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EFFICIENT SOLUTION OF RATIONAL CONICS

J. E. CREMONA AND D. RUSIN

Abstract. We present e�cient algorithms for solving Legendre equations over

Q (equivalently, for �nding rational points on rational conics) and parametriz-

ing all solutions. Unlike existing algorithms, no integer factorization is re-

quired, provided that the prime factors of the discriminant are known.

1. Introduction

1.1. Summary of results. In this paper we give e�cient methods of �nding all

rational points on a rational conic C, given by non-singular homogeneous equation

of degree 2:

C : f(X;Y; Z) = 0:(1)

One method for �nding one rational point on C, if one exists, is the original

descent method of Legendre. We show how one may easily make a signi�cant

improvement to this (reducing the number of iterations from exponential in the

size of the input to linear); and also, but with more work, make an even greater

improvement. This last method involves no integer factorization other than that of

the discriminant of the original equation (which is in any case necessary for deciding

the solubility of (1)). It is the necessity of factorizing \spurious" integers arising

during the course of the computation which is the bottleneck in simpler reduction

methods; our \factorization-free" method avoids this entirely.

We also describe a factorization-free method of solution based on lattice reduc-

tion; this is not original, though apparently not well known.

We present examples and timings of our implementation of both methods; these

indicate that the reduction method is faster in practice than the lattice-based

method. Both are linear time, given a so-called solubility certi�cate (de�ned below),

and probabilistic polynomial time given only the factorization of the discriminant.

As an example of the speed which is now attainable, the solution of an equation

of the form ax2 + by2 = cz2, where a, b and c are 200-digit primes, takes less than

2 seconds on a modest PC. Such a problem is not feasible to solve in reasonable

time with Legendre's method (as in Maple, for example).

We also show how to parametrize all rational points on C, given one point, in the

most e�cient way. This is necessary for several applications, such as to 2-descent

on elliptic curves, and is also used for �nding a small single solution to (1).

It would be useful and interesting to extend the algorithms presented here to

number �elds. We say little more about this here, but refer to the paper [11] by

Pohst, and Simon's thesis [14].

The factorization-free algorithm presented here has been implemented in release

2.8 (July 2001) of the package Magma.

1991 Mathematics Subject Classi�cation. Primary 11G30, 11D41.

c1997 American Mathematical Society
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2 J. E. CREMONA AND D. RUSIN

1.2. Background. By the Hasse or local-global principle for curves of genus 0, the

curve C has rational points if and only if it has points everywhere locally. Thus,

testing (1) for solubility is easy, at least in theory, and in practice no harder than

factorizing the discriminant of the given equation (see Section 1 below for details).

Our �rst main concern will be to �nd e�ciently one solution when solutions exist.

Here and throughout we will pass freely between the geometric language of \points

on curves" and the Diophantine language of \solutions to equations". We always

exclude the trivial solution (x; y; z) = (0; 0; 0), as we are really interested in projec-

tive solutions (x : y : z) 2 P2(Q), each of which has a \primitive" representation

with x; y; z 2 Z and gcd(x; y; z) = 1, unique up to sign.

Secondly, we will want to �nd a \small" solution. Holzer's Theorem (see below for

a precise statement) asserts that a soluble equation always has solutions which are

not too large in terms of the coe�cients. Any given solution may be reduced, using

a method of Mordell, until it satis�es Holzer's bounds. We present an alternative

reduction method, faster than Mordell's, though the solution it gives may not be

quite Holzer-reduced.

Finally, given one solution P0 = (x0; y0; z0) to (1), one can write down a para-

metrization of all solutions of the form

X = Q1(U; V ); Y = Q2(U; V ); Z = Q3(U; V )(2)

where eachQi(U; V ) 2 Z[U; V ] is a quadratic form. Geometrically, the homogeneous

coordinates (U : V ) parametrize the pencil of lines through P0, each of which

intersects the conic C in a unique second point. Our �nal task will be to �nd

such a parametric solution which is as simple as possible. We will see that a

parametrization exists such that the discriminants of the polynomials Qi(U; V )
are prescribed in terms of the coe�cients of the de�ning polynomial f(X;Y; Z),
independently of the particular basic solution P0 found earlier. This last point is

particularly signi�cant in certain applications.

Our approach throughout will be algorithmic, and our results will be in the form

of e�cient algorithms to carry out the tasks we have just outlined. We will give

examples to show that our method is more e�cient, and leads to better (meaning

smaller) solutions than those which can be found elsewhere (for example, by using

the Maple computer algebra system). The mathematics here is entirely elementary,

and mostly also quite well-known, but we are not aware of a systematic treatment

of such equations in the literature which is both algorithmic and concerned with

the size of the parametric solutions obtained.

A slightly di�erent problem is to parametrize all \primitive" integer solutions

(x; y; z) to (1) using integer quadratics Qi(U; V ). Mordell showed that this is pos-

sible using a �nite family of quadratic parametrizations of the form (2). Since we

are interested in projective solutions we are not interested in the primitivity, and

our task is therefore slightly simpler.

The application which led us to develop these methods is in higher descents on

elliptic curves over Q, starting with a descent via 2-isogeny. See [5] for details of this.

Another application of which we are aware is the determination of explicit equations

for hyperelliptic curves whose Jacobians are quotients of modular Jacobians: see

the theses of Wilson [19] (Oxford, 1998) and Weber [17] (Essen, 1996) for examples

of these. It is remarkable that an algorithmic solution to the problem of �nding

all rational points on a curve of genus 0 has not yet been perfected (as remarked

by Mazur in [9]), given the current activity on a wide scale concerning constructive

solutions to Diophantine equations of higher genus, so it is interesting to note that

e�cient solutions to this simpler problem are also required for the study of curves

of higher genus.

We are grateful to Denis Simon for the reference [12].
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2. Single Solutions

2.1. Standard forms of equation. By elementary algebra we may complete the

square in the general quadratic form f(X;Y; Z) to obtain the diagonal form

aX2 + bY 2 + cZ2 = 0;(3)

often called Legendre's equation. Since the equation is assumed to be nonsingular,

we have abc 6= 0. Furthermore, by simple scaling of the variables we may reduce

to the case where the coe�cients are integers which are (i) pairwise coprime, and

(ii) square-free, so that abc is square-free. Achieving condition (i) only requires gcd

computations, while (ii) requires factorization of the coe�cients. We will assume

throughout that this factorization is known. Such an equation (3) will be called

reduced; it is unique, up to permutations of the variables and changing all the signs.

Since real solubility requires that the coe�cients do not all have the same sign, we

also assume that a > 0, b > 0 and c < 0.

It will also sometimes be useful to put our equation into norm form

X2 � aZ2 = bY 2:(4)

Solving this amounts to expressing b as a norm from Q(
p
a), if possible. In this

form we can require that a and b are both square-free integers, but not that they

are coprime. Real solubility requires that a and b are not both negative. We will

use this form for the �rst recursive solution of the equation below.

Lastly, for the applications to elliptic curves it is most convenient to use a form

of the equation slightly more general than the diagonal form, which we call the

semi-diagonal form:

aX2 + bXZ + cZ2 = dY 2:(5)

Here we will require that all the coe�cients are integers with d squarefree, d(b2�4ac)
nonzero for nonsingularity, and gcd(a; b; c; d) = 1. In our application we also have

ac 6= 0 and so we will also assume this below.

2.2. Local Solubility Criterion and Holzer's Theorem. The necessary and

su�cient criterion for solubility of (3) is simply that it should have solutions in

Qp for all primes p and also in R. This result is usually referred to as Legendre's

Theorem. For odd primes p not dividing abc there is always a local solution, so

this only gives a �nite number of conditions to check. Checking these conditions in

practice does require us to factorize the coe�cients. Suppose that (3) is reduced,

so that abc is square-free. If p is odd and divides c (say), then solubility in Qp

follows from solubility modulo p (by Hensel's Lemma), and hence from the condition

that the Legendre symbol
�
�ab
p

�
is +1. Hence the local conditions for all odd

�nite primes are equivalent to the existence of solutions to the following quadratic

congruences:

X2
1 � �bc (mod a); X2

2 � �ca (mod b); X2
3 � �ab (mod c):(6)

Moreover, the number of local conditions which fails must be even (by the product

formula for the Hilbert symbol), so the solubility of these congruences together with

the sign condition ensuring real solubility are already su�cient to ensure global

solubility, and a 2-adic condition is not needed.

De�nition 2.1. A triple (k1; k2; k3) 2 Z3 is called a solubility certi�cate for (3) if

it gives a solution to the congruences (6).

We summarize the local solubility criterion as follows.
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Lemma 2.1. Let a, b and c be nonzero integers with abc squarefree, not all of the

same sign. Then (3) has a solution if and only if a solubility certi�cate exists.

If a, b and c are pairwise coprime (but not necessarily square-free), then the

existence of a solubility certi�cate is su�cient, but no longer necessary, for the

existence of solutions to (3).

A proof of the last statement is implicit in the algorithms below, which guarantee

to deliver a solution from a solubility certi�cate provided only that a, b and c are

pairwise coprime and not all of the same sign. That the existence of the certi�cate is

not necessary when the coe�cients are square-free may be seen from the equation

9X2 � Y 2 � Z2 = 0, which has the solution (1; 3; 0) but no certi�cate since the

congruence X2
1 � �1 (mod 9) has no solution.

Associated to the triple of coe�cients (a; b; c) and the certi�cate (k1; k2; k3) we
will associate a 3-dimensional sublattice L = L(a; b; c; k1; k2; k3) of Z3, called the

solution lattice for the certi�cate, as follows:

L(a; b; c; k1; k2; k3) = f(x; y; z) 2 Z3 jby � k1z (mod a);

cz � k2x (mod b);(7)

ax � k3y (mod c)g:
The index of L(a; b; c; k1; k2; k3) in Z3 is jabcj. One easily checks that for (x; y; z) 2
L, we have ax2 + by2 + cz2 � 0 (mod abc). In the second and third algorithms we

present below, we will construct a solution of (3) which lies in the solution lattice

for any given solubility certi�cate.

The �rst algorithm we give below for solving conics itself constitutes a proof of

Legendre's theorem, since it is guaranteed to �nd a solution unless either a quadratic

congruence fails to be soluble, or the signs of the coe�cients are wrong. Indeed,

Legendre's own proof follows the same lines: see the account in Weil's historical

book [18, p. 100]. Algorithmic solutions in the literature often follow essentially the

same reduction procedure as Legendre (see [8], or [15] for a recent example). As we

will see, this method has two disadvantages in practice: it takes many steps, each of

which involves the factorization of an integer, and the resulting solution can be very

large. Our �rst improvement already performs better in these respects; although it

does not eliminate the factorization from each step, the number of steps is reduced,

the numbers to be factorized are smaller, and the resulting solution is also smaller.

Then the \factorization-free" version of the reduction method eliminates the need

for any factorization, given a solubility certi�cate, giving even greater improvement

and making possible the solution of equations whose coe�cients have hundreds of

digits in only a few seconds.

In the famous paper [1], in which higher descents were used to study the ranks of

elliptic curves of the form Y 2 = X3 �DX , the authors remark [1, p. 100] that the

solution of various auxiliary conics is the most time-consuming part of the descent

process. We also found this to be true (despite having 30 years of factorization

technology to hand) before using the new methods described here.

Now assume that (3) is soluble. Holzer's theorem asserts that there exists an

integral solution (x; y; z) with

jxj �
p
jbcj; jyj �

p
jacj; jzj �

p
jabj;(8)

or equivalently,

max(jajx2; jbjy2; jcjz2) � jabcj:(9)

Such a solution we will call \Holzer-reduced". Holzer's Theorem is not trivial to

prove: see [3] for a recent fairly short proof, improving earlier versions by Mordell

and Cassels (see section 2.4 below for more on this). In Mordell's proof, one obtains
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a solution which does not necessarily satisfy Holzer's bounds, and then reduces the

solution using the following lemma from [10, Theorem 5, p.47].

Lemma 2.2. Let a, b and c be nonzero integers with abc squarefree, a > 0, b > 0

and c < 0, and let (x0; y0; z0) be a solution of (3). If jz0j >
p
ab then there exists

a solution (x1; y1; z1) with jz1j < jz0j.
We will give Mordell's construction below. After a �nite number of steps, we

arrive at a solution (x; y; z) with jzj �
p
ab, and then the inequalities on x and y

follow immediately. We will also present a new method of reducing solutions which

is faster than Mordell's, but only produces a solution satisfying

max(jajx2; jbjy2; jcjz2) � 4

3
jabcj:(10)

A similar result concerning small solutions to Legendre's equation over totally

real number �elds can be found in [11].

2.3. Algorithm I: Legendre-type reduction. The �rst algorithm for �nding

one solution works with the equation in the norm form (4), where the coe�cients

a and b are square-free nonzero integers, not necessarily coprime. By symmetry

we may assume that jaj � jbj, interchanging a and b if necessary. The idea, which

originates with Legendre, is to proceed by descent, reducing the problem of solving

(4) to that of solving a similar equation with a smaller b coe�cient. This step is

repeated until jbj < jaj, after which a and b are interchanged. The base cases in

which no further descent is necessary are trivially dealt with. The full procedure is

as follows.

Algorithm I.

1. If jaj > jbj then swap a and b, solve the resulting equation, then swap y and z
in the solution obtained.

2. If b = 1 then set (x; y; z) = (1; 1; 0) and stop.

3. If a = 1 then set (x; y; z) = (1; 0; 1) and stop.

4. If b = �1 there is no solution (since a must be �1).
5. If b = �a then set (x; y; z) = (0; 1; 1) and stop.

6. If b = a then let (x1; y1; z1) be a solution of X2
1 + Z21 = aY 2

1 , set (x; y; z) =
(ay1; x1; z1) and stop.

7. Let w be a solution to X2 � a (mod b) with jwj � jbj=2, and set (x0; z0) =
(w; 1), so that x20 � az20 � 0 (mod b).

8. Use lattice reduction to �nd a new nontrivial solution (x0; z0) to the congru-

ence X2 � aZ2 � 0 (mod b), with x20 + jajz20 as small as possible.

9. Set t = (x20 � az20)=b, and write t = t1t
2
2 with t1 square-free.

10. Let (x1; y1; z1) be a solution to X2 � aZ2 = t1Y
2; then

(x; y; z) = (x0x1 + az0z1; t1t2y1; z0x1 + x0z1)

is a solution to (4): stop.

By the end of step 6 we have reduced the problem to solving equations in which

jbj � 2, jbj > jaj and a 6= 1 (though a = �1 is possible). The reduction step

proceeds by �rst solving the quadratic congruence

X2 � a (mod b)

to obtain a solution w with jwj � jbj=2. The usual algorithm for this step involves

factorizing b, �nding a square root of a modulo each prime divisor of b, and com-

bining them with the Chinese Remainder Theorem. All these square roots must
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exist if the equation passes the local solubility criterion. We then have w2�a = bt,
where the integer t satis�es

jtj < 1

4
jbj+ 1 � 1

2
jbj;

(here we use 1 � jaj < jbj). The standard algorithm found in the literature (as in

[15], for example) omits step 8, using the fact that this value of t is strictly less

than b to obtain a descent. This procedure works perfectly well in practice provided

that the initial coe�cients a and b are fairly small. The size of the larger coe�cient

is reduced by a factor of approximately 4 at each step; the main problem with large

examples is the need to factorize all the coe�cients b which arise, in order to solve

the associated quadratic congruences.

Our improvement consists of inserting the extra step 8 above. We have one

solution (x0; z0) = (w; 1), to the congruence

X2 � aZ2 � 0 (mod b):(11)

Using an elementary lattice reduction technique we �nd the solution (x0; z0) to this
congruence which minimizes x2 + jajz2, and set t = (x20 � az20)=b. This will be very
much smaller than the earlier value of t. Explicitly, the minimal vector has length

O(b
p
a), so we see that in Step 9, t will be O(

p
a). Thus while the unimproved

method only reduces the size of ab (measured in bits, say) at a rate linear in the

number of steps, in the improved method the size is reduced quadratically. One

expects that the number of digits in ab should be roughly halved with each iteration.

We give an example in the next section.

The rest of the procedure (steps 9 and 10) is identical, with or without the lattice

reduction step 8. The formula in step 10 comes from the multiplicativity of the

norm from Q(
p
a) to Q:

(x0 + z0
p
a)(x1 + z1

p
a) = (x0x1 + az0z1) + (x0z1 + z0x1)

p
a;

and hence

b(t1t2y1)
2 = (bt1t

2
2)(t1y

2
1) = (x20 � az20)(x

2
1 � az21)

= (x0x1 + az0z1)
2 � a(x0z1 + z0x1)

2:

Note that in Step 9, it is not really necessary to factorize t, since t1 need not be

square-free in Step 10; but since solving the reduced equation in Step 10 will �rst

involve factorizing t1 to solve the congruence X2 � a (mod t1), there is no time

lost in �nding this square-free decomposition immediately.

The square-free decomposition is the main time-consuming step in the algorithm,

together with the solution of the subsidiary quadratic congruences in Step 7. It

involves factorization of the numbers t which arise during the course of the com-

putation, but which need not be related in any direct way to the coe�cients of

the original equation. We have developed a way of avoiding this factorization al-

together, which will be described below in Algorithm II. Starting with a solubility

certi�cate, either the solubility certi�cate at each level will determine a solubility

certi�cate at the next level (which immediately gives the solution to the quadratic

congruence we need), or alternatively a square factor of one of the coe�cients will

be obtained, which also leads to a reduced problem. See Section 2.5 below.

A similar idea of using 2-dimensional lattice reduction to solve a modular version

of our problem was described in the paper [12].

For completeness we give the details of the lattice reduction used in Step 8.

De�ne a positive de�nite quadratic form on Z2 by

(u; v) � (u0; v0) = (wu+ bv)(wu0 + bv0) + jajuu0;
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so that the (square) norm of (u; v) is

k(u; v)k2 = (wu+ bv)2 + jaju2:
Let (u0; v0) be the nonzero vector in Z2 which minimizes this norm. One may �nd

(u0; v0) by starting with the standard basis (1; 0), (0; 1) and applying Gaussian

reduction. Then set (x0; z0) = (u0w + bv0; u0): we have

x20 � az20 � u20(w
2 � a) � 0 (mod b);

and x20 + jajz20 = k(u0; v0)k2 is minimal.

2.3.1. Example. To illustrate the dramatic improvement which the lattice reduc-

tion trick (Step 8 of the algorithm) provides in a non-trivial example, we take the

equation (4) with a = �113922743 and b = 310146482690273725409, which occurs

in [17]. The unimproved algorithm (omitting Step 8) proceeds with 18 reduction

steps and the following sets of coe�cients:

(a; b) = (�113922743; 310146482690273725409)

(a; b) = (�113922743; 6322888267334211334) (a; b) = (�5941135; 690379)

(a; b) = (�113922743; 22155222796709666) (a; b) = (690379;�5941135)

(a; b) = (�113922743; 13176519068967) (a; b) = (690379;�436439)

(a; b) = (�113922743; 552039370818) (a; b) = (�436439; 690379)

(a; b) = (�113922743; 10830811819) (a; b) = (�436439; 52017)

(a; b) = (�113922743; 52527821) (a; b) = (52017;�436439)

(a; b) = (52527821;�113922743) (a; b) = (52017;�14)

(a; b) = (52527821;�5941135) (a; b) = (�14; 52017)

(a; b) = (�5941135; 52527821) (a; b) = (�14; 942)

At this stage, the congruence X2 + 14 � 0 (mod 942) yields the solution x = 92,

and luckily 922+14 = 942t, with t = 9. As this is a square, we obtain a solution to

the equation at this level. Passing back up the stack we �nally obtain the following

solution to the original equation:

(x : y : z) = (17096570497733995340458855914415817266660083175129

: 971656516633305795680905979479465911216

: 67668402208023840270008872724333068943397229):

By contrast, with the improved method we obtain the following much shorter

sequence of coe�cients:

(a; b) = (�113922743; 310146482690273725409)

(a; b) = (�113922743; 339)

(a; b) = (339;�113922743)

The last equation has solution (31006 : 1 : 1781) and two back-substitutions lead

to the solution (320832774821087 : 21372 : �18438099853) of the original equa-

tion, considerably smaller than the previous solution found. Notice the dramatic

reduction in the size of b at the �rst descent step compared with the �rst solu-

tion. The congruence X2 � �113922743 (mod 310146482690273725409) has so-

lution w = �88566846089432467791, leading to t = 25291553069336845336; but

then lattice reduction �nds the solution (x0; z0) = (824644660421;�93793135) to

the congruence X2 � �113922743Z2 (mod 310146482690273725409), which yields

the much smaller value t = 5424 = 42 � 339.
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2.4. Improving the solution. The method of the preceding section will �nd one

solution (x0; y0; z0) to a diagonal equation (3), but this solution is not necessarily

\Holzer-reduced". It is possible to reduce the size of a solution. We present two

methods for this: the �rst, due to Mordell in [10, Theorem 5, p.47], is guaranteed

to produce a Holzer-reduced solution after a �nite number of steps, but is slow

in practice since the number of steps appears to be linear in the size of z0. The

second method is based on the quadratic parametrizations which will be introduced

in Section 3. This is much faster in practice. The solution it produces is not always

Holzer-reduced, as it is only guaranteed to satisfy (10) rather than (9), though in

practice it usually is.

As well as applying one or other of these reduction procedures to the solution

produced at the end of the recursion, it is also possible to reduce all the intermediate

solutions used in the back-substitution Step 10. This can be bene�cial in practice for

large problems, since otherwise the exponential growth in the size of intermediate

solutions can cause serious degradation of the running time owing to the need to

work with very large integers.

2.4.1. Mordell's method for reducing solutions. Mordell's method is used in [10] to

prove that Holzer-reduced solutions always exist. It is not presented there as an

algorithm, but is easily turned into one. We refer to [10, Theorem 5, p.47] for the

proof that this method works (as stated in Lemma 2.2 above), giving here only a

sketch.

Suppose that we have a primitive solution (x0; y0; z0) to the equation (3), where

abc is squarefree, a and b are positive and c is negative, with jz0j >
p
ab. Since c is

squarefree, we have gcd(x0; y0) = 1.

If c is even, set k = c=2, solve k = uy0�vx0 for u and v, and let w be the nearest

integer to �(aux0 + bvy0)=(cz0). Then the equations

x =
1

k

�
x0(au

2 + bv2 + cw2)� 2u(aux0 + bvy0 + cwz0)
�

y =
1

k

�
y0(au

2 + bv2 + cw2)� 2v(aux0 + bvy0 + cwz0)
�

(12)

z =
1

k

�
z0(au

2 + bv2 + cw2)� 2w(aux0 + bvy0 + cwz0)
�

de�ne integers x, y, z which also satisfy (3), and which satisfy 0 < jzj < jz0j. (These
follow easily from the identity (aux0 + bvy0 + cwz0)

2 + ab(uy0 � vx0)
2 = �kcz0z,

together with the inequalities jaux0 + bvy0 + cwz0j � 1

2
jcz0j and ab < z20 .)

If c is odd, solve c = uy0 � vx0 for u and v. Now let w be the nearest integer to

�(aux0+ bvy0)=(cz0) which has the same parity as au+ bv. Then (12) with k = 2c
again de�nes an integral solution to (3), with 0 < jzj < jz0j.

If the new z is still too big, we apply this again; after a �nite number of steps

the Holzer bounds (8) will be satis�ed.

When we apply this in practice, we may either just apply it once, at the end, or

alternatively we may apply it to each solution in the recursive stack before back-

substituting at Step 10.

2.4.2. Reducing solutions via quadratic parametrization. Starting from a primitive

solution (x0; y0; z0) to a diagonal equation (3) we apply the method of Section 3

below to obtain three parametrizing quadratic polynomials Qi(U; V ) with respec-

tive discriminants �4bc, �4ac and �4ab. As shown in the proof of Corollary 3.2

below, after applying Gaussian reduction to whichever one of the �Qi is a positive

de�nite quadratic form, we obtain a parametrization whose leading coe�cients give

a solution (x1; y1; z1) to (3) satisfying the \almost-Holzer" bounds (21). See Section

3 below for details.
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When we apply this in practice, we have found that in most cases, the new

solution obtained does in fact satisfy the Holzer bounds. Exceptional cases arise

when the root of the reduced positive de�nite quadratic, which lies in the usual

fundamental domain for SL(2;Z) in the upper half-plane, has imaginary part less

than one.

For example, the equation X2 + 3Y 2 = 91Z2 has the solution (19; 1; 2) which
is not Holzer-reduced since x2 = 361 > 273 = 3 � 91 and z2 = 4 > 3 = 1 � 3. The

parametrizing quadratics are X = 19U2 � 16UV � 11V 2, Y = U2 � 20UV + 9V 2

and Z = 2(U2 � UV + V 2), with minimal discriminants 1092 = �4 � 3 � (�91),
364 = �4 � 1 � (�91) and �12 = �4 � 1 � 3 respectively. The latter is positive-

de�nite and reduced, with root (�1 + i
p
3)=2, and this method cannot reduce the

solution further. However, applying Holzer's method once to (19; 1; 2) gives the

Holzer-reduced solution (4; 5; 1). The corresponding parametrizing quadratics are

X = 4U2 + 30UV � 12V 2, Y = 5U2 � 8UV � 15V 2 and Z = U2 + 3V 2.

Note also that the leading coe�cients of the reduced parametrizing quadratics

need not necessarily be coprime, so the solution (x1; y1; z1) may not be primitive;

if not, we obviously obtain a further reduction by cancelling the common factor.

2.4.3. Example. Continuing our earlier example, the solution (320832774821087 :

21372 : �18438099853) is not Holzer-reduced, but applying Mordell reduction once

yields the Holzer-reduced solution (30106379962113 : 7913 : 12747947692).

The much larger solution produced by the unimproved algorithm requires 27

steps of Mordell reduction to obtain the Holzer-reduced solution (47464775475069 :

3131 : 2629196804).

Using the quadratic parametrization method to reduce the solutions, we obtain

the new solutions (7523107023591 : 7244 : 11931641701) (starting from the smaller

original solution) and (70647575606369 : 5679 : 6632499416) (starting from the

larger). These solutions are both Holzer-reduced.

Note that, as illustrated by these examples, there is nothing at all canonical in

the solutions obtained, even amongst those which satisfy the Holzer bounds. The

solution obtained will depend on all the choices of modular square roots made along

the way, each such choice being equally valid, and leading to a distinct solution.

In fact, one remarkable feature of Holzer's theorem (apparent from its proof) is

that it not only guarantees one reduced solution, but one in each class of modular

solutions modulo abc, the number of which is around 2k where k is the number of

odd prime factors of abc.

2.5. Algorithm II: factorization-free reduction method. The preceding al-

gorithm is adequate for solving equations where the coe�cients are of \reasonable"

size: reasonable in the sense that numbers of this size may be factorized quickly.

But for larger problems, the time taken for intermediate factorizations make it im-

practical. For example, if we take the coe�cients in (3) to be primes of around 100

digits (chosen so that (3) is soluble) then in the second step of the recursion one is

likely to have to factorize a random integer with between 90 and 100 digits.

To avoid this, we have developed an alternative method which is quite similar

in theory but avoids all factorization. The idea is that given a solubility certi�cate

(k1; k2; k3) for the diagonal equation (3) with coe�cients (a; b; c), we can use it to

construct a new solubility certi�cate for a reduced problem with smaller coe�cients,

without any (further) factorization, together with a linear transformation mapping

solutions of the reduced problem to solutions of the original. While this idea is

simple in principle, complications arise in practice, since at the general stage we

cannot assume that the various triples of integers which arise as coe�cients are

square-free.
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One starts with the data (a; b; c; k1; k2; k3) and recursively reduces this to a

similar set of data which is smaller, in a suitably de�ned sense, until one reaches

an easy case where the solution can be written down immediately or found directly.

The coe�cients a, b and c are assumed to be pairwise coprime, but not necessarily

square-free. The essential idea is that whenever certain numbers which would be

coprime in the square-free case are encountered and found not to be coprime, the

common factor can be used to reduce the problem by giving a non-trivial square

factor of one of a, b or c, which may then be divided out.

At each stage we take care to provide a solution which lies in the lattice de�ned

by the current solubility certi�cate, so that at the end the solution obtained lies in

the lattice de�ned by the original certi�cate.

The next lemma will deal with the base cases under this scheme.

Lemma 2.3. If two of the coe�cients of equation (3) are �1, then a solution in

the solution lattice may be found from a solubility certi�cate in time O(log jabcj).
Proof. By symmetry we may assume that ab = �1. By a changing the sign of all

three coe�cients, and also of the solubility certi�cate (in order to keep the solution

lattice unchanged) we may also assume that a = 1. The certi�cate consists of an

integer k = k3 satisfying k
2 � �b = �1 (mod c).

If a = 1 and b = �1 then we have the trivial solution (1; 1; 0), but we must �nd

a solution satisfying x � ky (mod c) where k is a �xed square root of +1 modulo c.
If k � �1 (mod c) we simply use (1;�1; 0). Otherwise, let c+ = gcd(k � 1; c) and
c� = gcd(k + 1; c) and set z = c+c�=c. One may check that in all cases z = �1 or

z = �2; this is straightforward when c is square-free but needs a little care when

4 j c. Now the required solution is (x; y; z) = ( 1
2
(c� � zc+); 1

2
(c� + zc+); z) which

duly satis�es x2 � y2 + cz2 = 0 and x � ky (mod c).
Now assume that a = b = 1, and so c < 0. Let x + yi = gcd(k + i; c) in the

Euclidean ring Z[i] of Gaussian integers. Then it is easy to see (by considering the

prime factorization of c) that x2+ y2 = jcj, so that (x; y; 1) is a solution to (3), and

satis�es x � ky (mod c) as required. The gcd may be computed in O(log jcj) steps
by [13].

The general reduction step will start with a triple of coe�cients (a; b; c), pairwise
coprime but not necessarily square-free, de�ning an equation (3), together with a

solubility certi�cate (k1; k2; k3). We then construct a new equation

a0(X 0)2 + b0(Y 0)2 + c0(Z 0)2 = 0;(3)0

with smaller coe�cients (a0; b0; c0), a new solubility certi�cate (k01; k
0

2; k
0

3), and a

linear map T from the new solution lattice L0 to L, mapping solutions to (3)0 to

solutions to (3).

During the main reduction step, it can happen that we �nd a non-trivial square

factor u2 of one of the coe�cients. The following trivial lemma may then be used

to reduce the problem; however, it is not possible to do so in such a way as to

preserve the solution lattice. For this reason we do not in fact use this lemma in

our implementation.

Lemma 2.4. Let (k1; k2; k3) be a solubility certi�cate for (3), where the coe�cients

(a; b; c) are pairwise coprime. Suppose that u2 j a for some integer u > 1. Let u0

be an inverse of u modulo bc. Then (k1; u
0k2; u

0k3) is a solubility certi�cate for the

equation with coe�cients (a=u2; b; c). Also, if (x0; y0; z0) is a solution to the latter

equation, then (x0; uy0; uz0) is a solution to the original equation.

Proof. Trivial.
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As an example to show that this lemma cannot be strengthened to respect the

solution lattices in all cases, take the equation p2X2 + Y 2 = Z2 with certi�cate

(k1; 0; 0) satisfying k21 � 1 (mod p2), and take u = p. Then u0 = p also, and

the reduced equation is (X 0)2 + (Y 0)2 = (Z 0)2 with the same certi�cate (k1; 0; 0).
The new solution lattice is the whole of Z3; given a solution (x0; y0; z0) satisfying
(x0)2 + (y0)2 = (z0)2 and the vacuous condition y0 � k1z

0 (mod 1), the solution to

the original equation is (x; y; z) = (x0; py0; pz0). This satis�es y� k1z � 0 (mod p),
but not 0 (mod p2).

The following lemma is crucial: it shows that we may �nd partial factorizations

of any �nite set of nonzero integers which approximate a full square-free decompo-

sition, using only the operations of gcd and exact integer division.

Lemma 2.5. Let ai for 1 � i � n be nonzero integers. There exist integers bi
for 1 � i � n, and pairwise coprime integers cI indexed by the nonempty subsets

I � f1; 2; : : : ; ng, such that for 1 � i � n we have

ai = b2i
Y

I; i2I

cI :(13)

Moreover, these integers may be computed from the ai using only the operations of

gcd and exact integer division, in O(
P

log(ai)) steps.

Proof. We initialize by setting each bi = 1, cfig = ai, and the other cI = 1. Then

(13) is satis�ed, but the coprimality conditions may not hold.

If gcd(cI ; cJ ) = d > 1 for two subsets I and J , we divide cI and cJ by d, multiply

cI+J by d (where I+J is the symmetric di�erence (I[J)�(I\J)), and multiply bi
by d for all i 2 I \J . This preserves the relations (13) while decreasing the product
of all the cI by a factor of d. Hence, after a �nite number of steps we achieve the

conditions stated.

Remark. Of course, without the last sentence of its statement, the lemma would

be trivial, using the prime factorizations of the ai, and we could even require that

the cI should be square-free. A useful trick in practice is to use a small amount of

trial division at the start: to ensure that the cI are not divisible by the square of

any prime p � p0, say, we may (for each such p in turn) divide out the largest even

power of p from cfig and adjust bi accordingly.

We will apply this lemma with n = 3 below.

Now we come to the main reduction step, which constructs a new reduced equa-

tion together with a solubility certi�cate, and an appropriate linear transformation.

Proposition 2.6. Given data (a; b; c; k1; k2; k3) with (k1; k2; k3) a solubility cer-

ti�cate for (3) and jbcj > 1, with (a; b; c) pairwise coprime and not all of the

same sign. There is an algorithm, requiring no factorization, which either �nds

a non-trivial square factor of one of a, b, or c, or constructs a smaller set of data

(a0; b0; c0; k01; k
0

2; k
0

3) such that (k01; k
0

2; k
0

3) is a solubility certi�cate for the equation

(3)0, together with a linear transformation from solutions of this equation to solu-

tions of (3).

Remark. When we use the algorithm described below, the situation where we fail to

construct a reduced equation only arises when one of the coe�cients is not square-

free. At the top level we will insist that the coe�cients are square-free, so this

cannot happen there; this is reasonable, since the criterion for solubility given in

Lemma 2.1 requires square-free coe�cients. At lower levels, if we identify a non-

trivial square factor of one of the coe�cients, then rather than deal with this using

Lemma 2.4, we instead pass the factor we have found back to the level above.

Proof. We will subdivide the proof into a number of steps.



12 J. E. CREMONA AND D. RUSIN

Step 1: Preliminaries. Let w � c�1k1 � �bk�11 (mod a). Consider the sublattice
of Z2 de�ned by the congruence y � wx (mod a), with Z-basis (1; w), (0; a), to-
gether with the weighted Euclidean norm jj(x; y)jj = jbjx2 + jcjy2. Let (w1; w2) be
a minimal nonzero vector in this lattice (obtained by Gaussian reduction). Then

k1w1 � cw2; k1w2 � �bw1 (mod a);

so that

bw21 + cw22 = at(14)

with t a small integer. Explicitly, 0 < jj(w1; w2)jj � 4

�
jaj
p
jbcj, so we have jtj �

4

�

p
jbcj. Note that by minimality of the vector (w1; w2), we know that gcd(w1; w2)

has no prime factors p which do not divide a, for then p2 j t and we could divide

out a factor p2 from (14). In particular, gcd(w1; w2) is coprime to bc.
To ease notation we use the abbreviations (u; v) = gcd(u; v), and write u ? v to

mean gcd(u; v) = 1.

Step 2: The reduced coe�cients. Using Lemma 2.5, applied to the three integers

bc, a, t, and using the fact that a ? bc, we may write

bc = �2b0c0; a = �2n1n3; t = 2n2n3c
0

where the integers n1, n2, n3, b
0 and c0 are pairwise coprime. If j�j > 1 then either

u = (�; b) or u = (�; c) gives a non-trivial square divisor u2 of b or c respectively,
and we may stop. So we may assume � = 1. Similarly, we may assume � = 1, since

otherwise we have a non-trivial square factor of a.
Hence the above equations simplify to

bc = b0c0; a = n1n3; t = 2a0c0

where a0 = n2n3. Both triples (a0; b0; c0) and (n1; n2; n3) are pairwise coprime.

Moreover, a0, b0 and c0 cannot all have the same sign, since then t > 0 and bc > 0;

but then (14) would imply that a, b, c all had the same sign.

De�ne d1 = (c; c0) and d2 = (b; c0). Then c0 = �d1d2 with d1 j c, d2 j b, and
(d1; d2) = 1. Adjust the sign of d1 or d2 if necessary so that c0 = d1d2.

Remark. When we call this Proposition recursively with the reduced coe�cients, it

will return either a solution to the reduced equation or a non-trivial square factor

of one of a0, b0 or c0. In the former case we transform the solution using Step 5

below, returning the result to the level above (or stopping if we are already at the

top level). If we obtain a factor f2 of a0, then we divide a0 by f2 and multiply 
by f and repeat the process at this level. Similarly if we obtain a square factor of c0.
Finally, if we obtain a non-trivial square factor f2 of b0, then at least one of gcd(f; b)
and gcd(f; c) will be greater than 1, and can be passed back as a non-trivial square

factor of b or c respectively. This �nal possibility cannot happen at the top level,

where the coe�cients are square-free. Clearly the number of these \back-tracking"

steps will be �nite.

Step 3: Re�nements. In this step we show that various coprimality and divisibil-

ity conditions can be assumed between these variables, since otherwise non-trivial

square factors of a, b or c are found. This will enable us to construct the new

solubility certi�cate in Step 4.

� di j wi for i = 1; 2:
For di j c0 j t, hence (14) implies that di j w2i . Let e = (di; wi), and write

di = eu and wi = ev with u ? v. Then di j w2i =) u j ev2 =) u j e =)
u2 j di. This gives a non-trivial square factor of either b or c, unless u = 1, so

we may assume that u = 1 and deduce that di j wi for i = 1; 2.
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Now we may divide by c0 = d1d2 in (14) to obtain

d1
b

d2

�
w1

d1

�2
+ d2

c

d1

�
w2

d2

�2
= aa02:(15)

� (b; ) = (c; ) = 1:

For let d = (b; ). Then d ? c, so (14) implies that d j w22 . As before,

this implies d j w2 (else we obtain a non-trivial square factor of b). Then (14)

implies d2 j bw21. But (b; w1; w2) = 1 by the remarks made in Step 1, so d2 j b
and we have a square factor of b unless d = 1. Similarly, (c; ) = 1, else we

have a square factor of c.
� (d2; w1) = (d1; w2) = 1:

For let d = (d2; w1). Then d ? d1, so d j (w1=d1). Now (15) implies

d j aa02. But d is coprime to each of a,  and a0, since d j d2 j b j b0c0, so
d = 1. Similarly, (d1; w2) = 1.

� (w1; n2) = (w2; n2) = 1:

For let d = (w1; n2). Then d j cw22 from (14), but d ? c since n2 ? bc,
so d j w22 . Now a prime divisor p of d would divide both w1 and w2, but
not divide a = n1n3, contradicting the observation made below (14). Hence

d = 1. The proof that (w2; n2) = 1 is similar.

Step 4: The new certi�cate. Next we de�ne the new solubility certi�cate (k01; k
0

2; k
0

3)

for the equation with coe�cients a0 = n2n3, b
0 = (c=d1)(b=d2), c

0 = d2d1 as follows.

k01 =

(
�bw1w

�1

2 (mod n2)

�k1 (mod n3)
(16)

k02 =

(
(a)�1k3w1 (mod c=d1)

(a)�1k2w2 (mod b=d2)
(17)

k03 =

(
k2a

0w�1

1 (mod d2)

�k3a
0w�1

2 (mod d1)
(18)

This uniquely de�nes the k0i modulo a0, b0, c0 respectively by the Chinese Remainder

Theorem, since (n2; n3) = (c=d1; b=d2) = (d1; d2) = 1. By Step 3, all the modular

inverses in these formulae exist.

To check that we do indeed have a solubility certi�cate is now straightforward;

each of the required quadratic congruences is proved in two steps using the fac-

torization of the relevant modulus. Note that at present the signs of the k0i are

immaterial; but they will be important in Step 5.

� (k01)
2 + b0c0 � 0 (mod a0): First, modulo n2 we have

(k01)
2 + b0c0 � (bw1w

�1

2 )2 + bc � bw�2

2 (bw21 + cw22) � 0;

since n2j(bw21 + cw22); note that it also follows that k01 � cw2w
�1

1 (mod n2).
Modulo n3 we have

(k01)
2 + b0c0 � k21 + bc � 0;

since n3ja.
� (k02)

2 + a0c0 � 0 (mod b0): First, modulo c=d1 we have

(k02)
2 + a0c0 � (a)�2k23w

2
1 + a0c0

� (a)�2(k23w
2
1 + a2t)

� a�1�2(�bw21 + at) � 0;
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while modulo b=d2 we have

(k02)
2 + a0c0 � (a)�2k22w

2
2 + a0c0

� a�1�2(�cw22 + at) � 0:

� (k03)
2 + a0b0 � 0 (mod c0): Observe that the equation (14) implies that

(c=d1)w
2
2 � aa0d2

2 (mod d1)

on dividing by d1 and then reducing modulo d1. Now, modulo d1 we have

d2w
2
2((k

0

3)
2 + a0b0) � d2(k3a

0)2 + a0b0d2w
2
2 � �d2ab(a0)2 + a0b0d2w

2
2

� �a0b(c=d1)w22 + a0b0d2w
2
2 � a0w22(b

0d2 � bc=d1)

� 0;

since bc=d1 = b0c0=d1 = b0d2. This implies that (k03)
2+a0b0 � 0 (mod d1) since

(d2w
2
2 ; d1) = 1. A similar calculation shows that (k03)

2 + a0b0 � 0 (mod d2).

Step 5: The linear transformation. Recall that we de�ned in (7) a lattice L =

L(a; b; c; k1; k2; k3) associated to equation (3) and its solubility certi�cate. Let L0 =
L(a0; b0; c0; k01; k02; k03) be the similarly de�ned lattice for the reduced data. We now

de�ne a linear transformation T : L0 ! L, which maps solutions to the new equation

into solutions to the original.

Given (x0; y0; z0) 2 L0, set T (x0; y0; z0) = (x; y; z) where

x = �n3x0;

y =
1

n2

�
c

d1

w2

d2
y0 + w1z

0

�
;(19)

z =
1

n2

�
b

d2

w1

d1
y0 � w2z

0

�
:

Assuming for the moment that y; z 2 Z and that T (L0) � L, direct calculation

shows that

n22
�
ax2 + by2 + cz2

�
= aa02

�
a0(x0)2 + b0(y0)2 + c0(z0)2

�
:

Hence T maps solutions of the equation a0(x0)2 + b0(y0)2 + c0(z0)2 = 0 to solutions

of the equation ax2 + by2 + cz2 = 0. Nontrivial solutions are mapped to nontrivial

solutions, since T has nonzero determinant; speci�cally, another direct calculation

shows that jdetT j = (n3)
3n1=n2 6= 0.

Note that in general T (L0) 6= L, since
[L : T (L0)] = [Z3 : L0][L0 : T (L0)]=[Z3 : L]

= a0b0c0(n3)
3n1=(n2abc)

= n33:

If t were square-free and coprime to a, we would have  = n3 = 1. In this situation,

which is usually the case in practice, we do have T (L0) = L.
It remains to show that (19) does de�ne a well-de�ned map from L0 to L.
� y; z 2 Z: Since n2y 2 Z and n2 ? c0, it su�ces to show that c0(n2y) � 0

(mod n2). But modulo n2 we have

c0(n2y) � cw2y
0 + c0w1z

0 � w1(k
0

1y
0 + c0z0) � 0;

since k01y
0 + c0z0 � 0 (mod a0) (from the de�nition of L0) and n2ja0, and we

have used cw2 � k01w1 (mod n2). The veri�cation that z 2 Z is similar.
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� by � k1z (mod a): using n2 ? a and c0 ? a, we compute modulo a:

n2c
0(k1z � by) � k1(bw1y

0 � c0w2z
0)� b(cw2y

0 + c0w1z
0)

� by0(k1w1 � cw2)� c0z0(k1w2 + bw1) � 0:

� cz � k2x (mod b): Here it su�ces to work modulo d2 and b=d2 separately,

since they are coprime, and we may multiply by n2 since n2 ? b.
Modulo d2, we have

n2(k2x� cz) � �a0k2x0 � c

�
b

d2

w1

d1
y0 � w2z

0

�
� �a0k2x0 � b0w1y

0 (since d2jw2)
� �a0k2x0 + w1k

0

3x
0 (since k03x

0 � �b0y0 (mod c0) and d2jc0)
� 0 (since k03w1 � k2a

0).

Modulo b=d2:

n2(k2x� cz) � �a0k2x0 + cw2z
0

� k02z
0k2 + cw2z

0 (since �a0x0 � k02z
0 (mod b0) and (b=d2)jb0)

� a�1k22w2z
0 + cw2z

0

� a�1w2z
0(k22 + ac) � 0:

� ax � k3y (mod c): We work modulo d1 and c=d1 separately.
Modulo d1, we have ax � k3y () k3x � �by, and

n2(k3x+ by) � �k3a0x0 + b

�
c

d1

w2

d2
y0
�

� w2(k
0

3x
0 + b0y0) � 0:

Modulo c=d1:

n2(k3y � ax) � k3(w1z
0) + aa0x0

� a(k02z
0 + a0x0) � 0:

When implementing this method, we �rst factorize the coe�cients of the given

diagonal equation, removing square factors and common factors of the coe�cients.

Then we compute a solubility certi�cate, returning failure if none exists. A recursive

procedure based on Lemma 2.3 and Proposition 2.6 is used to �nd a solution in the

solution lattice de�ned by the certi�cate. Finally, the solution is reduced in size

using the algorithms of Section 2.4.2 and (if necessary) Section 2.4.1.

This completes the description of the factorization-free reduction method.

2.6. Algorithm III: lattice methods. Both the preceding algorithms use 2-

dimensional lattice reduction. One can also use the 3-dimensional lattice L =

L(a; b; c; k1; k2; k3) (de�ned in (7)) directly as follows. As already observed, for

(x; y; z) 2 L we have f(x; y; z) = ax2 + by2 + cz2 � 0 (mod abc). Moreover,

Minkowski's Theorem implies that L contains a nonzero vector (x; y; z) satisfying
Holzer's bounds (8). This implies that

�jabcj < f(x; y; z) < 2jabcj;
so that either f(x; y; z) = 0 or f(x; y; z) = jabcj. In the former case, we have a

Holzer-reduced solution to (3), but in the latter case we do not have a solution.

Various ways of �xing this problem have been proposed, by Mordell, Cassels and

more recently by Cochrane and Mitchell in [3]. They impose extra 2-adic conditions
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to de�ne a sublattice L0 of index 2 in L, such that points (x; y; z) 2 L0 satisfy
f(x; y; z) � 0 (mod 2abc), and apply a theorem of Gauss to assert the existence of

a point (x; y; z) 2 L0 with jf(x; y; z)j < 2jabcj, giving a solution. The case a = b = 1

requires special treatment in the proof, as in Lemma 2.3.

In order to turn this into an algorithm for solving equations in practice, one

needs methods of �nding short vectors in 3-dimensional lattices, since the shortest

vector in L0 certainly gives a solution. In most cases, the �rst vector in an LLL-

reduced basis of L gives a solution, and the following lemma1 says that one does

not have to look much further.

Lemma 2.7. Let b1, b2, b3 be an LLL-reduced basis of a 3-dimensional lattice L.
Then the shortest vector of L has the form n1b1 + n2b2 + n3b3 where each ni 2
f�1; 0; 1g.
Remark. Since �v have the same length, this leaves us with 13 nonzero vectors to

check to �nd the shortest vector, given an LLL-reduced basis.

Proof. Let b�i for i = 1; 2; 3 be the orthogonalized basis vectors in R3 , so that

b1 = b�1;

b2 = b�2 + �21b
�

1;

b3 = b�3 + �31b
�

1 + �32b
�

2;

Since the bi are LLL-reduced, we have j�ij j � 1=2 for 1 � j < i � 3, and

jb�i j2 �
�
3

4
� �2i;i�1

�
jb�i�1j2 �

1

2
jb�i�1j2

for i = 2; 3. Hence

jb�1j2 � 2jb�2j2 � 4jb�3j2:

Let x = �1b1 + �2b2 + �3b3 2 L with �i 2 Z. Then

jxj2 = (�1 + �21�2 + �31�3)
2jb�1j2 + (�2 + �32�3)

2jb�2j2 + �23jb�3j2:

Suppose jxj < jb1j. We will show that this forces j�ij � 1 for i = 1; 2; 3.
First of all, from �23jb�3j2 � jxj2 < jb�1j2 � 4jb�3j2 we have �23 < 4, so j�3j � 1.

Case 1: �3 = 0. Then �22jb�2j2 � jxj2 < jb�1j2 � 2jb�2j2 implies �22 < 2, so

j�2j � 1. If �2 = 0, then x = �1b1, so �1 = 0. Otherwise, �2 = �1, giving
jb�1j2 > jxj2 � (�1 + �21�2)

2jb�1j2, which implies (�1 � �21)
2 < 1, so j�1j � 1 since

j�21j < 1

2
and �1 2 Z.

Case 2: �3 = �1. Now

jb�1j2 > jxj2 � (�2 + �3�32)
2jb�2j2 + jb�3j2

� 1

2
(�2 � �32)

2jb�1j2 +
1

4
jb�1j2;

so (�2 � �32)
2 � 3

2
, giving j�2j � 1.

We now give a recipe for bases of the lattices L and L0, in terms of the solubility

certi�cate (k1; k2; k3).

1shown to us by Robin Chapman
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Basis for L: Using the fact that a, b, c are pairwise coprime, solve the following

for u, v, a0 and b0:

ub+ vc = 1; aa0 + bcb0 = 1:

Now set

� � b0ck1 (mod a); � � ua0bk3 (mod bc);  � va0ck2 (mod bc):

The following vectors give a basis for L:

v1 = (bc; 0; 0); v2 = (a�; a; 0); v3 = (�� + ; �; 1);

for one easily checks that these vectors all satisfy the de�ning congruences for L,
and they evidently generate a lattice of index jabcj.

Basis for L0: One easily checks that the map � : L ! Z=2Z given by (x; y; z) 7!
f(x; y; z)=(abc) (mod 2) is an additive homomorphism. It is surjective, since the

images of (bc; 0; 0), (0; ac; 0) and (0; 0; ab) (which all lie in L) are bc, ac and ab
(mod 2) respectively, and at least one of these is odd. Hence L0 = fv 2 L j f(v) � 0

(mod 2abc)g is a sublattice of L of index 2. [Again, we are grateful to R.J.Chapman

for this observation.]

Let vi be a basis vector of L (from the above list) such that �(vi) = 1 (mod 2)).

De�ne

wj =

8><
>:
2vi if j = i;

vj � vi if j 6= i and �(vj) = 1;

vj if j 6= i and �(vj) = 0:

Then w1, w2, w3 is a basis for L0.

Now use a standard integer LLL-algorithm, such as in [4], to �nd an LLL-reduced

basis b1, b2, b3 of L0 with respect to the norm jj(x; y; z)jj2 = jajx2 + jbjy2 + jcjz2.
Then for at least one of the 13 nonzero vectors v = n1b1+n2b2+ n3b3 (up to sign)

we have f(v) = 0 by Lemma 2.7.

It would also be possible to use the algorithm of Vall�ee (see [16]) for �nding the

shortest vector in the 3-dimensional lattice L0. We have not implemented this.

2.7. Other methods. Finally we mention that there are two methods for solving

Legendre's equation due to Gauss: see [7, Arts. 294, 295]. These both involve

the theory of reduction of ternary quadratic forms: speci�cally, in both solutions

one constructs an inde�nite ternary form of determinant �1 and reduces it to the

form x2 + 2yz using a suitable unimodular substitution. While Gauss does give

an algorithm for this reduction in [7, Arts. 272, 274], it does not seem to be very

e�cient in practice. Without a fast method of carrying out such a reduction,

Gauss's methods of solving Legendre's equation are much slower than the method

we presented above.

3. Parametric Solutions

Now we have one solution (x0; y0; z0) to our equation (1), and we wish to pa-

rametrize all solutions. Our starting point is a classical method (see [10]), which

was also used in [6] and may also be found in the book [15].
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3.1. The Diagonal Equation. First assume that our equation is in diagonal form

(3) with abc square-free. Assuming that z0 6= 0 by symmetry, one sets X = x0W +

U , Y = y0W + V , z = z0W and eliminates W to obtain the following parametric

solution:

x = Q1(U; V ) = ax0U
2 + 2by0UV � bx0V

2;

y = Q2(U; V ) = �ay0U2 + 2ax0UV + by0V
2;(20)

z = Q3(U; V ) = az0U
2 + bz0V

2:

These quadratics have the following discriminants:

disc(Q1) = �4bcz20; disc(Q2) = �4acz20; disc(Q3) = �4abz20:
Also, the 3 � 3 matrix of coe�cients of the Qi (which is used in the application

in [6]) has determinant �4abcz30. We claim that the powers of z0 which appear

here are entirely superuous and may be removed. This is hardly surprising, since

we made an arbitrary choice of the variable Z at the start. But it is signi�cant,

since in many of the applications, such as the one in [6] and our own in 2-descent

on elliptic curves, it is crucial to keep these quantities as small as possible, and to

avoid introducing spurious prime factors. Our result is as follows.

Proposition 3.1. Let a, b, c be nonzero integers with abc squarefree, such that the

equation aX2+bY 2+cZ2 = 0 has a (nontrivial) solution. Then the set of all rational

solutions may be parametrized in the form (2) where each Qi(U; V ) 2 Z[U; V ] is
quadratic, with discriminants

disc(Q1) = �4bc; disc(Q2) = �4ac; disc(Q3) = �4ab;
and the determinant of the coe�cient matrix of the Qi is 4abc. Moreover, these

discriminants cannot be further reduced.

Proof. We start with the parametrization given by (20) in terms of a primitive

solution (x0; y0; z0) with z0 6= 0. It is su�cient to �nd an integer e such that

Qi(U + eV=z0; V=z0) has integer coe�cients for i = 1; 2; 3, since this change of

variables clearly reduces the discriminants of each Qi by a factor of z20 as required,

and the coe�cient determinant by a factor z30 .
Since a is squarefree, gcd(y0; z0) = 1, so we can �nd an integer e satisfying

ey0 � x0 (mod z20):

From ax20 + by20 + cz20 = 0 it easily follows that ae2 � �b (mod z20), and then

eax0 + by0 � 0 (mod z20);

e2ax0 + 2eby0 � bx0 � 0 (mod z20):

Now

Q1(U + eV=z0; V=z0) = ax0U
2 + 2

eax0 + by0

z0
UV +

e2ax0 + 2eby0 � bx0

z20
V 2;

which has integral coe�cients2. A similar check shows that the coe�cients of

Qi(U + eV=z0; V=z0) are also integral for i = 2 and i = 3.

For the last statement, observe that since abc is squarefree, the only square

dividing all the discriminants�4ab,�4ac,�4bc is 4. Now�ab, �ac, and�bc cannot
all be discriminants: none is a multiple of 4, and they cannot all be congruent to 1

(mod 4) since their product is �(abc)2.
2In fact, R. Buchholz has observed that it is su�cient for e to satisfy ey0 � x0 (mod z0);

this may produce smaller coe�cients at this stage, but the reduction given in Corollary 3.2 below

makes this redundant.
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Corollary 3.2. With the notation as in Proposition 3.1, there exist values (u0; v0)
of the parameters (U; V ) such that gcd(u0; v0) = 1 and if we set x1 = Q1(u0; v0),
y1 = Q2(u0; v0), z1 = Q2(u0; v0) then (x1 : y1 : z1) is a solution of (3) satisfying

the \almost-Holzer" bounds

jx1j �
p
4jbcj=3; jy1j �

p
4jacj=3; jz1j �

p
4jabj=3:(21)

Proof. Assume, without loss of generality, that a > 0, b > 0 and c < 0. Then

Q3(U; V ) is de�nite (and even positive de�nite if we take z0 > 0, as we may).

Applying standard Gaussian reduction to Q3, we �nd a unimodular substitution of

the parameters (U; V ), say U = �U 0 + �V 0, V = U 0 + �V 0 with �� � � = �1,
so that the transformed quadratic Q�

3(U
0; V 0) = Q3(U; V ) has leading coe�cient

z1 = Q�

3(1; 0) = Q3(�; ) satisfying z
2
1 � j disc(Q3)=3j = 4ab=3. Applying the same

transformation to Q1(U; V ) and Q2(U; V ) we obtain new parametrizing quadratics

Q�

i satisfying aQ
�

1(U; V )
2+bQ�

2(U; V )
2+cQ�

3(U; V )
2 = 0 and the same discriminants

as the Qi. Substituting (U; V ) = (1; 0) we obtain a new solution x1 = Q�

1(1; 0),
y1 = Q�

2(1; 0), z1 = Q�

3(1; 0), with z21 � 4ab=3. Finally, ax21 � ax21 + by21 = cz21 �
4jabcj=3 so that x21 � 4jbcj=3, and similarly y21 � 4jacj=3. This proves the result,

with (u0; v0) = (�; ).

3.2. Example. We apply the method of the previous section to the equation

X2 + 113922743Z2 = 310146482690273725409Y 2

treated earlier, starting with the primitive and Holzer-reduced solution (x; y; z) =
(70647575606369; 5679; 6632499416). We obtain the parametrization

X = 70647575606369U2� 272768472153240UV � 236838674874023V 2;

Y = 5679U2 � 536UV + 20073V 2;

Z = 6632499416U2+ 24254293278UV � 24587834368V 2:

These have discriminants 4 � 113922743 � 310146482690273725409, �4 � 113922743
and 4 � 310146482690273725409, as expected. While the size of the coe�cients in

this parametrization may seem large (up to 15 digits), recall that the coe�cients

of the original equation have 9 and 21 digits. By comparison, the parametrization

given in [17], obtained using Maple, involves coe�cients all of which have between

25 and 35 digits; and more seriously, the discriminants of the quadratics given there

are k2 times the ones given above, where k = 25 � 3 � 59 � 67 � 79 � 149 � 1993 � 7187 �
45757 � 16215770450329.

3.3. The Semi-Diagonal Equation. For convenience for our elliptic curve ap-

plications, we give an alternative form of the Proposition 3.1 suited to the semi-

diagonal form.

Proposition 3.3. Let a, b, c, d be integers with acd(b2�4ac) 6= 0 and d squarefree,

such that the equation aX2 + bXZ + cZ2 = dY 2 has a (nontrivial) solution. Then

the set of all rational solutions may be parametrized in the form (2) where each

Qi(U; V ) 2 Z[U; V ] is quadratic, with discriminants

disc(Q1) = 4cd; disc(Q2) = b2 � 4ac; disc(Q3) = 4ad:

Proof. Rather than change variables and apply Proposition 3.1 it is simpler to start

from scratch with a primitive solution (x0; y0; z0) to (5). Set � = b2 � 4ac.
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We �rst suppose that y0 6= 0, which will certainly be the case unless � is a

square. One parametrization is given by

X = Q1(U; V ) = x0U
2 + 2(bx0 + 2cz0)UV + x0�V 2;

Y = Q2(U; V ) = y0U
2 � y0�V 2;(22)

Z = Q3(U; V ) = z0U
2 � 2(bz0 + 2ax0)UV + z0�V 2;

with disc(Q1) = 16cdy20, disc(Q2) = 4y20�, and disc(Q3) = 16ady20. These must

now be divided by (2y0)
2.

The argument is slightly complicated by the fact that we cannot assume that

either gcd(x0; y0) = 1 or gcd(z0; y0) = 1. But gcd(x0; z0) = 1 since d is squarefree,

so without loss of generality we may assume that x0 is odd, and we may factorize

y0 = y1y2 with gcd(2y1; y2) = gcd(2y1; x0) = gcd(y2; z0) = 1. Hence by the Chinese

Remainder Theorem we may �nd e satisfying

ex0 � �(2cz0 + bx0) (mod 4y21);(23)

ez0 � (2ax0 + bz0) (mod y22):(24)

Explicitly, if sx0 + tz0 = 1 then we may set e = t(2ax0 + bz0) � s(2cz0 + bx0)
(mod 4y20). In particular, we may compute e in practice without having to deter-

mine the factorization y0 = y1y2.
Using the fact that ax20+bx0z0+cz20 � 0 (mod y20), simple calculations show that

(23) also holds modulo y22 and that (24) also holds modulo 4y21 ; hence both hold

modulo 4y20. Also, squaring (23) and using ax20+ bx0z0+ cz20 � 0 (mod y20) we �nd
that e2 � � (mod 4y21), and (24) similarly implies that the same congruence holds

modulo y22 , so we have e
2 � � (mod 4y20). Now a trivial calculation shows that the

quadratics Qi(U + eV=(2y0); V=(2y0)) have integer coe�cients and the properties

stated.

The case where y0 = 0 may easily be handled: this can only happen when � is a

square, say � = �2. Note that � � b (mod 2). We start with the parametrization

x = Q1(U; V ) =
1

2
(ad(� � b)U2 + (� + b)V 2);

y = Q2(U; V ) = a�UV;

z = Q3(U; V ) = a2dU2 � aV 2;

with discriminants 4a2cd, a2� and 4a3d respectively. Write a = a1a2 where a1 =
gcd(a; (� + b)=2). Then a2 divides (� � b)=2, and a simple calculation shows that

the quadratics (1=a1)Qi(U=a2; V ) have the desired properties.

4. Timings

We have implemented the algorithms described in Section 2 using C++ together

with the LiDIA library (version 1.4) for multiprecision integer arithmetic and fac-

torization routines. Modular square roots were computed using the implementation

in LiDIA of Shanks's RESSOL algorithm in order to �nd certi�cates. The integer

LLL algorithm was implemented by us following [4].

As sample problems we considered only diagonal equations aX2+bY 2+cZ2 = 0

where a, b and �c are primes chosen so that the equation is soluble. The advantage

of using prime coe�cients is that the factorization-free solution methods then have

to do no factorization at all (other than verifying that the coe�cients are prime,

which was done using a standard pseudo-primality test).

We precomputed sets of test data as follows, for

k 2 f5; 10; 15; 20; 25; 50; 75; 100; 125; 150; 175; 200; 500; 1000g:
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For each k, let a be the smallest prime above 10k, and b the next prime after a;
then for each of the next primes p after b such that the equation aX2+ bY 2 = pZ2

is soluble, we store the triple (a; b; c) with c = �p. The corresponding data set

for each k will be denoted Sk. We precomputed datasets containing 100 triples for

k � 200, �ve triples for k = 500 and just one for k = 1000. This last one uses

coe�cients a = 101000 + 453, b = 101000 + 1357, and c = �(101000 + 2713). We

remark that computing these data sets took longer than solving the corresponding

equations using our algorithms.

Each of the algorithms was then used to compute (reduced) solutions to each of

the equations in each data set. For k > 20 it was not practical to use Lagrange

reduction (Algorithm I), either with (LAG+R) or without (LAG) the lattice reduc-

tion improvement described above. This was partly because of the excessively long

time this would have taken, but also because a bug in LiDIA's MPQS factorization

routine meant that integers of this size could often not be factored reliably, so that

the timings obtained on repeated runs were very inconsistent. Since the coe�cients

used are prime, no factorization at all was needed for either the factorization-free

reduction method (FFR) or the LLL-based methods.

The results are as follows, given in seconds, based on a DEC alpha EV6. Recall

that each entry for k � 200 gives the time taken to solve 100 di�erent problems

of size around 10k for data set Sk, the datasets for k = 500 and k = 1000 having

size 5 and 1 respectively.

k LAG LAG+R FFR LLL

5 35.243s 4.612s 0.407s 0.362s

10 169.764s 11.869s 0.765s 0.737s

15 18.554s 1.139s 1.185s

20 31.978s 2.537s 2.629s

25 2.763s 2.982s

50 7.168s 8.839s

75 13.073s 17.819s

100 21.920s 34.871s

125 30.611s 52.856s

150 40.603s 74.219s

175 57.991s 109.221s

200 73.597s 147.364s

500 32.372s 69.576s

1000 34.031s 79.320s

We may draw the conclusion that methods which do not require factorization at

intermediate stages are much faster than those which do. Of the factorization-free

methods, LLL and the factorization-free reduction methods are of comparable speed

for small and medium-sized problems, but for larger problems the reduction method

starts to gain, being twice as fast for the problems with 200 digit coe�cients.

The above comparative timings between the FFR and LLL methods are some-

what misleading, however. By using equations with prime coe�cients we have

avoided all factorization in computing the solutions, but both the FFR and LLL

methods start by computing the solubility certi�cate (k1; k2; k3) for each equation,

and this computation takes a substantial proportion of the total time. To investi-

gate further, we isolated the time for this step, which involves the computation of

three square roots modulo primes of size 10k for each equation, and found that it

takes almost all the time of the FFR method, and about half the time of the LLL

method. In the following table, the �rst column of timings gives the times for just

computing the certi�cates; the next two columns give the time to �nd the solutions,

given the precomputed certi�cates using both FFR and LLL methods.
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k Certi�cate FFR LLL

5 0.237 0.181 0.175

10 0.470 0.257 0.329

15 0.735 0.327 0.522

20 1.981 0.404 0.766

25 2.093 0.484 1.025

50 5.801 0.914 3.283

75 10.809 1.411 7.290

100 18.343 2.055 16.372

125 26.485 2.746 25.966

150 35.092 3.475 38.445

175 50.607 4.633 58.593

200 63.534 5.883 83.435

500 30.003 1.888 39.575

1000 30.248 1.983 48.766

It is now apparent that our FFR method is very much faster than LLL in �nding

the solution from the certi�cate, by a factor of about 15 in the largest example. We

give some more details of this last computation: 10 levels of recursion were needed;

at each depth except one, the value of the variable  is 1, the exceptional value

being 5. This agrees with our expectation that  = 1 in most cases. With the

FFR method, the solution (x; y; z) produced initially had content gcd(x; y; z) = 6,

with no cancelling of common factors during the recursion (in order to stay on the

appropriate lattice). This small content shows the e�ciency of the formulae used to

map the solutions back from lower levels. After cancelling this common factor, the

non-reduced solution has integers x, y, z each of 1004 digits, with \Holzer measure"

maxfx2=jbcj; y2=jacj; z2=jabjg = 5:7 � 107. After reduction (using the quadratic

parametrization) we obtain the Holzer-reduced solution with integers of 1000 digits

each and Holzer measure 0:54. The LLL method produces a solution which has

Holzer measure 0:47, and again 1000 digits for each of x, y and z.
In our implementation of Lemma 2.5 we use the technique mentioned in the

remark after that Lemma above, to ensure that the factors cI are not divisible

by p2 for primes p < 20. For all the examples, this was su�cient to avoid ever

having to backtrack, since (without this adjustment) the only square factors of the

coe�cients which were discovered at lower levels were products of the primes � 11.

A small time saving was achieved in this way.

Analyzing these two algorithms further may throw some light on this marked

di�erence in their running times for large problems. In both cases we start by

constructing a 3-dimensional lattice L in which the solution will lie. With the LLL

method, we repeatedly �nd new bases for this same lattice, while with the FFR

method we construct a new lattice at each step, and the only lattice reduction we do

is on 2-dimensional projections of these. These successive lattices have decreasing

index in Z3, and their bases have smaller and smaller integer coordinates, so we

would expect the computations to be faster as we go deeper into the recursion.
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