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Dispersion polymerisation is a well-established method of producing polymer particles that 

are easily handled and processed. With careful choice of reaction conditions this technique 

can yield well defined, spherical particles for a wide range of applications. The use of 

supercritical carbon dioxide (scCO2) as a reaction medium offers a route to performing these 

syntheses without excessive use of volatile organic solvents and minimises work-up and 

disposal steps. However a significant drawback has been the fact that up till now the control 

of  particle size and morphology from CO2 have been limited. 

Here we present control of particle size and morphology over an unprecedented range for a 

single stabiliser in scCO2 by coordinating a few simple parameters to tailor the conditions 

towards different sizes. Further, we introduce the novel approach in scCO2 of using delayed 

monomer addition which allows considerable reduction of the batch-to-batch variability as 

well as reduced agglomeration between particles. 



1. Introduction 

 

Dispersion polymerisation is a method of synthesising spherical particles in the region of 0.1 

to 10 µm in diameter. Applications for such particles include fillers in paints, printer toners, 

chromatography column packing and spacers in liquid crystal display screens.[1, 2] Renewed 

interest in the field of dispersion polymerisation has been triggered by potential applications 

such as in electrophoretic displays.[3-6] Unfortunately, dispersion polymerisation necessitates 

the use of large quantities of solvents which are typically volatile organic compounds 

(VOCs).[7-13] For many applications this solvent must be removed post-synthesis or 

transported, both of which represent a substantial energy cost. 

An attractive alternative to conventional solvents is to use supercritical carbon dioxide 

(scCO2) which is obtained above 73.8 bar and 31 °C. ScCO2 is a good solvent for most 

common vinyl monomers and a non-solvent for their polymers making it an ideal medium for 

dispersion polymerisation. However, the field has been limited to amorphous fluoropolymers 

or silicone based polymers which have been found to be sufficiently soluble in scCO2 to 

function as stabilisers.[14-26] Regardless, various controlled radical polymerisation techniques 

have been successfully applied including reversible addition/fragmentation chain transfer 

(RAFT), atom transfer radical polymerisation (ATRP) and nitroxide mediated polymerisation 

(NMP).[27-33] Very recent examples have demonstrated the possibility of creating particles for 

potential drug delivery applications and even unique control of internal particle morphologies 

in block copolymer samples.[34-38] There are ongoing efforts to synthesise hydrocarbon based 

stabilisers, in particular using copolymers of  poly(vinyl acetate) and poly(vinyl pivalate), but 

these have so far only shown success for a limited range of polymerisation systems and have 

not yet been applied successfully for PMMA.[39, 40] 



One of the underlying limitations seen in dispersion polymerisation in scCO2 is the reduced 

range of control over particle sizes. For PMMA, particles between 0.3 and 6 µm have been 

synthesised using a wide range of different stabilisers.[14-26] However, the range achieved for 

any individual stabiliser has so far proved to be much narrower, typically within a factor of 

three. In addition, the smallest PMMA particles (ca. ~500 nm)  could only be synthesised in 

scCO2 using fluoropolymer based stabilisers which are both expensive and considered 

environmentally undesirable.[18] By contrast in conventional solvents, Antl et al. 

demonstrated that particles between 0.173 - 2.6 µm could be synthesised using a single 

poly(12-hydroxystearic acid) based stabiliser in a mixed alkane solvent by varying the initial 

monomer concentration between 35 - 50 % v/v.[12]  

In this work we set out to show that greater control is possible in scCO2 by varying a few 

simple parameters to create an unprecedented range of particle sizes using a single stabiliser. 

For these studies we chose to use methacrylate terminated poly(dimethyl siloxane) 

PDMS-MA as a stabiliser (Error! Reference source not found.).  This is the most commonly 

used stabiliser for dispersion polymerisation in scCO2 largely because it is commercially 

available and non-fluorinated.[21, 22]  Further, we present the use of delayed monomer addition 

to gain further control over the size and reproducibility of the particles produced from scCO2. 

 

2. Experimental 

 

2.1. Materials 

 

Methyl methacrylate (99 %) was obtained from Acros Organics. 2,2’-Azobis(butyronitrile) 

AIBN, and SPAN-85 were purchased from Sigma-Aldrich. Methacrylate terminated 



poly(dimethyl siloxane) (PDMS-MA) (Mn ~10 KDa) was purchased from ABCR GmbH & 

Co. Dodecane (99+ %) was purchased from Alfa. SFC grade 4.0 CO2 (≥99.99 %) was 

purchased from BOC Special Gases. 

 

2.2. Synthesis 

 

2.2.1. One-stage Dispersion Polymerisation 

 

For the initial studies concerning monomer and stabiliser concentration effects, a simple one-

step polymerisation was adopted, using 1 wt.% AIBN with respect to monomer for all 

reactions. In a typical reaction MMA (10 mL, 93.5 mmol) and an AIBN/PDMS-MA (0.094 g, 

0.57 mmol AIBN and 0.468 g, 0.05 mmol PDMS-MA for 5 wt. %) mixture were flushed with 

argon separately to remove oxygen for 30 minutes. These were then mixed and added directly 

to the autoclave via syringe against a positive pressure of CO2 to prevent the ingress of air. 

The autoclave was then sealed and pressurised to 5.5 MPa before heating to 65 °C. The onset 

of the reaction was taken as the moment at which this temperature was reached. The pressure 

was then increased to 20.7 MPa and the vessel heated for 4 hours before being allowed to 

cool naturally to <25 °C, vented and emptied. In this and all high pressure reactions the yield 

was obtained gravimetrically, typically ~90 % or higher. 

 

2.2.2. Two-Stage Dispersion Polymerisation 

 

In a typical reaction MMA (5 mL, 46.7 mmol) and an AIBN/PDMS-MA (0.0468 g, 0.29 

mmol AIBN and 1.404 g, 0.14 mmol PDMS-MA for 5 wt. %) mixture were flushed with 

argon separately to remove oxygen for 30 minutes. These were then mixed and added directly 

to the autoclave via syringe against a positive pressure of CO2 to prevent the ingress of air. 



The autoclave was then sealed and pressurised to 5.5 MPa before heating to 65 °C. The onset 

of the reaction was taken as the moment at which this temperature was reached. The pressure 

was then increased to 20.7 MPa. After 1 hour a further charge of MMA (2.5 mL, 23.4 mmol) 

was injected into the autoclave via HPLC pump at a rate of 0.2 mL min-1. This would cause a 

pressure increase of c.a. 0.7 MPa. The vessel was heated for a further 4 hours from the start 

of this injection before being allowed to cool naturally to <25 °C before venting to ambient 

pressure and removing the product. 

 

2.3. Characterisation 

 

Scanning electron microscopy (SEM) was carried out on a Philips XL30 microscope. All 

samples were washed three times by centrifuge in dodecane to remove residual stabiliser 

before being dropped onto a glass slide, dried and coated with platinum. Particle sizes 

reported from SEM are the number average (mean) of 100 particles as described by Richez et 

al.[4] 

Proton nuclear magnetic resonance (1H NMR) was undertaken using a Bruker DPX 300 MHz 

NMR spectrometer. All samples were dissolved in CDCl3. 

Gel permeation chromatography (GPC) was performed in THF (HPLC grade) at room 

temperature using two Agilent PL-gel mixed-D columns in series with a flow rate of 1 mL 

min-1. Detection was facilitated by multi angle light scattering (MALS) detector coupled with 

a refractometer. All samples were washed with hexane prior to analysis to remove residual 

PDMS-MA. 

Dynamic light scattering (DLS) was carried out with a Malvern Zetasizer. Before analysis 

each sample was washed by centrifuge in dodecane three times. From this a 5 wt. % solids 



dispersion in dodecane was made with 3 wt. % span-85 as a dispersing agent. This mixture 

was then homogenised using a Silverson L5M rotor stator. 

3. Results and Discussion 

The size range of PMMA polymer particles that have been reported in scCO2 (0.3 to 6 µm) is 

much more limited than in conventional solvents. Additionally,  the largest particles are 

reportedly  prone to agglomeration and the smallest show poor control and broad size 

distributions.[18] Furthermore, this range has only been achieved using very different 

stabilisers, no single stabilisers has been used to deliver more than a small portion of this 

range. Here we aim to show that it is possible to significantly extend range of particle sizes 

produced by free radical dispersion polymerisation of MMA using a given stabiliser, in this 

case PDMS-MA (10 KDa) (Figure 1), by optimising the reaction conditions to target the 

maximum range of different sizes. 

 

Figure 1: Structure of methacrylate terminated poly(dimethyl siloxane) (PDMS-MA). 

 

3.1. The Effect of PDMS-MA Concentration 

 

The concentration of stabiliser used in dispersion polymerisations has been shown to have a 

direct influence on the final particle diameter.[23, 25, 41] Increasing the concentration allows a 

greater surface area of the polymer phase to be stabilised which results in a larger number of 

smaller particles. Stabiliser concentration was varied between 1 and 20 wt. %. Each reaction 

was carried out in triplicate to determine the reproducibility of this technique and average 

results are shown below (Table 1). 



 

 

 

Table 1. The results of dispersion polymerisations with varying amounts of PDMS-MA 

stabiliser.  

PDMS-MA 

(wt. %) 

Yielda (%) dn
b (nm) PSDb Mn

c 

(kg mol-1) 

Ðc 

0 22 - - 26 2.6 

1 75 ± 9 3807 ± 1636 1.25 ± 0.08 124 ± 11 1.7 ± 0.4 

5 91 ± 1.5 1809 ± 100 1.13 ± 0.06 150 ± 16 1.9 ± 0.1 

10 90 ± 6 843 ± 276 1.13 ± 0.03 199 ± 14 1.7 ± 0.25 

20 95 ± 3 574 ± 81 1.13 ± 0.07 218 ± 20 1.6 ± 0.15 

All reactions were carried out using 10 mL of MMA and 1 wt. % AIBN at 20.7 MPa and 

65 °C. Values presented are the mean of three results. a)Obtained gravimetrically. b)From 

SEM. c)From GPC. 

There is a clear trend showing that particle size falls from 3.8 to 0.6 µm as stabiliser 

concentration is increased from 1 to 20 wt. % (Table 1, Entries 2 – 5). This is in agreement 

with previous work by DeSimone who showed a very similar trend using the same 

PDMS-MA for dispersion polymerisation of MMA in scCO2.
[21] Successful dispersion 

polymerisation was confirmed by SEM (Figure 2). 

The micrograph for particles synthesised using 1 wt. % PDMS-MA shows a bimodal 

distribution which is indicative of insufficient stabiliser (Figure 2a).[42] This leads to 

aggregation towards the end of the particle growth stage which hugely reduces the total 

surface area of the polymer phase. This releases enough stabiliser to allow for a second crop 

by nucleation of new particles. This poor control is also exhibited by the broad range of 

particle sizes resulting from these reactions (± 1636 nm). 



As a control experiment, a further reaction was performed in the absence of any PDMS-MA. 

In this reaction particles were not obtained and only a low yield of low molecular weight 

PMMA was obtained (22 % yield, Mn = 26 KDa, Ð = 2.6) showing that a successful 

dispersion was not established during the polymerisation (Table 1, Entry 1). However, just 

1 wt. % stabiliser was sufficient to increase both the yield and molecular weight of the 

polymer formed significantly (75 % yield, Mn = 124 KDa, Ð = 1.7) which demonstrates the 

role of PDMS-MA as a stabiliser for dispersion polymerisation (Table 1, Entry 2). 

With further increases in PDMS-MA loading in the reaction, yield and molecular weight 

continue to rise which is unusual for dispersion polymerisation where the reaction kinetics 

are typically independent of stabiliser concentration.[43] This trend has been observed before 

a b 

d c 

Figure 2. SEM images showing PMMA particles synthesised with a) 1 wt%, b) 5 wt%, c) 10 

wt% and d) 20 wt% PDMS-MA stabiliser. The number average diameters are 3966, 1815, 1047 

and 508 nm respectively. 



for this same stabiliser in scCO2.
[22] Ordinarily, dispersion conditions are analogous to bulk 

polymerisation where viscosity of the polymer phase is high enough that diffusion of radicals 

through the polymer phase is limited and so the rate of termination is reduced. However, in 

scCO2 the polymer phase is significantly plasticised which allows enhanced diffusion of 

radicals.[44] In this case, if all the radicals in the reactor are divided into a greater number of 

particles, then the number of radicals in each particle will be lower, thereby reducing the 

chance of two radicals terminating one another. Thus, a larger number of smaller particles 

will lead to higher yields and molecular weights. This effect is well known as 

compartmentalisation in conventional emulsion polymerisation where the particles are 

typically much smaller.[45] Compartmentalisation is not usually observed for the large 

particles produced by dispersion polymerisation showing that the use of scCO2 has an 

important effect on the kinetics of the polymerisation. 

Incorporation of the PDMS-MA macromonomer into the PMMA was investigated by 

1H NMR where it was found that for all stabiliser concentrations less than 15 % of the initial 

PDMS-MA remained in the samples after washing in dodecane. That the majority of the 

PDMS-MA is not incorporated into the final product has previously been reported by both the 

DeSimone and Howdle groups.[21, 22] At low initial stabiliser loadings (1 wt.%) as much as 40 

% of the PDMS-MA remained after washing. 

Here we have demonstrated that significant particle size control of almost an order of 

magnitude can be achieved by varying stabiliser loading between 1 and 20 wt. % (3807 – 

574 nm). However, a plot of diameter against stabiliser loading shows how the trend plateaus 

indicating that further increase to stabiliser loading is unlikely to result in smaller particles 

(Figure 3). We have also seen that at 1 wt. % of stabiliser the control of the dispersion is 

poor and so further reducing the stabiliser content is unlikely to be meaningful. Thus it is 



clear that further control of particle size is not possible through varying stabiliser amounts 

alone. 

 

Figure 3. Variation of PMMA particle diameter with stabiliser loading. There is a clear 

decrease in particle size with increased stabiliser loading. 

 

3.2. The Effect of Initial MMA Concentration 

 

An alternative methodology for manipulating the size of polymer particles is to vary the 

initial concentration of monomer present which strongly affects the solvency of the 

continuous phase. The extent to which this approach can be applied to our system was 

investigated by charging a 60 mL autoclave with 5, 7.5, 10 and 12.5 mL of MMA. In all 

reactions stabiliser and initiator were kept constant at 5 wt. % PDMS-MA and 1 wt. % AIBN 

relative to monomer. All reactions were carried out in triplicate to demonstrate the 

reproducibility of the technique and average results are presented below (Table 2). 
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Table 2. The results of dispersions polymerisations with varying amounts of MMA. 

MMA (mL) Yielda (%) dn
b (nm) PSDb Mn

c 

(kg mol-1) 

Ðc 

5 45 ± 10 - - 23 ± 5 2.7 ± 0.2 

7.5 76 ± 10 1275 ± 228 1.15 ± 0.05 161 ± 11 1.5 ± 0.1 

10 91 ± 1.5 1809 ± 100 1.13 ± 0.06 150 ± 16 1.9 ± 0.1 

12.5 86 ± 4 - - 166 ± 44 1.6 ± 0.1 

All reactions were preformed using 5 wt% PDMS-MA relative to MMA and 1 wt% AIBN at 

20.7 MPa and 65 °C. Values presented are the mean of three results. a)Obtained 

gravimetrically. b)From SEM. c)From GPC. 

The results show a narrow range of conditions in which successful dispersion polymerisation 

occurs. Only reactions carried out with 7.5 mL (12.5 % v/v) and 10 mL (17 % v/v) MMA 

gave good quality, spherical particles (Table 2, Entries 2 and 3). With 7.5 mL MMA, a clear 

decrease in particle diameter is observed relative to 10 mL MMA (1275 ± 228 against 1809 ± 

100 nm) which is in agreement with previous work.[13] This is a consequence of the monomer 

working as a cosolvent for the polymer in the reaction medium. Higher monomer 

concentrations allow longer polymer chains to remain soluble, resulting in fewer particle 

nuclei and correspondingly larger particles.[6] 

At lower concentrations (5 mL MMA, 8.3 % v/v) only low yields and highly disperse, low 

molecular weight polymer is obtained and no particles were observed (Table 2, Entry 1). We 

attribute this to over dilution of the monomer leading to slow reaction kinetics. Even after 48 

hours only 75 % yield could be obtained although no distinct particles were present in the 

product despite 4 hours being sufficient to obtain good particles when more monomer is used. 

The half-life of AIBN was calculated to be 24.6 hours in scCO2 at 65 °C and 207 bar using 

parameters presented by Guan et al.[46] 

 



The synthesis of polymer particles was also largely unsuccessful at high monomer loadings 

due to heavy agglomeration (Table 2, Entry 4). The resulting polymer appears in SEM 

images to be agglomerated particles indicating that the reaction proceeded through the 

dispersion mechanism before becoming unstable and coalescing (Figure 4a). It is possible 

that the high monomer content encourages too few particles to nucleate and so they grow 

very large. It has been shown for MMA in scCO2 that above a certain size particles are 

destabilised by eddy currents which are caused by reactor stirring.[47] This maximum size is 

determined by the reactor geometry as well as the stirrer shape and speed. In all three 

reactions a second crop of particles is seen (Figure 4b). These particles almost certainly form 

late in the reaction and therefore do not grow large enough to become unstable. These 

particles were approximately 1200 nm in diameter in all three reactions. 

These results show that it is indeed possible to influence the particle size significantly by 

varying the initial monomer concentration within certain limits. Although this offers a much 

smaller range of size control, it provides an important second tool for tailoring particle sizes 

for specific applications. 

 

a b 

Figure 4. SEM micrographs of PMMA synthesised from a high initial monomer loading (12.5 mL, 

20.8 % v/v) showing highly agglomerated nature of the polymer (left) and isolated regions of 

spherical particles (right). 



3.3. Combining Both Monomer and Stabiliser Concentrations 

 

The range of particle sizes accessible by this synthesis technique could be extended by 

combining both the methods of control discussed above. Further polymerisations were 

performed using high stabiliser content and low initial monomer content (20 wt% PDMS-MA 

and 7.5 mL of MMA). Four repeats of this reaction were conducted (Table 3). 

Table 3. Dispersion polymerisation on MMA in scCO2 targeting smaller particles. 

Yielda (%) dn
b (nm) PSDb Mn

c 

(kg mol-1) 

Ðc 

90 648 1.09 209 1.5 

96 379 1.11 193 1.6 

87 626 1.18 153 1.9 

87 317 1.10 170 1.6 

Four repeats are shown for reproducibility. a)Obtained gravimetrically. b)From SEM. c)From 

GPC. 

In all cases the reaction yielded relatively small, discrete, spherical polymer particles falling 

below 650 nm in diameter with acceptably low PSD values. However, repeat syntheses show 

that this method gives poor batch-to-batch reproducibility with average particle diameters 

falling anywhere between 317 and 648 nm. The smallest particles had a number average 

diameter of just 317 nm placing them amongst the smallest PMMA particles ever synthesised 

by dispersion polymerisation in scCO2 despite the use of a commercial stabiliser that has 

previously been shown to give only average particle sizes (Table 3, Entry 4). Particles in a 

similar size range were reported by Lepilleur et al. who synthesised a fluorinated graft 

copolymer stabiliser, yielding particles in a similarly small but broad size range (300 - 500 

nm).[18] This is the first time that the commercially available PDMS-MA stabiliser has been 

used to produce particles this small in scCO2 and extends the range of particles synthesised 

during this work to an order of magnitude. 

Dispersity varies significantly between batches, resulting in correspondingly varied Mn. 

These differences do not appear to correlate to particle size or yield although in all reactions 



the molecular weight remains high which is expected for free-radical dispersion 

polymerisation of MMA.  

 

3.4. Greater Control by Two-stage Dispersion Polymerisation 

 

In order to optimise conditions towards the smallest possible particles a new and innovative 

approach was developed. The smallest particles will be formed when using minimal initial 

monomer concentrations. However we have shown that monomer loading only operates 

within a very narrow window in scCO2 because over-dilution (less than 7.5 mL MMA) slows 

the reaction kinetics and prevents particles from becoming large enough to produce the gel 

effect (Table 2, Entry 1). In order to circumvent this limit we began the polymerisation with 

an exceptionally small amount of monomer (5 mL MMA) to allow ideal nucleation 

conditions and the creation of seed particles, before increasing the rate of polymerisation by 

adding a second aliquot of MMA (2.5 mL) via an HPLC pump.  

Initial results for this method showed agglomerated, large particles with a very broad size 

distribution (Figure 5a). This was attributed to the fast injection of the additional monomer 

leading to rapid changes in polymer solubility and inhomogeneous monomer concentrations 

Figure 5. PMMA particles synthesised using the two-stage method. The injection rate was 

reduced from a) 1 mL min-1 to b) 0.2 mL min-1 with a marked improvement to particle quality. 

a b 



in the continuous phase during the injection process. Reduction of the injection rate from 1 

mL min-1 to 0.2 mL min-1 allowed much more controlled addition of the second aliquot of 

monomer and yielded uniform, small particles in the desired size range (Figure 5b). 

Again, this reaction was carried out in triplicate and the results of each reaction are presented 

below in order to facilitate discussion of reproducibility (Table 4).  

Table 4. Results from two-stage dispersion polymerisation of MMA in scCO2 aimed at 

producing reproducibly smaller particles. 

Yielda (%) dn
b (nm) PSDb dz

c (nm) Mn
d 

(kg mol-1) 

Ðd 

99 432 1.07 526 193 1.5 

89 317 1.10 425 213 1.6 

87 363 1.11 520 214 1.5 
a)Obtained gravimetrically. b)From SEM. c)From DLS. d)From GPC. 

In all reactions a high yield and molecular weight (≥87 %, ~200 kg mol-1) indicates a 

successful dispersion polymerisation following the injection of additional monomer. Without 

this addition stage, reactions with such low initial monomer loadings were not successful 

(Table 2, Entry 1). Perhaps most importantly, the average particle diameters are all much 

more tightly grouped than had previously been obtained when targeting particles of this size. 

Since it is known that nucleation is completed very early on in a dispersion polymerisation 

(<0.1 % conversion) the addition of monomer after one hour did not interrupt this delicate 

stage of the reaction. It is interesting to note that these particles are in the same range as those 

obtained by using higher initial monomer loading (Table 3, Entry 2 and 4). This indicates 

that the conditions that we have chosen produce the maximum number of stable nuclei 

possible for this solvent/ stabiliser combination. But by allowing nucleation to occur under 

more ideal conditions, e.g. high stabiliser concentration and low monomer concentration, and 

then carefully adding more monomer we have overcome the lack of reproducibility that was 

apparent and we have successfully developed a simple and reproducible synthesis of particles 

smaller than 450 nm using a commercially available, non-fluorinated stabiliser. 



Another important outcome from this synthesis is that the particles were now of such good 

quality that it was now possible to obtain meaningful DLS measurements. Many of the 

powders produced using the one-stage process could not be analysed in this way which was 

attributed to a large number of agglomerates dominating the analysis. By contrast, these 

particles could be measured by DLS without the need for a filtration step, showing that the 

particles produced are discrete with far fewer aggregates. In all cases, the diameters obtained 

from DLS are larger than those measured from SEM images. This is expected because the 

diameter measured by DLS is the hydrodynamic volume which includes the PMMA particle 

plus the swollen stabiliser layer. In the vacuum of an SEM this outer layer is flattened to the 

particle surface making these particles appear smaller. This effect is potentially enhanced if 

the PMMA shows any swelling in the solvent chosen for DLS measurements, in this case 

dodecane. Secondly, DLS will not distinguish between particles and small aggregates, 

pushing the average particle size up. Despite the disparity between these two techniques, it is 

possible to conclude that the application of our new two-stage process in scCO2 has led to a 

very significant improvement in product quality and the fact that the resulting powders can be 

re-dispersed indicates a significant enhancement of the polymer synthesis. 

 

4. Conclusions 

 

The range of particle sizes synthesised by dispersion polymerisation in scCO2 for any given 

stabiliser has typically been very small, generally less than a factor of three, compared to 

those obtained in conventional solvents where well over an order of magnitude is sometimes 

achievable.[12] We have shown that it is indeed possible to synthesize particles over a 

comparable size range in scCO2 using a commercially available PDMS-MA stabiliser with 

particles ranging from 5.3 down to 0.3 µm in diameter. This was achieved by combining 

control of both the initial monomer and stabiliser loadings, demonstrating that this approach 



should be easily applicable to many other stabilisers. Furthermore, we used the addition of a 

second aliquot of monomer to reach high molecular weight and conversion using starting 

conditions which otherwise led to poor molecular weight and yield. This innovative step 

improved the batch-to-batch variability considerably as well as reducing the degree of 

aggregation in the system, which allowed particles to be redispersed and analysed by DLS.  
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