation, expert behaviour, acquisition of first lan-
guageby children,and use of multiple representations
in physics (see Gobet et al., in press, for a review).

A Replication of Chase and Simon
(1973)
As notedabove,Chaseand Simon (1973) operational-

isedthe conceptof chunkusing both the latenciesbe-
tween successivepiece placementsand the semantic

relationsbetweenthem. Their experimenthasrecently
been replicated and extendedby Gobet and Simon
(1998). The main differendeetweenthe two studiesis
that Gobetand Simon useda computerdisplay to pre-
sentthe tasksinsteadof physicalchessboarddn spite
of this difference, there ian importantoverlapbetween
the results of the two studies.

Gobet and Simon analysed26 players (Chaseand
Simon had only 3yangingfrom good amateurdo pro-
fessional grandmasters, who were divided into tisiek
levels (Masters, Expertand Class A players). The
results were in line with previous experimergBpwing
a massiveskill effectwith gameposition, anda small
but reliable skill effect even with meaninglessposi-
tions. Here, we focus upon the operationalisatiorof
chunks, relying both upon Gobet and Simon’s pub-
lished data and upon additional analyses.

Latencies Predict Chunk Boundaries

Gobet and Simon essentially followed Chase and
Simon’s approach. They first estimateda time thresh-
old (2 s) as a means to decidbethertwo piecesplaced
in successiorbelongedto the same chunk, and then




validated this threshold bshowing thatit led, on aver-
age,to similar chunksas those obtainedby using se-
mantic relationslf they are modular,chunksshouldbe
characterised bg high densityof relationsbetweenthe
elements that constitute it, and by a Idensityof rela-
tions with elementsfrom other chunks (Chase &
Simon, 1973; Cowan, 2001)Thatis, there should be
many more relationsbetweensuccessivepieceswithin
the samechunk than betweensuccessivieceson op-
posite sidesof a chunkboundary. Thus, the relations
between successivehgplacedpiecesshouldbe different
dependingon whetherthey are separatedby short or
long latencies. In addition, assumingthat the same
cognitive mechanisms mediate tla¢enciesin the copy
and recall experiments,the two experimentsshould
show the samepatternof interaction betweenlatencies
andnumberof relations. In otherwords, the relations
for the within-glance placementsin the copy task
should correlate with thoder rapid placementg< 2 s)
in the recall task and the relationsfor between-glance
placements in the former should correlai¢h thosefor
slow placements (> 2 s), in the latter.

These predictions are met in both the capgthe re-
call tasks, whose results correlate highly. Within
chunks, small latencies correlate witteege numberof
relations, while large latencies ocanhenthereare few
relationsbetweensuccessivepieces.No such relation-
ship is observedor successiveiecesbelongingto dif-
ferent chunks. The shortest latencies are fouitld four
relations (Defence, Proximity, Colour, and Kind),
which mainly occur with pawn formations.

Relations Predict Chunk Boundaries

The next stepconsistsin showing thatthe pattern of

relation probabilitiesfor within-chunk, but not for be-
tween-chunkplacements differs from what could be
expectedby chance.Table1 gives the probabilities of

the presence of different combinations of relationtha
various experimentalconditions, with the three skill

levelspooled. The lasttwo columnsgive the a priori

probabilities (for game and random positions, respec-
tively) that were calculatedby recording,for eachposi-
tion, all relationsthat exist betweenall possible pairs
of pieces;the a priori probability for a relation is ob-
tainedby dividing the total numberof occurrence®f a
relation by the total numbeasf possiblepairs. Thesea
priori probabilities were basedon 100 positions and
26,801 pairs. Finally, thevaluesindicatewhetherthe
observedprobabilities reliably differ from the a priori

probabilities.

In the copy task, with gamepositions but not with
randompositions? the between-glancerobabilitiesare
much closer to chandfan the within-glanceprobabili-
ties. This patternholdsalsoin the recall of both ran-

IThat this patterndoesnot hold with the copy of random
positions may be dueto the strategy usedby subjectsto
replacethesepositions. Severalsubjectscopied the posi-
tions line by line or column by column.

dom and game positionshen slow placementg> 2 s)
are comparedwith fast placementg< 2 s). The prob-
abilities for pieces with three and forglationsare high
in the within-glanceand fast (< 2 s) conditionscom-
paredwith the between-glancandslow (> 2 s) condi-
tions; the oppositeis true for pieceswith one relation
or none. Note also that the probabilitiesfor combina-
tions of relationsthat include an attack (A) are con-
spicuouslylow, comparedwith chancefor game posi-
tions but not for random positions.

One wayto makesenseof Table1 is to analysethe
correspondenceetweenthe numberof chessrelations
and the deviations frora priori probabilities,computed
by subtractingthe a priori probabilities from the ob-
servedfrequenciesof a given condition. Basedon the
notion of modularity, it should be expectedthat the
within-chunk deviations from a priori probabilities
would be highly correlated with the numberrefations,
while this would notbe the casefor the between-chunk
deviations. This is exactly what wé&sund. The correla-
tions with numberof relationsare high for the within-
chunk conditions (copy gameithin-glance:0.81; copy
random within-glance: 0.68; recall garskort latencies:
0.86; recall random short latencies: 0.79;thd correla-
tions are statistically significant at p = .005he corre-
lations are smaller with the between-chunkconditions
(copy game between-glance0.61; copy random be-
tween-glance0.56; recall game long latencies:0.58;
recall random long latencied).15; noneof the correla-
tions are significantat the .01 level). Theseresultsare
illustrated graphicallyin Figure 1, which shows the
resultsfor gameandrandompositionsas a function of
whetherthe placementsvere within-chunk or between-
chunk. From the Figure, it is clear that, for within-
chunk conditions, the placementshaving few rela-
tions are below chance,while the placementshaving
severalrelations are above chance.There is no such
clear relation for the between-chunks placements.

Computer Simulations

We nowshowthat CHREST captureghe composition
of chunksand the patternof relationsof within- and
between-chunk placements. Simulati@fissimilar phe-
nomena,carried out by Simon and Gilmartin (1973)
using MAPP, were limited to a single subject and
matched the data only approximately.

Methods

In thelearning phase, the programscannedh large data-
baseof master-gamepositions, fixating squareswith

simulatedeye movements,and learning chunks using
discriminationandfamiliarisation. Threenetswere cre-
ated,estimatedo correspondoughly to the recall per-
centages of Class A players, experts, and masi¢hnsa
five-secondpresentatiortime. Thesenets had respec-

tively 1,000 nodes, 10,000 nodes, and 100,000 nodes.

For the simulations of the performance phase, the

program was tested with 100 game positions and 100



(a) Game, within-chunk

Number of relations

randompositions. Learningwasturnedoff. During the
five-second presentationof a position, CHREST

2 o moved its simulatedeye aroundthe board. Eacheye
= ¥ 4 fixation defineda visual field (all squareswithin two
< 027 i squaredrom the squarefixated); the pieceswithin the
£ Tttt T visual field are treatedas a single pattern and sorted
e through the discriminationnet. Other patternsare de-
S bbby fined by the piecesfocuseduponin two successivesye
2 02+ fixations. If a chunkis foundin the discriminationnet,
g p 8 o Humans a pointer to it is placed in STM.
2 04 T —— | During the reconstructionof a position, CHREST
o 1 2 3 4 usedthe information storedin STM. When a piece
Number of relations belongedto severalchunks,it wasreplacedonly once.
(b) Game, between-chunk In case of conflicts (e.g., a square is propdsedontain
= o4 severalpieces),CHREST resolvedthem sequentially,
2 basedon the frequencywith which eachplacementis
e proposed. Like humans,it sometimesmade several
© 02 different proposals about the location of a piecalmut
e T g the contents of a squar€&inally, someweakheuristics
20—y E - 8 were used, such as the fact that only wahéte king can
s be replaced in a position(SeeGobet& Simon, 2000,
S 02 Pa— for more detail.)
S o CHREST A chunk refers to the image of a nodethe discrimi-
g 0.4 F———— nation net. It is therefore straightforward to decide
o 1 2 3 4 whethertwo piecesdo or do not belong to the same
Number of relations chunk. The relationsbetweenpieceswere extractedus-
(c¢) Random, within-chunk ing the same program as that used with the human data.
s o Results
e 02 A e Table 2 gives the probabilities of observiagatternof
s - o by relations,as a function of the type of position and the
= kind of placement. Although the fit with the corre-
200 r==== 2----= spondinghuman datashown in Table 1 is reasonable
c
% 027 ° ® Humans Table 2. Recqll and priori. chess relatior)s probabilities
S T n] B CHREST for combinations of the five chess relations: Attack (A
] 04+ T T T ] Defence (D), Spatial Proximity (P), Same Colour (C), ¢
6. 1 2 3 4 Same Piece (S).
Number of relations
(d) Random, between-chunk G"f’-me Ran_dlom
= o4 - ~ positions ~ positions
o Rela-| With Bet- A pri-| With Bet- A pri-
a i tions in ween ori in ween ori
0.2
A S - | 009 254 335 .018 231 207
S tog-————_a__g A | .005 .034 016 .021 .061 .024
= _:____'_:' ________________ P .013 .011 .004 | .050 .026 .010
S o0od C .104 208 255 | .040 .216 .297
= ® Humans S .021 .148 154 | .050 .136 .144
= ] B CHREST AP | .004 .013 .005| .030 .027 .028
o 04 —r r T AS | .000 .001 .001] .001 .005 .001

DC | .042 .059 .035] .038 .042 .024
PC | .097 .050 .019| .092 .039 .009
PS | .020 .019 .006 | .061 .018 .010

Figure_1: Relation between chess relation probabilites| CcS | .064 .113 .096 | .094 .111 .108
and the number of relations shared by two pieces suc-| APS | .004 .005 .001 [ .008 .017 .007
cessively placed. The long-dash line indicates zero devie| DPC | .162 .031 .048 [ .148 .033 .028

tion, and the short-dash lines indicate deviations of 0.1 DCS | .007 .000 .002 | .009 .001 .001
above or below zero. PCS| .186 .032 .011 ] .147 .015 .007

DPCS| .259 .021 .013 ]| .193 .023 .007




(the r2 are: game within-chunk: .83; game between-
chunk: .82; random within-chunk: .58; random be-
tween-chunk:.75), not too much weight should be
given to them, because they aensitiveto a few large
values,andbecausahey may in part reflect the statis-
tics of the chessenvironment(i.e., the a priori prob-
abilities). As with the humandata,we subtractedhe a
priori probabilities from the recall probabilities, and
took the sum for eachnumberof relations. Figure 1

showsthe resultsfor both the humansand CHREST.
The model fits thehumandataquite well. In particular,
the between-chunkplacementsshow little deviation
from thea priori probabilities, in contrast to thaithin-

chunk placements, whichre clearly below chancewith

zeroandone relation, and abovechancewith three and
four relations. All conditions pooled, CHREST ac-
counts for 90% of the variance of the human data.

Conclusion

EPAM and CHREST'’s learning mechanisms,based
upon the construction of a discrimination netchfinks,
offer a crisp and computational definitiofi the concept
of knowledge module. Using thaefinition, Chaseand
Simon (1973) have found, and Gola@id Simon (1998)
have confirmed, that relations and latencies between
piecesoffer convergingevidencefor validating the psy-
chological reality of chunks. This paper has shown
that, with the samemechanismsaisedto accountfor a
variety of chessdata, CHREST acquireschunks that
have the same relational properties as humans’.
The acquisition mechanismsconsisting in learning
pieces within the visual fieldnd betweentwo eye fixa-
tions largely explain the high number of relations
within chunks. It is importantto note that this phe-
nomenonis not trivial to simulate, however.For ex-
ample, learning mechanismssuch as Saariluomaand
Laine’s (2001) frequency-basetheuristic, where chunk
constructionis not constrainedby spatial contiguity,
would fail to accountfor the data,becausehey do not
capturethe relation of proximity which is essentialin
the chunks acquired by humans (cf. Table 1).
Theseresults, as well as others, indicate that the
modular structure of thgype of discriminationnet used
by EPAM and CHREST capturesessentialaspectsof
humancognition. Chunks, whose elementshare a
numberof relations, are built up gradually and recur-
sively, with later chunks being builtom smaller‘sub-
chunks’. Some of thesechunksevolve into schema-
like structuresandsomeget later connectedby lateral
links, therebyconstructingboth a net of productions
and a semantic network. It is not only the preserica
nodestoring a piece of knowledgewhich matters,but
also the richnesswith which this nodeis perceptually
indexedand the density with which this nodeis con-
nectedto other nodes. Thesetwo aspectsgive some

computational meaning to “conceptual understandiag”:

richly-connectednetwork of links connecting produc-
tions and schemas, thist accessiblghrough perceptual

chunks. In addition to expert behaviour, CHREST,
which incorporatesmechanismdor all thesekinds of
learning, including the acquisition of modular struc-
tures, accounts foempiricalphenomenan a variety of
domains.
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