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We propose a very simple reformulation of General Relativity, which completely sequesters from
gravity all of the vacuum energy from a matter sector, including all loop corrections and renders
all contributions from phase transitions automatically small. The idea is to make the dimensional
parameters in the matter sector functionals of the 4-volume element of the universe. For them to be
nonzero, the universe should be finite in spacetime. If this matter is the Standard Model of particle
physics, our mechanism prevents any of its vacuum energy, classical or quantum, from sourcing
the curvature of the universe. The mechanism is consistent with the large hierarchy between the
Planck scale, electroweak scale and curvature scale, and early universe cosmology, including inflation.
Consequences of our proposal are that the vacuum curvature of an old and large universe is not
zero, but very small, that wDE ' −1 is a transient, and that the universe will collapse in the future.

The cosmological constant problem is the most severe
naturalness problem in fundamental physics [1–3]. It fol-
lows from the Equivalence Principle of General Relativity
(GR) which asserts that all forms of energy curve space-
time. So, even the energy density of the vacuum, which
contributes to the cosmological constant, sources the cur-
vature of the spacetime, generically giving it huge contri-
butions. One can add a classical piece to the cosmological
constant and tune it with tremendous precision to can-
cel the vacuum energy. However, this tuning is unstable:
any change of the matter sector parameters or addition
of loop corrections to vacuum energy dramatically shifts
the value of vacuum energy, by O(1) in the units of the
UV cutoff. To neutralize it one must retune the classical
term by hand order by order in perturbation theory1.

In this Letter we present a mechanism which provides
a remedy, ensuring that all the vacuum energy from a
matter sector is sequestered from gravity. This includes
matter loop corrections (not involving virtual gravitons)
which are invisible to gravity, and contributions from
phase transitions, which are automatically small at late
times. Our idea is to make all scales in this matter sector
functionals of the 4-volume element of the universe. For
the scales to be nonzero, the universe should be finite in
spacetime, collapsing in the future. If the matter sector
is the Standard Model of particle physics, our mechanism
prevents it from generating large contributions to the net
cosmological constant, and therefore to the curvature of
the background universe. The mechanism is a very mini-
mal modification of General Relativity, without any new
propagating degrees of freedom. We formulate it adding
to the action auxiliary fields with an extra term, which
is not integrated over and is completely covariant. This

1 If exact, SUSY and/or conformal symmetry can enforce the van-
ishing of vacuum energy. In the real world are broken, which
induces vacuum energy given by the fourth power of the break-
ing scale [3–6].

subtracts ‘historic averages’ of the matter stress energy
from the gravitational sources, and removes the vacuum
energy contributions from the field equations. Nonethe-
less, there is still an effective net nonzero cosmological
term, but now i) it is purely classical, set by the com-
plete evolution of the geometry, ii) it is a ‘cosmic aver-
age’ of the values of non-constant sources, and so iii) it
is automatically small in universes which grow large and
old2. In the limit of (semi) classical gravity there are
absolutely no dynamical pathologies. All the propagat-
ing degrees of freedom obey standard second order field
equations compatible with local Poincare symmetry and
diffeomophism invariance, and the spectrum of fluctua-
tions is the same as in conventional GR with minimally
coupled matter. The mechanism is consistent with phe-
nomenological requirements, specifically with large hier-
archies between the Planck scale, electroweak scale and
vacuum curvature scale, and with early universe cosmol-
ogy including inflation.

Our mechanism can be described by the action as

S =
∫
d4x
√
g

[
M2
Pl

2
R− Λ− λ4L(λ−2gµν ,Φ)

]
+σ
(

Λ
λ4µ4

)
,

(1)
where matter couples minimally to the rescaled met-
ric g̃µν = λ2gµν . The parameter λ sets the hierarchy
between the matter scales and the Planck scale, since
mphys/MPl ∝ λm/MPl, where mphys is the physical
mass scale and m is the bare mass in the Lagrangian.
In conventional GR (or unimodular gravity) the variable
Λ would be an arbitrary classical contribution to the total
cosmological constant. We treat the parameters Λ and λ
as dynamical variables without any local dynamics – i.e.
just as auxiliary fields. We then vary the (1) with respect
to Λ and λ, in addition to other variables with local prop-

2 This doesn’t automatically make it fit the observational data,
but it makes the tunings needed far gentler.
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agating modes, as in formulations of unimodular gravity
[7–10]. Here, in contrast to old approaches, we add the
function σ outside of the integral, to fix the matter scales
as functionals of

∫
d4x
√
g. The external function σ is an

odd (to allow for solutions with vacuum energy of either
sign for λ > 0) differentiable function, to be determined
by phenomenology. Without gravity, it would completely
drop out of the calculation of any observables, but with
gravity turned on, it affects the dynamics of the metric
determinant g = −det(gµν) sector. The scale µ is also
chosen phenomenologically.

From (1) one can see that all vacuum energy contri-
butions coming from the Lagrangian

√
gλ4L(λ−2gµν ,Φ),

must scale with λ as λ4, even after the logarithmic cor-
rections are included, provided that a regulator of the
QFT is defined to also couple minimally to g̃µν3. This fol-
lows from diffeomorphism invariance of the theory, which
guarantees that the full effective Lagrangian computed
from

√
gλ4L(λ−2gµν ,Φ) =

√
g̃L(g̃µν ,Φ), including all

quantum corrections, still couples to the exact same g̃µν
[11]. In this Letter we consider gravity as a purely (semi)
classical theory, and focus on the quantum effects from
matter alone4. After canonically normalizing the matter
fields in L, the matter mass scales that enter in physical
observables scale as mphys ∝ λm, where m are ‘bare’ pa-
rameters in L. So the vacuum energy, including all loop
contributions to Leff , scales as Vvac = λ4〈0|Leff |0〉.

The field equations that follow from varying the action
(1) with respect to (the ‘constants’) Λ, λ are

σ′

λ4µ4
=
∫
d4x
√
g , 4Λ

σ′

λ4µ4
=
∫
d4x
√
g λ4 T̃µµ ,

(2)
where T̃µν = − 2√

g̃
δSm
δg̃µν is the energy-momentum tensor

defined in the ‘Jordan frame’. To rewrite it in the ‘phys-
ical’ frame, in which matter sector is canonically normal-
ized, we note that Tµν = λ4T̃µν . Here σ′ = dσ(z)

dz , and
as long as it is nonzero5, we can eliminate it from the
two Eqs. (2) to find Λ = 1

4 〈T
µ
µ〉, where we defined the

4-volume average of Q by 〈Q〉 =
∫
d4x
√
g Q/

∫
d4x
√
g.

The variation of (1) with respect to gµν yields
M2
PlG

µ
ν = −Λδµν +λ4T̃µν , which, by eliminating Λ and

canonically normalizing the matter sector, becomes

M2
PlG

µ
ν = Tµν −

1
4
δµν〈Tαα〉 , (3)

where Gµν is the standard Einstein tensor. Eq. (3) is
the key: it is the full system of ten field equations, with

3 We can take an appropriate system of Pauli-Villars regulator
fields for L and directly couple them to g̃µν = λ2gµν . That
ensures the cancellation of λ in loop logarithms.

4 In this limit the Weinberg’s no-go theorem [3] governs the (lack
of) adjustment of vacuum energy.

5 And non-degenerate: σ can’t be the pure logarithm, since then
Eqs. (2) turn into two independent constraints.

the trace equation included, and with the trace of the
4-volume historic average of the stress energy tensor of
matter subtracted from the rhs! This is unlike unimodu-
lar gravity [7–10], where although the restricted variation
removes the trace equation that involves the vacuum en-
ergy, it comes back along with an arbitrary integration
constant, after using the Bianchi identity. Here there are
no hidden equations nor integration constants, all the
sources are automatically accounted for in (3).

Hence the hard cosmological constant, be it a classical
contribution to L in (1), or quantum vacuum correction
calculated to any order in the loop expansion, never con-
tributes to the field equations (3). Indeed, if we write
L = Λ0 + Vvac + Llocal, by our definition of the historic
average, 〈Λ0 + Vvac〉 ≡ Λ0 + Vvac. Next defining

τµν =
2
√
g

δ

δgµν

∫
d4x
√
gλ4Llocal(λ−2gµν ,Φ)

we can write Tµν = λ4(Λ0 + Vvac)δµν + τµν , and so

Tµν −
1
4
δµν〈Tαα〉 = τµν −

1
4
δµν〈ταα〉

Λ0 + Vvac completely dropped out from the source in
(3). There remains a ‘leftover’ cosmological constant:
the historic average 〈τµµ〉/4 contributes to the curvature
of the universe, but without the classical and vacuum loop
contributions. Therefore we can write

M2
PlG

µ
ν = τµν −

1
4
δµν〈ταα〉 , (4)

setting the sum of the classical Lagrangian and its quan-
tum corrections to zero, and forgetting them in what fol-
lows, at least in the limit of (semi) classical gravity.

This is consistent since our action (1) has two approx-
imate symmetries which ensure the cancellations of the
vacuum energy and protect the curvature from both large
classical and quantum corrections [2, 3]. The first is the
scaling λ → Ωλ, gµν → Ω−2gµν and Λ → Ω4Λ, broken
only by the gravitational sector. The second involves the
shift of Λ and L in (1) by αλ4 and −α, so the action only
changes by δS = σ

(
Λ

λ4µ4 + α
µ4

)
−σ

(
Λ

λ4µ4

)
' σ′ αµ4 . The

scaling ensures that the vacuum energy at arbitrary or-
der in the loop expansion couples to gravitational sector
exactly the same way as the classical piece. The ‘shift
symmetry’ of the bulk action then cancels the matter
vacuum energy and its quantum corrections6. The scal-
ing is broken by the gravitational action, but the break-
ing is mediated to the matter by the cosmological evolu-
tion, through the scale dependence on

∫
d4x
√
g, and so is

weak. The residual cosmological constant is small: sub-
stituting the first of Eqs. (2) and using λ ∝ mphys/MPl,

6 A similar behavior was observed in a different approach using
historic integrals in [13].
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we see that δS ' αλ4
∫
d4x
√
g ∝ α

(
mphys
MPl

)4

, and is
small when mphys/MPl � 1, vanishing in the conformal
limit7 λ ∝ mphys → 0. So, the bulk ‘shift symmetry’
and the approximate scaling symmetry render a small
residual curvature technically natural.

Quantum corrections from the matter sector to the
Planck scale can be estimated by canonically normaliz-
ing L in (1), and performing one loop renormalization of
the Einstein-Hilbert Lagrangian. The corrections to MPl

from each species in the loop are given by [14] ∆M2
Pl '

O(1)×(Mphys
UV )2+O(1)×m2

phys ln(Mphys
UV /mphys)+O(1)×

m2
phys+. . ., where Mphys

UV = λMUV is the matter UV reg-
ulator mass and mphys the mass of the virtual particle
in the loop. Thus, the Planck scale is radiatively stable8

as long as Mphys
UV ≤ MPl, which is easily achieved in a

sufficiently large and old Universe. This is in contrast
to the model discussed in [15], which does share some
similarities with our mechanism. Indeed, imagine that
instead of action (1), we started with

S =
∫
d4x
√
g

[
λ4M2

Pl

2
R− Λ− λ4L(gµν ,Φ)

]
+

Λ
λ4µ4

where we have chosen a linear function σ(z) = z, and
added a scaling with λ in the Einstein-Hilbert term, but
removed it from the matter Lagrangian. We can read-
ily integrate out Λ, λ, using λ4 = (µ4

∫
d4x
√
g)−1 and

Λ
λ4µ4 =

∫
d4x
√
g
[
λ4M2

Pl

2 R− λ4L(gµν ,Φ)
]
, so that

Seff =

∫
d4x
√
g
[
M2
Pl

2 R− L(gµν ,Φ)
]

µ4
∫
d4x
√
g

. (5)

Although the variation removes the tree-level part of the
cosmological constant [15], the radiative corrections sur-
vive. After conformally rescaling the metric in (5) so that
MPl is independent of λ, we see that the Λ term scales as
∼ 1/λ4, and the physical masses as mphys ' m/λ2. This
implies that the radiative corrections to vacuum energy
scale as ∼ 1/λ8, which differs from the scaling of the tree-
level part, Λ ∼ 1/λ4. It was also noted that the theory
(5) has Planck scale radiative instabilities. This stems
from λ4 = (µ4

∫
d4x
√
g)−1 being small in big and old uni-

verses, which makes the matter UV regulator mass and
the matter physical masses large (they scale like ∼ 1/λ2)
relative to MPl, so that MPl is susceptible to the renor-
malization effects from them. None of this is a problem
for our mechanism in (1).

7 Fix
∫
d4x
√
g and take µ→∞ in the first of Eqs. (2).

8 The corrections alter our action (1) qualitatively, changing

M2
Pl → M2

Pl + (Mphys
UV )2 = M2

Pl + λ2M2
UV . This does not

spoil the sequestering of vacuum energy in the protected sector:

it adds a term −λ
2M2

UV
4
〈R〉δµν to the rhs of Eq. (3). However

this vanishes identically on shell, as long as M2
Pl 6= 0 [12].

Let us consider now our historic average, 〈ταα〉. In
our case, the individual factors in the ratio must be fi-
nite too. First,

∫
d4x
√
g must be finite: i) we require

σ(z) to be differentiable, to get field equations (4); ii)
hence, divergent

∫
d4x
√
g would generically force λ to

vanish; iii) but λ 6= 0 since mphys ∝ λ in the mat-
ter sector. Fortunately there is a diffeomorhism invari-
ant regulator for these integrals: spacetime singularities.
A spatially compact universe of finite lifetime, starting
in a bang and ending with a crunch, has finite integral∫
d4x
√
g = O(1)Vol3/H4

age, where Vol3 is the comov-
ing spatial volume, and H−1

age is the scale of the lifetime
of the universe. Furthermore, for sources which obey
the standard energy conditions (|p/ρ| ≤ 1), we can es-
timate [12]

∫
d4x
√
g τµµ ∼ −Vol3

∫ tcrunch
tbang

dta3ρ, in co-
moving coordinates. The only potentially divergent con-
tributions come from the end points, where ρ scales as
ρ ∼ 1/(t − tend)2, by virtue of the Friedman equation,
where tend is either of the instants of bang or crunch. In
this limit , a3 ∼ (t− tend)2/(1+w), and so the integrand is
a3ρ ∼ (t− tend)−2w/(1+w). The integral will not diverge
provided |w| ≤ 19. So, for realistic matter sources, our
historic averages will always be finite in a bang/crunch
universe. Next, it is straightforward to show [12] that
the largest contribution to 〈τµµ〉 will come from the
turnaround region, when the Universe is close to its max-
imal size. We then find that 〈τµµ〉 ' O(1)M2

PlH
2
age,

where we recall that the scale of the lifetime of the uni-
verse, H−1

age > H−1
0 , where H−1

0 is its current age. This
would yield a naturally small cosmological constant in
our universe (with the sign controlled by the pressure of
the dominant contribution) if it begins to collapse in, say,
100 billion years or so. This might happen if the current
acceleration were a transient, with the net potential turn-
ing negative some time in the future, and/or our universe
were spatially closed, with a small but nonzero positive
spatial curvature. For example, the current LHC data
suggest that the Higgs potential may indeed have an un-
stable phase, with the Higgs vev close to the precipice
[16]. Curiously, a warning about this has been raised in
the prescient paper by Wilczek quite a while ago [2].

What about the contributions to the cosmological con-
stant from phase transitions in the early universe [4–6]?
In our setup they do not drop out from (3,4), but they
become automatically small at times after the transition
in a large and old universe. To see it, we model them
with a step function potential

V = Vbefore(1−Θ(t− t∗)) + VafterΘ(t− t∗)

9 If w = +1, these contributions will diverge at most logarithmi-
cally, with O(M2

PlH
2
0 ) coefficients. When properly cut off at the

physical singularities tPl = M−1
Pl

they will be finite, and much
smaller than the cutoff.
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where Θ(t− t∗) is the step function, and t∗ the transition
time. Substituting into (4), after the transition we find

τµν −
1
4
δµν〈ταα〉 ' δµν

∫
d4x
√
g(V − Vafter)∫
d4x
√
g

' δµν
(

∆V
M2
PlH

2
∗

)
M2
PlH

2
0

(
Hage

H0

)2(
Hage

H∗

) 1−w
1+w

(6)

where ∆V = Vbefore − Vafter, and H∗ is the cur-
vature scale during the transition, of the order of√
Vbefore/MPl

>∼
√

∆V /MPl. For simplicity, we took the
matter from the transition to turnaround to be a single
component fluid with a fixed w; a more precise estimate
would merely give corrections of order one, provided we
restrict attention to physically reasonable matter sources
with |p/ρ| ≤ 1 [12]. In any event, as long as H∗ � Hage,
which is true for the Standard Model, the vacuum energy
contributions from early phase transitions are far smaller
than the current critical density M2

PlH
2
0 .

How could a universe become so big in our framework?
The simplest mechanism to explain it is inflation. To in-
corporate it in the theory, we can add an extra sector to
(1) which contains an inflaton, outside of the protected
sector L. A slightly nontrivial issue is that once inflation
ends, the universe needs to reheat by particle production
in the protected sector, so the inflaton must couple to
the fields given in L. A model which realizes this with-
out spoiling the sequestration of vacuum energy from L
is the original inflation of Starobinsky [17], which is ac-
tually the model preferred by the current data anyway
[18]. So we just add a term

∫
d4x
√
g β R2 to the action

(1) where β ∼ O(106) is a dimensionless parameter. This
is radiatively stable under the protected sector loops due
to β being so large10. In line with our philosophy here,
we will treat this term as a semi-classical term in the
theory, still ignoring any loops with virtual gravitons. In
the axial gauge, extracting the Starobinsky scalaron χ by
the field redefinition [19],

ḡµν =
(

1 +
4β
M2
Pl

R

)
gµν , χ =

√
3
2
MPl ln

(
1 +

4β
M2
Pl

R

)
we treat χ as a (semi) classical field too, omitting any
processes where it appears in loops. The scalaron has

the potential Vχ = M4
Pl

16β

[
1− exp

(
−
√

2
3χ/MPl

)]2
and

the matter couples to both ḡµν and to χ, via

S =
∫
d4x
√
ḡ
[M2

Pl

2
R̄− 1

2
(∂̄χ)2 − Vχ − Λe−2

√
2
3

χ
MPl

− λ4e
−2
√

2
3

χ
MPl L(λ−2e

√
2
3

χ
MPl ḡµν ,Φ)

]
+ σ

(
Λ

λ4µ4

)
(7)

10 One can easily see that from [14]; further, the λ-dependence can-
cels as claimed once we pick Pauli-Villars regulators that couple
to g̃µν in (1)

The dynamics of inflation and reheating is almost the
same as in the Starobinsky model. The only difference is

that now σ′

λ4µ4 =
∫
d4x
√
ge
−2
√

2
3

χ
MPl , which involves χ,

only shifts the numerical value of λ by very little. This is
because χ 6= 0 only during inflation, while the dominant
contribution comes from the full history of the universe.

As we noted above, the parameter λ controls the phys-
ical scales in L, setting mphys = λm. It cannot protect
the hierarchy between mphys and MPl, and the hierar-
chies between different physical masses in L. But it can
help set it, coexisting with models which address parti-
cle hierarchies and help them solve the vacuum energy
problem. As an example, the regulator of the protected
sector in L can be as high as Mphys

UV ∼ MPl. This re-
quires λ ∼ O(1), and may imply a vacuum energy as
high as Λ ∼M4

Pl, which is nevertheless sequestered from
gravity by our mechanism. If we take the universe to
have a lifetime O(10)H−1

0 , the first of Eqs. (2) implies

σ′ ∼ (10µ/H0)4. Taking µ ∼ 0.1MPl and σ ' e
Λ

λ4µ4

we can account for such a large vacuum energy11. The
Standard Model may be embedded in L via some of its
BSM extensions, such as eg. some variant of supersym-
metry, in which case we could get a much lower value of
Λ, given by the fourth power of the SUSY breaking scale.
If this is as low as TeV, then we require µ ∼ TeV. Either
way, µ can be chosen to fit whatever mechanism protects
the hierarchy within L so that our proposal can then be
utilized to sequester the vacuum energy contributions to
L which the BSM extension cannot remove.

Why can our mechanism sequester the vacuum energy
of the protected sector, both classical and quantum? The
problem, as explained in the context of the Weinberg’s
no-go theorem [3], is with the trace equation, which in-
volves Λ as an a priori arbitrary source. Because g is a
pure gauge mode, its variational equation does not pro-
vide any intrinsic boundary conditions - all are equally
good, by symmetry. The integral

∫
d4x
√
g is gauge (i.e.,

diffeomorphism) invariant, but it is not independent: its
variation is a linear combination of the variation of gµν at
all spacetime points. So since

∫
d4x
√
g multiplies the vac-

uum energy, its variation yields a source ∝ Λ as opposed
to constraining it to vanish or to be small. Our mecha-
nism dramatically changes the role of

∫
d4x
√
g. Since it

is a true scalar, we make all the physical scales in the pro-
tected matter sector depend on it, which automatically
forces the vacuum energy to drop out. As an example,
if σ(z) = z in (1) and L is literally the Standard Model,
we can integrate Λ and λ out by using (2) and rewrite
(1) as just Einstein-Hilbert action coupled to the Stan-
dard Model, with the only modification being that the

11 To allow for either sign of Λ for a fixed λ > 0, take eg. σ =

sinh

(
Λ

λ4µ4

)
.
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Higgs vev v is replaced by v/(µ4
∫
d4x
√
g)1/4. Further,

in (asymptotically) flat space, the integral
∫
d4x
√
g is

infinite, which would send the physical matter scales to
zero, yielding the same outcome as in GR, as sanctioned
by Weinberg’s no-go theorem. In a collapsing spacetime
however

∫
d4x
√
g is finite, gapping the particle spectrum

from zero, mediating cosmologically the scaling symme-
try breaking in the gravitational sector (giving a residual
cosmological constant 〈τµµ〉/4, which is, however, com-
pletely independent of the cutoff and naturally small in
a large old universe by virtue of the two approximate
symmetries). This scale dependence on

∫
d4x
√
g is com-

pletely invisible to any nongravitational local experiment,
by diffeomorphism invariance. Since no new propagating
modes appear, locally the theory looks just like standard
GR, in (semi) classical limit but without a large cosmo-
logical constant.

Cosmic eschatology changes, however, since consis-
tency requires that a universe should have a compact
spacetime, whose signatures could be sought for in cos-
mology, both in the frozen sky and in its evolution. The
mechanism also predicts that there should be a residual
cosmological constant, which is automatically small in an
old and big universe, and it would be interesting to seek
for the right ingredients that could make it fit the current
data. Since the universe eventually collapses, the resid-
ual cosmological constant cannot dominate forever, and
so wDE ' −1 as determined from the data is a (possibly
long lived) transient state.
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