
Realisability of Production Recipes
Lavindra de Silva1 and Paolo Felli1 and Jack C. Chaplin1 and

Brian Logan2 and David Sanderson1 and Svetan Ratchev1

Abstract. There is a rising demand for customised products with
a high degree of complexity. To meet these demands, manufacturing
lines are increasingly becoming autonomous, networked, and intel-
ligent, with production lines being virtualised into a manufacturing
cloud, and advertised either internally to a company, or externally
in a public cloud. In this paper, we present a novel approach to two
key problems in such future manufacturing systems: the realisability
problem (whether a product can be manufactured by a set of manu-
facturing resources) and the control problem (how a particular prod-
uct should be manufactured). We show how both production recipes
specifying the steps necessary to manufacture a particular product,
and manufacturing resources and their topology can be formalised
as labelled transition systems, and define a novel simulation relation
which captures what it means for a recipe to be realisable on a pro-
duction topology. We show how a controller that can orchestrate the
resources in order to manufacture the product on the topology can
be extracted from the simulation relation, and give an algorithm to
compute a simulation relation and a controller.

1 INTRODUCTION
Automating the manufacture of complex products is key to competi-
tiveness in high-labour cost economies. However, automating the as-
sembly of manufactured products presents significant challenges. It
is widely acknowledged that responsiveness and customisability are
key to the future of manufacturing [19], resulting in a drive towards
“batch-size-of-one” production, in which each item produced dif-
fers from the items assembled immediately before and immediately
after it [4]. In addition, there is drive towards “manufacturing-as-a-
service” and the virtualisation and networking of resources to cre-
ate Cloud Manufacturing, in which manufacturing software and re-
sources are advertised and shared between members of a cloud [14].
In cloud environments, products may be manufactured by multiple
cloud participants, representing multiple different enterprises con-
nected via a supply chain. This trend toward flexible, adaptive, in-
telligent, and networked manufacturing systems has been termed the
fourth industrial revolution or Industrie 4.0, in which decentralised
intelligence in an Internet of Things connects embedded production
resources to form “smart factories” that communicate and collabo-
rate [12].

There is a growing body of work on automation to achieve flexibil-
ity, resilience, and monitoring in manufacturing. For example, Flexi-
ble Manufacturing Systems [7, 20, 10] increase the range of products
that may be assembled, and Reconfigurable Manufacturing Systems
[5, 13, 15, 21] reduce response time. However, to date, there has

1 Institute for Advanced Manufacturing, Faculty of Engineering, University
of Nottingham, first.last@nottingham.ac.uk

2 School of Computer Science, University of Nottingham, bsl@cs.nott.ac.uk

been little work on the assembly of highly-customised products in a
highly-networked manufacturing environment.

In such a setting, the set of products that will be manufactured
is not known in advance. Rather, production recipes specifying the
steps necessary to manufacture a particular product are matched
against virtualised manufacturing resources (such as a plant or as-
sembly line), and the matched resource must then self-configure to
assemble the product. Manufacturing control software must therefore
make decisions both about whether a particular product can be man-
ufactured by a particular set of manufacturing resources, and how
a particular customised product should be manufactured by the re-
sources (the steps an assembly line must perform in order to assem-
ble the product). Whether a product can be manufactured by a set
of manufacturing resources is termed the realisability problem; how
it should be manufactured by those resources is termed the control
problem.

In this paper, we present a new approach to the realisability and
control problems in manufacturing. We show how both production
recipes and manufacturing resources and their topology can be for-
malised as labelled transition systems, and define a novel simulation
relation which captures what it means for a recipe to be realisable on
a production topology. We give an algorithm for computing the sim-
ulation relation, and show how a controller to manufacture a product
specified by a production recipe on a topology can be extracted from
the simulation relation. To the best of our knowledge, our approach
is the first fully-automated solution to the realisability and control
problems in manufacturing. It forms a key component of the Evolv-
able Assembly Systems (EAS) architecture, an agent-based architec-
ture for manufacturing control software designed to address rapidly
changing product and process requirements including batch-size-of-
one customised production [8]. The EAS architecture is being evalu-
ated on a number of real-word production system demonstrators, and
we illustrate our approach with a simple example of the manufacture
of products (automotive hinges) by a flexible assembly platform.

2 ASSEMBLY SYSTEMS

In this section, we motivate and informally introduce the key ideas
needed for the formal development, including production recipes,
production resources, and their topology.

A production recipe specifies the steps necessary to manufacture
a particular product, including the constituent parts, the tasks and as-
sociated parameters required to process and assemble these parts into
the final product, any tests that must occur to verify the product dur-
ing and at the end of the manufacturing process, and how to respond
to the results of tests (e.g., whether a partially completed product
instance should be reworked or discarded following a test).

In industry, when recipe information is passed from the higher-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/42494482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

level enterprise control systems to lower level shop-floor control sys-
tems, it is usual for a “recipe file” to be used. Recipe files may be
specified in a proprietary format, or the ANSI/ISA-95 (Enterprise-
Control System Integration) family of standards [1] (also known as
IEC/ISO 62264 [3]). One common approach to implementing the
data models in the ISA-95 standard, is to use Business To Manufac-
turing Markup Language (B2MML) [2] XML schemas. Messages in
B2MML contain an operation schedule, which specifies each opera-
tion to be performed. An operation consists of one or more require-
ments (e.g., for personnel, equipment, physical assets, or material),
and precisely specifies the location and time the operation should be
performed. While languages such as B2MML allow a solution to the
control problem to be expressed (i.e., which resource should perform
which operation on which part, and when), they do not provide an
appropriate level of abstraction for specifying the inputs to the real-
isability and control problems. In our approach, we therefore specify
recipies in a language that has some similarities to Hierarchical Task
Networks (HTNs) [11] and Belief-Desire-Intention (BDI) [18] agent
systems (see Section 3). For example, like these languages, we al-
low steps to be partially ordered (including interleaved), and do not
specify which resource should perform each step.

A production recipe is enacted by a set of production resources.
Each resource has a set of capabilities describing the basic actions it
can perform, and in which order. Production resources are connected
by transport links (conveyor belts, shuttles, manual item movement,
etc.) to form a manufacturing line with a specific production topol-
ogy. The production topology implicitly determines which produc-
tion recipes can be manufactured by the line.

To illustrate these ideas, we briefly describe the Precision Assem-
bly Demonstrator (PAD), a flexible assembly platform consisting of
four production resources (see Figure 1a): two KUKA robot arms
each with an associated workspace allowing the robots to place parts
and perform operations, a testing and inspection workstation that can
perform mechanical and vision-based tests, and a manual loading and
unloading station where pallets of parts can be added or removed.
There is additionally a shared, passive tool-changing rack between
the two robot arms, and a shuttle transport system.

The shuttle transport system links workstations to give the produc-
tion topology shown in Figure 1b. The shuttle transports a pallet car-
rier, which allows one pallet of parts at a time to be moved between
resources. The robots use gripper end effectors to pick up or return
pallets from the shuttle and place them on their respective worksta-
tions, where they can change end effectors from the tool rack and
perform a variety of tasks.

The PAD demonstrator’s primary production recipe family is a de-
tent hinge for the use in automotive interiors. The simplest produc-
tion recipe consists of a hollow plastic hinge consisting of two leaves
(an interior and an exterior), which are linked with a metal hinge
pin. More complex recipes are achieved by adjusting the hinge de-
tent force by adding up to three metal balls and springs in slots in the
interior hinge leaf. Each spring-ball pair increases the force required
to engage the hinge. The robots assemble the hinge using a variety
of gripper end effectors. A wide range of new end effectors may be
added to alter the capabilities of the robot arms, such as new grip-
pers for alternative hinge designs, glue applicators for securing the
hinge pin, or engraving tools to give hinges serial codes. The flex-
ibility of the PAD assembly platform results in both a realisability
problem (how to determine if a recipe can be produced on a given set
of hardware), and a control problem (how to manage the production
of recipes on the hardware).

Load and Unload

Workspace

1

Robot

Arm 1

Tool-Changing

Rack

Robot

Arm 2

Workspace

2

Testing

Station

0 1

in1,load

out1

nop,

store,

remove

nop

R1

0 1

in2

out2

nop

R2

2

in2, separate

out2, insert

nop nop

nop

0 1

in3

out3

nop

R3

2

applyglue,

engravenop

0

21

4 3

tr_out3,

tr_out4

tr_in2

tr_out2

tr_in1

tr_out2

tr_out1

tr_in3tr_in4

R5

0 1

in4nop

R4

2

dotestvnop

3

out4

nop

Figure 1: (a) Our Precision Assembly Demonstrator (top); (b) its dia-
grammatic layout (centre); and (c) its LTS model (bottom).

3 PRODUCTION RECIPE

In this section, we formalise production recipes as labelled transition
systems (LTS), where labels are not just atomic steps but complex
“task expressions”.

We will make use of two sets: a set C of part constants, which
represent parts used in production, and a set of task labels, or simply
tasks, which represent operations. The latter set is the union of three
mutually disjoint sets: the set of observable tasks Tob, which only
occur in recipes and non-transport resources; the set of internal tasks
Tin, which only occur in transport resources; and the set of synchro-
nisation tasks Tsyn, which are used to “transfer” parts between pro-
duction resources. Specifically, Tsyn = {tx←|x ∈ N}∪{tx→|x ∈ N},
namely, the set of in (tx←) and out (tx→) synchronisation tasks; parts
are moved from resources performing out tasks (releasing a part) to
corresponding resources performing in tasks (accepting a part). Fur-
ther, we introduce the special task nop to denote the special “no-op”
task, which represents idling.

Production recipes specify how (though not where) tasks and
checks ought to be carried out in order to manufacture a desired end-
product. Tasks are specified by task expressions.

The smallest task expression is of the form t(c, c′), and is called
a parameterised task (p-task), where t ∈ Tob, and c ∈ C∗ and
c′ ∈ C+ are sequences of part constants such that any constant in C
occurs at most once in c and in c′. Given a p-task t(c, c′), sequences
c and c′ represent the “input” and “output” parameters of t, respec-

tively: they represent the part(s) on which t is performed, and the
possibly new part(s) that results from doing ti. We use ε to denote
the empty sequence, and denote c by ◦t and c′ by t◦. We sometimes
write t instead of t(c, c′) when c and c′ are not relevant.

For instance, the task cut(c, c1 · c2) represents an operation that
takes a part c and produces two parts c1 and c2, whereas the task
load(ε, c) represents an operation that introduces a new part c into
the production facility.

The set of general task expressions is the smallest set of formulas,
denoted by Lang(Tg), generated by the grammar Tg := ?φ : T ,
where φ is a propositional formula from a propositional language
P and T is a task expression. A task expression is a formula in the
language generated by the grammar:

T := t(c, c′) | T ; T ′ | T ‖T ′ | T “|” T ′

The operator “;” denotes a sequence; “‖” denotes parallel composi-
tion; and “|” denotes interleaved composition. We refer to a p-task or
a parallel composition (of p-tasks) as an atomic task expression (or
as atomic).

We impose two additional constraints on task expressions:

• any expression T1‖. . .‖Tm occurring in T is restricted such that
each Ti is a p-task, and for each pair ti, tj of p-tasks, it does not
hold that ti and tj mention the same part, and ◦ti =◦tj = ε;

• any interleaving T1| . . . |Tm occurring in T is restricted such that
each Ti does not mention operator “|”.

The first constraint restricts parallelism to atomic tasks, and requires
that parallel atomic tasks cannot share the same part constants, as a
part can be a parameter of only one task at a time. It also forbids
two or more parallel tasks with empty input parameters. The second
constraint forbids “nested” interleaving.

The general task expression ?φ : T specifies that T can only hap-
pen if the guard φ holds, based on a valuation for φ that is available
at runtime (based on data collected in real-time). Since our analysis
is instead performed offline, in the remainder of this paper, we will
ignore any guard appearing in general task expressions, thus consid-
ering any valuation as equally possible. Nonetheless, guards in gen-
eral task expressions stress the fact that any formula in the language
of task expressions Lang(T) may be associated with a guard.

With these definitions at hand, it is now possible to define our no-
tion of production recipe (or simply recipe). A recipe is a labelled
transition system in which labels are task expressions and nodes rep-
resent the states of parts in the assembly. This definition essentially
allows for loops in task expressions, and for the specification of al-
ternatives among task expressions.

Definition 1 (Recipe) A recipe is a tuple R = (s0, S, L,→), where
S is a finite set of states, s0 ∈ S is the initial state, L ⊆ Lang(T)
is a set of task expressions, and → : S × L 7→ S is a non-empty
transition function. We denote a transition from state s to s′, with
task expression T , either by s T−→s′ or (s, T , s′) ∈→.

Figure 2 shows an example of a recipe to be executed on the as-
sembly platform in Figure 1. The first two p-tasks request a new pal-
let fixture (f) to be loaded and then separated into the hinge pin (p)
and hollow hinge (h). These are followed by an interleaved compo-
sition, which requires glue to be applied to p, and for h to be en-
graved with a serial number (in any order). The two parts are then
combined to form the final hinge (h2), by inserting p into h. The
next step requests a visual test to be performed on h2, which simply
collects test data. After this, the recipe either requests a force test,

A

BCE

F D

load(ϵ,f); separate(f,p·h); applyglue(p,p) | engrave(h,h); insert(p·h,h2);

store(h2,h2)

remove(h2,h2)

dotestf(h2,h2)

remove(h2,h2)

dotestv(h2,h2)

Figure 2: An example of a recipe. For readability, the sequence la-
belling the edge between A and B has been separated.

or for the hinge to be removed, based on the outcome of evaluating
guards (not shown) against real-time visual-test data. Similarly, the
outcome of evaluating guards against real-time force-test data deter-
mines whether the hinge is recycled or stored for delivery.

A trace of a recipe R is a sequence π = s0
T1−→s1

T2−→· · · Tn−−→sn,
namely, a sequence of states and transitions, of arbitrary length n ≥
0, such that si−1

Ti−→si for each i ∈ [1, n]. If not specified, we assume
s0 = s0.

Finally, we assume that cycles in a recipe are bounded, in order
to ensure that manufacturing the end-product will eventually cease.
Since bounded cycles can easily be removed by unfolding the recipe
graph, in what follows we deal only with acyclic recipes, i.e., recipes
where the edge-labelled graph (S,→) is acyclic.

4 PRODUCTION RESOURCE & TOPOLOGY
A production resource represents a production “station” (or “cell”),
which performs observable operations on parts. A transport resource
represents a transport mechanism such as a conveyer belt, which
performs internal operations that route parts between stations. We
model production and transport resources as labelled transition sys-
tems, where a node represents a state of the resource, and an outgoing
edge from a node corresponds to a task that can be performed from
that node.

Definition 2 (Resource) A production (resp. transport) resource is
a tuple (s0, S, L,=⇒), where S is a set of states, s0 ∈ S is the initial
state, L ⊆ Tob ∪ Tsyn ∪ {nop} (resp. L ⊆ Tin ∪ Tsyn ∪ {nop})
is a set of tasks,3 and =⇒ : S × L 7→ S is a non-empty transition
function.

Intuitively, the nop task allows a resource to idle for either a fixed or
an unbounded number of steps, before and/or after performing other
tasks. Note that =⇒ is a function: we assume that when a resource
performs a task from a state, there exists only one possible successor
state for that task.

Figure 1c shows a simplified model of the resources in Figure 1.
Multiple transitions between two states are depicted as one, with la-
bels separated by a comma. Resource R1 can load a new pallet (con-
taining a hollow hinge and hinge pin), and also store a hinge for
removal or delivery. Labels in1 and out1 are in and out synchro-
nisation tasks, respectively. Resource R2 is the first robotic arm in
Figure 1, which can either accept (via in2) a pallet fixture and sep-
arate it into the hollow hinge and pin, or accept these two parts, one
after the other, and then insert the pin into the hinge, thereby again
producing a single part. The second robotic arm is modelled as R3,
which can either apply glue to a given part, or engrave it with a serial
number. Resource R4 is the testing station, which can first analyse a
hinge to gather visual data about its assembly, followed possibly by

3 We could also allow production resources to specify internal tasks, which
would then enable operations such as data logging (e.g. from sensors).

an analysis to gather data about hinge force. The latter is not allowed
before doing the former because a wrongly assembled hinge could
become damaged if it is manipulated to gather force data. Moreover,
due to design constraints, the resource also cannot idle between these
two operations, represented by the lack of a nop transition.

Finally, R5 is a transport resource, modelling the shuttle system
in Figure 1. This resource represents the “legal routes” between pro-
duction resources: e.g., while a newly loaded fixture can be delivered
from R1 to R2, delivering a glued part from R3 to R4 is forbid-
den, to prevent the part from becoming affixed during force analy-
sis. Thus, intuitively, “out” synchronisations in production resources
correspond to “in” synchronisations in transport resources, and vice
versa. For example, out1 in R1 corresponds to tr in1 in R5, and
tr out2 in R5 corresponds to in2 in R2.

A production topology (or simply topology) “connects” the avail-
able resources via synchronisation tasks, and represents the layout
of the production system. Technically, a topology is the cross prod-
uct of elements in resource tuples, excluding “invalid” transitions,
i.e., those having an out synchronisation without the corresponding
in synchronisation (and vice versa).

In what follows, we use two auxiliary notions. First, for any pair
of states s, s′ ∈ S and label t ∈ L, we use s =⇒t s′ to denote
(s, t, s′) ∈ =⇒. Second, we define the complement of a synchro-
nisation task t ∈ Tsyn, denoted by ∼ t, as tx← if t = tx→, and as
tx→ otherwise, where x ∈ N. For instance, referring to Figure 1c, if
t = out1, then∼ t = tr in1. While, strictly speaking, the definition
requires ∼ t = in1, in the figure we have used the prefix “tr” for
the purpose of readability. Taking inspiration from [6], we define a
production topology as follows.

Definition 3 (Topology) Let R1, . . . , Rn be resources, where each
Ri = (s0

i , Si, Li,=⇒i). A topology is a tuple (s0, S, L,=⇒),
where S = S1 × · · · × Sn is the set of states; s0 = (s0

1, . . . , s
0
n) is

the initial state; L = L1 × · · · × Ln is the set of concurrent tasks;
and the transition relation =⇒ is such that for any s, s′ ∈ S and
t ∈ L, we have s =⇒t s′ iff for all i ∈ [1, n]:4

1. ti 6∈ Tsyn and si =⇒i
ti s′i; or

2. ti ∈ Tsyn and si =⇒i
ti s′i, and there exists exactly one j ∈ [1, n]

such that sj =⇒j
tj s′j and tj = ∼ ti.

Thus, the topology depicts the concurrent execution of tasks ti in
different resources. Without loss of generality, condition (2) checks
that, within a single transition, a particular synchronisation only takes
place between one resource and exactly one other resource. This
is because we later use synchronisations to unambiguously transfer
parts between resources.

5 REALISABILITY OF A RECIPE ON A
TOPOLOGY

We shall now define what it means for a recipe to be realisable on a
topology. Our definition relies on some auxiliary notions, particularly
involving the movement of parts and the execution of a recipe on a
topology.

The notion of a topology as defined above is “static” in that it does
not account for parts which are moved between resources and ma-
nipulated by them. Thus, given a topology (s0, S, L,=⇒), we keep
track of the movement of parts (constants) during production via a
resource vector r = (c1, . . . , cn), where each ci ∈ C∗ is a (pos-
sibly empty) sequence of parts that do not occur anywhere else in

4 Recall that s = (s1, . . . , sn), s
′ = (s′1, . . . , s

′
n) and t = (t1, . . . , tn).

r; we denote ci by r(i) for any i ∈ [1, n], and the set of all possi-
ble resource vectors as V . Intuitively, we associate each state in the
topology with a resource vector r, specifying which parts are cur-
rently allocated to each resource. Note that each element in vector r
is a sequence and not a set: we assume a first-in-first-out approach
when moving parts between resources.

Part constants get allocated to resources as p-tasks in recipes
are processed. A resource Rj currently in state sj can execute an
(atomic) p-task t(c, c′) only if (a) the task t is available from state
sj in Rj , and (b) the parts ◦t appearing as the input parameters of t
are currently allocated to the resource, namely, r(j) = c. After its
execution, parts c′ appearing as its output parameters (i.e., t◦) are
allocated toRj . For example, the separate(f, p ·h) p-task in Figure
2 is executable on resourceR2 in Figure 1c only if part f is currently
allocated to R2, and the resource is in state 1. Executing the task
results in f being “removed” and R2 being allocated parts p and h.

Formally, given a task expression T = t1 ‖ . . . ‖ tm, a resource
vector r, a state s, and a transition s =⇒t s′ with t = (t′1, . . . , t

′
n), a

resource vector r′ is an allocation of T to t with respect to r, denoted
r′ ∈ AL(r, T , t), if and only if

• ∀j ∈ [1, n], either t′j 6∈ Tob and r′(j) = r(j), or ∃i ∈ [1,m] s.t.

(a) t′j = ti (b) r(j) =◦ti and r′(j) = t◦i

• ∀i ∈ [1,m], ∃j ∈ [1, n] s.t. (a) and (b).

In other words, there must exist a one-to-one mapping from p-
tasks ti in T to observable tasks t′j in transition t, and from the parts
associated with ti to the ones corresponding to t′j (i.e., r(j)).

Allocated parts are transferred across resources by synchronisa-
tion tasks. Formally, a resource vector r′ is a transfer or “move”
of parts from r relative to t (r and t are as above), denoted r′ =
MOV(r, t), if r′ is obtained from r by replacing each c′i, c

′
j ∈ r

(c′i = c1 · · · cm) with respectively c2 · · · cm and c′j · c1, only if
t(i) = tx→, t(j) = tx← (x ∈ N), and m > 0; if m = 0, then
r′ = r.5 For example, the part p in resource R2 in Figure 1c is
moved to resource R5 via the synchronisation involving tasks out2
and tr in2.

Observe that a resource vector encodes the allocation of parts to re-
sources (that is, which parts are currently allocated to each resource),
and part allocations are not considered in the description of the re-
source itself. In other words, the description of a resource is purely
behavioural, in the sense that it encodes the sequence of operations
that it can (or is allowed to) execute, which is not constrained by the
presence of a part in a given internal state as in the case of, e.g., Petri
Nets [17]. The size of a resource vector is thus equal to the number
of resources, and the allocation of parts is independent from the cur-
rent state of the topology. This is an essential point to guarantee our
complexity result.

The final auxiliary notion needed to define the execution of a
recipe on a topology is the standard notion of a linearisation, which
we have adapted for interleaved compositions. Formally, a lineari-
sation T ′ of a task expression T = T1| . . . |Tm, denoted T ′ ∈
LIN(T), is defined inductively as follows. If m ∈ {1, 2}, then T ′
is any sequence of the form T 1

1 ; T 1
2 ; T 2

1 ; T 2
2 ; . . . ; T n1 ; T n2 , where

T1 = T 1
1 ; . . . ; T n1 , T2 = T 1

2 ; . . . ; T n2 , and each T ji is a possibly
empty sequence. If m > 2, then

T ′ ∈
⋃

T ′′∈LIN(T2|...|Tm)

LIN(T1|T ′′).

5 Given a label t = (t1, . . . , tk), we denote ti by t(i), for any i ∈ [1, k].

1

0

0

0

0

f

ϵ

ϵ

ϵ

ϵ

0

2

0

0

0

ϵ

p·h
ϵ

ϵ

ϵ

separate(f,p·h)

(out1,-,-,-,tr_in1) ·

(-,in2,-,-,tr_out2) ·

(-,separate,-,-,-)

s , r s′ , r′

Figure 3: A graphical representation of a recursive application of the
NXT operator. Given the couple (s, r), where s = (1, 0, 0, 0, 0) and
r = (f, ε, ε, ε, ε), the state (s′, r′) is in NXT((s, r), separate(f, p ·
h)) due to two unobservable transitions (part f is moved to resource
R2 via two synchronisation steps), thereby allocating the p-task to
R2.

That is, when given two interleaved task expressions T1 and T2,
we make them the same length by arbitrarily “padding” with empty
elements, and then merging the two resulting expressions to form one
possible T ′.

We can now define what it means for a recipe to be executable on
a topology. We do this with the following operator, which captures
what it means to “execute” an arbitrary task expression on the topol-
ogy P , given a state s and resource vector r. Intuitively, it returns
the set of possible successor states of the topology, together with the
corresponding next resource vectors.

In what follows, let σ = (s, r).

Definition 4 (NXT) We define the operator NXT(σ, T) =

⋃
σ′∈Σ

NXT(σ′, T2) if T = T1; T2 and Σ = NXT(σ, T1);

⋃
T ′∈LIN(T)

NXT(σ, T ′) if T = T1| . . . |Tn, n > 1;

Σ′
⋃
σ′∈Σ

NXT(σ′, T) if T = t1‖. . .‖tn, n ≥ 1,

(4.1) Σ′ = {(s′, r′) | s =⇒t s′, t ∈ L,
r′′ ∈ AL(r, T , t), r′ = MOV(r′′, t)}, and

(4.2) Σ = {(s′, r′) | s =⇒t s′, t ∈ L,
r′ = MOV(r, t),∀t ∈ t, t 6∈ Tob}.

In this definition, an element (s′, r′) ∈ NXT((s, r), T) is a “suc-
cessor” of (s, r), where s′ in the topology is a final state reachable
from s under guidance from T , and r′ is the resource vector of s′.
More specifically,

• if T = T1; T2, then one task at a time is considered according to
the sequence;

• if T = T1| . . . |Tn, then all linearisations of T are considered;
• if T = t1 ‖ . . . ‖ tn (including the base case T = t1), then Σ′

is the set of couples (s′, r′) such that s′ is a successor of s (in
the topology) for some label t, and r′ is the new resource vector
obtained from r by first allocating T to t, and then moving parts
according to synchronisation tasks in t. Similarly, Σ is the set of
couples (s′, r′) obtained from (s, r) when t is an “unobservable”
transition (one in which no observable tasks occur).

Thus, NXT((s, r), T) is the set of couples (s′, r′), where s′ is
reachable from s by following a possibly empty sequence of unob-
servable transitions, followed by an allocation of T , and r′ is the re-
sulting resource vector. Figure 3 depicts one application of the NXT

operator in the context of Figure 1c.

We extend the above notion of executability to traces of a recipe
R as follows. A trace π = s0

T1−→s1
T2−→· · · Tn−−→sn of R is realisable

in a topology P iff (a) there exists a sequence of n couples
(s1, r1) · · · (sn, rn) such that (sj , rj) ∈ NXT((sj−1, rj−1), Tj)
for each j ∈ [1, n], and (b) (s0, r0) = (s0, r0). For brevity, we
shall write (sn, rn) ∈ NXT∗((s0, r0), π). Then, we say that R
is realisable in P iff any trace π of R (recall that their number
is finite) is realisable in P from its initial state, i.e., ∃(s′, r′) ∈
NXT∗((s0, r0), π) for any trace π of R.

Finally, note that the definition of realisability highlights how our
notion of a recipe is flexible. Multiple branches existing from a given
state constitute a universal requirement (AND-nodes), as we need to
be sure that, at run-time, any possible trace can be realised. At the
same time, task expressions with interleaving represent existential
requirements (OR-nodes), as it is sufficient to find a possible realis-
able linearisation. This makes the control problem in our setting more
involved than considering any possible trace of a finite-state machine
labelled with atomic tasks (as is the case in Behaviour Composition
[9]), or the language expressing the set of legal traces of the system
(as for Discrete Event Systems [22]).

5.1 Checking Realisability via Simulation
We can now define the notion of a task simulation relation for a
topology and recipe, inspired by the mathematical notion of simu-
lation [16]. Although this notion is generally applied to infinite pro-
cesses, its application here to finite recipes allows us to capture the
realisability property with respect to the state of the manufacturing
facility. Intuitively, it relates states in the topology to states in the
recipe with respect to current resource allocations, such that each
transition (task expression) in the recipe can be executed by transi-
tions (tasks) in the topology, and the same holds iteratively for the
entire recipe, irrespective of the actual recipe trace that might be fol-
lowed at execution-time (which depends on the outcome of evaluat-
ing guards in the recipe).

Definition 5 (Simulation) Let P = (s0, S, L,=⇒) be a topology,
and R = (s0, S, L,→) a recipe. A task simulation relation is a rela-
tion SIM ⊆ S×S×V ,6 such that a tuple (s, s, r) ∈ SIM implies that
for any T and s′, if s→T s′ then there exists a state s′ and a resource
vector r′ such that (s′, s′, r′) ∈ SIM, with (s′, r′) ∈ NXT((s, r), T).

We say that a state s ∈ S simulates a state s ∈ S with respect to a
resource vector r if and only if there exists a task simulation relation
SIM such that (s, s, r) ∈ SIM. Indeed, many such task simulation
relations may exist, each accounting for one or more ways of real-
ising the recipe. Finally, topology P simulates recipe R if and only
if there exists a task simulation relation SIM (one is sufficient) such
that (s0, s0, r0) ∈ SIM, where r0 denotes the resource vector (with
|r0| = |s0|) composed of empty sequences, namely, the “empty”
resource vector.

Theorem 1 (Realisability via simulation) Given a topology P =
(s0, S, L,=⇒) and recipe R = (s0, S, L,→), the recipe is realis-
able in P iff P simulates R.

The proof for this is straightforward, as a task simulation only ex-
presses an invariant property with respect to task allocation (the NXT

operator). Proceeding by contradiction, suppose R is realisable in P
but that P does not simulate R. By the definition of a task simulation

6 Recall that V is the set of all resource vectors.

relation, this means that there exists a trace π in R such that for any
(s′, r′) ∈ NXT∗((s0, r0), π) we have that (s′, s′, r′) 6∈ SIM, with s′

being the last state in π. Hence, it can be seen that π (and thus R) is
not realisable in P . The proof for the opposite direction is similar.

We conclude this section by observing that our notion of task sim-
ulation has some similarity with the notion of simulation between
transition systems that has been investigated to solve the problem of
Behaviour Composition [9]. However there are some fundamental
differences. First, the task simulation relation is defined with respect
to complex task expressions that can be allocated to resources in par-
allel, while the notion of a simulation relation applied to behaviour
composition assumes that only one behaviour module at the time is
allowed to execute actions. Second, each task in the recipe may here
be realised by a sequence of observable and unobservable transitions
in the topology, which is a more complex setting than the other.

6 CONTROLLER SYNTHESIS
When it is possible to manufacture a product using the given set of re-
sources, that is, when there exists a task simulation relation between
the recipe and the topology, the next step is to synthesise a controller
able to orchestrate the resources in order to execute the recipe and
thus manufacture the product.

Crucially, the task simulation relation between a topology P and
recipe R alone does not hold all the information that is necessary in
order to extract solutions: the relation is sufficient to answer whether
we can orchestrate the resources in order to realise the recipe, but not
how. For instance, given a tuple (s, s, r) in the task simulation rela-
tion, we know, when considering a transition s T1|T2−−−→s′ in the recipe,
that there must exist a linearisation LIN(T1|T2) that is executable on
the topology, but we do not know which. Indeed, such information
is not stored in the relation. The same applies to (atomic) p-tasks:
additional, unobservable transitions may be needed before the p-task
can be executed, which the relation does not keep track of.

This additional information is the set of sequences of transitions
(t1 · · · tk) in the topology that realise a task expression T , for any
couple σ = (s, r) and σ′ ∈ NXT(σ, T), where σ′ = (s′, r′). We
denote this set by TRANSOF(σ, T , σ′). It is defined similarly to the
operator NXT(σ, T) in Definition 4: an element (t1 · · · tk) is in the
set TRANSOF(σ, T , σ′) if and only it is one of the sequences of vec-
tors t corresponding to k recursive applications of steps (4.1) and
(4.2) in the definition. Thus, if (t1 · · · tk) ∈ TRANSOF(σ, T , σ′),
then the trace

s =⇒t1 · · · =⇒tk s′

is a trace of P . For example, the following sequence of transitions
(out1, t, t, t, tr in1) · (t, in2, t, t, tr out2) · (t, separate, t, t, t),
with t = nop, is in TRANSOF(σ, T , σ′), for σ and σ′ as in Fig-
ure 3. We omit the full definition for brevity, but we make its steps
clearer with an algorithm.

Let P be a production topology and R a production recipe. Sup-
pose that P simulates R, i.e., there exists a task simulation relation
SIM between P and R. Then, we define a “controller” as a state
machine in which a transition encodes a sequence of topology tran-
sitions that ought to be executed, given a transition in the recipe.

Definition 6 (Controller) Let P = (s0, S, L,=⇒) and R =
(s0, S, L,→) be as above. A controller for R and P is a finite state
machine C = (SIM, δ), where

• SIM is a non empty task simulation relation, whose elements cor-
respond to the set of states in the controller;

load(ϵ,f)

(load,-,-,-,-)

B

ϵ

ϵ

ϵ

h2

ϵ

0

0

0

2

0

A

ϵ

ϵ

ϵ

ϵ

ϵ

0

0

0

0

0

f

ϵ

ϵ

ϵ

ϵ

1

0

0

0

0

ϵ

p·h

ϵ

ϵ

ϵ

0

2

0

0

0

ϵ

h

p

ϵ

ϵ

0

1

2

0

0

ϵ

p

h

ϵ

ϵ

0

1

2

0

0

ϵ

h2

ϵ

ϵ

ϵ

0

1

0

0

0

separate(f,p·h)

(out1,-,-,-,tr_in1) ·

(-,in2,-,-,tr_out2) ·

(-,separate,-,-,-)

applyglue(p,p)

(-,out2,-,-,tr_in2) ·

(-,-,in3,-,tr_out3) ·

(-,-,applyglue,-,-)

engrave(h,h)

(-,-,out3,-,tr_in3) ·

(-,in2,-,-,tr_out2) ·

(-,out2,-,-,tr_in2) ·

(-,-,in3,-,tr_out3) ·

(-,-,engrave,-,-)

insert(p·h,h2)

(-,-,out3,-,tr_in3) ·

(-,in2,-,-,tr_out2) ·

(-,insert,-,-,-)

dotestv(h2,h2)

(-,out2,-,-,tr_in2) ·

(-,-,-,in4,tr_out4) ·

(-,-,-,dotestv,-)

Figure 4: A graphical representation of a single transition in a con-
troller between two tuples (s, s, r) ∈ SIM (the first and the last),
and therefore states in a possible controller. The states not in bold
correspond to “intermediate” steps, namely, applications of the NXT

operator to atomic tasks. For instance, the second transition corre-
sponds to (s′, s′) ∈ NXT((s, s), separate(f, p · h)), as in Figure
3. Therefore, the transition in the controller is labelled with (a) the
entire task expression T between A and B as in Figure 2, and (b)
the complete sequence of transitions in the topology that we need to
realise T , as they appear in this figure. Dashes are used in place of
nop tasks for readability.

• δ : SIM × Lang(T)× L+ 7→ SIM is a transition function: given
a state, an arbitrary task expression and a sequence of transitions
in the topology, it returns the successor state. Specifically, for any
state (s′, s′, r′) and task expression T , if and only if s T−→s′ for
some s′, then there exists at least one transition (s′, s′, r′) =
δ((s, s, r), T , (t1 · · · tk)), with (s′, r′) ∈ NXT((s, r), T), and
(t1 · · · tk) ∈ TRANSOF((s, r), T , (s′, r′)).

Figure 4 depicts a controller between two tuples in the task sim-
ulation relation, in relation to the recipe and resources in Figures 2
and 1c.

We use function ω : SIM × Lang(T) 7→ 2L
+

in order to “read”
the information stored in the controller’s transitions. Given the recipe
transition (task expression) that we want to execute, ω defines the set
of possible corresponding sequences of transitions in the topology.
Formally, ω(θ, T) = {(t1 · · · tk) | ∃θ′ : θ′ = δ(θ, T , (t1 · · · tk))}.

In Section 5, we defined what it means for a recipe to be realisable
on a topology. Similarly, we define here what it means for a recipe to
be executed on a topology by a controller. First, we say that a trace
π = s0

T1−→s1
T2−→· · · Tn−−→sn of a recipe R is executed on a topology

P by a controller C if and only if

1. it holds by backward induction that for each i ∈ [0, n −
1], we have ω((si, si, ri), Ti+1) 6= ∅ with (si, si, ri) =
δ((si−1, si−1, ri−1), Ti, (t1 · · · tk)) for some (t1 · · · tk) ∈
ω((si−1, si−1, ri−1), Ti);

2. (s0, s0, r0) = (s0, s0, r0) is the initial state.

That is, we first use ω to return the set of transitions in the topology
that we may choose in order to realise the current task expression Ti
from the current state (si, si, ri) in the controller, and then use δ to
compute the next state (si+1, si+1, ri+1), which corresponds to the
new state si+1 in the topology, the new state si+1 in the recipe (as
it appears in π) and the new allocation ri+1. This iterative process
is repeated at each step of π until the trace is completed, and can

proceed (the set of choices is always non-empty) for any sequence
returned by ω. In other words, a trace of the recipe is executed by
a controller if, from their respective initial states, the controller can
always associate the current task expression in the trace to at least one
sequence of transitions in the topology realising that task, thereby
orchestrating the resources such that the task expression is realised.
A recipe R is executed on a topology P by a controller C iff all its
traces are executed on P by C.

Theorem 2 Given R and P as above, any controller C (for R and
P) is such that R is executed on P by C.

PROOF. Let us proceed by induction on the length of traces π
in R. If π = s0 then the claim holds: point 1 above does not
apply because 0 = n, and point 2 is trivially true. If π =

s0
T1−→s1

T2−→· · ·
Tn−1−−−→sn−1 of R is executed by C on P , assume

that π Tn−−→sn is not, i.e., ω((sn−1, sn−1, rn−1), Tn) = ∅. By def-
inition of ω, this means that there is no transition (sn, sn, rn) =
δ((sn−1, sn−1, rn−1), Tn, (t1 · · · tk)) for any (t1 · · · tk) and suc-
cessor (sn, sn, rn). By definition of δ this also implies that either
there is no (sn, rn) in NXT((sn−1, rn−1) or no (sn, sn, rn) ∈
TRANSOF((sn−1, rn−1), Tn, (sn, rn)). From either case it follows
that (sn, rn) 6∈ NXT∗((s0, r0), π), and thus π is not realisable. Then,
by Theorem 1, no (non-empty) task simulation relation exists, and no
controller can be defined. �

We conclude this section with a discussion about complexity.

Theorem 3 (Complexity) Given R and P , checking the existence
of (and computing) a controller is polynomial on the size of the topol-
ogy and exponential in the size of the recipe and number of resources.

Intuitively, for any atomic expression in the recipe we need to con-
sider any possible combination (s, r) of a new state in the topology
together with any possible new resource vector (corresponding to re-
cursive applications of the definition of NXT) to check whether there
exists an allocation of the task (to a transition in the topology) such
that r is the resulting vector. The size of the topology is exponential
in the number of resources, and polynomial in their size. The size
of all possible resource vectors is exponential in the number of re-
sources and number of parts mentioned in the recipe. As the recipe
can be equivalently represented as a rooted tree, if we take the size of
the recipe as the maximum length of the sequences of atomic expres-
sions (for any linearisation) appearing along its traces, then comput-
ing a simulation relation has costO((|P |×|V |)|R|). We conclude by
noting that we can compute the transitions in the controller (namely,
the sequences of transitions in the topology that allow to realise each
atomic task) while computing the simulation relation (see points (4.1)
and (4.2) in Definition 4, and the discussion before Definition 6).

Our complexity result is consistent with that of [9], which is expo-
nential in the number of available behaviours and polynomial in the
size of the so-called enacted system behaviour [9].

7 ALGORITHM FOR REALISABILITY AND
SYNTHESIS

We shall now provide an algorithm that computes a task simulation
relation, as well as a controller, from a given topology and recipe.
The algorithm clarifies how certain steps in our definitions could be
implemented. In particular, we show how linearisations can be con-
sidered incrementally, without computing them all at the outset; how

the closure of unobservable transitions are computed; how termina-
tion is ensured; and finally, how controller transitions are gathered.

The algorithms use some additional auxiliary notions, which
we define first. Given a possibly atomic task expression T =
T1; T2; . . . ; Tn, n > 0, we define its first element as FST(T) = T1

(where T1 is either atomic or an interleaved composition), and the
rest of its elements as RST(T) = T2; . . . ; Tn if n > 1, and as
RST(T) = ε if n = 1. We also extend these notions as follows.
Given an interleaved composition T = T1| . . . |Tn, n > 1, and an
atomic task expression Ta, we define the following:

FST(T) = {T1 : Ti = T1; . . . ; Tm, T1 is atomic},
RST(T , Ta) = {T1| . . . |Ti−1|Ti+1| . . . |Tn : Ti = Ta} ∪

{T1| . . . |Ti−1|T ′|Ti+1| . . . |Tn : Ti = Ta; T ′},
FSTRST(T) = {T1; T2 : T1 ∈ FST(T), T2 ∈ RST(T , T1)},

where T ′ is any non-empty sequence. These notions define the first
elements of interleaved composition T as the set of all first elements
in each of its sequences Ti, and the rest of T (relative to some first
element Ta) as the set of all interleaved compositions obtained from
T by removing Ta (once) if it occurs first in some Ti.

Given a topology and recipe, Algorithms 1 and 2 work as follows.
Algorithm 1 additionally takes a state s in the recipe and a couple
σ = (s, r) as input, where s is a state in the topology and r is a re-
source vector. Then, for each outgoing transition in the recipe, from
s to some s′, the algorithm checks whether the associated task ex-
pression T can be simulated from the corresponding topology state
s, and (recursively) whether the same holds for each outgoing transi-
tion from s′. Thus, s′ is passed as a parameter to Algorithm 2 in order
to “remember” to continue from s′. Whenever the pair s and s are in-
deed in simulation, they are added to the set SIM in line 6, together
with the corresponding resource vector r. Observe that this is done
in a post-order (depth-first) fashion, from the “deepest” states in the
recipe to the state that was passed into Algorithm 1 when it was first
called. For controller synthesis, the algorithm also passes the entire
recipe transition being considered and its corresponding couple σ as
respectively the third and fifth parameters (line 3) to Algorithm 2.

Intuitively, Algorithm 2 implements the NXT operator in Defini-
tion 4. Basically, the algorithm performs a depth-first traversal of the
topology to check whether task expression Tcur (initially T) can be
simulated. We highlight the important lines below. Line 6 looks for
a transition in the topology from state snxt that matches the first el-
ement in Tcur , provided that the couple σnxt was not already ex-
plored in a previous (recursive) step. Lines 11 and 12 incrementally
check each linearisation of an interleaved composition Tcur , by re-
cursively checking the concatenation of each first element in Tcur ,
with a corresponding remainder. The loop exits as soon as any viable
linearisation is found. Line 14 is only applicable if Tcur could not be
simulated so far, and the topology-transition being considered is an
unobservable one. In this case, the transition is “skipped”, and a sim-
ulation of Tcur is tried from the next state s′ (with its corresponding
resource allocation). Line 2 is only applicable when Tcur has been
completely “processed”; it is at this point that a transition x is added
to the controller’s transition function δ (Definition 6). Finally, line 16
keeps track of the fact that σnxt is being explored, in order to guar-
antee termination. Combined with the fact that the recipe is acyclic,
the following results hold trivially.

Proposition 4 Algorithm 1 always terminates. Furthermore, it is op-
timal with respect to computational complexity.

Observe that line 16 (and other lines) in Algorithm 2 adds the
current transition label t to the end of the sequence of topology

Algorithm 1 FindSim(σ, s)

Input: Topology (s0, S, L,=⇒) and recipe (s0, S, L,→);
the couple σ = (s, r); state s ∈ S.

Output: Either (∅, ∅) or a non-empty relation SIM and function δ.
1: δ, SIM, SIM′ := ∅
2: for each (s, T , s′) ∈→ do
3: (SIM′, δ) := EvalExp(σ, T , (s, T , s′), ε, σ, ∅)
4: if SIM′ = ∅ then return (∅, ∅)
5: SIM := SIM ∪ SIM′

6: return (SIM ∪ {(s, s, r)}, δ)

Algorithm 2 EvalExp(σnxt , Tcur , tr, (t1 · · · tk), σ0,Σ)

Input: Topology (s0, S, L,=⇒) and recipe (s0, S, L,→);
current successor couple σnxt = (snxt , rnxt);
task expression being processed Tcur;
current recipe-transition tr = (s, T , snxt);
current sequence of topology-transition labels (t1 · · · tk);
couple σ0 = (s0, r0), corresponding to s; visited couples Σ.

Output: Either (∅, ∅) or a non-empty relation SIM and function δ.
1: δ, SIM := ∅
2: if Tcur = ε then
3: x := (s0, s, r0) T ,(t1···tk)−−−−−−−→(snxt , snxt , rnxt)
4: (SIM, δ) := FindSim(σnxt , snxt)
5: return (SIM, δ ∪ {x})
6: for each (snxt , t, s

′) ∈ =⇒ with σnxt 6∈ Σ do
7: if FST(Tcur) = t1‖. . .‖tn and

r′′ ∈ AL(rnxt , FST(Tcur), t) then
8: σ′ := (s′, r′), where r′ = MOV(r′′, t)
9: (SIM, δ) :=

EvalExp(σ′, RST(Tcur), tr, (t1 · · · tk · t), σ0, ∅)
10: else if FST(Tcur) = T1| . . . |Tn (where n > 1) then
11: for each T ′ ∈ FSTRST(Tcur) do
12: (SIM, δ) := EvalExp(σnxt , T ′, tr, (t1 · · · tk), σ0, ∅)
13: if SIM 6= ∅ then return (SIM, δ)
14: if SIM = ∅ and ∀t ∈ t, t 6∈ Tob then
15: σ′ := (s′, r′), where r′ = MOV(rnxt , t)
16: (SIM, δ) :=

EvalExp(σ′, Tcur , tr, (t1 · · · tk · t), σ0,Σ ∪ {σnxt})
17: if SIM 6= ∅ then return (SIM, δ)
18: return (∅, ∅)

transitions t1 · · · tk being pursued. This essentially implements the
TRANSOF operator described in Section 6, and together with line 3,
leads to the fact that the algorithm correctly computes a controller
for the recipe and topology. Moreover, the algorithm also correctly
computes a task simulation relation for them.

Theorem 5 (Correctness) Let P = (s0, S, L,=⇒) be a topology
and R = (s0, S, L,→) a recipe. Let (SIM, δ) = FindSim(σ, s0)
with σ = (s0, r0). Then (a) SIM = ∅ iff R is not realisable in P ;
otherwise, (b) SIM is a task simulation relation between P and R;
and (c) (SIM, δ) is a controller of P and R.

PROOF SKETCH. This is an involved proof by induction on the
“height” h of vertices in the recipe. The main part involves show-
ing that SIM is a task simulation relation between P and R. For
the base case, we take h = 0. Then, there is no recipe transition
(s, T , s′) ∈ → for any T (line 2 in Algorithm 1). Thus, the algo-
rithm returns SIM = {(s, s, r)}, and (s, s, r) ∈ SIM also holds by
Definition 5. Next, we assume that the theorem holds if h ≥ x, for
some x ∈ N0 (induction hypothesis). For the inductive step, we take
h = x+ 1. Then, there must exist a recipe transition (s, T , s′) ∈→
for some T . We prove that if SIM′ 6= ∅ in line 3, then SIM′ is “sound”.

We do this by induction on the length of expression Tcur in Algo-
rithm 2. The main point is that the couples in Σ′ and Σ in steps (4.1)
and (4.2) in Definition 4 are the same as in lines 8 and 15 in Algo-
rithm 2, respectively. Finally, if SIM′ 6= ∅ in line 3 of Algorithm 1
for all transitions considered in line 2, it follows that (s, s, r) ∈ SIM

also holds by the induction hypothesis and Definition 5. �

8 DISCUSSION AND FUTURE WORK
In this paper we presented an approach for modelling a flexible man-
ufacturing system and checking whether it is possible to manufac-
ture a given product in the system, represented as a manufacturing
recipe. This check is done by computing a task simulation relation
as discussed in Section 5. Further, we presented an approach for syn-
thesising a controller that is able to orchestrate the manufacturing
resources in the system so as to realise the recipe.

However, we did not address the problem of synthesising any con-
troller for the given recipe. Rather, (a) we computed a possible task
simulation relation, and (b) defined a possible controller. Moreover,
the algorithm presented in Section 7 returns a controller which rep-
resents exactly one way of orchestrating the resources to realise the
recipe, as this is sufficient for our application.

One direction for future research therefore involves the synthe-
sis of any controller for a given recipe, and the technical content
of this paper already allows for this extension. Computing any pos-
sible controller amounts to (a) computing the largest task simula-
tion relation, and (b) including in the controller, between two states
(s, s, r) and (s′, s′, r′), all possible sequences of transitions defined
by TRANSOF((s, r), T , (s′, r′)) and not just at least one, as in Defi-
nition 6. An algorithm can be devised accordingly.

Another research direction involves checking realisability (and
synthesising suitable controllers) offline, but for classes of recipes
instead of single recipes. A class of recipes can be expressed in
terms of a union of recipes, but also as unbounded (even cyclic) pro-
cesses, which is already handled by our notion of task simulation,
as it relies on the standard mathematical notion of simulation. To
check the realisability of a new recipe, it would therefore be suffi-
cient to check whether it can be simulated (task simulation) by one
such class, which is a polynomial check in the size of the recipe.

Finally, although our current formalism allows only parallel tasks
on different parts, we plan to extend it to capture parallel tasks op-
erating on the same part (e.g. two machines performing a joint task
on a single part). Allowing parallel tasks on the same part requires
machines to be able to “see” the workspaces of each other, thus in-
creasing the complexity of the algorithm proportionately.

ACKNOWLEDGEMENTS
This research was funded by EPSRC grants EP/K018205/1 and
EP/K014161/1, the support of which is gratefully acknowledged.
We would like to thank Natasha Alechina for many helpful ideas
and discussions relating to the work presented here, and Nikolas
Antzoulatos and Elkin Castro for useful advice and material.

REFERENCES
[1] ANSI/ISA-95, Enterprise-Control System Integration, Parts 1-5.
[2] Business To Manufacturing Markup Language - Operations Schedule -

Version 6.0.
[3] IEC 62264-1: Enterprise-control system integration - Parts 1-3.
[4] ‘A Landscape for the Future of High Value Manufacturing in the UK’,

Technical report, Technology Strategy Board, (2012).

[5] Zhuming M. Bi, Sherman Y.T. Lang, Weiming Shen, and Lihui Wang,
‘Reconfigurable manufacturing systems: the state of the art’, Interna-
tional Journal of Production Research, 46(4), 967–992, (2008).

[6] Simon Bliudze and Joseph Sifakis, ‘The algebra of connectors: Struc-
turing interaction in BIP’, in Proceedings of the ACM IEEE Interna-
tional Conference on Embedded Software, EMSOFT ’07, pp. 11–20,
(2007).

[7] Jim Browne, Didier Dubois, Keith Rathmill, Suresh P. Sethi, and
Kathryn E. Stecke, ‘Classification of flexible manufacturing systems’,
The FMS magazine, 2(2), 114–117, (1984).

[8] J.C. Chaplin, O.J. Bakker, L. de Silva, D. Sanderson, E. Kelly, B. Lo-
gan, and S.M. Ratchev, ‘Evolvable assembly systems: A distributed ar-
chitecture for intelligent manufacturing’, IFAC-PapersOnLine, 48(3),
2065–2070, (2015).

[9] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardina, ‘Auto-
matic behavior composition synthesis’, AIJ, 196, 106–142, (2013).

[10] Hoda A. ElMaraghy, ‘Flexible and reconfigurable manufacturing sys-
tems paradigms’, International Journal of Flexible Manufacturing Sys-
tems, 17(4), 261–276, (2005).

[11] Kutluhan Erol, James Hendler, and Dana S. Nau, ‘HTN planning: Com-
plexity and expressivity’, in Proceedings of the National Conference on
Artificial Intelligence (AAAI-94).

[12] Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolf-
gang Wahlster, Recommendations for Implementing the Strategic Ini-
tiative INDUSTRIE 4.0: Securing the Future of German Manufacturing
Industry; Final Report of the Industrie 4.0 Working Group, Forschung-
sunion, 2013.

[13] Yoram Koren, Uwe Heisel, Francesco Jovane, Toshimichi Moriwaki,
G. Pritschow, G. Ulsoy, and H. Van Brussel, ‘Reconfigurable manufac-
turing systems’, CIRP Annals-Manufacturing Technology, 48(2), 527–
540, (1999).

[14] Yuqian Lu, Xun Xu, and Jenny Xu, ‘Development of a hybrid manu-
facturing cloud’, Journal of Manufacturing Systems, 33(4), 551–566,
(2014).

[15] Mostafa G. Mehrabi, A. Galip Ulsoy, and Yoram Koren, ‘Reconfig-
urable manufacturing systems: key to future manufacturing’, Journal
of Intelligent Manufacturing, 11(4), 403–419, (2000).

[16] Robin Milner, ‘An algebraic definition of simulation between pro-
grams’, Technical report, Stanford University, (1971).

[17] Tadao Murata, ‘Petri nets: Properties, analysis and applications’, Pro-
ceedings of the IEEE, 77(4), 541–580, (1989).

[18] Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’, in Proceedings of the European workshop on Mod-
elling Autonomous Agents in a Multi-Agent World : agents breaking
away, pp. 42–55, (1996).

[19] Chris Rhodes, Manufacturing: Statistics and Policy. Briefing Paper,
House of Commons Library, 2015.

[20] Andrea Krasa Sethi and Suresh Pal Sethi, ‘Flexibility in manufactur-
ing: a survey’, International Journal of Flexible Manufacturing Sys-
tems, 2(4), 289–328, (1990).

[21] Daniel Smale and Svetan Ratchev, ‘A capability model and taxonomy
for multiple assembly system reconfigurations’, in Proceedings of IFAC
Symposium on Information Control Problems in Manufacturing (IN-
COM), volume 13, pp. 1923–1928, (2009).

[22] W. Murray Wonham and Peter J. Ramadge, ‘On the supremal control-
lable sub-language of a given language’, SIAMJCO, 25(3), 637–659,
(1987).

