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Graphene-hBN resonant tunneling diodes as high-frequency oscillators
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We assess the potential of two-terminal graphene-hBN-graphene resonant tunneling diodes as
high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to
determine the time-dependent response of the diodes in a resonant circuit. We quantify how the
frequency and power of the current oscillations depend on the diode and circuit parameters including
the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the
circuit impedances. Our results indicate that current oscillations with frequencies of up to several
hundred GHz should be achievable.
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Resonant tunneling diodes (RTDs) operating at 1.4
THz and 10 µW output power have been demonstrated
recently [1–3]. An addition to the family of RTDs is the
graphene tunnel transistor [4–15], in which negative dif-
ferential conductance (NDC), with a room temperature
peak-to-valley ratio of 2:1, arises from constraints im-
posed by energy and momentum conservation of Dirac
Fermions which tunnel through a boron nitride (hBN)
barrier [6, 7].

Here, we analyse how the device and circuit param-
eters can be tuned to increase the operating frequency
of graphene resonant tunneling diodes (GRTDs). Our
model device, shown schematically in Fig. 1(a), com-
prises two graphene layers separated by a hBN tunnel
barrier of thickness, d. The bottom (B) and top (T)
graphene electrodes are arranged in an overlapping cross
formation, resulting in a tunneling area, A = 1 µm2. We
consider the general case when the two graphene crys-
talline lattices are slightly misorientated by a twist angle,
θ, see Fig. 1(a). The tunnel current is particularly sensi-
tive to this angle [7]. A voltage, Vb, applied between top
and bottom graphene layers [Fig. 1(b)] induces a charge
density, ρB,T , in each layer and causes a tunnel current,
Ib, to flow through the hBN barrier. The graphene lay-
ers, with in-plane sheet resistance, R, carry current, I,
(black arrows) from two pairs of Ohmic contacts [orange
in Fig. 1(a)] to the central active (tunneling) region of
the device, i.e. currents, I/2, flow to/from each con-
tact. The electrostatics [4] are governed by the equation
eVb = µB−µT+φb, where φb = eFbd and Fb is the electric
field in the barrier, e is the magnitude of the electronic
charge, and µB,T are the two Fermi levels [see Fig. 1(b)].

A device with NDC provides instability that can gen-
erate self-sustained current oscillations when placed in
an RLC circuit [16, 17]. To investigate the frequency
response of the GRTD, we solve the time-dependent cur-
rent continuity and Poisson equations self-consistently,
using the Bardeen transfer Hamiltonian method to cal-
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FIG. 1. (a) Schematic diagram of the GRTD comprising bot-
tom (red) and top (blue) graphene lattices, misaligned by an
angle θ and separated by a hBN tunnel barrier (dark green).
The current, I, passes through the tunnel barrier between the
graphene electrode layers to/from Ohmic contacts (orange).
The diode is mounted on a hBN layer (light green) and an
insulating substrate (purple). (b) Schematic diagram of the
resonant circuit incorporating the GRTD (in box) showing
the voltage applied, V , circuit inductance, L, and resistance,
R. The band diagram is shown (box), with electrostatic pa-
rameters defined in the text.

culate the tunnel current,

Ib =
8πe

~
∑

kB ,kT

|M |2[fB(EB)− fT (ET )]δ(EB −ET −φb),

(1)
as a function of time, t, and Vb. The summation is
over all initial and final states, with wavevectors, kB,T ,
measured relative to the position of the nearest Dirac
point in the bottom layer, K±

B = (±4π/3a0, 0), where
± distinguishes the two non-equivalent Dirac points in
the Brillouin zone and a0 = 2.46 Å is the graphene lat-
tice constant. The Fermi function in each electrode is
fB,T (EB,T ) = [1 + e(EB,T−µB,T )/kT ]−1 where EB,T =
sB,T~vF kB,T is the electron energy and sB,T = ±1 labels
electrons in the conduction (+) and valence (−) bands,
at temperature T = 300 K. Tunneling between equiv-
alent valleys gives the same contribution to the tunnel
current, so we consider transitions between K+ points
only. In Eq. (1) the matrix element, M , is

M = Ξγ(θ)g(ϕB , ϕT )VS(q−∆K), (2)

where Ξ = ξe−κd, ξ is a normalisation constant deter-
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FIG. 2. Equilibrium and non-equilibrium current-voltage
curves calculated for θ = 0.9◦, L = 140 nH and R = 50 Ω.
Blue: equilibrium current-voltage characteristic Ib(Vb). Note,
in equilibrium, Vb ≈ V and Ib = I. Green: time-averaged
current 〈I(t)〉t vs V . Red: peak-to-peak voltage amplitude
(right scale) of the stable current oscillations. Inset: I(t) plot
showing stable oscillations with f = 4.2 GHz.

mined by comparison with recent measurements [7] of Ib,
γ(θ) is the spatial overlap integral of the cell-periodic part
of the wavefunction, g(ϕB , ϕT ) describes electron chiral-
ity, VS is the elastic scattering potential, and q = kB−kT
(see below). The decay constant of the wavefunction in
the barrier is κ =

√
2m∆b/~, where the barrier height,

∆b = 1.5 eV, and the effective electron mass in the bar-
rier m = 0.5me [4].

In recently-studied GRTDs [7], the crystal lattices of
the two graphene layers are only misorientated by an
angle θ ≈ 1◦. Nevertheless, this gives rise to a signif-
icant misalignment of the Dirac cones of the two lay-
ers, ∆K = (R(θ) − I)K+, where R(θ) is the 2D rota-
tion matrix. When θ < 2◦, |q| ≈ |∆K| = ∆K and
electrons tunnel with conservation of in-plane momen-
tum. However, tunneling electrons can scatter elasti-
cally from impurities and defects, broadening the fea-
tures in the Ib(Vb) curves [18, 19]. Therefore, we use
a scattering potential VS(q) = V0/(q

2 + qc
2), with am-

plitude V0 = 10 meV and length scale 1/qc = 15 nm,
which gives the best fit in the region of the resonant
peak and NDC. The misorientation also reduces the spa-
tial overlap integral, γ(θ). The chiral wavefunctions give
rise to the term g(ϕB , ϕT ) = 1 + sBe

iϕB + sT e
−iϕT +

sBsT e
i(ϕB−ϕT ), where ϕ = tan−1(ky/kx) is the orienta-

tion of the wavevector.
Fig. 2 shows the equilibrium (static) Ib(Vb) curve

(blue), where Vb ≈ V and Ib = I, calculated for an un-
doped device with θ = 0.9◦ and d = 1.3 nm (4 layers
of hBN), similar to that studied in [7]. The calculated
Ib(Vb) curve reproduces the measured line-shape, posi-
tion of the resonant peak and current amplitude [6, 7].
The peak occurs when many electrons can tunnel with
momentum conservation, i.e. q −∆K ∼ 0, correspond-
ing to a resonant increase in the matrix element M , i.e.
when φb = ~vF∆K for θ close to 1◦. Temperature has
negligible effect on the I(Vb) curve when Vb > kT/e ∼ 30
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FIG. 3. (a) fmax(R) calculated when NL = 4. Inset: Log-log
plot. (b) fmax vs R when NL = 2 (red), 3 (green) and 4
(blue). Inset: fmax vs NL calculated when R = 50 Ω. Curves
are shown solid over the range of R presently obtainable in
GRTDs and dashed for R values that could be achieved by
future device designs. All curves are for undoped devices.

mV [6, 7].
We now consider the non-equilibrium charge dynam-

ics when the device is in a series circuit with inductance,
L, and resistance, R, see Fig. 1(b); the diode has an
in-built capacitance, C. The device has no in-built in-
ductance and therefore, to oscillate, requires a series in-
ductance. Recently, self-excited plasma oscillations have
also been shown to cause instabilities and oscillations in
GRTDs [15]. The primary contribution to R arises from
the graphene electrodes [4] and depends on the charge
densities, ρB,T . This dependence does not significantly
affect the high-frequency (HF) response: for most of the
oscillation period, changes in ρB,T do not greatly affect
R. Therefore, we take R to be independent of t. How-
ever, R can be changed by altering the device geometry,
e.g. by reducing the length of the electrodes, and we con-
sider this effect on the performance of the GRTD. We also
consider how L affects the frequency, which could be con-
trolled by careful design of the microwave circuit, e.g. by
using a resonant cavity or integrated patch antennas [2].

We determine the current, I(t), in the contacts and ex-
ternal circuit by solving [20] self-consistently the current-
continuity equations: dρB,T /dt = ±(Ib − I)/A, where
the + (−) sign is for the bottom (top) graphene layers,
see Fig. 1(b), ρB,T are related by Poisson’s equation:
εFb = ρB − ρBD = −(ρT − ρTD), in which ε = ε0εr and
εr = 3.9 [4, 21] is the permittivity of the barrier, and
ρBD (ρTD) are the doping densities in each layer. The
voltages across the inductor and resistor, VL and VR, are
given by dI/dt = VL/L, VR = IR, and V = VR+Vb+VL.

Following initial transient behavior, I(t) either decays
to a constant value or oscillates with a frequency, f , and
time-averaged current, 〈I(t)〉t. Fig. 2, inset, shows a
typical I(t) curve, for V = 0.48 V, exhibiting oscillations
with f = 4.2 GHz. In Fig. 2, we show 〈I(t)〉t versus
V (green) and Ib(Vb) (blue curve) for an undoped device,
with θ = 0.9◦, placed in a resonant circuit with R = 50 Ω
and L = 140 nH. The plot reveals that when V is tuned
in the NDC region (0.55 V < V < 0.8 V), ∆VL = V max

L −
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V min
L (red curve) becomes non-zero indicating that self-

sustained oscillations are induced. Here, V
max/min
L is the

maximum/minimum voltage dropped across the inductor
during an oscillation period. Also, the 〈I(t)〉t versus V
curve (green) diverges from the static current, Ib(Vb),
(blue) in the NDC region. This is due to asymmetric
rectification of I(t) in the strongly nonlinear NDC region
of Ib(Vb). When the device is biased in regions of positive
differential conductance, i.e. V < 0.55 V or V > 0.8
V, oscillations are suppressed and 〈I(t)〉t converges to
Ib(Vb).

This behavior is similar to that recently measured in
a GRTD, where oscillations with f ∼ 2 MHz were re-
ported [7]. That device had high circuit capacitance due
to large-area contact pads and coupling to the doped Si
substrate (gate). This effect can be modelled by placing
a capacitor in parallel with the GRTD. Including this
large capacitance (65 pF) limits the maximum observed
f value [7]. When parasitic circuit capacitances are min-
imised, using the geometry shown in Fig. 1(a), the
only significant contribution to the total capacitance is
from the graphene electrodes, as described by the charge-
continuity equation. This enables us to investigate the
potential of GRTDs optimised for HF applications.

A small signal analysis [16] provides insight into how
L, R, and the form of Ib(Vb) affect the circuit response
and gives an approximate frequency:

fs = f0

√
(1−R/RN )−Q−2

N (1−Q2
NR/RN )

2
/4, (3)

where RN is the maximum negative differential resistance
of the equilibrium I(V ) curve, the circuit factor QN =

RN
√
C/L, and f0 = 1/2π

√
LC. Here, RN is large and

therefore fs ≈ f0. For a given C (that depends on A and
d), the frequency can be increased by reducing L. The
decay parameter of the small signal analysis reveals that
the circuit will oscillate only if(

RN/R−Q2
N

)
> 0. (4)

Consequently, R, and the shape of the static Ib(Vb) curve
are also important for optimising the HF performance.

We now consider the self-consistent simulation of the
charge dynamics. Fig. 3(a) shows the fmax(R) curve
calculated for the diode parameters, which compare well
to recent measurements [7], used to produce the Ib(Vb)
curves in Fig. 2. We determine fmax(R) by finding the
smallest L value for self-sustained oscillations. The solid
part of the curve in Fig. 3(a) shows fmax over the range
of R values that can be achieved with small modifica-
tions to the design of existing devices, e.g. by reducing
the length of the graphene between the tunnel area and
the Ohmic contacts, or by doping the electrodes. The
dashed part is calculated for R values that may be pos-
sible in future configurations. The curve reveals that for
a recently-attained R = 50 Ω [22, 23], fmax = 1.8 GHz.

Fig. 3(a), inset, reveals the power law fmax ∝ R−0.505,
which can be derived by setting Eq. (4) equal to zero
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FIG. 4. (a) Ib(Vb) characteristics calculated for a doped
(green, ρBD/e = 1013 cm−2) and undoped (red) device, with
NL = 2. The arrow shows the shoulder that arises due to the
quantum capacitance effect. (b) fmax vs R curves for the de-
vices in (a). Inset: fmax vs (ρBD/e) calculated when R = 50
Ω, with ρTD/e = 0. Curves in (b) are shown solid over the
range of R presently obtainable in GRTDs and dashed for R
values that could be achieved by future device designs.

and rearranging to find the smallest L value for a given
R, RN , and C [16]. For this case

fsmax = (2πC
√
RRN )−1 ∝ R−0.5, (5)

which compares well with the full signal analysis.
To increase fmax, we can also modify Ib(Vb). Reducing

the number of layers, NL, in the hBN tunnel barrier in-
creases Ib (∼ 20× for each layer removed [24]) thus reduc-
ing RN and increasing fmax, see Eq. (5). Fig. 3(b) shows
fmax(R) calculated for a device with NL = 4 (blue), 3
(green) and 2 (red). Reducing d produces a large gain
in fmax for all R. For example, fmax for a device with
NL = 2 is at least an order of magnitude higher than
when NL = 4 (e.g. for R = 50 Ω, fmax= 26 GHz when
NL = 2, compared to fmax = 1.8 GHz when NL = 4).

The Ib(Vb) characteristics can also be modified by dop-
ing the graphene chemically [25, 26] or, equivalently, by
applying a gate voltage, Vg, to shift the current peak and,
thereby, change RN and the peak to valley ratio [6, 7]. In
Fig. 4(a), we show Ib(Vb) curves calculated when NL = 2
for an undoped (red curve) and an asymmetrically-doped
device with ρBD/e = 1013 cm−2 and ρTD/e = 0 (green
curve). When ρBD > 0, the resonant peak occurs at
higher Vb than when ρBD = 0, and the current peak
magnitude is higher, raising the PVR from 1.5 to 3.5.

The shoulder of the green curve in Fig. 4(a), (arrowed)
when ρBD/e = 1013 cm−2, arises from the low density
of states around the Dirac point. This gives rise to an
additional quantum capacitance [6, 27], CQ, whose effect
is prominent when the chemical potential in one layer
aligns with the Dirac point in the other layer. The total
capacitance is given by C−1 = C−1

G + C−1
Q , where CG =

ε0εrA/d is the geometric capacitance. When µB,T passes
through the Dirac point, CQ → 0 and, hence, C → 0,
suggesting that the RC time constant of the device could
be reduced. In practice, CQ is small for only a small
fraction of the oscillation period and so its effect on the
fundamental frequency of I(t) is negligible.
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(magenta), taking ρBD/e = 0 cm−2 and NL = 2. (b) Cur-
rent amplitude at the peak vs misalignment angle, θ. Inset:
PVR of Ib(Vb) vs θ. (c) Ib(Vb) calculated when θ = 0◦ and
ρBD/e = 1013 cm−2. Inset: RN (θ) for undoped (upper) and
ρBD/e = 1013 cm−2 (lower) diodes. (d) fmax vs R curves
calculated for an aligned sample (black) and misaligned sam-
ple with θ = 0.9◦ (green), when ρBD/e = 1013 cm−2. Curves
are shown solid over the range of R presently obtainable in
GRTDs and dashed for R values that could be achieved by
future device designs. For all curves, ρTD/e = 0 cm−2.

Fig. 4(b) shows fmax(R) curves calculated for undoped
(red) and doped (green) devices and reveals that the
doped device is faster for all R. Fig. 4(b) inset shows that
fmax increases monotonically with ρBD/e when R = 50
Ω; fmax increases by a factor of 1.25 when ρBD/e is in-
creased to 1013 cm−2 (and f = 32 GHz) from ρBD/e = 0
(f = 26 GHz).

To quantify the possible benefits of lattice alignment,
Fig. 5(a) shows the effect of changing θ on Ib(Vb). As θ
increases, the position of the current peak shifts to higher
Vb. The peak current amplitude, Ipeak, decreases as θ
increases due to increasing misorientation of the spatial
parts of the wavefunction, see Fig. 5(b), so that Ipeak
could be ∼ 10× larger for an aligned device. However,

for undoped samples, the PVR increases with increasing
θ, see inset in Fig. 5(b), converging to a value of 3.4 as θ
approaches 2◦: at higher θ, more states are available to
tunnel resonantly at the current peak [10]. For the doped
samples (ρBD/e = 1013 cm−2), the valley current is close
to 0 for all θ, thus the PVR is consistently large, see Fig.
5(c). Consequently, the increase in current magnitude,
which results from alignment, leads to higher f values
without the power reduction associated with undoped
samples. We find that, generally, RN (∝ 1/fsmax; Eq.
(6)) decreases with decreasing θ, Fig. 5(c) inset, and
with increasing ρBD, meaning that f is highest for θ =
0◦ and when ρBD = 0. Fig. 5(d) shows that perfect
alignment could increase fmax by a factor of ∼ 2, i.e. for
R = 50 Ω, fmax = 65 GHz when θ = 0◦ compared to 32
GHz when θ = 0.9◦. The numerical results diverge from
the small signal analysis power law of fmax ∝ R−0.5 as
RN becomes small, see black curve of Fig. 5(d), and it
becomes necessary to vary V to induce oscillations.

In conclusion, we have investigated the performance of
GRTDs as the active element in RLC oscillators. These
devices could oscillate at mid-GHz frequencies, by careful
design of the RLC circuit. We have also quantified the
effect of changing the parameters of the GRTD. Reduc-
ing the barrier width (a modest change to the structure
of existing devices) increases the tunnel current, and thus
raises the oscillation frequency by an order of magnitude.
Adjusting the doping of the electrodes can enhance f . Fi-
nally, we have considered the effect of misalignment of the
graphene electrodes: in devices with aligned lattices, fre-
quencies approaching 1 THz may be attainable. GaAsI-
nAs/AlAs RTDs [1] with NL = 2 barriers have similar Ib
and Vb values as the GRTD reported here. We therefore
expect that the GRTD will produce similar EM emission
power (∼10 µW). Our results illustrate the potential of
graphene tunnel structures in HF graphene electronics.
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