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This paper presents a road maintenance planning model that can be used to balance out maintenance
cost and road user cost, since performing road maintenance at night can be convenient for road users but
costly for highway agency. Based on the platform of the network traffic flow modelling, the traffic through
the worksite and its adjacent road links is evaluated. Thus, maintenance arrangements at a worksite can
be optimized considering the overall network performance. In addition, genetic algorithms are used for
maintenance planning in order to find the best maintenance arrangements for the worksites. The key
variables in the optimization model involve the starting time of maintenance works during the day, their
duration, the duration of the break during the maintenance work and traffic signal controls at the worksite.

Keywords: maintenance planning; network flow modelling; genetic algorithms.

1. Introduction

Maintenance and rehabilitation (M&R) activities on highways usually disrupt traffic flow and can
increase safety hazards for road users and workers. Therefore, M&R activities can be expensive not
only in terms of the highway agency cost but also in terms of the user cost. Owing to traffic delays,
the user cost frequently exceeds the maintenance cost by far. Efficient scheduling of M&R works may
greatly reduce user cost. Such scheduling can be achieved, for example, by finding the most convenient
starting time of maintenance works and setting the traffic controls at the worksite appropriately. In order
to minimize road user costs due to maintenance, highways agencies usually restrict maintenance activi-
ties to off-peak periods. Using a nighttime maintenance shift is the best option in terms of achieving the
minimum traffic congestion. However, nighttime maintenance operations have a health safety risk due
to road workers, and their cost to highways agencies is also high. If the additional road user costs due
to maintenance are acceptable, daytime maintenance operations are preferable to highways agencies,
since the safety of road workers is ensured and agency costs minimized. As a consequence, it is of vital
importance to be able to find a balance between road user costs and agency costs.

A ‘worksite’ can be defined as an area on a multi-lane highway, where one or more lanes are closed
for maintenance (Chien et al., 2002). Since the scheduling of M&R activities is of major concern of the
highways agency and local authorities, many studies have been performed in this area. Some studies
have focused on the optimization of the worksite length considering its impact on agency cost and road
user cost. For example, a mathematical model was proposed by Schonfeld & Chien (1999) to optimize
the worksite length and related traffic controls on two-lane and four-lane highways, where one lane
closure was implemented. The underlying assumption for these studies was that the traffic flow heading
to the worksite was constant.

Some studies have been devoted to the optimization of the worksite schedule, which resulted in
the minimal total cost, consisting of the agency cost and road user cost. The mathematical approach
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developed by Schonfeld & Chien (1999) was also used to optimize the worksite schedule (Chien et al.,
2002). Considering different lane closure situations, Fwa et al. (1994) optimized the worksite sched-
ule and minimized traffic delays subject to constraints of maintenance operational requirements using
genetic algorithms (GAs). Jiang & Adeli (2003) proposed a Boltzmann-simulated annealing neural net-
work to optimize the worksite arrangements, i.e. the worksite length and the starting time of the work.

Owing to significant traffic delays because of roadworks, drivers may change their route through the
network and avoid congested road sections. The methodology developed by Chien & Schonfeld (2001)
was used to jointly optimize the worksite length and the traffic diversion fraction due to traffic condition
on the alternative routes close to the worksite using GAs by Chien & Schonfeld (2005). Afterwards, an
analytical model was constructed to optimize the worksite length, the maintenance schedule and the
traffic diversion fraction, while considering time-dependent traffic, maintenance cost and production
rates of maintenance teams. In addition, the capacity and speed controls on worksites were investigated,
considering road users and maintenance workers safety (Memmott & Dudek, 1984; Richards & Dudek,
1986; Shepard and Cottrell Jr, 1986; Krammes & Lopez, 1994).

In order to overcome the huge computational effort incurred by maintenance arrangement problem
GAs are commonly deployed as the optimization tool (Chan et al., 1994; Fwa et al., 1998; Ferreira et al.,
2002; Abaza & Ashur, 2009). GAs can be applied to the M&R optimization problem because of their
robust search capabilities that overcome the combinatorial explosion of large-size optimization prob-
lems and are based on the survival-of-the-fittest concept of Darwinian evolution (Holand, 1975). The
major barrier of the optimization problem is that the solution space grows exponentially with the size
of the problem, so the conventional optimization approach can be inefficient to find the optimal solu-
tion. However, GAs, which incorporate a set of initial solutions and generate new and better solutions
according to the probabilistic rules, can be more effective and the likelihood of achieving the optimal
solution is increasing (Morcous & Lounis, 2005).

The traffic flow modelling techniques, discussed above, mainly focus on traffic delays occurring
at the worksite, while traffic conditions in the links adjacent to the worksite are not considered. As
the traffic flows on each link in the network are dependent on each other, it is important to optimize
the worksite arrangements by considering their impact on the overall network performance. In this
paper, network traffic flow modelling (NTFM) (Yang et al., 2014) is enhanced to model the effects of
maintenance works on the network while minimizing the detriment to the road users. Comparing with
the existing traffic models, NTFM is capable of predicting the network performance and can be used
to forecast the traffic flow rates and queue dynamics on road links in the overall highway network.
In addition, a roadwork node sub-model is introduced, which is then applied to evaluate the effect
of maintenance activities on network level performance, making it a suitable platform for evaluating
travel delays. By comparing the traffic outputs and queues in the network under alternative maintenance
strategies, the best way of maintaining the serviceability of highways can be achieved. The GA approach
is used to search for the best starting time of maintenance works and the phases of traffic signals for the
chosen strategy, when their effects on the network are evaluated using the NTFM.

The outline of this paper is as follows: Section 2 presents the general rules for NTFM and the
junction types modelled, including a roadwork node. Section 3 describes the features of the case study
network on Loughborough–Nottingham highway network, its calibration and its performance under
different traffic conditions throughout a day. Section 4 presents the findings based on the numerical per-
formance of the network under different maintenance scenarios, and states that it identifies the strategy
on the trade-off between maintenance costs and road user costs. Section 5 depicts the optimization of
M&R strategy for the example network, and proposes an optimal schedule that is suitable for balancing
out maintenance costs and road user costs.
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2. Proposed methodology

In this paper, the objective function is the total cost, which contains the agency cost and road user
cost, and it is used to optimize the maintenance schedule and traffic controls at worksites. First of all, a
number of different maintenance strategies are considered and a strategy which is the best for balancing
out the road user cost and the agency cost is identified. Then an optimization routine is implemented
in order to find optimal values of maintenance parameters, such as the starting time of work and traffic
controls, for the chosen strategy.

2.1 Cost calculation

The total cost function is the sum of the agency cost and the road user cost. Agency cost is derived
from the maintenance cost directly, while road user cost is calculated in terms of travel delays occurred
on the network.

2.1.1 Agency cost The agency cost is the sum of the maintenance cost spent on each worksite. The
maintenance cost incurred on worksite i, Ci, is formulated as

Ci = c0 + ck,r × li (1)

where c0 is the fixed cost for setting up a worksite, £’1000s, assume c0 = 1; k is the maintenance
action implemented on worksite i; r is the road type of worksite i; ck,r is the cost of maintenance
action k associated with road type r, £’000s, per lane kilometre; li is the length of worksite i, lane
kilometre.

The corresponding maintenance duration spent on worksite i, Di, is represented by

Di = d0 + dk,r × li (2)

where d0 is the fixed set up time for a worksite, hours, assume d0 = 1; dk,r is the time required for
maintenance action k associated with the road type r, hours, per lane kilometre.

The cost and duration for each type of maintenance action and type of road is described in Table 1
(DfT, 1997).

2.1.2 Road user cost Road user cost is determined as the total travel duration spent on the highway
network multiplied by the monetary value of time. The road user cost spent on road section j at time k,
Tj(k), is computed as

Tj(k) = tj(k) × v (3)

where tj(k) is the total travel duration spent on road section j at time k, hours; v is the time value for
road user, £/h, the market price value of time for an average vehicle is £15.38 per hour, 2012 prices and
values, published by DfT (2011).

The total travel duration, tj(k), is the sum of the journey time spent on section j, tj,J (k), and the travel
delay which takes place at the junction downstream of sectionj, tj,D(k), described as

tj(k) = tj,J (k) + tj,D(k) (4)
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Table 1 Maintenance duration and cost for each combination of maintenance action and road type
(per lane kilometre)

Single Dual 2 Dual 3
M&R carriageway (S2) lane carriageway (D2AP) lane Motorway(D3M)

Duration Cost Duration Cost Duration Cost
ID Type (h) (£’000s) (h) (£’000s) (h) (£’000s)

0 Do nothing 0 0 0 0 0 0
1 Patching 24 15 18 15 16 13.33
2 Surface dressing 48 20 30 20 24 16.67
3 Resurfacing 96 60 84 82.5 80 90
4 Overlay 192 95 138 122.5 132 135
Note that costs are in expressed in £’000s according to 2012 prices.

The total travel duration spent on the network at time k,t(k), is evaluated as

t(k) =
M∑

j=1

tj,J (k) +
N∑

i=1

ti,D(k) (5)

where tj,J (k) is the journey time spent by road users on link j at time k, which is calculated considering
the travel time for the non-disturbed traffic that pass through the link without delays, the time spent
on queue formation and the time spent on queue dissipation; M is the number of links on the network;
ti,D(k) is the travel delay time spent by road users at junction i in time k, which is expressed as the
function of the queue length, qa(t)

ti,D(k) =
A∑

a=1

∫ k

k−1
qa(t) dt (6)

where qa(t) is the length of the queue on arm a to junction i in time t; A is the number of arms at
junction i. Note that the relationship between the queue and time is assumed to be linear; N is the
number of junctions on the network.

2.2 Maintenance modelling using NTFM

The NTFM model considers different types of maintenance works, i.e. roadworks on a single carriage-
way, on a dual carriageway and on a three lane dual carriageway. The model of maintenance work is
introduced to NTFM by using a roadwork node. Roadwork node is used to define the length of the work-
site, and the number of lanes in maintenance. The closure situation for each road type is described below.

2.2.1 Single carriageway For a single carriageway road, a shuttle working is employed to facilitate
the traffic flows from opposing directions. As for the average speed through the road link with worksite,
it has been assumed that the travel speeds for light vehicles and heavy vehicles through the worksite are
43.9 and 38.2 km/h, respectively (DfT, 2004). In this paper, the average speed at the worksite is selected
as the travel speed for heavy vehicles.
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(a)

(b)

Fig. 1. Dual 2 lane carriageway road with work: (a) one lane closure; (b) two lane closure and crossover.

2.2.2 Dual 2 lane carriageway As for a Dual 2 lane carriageway, a one lane closure or a two lane
closure can be used in maintenance, as shown in Fig. 1.

For a one lane closure, only one of the service lanes in one direction is closed due to maintenance.
Therefore, in this case maintenance has no impact on the traffic flow in the opposite direction. For a
two lane closure, both of the service lanes in one direction are closed, and the road becomes effectively
a single carriageway. At the direction with one service lane, the average speed is reduced from 112 to
80 km/h.

One lane closure: Provided that one of the service lanes in one direction is closed due to main-
tenance, as shown in Fig. 1(a), the flow capacity on the closed lane becomes zero, and the flow
capacity on the other lane in this direction decreases due to speed limits. According to the delay mod-
elling in QUADRO (DfT, 2004), the overall worksite capacity on the road with maintenance would be
reduced to

CD,1 = 0.85 × Cn,i (7)

where Cn,i is the normal capacity for a lane that belongs to road class i, pcu/h, pcu stands for passenger
car unit; CD,1 is the reduced capacity, pcu/h.

Two lane closure: For a two lane closure, the number of service lanes in each direction is reduced to
one. The resulting site capacities for both directions are calculated by Equation (7).

2.2.3 Dual 3 lane motorway In this case, three options are possible, a one lane closure, a two lane
closure, a full carriageway closure with crossover. For a one lane closure option, the average speed at
the road link with worksite remains 112 km/h. When a two lane closure is implemented, the average
speed is decreased to 80 km/h.
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If N lanes are in service through the worksite during maintenance, the worksite capacity would be
formulated as shown in Equation (8).

CD,1 = 0.85 × N × Cn,i (8)

2.3 Modelling assumptions

Several assumptions have been made in this study:

(1) For a typical day, 7:00–23:00 is defined as daytime, while the rest is nighttime.

(2) The maintenance work rates for maintenance workers during the daytime and nighttime are the
same.

(3) The unit cost at the nighttime is double that of in the daytime. The daytime maintenance cost is
shown in Table 1.

(4) The minimum duration for a single maintenance work slot is 2 h. The maximum gap between
two slots is set to be 2 h.

(5) It is assumed that only two time slots are possible during a day, i.e. only one maintenance break
is possible.

(6) Once the maintenance activity completed, the road condition returns to normal.

(7) If there is a gap between two slots, the maintenance set up cost and time need to be taken into
account, as described in Equations (1) and (2), respectively.

2.4 GA implementation

GAs imitate the natural process of biological evolution and can be more efficient than iterative method
and linear programming, since the probability of reaching the optimal solution is greater than using
traditional optimization approaches. The process with each generation begins by generating an initial
pool of genotypes to represent a set of feasible solutions, and then each individual within the initial
pool is evaluated using the objective function and ranked in terms of its fitness, which is expressed
as the value of the objective function. With the aid of genetic operators, i.e. reproduction, crossover
and mutation, each genotype is allowed to create a certain number of offspring depending on its fit-
ness. With respect to the values of the objective function, relatively better solutions would be retained,
while the rest would be deleted. As a consequence, a new parent pool is formed by selecting the
desired number of offspring. The genetic selection process, solution-pool selection process and off-
spring generation are repeated until the result reaches convergence or a maximum iteration set by the
user is met.

2.4.1 Decision variables In terms of the assumptions listed in Section 2.3, the decision variables
for each road section include start time of maintenance, Ts, maintenance duration 1, Dm,1, maintenance
break, Bm and maintenance duration 2, Dm,2, for each working day. When the investigated road link
belongs to a single carriageway, the green splits for the opposing directions during maintenance are also
optimized.
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The constraints for these variables are formulated as

Ts,e � Ts � Ts,l (9a)

Dm,min � Dm,1 � Dm,max (9b)

Dm,min � Dm,2 � Dm,max (9c)

Bm,min � Bm � Bm,max (9d)

where Ts,e andTs,l represent the earliest and the latest starting time of maintenance.
The first constraint in Equation 9(a) restricts the start time of maintenance action for each day.

Equations (9b) and (9c) limit the duration for each maintenance time slot. The fourth constraint in (9d)
is the threshold of the maintenance break, which aims to avoid peak time. As for single carriageway,
more constraints are considered:

Sg,min � Sg,1 � Sg,max (9e)

Sg,min � Sg,2 � Sg,max (9f)

These two constraints in (9e) and (9f) are used to define the range of green phases for each direction
on the single carriageway during maintenance. Sg,i represents the green split for one direction during
the maintenance duration i, the green split for the other direction is evaluated as (100 − Sg,i)%-amber
phase, where amber phase is defined as 10% of the cycle. Other constraints can be added according to
the requirements of highways agencies, i.e. the restriction of the number of major maintenance actions.
In this paper, a single-objective GA is utilized to optimize the decision variables for road sections on a
network.

2.4.2 Objective function Based on the variables listed in Section 2.4.1, the number of working days
for each road link under maintenance is calculated as

Dwork = DM

Dm,1 − 1 + Dm,2 − 1
(10)

where DM represents the required maintenance duration. Dm,1 − 1 is the time devoted to pavement
maintenance by subtracting the maintenance set up time from the maintenance duration 1. wd is rounded
to the closest integer number when it is a decimal number. As a result, the total cost spent on the network
during the whole maintenance period is evaluated as

CT = Dwork × C[Ts, Dm,1, Bm, Dm,2] (11)

where C[Ts, Dm,1, Bm, Dm,2] represents the total cost spent at each working day under the specific main-
tenance arrangements Ts, Dm,1, Bm and Dm,2, which is calculated as the total travel duration multiplied
by the value of time. In addition, green splits, Sg,1 and Sg,2 are taken into account when single carriage-
way is studied. The maintenance arrangement with the least CT is recognized as the optimal one with
the objective of minimizing road user cost. CT is calculated using the NTFM. The evaluation of main-
tenance arrangements for road sections on an example network is illustrated in the following section.
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Fig. 2. Loughborough–Nottingham modelled highway network.
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Table 2 Queue length for the congested links on the network under normal conditions

R6 R7 R1 SI2
Total

Residential Westbound queue
Link B5010 A6007 area SI2-R1 Ruddington R3-SI2 arm (pcu)

8:00 320 0 264 89 0 0 0 673
9:00 620 0 0 125 17 39 3 804
10:00 0 162 0 125 44 102 8 441
11:00 0 0 0 0 0 0 0 0
17:00 240 0 231 0 0 0 0 471
18:00 540 0 506 0 0 0 0 1,046
19:00 0 143 0 0 0 0 0 143
20:00 0 0 0 0 0 0 0 0

Table 3 Travel delay for the congested links on the network under normal conditions

R6 R7 R1 SI2
Total

Residential Westbound delay
Link B5010 A6007 area SI2-R1 Ruddington R3-SI2 arm (h)

8:00 160 0 132 44.5 0 0 0 336.5
9:00 470 0 30.1 107 8.5 19.5 1.5 636.6
10:00 165.6 81 0 125 30.5 70.6 5.5 478.2
11:00 0 10.4 0 4.8 0.8 1.14 0.06 17.2
17:00 120 0 115.5 0 0 0 0 235.5
18:00 390 0 368.5 0 0 0 0 758.5
19:00 135 71.5 108.5 0 0 0 0 315.0
20:00 0 8.01 0 0 0 0 0 8.01

3. Example network

To investigate the impact of maintenance arrangements on road users and illustrate the methodology,
the Loughborough–Nottingham highway network is studied which is composed of 47 junctions and 51
road links, illustrated in Fig. 2.

According to the simulation results obtained by NTFM, the travel delay taken place on the network
under normal conditions is obtained as 2,785.5 h, which is contributed from the congestion links on
the network throughout the day. The queue length for each congested link through the day is shown in
Table 2.

Travel delays spent on the congested links are calculated in terms of Equation (6), described in
Table 3. Afterwards, the total travel delay is transformed to road user cost by multiplying time value,
£15.38, obtained as £42,840.8.

4. Maintenance effects on example network

The maintenance on road links MG2-R4 (a dual carriageway) and SR2-R4 (a single carriageway) are
studied to analyse the influence of maintenance arrangements on agency costs and road user costs.
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Table 4 Maintenance cost and duration
for road link MG2-R4

Maintenance action 1
Length (km) 2.8
Duration (h) 102
Cost (£’000s) 85

4.1 Possible maintenance arrangements on dual carriageway (MG2-R4)

Assume that the road link MG2-R4 is undergoing a repair, implementing patching. The length of link
MG2-R4 is 1.75 miles, and one lane closure is applied to conduct maintenance activities, as defined in
Fig. 1(a). Three possible maintenance schedules are chosen: the first arrangement (4.1.1) is to start main-
tenance at 7:00 and carry it out during daytime only until it is finished; the second arrangement (4.1.2)
is to perform maintenance activities off-peak, i.e. 11:00–16:00 and 19:00–23:00; the third arrangement
(4.1.3) is to perform maintenance at nighttime only, i.e. from 23:00 till 7:00.

4.1.1 Maintenance arrangement 1 The duration and cost of patching road link MG2-R4 is calculated
using data in Table 1 and Fig. 2, i.e. the duration for maintenance action 1 is calculated as, D1 = 1 +
1.75 × 1.6 × 2 × 18 = 102. Note that road link MG2-R4 is a two lane carriageway. The agency cost is
calculated using Equation (1), C1 = 1 + 1.75 × 1.6 × 2 × 15 = 85. The length of road link is calculated
as 2.8 km by multiplying 1.6, which aims to transfer mile to kilometre (Table 4).

In order to calculate the road user cost when road link MG2-R4 is undergoing maintenance, the
NTFM model is used. In this maintenance arrangement, it takes 4 days and 5 h to complete the job.
The traffic conditions on the road link MG2-R4 through 1 day under this maintenance arrangement are
shown in Table 5.

Table 5 indicates that road link MG2-R4 experienced severe traffic congestion when the inflow is
a lot higher than the outflow. Owing to maintenance, the flow capacity of MG2-R4 is decreased from
3,600 to 1,530 pcu/h using Equation (7). Thus, the inflows at daytime are greater than the flow capacity.
Also it is assumed that the link capacitance of MG2-R4 is a 457 pcu. In the NTFM, when the number of
delayed vehicles exceeds the capacity, the remainder of the vehicles are propagated back to their source
links to show the effects on the rest of the network.

As for the network under maintenance 1, the travel delay for each of the first 4 days is achieved
as 89,617.65 h, which corresponds to £1,378,319.5. While for the fifth day, one lane closure is applied
during 7:00 and 12:00, the resulting travel delay is obtained as 15,685.6 h that costs £241,244.5. The
additional road user cost for maintenance arrangement 1 is computed as, ucad,1 = 1378319.5 × 4 +
241244.5 − 42840.8 × 5 = 5540318.5, where ucad,n is the additional road user cost under maintenance
arrangement n, which is evaluated by subtracting the road user cost under the normal condition from
that under maintenance arrangement n during the maintenance period.

4.1.2 Maintenance arrangement 2 For maintenance arrangement 2, the maintenance duration for
each day is 9 h, which requires 15 working days with the consideration of maintenance set up time
according to Equation (2). In the first 14 working days, maintenance activities are performed at 11:00–
16:00 and 19:00–23:00. As for the last working day, maintenance slot falls to 11:00–15:00.

 at U
niversity of N

ottingham
 on July 21, 2016

http://im
am

an.oxfordjournals.org/
D

ow
nloaded from

 

http://imaman.oxfordjournals.org/


ROAD MAINTENANCE PLANNING USING NETWORK FLOW MODELLING 11 of 16

Table 5 Traffic conditions on road link MG2-R4 under maintenance 1

Inflow Flow capacity Outflow Queue Queue
Time (pcu/h) (pcu/h) (pcu/h) (pcu) propagation (pcu)

7:00 2,033 1,530 1,530 457 46
8:00 2,603 1,530 1,530 457 1,073
9:00 3,123 1,530 1,530 457 1,593
10:00 3,785 1,530 1,530 457 2,255
11:00 3,900 1,530 1,530 457 2,370
12:00 4,116 1,530 1,530 457 2,586
13:00 3,955 1,530 1,530 457 2,425
14:00 4,030 1,530 1,530 457 2,500
15:00 4,234 1,530 1,530 457 2,704
16:00 4,103 1,530 1,530 457 2,573
17:00 4,235 1,530 1,530 457 2,705
18:00 4,441 1,530 1,530 457 2,911
19:00 4,157 1,530 1,530 457 2,627
20:00 3,941 1,530 1,530 457 2,411
21:00 3,721 1,530 1,530 457 2,191
22:00 3,598 1,530 1,530 457 2,068
23:00 2,750 1,530 1,530 457 1,220
24:00 1,251 1,530 1,530 178 0
1:00 31 1,530 209 0 0
2:00–7:00 31 1,530 31 0 0

The duration for maintenance action 1 under maintenance arrangement 2 is calculated as D2 =
29 × 1 + 1.75 × 1.6 × 2 × 18 = 130, and agency cost is calculated using Equation (1), C2 = 29 ×
1 + 1.75 × 1.6 × 2 × 15 = 113, where 29 represents the number of time slots during the whole work
process.

For each of the first 14 working days, the travel delay and cost to road users are calculated as
7,768.54 h and £119,480 by using NTFM. For the 15th working day, the travel delay and road user cost
are obtained as 5,098 h and £78,407.6. In terms of the method proposed in Section 4.1.1, the additional
travel delay and cost to road users on the network under maintenance arrangement 2 are evaluated as
72,075 h and £1,108,516, shown as ucad,2 = 119480 × 14 + 78407.6 − 42840.8 × 15 = 1108516.

4.1.3 Maintenance arrangement 3 For maintenance arrangement 3, nighttime operation is applied.
The maintenance work starts from 23:00 to 7:00 on the next day, which requires 15 days to complete
the project in terms of Equation (7). For the first 14 days, the road section is maintained at 23:00–7:00.
While for the last day, maintenance work is performed at 23:00–3:00.

The duration for maintenance action 1 under maintenance arrangement 3 is calculated as D3 =
15 × 1 + 1.75 × 1.6 × 2 × 18 = 99, and agency cost is calculated using Equation (1), C3 = 15 × 1 +
(1.75 × 1.6 × 2 × 15) × 2 = 183, where 15 represents the number of time slots during the whole work
process, and the maintenance at nighttime is doubled.

Afterwards, NTFM is applied to model the traffic characteristics on the network under maintenance
arrangement 3.
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Table 6 Maintenance cost and road user cost spent on the network under various
maintenance arrangements when maintenance action 1 is performed

Maintenance arrangement 1 2 3

Additional travel delay (h) 360,228.75 72,075 0
Maintenance cost (£’000s) 85 113 183
Additional road user cost (£’000s) 5,540 1,109 0
Total cost (£’000s) 5,625 1,222 183

The results show that the same traffic conditions are experienced on road link MG2-R4 as that on
the network under normal conditions. This is because maintenance activities are performed at nighttime
when limited traffic existed on the network.

4.1.4 Discussion of the three maintenance arrangements The results obtained under the three main-
tenance arrangements are compared in Table 6.

In Table 6, total cost is evaluated as the sum of maintenance cost and additional road user cost.
It can be observed from Table 6 that maintenance arrangement 1 resulted in the most additional road
user cost, since maintenance was carried out at daytime as well as nighttime. However, it required the
least funding from highway agencies due to no breaks in the schedule and a small amount of nighttime
hours. As for the maintenance arrangement 2, the road was only maintained off-peak, which caused
less disruption to road users than in maintenance arrangement 1. The maintenance arrangement 3 is
the most costly option for highways agencies due to roadworks at nighttime only. It can be seen that a
maintenance schedule for the daytime with a break during peak hours, i.e. maintenance arrangement 2,
can be used to balance agency cost and road user cost.

5. Optimization of maintenance schedule on example network

5.1 Optimization of maintenance arrangements on dual carriageway (MG2-R4)

This section illustrates how to find a daily maintenance schedule, so that the road user cost is minimized.
The example link MG2-R4 is used for illustration and maintenance arrangement 2 (Section 4.1.2) is
further analysed, since it is the best trade-off between road user cost and agency cost. The total of 9 h of
maintenance, split between two time slots with a break between them, is searched for. The constraints
for the variables in Section 2 are formulated as follows:

7 � TS � 12 (12a)

2 � Dm,1 � 6 (12b)

2 � Dm,2 � 6 (12c)

1 � Bm � 2 (12d)

Ts + Dm,1 + Bm + Dm,2 � 23 (12e)

In summary, the first constraint in Equation (12a) means that the start time of maintenance work is
sometime between 7:00 and 12:00. The second and third constraints in Equations (12b) and (12c),
respectively, limit the duration of each maintenance time slot with the minimum of 2 h and maximum
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Fig. 3. A typical genotype of chromosome for road link MG2-R4.

of 6 h. The fourth constraint in Equation (12d) means that the break can be 1 or 2 h. The fifth constraint
in Equation (12e) means that the maintenance work must be completed by 23:00, so that no nighttime
roadworks are carried out.

Based on the variables listed above, the number of working days, for road link MG2-R4 is calculated
by Equation (10). Note, the desired maintenance duration, MD, for road link MG2-R4 is 101 h, as shown
in Equation (2). Once the schedule is obtained, the total cost under each maintenance arrangement is
achieved using Equation (11).

In this application, the decision variables are recognized as four strings of genes that formed a
chromosome in the optimization of maintenance arrangements using the algorithm of binary coded
single-objective GAs. The whole chromosome is represented as in Fig. 3 where ‘∗’ represents a binary
variable, i.e. 0 or 1.

In the optimization control, the size of parent pool is selected as 100, and the crossover rate and
mutation rate are adopted as 0.8 and 0.01, respectively, the maximum generation is 500. As the aim
of this study is to find the maintenance schedule that resulted in the least travel delay, the objective
function is defined as the total road user cost spent during the whole maintenance period, as shown in
Equation (8). After the simulation, the best chromosome for all the generations is formed as 111-101-
11-011, and then it is decoded to integer numbers where the left end of the string is recognized as the
first allele. For example, the fourth string 011 for md2 is decoded as

Dm,2 = 0 × 20 + 1 × 21 + 1 × 22

23 − 1
× (6 − 2) + 2 = 5

According to the results obtained from GA, the optimal maintenance arrangements are listed as
follows:

• Ts 12:00, i.e. start maintenance at midday.

• Dm,1 12:00–16:00, i.e. carry out maintenance for 4 h.

• Bm 16:00–18:00, i.e. have a break for 2 h.

• Dm,2 18:00–23:00, i.e. carry out maintenance for 5 h

• Dwork 15 days, i.e. the schedule would follow for 15 days, as shown in Equation (10).

Consequently, the additional road user cost spent on the network during maintenance under the optimal
schedule is obtained as £1,009,098 and the corresponding maintenance cost is £114,000. Comparing
with the results for the network under maintenance arrangement 2, described in Table 6, shows that the
additional cost to road users is greatly reduced by choosing an optimal schedule. Owing to a similar
schedule of hours for maintenance between the whole set up and the optimal schedule, similar mainte-
nance cost incurred.
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Fig. 4. A typical genotype of chromosome for road link SR2-R4.

5.2 Optimization of maintenance arrangements on single carriageway (SR2-R4)

The optimization routine is also applied to find the optimal maintenance schedule on a single carriage-
way. Take the road link SR2-R4, maintenance action 1 is applied, which requires 168 working hours. In
addition to the decision variables studied in Section 5.1, the green splits for both directions on a road
link during maintenance can also be optimized. Consequently, six decision variables are considered,
including start time of maintenance, st, maintenance duration 1, md1, green split for eastbound traffic
during maintenance duration 1, Sg,1, maintenance break, mb, maintenance duration 2, md2, and green
split for eastbound traffic during maintenance duration 2, Sg,1 and Sg,2 are expressed in % of the cycle.
Note that the green split for westbound traffic on road link SR2-R4 during maintenance duration i is
evaluated as (100 − Sg,i)%-amber phase. The constraints for the decision variables are described as

7 � Ts � 12 (13a)

2 � Dm,1 � 6 (13b)

2 � Dm,2 � 6 (13c)

30 � Sg,1 � 60 (13d)

30 � Sg,2 � 60 (13e)

1 � Bm � 2 (13f)

Ts + Dm,1 + Bm + Dm,2 � 23 (13g)

The fourth and fifth constraints in (13d) and (13e) restrict the green split for eastbound traffic on road
link SR2-R4, which varies from 30 to 60% of the total cycle. The rest of the constraints are the ones
provided in Section 5.1. The chromosome for road link SR2-R4 is formulated as given in Fig. 4.

In the optimization control, the size of parent pool is selected as 100, and the crossover rate and
mutation rate are also adopted as 0.8 and 0.01, respectively, the maximum generation is 500. According
to the simulation results, the optimal chromosome is obtained as 011-111-11110-11-101-11110, which
represents the following maintenance schedule on the single carriageway:

• Ts 11:00.

• Dm,1 11:00–17:00.

• Sg,1 44%.

• Bm 17:00–19:00.

• Dm,2 19:00–23:00.

• Sg,2 44%.

• Dwork 21 days.
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Based on this optimal maintenance schedule, 21 working days are required and the resulting additional
road user cost is evaluated as £66,177.3, and the corresponding maintenance cost is £147,000. Compare
it with some results of maintenance at night on non-stop day and night (maintenance arrangement 3 in
Table 6) for this carriageway, we found that the additional road user cost is small and the corresponding
maintenance cost is also reduced by implementing daytime operation.

6. Conclusions and future work

This paper investigates the agency cost and road user cost incurred on the network under various main-
tenance arrangements, where different parameters, such as start time of maintenance, the allocation of
maintenance time slot, maintenance break and traffic control measures are taken into account. The main-
tenance arrangements for road sections under maintenance can be optimized using GA to facilitate the
traffic through the worksite based on NTFM so as to cause fewer disturbances to road users, where the
trade-off between the maintenance cost and road user cost is taken into account. The results indicated
that nighttime operation led to the least disruption to road users, and the travel delays to road users
resulted from daytime operation can be greatly minimized by optimizing maintenance arrangements.
However, when the additional road user cost due to daytime maintenance operation is acceptable, high-
ways agencies can carry out daytime operation in order to guarantee the safety of road workers and
minimize the possibility of the occurrence of more severe accidents. This paper therefore presents a
methodology of how to plan maintenance actions when this trade-off is considered.

The model can be used to evaluate different maintenance arrangements on the network. A list of
assumptions has been used to describe such scenarios, to name a few, the duration and maintenance cost
of daytime and nighttime works, the continuity of works throughout the day and traffic signal controls
in the area of works. According to these assumptions the values of relevant variables are assigned
within the tool and the outcomes for the chosen scenarios are demonstrated in the paper. If the tool that
supports the developed model was to be used by a transport network maintenance manager, the values of
those variables can be varied to fit their requirements and the current practice in the sector. This would
ensure that relevant scenarios are implemented and compared. In this approach only the maintenance
activities on road links are taken into account by the NTFM, thus the impact of maintenance activities
at the junctions could be investigated in the future. Additional rules, such as speed reductions due to the
enforcement of worker safety at worksites and the evaluation of vehicle operating cost, and pavement
deteriorations models could be taken account of in the future.
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