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 Abstract 
 

A transposon-mediated gene trap screen identified the zebrafish line qmc551 that 

expresses a GFP reporter in primitive erythrocytes and also in haemogenic 

endothelial cells, which give rise to haematopoietic stem and progenitor cells 

(HSPCs) that seed sites of larval and adult haematopoiesis. The transposon that 

mediates this GFP expression is located in intron 1 of the gfi1aa gene, one of three 

zebrafish paralogs that encode transcriptional repressors homologous to mammalian 

Gfi1 and Gfi1b proteins. In qmc551 transgenics, GFP expression is under the control 

of the endogenous gfi1aa promoter, recapitulates early gfi1aa expression and allows 

live observation of gfi1aa promoter activity. While the transposon integration 

interferes with the expression of gfi1aa mRNA in haematopoietic cells, homozygous 

qmc551 fish are viable and fertile, and display normal primitive and definitive 

haematopoiesis. Retained expression of Gfi1b in primitive erythrocytes and up-

regulation of Gfi1ab at the onset of definitive haematopoiesis in homozygous qmc551 

carriers, are sufficient to allow normal haematopoiesis. This finding contradicts 

previously published morpholino data that suggested an essential role for zebrafish 

Gfi1aa in primitive erythropoiesis.  
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Graphical abstract 
 

 
 

 

Highlights 
 

- A zebrafish gene trap line expresses GFP in primitive and definitive blood cells 

- The gene trap transposon eliminates haematopoietic gfi1aa expression 

- Absence of Gfi1aa does not interfere with normal haematopoiesis 

- Gfi1aa and its paralogs Gfi1ab and Gfi1b play redundant roles in 

haematopoiesis 

- Our data suggest that their roles are conserved in all vertebrates   
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Introduction 
 

Haematopoietic stem cells (HSCs) are immature blood cells that can self-

renew and give rise to mature cells of all blood lineages (Doulatov et al., 2012). 

HSCs first develop in the embryo. During embryogenesis, haematopoietic cells (HCs) 

arise in waves from mesodermal progenitors (reviewed in (Ciau-Uitz et al., 2014; 

Clements and Traver, 2013; Frame et al., 2013; Medvinsky et al., 2011)). In 

mammals, the first HCs are primitive red blood cells (prRBCs), macrophages and 

neutrophil granulocytes (Palis et al., 1999; Tober et al., 2007). They develop in the 

yolk sac from haemangioblasts, mesenchymal cells that are bipotent progenitors for 

blood and endothelial cells (ECs)(Huber et al., 2004). Haematopoietic progenitor cells 

(HPCs) and HSCs arise in subsequent waves. They form from haemogenic 

endothelial cells (HECs) (Chen et al., 2011; Chen et al., 2009; Frame et al., 2016; 

Yokomizo et al., 2001; Zovein et al., 2008) that undergo endothelial to 

haematopoietic transition (EHT) and form HC clusters inside the vessels. HPCs 

develop in yolk sac arteries and veins (Frame et al., 2016)  while HSCs form from 

arterial HECs of the ventral wall of the dorsal aorta (vDA) and from other major 

arteries (de Bruijn et al., 2000; Gordon-Keylock et al., 2013; Medvinsky and Dzierzak, 

1996; Taoudi and Medvinsky, 2007). Explant studies have visualized this process in 

the mouse vDA (Boisset et al., 2010). Once born, HSCs establish the definitive wave 

of haematopoiesis that maintains the blood system throughout life. 

In zebrafish, primitive blood cells also differentiate from mesenchymal 

haemangioblasts. The anterior and posterior lateral mesoderm (ALM, PLM) give rise 

to primitive myeloid and erythroid cells, respectively (Gering et al., 1998; Herbomel et 

al., 1999; Liao et al., 1998). PLM cells migrate to the midline to form the intermediate 

cell mass (ICM) where they differentiate into prRBCs, as well as ECs of the DA and 

the posterior cardinal vein (PCV) (Detrich et al., 1995; Kohli et al., 2013). Primitive 

erythroblasts first enter circulation between 24 and 25 hours post fertilization (hpf). In 

circulation, they mature over the following days (Qian et al., 2007; Weinstein et al., 

1996). After the onset of circulation, definitive HCs begin to arise from HECs in the 

zebrafish vDA. Unlike in mammals, zebrafish vDA HECs undergo basal epithelial to 

mesenchymal transition (bEMT) as they turn into HCs (Bertrand et al., 2010; Kissa 

and Herbomel, 2010; Lam et al., 2010; Zhen et al., 2013). These enter circulation 
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through the vein (Kissa et al., 2008) and seed the caudal haematopoietic tissue 

(CHT) (Jin et al., 2007; Murayama et al., 2006). The CHT is a transient larval site of 

haematopoiesis in the tail mesenchyme, where haematopoietic stem and progenitor 

cells (HSPCs) occupy perivascular niches (Tamplin et al., 2015) before they leave for 

the kidney and the thymus (Traver et al., 2003). 

 Gene expression analyses combined with gain- and loss-of-function studies in 

different vertebrate model organisms have defined sets of transcription factors and 

co-regulators expressed in developing HCs that tightly regulate gene expression 

during blood development and, thereby, control cell fate and identity (Orkin and Zon, 

2008). The closely related transcriptional repressors Gfi1 and Gfi1b are two of these 

transcription factors. Gfi1 and Gfi1b play important overlapping roles in adult HSCs 

and fulfill non-redundant functions in cells of particular blood lineages (Möröy et al., 

2015).  Gfi1b knockout mice die during gestation with abnormal erythropoiesis and 

megakaryopoiesis (Saleque et al., 2002). By contrast, Gfi1 knockout mice are viable, 

but have inner ear defects and severe neutropenia (Hock et al., 2003; Karsunky et 

al., 2002; Wallis et al., 2003). Gfi1b expressed in place of Gfi1 can substitute for Gfi1 

during haematopoiesis, but is not sufficient for normal inner ear development (Fiolka 

et al., 2006). The zebrafish genome harbors three Gfi1 paralogs (Cooney et al., 2013; 

Dufourcq et al., 2004; Wei et al., 2008). Two paralogs, gfi1aa and gfi1ab are 

orthologs of mammalian Gfi1, arisen during a genome duplication in the teleost 

lineage. The third paralog encodes a Gfi1b protein. Morpholino knockdown studies 

have indicated that zebrafish gfi1aa plays an important role in primitive erythropoiesis 

(Cooney et al., 2013; Wei et al., 2008) and that gfi1b alone is essential for the 

development of all definitive HC lineages in the embryo (Cooney et al., 2013). While 

observed defects in definitive erythrocyte and thrombocyte development are 

consistent with the phenotype of the mouse gfi1b knockout, the apparent deficiency 

in all definitive lineages, as well as the loss of primitive erythropoiesis in the gfi1aa 

morphant embryo were unexpected and suggested a remarkable reshuffling of 

responsibilities between Gfi1/1b proteins in the bony fish lineage since their 

divergence from the common teleost and tetrapod ancestor. Here, we report a 

zebrafish gfi1aa gene trap line that demonstrates that the loss of haematopoietic 

Gfi1aa expression is compatible with primitive erythropoiesis. Our data contradict the 
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previous morpholino studies and suggest that the roles of the mammalian Gfi1 and 

Gfi1b proteins are conserved in the teleost lineage.  
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Results 
 
qmc551:GFP is expressed in primitive erythrocytes and in haemogenic 

endothelial cells of the dorsal aorta. 
 A transposon-based gene trap approach was used in zebrafish to identify novel 

genes involved in embryonic haematopoiesis (Fig. 1A). F1 progeny of transposon-

injected fish were analyzed for GFP expression at 26 hpf, once most prRBCs had 

entered circulation. One line, designated qmc551, displayed GFP in circulating blood 

cells and in spindle-shaped cells located between the DA and the PCV (Fig. 1B,C; 

Movie 1A). Sectioning of GFP-immunostained qmc551 embryos confirmed GFP 

expression in blood cells and suggested that the spindle-shaped cells are ECs 

located in the vDA (Fig. 1D-F). Confocal microscopy revealed additional 

mesenchymal GFP+ cells that appeared to be located just outside the blood vessels 

(Fig. 1G,H; red arrowheads; Movie 1B). Subsequent examination of double 

transgenic embryos at single cell resolution in 1.8-2.5 μm optical sections showed 

that both, the round GFP+ cells inside and the mesenchymal cells outside the 

vessels, co-expressed the prRBC marker gata1:dsRed (Traver et al., 2003), 

demonstrating that these cells were prRBCs and their precursors, respectively (Fig. 

1I/S1A). The spindle-shaped GFP+ cells co-expressed the EC reporter flk1:tdTom 

and were indeed localised in the vDA (Fig. 1J/S1B). Co-expression of the Notch 

reporter gene csl:cer (Fig. 1K/S1C) confirmed these cells were arterial.  

 HECs of the vDA are known to express the stem cell transcription factor Runx1 

(Gering and Patient, 2005). Fluorescent whole-mount in situ hybridisation (WISH) 

experiments showed that runx1 mRNA is localised in foci in flk1/kdrl+ ECs of the vDA 

(Fig. 1L/S2A). The same runx1 mRNA foci were also observed in GFP+ vDA ECs in 

qmc551 transgenic embryos (Fig. 1M/S2B). Moreover, a subset of the GFP+ ECs  

contained cmyb mRNA (Fig. 1N/S2C), which is known to be induced downstream of 

Runx1 (Burns et al., 2005; Kalev-Zylinska et al., 2002). To determine whether these 

GFP+ ECs could undergo EMT to give rise to HCs, confocal timelapse microscopy 

was performed on qmc551;flk1/kdrl:tdTom double transgenic embryos. These 

experiments revealed that individual ECs with elevated GFP slowly bent towards the 

mesenchyme, rounded up and eventually joined the mesenchyme as the 
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endothelium closed up above them (Fig. 1O/S2D; Movie 2A). Throughout the 

process, the cells co-expressed the endothelial reporter transgene (Fig. 1P/S2E; 

Movie 2B). In addition to bEMT, we also observed that individual GFP+ cells left the 

endothelium apically to enter the DA directly, a process seen only up to 40 hpf (Fig. 

1Q/S2F; Movie 3A). Cells, which had undergone bEMT, spent variable periods of 

time in the mesenchyme before they entered the vein to join the circulation (Fig. 

1R/S2G; Movie 3B). These data strongly suggested that qmc551:GFP expression 

marks HECs prior to, during and after EHT. It is worth noting that the events 

observed in qmc551 transgenics were also seen in flk1/kdrl:gfp;csl:cer double 

transgenic embryos (Movies 4 and 5)). Altogether, these data confirmed the erythroid 

nature of the qmc551:GFP+ blood cells and showed that the spindle-shaped GFP+ 

cells were HECs of the vDA. Intrigued by the interesting expression pattern we 

wanted to know which gene was trapped by the transposon.  

 

The gene trapped in qmc551 is gfi1aa.  

 To identify the gene, Southern blot experiments were performed using a probe 

embedded in the gfp gene on the transposon (Fig. 2A). These experiments detected 

seven copies of the transposon in the genomic DNA of qmc551 transgenics (Fig. 2B). 

To reduce the number of genomic integrations in the progeny, outcrosses with wild-

type (wt) fish were performed. In all of these outcrosses, half of the progeny were 

GFP+ and displayed the full GFP expression pattern, demonstrating that the pattern 

was not a composite, but reflected GFP expression from a single transposon that 

was inherited in Mendelian fashion. After 4 generations, nested inverse polymerase 

chain reaction (PCR) was performed and identified a 134 bp sequence upstream of 

the transposon (Fig. 2C; for details see Fig. S3) that was identical to a sequence in 

intron 1 of the zebrafish gfi1aa gene (Fig. 2D). This integration site was validated in 

PCR experiments in which genomic DNA fragments were amplified across both 

intron 1-transposon boundaries (Fig. 2E). These experiments showed that the GFP 

expression strictly correlated with the presence of the transposon in gfi1aa. 

Furthermore, PCR experiments with two gfp-internal primers, confirmed the absence 

of silent transposon copies in the qmc551 line (Fig. 2F). Consistent with the 

transposon’s position, reverse transcription PCR (RT-PCR) allowed successful 
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amplification, cloning and sequencing of a cDNA in which exon 1 of gfi1aa was 

spliced to the splice acceptor on the transposon (Fig. 2G), demonstrating that GFP 

was transcribed under the control of the gfi1aa promoter. 

 

qmc551:GFP reveals endogenous gfi1aa expression  
 Consistent with its expression under the control of the gfi1aa promoter, 

embryonic GFP mRNA and protein expression patterns in qmc551 transgenic 

embryos reflected endogenous gfi1aa mRNA expression in non-transgenic embryos. 

Following early maternal expression (Fig. 3A), zygotic GFP and gfi1aa expression 

was first seen in prRBC progenitors of the PLM (Fig. 3B,C). While gfi1aa mRNA 

diminished in prRBC progenitors between 21 and 28 hpf (Fig. 3C,D), GFP mRNA and 

protein were still detected in prRBCs in circulation and in the posterior blood island, 

the posterior extension of the trunk ICM (Fig. 3D). This suggests that GFP mRNA 

and protein were more stable than endogenous gfi1aa mRNA. GFP and gfi1aa 

expression were also found in the inner ear and in ECs of the vDA (Fig. 3D). As 

GFP+ HSPCs left the AGM, they started to accumulate in the CHT where they 

displayed dynamic interactions with ECs (Fig. 3F, Movie 6A). At 2 and 3 dpf, GFP+ 

ECs expanded posteriorly into the ventral wall of the caudal artery (vCA)(Fig. 3F,E). 

In addition to the lateral line organ, the exocrine pancreas was seen to express GFP 

and gfi1aa mRNA (Fig. 3H,I). By contrast, only GFP could be detected in cells of the 

gut, which, based on their position and morphology, as well as in analogy to Gfi1 

expression in the mouse (Bjerknes and Cheng, 2010), are likely to be mucus-filled 

goblet and crypt-base localized Paneth cells (Fig. 3I,K). While haematopoietic gfi1aa 

expression was undetectable by 3 dpf, GFP mRNA and protein could still be 

observed in the vDA, in the trunk mesenchyme and in the CHT at 3 and 5 dpf (Fig. 

3H-K). In haematopoietic cells, gfi1aa mRNA may be present at lower levels that 

become increasingly difficult to detect by WISH as the larvae grow older. In the live 

qmc551 transgenics, GFP+ blood cells first seeded the thymus on day 3 (Fig. 3H,I,M) 

and the larval kidney at day 5 (Fig. 3L). On day 6, wandering GFP+ cells were visible 

throughout the head (Fig. 3O, Movie 6B). These were probably immature leukocytes, 

since they did not stain with the mature neutrophil marker Sudan black (Le Guyader 

et al., 2008) and did not co-express the macrophage reporter mpeg1:dsRed (Ellett et 
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al., 2011) (Fig. S4). In adult kidney sections, individual GFP+ cells were found 

between the renal tubules. The sections displayed fewer GFP+ cells than kidney 

sections of the cd41:gfp fish, which are known to express GFP in HSPCs and in cells 

of the platelet/thrombocyte lineage (Ma et al., 2011) (Fig. 3P). Flow cytometry on 

kidney marrow (KM) cells of qmc551;gata1:dsRed transgenics demonstrated that (a) 

the GFP+ cells fall mainly into the progenitor and lymphoid gates of the forward and 

side scatter profile (Traver et al., 2003) and (b) do not co-express gata1:dsRed (Fig. 

3Q). Thus, while qmc551:GFP was seen in embryonic prRBCs, there was no 

expression in definitive erythrocytes. Consistent with the flow cytometric data, 

cytospins of GFP+ KM cells identified very few neutrophils with multi-lobed nuclei 

(Fig. 3R) and macrophages with granules (Fig. 3S). Most of the stained cells were 

early progenitors with large nuclei and scant cytoplasm (Fig. 3T), and small 

lymphocytes (Fig. 3U). No erythrocytes were found among the GFP+ cells. 

Altogether, these data show that qmc551:GFP is not only expressed in HECs that 

initiate definitive haematopoiesis, but is also found in their HSPC progeny that seed 

subsequent sites of larval and adult haematopoiesis.  

 

Haemogenic endothelial qmc551:GFP expression is induced in parallel to 

Runx1  downstream of Vegf and Notch signalling. 

 It had previously been shown that gfi1aa expression in prRBCs occurs 

downstream of cloche and scl/tal1, but is independent of gata1 and frs (Cooney et al., 

2013). Here, we focused on the regulation of gfi1aa in HECs of the vDA. In HECs, 

runx1 expression is known to be induced downstream of a signalling cascade that 

includes Hedgehog, VegfA and Notch signalling (Burns et al., 2005; Gering and 

Patient, 2005; Rowlinson and Gering, 2010). We, therefore, tested whether 

qmc551:GFP and gfi1aa expression in HECs also required Vegf and Notch 

signalling. Treatment of double transgenic embryos with a VegfR inhibitor led to the 

pooling of qmc551:GFP+/gata1:dsRed+ prRBCs in the ICM and to a complete loss of 

GFP+ spindle-shaped ECs (Fig. 4A). Likewise, non-transgenic embryos lacked all 

gfi1aa and cmyb mRNA in the trunk HECs in the absence of Vegf signalling (Fig. 

4B,C).  

 To determine whether gfi1aa expression in the vDA required the Notch 
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pathway, qmc551;gata1:dsRed embryos were either treated with the γ-secretase 

inhibitor DAPM (Geling et al., 2002) or injected with the Rbpja/b morpholino (Sieger 

et al., 2003). The qmc551 transgene was also crossed into the mindbomb (mibta52b) 

(Itoh et al., 2003) mutant background. All three types of Notch-depleted embryos 

specified GFP+ prRBCs, but lacked GFP+ HECs (Fig. 4D-G). A WISH experiment 

performed on non-transgenic mib mutants confirmed the loss of gfi1aa expression in 

the vDA (Fig. 4H). Increased expression of GFP and gfi1aa mRNA within the inner 

ear in these embryos (Fig. 4F,H) reflects an expected increase in the number of 

gfi1aa-expressing hair cells in Notch-depleted embryos (Haddon et al., 1998).  

 Next, we examined whether qmc551:GFP induction in HECs was also 

dependent on Runx1. We found that the same runx1 morphant embryos expressed 

GFP in the vDA (Fig. 4I), but displayed a loss of cmyb expression after fixation and 

WISH staining (Fig. 4J). Likewise, non-transgenic runx1 morphants retained 

endogenous gfi1aa mRNA (Fig. 4K) while losing cmyb expression (data not shown). 

Midline gfi1aa expression had previously been shown to be independent of Runx1 

and was, therefore, thought to be unrelated to definitive haematopoiesis (Cooney et 

al., 2013). Our transgenic line reveals that this Runx1-independent gfi1aa expression 

occurs in HECs. Interestingly, GFP expression in circulating prRBCs was reduced in 

runx1 morphants, suggesting that runx1 promotes gfi1aa expression in prRBCs (Fig. 

4L).  

 

The transposon interferes with normal gfi1aa transcription in primitive red 
blood cell progenitors, but erythrocyte differentiation is unaffected.  
  The location of the gene trap transposon (Fig. 5A) suggested that it might 

interfere with the expression of the gfi1aa gene. To address this issue, qmc551 

heterozygotes and homozygotes were sorted based on the level of GFP fluorescence 

(Fig. 5B) and used in gfi1aa WISH. These experiments showed that gfi1aa 

expression was retained in the inner ear, but lost in the prRBCs of qmc551 

homozygotes (Figure 5C). At 16 hpf, quantitative RT-PCR (qRT-PCR) confirmed that 

gfi1aa mRNA was substantially reduced in qmc551 homozygotes (Fig. 5D). Despite 

this reduction, homozygous embryos did not appear to carry less prRBCs. Flow 

cytometric analyses revealed that the GFP+ qmc551 homozygous prRBCs had a 
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twofold higher mean fluorescence (Fig. 5E,F), but that prRBC numbers were similar 

in heterozygous and homozygous carriers (Fig. 5E,G). The normal number of 

prRBCs was also reflected in normal gata1 and β-globin (hbee1) expression patterns 

in 22 hpf qmc551 homozygotes (Fig. 5H,I). By day 3, circulating prRBCs of qmc551 

homozygotes stained normally with the haemoglobin peroxidase substrate 

diaminofluorene (DAF) (Fig. 5J) and displayed normal overall cell morphology (Fig. 

5K), clearly demonstrating that prRBCs were not only specified, but also matured in 

the absence of Gfi1aa. Normal primitive erythropoiesis in qmc551 homozygous 

embryos could be sustained due to functional redundancy between the three 

zebrafish Gfi1 paralogs. While gfi1ab expression could not be detected in prRBCs in 

the presence or absence of Gfi1aa (Fig. 5L), gfi1b expression was present and 

unaltered in the homozygous qmc551 embryos (Fig. 5M). To test whether Gfi1b 

compensates for the loss of Gfi1aa expression during primitive erythropoiesis, Gfi1b 

morpholinos were injected into homozygous qmc551 embryos. The morpholinos 

were designed to target the splice junctions that flank exon 4 of the primary gfi1b 

transcript (Fig. 5N). RT-PCR showed that injected morphant embryos carried an 

alternatively spliced gfi1b mRNA (Fig. 5O). The sequence of its RT-PCR fragment 

revealed that exons 3 and 5 were spliced together, leading to a shift of the gfi1b 

reading frame (Fig. 5N,P). This frame shift is predicted to cause the production of a 

truncated Gfi1b protein that retains the N-terminal 20 amino acid-long SNAG 

(SNAIL/GFI1) domain and parts of the linker domain, but lacks all Zn-fingers of 

Gfi1b’s DNA binding domain. Instead, a divergent sequence of 22 amino acids forms 

the C-terminus of the truncated product. The loss of the DNA binding domain is likely 

to interfere with the protein’s function. While injected wt embryos displayed normal 

erythropoiesis at 3 dpf, morphant qmc551 homozygous embryos showed a dramatic 

reduction in DAF staining (Fig. 5Q). In comparison to the normal morphology of 

prRBCs in uninjected embryos, prRBCs of morphant qmc551 homozygotes appeared 

larger and their nuclei were less condense (Fig. 5R). Nuclear condensation and a 

reduction in cell size are hallmarks of RBC differentiation (Qian et al., 2007; 

Weinstein et al., 1996). Thus, in the absence of Gfi1aa and Gfi1b, prRBCs failed to 

mature. The apparently normal maturation of prRBCs in uninjected qmc551 

homozygous embryos suggests that Gfi1b is sufficient to rescue primitive 
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erythropoiesis in the absence of Gfi1aa.    

 

Gfi1aa is not essential for definitive haematopoiesis. 
 Next, we examined whether the transposon also interfered with gfi1aa 

expression at the onset of definitive haematopoiesis. WISH experiments on 26 hpf 

qmc551 homozygous embryos showed that gfi1aa expression was lost in the vDA, 

while expression was retained in the inner ear (Fig. 6A). QRT-PCR confirmed the 

substantial reduction in gfi1aa mRNA in the 26 hpf embryo (Fig. 6B). Despite this 

loss, cmyb expression in the vDA was normal (Fig. 6C) and GFP+ cells were 

observed to seed the CHT (Figure 6D) and the thymus (Fig. 6E) of qmc551 

homozygous embryos. Their green fluorescence was matched by the presence of 

cmyb-positive HSPCs of the CHT and rag1-expressing T cell progenitors of the 

thymus (Fig. 6F,G), demonstrating that definitive haematopoiesis commenced as 

normal. Within the vDA, we found no evidence for gfi1b mRNA in wt or qmc551 

homozygous embryos (Fig. 6H,I). Gfi1b expression was clearly restricted to prRBCs 

in circulation over the yolk and in the PBI (Fig. 6H,I). By contrast, gfi1ab mRNA which 

had previously been shown to display a scattered expression pattern in the vDA 

(Dufourcq et al., 2004) was dramatically increased in the homozygous qmc551 

embryos (Fig. 6J). A close-up of the trunk region shows that the gfi1ab expression 

pattern displayed an almost continuous line in the embryonic midline (Fig. 6K). 

Transverse sections demonstrated that the staining was associated with the vDA 

(Fig. 6L), suggesting that gfi1ab expression was upregulated and likely to substitute 

for Gfi1aa at the onset of definitive haematopoiesis.  

 Upregulation of gfi1ab expression was first observed at 22 hpf (Fig. 6M). At this 

time, gfi1aa expression decreases in prRBCs and only individual cells located in the 

position of the future vDA display weak gfi1aa expression (Fig. 6N). Given that gfi1ab 

expression was not seen in prRBCs between 13 and 20 hpf in wt or qmc551 

homozygous embryos (Fig. 5L), the gfi1ab-positive cells seen at 22 hpf are most 

likely definitive precursor cells (Fig. 6M). Interestingly, when gfi1ab expression was 

examined in qmc551 homozygotes that had been injected with a runx1 morpholino, 

de-repressed gfi1ab expression was completely lost at 26 hpf (Fig. 6O), suggesting 

that, unlike gfi1aa, gfi1ab expression at the onset of definitive haematopoiesis 
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requires direct or indirect activation by Runx1 (Fig. 6P). 

 Homozygous qmc551 larvae were successfully raised to adulthood. Adults were 

perfectly viable and fertile, and showed no phenotypic abnormalities. Flow cytometric 

analysis of adult KM cells showed that the relative numbers of GFP+ cells were 

identical in qmc551 heterozygous and homozygous adult fish (Fig. 6Q), despite a 

substantial reduction in gfi1aa mRNA in KM cells of qmc551 homozygotes (Fig. 6R). 

As Gfi1 knockout mice display neutropenia, KM cytospins were prepared to examine 

neutrophil granulocytes in qmc551 homozygous fish. KM cytospins stained with May-

Grünwald and Giemsa revealed cells with bilobed and trilobed nuclei (Fig. 6S), which 

represented about 10% of the KM cells in wt and qmc551 homozygotes (Fig. 6T). 

These cells could successfully be stained with the neutrophil granulocyte stain Sudan 

Black (Fig. 6U). Thus, qmc551 homozygous fish displayed no obvious signs of 

neutropenia. Altogether, our data showed that although the gene trap transposon 

abrogates gfi1aa expression in haematopoietic cells, primitive and definitive 

haematopoiesis remain unaffected.  
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Discussion      

 

 The zebrafish line qmc551 carries a GFP gene trap transposon within intron 1 

of the gene gfi1aa on chromosome 2. RT-PCR confirmed the presence of a spliced 

mRNA that fuses gfi1aa 5’UTR sequences encoded by exon 1 to the splice acceptor 

on the gene trap, showing that GFP transcription is under the control of the gfi1aa 

promoter. GFP translation is ensured by an ATG start codon at the beginning of the 

gfp open reading frame. The GFP reporter faithfully recapitulates early embryonic 

gfi1aa expression inside and outside the haematopoietic system. Furthermore, it 

provides a sensitive live read-out of gfi1aa promoter activity in cell types and at times 

when gfi1aa promoter activity cannot easily be detected by WISH. The expression 

pattern of qmc551:GFP is much wider than that of the previously published gfi1aa 

enhancer trap line gfi1.1:gfp whose GFP expression was limited to prRBCs (Wei et 

al., 2008). The gfi1.1:gfp line’s enhancer trap was inserted 20 kb upstream of gfi1aa, 

and its GFP expression was probably dependent on a single local enhancer. By 

contrast, our gene trap’s GFP reporter is likely to be under the control of all cis-

regulatory elements that regulate the activity of the endogenous gfi1aa promoter 

upstream of exon 1.   

 Our WISH and qRT-PCR data showed that the gene trap transposon interferes 

with gfi1aa transcription in pRBCs, in HECs of the vDA and in adult KM cells. The 

absence of exon 4/5-containing RNA sequences suggests that the primary transcript 

is terminated at the SV40 polyadenylation signal downstream of the gfp reading 

frame. Our WISH data also revealed that the transposon-mediated suppression of 

gfi1aa transcription is context-dependent.  Hair cells in the inner ear express GFP, 

but also retain gfi1aa expression. The remaining expression may be due to inefficient 

transcript termination or the use of an alternative promoter downstream of the 

transposon. It is noteworthy that a transcript initiated in intron 1 would encode a full-

length Gfi1aa protein. Interestingly, analysis of genome-wide data on histone 3 lysine 

4 trimethylation, an epigenetic mark enriched at transcriptionally active promoters, in 

24 hpf zebrafish embryos (Aday et al., 2011) shows that gfi1aa’s intron 1 sequences 

are associated with this mark. The lack of inner ear defects in qmc551 homozygous 

embryos is likely due to the residual Gfi1aa expression and the co-expression of 
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Gfi1ab in the sensory hair cells. This example highlights that one cannot simply 

assume that the transposon interferes with gfi1aa expression in all cell types and at 

all differentiation stages. A more detailed analysis into this context dependency was 

outside the scope of this study.  

 Despite the loss of Gfi1aa expression in prRBCs, homozygous qmc551 

embryos displayed normal primitive erythropoiesis. PrRBC progenitors were specified 

in normal numbers and DAF staining suggested that they matured normally. These 

finding contradict previous morpholino studies that proposed an essential role for 

Gfi1aa in primitive erythropoiesis (Cooney et al., 2013; Wei et al., 2008). The 

convincing reduction in gfi1aa mRNA in our mutants suggests that the reported 

morphant phenotype is possibly due to off-target effects (Lawson, 2016; Stainier et 

al., 2015). The normal development of prRBCs in our mutants is consistent with the 

phenotype of the mouse Gfi1 knockout. As in zebrafish, mouse prRBC progenitors 

co-express Gfi1 and Gfi1b (Moignard et al., 2015), and single Gfi1 and Gfi1b 

knockout mice display normal primitive erythropoiesis (Hock et al., 2003; Saleque et 

al., 2002). By contrast, loss of both proteins causes reduced embryonic 𝛃H1 globin 

expression in the murine yolk sac, suggesting a defect in primitive erythropoiesis 

(Lancrin et al., 2012). We show here that morpholino-mediated knockdown of Gfi1b 

in Gfi1aa-deficient embryos also interfered with primitive erythropoiesis in zebrafish. 

Initially, prRBCs were specified, but subsequently failed to mature. The lack of a 

maturation defect in either gfi1aa mutant or gfi1b morphant embryos demonstrated 

that Gfi1aa and Gfi1b could substitute for each other during primitive erythropoiesis in 

zebrafish.  

 Homozygous qmc551 carriers were viable and fertile, and displayed none of the 

phenotypic abnormalities observed in the definitive blood system of Gfi1 knockout 

and Gfi1:GFP knock-in mice (Hock et al., 2003; Karsunky et al., 2002; Wallis et al., 

2003; Yücel et al., 2004). In particular, the neutrophil granulocytes, which are 

severely reduced in Gfi1-depleted mice, were present in normal numbers. The 

normal blood phenotype was likely due to functional redundancy with Gfi1aa’s 

paralogs (Figure 7). At the onset of definitive haematopoiesis, loss of Gfi1aa 

expression lifted the repression of gfi1ab and led to the Runx1-dependent 

upregulation of Gfi1ab in HECs of the DA. Mammalian Gfi1 and Gfi1b proteins are 



Gfi1aa in haematopoiesis               Thambyrajah
  

	 17	

known to auto- and cross-regulate their expression in a context-dependent manner 

(Doan et al., 2004; Montoya-Durango et al., 2008; Yücel et al., 2004). In homozygous 

qmc551 embryos, upregulation of gfi1ab was first detected in individual cells of the 

ICM. Based on their position within the ICM and the lack of gfi1ab upregulation in 

prRBCs at earlier time points, we suppose that these cells represent progenitors of 

HECs, i.e. haemogenic aortic angioblasts. These cells may be equivalent to the 

suspected HSC precursors recently reported to express gata2b (Butko et al., 2015), 

an issue that requires further attention.  

 In the mouse, loss of Gfi1 alone does not abrogate EHT. Only Gfi1/Gfi1b double 

knockout mice display deficiencies in HECs of the YS and the vDA. In the YS, HEC-

derived HCs cannot down-regulate EC genes and fail to enter circulation (Lancrin et 

al., 2012). In the vDA, HECs are specified, but fail to undergo EHT (Thambyrajah et 

al., 2015). In zebrafish, we did not see any convincing gfi1b expression in vDA HECs, 

but gfi1b expression was observed in definitive HCs of the CHT. Whether it plays an 

important role in EHT remains to be determined. In addition, the strong expression of 

gfi1aa in wt and gfi1ab in Gfi1aa-deficient embryos casts doubts on the previous 

morpholino-based assumption that Gfi1b alone is essential for the formation of all 

definitive haematopoietic lineages (Cooney et al., 2013). In the mouse, Gfi1 and 

Gfi1b are co-expressed not only during EHT, but also in HSCs, and only the loss of 

both genes completely abrogates HSC maintenance (Hock et al., 2004; Khandanpour 

et al., 2010; Zeng et al., 2004). Single Gfi1b knockout mice display severe defects 

only in cell types that do not co-express Gfi1, i.e. definitive erythrocytes and 

megakaryocytes (Saleque et al., 2002). The generation of gfi1ab and gfi1b single, as 

well as double and triple mutants in zebrafish is needed to shed more light on the 

redundant and non-redundant roles of these proteins during definitive 

haematopoiesis. The lines will also allow us to carefully examine dose-dependent 

requirements for Gfi1/1b proteins during tissue differentiation. Unlike the previous 

morpholino results, our data on the qmc551 line are consistent with findings in the 

mouse and strongly support the notion that the roles of Gfi1 and Gfi1b are at large 

conserved between teleosts and mammals. The high level of GFP expression in our 

qmc551 line and the transparency of the zebrafish embryo will be instrumental in 

unravelling the behavior of cells in gfi1aa/gfi1ab/gfi1b and other mutant backgrounds. 
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This line will also be an excellent resource for HECs and HSPCs for use in 

transplantation and biochemical characterization. 
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Materials and Methods 
Zebrafish husbandry and experimentation. 
 Information on zebrafish husbandry is provided in supplementary data. 

Genetically altered zebrafish are listed in Table S1. 

 

Transgene construction and molecular biology experiments 

 Details on the transposon Tol2-embedded gene trap, the flk1:tdTom and the 

csl:cer  constructs are available upon request. To generate transgenic lines, plasmid 

constructs were injected with Tol2 transposase mRNA into one-cell stage embryos 

(Kotani et al., 2006). Embryos that harbored cells with transient reporter expression 

that contributed normally to embryonic development were raised. Adults were 

crossed to wt fish to identify transgenic founders. Their progeny established the lines 

reported herein. Southern Blots followed standard procedures. The integration site in 

qmc551 was identified via inverse PCR as previously described (Kotani et al., 2006). 

Briefly, genomic DNA from qmc551 embryos was digested with MboI, self-ligated and 

used in a nested PCR. The amplification product was cloned and sequenced. A Blast 

search in ENSEMBL (Flicek et al., 2014) on zebrafish genome assembly zv8 allowed 

the localization of the transposon. Total RNA was isolated from qmc551 embryos 

using the RNeasy mini Kit (Qiagen) and was reverse transcribed using Superscript II 

reverse transcriptase (Life Technologies). Standard PCRs on cDNA and genomic 

DNA were performed using Taq polymerase (New England Biolabs). Quantitative 

TaqMan PCR on cDNA employed the qPCR mix plus Rox reference dye (Thermo 

Scientific).  Oligo sequences are provided in Table S2. Statistical analyses were 

performed using Graph Pad Prism.  

  

RNA in situ hybridisation and immunohistochemistry 

 Alkaline phosphatase and tyramide fluorescent WISH experiments were 

performed using published protocols (Broadbent and Read, 1999; Schoenebeck et 

al., 2007). Immunodetection followed standard protocols, using reagents summarized 

in Table S3. Some stained embryos were embedded in JB4 methacrylate (Agar 

Scientific, Cambridge) and sectioned on a Leica RM2265 microtome. Sudan Black 

staining of embryos followed (Le Guyader et al., 2008). Kidneys were isolated 
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(Gerlach et al., 2011), fixed in 4% paraformaldehyde overnight, soaked in 30% 

sucrose overnight, frozen in OCT and sectioned on a Leica CM1850 cryostat. 

 

Morpholino injections and inhibitor treatments 

 Morpholinos (see Table S2) were injected in a volume of 0.5 nl into 2-4 cell 

stage embryos. The two gfi1b morpholinos (0.5 ng each) were co-injected with 0.5 ng 

of p53 morpholino. The latter was used to block the frequently observed morpholino-

induced upregulation of p53 and the p53-induced apoptosis (Robu et al., 2007). 

Inhibitors were added to the embryo medium and applied from tailbud stage. Control 

embryos were treated with the solvent DMSO. The Diaminofluorene staining followed 

(Weinstein et al., 1996). To block pigmentation and immobilize live embryos for 

confocal imaging, embryos were treated with MS222, and phenylthiourea, and 

embedded in 1% low melting point agarose as described in (Renaud et al., 2011). 

Details on chemicals are given in Table S3. 

 

Fluorescence-activated cell sorting and cytospins 
 Blood cells were collected from adult kidneys as described (Traver et al., 2003). 

Forward scatter, side scatter and GFP/dsRed fluorescence characteristics of KM 

cells were analyzed on a Beckman Coulter MoFlo Astrios cell sorter using the Kaluza 

software. Sytox was used to exclude dead cells. Using a Shandon Cytospin 4, all or 

just the GFP+ KM cells were cytocentrifuged for 3 minutes onto slides at 300 rpm 

and medium acceleration. RBCs were isolated from the sinus venosus of terminally 

anaesthetized 3 day-old embryos. The cells were subsequently stained with May-

Grünwald, Giemsa or Sudan Black following manufacturer’s instructions (see Table 

S3). 

 

Microscopy and Imaging 
 Embryos were examined on a Nikon SMZ-1500 microscope. Sections and 

cytospins were analyzed on a Nikon Eclipse i80. Images were taken with a Nikon DS-

5Mc/DS-U1 camera setup operated by the Nikon ACT-2U software or captured with a 

monochrome Hamamatsu Orca-ER camera via IP Lab software. Orca black and 

white images were pseudo-colored. Confocal microscopy was performed on Zeiss 
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Exciter, LSM510 and LSM710 inverted confocal microscopes via ZEN software. All 

confocal images were analyzed in Imaris (Bitplane). Videos exported from Imaris 

were annotated in iMovie. Images were collated in Photoshop CS6. 
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Figure Legends 
 

Figure 1. The zebrafish gene trap line qmc551 expresses GFP in primitive red 

blood cells and in haemogenic endothelial cells of the ventral wall of the 
dorsal aorta. (A) Structure of the gene trap transposon and strategy of the gene trap 

screen. (B) Lateral view of a fixed qmc551 embryo. (C) Close-up of the trunk. (D-F) 
GFP immunohistochemistry and diaminobenzidine staining on a qmc551 embryo. (E) 

A magnified image of the trunk. (F) A 10 μm transverse section through the trunk of 

the embryo after plastic embedding. (G) A maximum intensity projection of a 67.5 μm 

thick confocal Z-stack showing a lateral view of the trunk of a fixed qmc551 embryo. 

(H) A 1.1 μm YZ cross section of the Z-stack shown in (G). (I,J) Confocal images of 

the trunk of a qmc551;gata1:dsRed (I) and qmc551;flk1:tdTom (J) double transgenic 

embryo after fluorescent immunostaining. (K) Confocal images of a live 

qmc551;csl:cer double transgenic embryo. The csl:cer transgene is a derivative of 

the csl:venus transgene which we have previously shown to be expressed in arterial 

ECs (Gray et al., 2013). (L) Double fluorescent runx1 and flk1/kdrl WISH. (M,N) 

Fluorescent runx1 (M) and cmyb (N) WISH combined with GFP 

immunohistochemistry. (O-R) Confocal timelapse microscopy of the DA of 

qmc551;flk1:tdTom embryos. Images were taken every 3 minutes. Times on panels 

represent hours and minutes after fertilization. Note that prRBCs in circulation appear 

as short lines in the confocal image, while stationary cells are round. The confocal 

analyses in (I-R) were performed at single cell resolution on 2 (I), 1.8 (J), 2.5 (K), 2.0 

(L,N), 1.0 (M) and 2.1 (O-R) μm optical slices. All images (B-E,G,I-R) show embryos 

with anterior to the left and dorsal up. Red arrows - prRBCs; red arrowheads - prRBC 

progenitors trapped in the mesenchyme; green arrows - HECs in the vDA.  

 

Figure 2. The qmc551 transposon is located in intron 1 of gfi1aa on zebrafish 

chromosome 2. (A) Gene trap transposon with relevant restriction sites and the 

probe used in the Southern blot experiment. (B) Southern blot experiment on 

digested genomic DNA isolated from wt and qmc551 transgenic embryos. Black 

arrows: 7 detected BglII fragments. Blue arrow: single XbaI-XhoI band. Restriction 

enzymes: BglII (B), PstI (P) or XbaI and XhoI (X). (C) DNA sequence of the nested 
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inverse PCR product.  Sequence color code: orange - tol2; black - genomic DNA 

upstream of transposon; blue - splice acceptor. (D) Map of the gfi1aaqmc551Gt locus. 

The MboI sites used in the inverse PCR are highlighted. Positions of oligos used in 

PCR and RT-PCR experiments are shown and the sizes of the expected PCR 

products are given. (E) PCR amplification across the intron 1/transposon borders on 

genomic DNA isolated from wt embryos, and GFP-negative and GFP+ progeny of a 

qmc551 outcross. (F) PCR on the same genomic DNAs using gfp-internal oligos. (G) 
RT-PCR on total RNA isolated from 3 dpf qmc551 embryos. Sequence color code: 

black - vector, red - gfi1aa exon 1, blue - splice acceptor; green - GFP. Sequences 

corresponding to oligos G and H are underlined.  

 

Figure 3. qmc551:GFP expression recapitulates gfi1aa expression and marks 
haematopoietic stem and progenitor cells throughout ontogeny. Views of 

embryos are posterior in (B) and lateral in (A,C-E,G-I,O). Anteroposterior and 

dorsoventral axes are indicated. (A-H) Images of live qmc551 embryos and of fixed 

non-transgenic and qmc551 transgenic embryos after WISH with probes against 

endogenous gfi1aa and gfp mRNA. (F) Confocal timelapse images (2.0 μm thick 

optical slice) through the CHT of a 48 hpf qmc551;flk1:tdTom embryo. (I) Images of a 

qmc551 transgenic embryo immunostained for GFP expression using 

diaminobenzidine. (J-N). Transverse 10 μm sections of the same embryo after 

plastic-embedding. The positions along the anteroposterior axis are indicated in (I). 

(O) Timelapse microscopy of the head region. (P) GFP immunohistochemistry and 

diaminobenzidine staining on 10 μm sections of adult kidneys isolated from wt, 

qmc551 and cd41:egfp fish. (Q) Flow cytometric analysis of KM cells of wt and 

qmc551;gata1:dsRed double transgenic adults. GFP/dsRed fluorescence and 

forward/side scatter were analyzed. Excitation and detection wavelengths are 

indicated in nm. Cell populations were gated according to Traver et al. (Traver et al., 

2003). (R-U) Cytocentrifugation and Giemsa staining of the qmc551:GFP+ KM cells 

identified neutrophils (R), macrophages (S), progenitors (T) and lymphocytes (U). 

Annotations: caudal haematopoietic tissue (CHT), glomerulus (Gl), goblet cell (GC), 

gut (G), inner ear (IE), lateral line organ (LL), medial crista (MC), mesenchyme (M), 

notochord (Nc), pancreas (P), posterior blood island (PBI), putative Paneth cell (PC), 
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pharyngeal sensory cells (asterisks), posterior macula (PM), swim bladder (SB), 

somitic muscle (SM), thymus (T) and ventral wall of the DA (vDA) and of the caudal 

artery (vCA). HSPCs, pRBCs, thymocytes and wandering leukocytes are labeled with 

green, red, white and turquoise arrows, respectively. 

 

Figure 4. Gfi1aa expression in haemogenic endothelial cells is induced 

downstream of VegfA and Notch signalling, but independent of Runx1. Fixed 

qmc551;gata1:dsRed double transgenic embryos after GFP/dsRed 

immunohistochemistry are shown in (A,D-E,I). Fixed wt, qmc551 and 

qmc551;gata1:dsRed double transgenic embryos stained by WISH are shown in (B-
C,H,K), (L) and (J), respectively. Live qmc551 embryos that were wt, heterozygous 

or homozygous mib carriers were imaged in (F-G). Confocal images of optical sagittal 

sections through the DA are 1.6 and 0.995 μm (A), 6.5 and 6.6 μm (D), 1.2 μm (E) 

and 2.7 μm (I) thick. A confocal maximum intensity projection of a 37 μm optical slice 

is shown in (G). Embryos were treated with DMSO, the VegfR inhibitors 676475 (A) 

and SU5416 (B,C) or DAPM (D) from tailbud stage (10 hpf). Rbpja/b (E) and runx1 (I-

L) morpholinos were injected at 2-4 cell stage. PrRBCs, HECs and inner ear hair 

cells are labeled with red, green and yellow arrows, respectively. Arrowheads mark 

reduced or absent staining. Fractions x/y give the number of embryos, x, with 

depicted phenotype out of all embryos analyzed, y. Embryos are shown with anterior 

left and dorsal up. 

 

Figure 5. Gfi1aa expression is lost in primitive erythrocytes of homozygous 
qmc551 embryos, yet primitive haematopoiesis is unaffected. (A) Genomic 

organization of the gfi1aaqmc551Gt locus. Oligos I and J were used in the RT-PCR 

experiments. The sequence complementary to the gfi1aa WISH probe is indicated. 

The TaqMan probe overlapped with the exon 1/2 boundary and is not shown. (B) 
Fluorescent images of 20 hpf wt, qmc551 heterozygous and homozygous siblings 

from an incross of qmc551 heterozygous carriers. (C,H,I,L,M) RNA WISH 

experiments with indicated probes on 13-20 hpf wt and qmc551 homozygous 

embryos. Views are posterior with anterior up on all images of 13-16 hpf and lateral 

with anterior to the left and dorsal up on all images of 18, 20 and 22 hpf embryos. (D) 
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QRT-PCR to determine relative levels of gfi1aa mRNA in 16 hpf whole embryos. 

Ef1𝛂 mRNA was used as a loading control. (E) Flow cytometric analysis of 

embryonic cells at 19 hpf showing green and red fluorescence excited with a 488 nm 

laser, and detected using the band pass filters 529/28 and 580/23 (central 

wavelength/width in nm), respectively. (F) Mean green fluorescence observed in 

GFP+ cells in embryos at 19 hpf. Please note that values are shown relative to 

heterozygous controls (Two-tailed t-test: p<0.0001). (G) The relative numbers of 

GFP+ cells in embryos at 19 hpf. (J,Q) Diaminofluorene staining to detect 

haemoglobin in 3 dpf embryos. (K,R) Images of prRBCs that were isolated from the 

sinus venosus of terminally anaesthetized 3 day-old embryos and stained with May-

Grünwald and Giemsa. (N) Structure of the gfi1b transcript before and after splicing 

in the presence and absence of gfi1b morpholinos. In the morphant, exon 3 and 5 

sequences are spliced together (dashed line). (O) RT-PCR performed on RNA 

isolated from uninjected and morpholino-injected wt embryos. (P) gfi1b cDNA 

sequence representing the alternatively spliced gfi1b mRNA isolated from gfi1b 

morphant embryos. PCR oligo and divergent C-terminal amino acid sequences are 

underlined. Sequences derived from different exons are shown in different colors. 

The numbering of nucleotides corresponds to that of database entry NM_001271841. 

Encoded amino acids are counted below.  Arrows: red – prRBCs, yellow – inner ear 

hair cells, light blue – anterior lateral mesoderm, orange – hatching gland precursors. 

Arrowheads: red – prRBCs in heart. Fractions x/y give the number of embryos, x, 

with depicted phenotype out of all embryos analyzed, y. Embryos are shown with 

anterior left and dorsal up. 

 

Figure 6: Gfi1aa expression is lost in definitive haematopoietic cells of 

homozygous qmc551 fish, but definitive haematopoiesis is normal. (A,C,F-O) 
Fixed embryos stained in WISH experiments using indicated probes. Whole embryos 

are shown in (A,H,J,M-O). Close-up views of anterior and posterior parts of the 

embryos are presented in (G) and (C,F,I,K), respectively. All embryos, except (G), 

are shown in a lateral view with anterior to the left and dorsal up. (G) shows a close-

up dorsal view with anterior to the left. (L) shows a transverse section through the 

trunk of one of the homozygous qmc551 embryos after gfi1ab WISH. (B,R) QRT-
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PCR on total RNA isolated from whole 26 hpf embryos (B) and from adult KM cells 

(R) to measure the relative level of gfi1aa mRNA (Two-tailed t-test: p=0.002 (26h), 

p=0.034 (KM)). Ef1𝛂 mRNA was used as a loading control. (D,E) Live images of 

qmc551 embryos with anterior left and dorsal up. Close-up pictures of the tail (D) and 

the head regions (E) are presented. (P) Regulation of Gfi1aa and Gfi1ab expression 

at the onset of definitive haematopoiesis. (Q) Flow cytometric analysis of green and 

red fluorescence in adult KM cells excited with a 488 nm laser and detected using 

529/28 and 580/23 nm band pass filters, respectively. Please note that a substantial 

proportion of KM cells displays green and red autofluorescence. (S) May-

Grünwald/Giemsa stained KM cytospins. (T) Relative number of bilobed and trilobed 

neutrophil granulocytes observed in May-Grünwald/Giemsa stained cytospins. (U) 

Sudan Black staining on adult KM cytospins. Arrows: red – prRBCs, green – HECs 

and definitive HCs, yellow – inner ear hair cells, white – T cell precursors in the 

thymus, black – neutrophil granulocytes with bilobed nuclei. Arrowheads: green – 

reduced gene expression in the vDA.   

 

Figure 7: Expression of zebrafish gfi1/1b paralogs during primitive 

erythropoiesis and definitive haematopoiesis in wild-type and homozygous 

qmc551 embryos.  Top - Diagrammatic representation of zebrafish embryos from 

12.5 to 48 hpf. The images show posterior and lateral views of early and late 

embryos, respectively. Sites of primitive erythropoiesis (in red) and definitive 

haematopoiesis (in green) are depicted. Abbreviations: PLM – posterior lateral 

mesoderm; ICM – intermediate cell mass; PBI – posterior blood island; CHT – caudal 

haematopoietic tissue. Bottom – Expression of gfi1 paralogs in wt and qmc551 

homozygous embryos.  Solid boxes represent strong expression. Dots show 

scattered expression. Lines represent apparent loss of expression. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Supplementary Materials and Methods 
 
Zebrafish husbandry and genetically altered zebrafish lines 
Zebrafish were kept at 28.5˚C as described in the zebrafish book (Westerfield, 2000). 

All experiments performed on animals were approved by the local ethical review 

committee and performed under the Home Office project licenses 40/2983 and 

40/3457.  All genetically altered lines are described in Table S1. 

 
Table S1: Zebrafish lines used in this study. 

 
Name of line Abbreviation Reference 

gfi1aaqmc551Gt qmc551 this manuscript 

Tg(flk1/kdrl:tdTomato)qmc64 flk1:tdTom this manuscript 

Tg(csl:cerulean)qmc63 csl:cer this manuscript; derivative of 
csl:venus (Gray et al., 2007) 

Tg(gata1:dsRed)ds2 gata1:dsRed (Traver et al., 2003) 

Tg(flk1/kdrl:egfp)s843 flk1:gfp (Jin et al., 2005) 

Tg(mpeg1:mCherry)gl22 mpeg1:mCherry (Ellett et al., 2011) 

mibta52b  mib (Itoh et al., 2003) 
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Table S2: Oligonucleotides and morpholinos. 
Experiment Oligo 

Name 
Sequence 

inverse PCR in Fig S1 f1 5’-AGTACTTTTTACTCCTTACAATT-3’ 

inverse PCR in Fig S1 r1 5’-GATTTTTAATTGTACTCAAGTAA-3’ 

inverse PCR in Fig S1 f2 5‘-GGAGATCACTTCATTCTATTTTCC-3’ 

inverse PCR in Fig S1 r2 5’-CAAGTAAAGTAAAAATCCCCAA-3’ 

PCR in Fig. 2D,E A 5’-CGGAGGAACTGTTCACCTACAG-3’ 

PCR in Fig. 2D,E B 5’-CCATGCCGAGAGTGATCCCG-3’ 

PCR in Fig. 2D,E C 5’-GGACGGCGACGTAAACGGC-3‘ 

PCR in Fig. 2D,E D 5’-CTACCTGGGTCTCCACTTTTGC-3’ 

PCR in Fig. 2D,F E 5’-CCACAAGTTCAGCGTGTCC-3’ 

PCR in Fig. 2D,F F 5’-AACTCCAGCAGGACCATGTG-3’ 

RT-PCR in Fig. 2D,G G 5’-CTCTATAGCGGGACACAGGAG-3’ 

RT-PCR in Fig. 2D,G H 5’-GGACACGCTGAACTTGTGG-3’ 

gfi1aa qRT-PCR in Fig. 
5+6 

I 5’-CAGAGCAGCACAGCATTA-3’ 

gfi1aa qRT-PCR in Fig. 
5+6 

J 5’-ACTGCCCAATCCCATCACTC-3’ 

gfi1aa qRT-PCR in Fig. 
5+6 

gfi1aa 
probe 

5’-ACGTCACCATCATTGATGCCCCTGGA-3’ 

ef1a qRT-PCR in Fig. 
5+6 

K 5’-TGGAAATTCGAGACCAGCAAA-3’ 

ef1a qRT-PCR in Fig. 
5+6 

L 5’-AGTCAGCCTGAGAAGTACCAGTGA-3’ 

ef1a qRT-PCR in Fig. 
5+6 

ef1a 
probe 

5’-AGCTCTCCAATCTAGCCTGTTGCTGT-3’ 

gfi1b RT-PCR oligo in 
Fig. 5 

M 5’-ACTGCCCAATCCCATCACTC-3’ 

gfi1b RT-PCR oligo in 
Fig. 5 

N 5’-GTGGACGTTCATGTGTTGCT-3’ 

Splice morpholino 
against runx1 transcript 

runx1 
MO 

5’ AGCGCTCTTACCGTATTTGTCC-3’ (Gering and 
Patient, 2005) 

Splice morpholino 
against rbpja/b 

rbpja/
b MO 

5’-CAAACTTCCCTGTCACAACAGGCGC-3’ 
(Sieger et al., 2003) 
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transcript 
Splice morpholino 1 
against gfi1b 

MO1 5’ –TCTGATGGAGGTATGATGGAAACAT-3’ 

Splice morpholino 2 
against gfi1b 

MO2 5’-GCTGTGTTCACTATCTGACCTTGTC-3’  

p53 morpholino p53 
MO 

5’-GCGCCATTGCTTTGCAAGAATTG-3’ 
{Robu:2007ed} 

 

Table S3: Information on antibodies, selected chemicals and inhibitors 

 
Chemical/Inhibitor Company Cat. No. Instructions 

Biotin-conjugated goat 
anti-GFP antibody 

Abcam Ab6658 Use 1:250 diluted 

Steptavidin-Alexa Fluor 
488 

Invitrogen S32354 Use 1:400 diluted 

ABC Kit Vector PK-6100 Follow manufacturer’s 
instructions 

Diaminobenzidine Sigma-Aldrich D3939 Follow manufacturer’s 
instructions 

Rabbit anti-dsRed 
antibody 

Clontech 632496 Use 1:250 diluted 

Anti-rabbit IgG Alexa 
Fluor-594 

Invitrogen A11037 Use 1:400 diluted 

2,7-Diaminofluorene Sigma-Aldrich D17106 Follow (Weinstein et 
al., 1996) 

JB4 methacrylate Agar Scientific 
UK 

AGR1130 Follow manufacturer’s 
instructions 

OCT VWR 361603E Follow manufacturer’s 
instructions 

VEGFR kinase inhibitor Calbiochem 676475 (no 
longer 
available) 

Stock at 10 mM in 
DMSO; use at 2.5 μM  

SU5416 Calbiochem 676487 Stock 10 mM in 
DMSO; use at 2.5 μM  

DAPM Calbiochem 565777  Stock at 12.5 mM in 
DMSO; use at 100 μM  

MS222 Sigma-Aldrich A5040;  Stock at 4 g/l H2O, 
pH7.5; use at 130 
μg/ml  

N-Phenylthiourea Sigma-Aldrich P7629 Stock at 0.3g/l H2O, 
use at 0.03 g/l 

May-Grünwald Sigma-Aldrich MG1L-1L Use undiluted 
Giemsa BDH 350864X Use 1:20 diluted 
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Sudan Black Sigma-Aldrich 380B-1KT Follow manufacturer’s 
instructions without 
counterstain 

DPX Mountant for 
Histology 

Fluka 
BioChemika 

44581 Apply directly to dried 
slide and put cover slip 
on top 
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Supplementary Figures 

 

Figure S1: In the gene trap line qmc551, GFP is expressed in primitive 

erythrocytes and in endothelial cells of the ventral wall of the dorsal aorta. This 

figure supports data shown in Fig. 1. (A) Single color and merged confocal images of 

the trunk of a qmc551;gata1:dsRed double transgenic embryo after fluorescent GFP 

and dsRed immunostaining. (B) Single color and merged confocal images of a 

qmc551;flk1:tdTom double transgenic embryo after fluorescent immunostaining for 

GFP and tdTom. (C) Single color and merged confocal images of a live 

qmc551;csl:cer double transgenic embryo. Note that prRBCs in circulation appear as 

short lines in the confocal image in (C), while stationary cells are round. Images were 

taken at single cell resolution on 2 (A), 1.8 (B) and 2.5 (C) μm optical slices. Times 

given on the panels represent hours and minutes after fertilization. All images show 

embryos with anterior to the left and dorsal up. Red arrows - prRBCs; red 

arrowheads - prRBC progenitors trapped in the mesenchyme; green arrows - ECs in 

the vDA. 
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Figure S2. qmc551:GFP positive endothelial cells are haemogenic endothelial 

cells. This supplementary figure is related to Fig. 1. Confocal images of fixed (A-C) 

and live (D-G) embryos show optical sagittal sections through the DA with anterior 
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left and dorsal up. The optical slices were at single cell resolution thickness, i.e. 2.0 

(A,C), 1.0 (B) and 2.1 μm (D-G). Images in (D-G) are taken from timelapse 

experiments in which pictures were taken every 3 minutes. Times on panels 

represent hours and minutes after fertilization. (A) Double fluorescent runx1 and 

flk1/kdrl whole-mount in situ hybridisation (WISH). (B-C) Fluorescent runx1 (B) and 

cmyb (C) WISH combined with GFP immunohistochemistry. prRBCs (red arrows); 

prRBC progenitors in mesenchyme (red arrowheads) and HECs (green arrows). (D-
G) Timelapse microscopy on qmc551;flk1:tdTom embryos from 31 hpf. (D) shows 

GFP expression only, while (E-G) present merged images. Annotations: HECs before 

(green arrow) and after bEMT (green arrowhead); DA endothelium after bEMT of 

HEC (white arrow); venous EC (red arrow).  
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Figure S3: The gene gfi1aa on chromosome 2 was identified as the gene 
trapped in the gene trap line qmc551. This supplementary figure is related to Fig. 
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2. The diagram depicts the nested inverse PCR strategy that was used to clone the 

DNA upstream of the transposon from genomic DNA of qmc551 embryos. The 

genomic DNA was digested with MboI. Individual fragments were self-ligated at low 

concentration using T4 DNA ligase. Nested PCR was performed using primers f1 and 

r1 in PCR1 and f2 and r2 in subsequent PCR2. The product of the second PCR was 

cloned into a pGEM-T Easy vector. The inserted DNA was sequenced using a T7 

primer. Sequencing revealed the 134 bp sequence located upstream of the 

transposon. A BLAST search of the Zv8 assembly of the zebrafish genome in the 

Ensembl database (Flicek et al., 2014) revealed 5 hits. One of these hits was a 

sequence in intron 1 of gfi1aa on chromosome 2. 
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Figure S4: Most GFP-positive cells that patrol the head tissues of qmc551 

transgenic embryos do not express markers of mature macrophages and 

neutrophil granulocytes. (A) Live embryos that carry the qmc551 gene trap and the 

macrophage reporter transgene mpeg1:mCherry display numerous GFP (green 

arrow) and mCherry (red arrow) single-positive cells, but hardly any double-positive 

cells (yellow arrow). (B) Fixed qmc551 transgenic embryos stained for the mature 

neutrophil marker Sudan Black and immunostained for GFP harbor many cells that 

are single-positive for GFP (green arrow) and for Sudan Black (black in the original 

image; red in the pseudocolored image; red arrow). All images show ventral views of 

the head region of the embryo, with anterior to the left. 
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Movie Legends 
 

Movie 1: In the gene trap line qmc551, GFP is expressed in primitive red blood 

cells and in spindle-shaped cells located between the dorsal aorta and the 
posterior cardinal vein at 26 hpf. This movie is related to Figure 1. (A) Live movie 

of the trunk and tail of a 26 hpf qmc551 transgenic. GFP is expressed in circulating 

and stationary blood cells and in elongated cells located between the dorsal aorta 

and the posterior cardinal vein. Anterior is to the left, dorsal is up. Pictures of this 

timelapse movie were taken every 100 ms with a Hamamatsu Orca-ER camera on a 

Nikon SMZ1500 dissection microscope with an epifluorescence attachment using a 

FITC filter set. The camera was controlled by IP lab software. Images were pseudo-

colored in IP lab and saved as TIFF files. The series of TIFF files was imported into 

Imaris and turned into a video that was then annotated in iMovie. (B) Confocal 

analysis of the trunk of a fixed 26 hpf qmc551 transgenic embryo shows expression 

of GFP in blood cells and in spindle-shaped cells located between the lumen of the 

dorsal aorta and the lumen of the vein. An animation of a 3D maximum intensity 

projection of a 67.5 μm thick Z stack is shown. A still image of the maximum intensity 

projection of the Z stack highlights GFP+ endothelial cells (green arrows), red blood 

cells in circulation (red arrow) and outside the vessels (red arrowheads). The embryo 

was first treated with an overdose of anesthetic and then fixed in 4% PFA for an hour. 

The Z-stack was taken on an inverted Zeiss Exciter confocal microscope and has the 

dimensions 161 x 161 x 67.5 μm, respectively. The movie starts with anterior to the 

left and dorsal up. The confocal images were acquired on a Zeiss Exciter microscope 

with an EC Plan-Neofluar 40x/1.30 Oil DIC M27 lens.  

 

Movie 2: qmc551:GFP+ haemogenic endothelial cells undergo basal epithelial 
to mesenchymal transition. This movie is related to Figure 1. It shows image series 

and still frames of confocal timelapse microscopy experiments performed on 

qmc551:eGFP;flk1/kdrl:tdTom-double transgenic embryos. The embryo was 

immobilized in 1% low melting point agarose. The embryo faces to the left with dorsal 

up. The timelapse experiment started at 31 hpf. In (A) only GFP expression is shown, 

highlighting that qmc551:GFP marks HECs before, during and after epithelial to 
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mesenchymal transition. In (B), both GFP and tdTom fluorescence are shown. tdTom 

expression confirms that spindle-shaped GFP+ cells undergoing EMT are vDA ECs. 

tdTom also highlights the outline of the vein. Please note that green horizontal lines 

in the DA and the PCV are caused by GFP+ prRBCs in circulation. The still frame 

shows the final image of the timelapse series shown in (B). It highlights the HEC-

derived mesenchymal cell (yellow arrow) and the endothelium (white arrow) that has 

closed up above it. All images show single 2.1 μm optical sections. Images were 

processed in Imaris and annotated in iMovie. 

 

Movie 3: qmc551:GFP+ haemogenic endothelial cells give rise to blood cells 
that join the circulation. This movie relates to Figure 1. (A) Timelapse movie of 1.5 

μm thick optical slices through the trunk of uninjected qmc551;flk1/kdrl:tdTom double 

transgenic embryos from 33 hpf. The movie shows how a double-positive 

haemogenic endothelial cell leaves the endothelium apically to enter the DA. (B) 

Mesenchymal GFP single (green circle) and GFP/tdTom double-positive (yellow 

circle) cells migrate through the mesenchyme before they enter the vein to join the 

circulation. This movie is identical to the one shown in Movie 2, but different cells are 

highlighted. The cell marked with the yellow circle disappears in Z as it moves from 

below the vein to a position above the vein. It then re-appears (yellow arrow) before it 

enters the vein. All images show single 2.1 μm optical sections. Images were 

processed in Imaris and annotated in iMovie.  

 

Movie 4: flk1/kdrl:GFP/csl:Cer-double positive haemogenic endothelial cells 
give rise to blood cells that join the circulation. This movie provides supporting 

evidence related to Figure 1. It shows data from timelapse confocal microscopy on 

flk1/kdrl:gfp/csl:cer-double transgenic embryos starting from 48 hpf. Images of single 

1.5 μm optical sections are shown with anterior to the left and dorsal up. Images 

were taken every 3 minutes. At 48 hpf, endothelial cells of the dorsal aorta co-

express both reporter transgenes, while vein endothelial cells are only GFP-positive. 

During the course of the timelapse, different events were observed that are all 

highlighted with colored circles. The red circle marks a haemogenic endothelial cell 

as it underwent basal endothelial to haematopoietic transition. In the mesenchyme, 
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the cell divided once and the daughter cells remained more or less stationary. As 

time went on, haematopoietic cells in the mesenchyme lost their green fluorescence 

faster than their blue fluorescence. Cells that entered the vein to join the circulation 

were clearly less brightly green than cells that had only just undergone EHT. Based 

on the residual intensity of their green fluorescence, it was obvious that cells 

remained in the mesenchyme for different periods of time before they entered the 

vein. They also entered the vein by different routes. One cell was seen to migrate 

around the vein before entering it through its ventral wall (blue circle). Another cell 

entered the vein through its dorsal wall (green circle) while several other cells got 

trapped in an endothelial pocket formed by venous endothelial cells (yellow circle). 

The cells eventually left the pocket to join the circulation. 

  

Movie 5: Some flk1/kdrl:GFP;csl:Cer double-positive haemogenic endothelial 

cells leave the endothelium apically. This movie supports findings reported in 

Figure 1.  It shows data from timelapse confocal microscopy on flk1/kdrl:gfp/csl:cer-

double transgenic embryos starting from 30 hpf. The arrow points at a haemogenic 

endothelial cell that leaves the endothelium apically to enter the dorsal aorta. The 

embryo was immobilized in 1% low melting point agarose. The images show single 

1.5 μm thick optical sagittal sections of an embryo with anterior to the left and dorsal 

up. During the timelapse, images were taken every 3 minutes.  

 
Movie 6: qmc551:GFP-positive haematopoietic cells seed perivascular niches 
in the caudal haematopoietic tissue at 2 dpf and patrol the head tissues at 6 

dpf. This movie is related to Figure 3. (A) Timelapse confocal microscopy on 

qmc551;flk1:tdTom double transgenic embryos starting from 48 hpf showing 2.0 μm 

thick optical slices through the caudal haematopoietic tissue. Here, GFP+ 

haematopoietic cells undergo dynamic interactions with tdTom+ ECs. One of the 

cells is highlighted with a yellow circle. Please note that ECs in the ventral wall of the 

caudal artery co-express the two transgenes. Anterior is to the left, dorsal is up. The 

embryo shown was immobilized in 1% low melting point agarose. (B) A 6 dpf qmc551 

transgenic embryo was anesthetized and placed in a tiny depression in agarose 
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under a fluorescent Nikon SMZ1500 dissection microscope using a Nikon DS-

5Mc/DS-U1 camera setup. From minute 5 on, pictures of the head region of the 

embryo (facing right) were taken manually every 3 min. Images were imported into 

Photoshop. In Photoshop, the pictures were moved and rotated to correct for the 

drifting movement of the embryo under the microscope. Furthermore, annotations 

were added. All pictures were then imported into iMovie to generate the final video. 

Individual frames are also shown in Figure 3O. 
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List of Abbreviations  

(excluding widely used abbreviations and names of genes and gene products) 

ALM anterior lateral mesoderm 

bEMT basal epithelial to mesenchymal transition 

CHT caudal haematopoietic tissue 

DA  dorsal aorta 

EC  endothelial cell 

EHT endothelial to haematopoietic transition 

EMP epithelial to mesenchymal transition 

HC  haematopoietic cell 

HEC haemogenic endothelial cell 

HPC haematopoietic progenitor cell 

hpf  hours post fertilization 

HSC haematopoietic stem cell 

HSPC haematopoietic stem and progenitor cell 

ICM intermediate cell mass 

KM  kidney marrow 

PBI  posterior blood island 

PCV posterior cardinal vein 

PLM posterior lateral mesoderm 

prRBCs primitive red blood cells 

RBCs red blood cells 
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vCA ventral wall of the caudal artery 

vDA ventral wall of the dorsal aorta 

WISH whole-mount in situ hybridisation 

 


