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Abstract

This paper explores, both with empirical data and with
computer simulations, the extent to which modularity
characterises experts’ knowledge. We discuss a repli-
cation of Chase and Simon’s (1973) classic method of
identifying ‘chunks’, i.e., perceptual patterns stored
in memory and used as units. This method uses data
about the placement of pairs of items in a memory task
and consists of comparing latencies between these
items and the number and type of relations they share.
We then compare the human data with simulations car-
ried out with CHREST, a computer model of perception
and memory. We show that the model, based upon the
acquisition of a large number of chunks, accounts for
the human data well. This is taken as evidence that
human knowledge is organised in a modular fashion.

Introduction
An important goal of cognitive science is to understand
the characteristics of knowledge, in particular the way it
is acquired and used.  To achieve this goal, research has
employed a number of methods, including artificial
laboratory experiments, such as nonsense syllable learn-
ing, and collection of naturalistic data, such as experts
functioning in their natural environments.  It is gener-
ally accepted that knowledge consists of different types
(declarative, procedural, episodic) and that its acquisition
follows a power law of learning.  In addition, it has
often been proposed that knowledge is modular, consist-
ing, for example, of productions (e.g., Newell, 1990) or
of perceptual chunks (e.g., Chase & Simon, 1973). 

The goal of this paper is to explore, both with em-
pirical data and with computer simulations, the extent
to which modularity characterises human knowledge,
and in particular experts’ knowledge.  We first describe
the concept of modularity, and then show how it has
been used in expertise research.  This leads us to de-
scribe the CHREST architecture, which acquires knowl-
edge by growing a discrimination net encoding chunks.
Next, we present data aimed at characterising the proper-
ties of experts’ chunks, and compare them with those
acquired by CHREST.  The comparison results in an
excellent fit between the model and the human data. In
the conclusion, implications for the modularity of hu-
man knowledge in general are drawn.

Modularity of Knowledge
Several formalisms, both modular and non-modular,
have been developed in cognitive science to explain how
humans represent and implement knowledge.  Examples
of modular representations are production systems, se-
mantic networks, and discrimination nets.  Examples of
non-modular representations are distributed neural net-
works, holograms, and various mathematical representa-
tions based on matrix algebra.  This classification
should be considered with caution, however. On the one
hand, production rules, for example, are typically organ-
ised in problem spaces (e.g., Newell, 1990), and their
interdependence can be considerable, which counts
against strict modularity.  On the other hand, it could be
argued that, in non-modular representations, modules
emerge as the system develops or learns (e.g., Rumel-
hart & McClelland, 1986).

Modular knowledge organisation has attracted much
interest in computer science and artificial intelligence,
given the importance of how knowledge is indexed,
structured, organised, and retrieved (e.g., Lane et al.,
2000).  In artificial intelligence, modularity has been
defined as “the ability to add, modify, or delete individ-
ual data structures more or less independently of the
remainder of the database, that is, with clearly circum-
scribed effects on what the system ‘knows’ ” (Barr &
Feigenbaum, 1989, p. 149). While a strong argument
can be made that it is easier to understand modular and
decomposable systems than systems that do not share
these properties (e.g., Simon, 1969), and that the value
of these properties has been demonstrated in fields such
as software engineering, it is an empirical question
whether human knowledge is modular or not.  A rich
source of data about this question has been gained from
research into expert behaviour, to which we now turn
our attention.

Chess Experts’ Knowledge
In his seminal study, De Groot (1946/1965) subjected
chess players to a number of problem-solving and
memory experiments. The surprising result was that, in
a choice-of-a-move task, there was no large skill differ-
ence in variables such as depth of search, number of
moves considered, or search heuristics employed.  How-
ever, a clear difference was found in a memory task
where a chess position was presented for a few seconds.
Masters could recall the entire position almost perfectly,



while weaker players could recall only a handful of
pieces.  De Groot concluded that expertise does not re-
side in any superior abilities but in knowledge.

Continuing de Groot’s research, Chase and Simon
(1973) carried out a study destined to have a huge im-
pact in cognitive science.  They used two tasks. In the
recall task, based on de Groot’s (1965) method, a chess
position was presented for five seconds, and players had
to reconstruct as many pieces as possible.  In the copy
task, the stimulus board remained in view, and the goal
was to reconstruct it onto a second, empty board.  As
the stimulus and the reconstruction boards could not be
fixated simultaneously, Chase and Simon used the
glances between the boards to detect memory chunks.
Comparing the latencies between successive pieces in
the copy and recall tasks, they inferred that pieces re-
placed with less than 2 seconds’ interval belonged to the
same chunk, and that pieces placed with an interval of
more than 2 seconds belonged to different chunks.  Fi-
nally, they showed that the chunk definition based upon
the latencies between two successive pieces was consis-
tent with a definition based upon the pattern of semantic
relations (attack, defence, proximity, colour, and type of
piece) shared by these two pieces.  This converging
evidence was used to infer the chunks used to mediate
superior performance, and to explore how they allowed
masters to find good moves despite their highly selec-
tive search.  A number of other experimental tasks (re-
viewed in Gobet & Simon, 1998) have brought con-
verging evidence for the psychological reality of
chunks, as defined either by latency in placement or by
number of relations between pieces.

Simon and Gilmartin (1973) developed a computer
program (MAPP; Memory-Aided Pattern Perceiver)
implementing some of Chase and Simon’s ideas.
MAPP is based upon EPAM (Elementary Perceiver and
Memorizer; Feigenbaum & Simon, 1984), a theory
developed to account for empirical phenomena where
chunking (i.e., acquisition of perceptual units of in-
creasing size) is seen as essential.  The basic idea in
MAPP was that long-term memory (LTM) is accessed
through a discrimination net, and that, once elicited,
LTM chunks are stored in short-term memory (STM)
through a pointer. MAPP’s relatively low recall per-
formance—slightly better than a good amateur, but infe-
rior to an expert—was attributed to the small number of
nodes, about two thousand, stored in its LTM. MAPP
simulated several results successfully: increase in per-
formance as a function of the number of chunks in
LTM; kind of pieces replaced; and contents of chunks.
However, in addition to its failure in simulating expert
behaviour, the program had several limitations (De
Groot & Gobet, 1996).  In particular, the chunks were
chosen by the programmers and not autonomously
learnt, and the program made incorrect predictions for a
number of experiments that were later carried out. These
limitations were removed in the CHREST program
discussed below.

CHREST
CHREST (Chunk Hierarchy and REtrieval STructures;
De Groot & Gobet, 1996; Gobet & Simon, 2000) is a
cognitive architecture similar to MAPP.  CHREST
originally addressed high-level perception, learning and
memory, but various problem-solving mechanisms
have been implemented recently. It is composed of
processes for acquiring low-level perceptual informa-
tion, an  STM, attentional mechanisms, a discrimina-
tion net for indexing items in LTM, and mechanisms
for making associations in LTM such as production
rules or schemas.  STM mediates the flow of informa-
tion processing between the model’s components.  The
central processing of CHREST revolves around the ac-
quisition of a discrimination net based on high-level
perceptual features picked up by attentional mechanisms
and on the creation of links connecting nodes of this net
together.

After the simulated eye has fixated on an object, fea-
tures are extracted and processed in the discrimination
net, and then, based upon the output of the discrimina-
tion, a further eye fixation is made, and so on. STM
operates as a queue; that is, the first elements to enter
are also the first to leave. STM has a limited capacity,
which consists of four chunks (Cowan, 2001; Gobet &
Simon, 2000).  Processing is constrained by a number
of restrictions, including time parameters such as the
time to fixate a chunk in LTM (8 s) and capacity pa-
rameters such as the four-chunk limit of STM. 

The discrimination net consists of nodes, which con-
tain images (i.e., the internal representation of the ex-
ternal objects; images correspond to Chase and Simon’s
chunks); the nodes are interconnected by links, which
contain tests allowing items to be sorted through the
net. Learning happens as follows: once an item has
been sorted through the net, it is compared to the image
in the node reached. If the item and image agree but
there is more information in the item than the image,
then familiarisation occurs, in which further informa-
tion from the item is added to the image. If the item and
image disagree in some feature, then discrimination
occurs, in which a new node and a new link are added to
the net.  Based on empirical data, it has been estimated
that discrimination requires about 8 s and familiarisation
about 2 s.

In addition to these learning mechanisms, CHREST
has mechanisms for augmenting semantic memory by
the creation of schemas (known as templates) and of
lateral links connecting nodes together (Gobet, 1996);
for example, these links can be created when nodes are
sufficiently similar (‘similarity links’), or when one
node can act as the condition of another node (‘condition
links’).  The creation of these links is consistent with
the emphasis on processing limits present in both
EPAM and CHREST, in that all nodes used for creating
new links must be in STM.   



COPY RECALL A priori
Probabil it ies

Relations GAME RANDOM GAME RANDOM GAME RANDOM
WITHIN BETWEEN WITHIN BETWEEN ≤ 2 sec > 2 sec ≤ 2 sec > 2 sec

- .037** .172** .086** .129** .052** .190** .051** .284 .335 .297
A .005** .006 .031 .054** .004** .024 .000* .054 .016 .024
P .000 .006 .037** .059** .001 .006 .033** .041* .004 .010
C .148** .278 .152** .203** .132** .247 .136** .189 .255 .297
S .016** .056** .040** .049** .040** .102* .059** .054 .154 .144

A P .000* .000 .056** .069** .001 .003 .015 .027 .005 .028
A S .000 .000 .003 .005* .004** .003 .000 .000 .001 .001
D C .104** .133** .072** .077** .059** .084** .044 .068* .035 .024
P C .084** .067** .059** .046** .049** .060** .066** .081** .019 .009
P S .002 .006 .044** .064** .006 .012 .018 .027 .006 .010
C S .115 .094 .135* .105 .111 .057* .059* .041 .096 .108

A P S .000 .000 .013* .013 .001 .000 .018 .014 .001 .007
DPC .109** .078 .123** .064** .093** .084* .118** .081* .048 .028
D C S .048** .017** .000 .000 .033** .012** .015** .000 .002 .001
P C S .196** .039** .127** .039** .202** .060** .232** .041** .011 .007

DPCS .137** .050** .023** .023** .213** .054** .136** .000 .013 .007
#obser-
vations 1283 180 1114 389 1563 332 272 74

   
Note:  * means p<.01, ** means p<.001 (both two-tailed). The statistical significance levels are based
on the z-values that were computed using the following formula (assuming the normal approximation to
the binomial distribution):

z  =  
po - pe
s. e.

 ,        where s. e. = 
pe (1 - pe)

sample size
 ,

and where po is the observed probability and pe the a priori (expected) probability.

CHREST can reproduce a number of features of the
behaviour of skilled and unskilled chess players in
memory experiments, such as their eye movements, the
size and number of chunks, the number and type of er-
rors, and the differential recall of game and random posi-
tions (De Groot & Gobet, 1996; Gobet & Simon,
2000).  As a psychological theory, CHREST has sev-
eral strengths. It is parsimonious, with few free parame-
ters. It provides absolute quantitative predictions, for
example about the number of errors committed or the
time taken by a subject to carry out a task.  Together
with EPAM, it simulates in detail a number of empiri-
cal phenomena from various domains, such as verbal
learning, context effects in letter perception, concept
formation, expert behaviour, acquisition of first lan-
guage by children, and use of multiple representations
in physics (see Gobet et al., in press, for a review).

A Replication of Chase and Simon
(1973)

As noted above, Chase and Simon (1973) operational-
ised the concept of chunk using both the latencies be-
tween successive piece placements and the semantic

relations between them.  Their experiment has recently
been replicated and extended by Gobet and Simon
(1998).  The main difference between the two studies is
that Gobet and Simon used a computer display to pre-
sent the tasks instead of physical chessboards. In spite
of this difference, there is an important overlap between
the results of the two studies.

Gobet and Simon analysed 26 players (Chase and
Simon had only 3) ranging from good amateurs to pro-
fessional grandmasters, who were divided into three skill
levels (Masters, Experts and Class A players).  The
results were in line with previous experiments, showing
a massive skill effect with game position, and a small
but reliable skill effect even with meaningless posi-
tions.  Here, we focus upon the operationalisation of
chunks, relying both upon Gobet and Simon’s pub-
lished data and upon additional analyses.

Latencies Predict Chunk Boundaries
Gobet and Simon essentially followed Chase and
Simon’s approach.  They first estimated a time thresh-
old (2 s) as a means to decide whether two pieces placed
in succession belonged to the same chunk, and then

Table 1:    Copy, recall and a priori chess relations probabilities, for combinations of the five chess relations: Attack
(A), Defence (D), Spatial Proximity (P), Same Colour (C), and Same Piece (S).



validated this threshold by showing that it led, on aver-
age, to similar chunks as those obtained by using se-
mantic relations. If they are modular, chunks should be
characterised by a high density of relations between the
elements that constitute it, and by a low density of rela-
tions with elements from other chunks (Chase &
Simon, 1973; Cowan, 2001). That is, there should be
many more relations between successive pieces within
the same chunk than between successive pieces on op-
posite sides of a chunk boundary.  Thus, the relations
between successively replaced pieces should be different
depending on whether they are separated by short or
long latencies.  In addition, assuming that the same
cognitive mechanisms mediate the latencies in the copy
and recall experiments, the two experiments should
show the same pattern of interaction between latencies
and number of relations.  In other words, the relations
for the within-glance placements in the copy task
should correlate with those for rapid placements (≤ 2 s)
in the recall task and the relations for between-glance
placements in the former should correlate with those for
slow placements (> 2 s), in the latter. 

These predictions are met in both the copy and the re-
call tasks, whose results correlate highly. Within
chunks, small latencies correlate with a large number of
relations, while large latencies occur when there are few
relations between successive pieces. No such relation-
ship is observed for successive pieces belonging to dif-
ferent chunks. The shortest latencies are found with four
relations (Defence, Proximity, Colour, and Kind),
which mainly occur with pawn formations.

Relations Predict Chunk Boundaries
The next step consists in showing that the pattern of
relation probabilities for within-chunk, but not for be-
tween-chunk placements, differs from what could be
expected by chance. Table 1 gives the probabilities of
the presence of different combinations of relations in the
various experimental conditions, with the three skill
levels pooled.  The last two columns give the a priori
probabilities (for game and random positions, respec-
tively) that were calculated by recording, for each posi-
tion, all relations that exist between all possible pairs
of pieces; the a priori probability for a relation is ob-
tained by dividing the total number of occurrences of a
relation by the total number of possible pairs.  These a
priori probabilities were based on 100 positions and
26,801 pairs.  Finally, the z-values indicate whether the
observed probabilities reliably differ from the a priori
probabilities.

In the copy task, with game positions but not with
random positions,1 the between-glance probabilities are
much closer to chance than the within-glance probabili-
ties.  This pattern holds also in the recall of both ran-
                                                
1That this pattern does not hold with the copy of random
positions may be due to the strategy used by subjects to
replace these positions. Several subjects copied the posi-
tions line by line or column by column.

dom and game positions when slow placements (> 2 s)
are compared with fast placements (≤ 2 s).  The prob-
abilities for pieces with three and four relations are high
in the within-glance and fast (≤ 2 s) conditions com-
pared with the between-glance and slow (> 2 s) condi-
tions; the opposite is true for pieces with one relation
or none.  Note also that the probabilities for combina-
tions of relations that include an attack (A) are con-
spicuously low, compared with chance, for game posi-
tions but not for random positions. 

One way to make sense of Table 1 is to analyse the
correspondence between the number of chess relations
and the deviations from a priori probabilities, computed
by subtracting the a priori probabilities from the ob-
served frequencies of a given condition. Based on the
notion of modularity, it should be expected that the
within-chunk deviations from a priori probabilities
would be highly correlated with the number of relations,
while this would not be the case for the between-chunk
deviations. This is exactly what was found. The correla-
tions with number of relations are high for the within-
chunk conditions (copy game within-glance: 0.81; copy
random within-glance: 0.68; recall game short latencies:
0.86; recall random short latencies: 0.79; all the correla-
tions are statistically significant at p = .005). The corre-
lations are smaller with the between-chunk conditions
(copy game between-glance: 0.61; copy random be-
tween-glance: 0.56; recall game long latencies: 0.58;
recall random long latencies: -0.15; none of the correla-
tions are significant at the .01 level). These results are
illustrated graphically in Figure 1, which shows the
results for game and random positions as a function of
whether the placements were within-chunk or between-
chunk. From the Figure, it is clear that, for  within-
chunk  conditions,  the  placements having few rela-
tions are below chance, while the placements having
several relations are above chance. There is no such
clear relation for the between-chunks placements.

Computer Simulations
We now show that CHREST captures the composition
of chunks and the pattern of relations of within- and
between-chunk placements. Simulations of similar phe-
nomena, carried out by Simon and Gilmartin (1973)
using MAPP, were limited to a single subject and
matched the data only approximately. 

Methods
In the learning phase, the program scanned a large data-
base of master-game positions, fixating squares with
simulated eye movements, and learning chunks using
discrimination and familiarisation. Three nets were cre-
ated, estimated to correspond roughly to the recall per-
centages of Class A players, experts, and masters with a
five-second presentation time.  These nets had respec-
tively  1,000 nodes, 10,000 nodes, and 100,000 nodes.

For the simulations of the performance phase, the
program was  tested  with  100 game positions  and 100
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Figure 1:     Relation between chess relation probabilities
and the number of relations shared by two pieces suc-

cessively placed. The long-dash line indicates zero devia-
tion, and the short-dash lines indicate deviations of 0.1

above or below zero.

random positions. Learning was turned off. During the
five-second presentation of a position,  CHREST
moved its simulated eye around the board.  Each eye
fixation defined a visual field (all squares within two
squares from the square fixated); the pieces within the
visual field are treated as a single pattern and sorted
through the discrimination net. Other patterns are de-
fined by the pieces focused upon in two successive eye
fixations. If a chunk is found in the discrimination net,
a pointer to it is placed in STM. 

During the reconstruction of a position, CHREST
used the information stored in STM.  When a piece
belonged to several chunks, it was replaced only once.
In case of conflicts (e.g., a square is proposed to contain
several pieces), CHREST resolved them sequentially,
based on the frequency with which each placement is
proposed.  Like humans, it sometimes made several
different proposals about the location of a piece or about
the contents of a square.  Finally, some weak heuristics
were used, such as the fact that only one white king can
be replaced in a position.  (See Gobet & Simon, 2000,
for more detail.)

A chunk refers to the image of a node in the discrimi-
nation net. It is therefore straightforward to decide
whether two pieces do or do not belong  to the same
chunk. The relations between pieces were extracted us-
ing the same program as that used with the human data.

Results
Table 2 gives the probabilities of observing a pattern of
relations, as a function of the type of position and the
kind of placement.  Although the fit with the corre-
sponding human data shown in Table 1 is reasonable

Table 2. Recall and a priori  chess relations probabilities,
for combinations of the five chess relations: Attack (A),

Defence (D), Spatial Proximity (P), Same Colour (C), and
Same Piece (S).

Game
posi t ions

Random
posi t ions

Rela -
t i o n s

Wi th
i n

B e t -
ween

A pri-
o r i

Wi th
i n

B e t -
ween

A pri-
o r i

 - .009 .254 .335 .018 .231 .297
 A .005 .034 .016 .021 .061 .024
 P .013 .011 .004 .050 .026 .010
 C .104 .208 .255 .040 .216 .297
 S .021 .148 .154 .050 .136 .144
AP .004 .013 .005 .030 .027 .028
AS .000 .001 .001 .001 .005 .001
DC .042 .059 .035 .038 .042 .024
PC .097 .050 .019 .092 .039 .009
PS .020 .019 .006 .061 .018 .010
CS .064 .113 .096 .094 .111 .108

APS .004 .005 .001 .008 .017 .007
DPC .162 .031 .048 .148 .033 .028
DCS .007 .000 .002 .009 .001 .001
PCS .186 .032 .011 .147 .015 .007

DPCS .259 .021 .013 .193 .023 .007



(the r2 are: game within-chunk: .83; game between-
chunk: .82; random within-chunk: .58; random be-
tween-chunk: .75), not too much weight should be
given to them, because they are sensitive to a few large
values, and because they may in part reflect the statis-
tics of the chess environment (i.e., the a priori prob-
abilities). As with the human data, we subtracted the a
priori probabilities from the recall probabilities, and
took the sum for each number of relations.  Figure 1
shows the results for both the humans and CHREST.
The model fits the human data quite well. In particular,
the between-chunk placements show little deviation
from the a priori probabilities, in contrast to the within-
chunk placements, which are clearly below chance with
zero and one relation, and above chance with three and
four relations.  All conditions pooled, CHREST ac-
counts for 90% of the variance of the human data.

Conclusion
EPAM and CHREST’s learning mechanisms, based
upon the construction of a discrimination net of chunks,
offer a crisp and computational definition of the concept
of knowledge module.  Using this definition, Chase and
Simon (1973) have found, and Gobet and Simon (1998)
have confirmed, that relations and latencies between
pieces offer converging evidence for validating the psy-
chological reality of chunks.  This paper has shown
that, with the same mechanisms used to account for a
variety of chess data, CHREST acquires chunks that
have the same relational properties as humans’.

The acquisition mechanisms consisting in learning
pieces within the visual field and between two eye fixa-
tions largely explain the high number of relations
within chunks. It is important to note that this phe-
nomenon is not trivial to simulate, however. For ex-
ample, learning mechanisms such as Saariluoma and
Laine’s (2001) frequency-based heuristic, where chunk
construction is not constrained by spatial contiguity,
would fail to account for the data, because they do not
capture the relation of proximity which is essential in
the chunks acquired by humans (cf. Table 1).

These results, as well as others, indicate that the
modular structure of the type of discrimination net used
by EPAM and CHREST captures essential aspects of
human cognition.  Chunks, whose elements share a
number of relations, are built up gradually and recur-
sively, with later chunks being built from smaller ‘sub-
chunks’.  Some of these chunks evolve into schema-
like structures, and some get later connected by lateral
links, thereby constructing both a net of productions
and a semantic network.  It is not only the presence of a
node storing a piece of knowledge which matters, but
also the richness with which this node is perceptually
indexed and the density with which this node is con-
nected to other nodes. These two aspects give some
computational meaning to “conceptual understanding”: a
richly-connected network of links connecting produc-
tions and schemas, that is accessible through perceptual

chunks. In addition to expert behaviour, CHREST,
which incorporates mechanisms for all these kinds of
learning, including the acquisition of modular struc-
tures, accounts for empirical phenomena in a variety of
domains.
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