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Computational Modelling of Multiscale, Multiphase
Fluid Mixtures with Application to Tumour Growth.
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Abstract

In this work we consider the discretization of a recently formulated [18] multi-

scale model for drug- and nutrient-limited tumour growth. The key contribution

of this work is the proposal of a discontinuous Galerkin finite element scheme

which incorporates a non-standard coupling across a singular surface, and the

presentation of full details of a suitable discretization for the coupled flow and

transport systems, such as that arising in [18] and other similar works. We

demonstrate the application of the proposed discretizations via representative

numerical experiments; furthermore, we present a short numerical study of con-

vergence for the proposed microscale scheme, in which we observe optimal rates

of convergence for sufficiently smooth data.

Keywords: Numerical simulations, finite elements, porous media, cancer

modelling

1. Introduction

Over many years, mathematicians have sought effective means of incorpo-

rating effects occurring on multiple spatial and temporal scales into mechanistic

models, whether this is in the classical settings of homogenization via asymp-

totic expansions and volume averaging [19], or the more contemporary setting
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of multiscale numerical methods, see e.g. [12, 22, 23]. Multiscale effects are of

interest to many communities of applied mathematicians, such as those studying

groundwater flow [28, 39] or biological systems [31, 37, 41]. As these techniques

become better developed, we observe an increased level of their application

across an ever greater range of physical and biological systems, inevitably driv-

ing further development of both analytical and computational techniques.

A specific application that has garnered much interest is the study of can-

cer as a multiscale system. There have been extensive developments in the

mathematical and computational modelling of tumour growth since the middle

portion of the last century [9]. However, in the last few decades there has been

an increased focus on incorporating mechanisms occurring on multiple scales in

an effective manner, see e.g. [1–4, 25, 29, 33–36, 43] and the references therein.

Understanding the dependence of a tumour’s evolving microstructure and mi-

crovasculature is vital for making predictions regarding the potential efficacy of

a drug in the treatment of a tumour [34, 35].

In the companion article to this work [18], we consider an asymptotic anal-

ysis of a multiphase fluid dynamics model for avascular tumour growth of the

type exploited in [11, 27]. This analysis allows us to derive a system of equations

that describes tumour growth at a lengthscale associated with the full extent of

the tumour tissue, that is explicitly dependent on a microscale formulation de-

scribing the microstructural properties of the tumour. The resulting microscale

problem comprises a system of coupled tensor Stokes problems, the macroscale

problem, a coupled system of nonlinear hyperbolic transport equations, further

coupled to an elliptic flow equation. The analysis of [18] represents an exten-

sion of the multiscale analyses of [31, 42, 43], as we consider growth that is

dependent on the tissue composition in a multiscale framework as a means of

incorporating interstitial growth. However, the relative complexity of the micro-

and macroscale systems obtained in [18], compared to those in [31, 42, 43], ne-

cessitates increased sophistication in their discretization.

In this article, we address the challenges associated with defining suitable

discretizations for both systems of equations. For the microscale system, we
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consider a means of incorporating the non-standard coupling of flow across a

quasi-stationary internal surface into a discontinuous Galerkin (dG) finite ele-

ment (FE) discretization which, to the authors’ knowledge, has not been con-

sidered elsewhere in the literature (cf. [10] and references cited therein). For the

macroscale system, the primary difficulty arises in obtaining a suitably stable

discretization for the complex coupled system of nonlinear partial differential

equations (PDEs), that does not suffer from spurious numerical oscillations. As

such, we present a full description of the dG FE and mixed Raviart-Thomas

(RT)/dG FE discretizations employed in [18]. Additionally, we present a short

numerical study of the convergence of the method proposed for the microscale

problem as well as a selection of representative numerical experiments for the

macroscale problem.

This article is organized as follows. In section 2 we recall the microscale and

macroscale models presented in [18] governing tumour growth together with

passive transport of drug and nutrient, and in section 3 we introduce the dis-

cretization employed in their solution. In section 4 we present a short numerical

study of the convergence of the discretization of microscale model and a selec-

tion of numerical experiments demonstrating the dynamics of the macroscale

system. Finally, in section 5 we make some concluding remarks and highlight

ongoing and future work.

2. Model Description

In this section we provide a brief summary of the underlying conceptual

model describing drug- and nutrient-regulated growth and response of a tumour,

and transport of passive solutes as described in [18], as well as brief details of

the formulation arising from a multiple scales analysis contained therein, the

solution of which forms the principal focus of the current work.

2.1. Conceptual Model

We consider a multiphase fluid dynamics model of avascular tumour growth

and transport of passive solutes based on that employed in [11, 27], in which
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detailed justification for the application of models of this type is provided. We

consider a formulation that is characterized by two lengthscales that are strongly

separated, referred to as the microscale and the macroscale. Under this assump-

tion, described formally below, and strong interphase drag so that all phases

move with a common velocity (motivated by such works as [24, 32]), we are able

to derive an effective description of growth and transport on the macroscale

(corresponding to the lengthscale of the tumour tissue), explicitly incorporating

microscale tumour dynamics.

We consider a region of tumour tissue, ΩL Ă Rd (d “ 2, 3), as an idealized

porous medium that consists of a multicomponent mixture, comprising Nθ in-

teracting phases, saturated with a viscous Newtonian fluid, and subsequently

referred to as the mixture and interstitial fluid, respectively. We assume that

within ΩL there is a spatially periodic microstructure, which we denote Ω`, that

further defines two subdomains Ω1 and Ω2, corresponding to the regions that

contain the multicomponent mixture and the interstitial fluid, respectively. We

further assume that the free interface between Ω1 and Ω2, denoted Γ, is sharp,

and that phase transition may occur on this singular surface; where the move-

ment of Γ is determined by tissue growth. A schematic diagram of this geometry

is shown in Figure 1. Additionally, we assume that the porous medium may be

characterized by two distinct lengthscales (`, corresponding to the lengthscale

associated with the periodic microstructure and L, corresponding to the length-

scale of the tissue) that are well-separated. To this end, we introduce a small,

dimensionless parameter 0 ă ε ! 1 defined by

ε “
`

L
. (1)

Under the assumption of strong interphase viscous drag, so that all phases

in the multicomponent mixture move with a common velocity, we write all

dependent variables Υ as a multiple scales expansion in ε of the type

Υp¨ ; εq “
8
ÿ

i“0

εiΥpiqp¨q (2)

as a means to analyse the leading order, i.e. Op1q, behaviour of the system. As a
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result of the linearity of the system, to leading order, we are able to decouple the

micro- and macroscale flow description through a Darcy ansatz on the leading

order flow, up0q, and first order pressure, pp1q, of the form

up0q “ ´K∇pp0q and pp1q “ ´a ¨∇pp0q ` p̄, (3)

where pp0q denotes the microscale invariant first order pressure, p̄ denotes the

mean value of pp1q in Ω, and the permeability tensor K and vector a param-

eterize the microscale variation of up0q and pp1q, respectively. By substituting

this ansatz into the systems of equations obtained at leading and first order,

i.e. Op1q and Opεq, we are able to obtain a pair tensor Stokes problem for K

and a in Ω, coupled via suitable conditions on the interface Γ. This system is

described formally in section 2.2. We note that these equations are stationary

and independent of any macroscale variation. Thus, all we require to parame-

terize the unsteady macroscale problem across the full extent of the tissue is the

solution of a stationary problem on a single periodic unit. Then, via spatial av-

eraging, we derive an effective system of equations on the macroscale comprising

a coupled system of nonlinear advection-reaction PDEs governing the evolution

of the concentration of drug c, concentration of nutrient n, and volume fractions

of the components of the mixture θ “ pθ1, θ2, . . . , θNθ q
T

, and an elliptic PDE

in mixed form governing the flow, described by the spatially averaged, leading

order velocity u and leading order pressure p. We describe this system formally

in section 2.3.

2.2. Microscale PDE Model

In addition to the notation introduced in section 2.1, we further denote the

inward unit normal to Ω1 on Γ by nΓ, the unit tangent(s) to Γ by τΓ, and

the external boundary of Ω` by BΩ`. A schematic diagram of the microscale

geometry, demonstrating the notation introduced here, is shown in Figure 1.

We let µ1 and µ2 denote the kinematic viscosity of the fluids in Ω1 and Ω2,
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respectively, and further define

µ :“

$

&

%

µ1 in Ω1,

µ2 in Ω2.
(4)

In addition to a system of PDEs on Ω`, we define a set of interface conditions

on Γ. To this end, we first define the ˘ sides of the interface Γ, i.e. for a scalar

quantity a defined in both Ω1 and Ω2, we define the quantities a˘ by

a˘ :“ lim
εÑ0`

apx¯ εnΓ, tq @x P Γ, (5)

where x denotes the microscale spatial variable, which we extend componentwise

for vector or tensor quantities. We futher introduce the notation

ras`´ :“ a´ ´ a`, (6)

for a scalar quantity a, which we extend to vector or tensor quantities compo-

nentwise. Finally, we denote the gradient, Laplacian and rate of strain operators

corresponding to differentiation with respect to the microscale spatial variable

by ∇x, ∆x, and Dx, respectively. The leading order microscale dependence of

Ω1
Ω2BΩ

`

nΓ

Γ

τΓ

Figure 1: Schematic of a single unit Ωl of the periodic microscale problem. Diagram

adapted from [31, Fig. 1].

the system is now given by a vector a and a permeability tensor K defined on

Ω` that satisfy

´∇xa` µ∆xK
T

“ ´I @x P Ω`,

∇x ¨KT
“ 0 @x P Ω`,

,

.

-

(7)
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subject to the following conditions on the interface Γ
”

´ab nΓ ` µDx

´

KT
¯

nΓ

ı`

´
“ 0 @x P Γ,

”

KTτΓ

ı`

´
“ 0 @x P Γ,

´

KTnΓ

¯`

“ 0 @x P Γ,
´

KTnΓ

¯´

“ 0 @x P Γ,

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(8)

and periodic boundary conditions on BΩ` for all components of K and all com-

ponents of ´a b nΓ ` µDx

´

KT
¯

nΓ. The Stokes system (7) and interface

conditions (8) are obtained by substituting the Darcy ansatz (3) into the flow

equations and interface conditions obtained at leading and first order from our

asymptotic expansion. The tensor Stokes equations for permeability are stan-

dard, see e.g. [39]. The interface conditions are a result of the imposition of

continuity of stress and velocity across Γ, and the observation in [18] that, under

a suitable choice of scaling, the interface is quasi-static to leading order.

We highlight that the combination of slip and no-penetration given for the

interface condition is non-standard, and, as such, must be considered carefully

when formulating the discretization of this problem in section 3.1.

We note that the system given by (7), (8), and periodicity is not sufficient

to uniquely specify the vector a. As such, we further specify that a is mean-free

on Ω`, i.e.
ż

Ω`

a dx “ 0. (9)

2.3. Macroscale PDE Model

Prior to defining the macroscale model, we introduce additional notation

for selected macroscale quantities. We define the following spatial averages for

microscale-varying quantities over Ω1, Ω2, and Γ by

xgy1 :“
1

|Ω`|

ż

Ω1

g dx, xgy2 :“
1

|Ω`|

ż

Ω2

g dx, and xgyΓ :“
1

|Ω`|

ż

Γ

g ds,

(10)

respectively, and introduce the notation x¨yΩ` :“ x¨y1 ` x¨y2. We define the

porosity of the material, φ, by

φ :“
|Ω1|

|Ω`|
. (11)
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We further denote the exterior boundary of ΩL by BΩL, and let n denote the

outward unit normal to BΩL. We define X to be the dimensionless macroscale

spatial variable related to x via εX “ x, and denote the gradient and diver-

gence operators corresponding to differentiation with respect to the macroscale

variable by ∇X and ∇X ¨, respectively. Then, for a given vector field b, we

define the inflow portion of the boundary BΩL by

Λ-pbq :“ tX P BΩL : bpXq ¨ n ă 0u. (12)

We proceed now by setting out this system of PDEs. The flow problem is given

in mixed form by

u` xKyΩ∇Xp “ 0 @X P ΩL,

∇X ¨ u “ fpX;θq @X P ΩL,

,

.

-

(13)

subject to the boundary condition

p “ pD @X P BΩL. (14)

Note that we adopt the notation p¨ ; ¨q to emphasize the potentially nonlinear

dependence of coefficients in the PDE system on dependent variables whose

evolution is governed by other equations in the system; for example, the source

term in (13), f pX;θq, is spatially varying and has a functional dependence on

θ.

In the following, we present the governing transport equations, together

with associated boundary and initial conditions, using generic reaction, source,

boundary, and initial data. The specific form of the reaction, source, and forc-

ing terms are set out explicitly in appendix A as a particular choice of tumour

growth model. The boundary and initial data employed in the numerical exper-

iments in section 4.2 are prescribed therein. However, throughout this work we

choose smooth boundary and initial data to reduce any analytical complexity

regarding the well-posedness of the macroscale system. The equation governing

the volume fractions of the components of the mixture is given by

Bθi
Bt
` ũ ¨∇Xθi `Rθ,ipX;θ, c, nqθi “ gθ,ipX;θ, c, nq @X P ΩL, (15)
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for 1 ď i ď Nθ, where Rθ,i and gθ,i denote reaction and source terms, respec-

tively, and ũ denotes the average velocity of the mixture, defined by

ũ :“ xKy1 xKy
-1
Ω`
u. (16)

We further require that θ is subject to the boundary condition

θpX, tq “ Θptq @X P Λ- pũq , (17)

and the initial condition

θpX, 0q “ Θ0pXq @X P ΩL. (18)

The equation governing the evolution of the concentration of drug is given by

Bc

Bt
` pu ¨∇Xq c`RcpX;θqc “ 0 @X P ΩL, (19)

where Rc denotes a reaction term; subject to the boundary condition

cpX, tq “ Cptq @X P Λ- puq , (20)

and the initial condition

cpX, 0q “ C0pXq @X P ΩL. (21)

Finally, the equation governing the evolution of the concentration of nutrient is

given by
Bn

Bt
` pu ¨∇Xqn`RnpX;θqn “ 0 @X P ΩL, (22)

where Rn denotes a reaction term; subject to the boundary condition

npX, tq “ Nptq @X P Λ- puq , (23)

and the initial condition

npX, 0q “ N0pXq @X P ΩL. (24)
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3. Discretization

In this section we introduce discretizations of the microscale system intro-

duced in section 2.2 and the macroscale system introduced in section 2.3. Prior

to this, however, we briefly discuss our choice of numerical methods employed in

sections 3.1 and 3.2 for the spatial discretization of the micro- and macroscale

systems. Despite restricting our attention to FE methods, we are still presented

with a range of suitable discretizations.

For the microscale problem, there are many spaces of conforming and non-

conforming finite element methods that yield stable numerical methods, as dis-

cussed in e.g. [16]. In this work, we employ a dG FE method similar to that

presented in [44]. While the comparative costs and benefits of dG FE methods

are discussed extensively in the literature, see e.g. [17], for the numerical exam-

ples presented where standard conforming methods would require fewer degrees

of freedom for equivalent accuracy. However, we highlight that dG methods

are stable for a wider range of approximation spaces than standard conforming

methods.

When considering a geometrically complex pore structure, such as those

found in biological materials pertinent to applications of the model developed

in [18], dG methods constructed on general polytopes/polyhedra provide a

means of decoupling the dimensionality of the approximation space and geo-

metrical complexity, see e.g. the review article [8]. Furthermore, the discon-

tinuous nature of the approximation facilitates straightforward application of

hp-refinement algorithms. So while for the simple geometries and methods con-

sidered in the current work it is not apparent that dG FE is the optimal method,

it is employed as a precursor to wider application of dG FE methods on gen-

eral polytopes/polyhedra in biomedical applications where there are benefits in

terms of implementational ease and computational cost compared to standard

conforming/non-conforming methods or conforming composite methods.

In the case of the macroscale flow equation, there are again a range of suitable

FE methods available including H1-conforming, dG, and Hpdivq-conforming el-
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ements. As we consider the Darcy flow equation (13) in mixed form, it is natural

for us to employ an Hpdivq-conforming element [16] and, as such, we choose the

Raviart-Thomas element [30, 38]. Physical motivations for selecting this class

of conforming element are discussed briefly in section 3.2.1, as are alternative

choices of Hpdivq-conforming elements. There is a more restrictive choice of

(standard) FE methods for the transport equations for the macroscale model.

We highlight here two families of methods, stabilised (continuous) methods and

dG; here we adopt a dG FE method as described in [26]. Again, we refer to [17]

for a discussion on the benefits of dG FE methods.

3.1. Discretization of the Microscale System

We consider conforming, shape-regular meshes Th that partition Ω` into

disjoint open subdomains κ, such that ĎΩ` “
Ť

κPTh sκ and each element is the

image of a reference element κ̂ under the affine map Fκ : κ̂ Ñ κ. We specify

that Th respects the decomposition of the domain Ω` “ Ω1 Y Ω2 in the sense

that a given element κ is solely contained within Ω1 or Ω2.

Given κ P Th, we denote by Bκ the boundary of κ, and by nκ and τκ the

unit outward normal and tangent(s) to Bκ, respectively, where τκ is oriented

on each element boundary such that its definition is consistent for adjacent

elements. We denote by hκ the element diameter, and introduce the mesh

function h :“ maxthκ : κ P Thu. If the intersection F “ κ̄ X κ̄1 between two

elements κ, κ1 P Th is a proper line segment, then we refer to F as an interior

face. As we consider periodic boundary conditions, we impose the condition that

for each face on the exterior boundary of Th, there is a corresponding face on the

opposite side of the mesh. As such, we may identify these faces with each other

and view the two elements that adjoin this face as being neighbours in the mesh.

As a consequence, all faces in the mesh are interior faces. Similarly, if F “ κ̄XΓ

is a proper line segment, we refer to F as an interfacial face. We denote the

sets of all interior and interfacial faces as EI pThq and EΓ pThq, respectively; and

define the set of all non-interfacial faces by E pThq :“ EI pThq zEΓ pThq. We further

specify that faces (interior and interfacial) are linear. A schematic diagram of
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Figure 2: A schematic of the mesh, Th, discretizing the domain Ω` “ Ω1 Y Ω2, where

Ω1 “ r0, 1s ˆ r0, 0.5s and Ω2 “ r0, 1s ˆ r0.5, 1s.

a sample mesh is shown in Figure 2.

We next define the trace operators used in the formulation of the finite

element method. Let F be an interior face shared by elements κ1 and κ2. For

a scalar function q that is smooth on each κ P Th, we define the average and

jump across F by

ttquu :“
1

2
pq|κ1

` q|κ2
q and rrqss :“ q|κ1

nκ1
` q|κ2

nκ2
, (25)

where q|κ denotes the restriction of the function q to κ. If v is a piecewise

smooth vector field, we define the average and jump of v on F by

ttvuu :“
1

2
pv|κ1

` v|κ2
q and rrvss :“ v|κ1

¨ nκ1
` v|κ2

¨ nκ2
, (26)

and the tensor jump of v on F by

rrvss :“ v|κ1
b nκ1

` v|κ2
b nκ2

. (27)

If T is a piecewise smooth tensor field, we define the average and jump of T on

F by

ttT uu :“
1

2
pT |κ1 ` T |κ2q and rrT ss :“ T |κ1nκ1 ` T |κ2nκ2 . (28)
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For k P N0 and κ P Th we denote by Pkpκq the space of polynomials of degree

at most k on κ. Under this notation, we define the dG FE spaces by

Sh,kpThq :“ tv P L2pΩ`q : v|κ ˝ Fκ P Pkpκ̂q, κ P Thu. (29)

We now consider a dG FE method for the numerical approximation of systems

of equations of the form given in (7) subject to the boundary conditions (8). To

this end, we define the following finite element spaces

V :“ pSh,k`1pThqqd and Q :“ Sh,kpThq, (30)

where we note that the polynomial degree employed in V must be one degree

higher than that in Q in order to obtain a stable approximation see e.g. [16] and

references therein for further discussion regarding stables choices of FE space

for the approximation of Stokes flow.

Prior to specifying the finite element method used for the microscale system,

we highlight that the tensor system may be decomposed into d standard (vector)

Stokes problems. Therefore, it is sufficient to consider the discretization of a

standard Stokes problem, subject to appropriate stress, slip and penetration

conditions on Γ obtained from (8) by considering the interface conditions for

the tensor problem in a componentwise manner. As such, we may write the

Stokes problem for the ith column of K, denoted Φ, and the ith component of

a, denoted φ, for 1 ď i ď d, as

∇xφ´ µ∇x ¨Dx pΦq “ f i @x P Ω`,

∇x ¨Φ “ 0 @x P Ω`,

,

.

-

(31)

where pf iqj “ δij , subject to the following conditions on the interface Γ

rφnΓ ´ µDx pΦqnΓs
`

´ “ 0 @x P Γ,

rΦ ¨ τΓs
`

´ “ 0 @x P Γ,

pΦ ¨ nΓq
`

“ 0 @x P Γ,

pΦ ¨ nΓq
´

“ 0 @x P Γ,

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(32)

and periodic boundary conditions on BΩ` for all components of Φ and all com-

ponents of φnΓ ´ µDx pΦqnΓ. As in the tensor formulation, we impose that φ
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is mean-free in order to guarantee its uniqueness, i.e.
ż

Ω`

φdx “ 0. (33)

To obtain the dG FE discretization we first multiply (31) by test functions

pΨ, ψq, yielding the variational formulation

ş

Ω`
p∇xφ´ µ∇x ¨Dx pΦqq ¨Ψ dx “

ş

Ω`
f i ¨Ψ dx @Ψ,

ş

Ω`
∇x ¨Φψ dx “ 0 @ψ.

,

.

-

(34)

We then apply the integration by parts formulae
ż

κ

∇xφ ¨Ψ dx “ ´

ż

κ

φ∇x ¨Ψ dx`

ż

Bκ

φΨ ¨ nκ ds (35)

and
ż

κ

∇x ¨Dx pΦq ¨Ψ dx “ ´

ż

κ

Dx pΦq : Dx pΨq dx`

ż

Bκ

Dx pΦq : Ψb nκ ds

(36)

(from [44]) elementwise, making an appropriate assumption on numerical fluxes.

We then introduce appropriate penalization terms for the velocity space in order

to weakly impose inter-element continuity and the velocity interface conditions,

as in [44]. As such, we propose the dG FE method given by: find pΦh,k, φh,kq P

V ˆQ such that

a pΦh,k,Ψq ` b pΨ, φh,kq “ pf i,ΨqpL2pΩ`qq
d @Ψ P V ,

b pΦh,k, ψq “ 0 @ψ P Q,

cΓpΨ,Φh,k, φh,kq “ 0 @Ψ P V ,

,

/

/

/

.

/

/

/

-

(37)

for 1 ď i ď d, where k denotes the polynomial degrees used in V ˆ Q,

p¨, ¨qpL2pΩ`qq
d denotes the inner product on

`

L2pΩ`q
˘d

, and the bilinear forms

ap¨, ¨q, bp¨, ¨q, and trilinear form cΓp¨, ¨, ¨q are defined by

apv,wq :“
ÿ

κPTh

ż

κ

µDxpvq : Dxpwq dx´
ÿ

FPEpThq

ż

F

µttDxpvquu : rrwss ds

´
ÿ

FPEpThq

ż

F

µttDxpwquu : rrvss ds`
ÿ

FPEpThq

ż

F

ϑ1µrrvss : rrwss ds, (38)

bpv, qq :“
ÿ

kPTh

ż

κ

´q p∇x ¨ vq dx`
ÿ

FPEpThq

ż

F

ttquurrvss ds, (39)
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cΓpv,w, qq :“ ´
ÿ

FPEΓpThq

ż

F

µttDxpwquu : rrvss ` µttDxpvquu : rrwss ´ ttquurrvss ds`

ÿ

FPEΓpThq

ż

F

ϑ2µ ppw|Ω1
¨ nκqpv|Ω1

¨ nκq ` pw|Ω2
¨ nκqpv|Ω2

¨ nκqq ds`

ÿ

FPEΓpThq

ż

F

ϑ2µrrw ¨ τκssrrv ¨ τκss ds, (40)

for v,w P pXpThqqd and q P XpThq, where XpThq denotes the broken H1pΩq

Sobolev space defined by

XpThq :“
 

v P L2pΩ`q : v P H1pκq@κ P Th
(

, (41)

and ϑi denotes a penalization parameter defined by

ϑi :“ CiP
k2

h
for i “ 1, 2, (42)

for some suitably large parameter CiP that is independent of h and k. The choice

of penalization parameter here is motivated by that made in [44], in which a

parameter of this form is employed to obtain optimal rates of convergence for

a classical Stokes problem. We note that ap¨ , ¨q and bp¨ , ¨q are equivalent to

the bilinear forms presented in [44]; however, we introduce the additional term

cΓp¨ , ¨ , ¨q here as a means of enforcing the interface condition on Γ. While there

are many means of imposing the interface conditions, such as the transition

region approach proposed for Stokes-Darcy coupling in [20, 21], we adopt here

the form of cΓ given in (40) as it arises naturally from the stress, slip, and

penetration conditions (32) when deriving the dG FE method.

In order to impose the mean-free condition (33), we fix the value of a single

degree of freedom in the linear system, prior to solving. After the computation

of the solution to the linear system, we subsequently subtract the mean of

the computed (non-mean-free) FE approximation, to yield our final mean-free

approximation.

3.2. Discretization of the Macroscale System

In the discretization of the macroscale system we adopt analogous notation

to that introduced in section 3.1. However, we now restrict our attention to a
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two-dimensional domain ΩL for purely illustrative purposes, and consider only

shape-regular triangulations, TH . By Hκ we denote the element diameter of

κ P TH , and define the mesh function H :“ maxtHκ : κ P THu. Note, however,

that for convenience there is a minor abuse of notation in what follows, as we

let k denote the polynomial degree of multiple FE spaces, in addition to those

defined in section 3.1. For the FE spaces used on the macroscale there is no

reason to consider them equal and for the numerical experiments presented in

section 4 we shall specify a particular value for each FE space.

3.2.1. Flow

We now consider the discretization of the macroscale flow system given by

(13) and (14). To this end, we introduce the Raviart-Thomas (RT) element

[30, 38] on shape regular simplices given by

RTkpκq :“ pPkpκqqd ` xPkpκq, (43)

for d “ 2, 3. It is possible to show, see e.g. [16], that functions v P RTkpκq may

be fully characterized by the moments of up to order k of v ¨nκ on the edges of

κ and the moments of up to order k ´ 1 of v on the interior of κ. Given this,

we may construct the RT FE space

RTk pΩL, THq :“ tv P Hpdiv,ΩLq : v|κ P RTkpκq @κ P THu , (44)

where Hpdiv, ΩLq is the Sobolev space

Hpdiv, ΩLq :“
!

v P
`

L2 pΩLq
˘d

: ∇X ¨ v P L2 pΩLq
)

. (45)

Remark 1. The choice of a Hpdiv, ΩLq-conforming FE space ensures that there

is no unphysical compression or rarefaction associated with a lack of continuity

of the normal trace of the velocity across element boundaries when computing the

FE approximation to the solution of the hyperbolic transport equations for drug,

nutrient and mixture component volume fraction. We highlight that alternative

choices of Hpdiv, ΩLq-conforming elements, such as BDM [13, 15] or BDFM

[14], may also be employed.

16



Thereby, setting

V :“ RTk pΩL, THq and Q :“ SH,k pTHq (46)

the FE approximation of the macroscale flow problem, given in (13)–(14), is

defined by: find puH,k, pH,kq P V ˆQ such that

AF puH,k,vq `BF pv, pH,kq “ GF pvq @v P V ,

BF puH,k, qq “ LF pq;θq @q P Q.

,

.

-

(47)

The bilinear forms AF p¨, ¨q and BF p¨, ¨q are defined as

AF pv,wq :“

ż

ΩL

xKy
-1
Ω v ¨w dX, v,w P Hpdiv,ΩLq, (48)

and

BF pv, qq :“ ´

ż

ΩL

q∇X ¨ v dX, v P Hpdiv,ΩLq, q P L
2pΩLq, (49)

respectively, and the linear functionals GF p¨q and LF p¨ ;θq are defined as

GF pvq :“ ´xv ¨ n, pDyBΩL , v P Hpdiv,ΩLq (50)

and

LF pq;θq :“ ´pfpX;θq, qqL2pΩLq
, q P L2pΩLq, (51)

where x¨, ¨yBΩL denotes the duality pairing between H
1
2 pBΩLq and H´

1
2 pBΩLq,

and p¨, ¨qL2pΩLq denotes the inner product on L2 pΩLq.

3.2.2. Semi-Discrete Approximation of Transport Equations (15), (19), and

(22)

The discretization presented in this section follows closely the dG FE method

presented in [26]. Given this, in addition to the notation introduced in the

previous sections, for an element κ P TH , we define the inflow and outflow parts

of the element boundary Bκ by

B-κpbq :“ tX P Bκ : bpXq ¨ nκ ă 0u (52)

and

B`κpbq :“ tX P Bκ : bpXq ¨ nκ ą 0u, (53)
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for a given vector field b, and recalling that nκ is the outward facing normal to

κ P TH . We now extend the ˘ notation introduced in section 2.2 to describe

the interior and exterior traces of a function q on TH . As such, for an element

κ P TH we define q` and q´ to be the interior and exterior traces of q on some

face F P EI pTHq of κ, respectively. Then for each component of the mixture

1 ď i ď Nθ governed by (15)–(18), we specify the semi-discrete approximation

θH,k,ip¨, tq P Q as the solution of

ˆ

BθH,k,i
Bt

, q

˙

L2pΩLq

`Ba pθH,k,i, q; ũH,kq `BrpθH,k,i, q;Rθ,iq

“ LSpq; gθ,iq ` LBpq; ũH,k,Θq @q P Q, (54)

wherein we have employed the FE approximation of the velocity, utilizing an

equivalent discrete definition for ũH,k to that in (16) for the continuous case,

Θ is the boundary data defined in (17), and we define the bilinear/semilinear

forms Bap¨, ¨ ; ¨q and Brp¨, ¨ ; ¨q by

Bapw, v; bq :“
ÿ

κPTH

¨

˚

˝

ż

κ

vb ¨∇Xw dX ´

ż

B-κpbqzBΩL

pb ¨ nκq
`

w` ´ w-˘ v` dS´

ż

B-κpbqXBΩL

pb ¨ nκqw
`v` dS

˛

‹

‚

, (55)

and

Brpw, v;Rq :“
ÿ

κPTH

ż

κ

Rwv dX, (56)

respectively, and the linear functionals Lsp¨ ; ¨q and LBp¨ ; ¨, ¨q by

LSpv; gq :“
ÿ

κPTH

ż

κ

gv dX, (57)

and

LBpv; b, gq :“
ÿ

κPTh

ż

B-κpbqXBΩL

´pb ¨ nκqgv
` dS, (58)
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for w, v P XpTHq, cf. [26]. Similarly, for the transport of drug, governed by (19)–

(21), we define the semi-discrete approximation cH,kp¨, tq P Q as the solution of

ˆ

BcH,k
Bt

, q

˙

L2pΩLq

`Ba pcH,k, q;uH,kq `BrpcH,k, q;Rcq

“ LBpq;uH,k, Cq @q P Q, (59)

and for the transport of nutrient, governed by (22)–(24), we define the semi-

discrete approximation nH,kp¨, tq P Q as the solution of

ˆ

BnH,k
Bt

, q

˙

L2pΩLq

`Ba pnH,k, q;uH,kq `Br pnH,k, q;Rnq

“ LBpq;uH,k, Nq @q P Q. (60)

3.2.3. Fully-discrete Approximation

We consider now the fully-discrete approximation of the macroscale velocity,

pressure, drug and nutrient concentrations, and mixture component volume

fractions for t P r0, T s. We denote the (uniform) time-step size by ∆t and the

function v at time m∆t by vm. For the granularity of the spatial meshes utilized

in the numerical experiments presented in section 4.2, the stability limits on the

time-step associated with an explicit scheme mean that the error incurred from

the spatial discretization dominates the temporal error, even for a first order

explicit Euler scheme. As such, we employ an explicit Euler discretization to

form the fully-discrete approximation.

We first project the initial conditions for c, n, and θ onto the appropriate

finite element spaces by solving: find c0H,k P Q, n0
H,k P Q, and θ0

H,k P QNθ such

that

`

c0H,k ´ C0, q
˘

L2pΩLq
“ 0 @q P Q (61)

`

n0
H,k ´N0, q

˘

L2pΩLq
“ 0 @q P Q (62)

and for each component of the mixture 1 ď i ď Nθ,

`

θ0
H,k,i ´Θi, q

˘

L2pΩLq
“ 0 @q P Q. (63)
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We may then solve the initial macroscale flow problem (cf. (47)): find
´

u0
H,k, p

0
H,k

¯

P V ˆQ such that

AF

´

u0
H,k,v

¯

`BF

´

v, p0
H,k

¯

“ 0 @v P V ,

BF

´

u0
H,k, q

¯

“ LF
`

q;θ0
H,k

˘

@q P Q.

,

.

-

(64)

Then, for 0 ď m ď M ´ 1, we solve the transport problems for drug, nutrient,

and the components of the mixture: find cm`1
H,k P Q, nm`1

H,k P Q, and θm`1
H,k P QNθ

such that
˜

cm`1
H,k ´ c

m
H,k

∆t
, q

¸

L2pΩLq

`Ba
`

cmH,k, q;u
m
H,k

˘

`Br
`

cmH,k, q;Rmc
˘

“ LB
`

q;umH,k, C
m
˘

@q P Q, (65)

˜

nm`1
H,k ´ n

m
H,k

∆t
, q

¸

L2pΩLq

`Ba
`

nmH,k, q;u
m
H,k

˘

`Br
`

nmH,k, q;Rmn
˘

“ LB
`

q;umH,k, N
m
˘

@q P Q, (66)

and for each component of the mixture 1 ď i ď Nθ,

˜

θm`1
H,k,i ´ θ

m
H,k,i

∆t
, q

¸

L2pΩLq

`Ba
`

θmH,k,i, q; ũ
m
H,k

˘

`Br
`

θmH,k,i, q;Rmθ,i
˘

“ Ls
`

q; gmθ,i
˘

` LB
`

q; ũmH,k,Θ
m
i

˘

@q P Q. (67)

We may then solve the flow problem: find
´

um`1
H,k , p

m`1
h,k

¯

P V ˆQ such that

AF

´

um`1
H,k ,v

¯

`BF

´

v, pm`1
H,k

¯

“ 0 @v P V ,

BF

´

um`1
H,k , q

¯

“ LF
`

q;θmH,k
˘

@q P Q.

,

.

-

(68)

Algorithm 3.1 sets out the solution procedure for the numerical approximation

of the macroscale system.

4. Numerical Experiments

In this section we present a series of representative numerical examples to

demonstrate the implementation of the discretizations described in section 3.

20



Algorithm 3.1 Solution Procedure

1: Compute c0H,k, n0
H,k, and θ0

H,k

2: Compute
´

u0
H,k, p

0
H,k

¯

3: for m “ 0,M ´ 1 do

4: Compute cm`1
H,k , nm`1

H,k , and θm`1
H,k

5: Compute
´

um`1
H,k , p

m`1
H,k

¯

6: end for

The computations presented in the section have been undertaken using the

AptoFEM package [7] with the MUMPS linear solver [5, 6]. We also note

that all unstructured meshes presented in this section were generated using the

Triangle mesh generator [40].

Remark 2. While MUMPS works well for the two-dimensional computations

presented here, as well as the three-dimensional computations employed in the

parameterisation of the macroscale examples, we remark that this will typically

not be the case for microscale flow problems solved in complex pore structures.

As such, it is likely that the use of a suitably preconditioned iterative method

will be required (though the provision of such methods are beyond the scope of

this work).

4.1. Microscale

In order to verify the implementation of the discretization presented in sec-

tion 3.1 we present two numerical experiments that demonstrate the conver-

gence of the FE approximation. In Example 1 we consider a problem that

has a known analytical solution, so that we may study the rate of conver-

gence of the FE approximation with respect to the granularity of the mesh,

for a range of polynomial degrees. In Example 2, we consider a more com-

plicated domain for which an analytical solution is not available. In [18], we

consider three-dimensional domains in order to obtain solutions that result in

non-zero spatially-averaged permeabilities in both subdomains. Here, however,

we consider two-dimensional problems so that we are able to make quantitative
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statements regarding the analytical solution and demonstrate convergence of

quantities used in the parameterization of the macroscale system.

Example 1

Instead of the periodic boundary conditions described in section 2.2, we

consider a problem with a Dirichlet boundary condition on some portion of the

boundary ΓD, a Neumann condition on ΓN “ BΩ`zΓD, and remove the require-

ment that φ is mean-free. As such, we adapt the discretization described in sec-

tion 3.1 to incorporate appropriate terms for the imposition of these boundary

conditions, thus obtaining the finite element problem: find pΦh,k, φh,kq P V ˆQ

such that

a pΦh,k,Ψq ` b pΨ, φh,kq “ f̂pΨq @Ψ P V ,

b pΦh,k, ψq “ ĝpψq @ψ P Q,

cΓpΨ,Φh,k, φh,kq “ 0 @Ψ P V ,

,

/

/

/

.

/

/

/

-

(69)

where a, b, and cΓ are as defined in (38)–(40), and the linear functionals f̂ and

ĝ are given by

f̂pΨq “ pf ,Ψq
pL2pΩ`qq

d `

ÿ

FPEpThq

¨

˝

ż

FXΓD

p´µDxpΨq : gD b nκ ` µϑ1gD ¨Ψq dS `

ż

FXΓN

gN ¨Ψ ds

˛

‚, (70)

and

ĝpψq “
ÿ

FPEpThq

ż

FXΓN

ψ pgD ¨ nκq ds, (71)

where gD and gN denote the Dirichlet and Neumann data, respectively. We

proceed by defining the geometry as Ω1 “ p0, 0.5qˆ p0, 1q, Ω2 “ p0.5, 1qˆ p0, 1q,

Ω` “ Ω1 Y Ω2, and ΓN “ p0, 1q ˆ t1u. We further specify that the boundary

and forcing data are given such that

Φ “

¨

˝

0

sin pπx1q

˛

‚ and φ “ 1´ x2, (72)
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Figure 3: A representative mesh, Th.

i.e.

f “

¨

˝

0

1` π2 sin pπx1q

˛

‚ and gN “

¨

˝

π cos pπx1q

1´ x2

˛

‚. (73)

Figure 4 shows a representative FE solution for the microscale system obtained

by employing the mesh shown in Figure 3. Figure 5 demonstrates rates of con-

vergence of the numerical approximation with respect to the mesh granularity

and polynomial degree for a selection of norms. For the smooth analytical solu-

tion considered in this example, we observe optimal rates of convergence of Φh,k

and φh,k in the appropriate L2pΩ`q norm, as shown in Figures 5(a) and 5(b),

respectively. Similarly, in Figures 5(c) and 5(d) we observe at least O
`

hk`2
˘

convergence for the slip and penetration interface conditions, given by (8), in

the L2pΓq norm.

Example 2

In this example we now impose periodic boundary conditions as described

in section 2.2, the mean-free constraint (33), and solve the FE problem as pre-

scribed in (37) for forcing data

f “

¨

˝

0

1

˛

‚. (74)
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(a) pΦh,kq1. (b) pΦh,kq2.

(c) φh,k.

Figure 4: The FE approximation pΦh,k, φh,kq for Example 1, obtained employing the

mesh shown in Figure 3 with polynomial degree k “ p2, 2, 1q.
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Figure 5: Plots demonstrating the rate of convergence of the FE approximation

pΦh,k, φh,kq in Example 1 for a selection of norms.
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Figure 6: A schematic diagram showing the subdomains Ω1 and Ω2 employed in Ex-

ample 2.

The geometry considered in the example is defined as Ω` “ p0, 1q2, Ω2 “

p0.4, 0.6q ˆ p0, 1q Y p0, 1q ˆ p0.4, 0.6q, and Ω1 “ Ω`zΩ2, as shown in Figure 6.

Figure 7 shows representative FE approximations for this example obtained by

employing a structured triangular mesh with 161 ˆ 161 nodes and polynomial

degree k “ p2, 2, 1q. In Figures 7(a) and 7(c) we observe complex features of the

solution in the region surrounding the points p0.4, 0.4q, p0.4, 0.6q, p0.6, 0.4q, and

p0.6, 0.6q corresponding to the internal corners of Ω2. These features indicate

that there may be a lack of regularity in the underlying continuous solution

and, as such, we would not expect to observe the same rates of convergence as

attained in Example 1, for which the interface Γ was smooth.

For the data employed in this example we do not know an analytical solu-

tion, a priori ; however, given the interface conditions and periodic boundary

conditions we expect that the continuous solution Φ would satisfy

xpΦq1y1 “ 0, xpΦq1y2 “ 0, xpΦq2y1 “ 0, and xpΦq2y2 ‰ 0. (75)

As such, we may investigate the convergence of these quantities numerically.

Figure 8 demonstrates the rates of convergence obtained for selected properties

of the numerical approximation with respect to the mesh granularity, for a

range of polynomial degrees. In Figures 8(a), 8(c), and 8(d) we observe greatly
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reduced rates of convergence compared with those observed in Figure 5 for

Example 1. We suggest that a probable cause for this is an underlying lack

of regularity in the continuous solution and note that if this is the case, other

(non-adaptive) methods would suffer similarly from low rates of convergence.

Potentially, application of an hp-adaptive method could overcome these issues.

Moreover, an analysis of the regularity of the underlying continuous solution

would provide further understanding; however, this is beyond the scope of the

current work. Figure 8(b) demonstrates the convergence of xpΦq2y2 to some

non-zero quantity at a similar rate, as expected.

4.2. Macroscale

In this section we present a representative numerical example of the

macroscale model based on the underlying tumour model presented in [18,

§5.1]. Prior to this, we note that in order to verify the implementation of

the macroscale model discretization presented in sections 3.2.1 and 3.2.2 we

confirmed the following for synthetic boundary and forcing data.

• Optimal rates of convergence to a known solution are attained with respect

to mesh granularity and polynomial degree for the flow equations.

• Optimal rates of convergence to a known solution are attained for a sta-

tionary problem with both zero and non-zero reaction terms.

• A front is propagated by the transport equations through the domain with

the correct speed (to within some given tolerance).

• For the evolution of the cell volume fractions, their sum remains one (to

within some given tolerance) at all time points.

4.2.1. Parameterization via Solution of Microscale Problem

We consider now the microscale problem employed in the parameterization

of the macroscale numerical experiments presented in section 4.2. In order for us

to obtain meaningful average permeabilities in both subdomains, it is insufficient

to consider two-dimensional geometries. As such, in the companion article [18],
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(a) pΦh,kq1. (b) pΦh,kq2.

(c) φh,k.

Figure 7: The FE approximation pΦh,k, φh,kq for Example 2, obtained by employing a

structured triangular mesh of 161ˆ 161 nodes with polynomial degree k “ p2, 2, 1q.
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Figure 8: Plots demonstrating the convergence of a selection of quantities obtained

from the FE approximation of pΦ, φq for Example 2.
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we consider a three-dimensional geometry and restrict the resulting permeability

for employment within two-dimensional macroscale problems. Correspondingly,

we define Ω` “ p0, 1q3, and further define A1 “ p0.4, 0.6q ˆ p0.4, 0.6q ˆ p0, 1q,

A2 “ p0.4, 0.6q ˆ p0, 1q ˆ p0.4, 0.6q, and A3 “ p0, 1q ˆ p0.4, 0.6q ˆ p0.4, 0.6q.

We subsequently define Ω2 “
Ť3
i“1Ai and Ω1 “ Ω`zsΩ2. We then compute

an approximate permeability Kh,k, employing the discretization described in

section 3.1, and then restrict the resulting averaged permeability tensor to two

dimensions, yielding

xKy1 “

¨

˝

2.69ˆ 10-2 2.21ˆ 10-9

´2.21ˆ 10-9 2.69ˆ 10-2

˛

‚ (76)

and

xKy2 “

¨

˝

4.97ˆ 10-5 3.75ˆ 10-14

´3.75ˆ 10-14 4.97ˆ 10-5

˛

‚. (77)

Given the relatively small size of the off-diagonal entries we consider these as

zero in the parameterization of the macroscale model. Further details regarding

this computation may be found in [18]; however, as these details are not of direct

relevance to this study we do not discuss them further here.

4.2.2. Computational Results

In this section we present a representative numerical example of the

macroscale model, based on the model described in [18, §5.1], and obtained

employing the discretization described in section 3.2. A description of the reac-

tion terms Rθ,i, Rc, and Rn, the source terms gθ,i and the forcing term f may

be found in appendix A, together with the values of model parameters employed

in the computations presented here, though we refer the reader to the reference

for a full discussion regarding the biological motivation for terms of this form.

We consider three phases in the mixture corresponding to normal cells, tu-

mour cells, and extra-cellular matrix (ECM), denoted by i “ 1, 2, 3, respec-

tively. We define the macroscale geometry employed in the simulations as

ΩL “
 

X : X2
1 `X

2
2 ď 0.52

(

. This is discretized into a shape-regular conform-

ing triangulation, Th, shown in Figure 9. Note that there is a discrepancy be-
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tween the triangulation and the true domain, but we assume this is sufficiently

small to have no qualitative effect on the results, and minimal quantitative

effect.

Figure 9: The triangulation, Th, employed in the macroscale flow and transport com-

putations.

We specify the boundary conditions as

p “ 0 @X P BΩL, (78)

θ1 “ Θ @X P Λ- pũq , (79)

θ2 “ 0 @X P Λ- pũq , (80)

θ3 “ 1´Θ @X P Λ- pũq , (81)

c “ cBptq @X P Λ- puq , (82)

n “ 1 @X P Λ- puq , (83)

where Θ denotes the volume fraction of healthy cells in the tissue surrounding

the tumour which we set to 0.75, and cBptq is a time-varying concentration

corresponding to multiple rounds of treatment defined by

cBptq “ 2
`

exp
`

´2pt´ 4q2
˘

` exp
`

´2pt´ 8q2
˘˘

. (84)

We further specify the initial conditions for the volume fractions of the mixture
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components as

θ1pX, 0q “ Θ´ θ2pX, 0q,

θ2pX, 0q “ Θ
´

exp
´

-bXTX
¯

´ exp
`

-ba2
˘

¯

,

θ3pX, 0q “ 1´Θ,

,

/

/

/

.

/

/

/

-

(85)

for X P
 

pX1, X2q : X2
1 `X

2
2 ď a2

(

, and

θ1pX, 0q “ Θ,

θ2pX, 0q “ 0,

θ3pX, 0q “ 1´Θ,

,

/

/

/

.

/

/

/

-

, (86)

otherwise, where a “ 0.45 and b “ 20, and the initial condition for drug and

nutrient concentrations are given by

cpX, 0q “ 0 and npX, 0q “ 1. (87)

We specify the rate of phase change on the surface Γ to be given by

G “ k3
Gpθ3 ´ θEq ` k

2
GHpθ2 ´ θthqpθ2 ´ θthq, (88)

where Hp¨q denotes the Heaviside function. The constitutive form of G is an ex-

tension of that presented in [18]. The first term represents the process described

in the reference, and the second is included as a means of incorporating crowd-

ing effects. Finally, we specify the time-step size ∆t “ 0.0002 and polynomial

degree k “ 0 are used for the transport equations throughout the proceeding

computational results. Table 1 contains the values employed in the computation

of the numerical results.

Figures 10 and 11 show the volume fraction of each of the components of

the mixture, and the concentration of drug and nutrient, respectively, for a

range of times up to t “ 14. In Figure 10(a) and 10(b), we observe an initial

growth of the tumour, which results in a reduction of healthy tissue and ECM.

Further, in 11(b) we observe increased consumption of nutrient in the region

with high volume fraction of tumour cells compared to the remainder of the

domain. In Figures 10(c)–10(e) we observe cell death resulting from the trans-

port of drug through the domain, as observed in Figures 11(a), 11(c), 11(e),
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and 11(g). Throughout Figure 11, we observe increase (decrease) in drug and

nutrient concentration in the regions of the subdomain in which compression

(rarefaction) occurs as a result of volume changes, associated cell growth and

death, and phase transition on the interface Γ. We remark further that these

results are qualitatively consistent with the numerical results presented in [18]

and other studies of tumour growth (e.g. [24]).

5. Conclusions

In this article we have set out discretizations for the two-scale model of avas-

cular tumour growth and response, and solute transport obtained via multiscale

analysis presented in our companion article [18]. The dG FE discretization we

propose for the microscale tensor Stokes problem incorporates a non-standard

coupling across the interface between the multicomponent mixture and the in-

terstitial fluid. We have been able to demonstrate optimal rates of convergence

for sufficiently smooth data. For the macroscale problem, we describe a cou-

pled dG/RT FE discretization for the flow, and dG FE for the solute transport

and phase volume fractions, discretized in time employing an explicit Euler

method. We have then provided representative numerical experiments in order

to demonstrate that these methods can be applied successfully to models of drug

transport and tumour response. We note, however, that these techniques should

be equally successful in other application domains which require the coupling

of flows across a singular interface.

There are several natural extensions to the work in this article. It is im-

portant to consider the convergence of the dG FE method proposed in section

3.1. However, this analysis will undoubtedly raise questions regarding the well-

posedness of the underlying PDE problem, as well as the need for estimates

of the regularity of the continuous solution. Finally, we highlight that if it is

possible to remove the strong drag assumption in [18], then the methods pre-

sented here will need to be supplemented in order to approximate solutions of

the resulting microscale system of parametric PDEs, that will likely be posed
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in 3`Nθ dimensions.
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A. Tumour Growth Model

In this appendix we describe the form of the reaction, forcing, and source

terms in the macroscale model introduced in section 2.3 and present a table con-

taining the parameter values employed in the macroscale numerical experiments

of section 4.2. Here, we forgo extensive discussion regarding the biological mo-

tivation for the form of these terms, and refer the reader to [18, 27]. We recall

from section 4.2 that we consider three phases in the mixture, and proceed by

first defining the reaction terms Rθ,i, and source terms gθ,i, associated with the

volume fractions of the components of the mixture introduced in (15), by

Rθ,1 “ ´
ρ1,3

ρ1,1
km,1θ3

ˆ

n

nP ` n

˙

` kd,1

ˆ

n1 ` n

n2 ` n

˙

` kc,1

ˆ

c

cP ` c

˙

` S,

gθ,1 “ 0,

Rθ,2 “ ´
ρ1,3

ρ1,2
km,2θ3

ˆ

n

nP ` n

˙

` kd,2

ˆ

n1 ` n

n2 ` n

˙

` kc,2

ˆ

c

cP ` c

˙

` S,

gθ,2 “ 0,

Rθ,3 “ pkm,1θ1 ` km,2θ2q

ˆ

n

nP ` n

˙

` S,

gθ,3 “

ˆ

ρ1,1

ρ1,3
kd,1θ1 `

ρ1,2

ρ1,3
kd,2θ2

˙ˆ

n1 ` n

n2 ` n

˙

`

ˆ

ρ1,1

ρ1,3
kc,1θ1 `

ρ1,2

ρ1,3
kc,2θ2

˙ˆ

c

cP ` c

˙

,

where S is defined as

S “

ˆˆ

ρ1,3

ρ1,1
´ 1

˙

km,1θ1 `

ˆ

ρ1,3

ρ1,2
´ 1

˙

km,2θ2

˙

θ3

ˆ

n

nP ` n

˙

`

ˆˆ

ρ1,1

ρ1,3
´ 1

˙

kd,1θ1 `

ˆ

ρ1,2

ρ1,3
´ 1

˙

kd,2θ2

˙ˆ

n1 ` n

n2 ` n

˙

`

ˆˆ

ρ1,1

ρ1,3
´ 1

˙

kc,1θ1 `

ˆ

ρ1,2

ρ1,3
´ 1

˙

kc,2θ2

˙ˆ

c

cP ` c

˙

.
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The forcing term introduced in the definition of the flow system (13) is given by

f “ G ` S,

where, for a specified interfacial phase transition G rate, G denotes

G “
ˆ

1

ρ1
´ 1

˙

xGyΓ .

Finally, the reaction terms for the drug and nutrient introduced in (19) and

(22), respectively, are given by

Rc “ φγ1,c ` ξc ` G ` S

and

Rn “ φγ1,c ` G ` S,

where

γ̂1,cpθ1 ` θ2q

and

γ1,n “ kγ,1θ1 ` kγ,2θ2 `
`

kmγ,1θ1 ` k
m
γ,2θ2

˘

θ3

ˆ

n

nP ` 1

˙

.

Table 1 contains the values employed in the computation of the numerical re-

sults presented in section 4.2, as well as a short description as to the biological

interpretation of each parameter. Though, as discussed previously, we refer the

reader to [18] and the references therein, for a full discussion surrounding the

biological interpretation of the parameters.
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(a) t “ 0.

(b) t “ 5.

(c) t “ 8.

(d) t “ 11.

(e) t “ 14.

Figure 10: Numerical approximation of the normal cell (θ1), tumour cell (θ2), and ECM

(θ3) volume fractions obtained at t “ 0, 5, 8, 11, and 14.
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(a) t “ 5. (b) t “ 5.

(c) t “ 8. (d) t “ 8.

(e) t “ 11. (f) t “ 11.

(g) t “ 14. (h) t “ 14.

Figure 11: Numerical approximation of the drug (c) and nutrient (n) concentrations

obtained at t “ 5, 8, 11, and 14.
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