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Relaxation plays a crucial role in the spin dynamics of dynamic nuclear polarisation. We
review here two different strategies that have recently been used to incorporate relaxation in
models to predict the spin dynamics of solid effect dynamic nuclear polarisation. A detailed
explanation is provided how the Lindblad-Kossakowski form of the master equation can be
used to describe relaxation in a spin system. Fluctuations of the spin interactions with the
environment as a cause of relaxation are discussed and it is demonstrated how the relaxation
superoperator acting in Liouville space on the density operator can be derived in the Lindblad-
Kossakowski form by averaging out non-secular terms in an appropriate interaction frame.
Furthermore we provide a formalism for the derivation of the relaxation superoperator starting
with a choice of a basis set in Hilbert space. We show that the differences in the prediction
of the nuclear polarisation dynamics that are found for certain parameter choices arise from
the use of different interaction frames in the two different strategies. In addition we provide a
summary of different relaxation mechanism that need to be considered to obtain more realistic
spin dynamic simulations of solid effect dynamic nuclear polarisation.
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1. Introduction

Dynamic nuclear polariation (DNP) can be used to substantially enhance the nu-
clear spin polarisation. There is currently substantial interest in the use of DNP
by the magnetic resonance community since with the availability of robust hard-
ware this strategy may help to overcome the sensitivity limitations of a wide range
of applications including magic angle spinning NMR spectroscopy and magnetic
resonance imaging. Several DNP pathways in solid state have been described in
the literature. Depending on the number of electrons that interact with the same
nuclei and the line width of the electron resonance spectrum solid effect DNP,
cross effect DNP and DNP by thermal mixing have been distinguished. Solid effect
dynamic nuclear polarisation (SE DNP) relies on i) a spin systems with negligible
interactions between electrons so it is sufficient to consider only one electron inter-
acting with an ensemble of nuclear spins. Nuclear spins are coupled to the electron
through the hyperfine interaction and are also coupled through dipolar interaction
between each other. ii) The electron linewidth is smaller than the Zeeman splitting
of the nuclear spins.
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2. The master equation

Our objective is to calculate the dynamics of a model spin system consisting of
one electron spin S coupled by hyperfine interactions to nuclear spins Ik during a
constant irradiation with a microwave field. The general master equation for the
density operator σ, in the frame rotating with the mw irradiation frequency ω0, is
the Liouville von Neumann (LvN) equation

d

dt
σ = −iĤσ − Γ̂σ, (1)

where σth corresponds to the initial thermal equilibrium, Ĥ = [H, ·] is the Hamil-

tonian commutation superoperator and Γ̂ is a relaxation superoperator whose form
we need to specify later. We assume that the relaxation superoperator has been
appropriately thermalised in such way that it ensures relaxation of the system
back to the thermal equilibrium which is described by a density operator σth. The
Hamiltonian H of the spin system consists of the following terms:

H = HZ +HIS +Hd +HMW = H0 +HMW ,

where the first term represents the Zeeman interaction of the electron and the
nuclei with the external static magnetic field, the second term describes the hyper-
fine interaction between electron and nuclear spins and the third term represents
the dipolar interaction between the nuclear spins. The fourth term represents the
microwave irradiation applied orthogonally to the direction of the static magnetic
field. The stationary Hamiltonian H0 consists of only the interaction terms without
the term arising from the microwave irradiation. The Zeeman interaction is defined
by

HZ = ωSSz + ωI
∑
k

Ikz.

The hyperine interaction and the nuclear interaction can be written in terms of
tensor products:

HIS =
∑
k

Ik ·Dk · S, HII =
∑
k 6=j

Ik · dkj · Ij , .

After transferring the master equation into a frame rotating with frequency ω0 we
obtain

HZ = ∆SSz + ωI
∑
k

Ikz, ∆S = ωS − ω0 = ±ωI

The hyperfine interaction term of the Hamiltonian becomes

HIS =
∑
k

(
A0kSzIkz +

1

2

∑
k

Ak+SzIk+ +
1

2

∑
k

Ak−SzIk−

)
,
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and the dipolar interaction between nuclear spins can now be written in the trun-
cated form:

Hd =
∑
j<k

djk(3IjzIkz − Ij · Ik).

Note that H ′0 = HZ +HIS +HII is the truncated stationary Hamiltonian.
The irradiation of the spin system with microwaves close to the electron Larmor
frequency is given by

HMW =
ω1

2
(S+ + S−).

The appropriate Liouville space L for this quantum mechanical problem is
spanned by a basis using direct products of the single-spin unity operator, the
Zeeman operators Îkz, Ŝz and the rising and lowering operators Îk±, Ŝ±. The states
can be classified either according to their coherence order or the correlation order
of the basis operators For instance, the zero-quantum subspace L0 contains all op-
erators representating states with zero-quantum coherence irrespective of their spin
correlation order while the three spin order subspace L3 contains only operators
that represent states in which three spins are correlated.

The number of spins that can be included in a coupled network in a quantum
mechanical simulation of the solid effect are limited due to the exponential scaling
of the dimensions of the Liouville space with the seize of the spin ensemble. A care-
ful analysis of the participation of all states to the spin dynamics of the solid effect
shows that mainly states belonging to the zero quantum coherence subspace con-
tribute to it. All other states are only weakly populated. We have recently proposed
to calculate an effective Hamiltonian based on an averaging procedure published
by Krylov and Bogoliubov. The averaging procedure confines the dynamics of SE
DNP to the zero quantum coherence subspace. A prerequisite for this strategy is
the use of the Zeeman basis for the calculations.

A very important feature of DNP are relaxation processes that form the response
of the spin system to the perturbation caused by the microwave irradiation. In
combination, both the continuous irradation and the relaxation processes lead to
an establishment of a quasi equilibrium for the spin system in which the population
differences for the NMR transitions are enhanced in comparison to the thermal
equilibrium state.

To maximise the number of spins in a model for SE DNP we want i) to reduce the
required state space as much as possible while still obtaining a close approximation
of the spin dynamics and ii) avoid the use of any operator diagonalisation since the
required mathematical procedure impose a limitation of the quantum mechanical
dimensions and thus the number of spins that can be included.

In the following we describe our approach to include relaxation in a model for
SE DNP, keeping the above restrictions in mind. We discuss how our strategy
fits into the general formalism for the description of dissipative quantum systems.
Furthermore, we compare our approach to models proposed by others groups and
discuss the differences in the model predictions that arise from the assumptions
made in each of these models.
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3. Lindblad-Kossakowsi relaxation superoperator

If we use a specific form of the relaxation superoperator Γ the Liouville von Neuman
equation can be written in the so-called Lindblad-Kossakowski form

σ̇ = −iĤσ − Γ̂σ.

The commutation superoperator Ĥ represents again the Hamiltonian or coherent
part of the dynamics and the superoperator −Γ̂ describes the relaxation or deco-
herent part written as

−Γ̂σ =
N2−1∑
k,j=1

Ckj

[
MkσM

∗
j −

1

2

(
σM∗jMk +M∗jMkσ

)]
(2)

where {Mk}N
2−1

k=1 is an orthonormal set of traceless operators in the N -dimensional
Hilbert space and (Ckj) is a positive matrix of relaxation rates. The operators Mk

stand for the coupling to the environment of the spin ensemble whose statistical
properties are represented by the density operator σ. We refer to the term envi-
ronment to describe interactions to the lattice and to other spins which have an
effect on relaxation processes of the spin system under consideration. The Lindblad-
Kossakowski form guarantees that the master equation preserves the trace and the
positiveness of the density operator for any initial value.

Due to the positiveness of (Ckj), there exists always a unitary transformation

Ls =
N2−1∑
k=1

uskMk, s ∈ 1, N2 − 1,

that leads to the diagonal form of the relaxation superoperator Γ, which in this
form is frequently called the Lindbladian

−Γ̂σ =
N2−1∑
k=1

γk

[
LkσL

∗
k −

1

2
(σL∗kLk + L∗kLkσ)

]
. (3)

Here {Lk}N
2−1

k=1 is again an orthonormal set of traceless operators and γk are non-
negative rates. Note that the condition of normalization for Lk is actually not
necessary, because any normalization can be achieved by a suitable choice of the
rates γk ≥ 0.

The set {Lk} and the rates γk (or the set {Mk} and the rates Ckj) can be specified
if a choice is made in respect to the origin of the relaxation mechanisms that cause
transitions between populations and the loss of coherences in the quantum system.

4. The spin interaction frame

As already shown by Redfield relaxation of a spin ensemble under a periodic per-
turbation can differ from the situation when the system relaxes back to the thermal
state σth after the perturbation has stopped. Formally this can be taken into ac-
count by transferring the master equation into the rotating frame precessing at the
frequency of the time dependent perturbation. For the simulation of the evolution
of the spin ensemble under continuous microwave irradiation, we have to proceed

4
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to the frame rotating with the microwave frequency ω0. In this frame, the effective
part of the Liouvillian is the part commuting with the Zeeman component Sz of
the electronic spin. Furthermore, at the solid effect resonance ω ± ωI , effectively
the polarization dynamics is reduced to the subspace of operators commuting with
the resonant part of the Zeeman interaction.

Thus, the dynamics is described in the spin interaction frame,

σ = e−iĤZtσ̄, ĤZ ≡ [HZ , ·], HZ = ωSSz + ωI
∑

Ikz, (4)

where the higher order Krylov-Bogolyubov method should be used to accurately
average out non-secular terms. The effective relaxation superoperator in this case
commutes with the commutation superoperator ĤZ . This imposes certain restric-
tions on the set {Lk} of the Lindblad-Kossakowski operators. The microwave driven
dynamics is no longer the free evolution at static field, so the Lindbladian (3) no
longer describes the free thermal relaxation and should be chosen in a way consis-
tent with the dynamics in the interaction frame.

It is possible to show (see Appendix 11.1) that the relaxation superoperator in
the Lindblad-Kossakowski form is invariant to a transformation into the interaction
frame if the set of Lindblad-Kossakowski operators Lk are an orthogonal set of
traceless eigenoperators of the Zeeman superoperator ĤZ .

5. Fluctuations as the origin of relaxation

The origin of relaxation in a spin system are fluctuations of the interactions of the
spins with their environment. These fluctuations can modulate interactions with
surrounding spins and the lattice. We can add to the stationary Hamiltonian H0

of a quantum system a random time-dependent term Hf (t) to account for the
fluctuations.

H = H0 +Hf (t).

The fluctuating part is represented by the Hermitian operator Hf (t) whose matrix
elements describe random stationary processes with zero averages. The relaxation
superoperator can be found in the following three steps (ref: Bloembergen, Purcell
and Pound, see also Abragam, Redfield, Goldman and others).

First, we proceed to the Zeeman (spin interaction) frame by the rule

Hf (t) −→ H ′f (t) = eiHZtHf (t)e−iHZt (5)

where HZ denotes the Zeeman part of the unperturbed Hamiltonian H0. Sec-
ond, we calculate the second order approximation leading to the following double-
commutator superoperator

Γ̂(t) =
1

2

∫ +∞

−∞
[H ′f (t), [H ′f (t− τ), ·] dτ (6)

where the overline means the temporal ensemble average. Third, non-secular terms
in Γ̂(t) should be neglected by taking the time average

Γ̂(t) −→ Γ̂0 = 〈Γ̂(t)〉 ≡ lim
t→+∞

1

t

∫ t

0
Γ̂(t) dt. (7)

5
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It is important to note that when calculating the time average (7), it is assumed
that the minimal energy difference between eigenvalues of HZ is much larger than
the maximal relaxation rate caused by the fluctuating part. This is usually the case
at high magnetic field when working in the Zeeman basis. For example, in the SE
DNP case the eigenvalues of HZ are

Ωpq = pωI + qωS , |p| ≤ n, |q| ≤ 1,

where the sum p+ q provides the coherence order of the corresponding eigenstates.
The minimal energy difference between the eigenvalues (at least in the subspaces
with less than 500-quantum coherences) is |ωI |. At typical high field, this is much
larger than any relaxation rate observed in experiments. In this respect, the Zeeman
frame (5) is universal and provides the maximal elimination of non-secular terms.
It is instructive to analyse whether it is possible to use a different frame instead
of the Zeeman frame to average out the non-secular terms in Γ̂(t). In the frame
corresponding to the rotation defined by an arbitrary Hermitian operator H, we
make the change

σ → σ′ = eiHtσe−iHt.

Let σ′kj be the matrix elements of σ′ in the basis of eigenstates λk of H,

σ′kj = 〈λk|σ′|λj〉.

According to the fluctuations approach, under the action of the relaxation super-
operator, the matrix element σ′kj changes in time as (ref: Abragam’s Principles,

Chapter VIII, section C where the random fluctuations approach is decribed):

d

dt
σ′kj =

∑
k′,j′

eiΩkj,k′j′ tRkj,k′j′σ
′
k′j′ , Ωkj,k′j′ = λk − λj − λk′ + λj′ , (8)

where Rkj,k′j′ are some time-independent relaxation rates. The terms with

Ωkj,k′j′ 6= 0

are called non-secular terms. For k′, j′ such that∣∣∣∣∣Rkj,k′j′

Ωkj,k′j′

∣∣∣∣∣� 1,

the time-dependence in (8) is fast oscillating, and the corresponding non-secular
terms in the sum can be neglected. Otherwise, terms with k′, j′ such that the rate
Rkj,k′j′ is of the same order of magnitude or larger than the eigenvalue Ωkj,k′j′ are
not fast oscillating. Their effect on the spin dynamics of the spin system can be
appreciable, so they cannot be neglected.

All non-secular terms can be removed in the case when

∀k, j, k′j′ Ωkj,k′j′ = 0 or

∣∣∣∣∣Rkj,k′j′

Ωkj,k′j′

∣∣∣∣∣� 1. (9)
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Condition (9) is violated if there exist eigenstates of H with differences between the
eigenvalues much smaller than the corresponding relaxation rates. For example, if

0 6= |λk − λj | � |Rkj,jk|

then

Ωkj,jk = 2(λk − λj) 6= 0,

∣∣∣∣∣Rkj,jkΩkj,jk

∣∣∣∣∣� 1.

Thus, not any operator H can be used in the removal of the non-secular terms
and not any rates Rkj,k′j′ can be chosen except those for which condition (9) is
satisfied. This condition is always satisfied if H = HZ , because the smallest non-
zero difference between the eigenvalues of HZ is |ωI |, which is always much bigger
than any relaxation rates in the system.
We show in the Appendix 11.2 that based on the assumption that Hf is built of

a full set {Fpq,m} of orthonormal eigenvectors of ĤZ it is always possible to derive
the relaxation superoperator Γ′ in the Lindblad-Kossakowski form.

6. Uncorrelated random field model

As the simplest model for a relaxation mechanism we can consider uncorrelated
fluctuations of the local magnetic field (along the three spatial directions with
no specific preference). The assumption of this model determines the choice of
the set {Lk} of Lindblad-Kossakowski operators for which the set of single-spin
order operators written in terms of Zeeman components and lowering and raising
operators can be used,

{Lk} = {Sz, S±, Isz, Is±, s ∈ 1, n}.

Starting from this set of traceless operators the relaxation superoperator can be
built (see Appendix 11.3) and we get

Γ̂σ = R2Ŝ
2
zσ +R1

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
σ +R3 (S+σS− − S−σS+ + σSz + Szσ) +

+

n∑
k=1

[
r2kÎ

2
kzσ + r1k

(
Îk+Îk− + Îk−Îk+

)
σ + r3k (Ik+σIk− − Ik−σIk+ + σIkz + Ikzσ)

]
(10)

where Rj , rjk are some rates to be specified.
At cryogenic temperatures of about 1 K typical for DNP and modest magnetic

fields of 3.5 T, the thermal density operator is well approximated using only the
Zeeman part of the stationary Hamiltonian,

σth =
e−βH0

Tr e−βH0
∼ σ′th =

e−βHZ

Tr e−βHZ
, β =

~
kbT

.

Furthermore, since |ωS | � |ωI |, the following approximation can be used

σ′th ∼
1

N
(1− 2p0Sz) , p0 = tanh

βωS
2
.

7
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We can assume that

Γ̂Sz =
1

T1e
Sz, Γ̂S± =

1

T2e
S±,

where T1e, T2e are the longitudinal and transverse relaxation times of the elec-
tron, that can be experimentally obtained. Relaxation does not affect the thermal
equilibrium, Γ̂σ′th = 0, hence we obtain

R1 =
1

4T1e
, R2 =

1

T2e
− 1

2T1e
, R3 =

p0

2T1e
, r3k = 0. (11)

Note that the two terms in (10) with the two factors R3 or r3k ensure that the
spin system relaxes back to the thermal state σth. Using the experimental nuclear
longitudinal and transverse relaxation times T1n,k, T2n,k, the remaining rates can
be obtained as

r1k =
1

4T1n,k
, r2k =

1

T2n,k
− 1

2T1n,k
. (12)

The relaxation superoperator (10) with the rates (11), (12) corresponds to the
uncorrelated random field relaxation model adapted to the thermal relaxation in
the spin interaction frame. At this point it is important to note that we could have
chosen a more complex relaxation model which includes fluctuations of the hyper-
fine interaction between electrons and nuclear spins. In this case we would have
to include also second order spin correlation operators to built the corresponding
relaxation superoperator. We will discuss such more complex models in a later
section.

7. Constructing the relaxation superoperator starting from a basis set in
Hilbert space

In this section we discuss a different way to derive the relaxation superoperator
in the Lindblad-Kossakowski form. We select a set of basis vectors in Hilbert
space, construct a set of elementary traceless operators and build the relaxation
superoperator in the corresponding Liouville space. Furthermore, we introduce
relaxation rates for both longitudinal relaxation and transverse relaxation without
using any specific relaxation model. The motivaton for this analysis is a recent
string of publications by the Vega group using a related concept to include
relaxation in DNP simulations.

First we choose an orthonormal basis {vs}Ns=1 of the Hilbert space. As a specific
example this could be the eigenbasis of the stationary Hamiltonian H0. As the
Zeeman part HZ of the Hamiltonian is diagonal in the eigenbasis of the stationary
Hamiltonian H0 the choice of this basis fulfils the requirement of section 4. Consider
the set of operators in the Hilbert space

{Oss′ ≡ vsv∗s′}Ns,s′=1.

The (ss′)-matrix element of the operator Oss′ in the basis {vs} equals 1 and all
other elements are zero, so the set {Oss′} is orthogonal in the trace norm. The
non-diagonal subset {Oss′ , s 6= s′} is traceless and hence fulfils the condition for
Lindblad operators. For the diagonal operators contained in the subset {Oss} the

8
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trace is always 1. However, we can use this subset as an orthogonal basis to con-
struct from linear combinations of the operators Oss a new set of traceless operators

Oq =
N∑
s=1

cqsOss, q ∈ 1, N − 1,

where due to requirement of the tracelessness and othogonality the coefficients cqs
must satisfy the conditions

∀q
N∑
s=1

cqs = 0, ∀q 6= q′
N∑
s=1

cqsc
∗
q′s = 0. (13)

Using this strategy we can construct a complete orthogonal set of traceless opera-
tors

{Lk} = {Oss′}Ns 6=s′=1 + {Oq}N−1
q=1

that we can use to build the relaxation superoperator in the Lindblad-Kossakowski
form:1

−Γ̂0σ =
∑
s 6=s′

Γss′

[
Oss′σOs′s −

1

2
(σOs′s′ +Os′s′σ)

]
+

+
∑
q

Γq

[
OqσO

∗
q −

1

2

(
σO∗qOq +O∗qOqσ

)]
.

(14)

Note that this expression corresponds to the definition of the diagonal Lind-
bladian in (3). We can conclude, that in principle, it is possible to derive the
relaxation superoperator in the Lindblad form by choosing a basis set but without
selecting first a relaxation model as we did in section 6. As a consequence, no
formal time averaging of non-secular terms is required in the derivation of the
time independent Lindbladian (14). However, as we will discuss in more details
in the next section further below, an implicit assumption was made in the
derivation of the Lindbladian that the frame fixed by the choice of the basis en-
ables the full removal of non-secular terms and condition (9) in Section 5 is fulfilled.

The full set of the elementary operators Oss′ generated by the basis {vs} can be
used as an orthonormal basis in the Liouville operator space. It is now possible to
introduce rates that describe the changes of the states represented by the operators
Oss′ due to relaxation. The action of the relaxation superoperator on a state Oss
corresponds to a change of populations in Hilbert space. Therefore we associate
a rate R1 for longitudinal relaxation with it. Correspondingly, the action of the
relaxation superoperator on a state specified by Oss′ , s 6= s′ describes the loss of
a coherence in Hilbert space and therefore we associate a rate R2 for transverse
relaxation with this process. It follows from the form (14) that

Γ̂0Okk =
∑
s 6=k

R1,sk(Okk −Oss), Γ̂0Okj = R2,kjOkj , k 6= j,

1see Appendix 11.5 for a detailed explanation how to implement this formalism numerically

9
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R1,sk = Γsk, R2,kj =
1

2

∑
s 6=k

Γsk +
∑
s 6=j

Γsj +
∑
q

Γq
(
|cqk|2 + |cqj |2 − 2cqkc

∗
qj

) .
(15)

To ensure that the spin system relaxes back to the thermal state σth we have to
weight the rates with the appropriate Boltzmann factors. The density operator at
thermal equilibrium in the Boltzmann statistics is given by the formula

σth =
e−βH0

Tr e−βH0
, β =

~
kbT

.

The relaxation superoperator acts trivially on σth. Using the expansion

σth =
N∑

k,j=1

pkjOkj , (16)

we obtain then

0 = Γ̂0σth =
∑
k 6=j

pkjR2,kjOkj +
∑
k

pkk
∑
s 6=k

R1,sk(Okk −Oss).

This gives

∀k 6= j pkjR2,kj = 0, pkkR1,jk − pjjR1,kj = 0. (17)

As long as conditions (13), (17) are satisfied and no additional conditions are
imposed on the spin dynamics, the choice of the basis {vs} and the coefficients cqs,
defining the set {Lk} of Lindblad-Kossakowski operators, and the non-negative
rates Γss′ , Γq can be arbitrary. For example, it is feasible to use the eigenvectors
of the time-independent Hamiltonian H0 to construct the Lindblad-Kossakowski
operators, built the relaxation superoperator and choose a set of rates. Formulas
(15) in conjunction with the definitions of the rates in Vega’s paper can be used to
reproduce the relaxation superoperator as defined in their paper.

It is noteworthy that this strategy works for only specific choices of the elemen-
tary operator set Oss′ . For instance, it is not possible to define a basis {vs} in
Hilbert space that can be used to construct the operators

Sz, S±, Isz, Is±, s ∈ 1, n

which we have used as a set of Lindblad-Kossakowski operators to derive the relax-
ation superoperator based on the uncorrelated random field model. This is due to
the fact that the raising and lowering operators can only be defined as combinations
of elementary operators Oss′ in the Zeeman basis.

8. Comparison between the different strategies

We compare now in more details the two different strategies to incorporate
relaxation in a spin dynamics model for SE DNP, which we have introduced in
the last two sections. The motivation for this comparison arises from the different
mathematical operations that these strategies require. The uncorrelated random
field strategy relies on the choice of a relaxation model (such as uncorrelated

10
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random fluctuations) and the assumption that mixing of the states due to the
pseudosecular part of the hyperfine interaction is negligible for the derivation
of the relaxation superoperator. The positive feature is that the Zeeman basis
can be used for the spin dynamics calculations and that a diagonalisation of the
stationary Hamiltonian H0 is not required. This provides a particular advantage
when trying to simulate the dynamics of quantum systems containing many
coupled spins since diagonalisation becomes impossible for the large matrices that
appear in these simulations. On the other hand working in the eigenbasis of the
stationary Hamiltonian has the advantage that any mixing of states due to the
non-secular part of the hyperfine interaction is accounted for and the diagonal
density operator in Hilbert space provides directly the populations of the different
energy levels. There is apparently no need to formally average out non secular
terms arising from the assumption of a fluctuation model.

In general, the uncorrelated random field model in the interaction frame (10)

built of eigenoperators of the commutation superoperator ĤZ and the model-free
strategy (14) based on eigenoperators of the commutation superoperator Ĥ0 are
inconsistent, because both relaxation superoperators are diagonal in the form
(3) but use different Lindblad-Kossakowski operator sets {Lk}. The former uses
single-spin orders Sz, S±, Ikz, Ik± according to the uncorrelated random field
model, the later uses the elementary operators Okj in the basis of eigenstates of
the stationary Hamiltonian H0. Expectedly, the spin dynamics described by these
two, in principle different models, will be different.

Apart from the choice of the bases there is also a subtle but crucial difference
in respect of the use of the interaction frame. If the eigenstates of the stationary
Hamiltonian H0 are used as a basis and no transformation of the Lindbladian into
the interaction frame is carried out, an assumption is made that the relaxation
processes during microwave irradiation is equivalent to free relaxation of the spin
system after it was perturbed by a driving field. Using a truncated Hamiltonian
H ′0 as it is done by Vega will eliminate this issue. A more important issue
becomes evident when using the truncated stationary Hamiltonian H ′0 instead
of the Zeeman Hamiltonian HZ as a reference frame to derive the relaxation
superoperator using the random fluctuations model. For this reference frame it
can be shown that for certain choices of parameters, that lead to strong mixing
of the Zeeman states and high transverse relaxation rates, the condition (9) is
not always fulfilled. This has the consequence that not all non-secular terms
can be averaged out. This issue is not immediately apparent when following
the strategy described in section 7 since non-secular terms do not appear
in the formalism. However, it makes this formalism inconsistent with a relax-
ation model based on fluctuating interactions between spins and their environment.

We present now a set of numerical simulations to illustrate our analysis. For
the simplest two spin system consisting of one electron and one nuclear spin (1e
1n) there is always a good agreement between the model (14) when using the
eigenbasis of the truncated Hamiltonian H ′0 described in section 7 and the model
based on the uncorrelated field fluctuations (10) provided that we assume random
fluctuations along all three spatial directions.1 Note that in the Vega paper only
fluctuations along the x-directions are assumed.

1Basically we have to calculate 1
T1,jk

= 1
T1e
|〈λk|Sx|λj〉|2 + 4

∑
i

1
T1n,i

|〈λk|Ix|λj〉|2 + 1
T2e
|〈λk|Sz |λj〉|2 +

4
∑

i
1

T2n,i
|〈λk|Iz |λj〉|2

11
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Figure 1. Simulation of the nuclear steady state polarisation for a system of one electron with one nuclear
spin. The strength of the pseudosecular interaction A+ is changed between 1kHz and 10MHz. A: Com-
parison between uncorrelated random fluctuation model (10) (black) and the strategy (14) that involves
the choice of the eigenbasis H′

0 (red).B: Comparison between random fluctuation model (10) (black) and
original Vega’s model with fluctuations only assumed along Ix (blue). C: Comparison between random
fluctuation model (10) (black) and Vega’s model with fluctuations also assumed along Iz (green). D: dif-
ference between the simulations. Red refers to A, blue to B and green to C. Note the logaritmic scale and
the large error between simulations in C that disappears when fluctuations along Ix and Iz are assumed in
Vega’s model. Model parameters: ωI = 144MHz, MW= 0.1e6, R1e = 1, R2e = 1e5, r1n = 1e−2, r2n = 1e4

Figure (1) demonstrates that for the simple 2 spin systems (1e 1n) there is good
agreement between the random fluctuation model Γ (10), the model-free strategy
Γ0 explained in section 7 (14) and Vega’s original simulations provided that we
modify his rates in such a way that also fluctuations along Iz are allowed. This
modification of his model is essential to get good agreement with the random
fluctuation model also for more than one nuclear spin.

For the case that the model spin system consists of several nuclear spins and one
electron spin we demonstrate now that there could be a substantial discrepancy
in the spin dynamics predictions depending on the strength of the nuclear dipolar
interaction in comparison to the difference of the strength of the secular term of
the hyperfine interactions of the nuclei with the electron.

We use as an example a model spin system consisting of one electron and two
nuclear spins. Suppose that, calculating the basis of eigenstates of H0, we can
neglect terms, not commuting with HZ , that is we assume |Bk| � |ωI |. This leads
to the simplified stationary Hamiltonian

H ′0 = HZ +
∑
k<j

dkj

(
2IkzIjz −

1

2
Ik+Ij− −

1

2
Ik−Ij+

)
+
∑
k

AkIkzSz. (18)

12
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8.1. The case when the nuclear dipolar interaction is quenched by the
hyperfine interaction - core nuclei

First we consider the case when the dipolar interaction between the nuclei is much
smaller than the difference between the strength of the secular terms of the hyper-
fine interaction that describes their coupling to the elctron spin. The nuclei are in
this case close to the electron and the dipolar interaction between them is quenched
by their coupling to the electron. In DNP models such nuclear spins belong to the
core.

∀k 6= j
|dkj |

|Ak −Aj |
� 1.

Under these conditions the nuclear interaction term is negligible and the basis of
eigenstates of H ′0 is well approximated by the Zeeman basis {vs}. We show in the
Appendix 11.4 that in this case the two models can be modified in such a way that
their predictions of the SE DNP spin dynamics are very close. Using the additional
conditions that the transverse relaxation time constants are much shorter than the
longitudinal time constants

1

T2e
,

1

T2n,k
� 1

T1e
,

1

T1n,k
, ∀k 6= j

|dkj |
|Ak −Aj |

� 1 (19)

the model based on the uncorrelated random fluctuations Γ̂ and the model Γ̂0 based
on the choice of the eigenbasis of H ′0 can be made close to each other if we let

Γ̂0Okj = R2,kjOkj , R2,kj = Tr
(

(Γ̂Okj)Ojk

)
, k 6= j,

Γ̂0Okk =
∑
j 6=k

R1,kj(Okk −Ojj), R1,kj = −Tr
(

(Γ̂Okk)Ojj

)
.

(20)

We show the good agreement for the two models (10) and (14) in Figure (2)A and
C. Note that the absolute error between the two simulations is very small.

8.2. The case when the dipolar interaction is not quenched by the hyperfine
interaction - the bulk nuclei

If the nuclei are relatively far away from the electron the nuclear dipolar interac-
tion can be larger than the difference between the strengths of the secular hyperfine
interactions of the nuclei. Such conditions can be found for bulk nuclei. The first
of conditions (19) is physically reasonable and normally satisfied. The second con-
dition however can be violated. In this case, the two relaxation models predict
different dynamics for the spin polarisation (see Figure (2)B and D). They are
inconsistent whatever rates R1,kj , R2,kj we choose. To provide more insight we
discuss in the following an instructiv example.

Let us have two nuclei and assume as before that the “effective Hamiltonian”
commutes with HZ , i.e., has the form (18). Generally, there exists the unique basis,
in which the both H ′0 and HZ are diagonal. In terms of Zeeman states (with the
first nucleus in the first position, the second nucleus in the second position and the
electron separated with the comma), this basis is

|λ1〉 = |αα, α〉, |λ2〉 = |ββ, α〉, |λ3〉 = |αα, β〉, |λ4〉 = |ββ, β〉,

13
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Figure 2. Comparison between the two models (10) (red) and (14) (black). A: Time course of the po-
larisation of the electron and two nuclear spins. ωI = 144MHz, MW= 0.1e6, R1e = 1, R2e = 1e5, r1n =
1e − 2, r2n = 1e4, A0 = [0.155,−0.016] × 1e6, A+ = [0.466, 0.015] × 1e6, d = 64.57 Hz. C: shows the
difference between the two simulations in A. B: All parameters are the same apart from the interaction
strengths A0 = [−0.015,−0.015]×1e6, A+ = [0.43, 0.015]×1e6, d = 15 Hz, D: shows the difference between
the two simulations in B. The maximal absolute error is more the 30% of the spin polarisation

|λ5〉 = cosφ+|αβ, α〉+ sinφ+|βα, α〉, |λ6〉 = cosφ+|βα, α〉 − sinφ+|αβ, α〉,

|λ7〉 = cosφ−|αβ, β〉+ sinφ−|βα, β〉, |λ8〉 = cosφ−|βα, β〉 − sinφ−|αβ, β〉,

tanφ± = ± 1

d12

(
∆A −

√
∆2
A + d2

12

)
, ∆A =

A1 −A2

2
.

The second of conditions (19) is violated when |d12| � |∆|. In this case, tanφ± =
∓ sign d12 and the following mixing of Zeeman states occurs (for d12 > 0)

|λ5〉 =
|αβ, α〉 − |βα, α〉√

2
, |λ6〉 =

|βα, α〉+ |αβ, α〉√
2

,

|λ7〉 =
|αβ, β〉+ |βα, β〉√

2
, |λ8〉 =

|βα, β〉 − |αβ, β〉√
2

.

We have, for example,

O56 =
1

2

(
1

2
+ Sz

)
(I1+I2− − I1−I2+ + I1z − I2z) ,

ΓO56 =
1

2
[(c1 + c2Sz) (I1+I2− − I1−I2+) + (r1 + d1Sz)I1z − (r2 + d2Sz)I2z] ,

14
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c1 =
1

2

2∑
k=1

1

T2n,k
, c2 =

1 + p0

T1e
+ 2c1, rk =

1

2T1n,k
, dk =

(
1 + p0

T1e
+

1

T1n,k

)
.

Projecting onto O56 gives

Γ̂O56 = RO56 + P,

where

R = Tr (Γ̂O56, O65) ∼ c1,

O56 ⊥ P = Γ̂O56 −RO56 ∼
c1

2

(
1

2
+ Sz

)
(I1+I2− − I1−I2+ + I2z − I1z) = −c1O65.

We see that the projection RO56 and the orthogonal component P are of the same
order ∼ c1 which is the average between the transverse rates 1/T2n,1 and 1/T2n,2.

This means that the action of the relaxation superoperator Γ̂ on the non-diagonal
element O56 is strongly not proportional to O56. This will be the case for any non-
diagonal elements Okj composed of strongly mixed Zeeman states. Using the model

based on the choice of the eigenbasis of H ′0, we have always Γ̂0Okj = R2,kjOkj ,
k 6= j.

Thus, both models are inconsistent if the first of conditions (19) is satisfied
while the second one is violated. The reason for this discrepancy is the use of
the stationary Hamiltonian H0 as a reference frame for the relaxation model
(14) that is based on the choice of the eigenbasis of H ′0 and that was described
in Section 7. This choice of reference frame lead for the interaction parameters
used in the simulation to a violation of condition (9). To demonstrate this we
provide a list of the values εkj,k′j′ = |Rkj,k′j′/Ωkj,k′j′ | calculated (see formula (8))
for the simulation shown in Figure (2) in Table 1. Condition (9) which requires
εkj,k′j′ � 1 is not fulfilled for more than 3.6% of the 1447 non zero elements (4096
in total). Therefore, the intrinsic assumption made during the derivation of the
superoperator in section 7 that non-secular terms can always be neglected in this
strategy is not valid and the predictions made by model (14) will deviate from the
predictions arising from the random fluctuation model (10). For the core nuclei
with much stronger hyperfine interactions the values of Ωkj,k′j′ are always bigger
then the relaxation rate Rkj,k′j′ and hence there is a good agreement between the
two models. This example emphasizes that particular care must be used to choose
the correct interaction frame and to introduce physical meaningful relaxation
mechanism.

Figure (3) provides another example of the deviations between the two models. In
this case we have assumed a spin chain of 4 nuclear spins and one electron with only
the first nuclear spin coupled to the electron and all other nuclear spins interacting
through dipolar interaction with each other (similar to Vega’s JCP paper).

This further example demostrates that the polarisation dynamics can substan-
tially deviate between the uncorrelated fluctuation model (10) and the model that
was built from the eigenbasis of the truncated stationary Hamiltonian H ′0. An anal-
ysis of the values for εkj,k′j′ again shows that condition (9) for the removal of the
non-secular terms during averaging the time dependent relaxation superoperator
is severely violated. Again a substantial number of εkj,k′j′ are in the order of 109,
demonstrating that H ′0 cannot be used to fully remove the non-secular terms in
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Table 1. The first representative values of εkj,k′j′ =
|R

kj,k′j′ |
Ω
kj,k′j′

are provided in descending order for both the

simulation of the core nuclei and the simulation of the bulk nuclei shown in Fig.2. Note the huge deviation from

the condition εkj,k′j′ � 1 which is required for the removal of the non-secular terms during averaging the time-

dependent relaxation superoperator (see Section 5). This provides the explanation why the model (14) which

uses H′
0 as a reference frame substantially deviates from the predictions of the uncorrelated random fluctuation

model (10). Only the first 21 value for εkj,k′j′ of the 1447 non-zero values for the core are shown. (There are

another 31 values close to 1).

εkj,k′j′

Bulk Core
1.96608E+09 2.12767E-05
1.96608E+09 2.12767E-05
1.96325E+09 2.12767E-05
1.96325E+09 2.12767E-05
1.80224E+09 2.12767E-05
1.80224E+09 2.12767E-05
1.80224E+09 2.12767E-05
1.80224E+09 2.12767E-05
1.80224E+09 2.12757E-05
1.80224E+09 2.12757E-05
1.80224E+09 2.12757E-05
1.80224E+09 2.12757E-05
1.64123E+09 2.12757E-05
1.64123E+09 2.12757E-05
1.63840E+09 2.12757E-05
1.63840E+09 2.12757E-05
8.21487E+02 2.12757E-05
8.21487E+02 2.12757E-05
8.21009E+02 2.12757E-05
8.21009E+02 2.12757E-05
9.08939E-01 2.12757E-05

a relaxation model. We can conclude that the use of H ′0 frame can lead to spin
dynamic predictions that cannot be explained by spin relaxation arising from a
physically reasonable fluctuation model. The relaxation model derived in section
7 (which is equivalent to the one used in Vega’s paper) can only be used for the
special situation when condition (19) is satisfied.

9. Extension to more complex relaxation models

In this section we extent the discussion to more complex relaxation mechanism.
Three examples are given based on the fluctuations approach described in section
5. The examples illustrate the typical mechanisms of relaxation in solids and are
applicable to the electron-nuclear spin system in a SE DNP model: the electronic
relaxation caused by the g-anisotropy, the nuclear relaxation caused by the electron
as a paramagnetic centre and the electron-nuclear relaxation caused by vibrations
of the crystalline lattice near the electronic spin.

9.1. Electron relaxation caused by g-anisotropy

The Zeeman interaction of the electronic spin S with the static field B0 is mediated
by the g-tensor, B0.g.S. The tensor g depends on the surroundings of the electron
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Figure 3. A: Polarisation dynamics in a spin chain consisting of one electron and four nuclear spins,
simulated using the relaxation model (14) (red) and (10) (black). B: Difference between the predictions of
the two models: blue 1st spin, green 2nd spin, red 3rd spin, light blue 4th spin, magenta electron. Note
the huge difference for the prediction of the polarisation of the 3rd and 4th spin. Simulation parameters:
ωI = 36MHz, MW= 0.2e6, R1e = 1e2, R2e = 1e5, r1n = 1e − 2, r2n = 1e3, A0 = [0, 0, 0, 0] × 1e6,
A+ = [0.04, 0, 0, 0]× 1e6, d(1, 2) = 7, d(2, 3) = 6, d(3, 4) = 8.5Hz.

and is generally anisotropic, i.e., not represented by a simple scalar product between
the vectors B0 and S. In sufficiently symmetric environment, the g-anisotropy is
relatively small, but can be appreciable in non-symmetric cases.

Considering an ensemble of electronic spins {Sk}, we have to assume that each
electron in the ensemble has its own g-tensor gk, even when the anisotropic parts
of them are small. In this case,

gk = g0 · 1 + gk,a, ‖gk,a‖ � |g0|.

Statistically the electronic ensemble is well represented by a single electron S in
such way that the Zeeman interaction becomes

HZ = ωSSz +B0.ga.S, ωS = g0|B0|,

where ga is a random spatially distributed tensor. Using the ergodicity principle,
we can assume that the tensor ga = ga(t) is a random function of time, interpreting
this as that anisotropies of different electron spins have different effective times,
which are randomly distributed between them. An analogous assumption is made
in liquid state NMR when we regard the spatially distributed ensemble molecular
motion as a random temporal motion of a single molecule.

Thus, we can write

HZ = ωSSz +Hf (t), Hf (t) = fz(t)Sz + f+(t)S+ + f−(t)S−

with random scalar functions fβ(t), β = z,±. We can assume that fβ(t) are random
stationary processes with zero ensemble averages and some correlations functions

fβ(t) = 0, gαβ(τ) = fα(t)f∗β(t− τ),
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so we follow the fluctuations approach described in section 5.
The operators Sβ, β = z,± are eigenvectors of the superoperator ĤZ with the

eigenoperator 0, ±ωS respectively. This leads to the straightforward formula

Γ̂S = R2Ŝz +R1

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
(21)

with

R2 =
1

2

∫ +∞

−∞
gzz(τ) dτ, R1 =

1

2

∫ +∞

−∞
g++(τ)eiωSτ dτ =

1

2

∫ +∞

−∞
g−−(τ)eiωSτ dτ.

9.2. Nuclear relaxation caused by electron as paramagnetic centre

To describe the electron-nuclear hyperfine interaction in a dielectric solids between
a radical centre with a locally confine electron and the surrounding nuclei we can
focus mainly on the dipolar interaction and ignore the Fermi contact interaction.
Taking into account the huge electronic Larmor frequency ωS in the Zeeman frame
we can write the hyperfine interaction in the reduced form

HIS = V Sz, V =
∑
k

(2Ak0Ikz +Ak+Ik+ +Ak−Ik−) .

The role of the electron as a paramagnetic centre (or impurity) is described as
follows (see Bloemebrgen’s spin diffusion, Abragam-Goldman’s relaxation of II kind
and others).

It is assumed that during the evolution, a spontaneous exchange occurs between
the subspaces of the “up” and “down” states of the electronic spin. Due to the
presence of the terms with Ik±Sz in HIS , this random process affects the nuclear
spins in the form of a random field seen by them via spontaneous changes of
the sign of the coefficients Ak±. These fluctuations are seen simultaneously by
all nuclei grouped to the corresponding hyperfine interaction terms. The typical
correlation time is comparable with the electronic longitudinal time T1e, so can
lead to processes with longer times than T1e. However, this can be appreciable and
crucial for the nuclei in close electron vicinity.

In terms of fluctuations, this gives

Hf (t) = f(t)V+ + f∗(t)V−, V± =
∑
k

Ak±Ik±,

where f(t) is a random scalar function of time. We can assume again that it de-
scribes a stationary process with zero average and some correlation function

f(t) = 0, g(τ) = f(t)f∗(t− τ).

The operataors V± are eigenvectors of ĤZ with the eigenvalues ±ωI respectively.
Using the fluctuations approach, this leads to the following superoperator

Γ̂I = τ0

(
V̂+V̂− + V̂−V̂+

)
, τ0 =

1

2

∫ +∞

−∞
g(τ)eiωIτ dτ. (22)

18



August 8, 2013 Molecular Physics relax1

The simplest realization

g(τ) = g(−τ) =
1

4
exp

(
− |τ |
T1e

)
leads to the formula

τ0 =
1

4

T1e

1 + ω2
IT

2
1e

∼ 1

4ω2
I

1

T1e
.

It is seen that the relaxation rates are ∼ εk/T1e with εk = |Ak±/ωI |2, so they tend
to be larger for nuclei closer to the electron and smaller for remote nuclei.

9.3. Electron-nuclear relaxation via vibrations of crystalline lattice near
electron

The electron-nuclear interaction can lead to another mechanism connected with
vibrations of the crystalline lattice in the electron vicinity, as follows.

Even at low temperatures, the position of the electronic spin (unlike the nuclear
spins) is not fixed in space, it is found randomly in time in some volume near its
average position. This causes vibrations of the crystalline lattice near the electron
in the form of the phonon lattice sound. This random noise is seen by the nuclear
spins via fluctuations of the coefficients of the hyperfine interaction which depend
on orientations of the electron-nuclear pairs and so depend on the random electron
position. In the Zeeman frame with large Larmor frequencies ωI,S , the dominating
part of the electron-nuclear interaction in the purely Zeeman part

HIS,Z = 2
∑
k

Ak,0IkzSz.

The fluctuations of the coefficients Ak,0 caused by the above vibrations can be
written as

Hf (t) =
∑
k

fk(t)Vk, Vk = 2Ak,0IkzSz,

where fk(t) are real scalar functions of time describing random stationary processes
with zero averages and some correlation functions

fk(t) = 0, gkj(τ) = fk(t)fj(t− τ).

The operators Vk belong to the zero eigenspace of ĤZ . This leads to the superop-
erator

Γ̂IS =
∑
k,j

τkj V̂kV̂j , τkj =
1

2

∫ +∞

−∞
gkj(τ) dτ. (23)

It is seen that Γ̂IS affects only non-Zeeman operators with rates proportional to
Ak,0Aj,0.

Combining the models (21), (22), (23) and applying the thermalization, we obtain

σ̇ = −iĤσ − Γ̂σ
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Figure 4. Comparison of the nuclear polarisation dynamics for four 13C nuclei calculated using the simple
uncorrelated random fluctuation model (10) (solid line) and a model taking all other mechanisms into
account (broken line). Simulation parameters were MW= 0.1MHz, R1e = 1e0, R2e = 1e5, r1n = 6.5e −
4, r2n = 1e4, for the random fluctuation model and R1e = 4, R2e = 1.12e5, r1n = (6.55e − 4, 8.83e −
06, 6.40e − 07, 4.13e − 08), r2n = (9527, 1283, 930, 600) for the more comprehensive model. Note that for
the comprehensive model all nuclear spins reach eventually the same polarisation level

with

Γ̂σ = Γ̂Sσ + Γ̂Iσ + Γ̂ISσ + Γ̂th,

Γ̂thσ = 2p0R1 (S+σS− − S−σS+ + Szσ + σSz) .
(24)

To find connections between R1,2, τ0, τkj and the effective transverse and longi-
tudinal relaxation times, we can calculate according to (24)

Γ̂Sz = 4R1Sz, Γ̂S± =

R2 + 2R1 +
∑
k

τkk|Ak0|2 +
∑
k 6=j

τkjAk0Aj0IkzIjz

S±,

Γ̂Ikz = 4τ0|Ak±|2Ikz + 8p0R1IkzSz,

Γ̂Ik± =
(
2τ0|Ak±|2 + τkk|Ak0|2

)
Ik± + 8p0R1Ik±Sz,

getting effectively

1

T1e
= 4R1,

1

T2e
= R2 + 2R1 +

∑
k

τkk|Ak0|2,

1

T1n,k
= 4τ0|Ak±|2,

1

T2n,k
= 2τ0|Ak±|2 + τkk|Ak0|2.
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10. Conclusions and Outlook

The polarisation enhancement of the nuclear spin ensemble by solid effect DNP is
the result of both the irradiation of one of the electron satellite frequencies (ωS±ωI)
and the relaxation processes in response to this preturbation. Relaxation needs to
be incorporated into a quantum mechancial model to provide predictions that can
be used for comparison with experimental data. We reviewed and compared several
strategies and pointed out under which conditions these strategies provide predic-
tions in close agreement and discussed under which conditions they fail to agree.
In particular we outlined our strategy to incorporate relaxation through the as-
sumption of fluctuations that modulate the interaction of the electrons and the
nuclear spins with their respective environment. The mathematical advantage of
our strategy is the avoidance of the diagnalisations of large matrices which enables
us to increase the number of coupled nuclear spins in the quantum system. Since
the dynamics of the nuclear polarisation depends on the number of coupled nu-
clear spins in the spin system it is important to maximise this number in model
simulations to obtain predictions close to the experimental observations.

11. Appendix

11.1. Invariance of the relaxation superoperator in the
Lindblad-Kossakowski form

After proceeding to the interaction frame by the rule (4), the relaxation superop-
erator (3) is transformed to

−Γ̂′σ̄ =

N2−1∑
k=1

γk

[
L̄kσ̄L̄

∗
k −

1

2

(
σ̄L̄∗kL̄k + L̄∗kL̄kσ̄

)]
, L̄k = eiĤZtLk.

The Liouville space admits the following expansion into eigenspaces Vpq of the

superoperator ĤZ (n is the number of nuclei) 1

L =

n∑
p=−n

1∑
q=−1

Vpq, ĤZv = Ωpqv, Ωpq = pωI + qωS , v ∈ Vpq.

Using the expansions

Lk =
∑
p,q

ak,pqlk,pq, lk,pq ∈ Vpq, L̄k =
∑
p,q

ak,pqe
iΩpqtlk,pq, (25)

we obtain

L̄kσ̄L̄
∗
k −

1

2

(
σ̄L̄∗kL̄k + L̄∗kL̄kσ̄

)
=

=
∑

p,q,p′,q′

ei(Ωpq−Ωp′q′ )tak,pqa
∗
k,p′q′

[
lk,pqσ̄l

∗
k,p′q′ −

1

2

(
σ̄l∗k,p′q′ lk,pq + l∗k,p′q′ lk,pqσ̄

)]
.

(26)

1We assume that the magnitudes Ωpq are all well distinguished, which is true for protons at high field.
This is true also for nuclei with smaller gyromagnetic ratios because in this case n < |ωS/ωI |.
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Effectively, the non-secular terms are averaged out, so Γ̂′ should be time-
independent. This means

ak,pqa
∗
k,p′q′ = 0, (pq) 6= (p′q′),

so each Lk belongs completely to one and only one of the eigenspaces Vpq, i.e., each

Lk is an eigenvector of the Zeeman superoperator ĤZ .
Thus, we conclude that the effective relaxation superoperator (3) in the inter-

action frame is such that the set {Lk} of Lindblad-Kossakowski operators is an

orthogonal set of traceless eigenvectors of the superoperator ĤZ .

11.2. Derivation of the relaxation superoperator in the
Lindblad-Kossakowski form starting from a fluctuation model

We can assume that the fluctuation Hf is built of a full set {Fpq,m} of orthonormal

eigenoperators of ĤZ . In the case that some eigenoperators are absent, we assign the
zero value to the corresponding coefficient. Taking into account the multiplicities
of eigenvalues, p ∈ −n, n, q ∈ −1, 1, m ∈ 1, dimVpq.

We have

∀m ĤZFpq,m = ΩpqFpq,m, Ωpq = pωI + qΩS ,

F ′pq,m ≡ eiĤZtFpq,m = eiΩp,qtFpq,m.

Hence,

H ′f (t) =
∑
p,q

∑
m

fpq,m(t)F ′pq,m(t) =
∑
p,q

∑
m

fpq,m(t)eiΩp,qtFpq,m,

Ĥ ′f (t)Ĥ ′f (t− τ) = Ĥ ′f (t)Ĥ
′∗
f (t− τ) =

=
∑

p,q,p′,q′

∑
m,m′

fpq,m(t)f∗p′q′,m′(t− τ) exp[iΩpqt− iΩp′q′(t− τ)]F̂pq,mF̂
∗
p′q′,m′

whereˆover spin operators denotes the commutation superoperator of these oper-
ators. Taking the ensemble average and truncating non-secular terms, we obtain

Ĥ ′f (t)Ĥ ′f (t− τ) =
∑
p,q

∑
m,m′

cpq,mm′(τ) exp(iΩpqτ)F̂pq,mF̂
∗
pq,m′ ,

cpq,mm′ = fpq,m(t)f∗pq,m′(t− τ).

This leads to the general formula

Γ̂ =
∑
p,q

∑
m,m′

Cpq,mm′F̂pq,mF̂
∗
pq,m′ , Cpq,mm′ =

1

2

∫ +∞

−∞
cpq,mm′(τ) exp(iΩpqτ) dτ.

(27)
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Thermalization and reduction to Lindblad-Kossakowski form

It is seen that the form (27) is generally not in the Lindblad-Kossakowski
form. The thermal correction is needed as well as the reduction of the double-
commutators in a proper way. This is done as follows.

Taking Hermitian conjugate and permuting indices, we obtain

Γ̂ =
∑
p,q

∑
m,m′

Cpq,mm′F̂pq,mF̂
∗
pq,m′ =

∑
p,q

∑
m,m′

C∗pq,m′mF̂
∗
pq,m′F̂pq,m.

Since

C∗pq,m′m = Cpq,mm′ ,

this gives

Γ̂ =
1

2

∑
p,q

∑
m,m′

Cpq,mm′

(
F̂pq,mF̂

∗
pq,m′ + F̂ ∗pq,m′F̂pq,m

)
.

Consider the two superoperators

Û+
pq,mm′σ = Fpq,mσF

∗
pq,m′ −

1

2

(
σF ∗pq,m′Fpq,m + F ∗pq,m′Fpq,mσ

)
,

Û−pq,mm′σ = F ∗pq,m′σFpq,m −
1

2

(
σFpq,mF

∗
pq,m′ + Fpq,mF

∗
pq,m′σ

)
and rewrite Γ̂ as

−Γ̂′ =
∑
p,q

∑
m,m′

Cpq,mm′

(
Û+
pq,mm′ + Û−pq,mm′

)
+
∑
p,q

∑
m,m′

C−pq,mm′

(
Û+
pq,mm′ − Û−pq,mm′

)
.

In accordance with the formula

F̂pq,mF̂
∗
pq,m′ + F̂ ∗pq,m′F̂pq,m = −2

(
Û+
pq,mm′ + Û−pq,mm′

)
,

the superoperator Γ̂′ is in the Lindblad-Kossakowski form and coincides with Γ̂ for
C−pq,mm′ = 0. We can choose C−pq,mm′ in such way that

Γ̂′σth = 0.

Then the master equation

σ̇ = −iĤ0σ − Γ̂′σ

is the needed homogeneous Lindblad-Kossakowski form where the full density op-
erator should be used. Here we can apply the approximation

σth =
1

N
(1− 2p0Sz) , p0 = tanh

~ΩS

2kBT
.
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11.3. Derivation of the relaxation superoperator based on the uncorrelated
random fluctuation model

Let us introduce the superoperators

Ûzσ = SzσSz −
1

2
(σSzSz + SzSzσ) , Û±σ = S±σS∓ −

1

2
(σS∓S± + S∓S±σ) ,

ûkzσ = IkzσIkz−
1

2
(σIkzIkz + IkzIkzσ) , ûk±σ = Ik±σIk∓−

1

2
(σIk∓Ik± + Ik∓Ik±σ)

and the commutation superoperators

L̂ ≡ [L, ·], L = Sz, S±, Isz, Is±.

Due to the relations valid for any spin 1/2

I2
z =

1

4
, I±I∓ =

1

2
± Iz,

we have

Ûz = −1

2
Ŝ2
z , ûkz = −1

2
Î2
kz,

Û+ + Û− = −1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
, ûk+ + ûk− = −1

2

(
Îk+Îk− + Îk−Îk+

)
,

(Û+ − Û−)σ = S+σS− − S−σS+ + σSz + Szσ,

(ûk+ − ûk−)σ = Ik+σIk− − Ik−σIk+ + σIkz + Ikzσ.

This gives

Γ̂σ = R2Ŝ
2
zσ +R1

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
σ +R3 (S+σS− − S−σS+ + σSz + Szσ) +

+
n∑
k=1

[
r2kÎ

2
kzσ + r1k

(
Îk+Îk− + Îk−Îk+

)
σ + r3k (Ik+σIk− − Ik−σIk+ + σIkz + Ikzσ)

]
(28)

where Rj , rjk are some rates to be specified.

11.4. Comparison of the action of the two models Γ0 and Γ for core nuclei

In this basis, each non-diagonal element Okj = vkv
∗
j , k 6= j, is represented by one

of the following forms

Okj = SβOZ

m∏
s=1

Isβs
, Okj =

(
1

2
± Sz

)
OZ

m∏
s=1

Isβs
, β, βs = ±, m ≥ 1,

24



August 8, 2013 Molecular Physics relax1

where OZ is a combination of Zeeman orders built of spins other than S, Is. For
example (the electronic state is separated with the comma),

|αβ, α〉〈ββ, β| = S+I1+

(
1

2
− I2z

)
, |αβ, α〉〈ββ, α| =

(
1

2
+ Sz

)
I1+

(
1

2
− I2z

)
.

Since T2e, T2n,k � T1e, T1n,k, the acton of our relaxation superoperator Γ̂ on Okj
in the first case is well approximated as

Γ̂Okj = R′2,kjOkj , R′2,kj =
1

T2e
+

m∑
s=1

1

T2n,s
.

In the second case,

Γ̂Okj ∼

(
1

2

m∑
s=1

1

T2n,s

)
OZ
∏

Isβs
+

(
p0 ± 1

T1e
±

m∑
s=1

1

T2n,s

)
OZSz

∏
Isβs

which leads to the approximation

Γ̂Okj = R′′2,kjOkj , R′′2,kj =
m∑
s=1

1

T2n,s
.

This means that the result of action of Γ̂ on Okj is approximately proportional to

Okj . Hence, in the model Γ̂0, we should let

Γ̂0Okj = R2,kjOkj , R2,kj = Tr
(

(Γ̂Okj)Ojk

)
.

In this case, the “transverse parts” of the both relaxation superoperators will be
close.

Each diagonal element is represented as

Okk =

(
1

2
+ βSz

) n∏
s=1

(
1

2
+ βsIsz

)
, β, βs = ±.

For example,

|αβ, α〉〈αβ, α| =
(

1

2
+ Sz

)(
1

2
+ I1z

)(
1

2
− I2z

)
.

The action of the relaxation superoperator Γ̂ onOkk gives a traceless combination of
Zeeman orders. Any such combination is expanded into a combination of operators
Okk −Ojj exactly as in the model Γ̂0. Hence, we should choose

Γ̂0Okk =
∑
j 6=k

R1,kj(Okk −Ojj), R1,kj = −Tr
(

(Γ̂Okk)Ojj

)

to get the both “longitudinal parts” close to each other.
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11.5. Numerical implementation of the Lindblad-Kossakowski relaxation
superoperator form

In this section we recapitulate some of the information already presented in sec-
tion 7 and 8 and explain how the Linbland-Kossakowski form of the relaxation
superoperator for the model free approach (14) can be conveniently calculated.
The Linbland-Kossakowski form of the relaxation superoperator is given by (14):

−Γ̂0σ =
∑
s 6=s′

Γss′

[
Oss′σOs′s −

1

2
(σOs′s′ +Os′s′σ)

]
+

+
∑
q

Γq

[
OqσOq −

1

2
(σOqOq +OqOqσ)

]
.

Where Γ̂0 indicates a matrix of the relaxation superoperator for the model-free
approach, Oss′ = vsv

∗
s are the eigenoperators constructed from the eigenvectors of

the stationary Hamiltonian in the Hilbert space. The requirement that the oper-
ators Oss are traceless can be fulfilled by setting up a linear combination of the
former: Oq =

∑N
s=1 cqsOss . The coefficient cqs are found by solving a set of equa-

tions given in (15). To avoid these cumbersome calculations we can further simplify
(14), the second term can be rewritten in the non-diagonal form:

∑
q′

Γq

[
OqσOq −

1

2
(σOq +Oqσ)

]
=

∑
ss′

Γ̄ss′

[
OssσOs′s′ −

1

2
(σOs′s′Oss +Os′s′Ossσ)

]
=∑

s 6=s′
Γ̄ss′OssσOs′s′+∑

s

Γ̄ss

[
OssσOss −

1

2
(σOss +Ossσ)

]
(29)

where the rates Γ̄ss′ are expressed via Γq and cqs. It follows from the form of (14)
that:

Γ̂0Okk =
∑
s 6=k

R1,sk(Okk −Oss), Γ̂0Okj = R2,kjOkj , k 6= j,

which in terms of the rates Γ̄ss′ ’ and gives us:

R2,kj =
1

2

Γ̄kk + Γ̄jj − 2Γ̄kj +
∑
s 6=k

Γsk +
∑
s6=j

Γsj

 , R1,sk = Γsk (30)

If the rates R1,sk, R2,kj are known one can invert the relation in (30) to find Γ̄ss′
and Γss′ , letting further Γ̄ss′ = 0 one gets:

Γsk = R1,sk, Γ̄kj =
1

2

∑
s 6=k

R1,sk +
∑
s6=j

R1,sj

−R2,kj (31)
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The rates R1,sk, R2,kj can be found from the projection of the eigenoperators Okj :

R2,kj = Tr
[(

Γ̂Okj

)
Ojk

]
, R1,sj = −Tr

[(
Γ̂Okk

)
Oss

]
, (32)

where Γ̂ is the relaxation superoperator matrix for the uncorrelated random field
model given by (10). To calculate the projection, operators Okj have be represented

column wise as vectors. The trace is taken if the product of Γ̂Okj is transform back
the operator representation or the scalar product ifOjk is in the vector form. Finally
the following expression for the relaxation superoperator matrix of the model-free
approach is obtained:

−Γ̂0σ =
∑
s 6=s′

Γss′

[
Oss′σOs′s −

1

2
(σOs′s′ +Os′s′σ)

]
+

+
∑
s 6=s′

Γ̄ss′OssσOs′s′
(33)

The advantage of the form (33) is that it contains only the operators Oss′ and
rates Γss′ , Γ̄ss′ easily calculated from (31) and (32).This form is especially conve-
nient if operators Oss′ are expressed as the left/right superoperators (operators in

Liouville space) i.e. ÔLss′ = Oss′ ⊗ 1, ÔRss′ = 1⊗O∗ss′ It is worth to notice that (33)
gives the thermalize form of the relaxation superoperator thus the homogenous
form of the master equations is preserved and exponential solution can be used.
Above-mentioned treatment can be adopted in one of the available spin dynamics
simulation software package .e.g Spinach.
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