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Highlights 

 The immunophilin FKBP52 is known to modulate hallmarks of Alzheimer’s disease 

 Downregulation of FKBP52 levels does not alter cognitive performance with ageing 

 Reduced FKBP52 levels lead to impaired motor coordination 

 

Abstract 

FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-

ranging functions in cell signalling as well as hormonal and stress responses. Amongst other 

pathways, it acts via complex-formation with corticosteroid receptors and has consequently 

been associated with stress- and age- related neurodegenerative disorders including 

Alzheimer’s and Parkinson’s diseases. Reduced levels of FKBP52 have been linked to tau 

dysfunction and amyloid beta toxicity in AD. However, FKBP52’s role in cognition and 

neurodegenerative disorder-like phenotypes remained to be elucidated. 

The present study aimed therefore at investigating the cognitive and behavioural effects of 

reduced FKBP52 levels of genetically modified mice during ageing. Female and male 

FKBP52+/+, FKBP52+/- and FKBP52-/- mice were compared at two-, ten-, twelve-, fifteen- 

and eighteen-months-of-age in a series of behavioural tests covering specie-specific 

behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as 

curiosity and emotionality. 

Whilst cognitively unimpaired, FKBP52+/- mice performed worse on an accelerating rotating 

rod than FKBP52+/+ littermates across all age-groups suggesting that FKBP52 is involved in 

processes controlling motor coordination. This deficit did not exacerbate with age but did 

worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks 

requiring motor coordination abilities. 

This study contributes to the knowledge base of FKBP52’s implication in neurodegenerative 

diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may 

therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas 

it directly affects motor coordination, an early sign of neurodegenerative damages to the 

brain. 
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1 Introduction 

FKBP52 is classed as an FK506-binding immunophilin of high molecular mass (52 kDa) [1] 

expressed in a variety of mammalian tissue cells including nervous cells [2]. With its 

tetratricopeptide repeat domains in its C-terminus part, it acts as a chaperone in protein 

folding; and partakes in the hormonal metabolism by binding to progesterone- and androgen- 

receptors [1, 3]. Its peptidyl-propyl cis/trans isomerase domain is necessary for its interaction 

with glucocorticoid receptors (GRs) [1, 4]. FKBP52 participates to the nuclear transport 

of and activation of GRs [5], and as such, is involved in the stress system [6, 7]. FKBP52 

also binds to the mineralocorticoid receptor-heat shock protein 90 (MR-Hsp90) complex 

[8] favouring the cytoplasmic transport of MR to the nucleus [9]. By regulating MR 

function, FKBP52 can thus modulate neuronal function and survival as well as 

behaviours related to stress, mood and learning [10]. 

As a glucocorticoid receptor regulator, FKBP52 is implicated in the hypothalamic-pituitary-

adrenal axis [4] which is crucial for brain ageing; and higher levels of FKBP52 have been 

measured in aged (twenty-six-month-old) C57Bl/6N mice when compared to six-month-old 

C57Bl/6N mice [11]. This age-related FKBP52 increase is not associated with recognition 

memory performance in senescent mice [11]. FKBP52 is expressed in brain areas such as in 

the hippocampus, frontal cortex, amygdala and basal ganglia [12] which are also implicated 

in the pathology of a number of neurodegenerative diseases, such as Alzheimer’s disease 

(AD) and Parkinson’s disease. Traditionally, AD is characterised by accumulation and 

aggregation of two proteins, namely amyloid beta (Aβ) and tau. Small soluble Aβ aggregates 

and neurofibrillary tangles (created by tau aggregation) appear to be good indicators of AD 

severity [13]. FKBP52 has shown to interact with both proteins, whereby it modulates Aβ 

toxicity [12] and prevents microtubule formation by tau [14].  FKBP52 expression has been 

found to be particularly low in the frontal cortex of deceased AD patients [15]. This suggests 

that reduced FKBP52 levels are a risk factor for cognitive decline. 

Whilst FKBP52 has been found to alter Aβ or tau processing in cell cultures [12, 14] but 

it is it is unclear to what extent this affects functional aspects that are traditionally 

associated with Aβ or tau accumulations, e.g. cognitive decline. Furthermore, FKBP52 



levels are altered in the ageing brain [11], and therefore this may affect the severity of 

behavioural decline in ageing and/or behaviours relevant to neurodegenerative diseases 

other than AD. The aim of the present study was, therefore, to determine cognitive and 

behavioural effects of reduced FKBP52 levels in behavioural ageing per se using a 

comprehensive test battery covering species-specific behaviour, motor coordination, 

locomotor activity, spatial and recognition memory as well as fear learning and 

memory, sensory motor gating and emotionality. Given the association of FKBP52 with 

the reproductive system [3] female and male FKBP52+/+ and FKBP52+/- mice were compared.  

 

2 Materials and methods 

2.1 Animals 

FKBP52+/- mice, generated as previously described [16], were obtained from the Indiana 

University School of Medicine (Indianapolis, USA). FKBP52+/+, FKBP52+/- and FKBP52-/- 

mice were bred on a mixed 129SvJ x C57Bl/6J background at the Bio Support Unit of the 

University of Nottingham (Nottingham, UK). Genotyping was carried out by Transnetyx 

(Cordova, USA). Separated by sex, animals were group-housed in individually ventilated 

cages (38 cm x 20 cm x 13 cm). These were supplied with ad libitum food and water, sawdust 

flooring, bedding material, cardboard tubes and wooden chewing sticks for environmental 

enrichment. Temperature, relative humidity and air exchange were kept consistent in holding 

rooms and behavioural testing suites. Lighting in holding rooms was maintained at a 12/12, 

24 hour light/dark cycle, with lights on at 07h00. All procedures were performed according to 

the Animals (Scientific Procedures) Act 1986, under project license 40/3601; and reported 

according to the ARRIVE guidelines [17]. 

 

The number of mice used for all three experiments are listed in table 1. Power analysis based 

on preliminary accelerod data acquired from ten-month-old female and male FKBP52+/- and 

FKBP52+/+ mice suggested the use of twelve mice per genotype and age-group in order to 

detect a genotype-related difference with a 90 % power. Throughout the study, 13 fifteen-

month-old and twelve eighteen-month-old mice were lost due to spontaneous death. In 

experiment 3, six female FKBP52-/- mice were compared to six female FKBP52+/- and 

FKBP52+/+ mice. The five male FKBP52-/- mice, however, displayed inter-sex characteristics 



externally, with underdeveloped testicles upon dissection, and their ambiguous sex 

questioned the use of males as appropriate controls 

 

2.2 Experimental design 

The initial experiment tested ten- and twelve-month-old mice of both sexes towards the end 

of their reproductive period in a longitudinal study (experiment 1). Genotype differences that 

evolved between these two age groups could either be ascribed to advancing age or repeated 

testing. Hence, in experiment 2, experimentally naïve male and female FKBP52+/+ and 

FKBP52+/- mice underwent the same tests at two-, twelve-, fifteen- and eighteen- months-of-

age, covering the beginning and end of the reproductive period, as well as senescence, to 

confirm whether these effects were persistent and exacerbated with advanced age. The ideal 

of observing FKBP52+/+, FKBP52+/- and FKBP52-/- mice over a period of time to study the 

consequences of FKBP52 reduction and loss could not be realised due to breeding issues. It 

appeared that the majority of FKBP52-/- mice died at birth, to the effect that only 12 FKBP52-

/- mice out of a 1300-mouse-strong colony survived birth; confirming previously reported 

breeding problems [18]. The surviving homozygous knock-outs were tested together with 

FKBP52+/- and FKBP52+/+ mice at twelve-months-of-age only (experiment 3) and were used 

to confirm the results that were obtained from experiment 2. Figure 1 depicts the order of 

tests that were applied in order of increasing severity [19]. 

 

2.3 Statistical analysis  

Data are presented as mean ± SEM. All analyses of variance and covariance 

(ANOVA and ANCOVA, respectively), as well as mixed model repeated measures analyses 

in the following were conducted using InVivoStat (v. 2.5; Geiszler, Barron [20]). One-sample 

t-tests were performed using SPSS v. 21.0.0.0 (IBM SPSS Statistics). An effect was 

considered significant when p values were ≤ 0.05 and post-hoc planned comparisons were 

used where appropriate. Only statistically significant effects due to genotype or its 

interactions with other factors (e.g. age or sex) are illustrated in the main manuscript. 

Remaining data is presented in the supplementary material. Data collected in experiment 3 

was graphically represented and described but not statistically compared due to the sexual 

ambiguity of FKBP52-/- male mice. 



2.4 Body mass 

All animals were weighed before they went on experiment on day 0, and again on days 4 and 

14. In experiment 1, day 0 data were analysed by three-way mixed model with repeated 

measures; with genotype and sex as between-subject factors and age as the repeated factor. In 

experiment 2, day 0 data were analysed by single-measures three-way ANOVA, with 

genotype, age and sex as between-subject factors.  

 

2.5 Behavioural and cognitive tests 

2.5.1 Food burrowing  

Food burrowing assesses a species-specific behavioural analogue of daily living activity [21, 

22]. For the duration of this test, mice were singly housed in individually ventilated cages 

that were equipped like their home cages. In addition to their usual diet, mice were presented 

with a glass jar that contained small pellet, high-nutrient food (50 g). The percentage of food 

displaced from each jar between 5 pm and 9 am the following morning was recorded. Food 

displacement data were analysed by a three-way mixed model approach with repeated 

measures in experiment 1; using genotype, age and sex as between-subject factors and body 

mass as covariate. Data from experiment 2 were analysed by a three-way ANCOVA, with 

genotype, age and sex as between-subject factors and body mass as covariate.  

 

2.5.2 Spontaneous alternation  

The spontaneous alternation performance was tested in a Y-shaped maze. In this study the 

maze was made of transparent polyacrylate (44 cm long x 7 cm wide x 25 cm high; three 

identical arms 120° apart). Mice were placed in the centre and allowed to move freely for 5 

minutes. The number of arms entered was counted as a measures of locomotor activity and 

exploratory behaviour [23]. Entries into an arm that differed from the previous two were 

accepted as successful alternation, indexing spatial short-term working memory [24, 25]. The 

alternation rate (%) was calculated as follows: 100 x number of alternations / (number of arm 

entries – 1). The number of arms entered and alternation rate were analysed by either three-

way mixed model repeated measures approach (experiment 1); with genotype and sex as 

between subject-factors and age as the repeated factor; or by three-way single measures 

ANOVA (experiment 2), with genotype, age and sex as between-subject factors. An 



alternation rate significantly above 50 % (random chance) indicates the use of a spatial 

working memory strategy [26] which was tested using a one sample t-test in all three 

experiments. 

2.5.3 Open field and novel object  

Mice were first individually habituated to the empty open-field arena (35 cm x 30 cm x30 cm 

height) for 30 minutes. Ethovision tracking software (v. 7.0; Noldus, Wageningen, 

Netherlands) was used to acquire the distance mice moved as measurement of locomotor 

activity [27]. To evaluate anxiety-like behaviour [27], the relative distance they moved in the 

centre of the arena (21 cm x 6 cm) was calculated [28] to ensure that any differences in object 

exploration levels between treatment groups were due to differences in memory and not 

activity and/or anxiety levels. 

The novel object tasks were used to assess location and recognition memory on day 2. These 

tasks exploit the natural tendency of mice to preferentially explore novel, over familiar 

objects [29] and their locations. The procedure used here was adapted from a previously 

validated protocol [30]. The objects were striped, wooden, prisms with a circular or triangular 

area. All mice were subjected to 3 trials over a period of 36 minutes. In the habituation trial, 

mice were presented with two identical objects placed adjacent to each other for six minutes. 

Ten minutes later, the mice were presented with the same objects – albeit one had moved to 

the opposite corner in the arena – for another six minutes (location trial). Twenty minutes 

after the second trial, the mice were returned to the arena for the discrimination trial where 

one of the two objects was replaced by an object of a different shape (discrimination trial). 

Ethovision tracking software was used to record the duration of exploration of each object in 

each trial, where exploration was defined as detection of the nose-point ≤ 1 cm from each 

object. Mice exhibiting a total exploration time of less than five seconds in any one trial were 

excluded from analysis due to insufficient exploration.  

Open field and novel object data were analysed by either a three-way mixed model repeated 

measures approach (experiment 1); with genotype and sex as between-subject factors and age 

as the repeated factor; or by a three-way single measure ANOVA (experiment 2) with 

genotype, age and sex as between-subject factors. The preference indices were also compared 

to chance levels (50 %) using a one sample t-test. 



2.5.4 Accelerod  

Motor coordination was assessed using a modified rotarod test protocol [31-33]. The 

accelerating rotarod (Harvard apparatus) consisted of a rotating, white, ridged rubber rod, 

separated by fixed, white polyacrylate partitions into five, 6-cm-wide sections. Accelerod 

experiments were carried out in three trials, consisting of two runs each, over three days, in 

which each mouse was placed onto the rod which rotated at a baseline speed of 4 rpm. Over 

the following ten minutes time the rod steadily accelerated up to a maximum of 40 rpm. The 

latency to fall from the accelerating rod indicated motor coordination performance. This was 

noted for each run and subsequently averaged for each trial. If mice reached the maximum 

limit of ten minutes, they were removed from the rod and given the maximum time. The 

effect of age or repeated testing on latency to fall in experiment 1 was assessed by calculation 

of a performance index, where performance index = (trial 9 latency – trial 1 latency)/trial 9 

latency x 100. 

Latency to fall acquired in experiment 1 was analysed within each age group by three-way 

mixed model with repeated measures; with genotype and sex as between-subject factors and 

trial as the repeated factor. The performance index was analysed by three-way mixed model 

repeated measures approach using genotype and sex as in-between factors and age as 

repeated factor. Latency to fall data acquired in experiment 2 were analysed by four-way 

mixed model with repeated measures; using genotype, age and sex as between-subject factors 

and trial as the repeated factor. Body mass was considered as covariate in all analyses. 

2.5.5 Acoustic startle response and prepulse inhibition  

The startle response comprises a contraction of skeletal muscles elicited by a sudden, intense 

stimulus [34]. If this stimulus is preceded by a non-startling stimulus the magnitude of the 

response can be reduced (prepulse inhibition); which is understood to measure sensorimotor 

gating and the ability to process information [34]. The test protocol used here was adapted 

from [35]. Acoustic stimuli were delivered and startle responses measured via a piezoelectric 

sensor in a two-unit automated startle system (SR Lab software; San Diego Instruments, San 

Diego, CA, USA). The startling pulse consisted of a single white noise burst (40 ms at 120 

dB). The prepulse + pulse trials consisted of a prepulse of noise (20 ms at 68, 72, 80 and 90 

dB respectively) followed by startling pulse 100 ms after prepulse onset. The protocol began 

with a five-minute-long acclimation period at background noise level (no-stimulus). The 

following 84 trials consisted of 24 startling pulse trials, 12 no-stimulus trials and 48 prepulse 

+ pulse trials (12 of each prepulse amplitude) in pseudorandom order. Inter-trial intervals 



were pseudo-randomly distributed between 12-30 seconds. The indices measured from raw 

output data were startle latency, startle magnitude and % prepulse inhibition [100*(prepulse + 

pulse amplitude/pulse amplitude alone)] to assess the mice’s responsiveness to stressful 

situations [36]. 

Startle latency and startle magnitude were analysed by either a three-way mixed model 

approach with repeated measures; with genotype and sex as between-subject factors and age 

as the repeated factor (experiment 1) or by three-way single measure ANCOVA, with 

genotype, age and sex as between-subject factors (experiment 2). Body mass was entered as 

covariate in all cases. % prepulse inhibition data of experiment 1 were analysed within each 

age group by three-way mixed model approach with repeated measures; with genotype and 

sex as between-subject factors and dB level of the prepulse as repeated factor, whereas data 

of experiment 2 were analysed by four-way mixed model repeated measures approach; with 

genotype, age and sex as between-subject factors and prepulse dB level as repeated. Body 

mass was used as covariate. 

2.5.6 Contextual fear conditioning  

The protocol used here has been described previously [28] and was used to assess acquisition, 

retention and extinction of contextual memory [37].  

On each day of this three-day-long experiment, mice were placed individually in a test 

chamber (25 cm x 22 cm) consisting of a metal grid floor, three metal walls and one clear 

polyacrylic wall. The Ethovision tracking software recorded the time mice spent immobile, 

which was defined as less than 0.75% change of mouse “area” as viewed from above. For the 

acquisition trial, mice were placed into the test chamber and administered electric foot shocks 

every minute (0.4 mA, one-second-long, every minute) for ten minutes. An increase in the 

time the mice spent immobile with incrementing number of shocks indicated positive 

learning of the averseness of the context (the chamber). 

In experiment 1, the effect of genotype and sex on associative learning was assessed per age-

group. The statistical analysis included three-way mixed model approach with repeated 

measures; with genotype and sex as between-subject factors and number of shocks as the 

repeated factor. In experiment 2, a four-way mixed model repeated measures strategy 

analysed immobility data; with genotype, age and sex as between-subject factors and number 

of shocks as repeated factor.  



Retention and extinction trials were carried out after a 24- and 48-hour-long delay, 

respectively, whereby mice were presented with the same test chamber for three-minutes 

without receiving foot shocks. The length of time the mice spent immobile in the second trial 

was used as a measure of retention of contextual fear memory. The extinction index (time 

immobile during extinction trial minus immobility time during retention trial) indicated 

extinction of contextual fear memory. A negative value suggested successful extinction.  

Immobility data of the retention and extinction trials as well as the extinction indices were 

analysed by a three-way repeated measures mixed model strategy; with genotype and sex as 

between-subject factors and age as repeated factor in experiment 1; whilst data obtained from 

experiment 2 were analysed by three-way single measure ANOVA (genotype, age and sex as 

between-subject factors). The difference of extinction index values from 0 was assessed by 

student’s t-test in all experiments.  

2.5.7 Elevated plus maze  

The elevated plus maze test was used to assess anxiety-like behaviour in mice by exploiting 

their natural aversion for open, elevated spaces and their conflicting desire to explore novel 

surroundings [38]. This test was performed according to a previously described procedure 

[7]. The plus-maze was made of white polyacrylate, consisting of four arms (5 cm x 35 cm 

each); two ‘closed’ arms with white walls (12 cm high) and two ‘open’ arms without any 

walls; held at a one-meter-high elevation. Each mouse was left to explore the maze for five 

minutes which was tracked by Ethovision. The percentage of the time the mice spent in the 

open arms over closed arms was calculated and used as a measure of anxiety-like behaviour. 

Mice that fell from the maze during their trial were excluded from the analysis. 

The percentage of time that the mice spent in the open arm was analysed by a three-way 

repeated measures mixed model strategy with genotype and sex as between-subject factors 

and age as repeated factor in experiment 1. Data obtained from experiment 2 were analysed 

by three-way single measure ANOVA, where genotype, age and sex were used as between-

subject factors.  

 



3 Results 

The focus of the study was the impact of FKBP52 downregulation with ageing. All 

AN(C)OVA and mixed model repeated measures analysis results are listed in the 

supplementary material (Supplementary Tables 1 and 2). Table 2 summarizes the significant 

effects of genotype in the test battery, which are described in detail below. Age- and sex-

related effects, independent of genotype, are detailed in the supplementary material. 

 

3.1 Body mass 

In the first experiment, the mice’s body mass increased between ten- and twelve-months-of-

age irrespective of sex (age: F(1, 43) = 101.67, p < 0.0001; Figure 2A). The effect of genotype 

on the mice’s body mass (F(1, 43) = 5.28, p = 0.0265) was solely due to females. Female 

FKBP52+/- mice were heavier than their FKBP52+/+ littermates (p = 0.0084 and p = 0.0043 at 

ten and twelve-months-of-age, respectively), although the genotype x sex interaction failed to 

reach the critical level of significance (F(1, 43) = 3.3, p = 0.0761).  

The age-dependent increase in body mass was confirmed when considering a wider age 

range, from two- to eighteen-months-of-age (experiment 2; age: F(3, 151) = 136.05, p < 

0.0001); with twelve-, fifteen- and eighteen-month-old mice being heavier than two-month-

old mice (p < 0.001 in all cases); and eighteen-month-old male mice also being heavier than 

twelve- and fifteen-month-old male mice (p = 0.0001 and p < 0.0001, respectively; Figure 

2B). The genotype-related difference in body mass seen in experiment 1, was, however, no 

longer apparent across the wider age range in experiment 2 or at twelve-months-of-age in 

experiment 3 (Figure 2C).  

Overall, downregulation of FKBP52 levels did not affect body mass regardless of age. 

 

3.2 Food burrowing 

Food burrowing performance was not affected by genotype in any of the three experiments 

(Supplementary Figures S1 A, B and C); but showed a trend towards a decline from two- to 

eighteen-months-of-age (experiment 2: F(3, 150) = 2.53, p = 0.0594; S1 B). The decrease of 

food displaced with advancing age is consistent with previous observations (e.g. [20]), but 

performance may be affected by the age-related increase in body mass; as this variable was 

found to be significant covariate in the statistical analysis (p = 0.0238).   



3.3 Spontaneous alternation 

In experiment 1, ten- and twelve-month-old FKBP52+/- mice visited as many arms of the Y-

maze as age-matched FKBP52+/+ mice (Figure 3A). By contrast, statistical analysis of two-, 

twelve-, fifteen- and eighteen-month-old naïve FKBP52+/+ and FKBP52+/- mice of 

experiment 2 indicated that the number of arms entered was dependent on their genotype and 

age (F(3, 151) = 2.99, p = 0.033). This was only significant at the fifteen-months-of-age level 

where female FKBP52+/- mice visited more arms than their FKBP52+/+ littermates (p = 

0.0062; Figure 3B).  

Results of experiment 1 suggested that the number of arms visited was affected by mouse age 

and sex irrespective of genotype (age x sex: F(1, 43) = 13.92, p = 0.0006, Figure 3A). This 

result was due to ten-month-old male mice visiting less arms than their female counterparts (p 

= 0.0288) and twelve-month-old male mice (p = 0.0005); the latter of which visited more 

than age-matched females (p = 0.0153). In experiment 2, the number of arms entered 

decreased with age (F(3, 151) = 15.7, p < 0.0001) and was affected by sex (F(1,151) = 4.96, p = 

0.0275) but not by their interaction. At age-level, sex differences were only noted in 

FKBP52+/+ mice at fifteen-months-of-age (p = 0.0292; Figure 3B).  

In summary, downregulation of FKBP52 expression had no consistent effect on the mice’s 

willingness to explore the Y maze or their spatial working memory. In experiments 1, 2 and 

3, all mice alternated arm entries equally and in most cases above chance levels 

(Supplementary Figures S2 A, B and C, respectively). 

 

3.4 Open field  

FKBP52+/- and FKBP52+/+ mice displayed a similar levels of ambulation in the open field in 

experiment 1, 2, and 3. The distance travelled in the arena declined from two- to eighteen-

months-of-age (experiment 2; F(3, 151) = 13.78, p < 0.0001; Figure 4).  Twelve-month-old 

female FKBP52-/- mice of experiment 3, however, covered a greater distance than their 

female FKBP52+/+ and FKBP52+/- littermates which was comparable to the performance of 

male FKBP52+/+ and FKBP52+/- mice. Conversely, twelve-month-old male FKBP52-/- mice 

(presenting characteristics of prostate dysgenesis) appeared to be less active than male 

FKBP52+/+ and FKBP52+/- mice but the opposite was observed in female. In summary, partial 

knock-down of FKBP52 did not appear to affect locomotor activity. Anxiety-related 



behaviour, assessed through the relative distance covered in the centre of the open field, was 

not affected by the mice’s genotype (Supplementary Figures S3 A, B and C). 

 

3.5 Novel object location and recognition  

The total time the mice spent exploring both objects was not influenced by the mice’s 

genotype in any of the three experiments, regardless of the trial (Supplementary Figures S4 A 

- I). During the habituation trial, mice equally explored both objects, regardless of their 

location, in all three experiments (Supplementary Tables T1 and T2). There was no effect of 

the genotype on discrimination of the novel location (Supplementary Figures S5 A, B and C).  

With regards of object recognition, in experiment 1, where mice were repeatedly tested at 

ten- and twelve-months-of-age, heterozygosity for FKBP52 affected the preference for the 

novel over familiar object (F(1,43) = 4.34, p = 0.0435); whereby twelve-month-old female 

FKBP52+/- mice explored the novel object less than their FKBP52+/+ littermates (p = 0.0435; 

Figure 5A). This difference was not significant in females at ten-months-of-age or in male 

mice. Experimentally naïve mice of experiment 2 or 3 (Figures 5 B and C) were generally 

unable to discriminate the novel over familiar object, regardless of their age. 

In summary, the data collected here does not support a role for FKBP52 in object exploration 

or discrimination and spatial discrimination.  

 

3.6 Accelerod 

The time the mice spent on the accelerating rod increased with rising number of trials the 

mice were subjected to; suggesting that all groups improved their motor coordination with 

training in experiment 1 at ten- (F(8, 272) = 38.6, p < 0.0010; Figures 6A and E) and twelve-

months-of-age (F(8, 272) = 14.56, p < 0.0010; Figures 6B and F) as well as in experiment 2 (F(8, 

1200) = 69.68, p < 0.0010 Figures 7A - H) and experiment 3 (visual inspection Figures 6D and 

H). In all experiments this improvement was affected by the mice’s genotype in an age-

dependent manner: experiment 1 (performance index: genotype x age: F(1, 33) = 4.25, p = 

0.0472) and experiment 2 (genotype x age x trial: F(24, 1200) = 2.26, p = 0.0005); and was also 

influenced by the mice’s sex in experiment 1 (genotype x sex x trial: F(8, 272) = 2.02, p = 

0.0441) and 2 (age x sex x trial: F(24, 1200) = 1.82, p = 0.0089).  



The genotype-related differences became apparent in ten- and twelve-month-old female mice 

of experiment 1, whereby FKBP52+/- mice fell from the accelerating rod before FKBP52+/+ 

mice in the final trial (p = 0.0333, and p = 0.0394, respectively, Figures 6A and 6B). 

Similarly, twelve-month-old male FKBP52+/- mice fell from the rod before their FKBP52+/+ 

littermates in trial 5, 6, 7, 8 and 9 (p = 0.0305, p = 0.0297, p = 0.0192, p = 0.0151, p = 0.0154 

and p = 0.0157, respectively, Figures 6F). The performance index showed that twelve-month-

old female FKBP52+/- mice performed worse than ten-month-old female FKBP52+/- mice (p = 

0.0014), as did their male counterparts (p = 0.0557; Figures 6C and G). 

Considering a wider age range in experiment 2, experimentally naïve fifteen-month-old mice 

stayed on the rod for a shorter time than two-month-old mice (p = 0.043, Figures 7C and 7G). 

Within each age-group, female FKBP52+/- and FKBP52+/+ mice stayed on the accelerating 

rod for a similar length of time; except at two-months-of-age, where FKBP52+/- mice 

remained on it for longer than FKBP52+/+ mice in the very first trial (p = 0.0414, Figure 7A). 

A different picture emerged in male mice where two-month-old male FKBP52+/- mice 

performed overall worse than their FKBP52+/+ littermates which was significant in trial 5 and 

7 (p = 0.0139 and p = 0.285, respectively, Figure 7E). Conversely, twelve-month-old 

FKBP52+/- mice stayed on the rod for longer than FKBP52+/+ mice in trial 5 (p = 0.0424, 

Figure 7F). At eighteen-months-of-age FKBP52+/- mice fell off the rod before FKBP52+/+ 

mice in trial 9 (p = 0.0214; Figures 7H). 

In experiment 3, twelve-month-old female FKBP52-/- mice stayed on the accelerating rod for 

longer than FKBP52+/+ and FKBP52+/- mice (visual inspection). The latter two groups 

appeared to perform similarly in both sexes (Figures 6 D and H). 

 

Overall, knock-down of FKBP52 expression affected the mice’s motor coordination 

negatively by reducing the duration the mice stayed on the accelerating rotating rod. This has 

been seen in both sexes and age-groups investigated. The effect was unrelated to a change in 

motor activity as observed in the open field; and it was stronger when mice were repeatedly 

tested at ten- and twelve-months-of age.  

 



3.7 Acoustic startle response and prepulse inhibition 

In experiment 1, the latency to startle was statistically affected by genotype as function of age 

and sex (F(1, 42) = 6.47, p = 0.0147, Figure 8A). A genotype-effect was not observed in 

experimentally naïve mice ranging from two- to eighteen-months-of-age (experiment 2; 

Figure 8B) or in experiment 3 comprising twelve-month-old FKBP52+/+, FKBP52+/- and 

FKBP52-/- mice (Figure 8C). The magnitude of the startle response as well as prepulse 

inhibition was not altered by the mice’s genotype in experiments 1, 2, and 3; but decreased 

from two- to eighteen-months-of-age in experiment 2 (age: F(3,150) = 6.32, p = 0.0005; 

Supplementary Figures S6 and S7). 

In summary, the acoustic startle response and its inhibition were not affected by knocking 

down FKBP52 in mice. 

 

3.8 Contextual fear conditioning 

Immobility times and extinction index obtained from the three contextual fear conditioning 

experiments were not affected by the mice’s genotype (see Supplementary Figures S8, S9, 

S10 and S11; suggesting no role for FKBP52 in fear acquisition, memory and extinction.  

 

3.9 Elevated plus maze 

ANOVA results of experiment 2 indicated that genotype affected the time the mice spent on 

the open arm of the elevated plus maze in an age-dependent manner (F(3, 147) = 4.08, p = 

0.0081), but this was only significant at the eighteen-month-old group level where FKBP52+/+ 

males showed higher preference for open arms, compared to FKBP52+/-littermates (Figure 

9B). Further, within each age group, all mice spent a similar amount of time on the open arm 

in experiment 1 and 3 (Figures 9A and C, respectively). Thus, knocking down FKBP52 did 

not result in consistently altered emotionality-related behaviour on the elevated plus maze in 

mice. 

 

Taken all results of this study together, knocking down FKBP52 in mice worsened 

performance on an accelerating rotating rod but failed to alter the cognitive parameters tested. 

 



4 Discussion 

The present study aimed to assess the behavioural and cognitive phenotype of ageing 

FKBP52+/- mice; in light of raised FKBP52 levels in senescent C57Bl/6N brains [11] and the 

potential involvement of FKBP52 in the pathology of age-related diseases with dementia, 

such as AD [3, 12, 14, 15]. The main question in this regard was whether reduced levels of 

this protein alone – as found in post-mortem AD brains [15] – affected cognition and 

behaviour of genetically modified mice. Given FKBP52’s significance in the reproductive 

system [3, 39] male and female mice were tested at different age groups covering pre- and 

post-reproductive periods including senescence. 

Our main finding is that FKBP52 deficient mice were cognitively unimpaired and were 

statistically significantly different from their FKBP52+/+ littermates in only a few of the 19 

parameters that tested for body mass, species-specific behaviour, locomotor activity, motor 

coordination and, fear-, object-related and spatial memory as well as curiosity and 

emotionality. Most consistently, FKBP52+/- mice showed impairments in motor function as 

tested by an accelerating rotating rod. The behavioural phenotype of FKBP52 null mice was, 

however, very mild, and given the low number of surviving mice, this suggests that 

compensatory mechanisms may have taken place in this subset of mice. 

The finding of FKBP52+/- mice spending less time on the accelerod than their FKBP52+/+ 

littermates was consistent across the three experiments of the present study. This observation 

was least prominent in twelve-month-old mice of experiment 3 which might have been due to 

its reduced statistical power. Experiment 1 demonstrated that repeated testing after two 

months exacerbated the deficit seen in FKBP52+/- mice. Hence, FKBP52+/- mice’s untimely 

falls from the rod were likely due to a compromised ability to learn within a framework 

requiring motor coordination and balance [33].  

FKBP52+/- mice’s impairments in motor coordination were independent of their locomotor 

activity since FKBP52+/- and FKBP52+/+ mice covered a similar distance in the open field 

over thirty minutes, consistent with a previous report [7]. Whether FKBP52+/- mice showed 

decreased endurance [40] is unclear. However, they did not appear to display an altered 

motivation considering other tasks assessing exploratory drive, i.e. arm visits in the Y-maze 

or object exploration in the novel object tasks [23, 41] in which FKBP52+/- mice did not 

display a consistent distinct behaviour. Support for the observation of FKBP52 not being 

involved in processes controlling exploratory behaviour is further provided by a report of old 



C57Bl/6N mice who showed a physiological age-dependent increase of cerebral FKBP52 

levels but unaltered object exploration performance in a novel object recognition paradigm 

[11]. An intriguing observation of experiment 3 was that twelve-month-old female FKBP52-/- 

mice stayed on the accelerating rod for much longer than either FKBP52+/+ or FKBP52+/- 

mice. This could perhaps be explained by their behaviour in the open field and Y-maze which 

pointed at a rather active phenotype [24, 27]. 

To date, altered motor function has not been reported as a feature of the FKBP52+/- phenotype 

[7]. However, progressive deficits in motor coordination have been linked to 

neurodegeneration in a number of animals models [42-44], and FKBP52 was found to 

have a regenerative potential, promoting neuronal differentiation and neurite 

outgrowth in primary cell culture [45, 46], suggesting that downregulation of FKBP52 

levels may lead to neurodegenerative changes to the brain. In humans, FKBP52 has 

recently been investigated in diseases that present features of motor dysfunction: For 

example, low levels of FKBP52 have been measured in post-mortem brains obtained from 

patients diagnosed with frontotemporal dementia and parkinsonism linked to chromosome 17 

[15]. On the other hand, high levels of FKBP52 were linked to increased α-synuclein 

aggregation – a key feature of Parkinson’s disease pathology – in vitro [47]. These 

contradictory findings may therefore point towards a disease-dependent system in which 

FKBP52 is either ascribed protective or adverse properties. In both cases, FKBP52 has been 

suggested as a potential pharmaceutical target in the causative treatment of Alzheimer’s [3] 

and Parkinson’s disease [47, 48].  

FKBP52’s binding to glucocorticoid receptors is dependent on its exchange with FKBP51 

[6]. Both proteins have theoretically been linked to mood disorders [49, 50]. However, until 

now, pre-clinical studies have demonstrated a robust association of FKBP51 with stress 

response and depression-like behaviour [4, 49, 51-55], but to the author’s knowledge, no 

study has been published on FKBP52 and depression or another mood-disorder yet. However, 

FKBP52+/- mice appear to be more sensitive to stress, applied through chronic social defeat, 

than FKBP52+/+ mice in some behavioural paradigms tested like in a sociability test [7]. 

Although, a more robust behaviour was also observed in stressed FKBP52+/- mice in other 

tasks, such as the latency to first floating in a forced swim test [7]. Unstressed mice of both 

genotypes appear to behave alike in a number of paradigms measuring emotionality-related 

parameters, such as the time struggling and floating in the forced swim test or relative time 

spent in the centre zone of an open field [7]. Matching those observations is the result of the 



present study: FKBP52+/- and FKBP52+/+ mice spent a similar amount of time in the centre of 

an open field; suggesting reduced FKBP52+/- levels in the mouse brain [7] were not in 

themselves reflected in an anxiety-related profile. The present observation of FKBP52+/- and 

FKBP52+/+ mice spending a similar amount of time in the open arms of an elevated plus maze 

further supports this, is, however, in disagreement with a previous report [7]. One possible 

explanation is that mice in our study were subjected to elevated plus maze at the end of the 

behavioural battery, whereby repeated handling may have alleviated their anxiogenic-like 

behaviour. 

FKBP52+/- further appeared to perform similarly to age- and sex-matched FKBP52+/+ mice in 

terms of species-specific behaviour, i.e. food burrowing, and in terms of learning and 

memory in a spatial, object-oriented or fear context at all ages tested (from two- to eighteen-

months-of-age) which has not been investigated before. It has, however, been shown that 

increased FKBP52 levels in aged C57Bl/6N mice were not associated with deficits in an 

object recognition task [11]. Thus, together with our findings, this rules out a role of FKBP52 

in recognition memory. 

The observation of female mice being lighter than male mice is consistent with previous 

reports of C57Bl/6J and Sv129 x C57BL/6J control mice [56, 57]. A steady increase in body 

mass from two- to eighteen-months-of-age irrespective of sex, as found in experiment 2, has 

been reported for C57Bl/6J and Sv129 x C57BL/6J control mice in the past [56, 57]. The 

amount of food burrowed declined with age, as shown previously in C57Bl/6J mice ranging 

from two- to twelve- [20] and from four- to twenty-one-months-of-age [58]. Similarly, 

locomotor activity has been shown to decrease with advancing age [59] like in the present 

study. The magnitude of the acoustic startle response also decreased with mouse age which 

seems to be consistent with a published report [60]. In the contextual fear paradigm of 

experiment 2, two-month-old male and female mice became similarly more and more 

immobile with increasing number of electric shocks applied to their feet; as found previously 

[48, 61]. 

5 Conclusion – Outlook  

 

In the past, low levels of FKBP52 have been associated with high levels of tau in AD [15]. A 

causal relationship between FKBP52 and tau has also been demonstrated in vitro [14]. 



Furthermore, FKBP52 has been ascribed a modulatory role in Aβ-toxicity in a genetic 

construct of AD [12]. Whilst it has been shown that tau levels are predictive of cognitive 

decline in AD [13], it has not been tested whether FKBP52 in itself affects cognition or 

behaviour relevant to AD. The results of the present study, namely that FKBP52+/- mice 

appeared to be cognitively and behaviourally comparable to FKBP52+/+ mice over a wide 

range of ages and across sexes – with the exception of motor coordination –, now confirmed 

that reduced FKBP52 levels are not a risk factor to cognitive decline as seen in AD. This 

is in keeping with a previous report that found no relationship between object memory and 

cerebral FKBP52 levels [11]. Therefore, FKBP52 is more likely to play a modulatory role in 

the pathology of AD, but the motor coordination deficits associated with reduced 

FKBP52 levels suggest that this protein is neuroprotective in ageing.  

 

Conflict of Interest 

None 

 

Funding 

This research was funded by the Fondation Nationale de Gerontologie, France, and the 

Institut Baulieu, France.  

 

Acknowledgements 

The authors express their gratitude to Stacey Knapp and Matthew Dawes for their assistance 

in acquiring the behavioural data. Thanks are due to Béatrice Chambraud and Étienne-Émile 

Baulieu at the Institut National de la Santé et de la Recherche Médicale Unité Mixte de 

Recherche 788, Université Paris XI, Kremlin Bicêtre 94276, France, for helpful comments.  

 



References 

1. Davies, T.H. and E.R. Sánchez, FKBP52. The International Journal of Biochemistry & 

Cell Biology, 2005. 37(1): p. 42-47. 

2. Steiner, J.P., et al., High brain densities of the immunophilin FKBP colocalized with 

calcineurin. Nature, 1992. 358(6387): p. 584-7. 

3. Cao, W. and M. Konsolaki, FKBP immunophilins and Alzheimer’s disease: A 

chaperoned affair. Journal of Biosciences, 2011. 36(3): p. 493-498. 

4. Storer, C.L., et al., FKBP51 and FKBP52 in signaling and disease. Trends in 

endocrinology and metabolism: TEM, 2011. 22(12): p. 481-90. 

5. Vandevyver, S., L. Dejager, and C. Libert, On the Trail of the Glucocorticoid Receptor: 

Into the Nucleus and Back. Traffic, 2012. 13(3): p. 364-374. 

6. Davies, T.H., E.R. Ning Ym Fau - Sanchez, and E.R. Sanchez, A new first step in 

activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 

immunophilins. 2002(0021-9258 (Print)). 

7. Hartmann, J., et al., Fkbp52 heterozygosity alters behavioral, endocrine and 

neurogenetic parameters under basal and chronic stress conditions in mice. 

Psychoneuroendocrinology, 2012. 37(12): p. 2009-2021. 

8. Bruner, K.L., et al., The unliganded mineralocorticoid receptor is associated with heat 

shock proteins 70 and 90 and the immunophilin FKBP-52. Receptors & Signal 

Transduction, 1997. 7(2): p. 85-98. 

9. Galigniana, M.D., et al., The hsp90-FKBP52 complex links the mineralocorticoid 

receptor to motor proteins and persists bound to the receptor in early nuclear events. 

Mol Cell Biol, 2010. 30(5): p. 1285-98. 

10. Le Menuet, D. and M. Lombes, The neuronal mineralocorticoid receptor: from cell 

survival to neurogenesis. Steroids, 2014. 91: p. 11-9. 

11. Soontornniyomkij, V., et al., Short-term recognition memory impairment is 

associated with decreased expression of FK506 binding protein 51 in the aged mouse 

brain. Age (Dordrecht, Netherlands), 2010. 32(3): p. 309-22. 

12. Sanokawa-Akakura, R., et al., Control of Alzheimer's amyloid beta toxicity by the high 

molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila. PloS 

one, 2010. 5(1): p. e8626-e8626. 



13. Verdile, G., et al., The impact of luteinizing hormone and testosterone on beta 

amyloid (Abeta) accumulation: Animal and human clinical studies. LID - S0018-

506X(15)00113-0 [pii] LID - 10.1016/j.yhbeh.2015.05.020 [doi]. 2014(1095-6867 

(Electronic)). 

14. Chambraud, B., et al., A role for FKBP52 in Tau protein function. Proceedings of the 

National Academy of Sciences, 2010. 107(6): p. 2658-2663. 

15. Giustiniani, J., et al., Decrease of the Immunophilin FKBP52 Accumulation in Human 

Brains of Alzheimer's Disease and FTDP-17. Journal of Alzheimer's Disease, 2012. 

29(2): p. 471-483. 

16. Yang, Z., et al., FK506-Binding Protein 52 Is Essential to Uterine Reproductive 

Physiology Controlled by the Progesterone Receptor A Isoform. Molecular 

Endocrinology, 2006. 20(11): p. 2682-2694. 

17. Kilkenny, C., et al., Improving bioscience research reporting: the ARRIVE guidelines 

for reporting animal research. PLoS biology, 2010. 8(6): p. e1000412-e1000412. 

18. Warrier, M., et al., Susceptibility to diet-induced hepatic steatosis and glucocorticoid 

resistance in FK506-binding protein 52-deficient mice. Endocrinology, 2010. 151(7): 

p. 3225-36. 

19. Blokland, A., et al., The use of a test battery assessing affective behavior in rats: 

order effects. Behavioural brain research, 2012. 228(1): p. 16-21. 

20. Geiszler, P.C., M.R. Barron, and M.-C. Pardon, Impaired burrowing is the most 

prominent behavioural deficit of ageing htau mice. Neuroscience. 

21. Deacon, R.M.J., Digging and marble burying in mice: simple methods for in vivo 

identification of biological impacts. Nature protocols, 2006. 1(1): p. 122-4. 

22. Deacon, R.M.J., Burrowing in rodents: a sensitive method for detecting behavioral 

dysfunction. Nature protocols, 2006. 1(1): p. 118-21. 

23. Tamada, K., et al., Decreased Exploratory Activity in a Mouse Model of 15q 

Duplication Syndrome; Implications for Disturbance of Serotonin Signaling. PLoS ONE, 

2010. 5(12): p. e15126. 

24. Hughes, R.N., The value of spontaneous alternation behavior (SAB) as a test of 

retention in pharmacological investigations of memory. Neuroscience and 

biobehavioral reviews, 2004. 28(5): p. 497-505. 



25. Lalonde, R., The neurobiological basis of spontaneous alternation. Neuroscience & 

Biobehavioral Reviews, 2002. 26(1): p. 91-104. 

26. Gerlai, R., Behavioral tests of hippocampal function: simple paradigms complex 

problems. Behavioural Brain Research, 2001. 125(1-2): p. 269-277. 

27. Tou, J.C.L. and C.E. Wade, Determinants affecting physical activity levels in animal 

models. Experimental biology and medicine (Maywood, N.J.), 2002. 227(8): p. 587-

600. 

28. Pardon, M.-C., et al., Repeated novel cage exposure-induced improvement of early 

Alzheimer's-like cognitive and amyloid changes in TASTPM mice is unrelated to 

changes in brain endocannabinoids levels. Neurobiology of aging, 2009. 30(7): p. 

1099-113. 

29. Ennaceur, A., One-trial object recognition in rats and mice: methodological and 

theoretical issues. Behavioural brain research, 2010. 215(2): p. 244-54. 

30. Rattray, I., et al., Novel cage stress alters remote contextual fear extinction and 

regional T2 magnetic resonance relaxation times in TASTPM mice overexpressing 

amyloid. J Alzheimers Dis, 2010. 20(4): p. 1049-68. 

31. Brownlow, M.L., et al., Partial rescue of memory deficits induced by calorie restriction 

in a mouse model of tau deposition. Behavioural brain research, 2014. 271C: p. 79-

88. 

32. Dere, E., et al., Episodic-like and procedural memory impairments in histamine H1 

Receptor knockout mice coincide with changes in acetylcholine esterase activity in 

the hippocampus and dopamine turnover in the cerebellum. Neuroscience, 2008. 

157(3): p. 532-41. 

33. Karl, T., S. Pabst R Fau - von Horsten, and S. von Horsten, Behavioral phenotyping of 

mice in pharmacological and toxicological research. (0940-2993 (Print)). 

34. Hejl, A.-M., et al., Prepulse inhibition in patients with Alzheimer's disease. 

Neurobiology of aging, 2004. 25(8): p. 1045-50. 

35. Gulinello, M. Acoustic Startle and Prepulse Inhibition. 2013  [cited 2015 01/09/15]; 

Available from: http://www.biobserve.com/downloads/maria-gulinello/Acoustic-

Startle-Protocol.pdf. 

http://www.biobserve.com/downloads/maria-gulinello/Acoustic-Startle-Protocol.pdf
http://www.biobserve.com/downloads/maria-gulinello/Acoustic-Startle-Protocol.pdf


36. Powers, M.S. and J.A. Chester, Effects of stress, acute alcohol treatment, or both on 

pre-pulse inhibition in high- and low-alcohol preferring mice. (1873-6823 

(Electronic)). 

37. Rudy, J.W., N.C. Huff, and P. Matus-Amat, Understanding contextual fear 

conditioning: insights from a two-process model. Neuroscience and biobehavioral 

reviews, 2004. 28(7): p. 675-85. 

38. Komada, M., K. Takao, and T. Miyakawa, Elevated plus maze for mice. Journal of 

visualized experiments : JoVE, 2008(22). 

39. Pratt, W.B., The role of the hsp90-based chaperone system in signal transduction by 

nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol 

Toxicol, 1997. 37: p. 297-326. 

40. Deacon, R.M., Measuring motor coordination in mice. 2013(1940-087X (Electronic)). 

41. Viola, G.G., et al., Influence of environmental enrichment on an object recognition 

task in CF1 mice. 2010(1873-507X (Electronic)). 

42. Shumar, S.A., et al., Induction of Neuron-Specific Degradation of Coenzyme A Models 

Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor 

Coordination in Mice. PLoS One, 2015. 10(6): p. e0130013. 

43. Gulinello, M., F. Chen, and K. Dobrenis, Early deficits in motor coordination and 

cognitive dysfunction in a mouse model of the neurodegenerative lysosomal storage 

disorder, Sandhoff disease. Behav Brain Res, 2008. 193(2): p. 315-9. 

44. Maccarinelli, F., et al., A novel neuroferritinopathy mouse model (FTL 498InsTC) 

shows progressive brain iron dysregulation, morphological signs of early 

neurodegeneration and motor coordination deficits. Neurobiology of Disease, 2015. 

81: p. 119-133. 

45. Quintá, H.R. and M.D. Galigniana, The neuroregenerative mechanism mediated by 

the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal 

differentiation. British journal of pharmacology, 2012. 166(2): p. 637-49. 

46. Quintá, H.R., et al., Subcellular rearrangement of hsp90-binding immunophilins 

accompanies neuronal differentiation and neurite outgrowth. Journal of 

neurochemistry, 2010. 115(3): p. 716-34. 



47. Gerard, M., et al., Inhibition of FK506 Binding Proteins Reduces α-Synuclein 

Aggregation and Parkinson's Disease-Like Pathology. The Journal of Neuroscience, 

2010. 30(7): p. 2454-2463. 

48. Fusco, D., et al., The RET51/FKBP52 complex and its involvement in Parkinson 

disease. Hum Mol Genet, 2010. 19(14): p. 2804-16. 

49. Binder, E.B., The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the 

pathogenesis and therapy of affective and anxiety disorders. 

Psychoneuroendocrinology, 2009. 34, Supple(0): p. S186-S195. 

50. Tatro, E.T., et al., Modulation of glucocorticoid receptor nuclear translocation in 

neurons by immunophilins FKBP51 and FKBP52: implications for major depressive 

disorder. Brain research, 2009. 1286: p. 1-12. 

51. Fries, G.R., et al., The FKBP51-Glucocorticoid Receptor Balance in Stress-Related 

Mental Disorders. Curr Mol Pharmacol, 2015. 9(2): p. 126-40. 

52. Maiaru, M., et al., The stress regulator FKBP51 drives chronic pain by modulating 

spinal glucocorticoid signaling. Sci Transl Med, 2016. 8(325): p. 325ra19. 

53. Hartmann, J., et al., Pharmacological Inhibition of the Psychiatric Risk Factor FKBP51 

Has Anxiolytic Properties. Journal of Neuroscience, 2015. 35(24): p. 9007-9016. 

54. Hartmann, J., et al., The involvement of FK506-binding protein 51 (FKBP5) in the 

behavioral and neuroendocrine effects of chronic social defeat stress. 

Neuropharmacology, 2012. 62(1): p. 332-339. 

55. Touma, C., et al., FK506 Binding Protein 5 Shapes Stress Responsiveness: Modulation 

of Neuroendocrine Reactivity and Coping Behavior. Biological Psychiatry, 2011. 

70(10): p. 928-936. 

56. Koppel, J., et al., Pathogenic tau species drive a psychosis-like phenotype in a mouse 

model of Alzheimer's disease. Behav Brain Res, 2014. 275: p. 27-33. 

57. Baulieu, E.E., From steroid hormones to depressive states and senile dementias: New 

mechanistic, therapeutical and predictive approaches. C R Biol, 2015. 338(8-9): p. 

613-6. 

58. Andorfer, C., et al., Hyperphosphorylation and aggregation of tau in mice expressing 

normal human tau isoforms. J Neurochem, 2003. 86(3): p. 582-90. 

59. Alzheimer's Society (GB). 2016; Available from: www.alzheimers.org.uk. 

http://www.alzheimers.org.uk/


60. Wang, H., et al., Sensorimotor gating and memory deficits in an APP/PS1 double 

transgenic mouse model of Alzheimer's disease. Behav Brain Res, 2012. 233(1): p. 

237-43. 

61. Matsuda, S., et al., Sex differences in fear extinction and involvements of extracellular 

signal-regulated kinase (ERK). Neurobiol Learn Mem, 2015. 123: p. 117-24. 

62. Rattray, I., et al., The occurrence of a deficit in contextual fear extinction in adult 

amyloid-over-expressing TASTPM mice is independent of the strength of conditioning 

but can be prevented by mild novel cage stress. Behav Brain Res, 2009. 200(1): p. 83-

90. 

 

Figures legends 

Figure 1. Order of behavioural and cognitive tests FKBP52+/+, FKBP52+/- mice and 

FKBP52-/- mice underwent over fifteen days in (1 A) experiment 1 and (1 B) experiments 2 

and 3. Experiment 1 was characterised by the re-use of FKBP52+/+, FKBP52+/- mice at 

twelve-months-of-age after initial testing at ten-months-of-age. Since contextual fear 

conditioning and elevated plus maze testing (indicated by *) are not repeatable [62], 

experiment 1 mice were subjected to these two tests at twelve-months-of-age only. 

Experiment 2 covered an age-range from two- to eighteen-months-of-age in experimentally 

naïve FKBP52+/+ and FKBP52+/- mice; whilst experiment 3 saw the addition of FKBP52-/- 

mice at twelve-months-of-age.  

Figure 2. Body mass measurements recorded for male and female FKBP52+/+, FKBP52+/- 

and FKBP52-/- mice at different ages in three separate experiments. Whilst female FKBP52+/- 

mice weighed more than FKBP52+/- mice in experiment 1 (2 A), this could not be confirmed 

by data obtained from experiment 2 (2 B) or 3 (2 C). KEY: F female, M male; ** p < 0.01 

(ANOVA/mixed model post-hoc planned comparison). 

Figure 3. Number of arms visited in a Y-maze by female and male FKBP52+/+, FKBP52+/- 

and FKBP52-/- mice at different ages in three separate experiments. Statistical analysis of 

experiment 2 flagged up a genotype-related difference in this parameter which was, however, 

only significant between fifteen-month-old female FKBP52+/- and FKBP52+/+ mice (3 B). 

KEY: F female, M male; ** p < 0.01 (ANOVA/mixed model post-hoc planned comparison). 



Figure 4. Total distance moved in the open field by male and female FKBP52+/+, 

FKBP52+/- and FKBP52-/- mice at different ages in three separate experiments. Whilst 

FKBP52+/- mice did not differ from FKBP52+/+ mice in terms of locomotor activity (4 A and 

4 B); experiment 3 (4 C) highlighted that female FKBP52-/- mice covered a greater distance 

than female FKBP52+/- and FKBP52+/+ mice – reaching locomotor activity levels of male 

FKBP52+/- and FKBP52-/- mice. The opposite was observed for male FKBP52-/- mice. KEY: 

F female, M male. 

Figure 5. Preference indices within the novel object discrimination paradigm: For male 

and female FKBP52+/+, FKBP52+/- and FKBP52-/- mice at different ages in three separate 

experiments. Repeatedly tested twelve-month-old female FKBP52+/+ mice spent more time 

exploring a novel object than their FKBP52+/- littermates (5 A). This observation was not 

robust when explored in naïvely tested mice of experiment 2 (5 B) and 3 (5 C). KEY: F 

female, M male; * p < 0.05 (ANOVA/mixed model post-hoc planned comparison), and # p < 

0.05 (one-sample t-test; comparison of means to 50 %). 

Figure 6. Accelerod performance in the longitudinal experiment 1 testing the latency to 

fall from an accelerating rotating rod of (6 A) ten- and (6 B) twelve-month-old females, as 

well as (6 E) ten- and (6 F) twelve-month-old male FKBP52+/+ and FKBP52+/- mice. Figures 

(6 C) and (6 G) illustrate the change in performance from ten- to twelve months in female 

and male mice, respectively. FKBP52+/- mice remained on the rods for shorter than 

FKBP52+/+ mice which was more obvious in repeatedly tested mice at twelve-months-of-age. 

(6 D, 6 H) Accelerod performance in experiment 3 of female (6 D) and male (6 H) 

FKBP52+/+, FKBP52+/- and FKBP52-/- mice; whereby latency to fall from the rod is shown. 

Experimentally naïve twelve-month-old FKBP52+/- and FKBP52+/+ mice performed similarly; 

but female FKBP52-/- mice remained on the rod for longer than female FKBP52+/- and 

FKBP52+/+ mice. This may be explained by their increased locomotor activity measured in 

the open field. KEY: * p < 0.05, ** p < 0.01 (ANCOVA/mixed model post-hoc planned 

comparison). 

Figure 7. Accelerod performance in the cross-sectional experiment 2 of two- (6 A, 6 E), 

twelve- (6 B, 6 F), fifteen- (6 C, 6 G) and eighteen-month-old (6 D, 6 H) female (6 A-D) and 

male (6 E-H) FKBP52+/+ and FKBP52+/- mice; whereby latency to fall from the rod is shown. 

Overall, experimentally naïve FKBP52+/- mice appeared to perform worse on the accelerating 

rotating rod than age- and sex-matched FKBP52+/+ mice; however, at age- and sex- level 



these differences seemed small and punctual. KEY: * p < 0.05 (ANCOVA/mixed model post-

hoc planned comparison). 

Figure 8. Latency of acoustic startle response of male and female FKBP52+/+, FKBP52+/- 

and FKBP52-/- mice at different ages in three separate experiments. Statistical analysis 

pointed towards an overall genotype-effect of the latency of an acoustic startle response in 

experiment 1 only (8 A). This trend did not reach significance at age- or sex-level. KEY: F 

female, M male. 

Figure 9. Preference for open arms of the elevated plus-maze by male and female 

FKBP52+/+, FKBP52+/- and FKBP52-/- mice at different ages in three separate experiments. 

The genotypes did not differ from each other in the time the mice spent on the open arm of an 

elevated plus maze; except between eighteen-month-old FKBP52+/- and FKBP52+/+ mice of 

experiment 2 (9 B). KEY: F female, M male; * p < 0.05 (ANOVA/mixed model post-hoc 

planned comparison). 
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Caption to figure 1: Number of mice used in experiments 1, 2 and 3.  

experiment age genotype 

 (months) FKBP52+/+ FKBP52+/- FKBP52-/- 

  female male female male female male* 

        

1 10 and 12 12 12 12 11 - - 

        

2 2 12 12 12 12 - - 

 12 12 12 12 12 - - 

 15 10 9 10 6 - - 

 18 9 10 8 9 - - 

        

3 12 11 10 5 5 6 5 

        

* some FKBP52-/- mice displayed intersex characteristics externally presented with under-

developed testicles upon dissection. Female FKBP52-/- mice appeared inconspicuous. 

 

  



Caption to table 2: ANOVA results of body mass, behavioural and cognitive tests that 

indicated a significant effect of FKBP52 knock-down in experiment 1 and 2. Summary of 

main findings in experiment 3. KEY: df degree(s) of freedom, R residuals, F F-value, p p-

value. 

 test parameter effect df R F p comment 

         

ex
p

er
im

en
t 

1
 

body mass body mass genotype 1 43 5.28 0.0265 female 

FKBP52+/- 

heavier than 

FKBP52+/+ 

novel object preference 

for novel 

object 

genotype 1 41 4.34 0.0435 12-month-old 

female 

FKBP52+/- 

explored novel 

object less 

than 

FKBP52+/+ 

accelerod performance 

index 

genotype x 

age 

1 33 4.25 0.0472 FKBP52+/-’s 

latency to fall 

decreased with 

age 

 latency to 

fall at 10 

months 

genotype x 

sex x trial 

8 272 2.02 0.0441 female 

FKBP52+/- fell 

off the rod 

before 

FKBP52+/+ 

 latency to 

fall at 12 

months 

genotype 1 33 5.29 0.0279 FKBP52+/- fell 

off the rod 

before 

FKBP52+/+ 

acoustic 

startle 

response 

startle 

latency 

genotype x 

age x sex 

1 42 6.47 0.0147 not significant 

at age level 

         

ex
p

er
im

en
t 

2
 

spontaneous 

alternation 

number of 

arms entered 

genotype x 

age 

3 151 2.99 0.033 15-month-old 

female 

FKBP52+/- 

visited less 

arms than 

FKBP52+/+  

accelerod latency to 

fall 

genotype x 

age x trial 

24 1200 2.26 0.0005 FKBP52+/- fell 

off the rod 

before 

FKBP52+/+ 



elevated 

plus-maze 

relative time 

spent in 

open arm 

genotype x 

age 

3 147 4.08 0.0081 18-month-old 

male 

FKBP52+/- less 

time in open 

arms than 

FKBP52+/+ 

         

ex
p

er
im

en
t 

3
 open field distance 

moved 

female FKBP52-/- moved more than FKBP52+/- and 

FKBP52+/+; male (inter-sex) FKBP52-/- moved less than 

male FKBP52+/- and FKBP52+/+ 

accelerod latency to 

fall 

female FKBP52-/- stayed on the rod for longer than 

FKBP52+/- and FKBP52+/+ 

   

    

 

 



Supplementary Material

1 Statistical results

All AN(C)OVA and mixed model results obtained from body mass, behavioural and

cognitive measurements that were recorded in experiment 1 and 2 are summarised in

Supplementary Tables 1 and 2, respectively. All results that demonstrate a main effect of

genotype or its interaction with mouse sex or age are discussed in the main article. All other

results are described in conjunction with the Supplementary Figures in the following.



2 Supplementary tables

Supplementary Table T1. AN(C)OVA results from body mass measurements and

behavioural and cognitive performances recorded in longitudinal experiment 1

comprising ten- and twelve-month-old FKBP52+/+ and FKBP52+/- mice. KEY: df degrees of

freedom; R residuals.

TEST PARAMETER effect df R F-value p-value

body mass mass genotype 1 43 5.28 0.0265
age 1 43 101.67 < 0.0010
sex 1 43 1.78 0.1891
genotype x sex 1 43 3.3 0.0761
genotype x age 1 43 1.89 0.1762
sex x age 1 43 0.05 0.8293

genotype x age x sex 1 43 0.17 0.68

food burrowing
% food
displaced

genotype 1 43 2.52 0.1198

age 1 42 3.21 0.0804
sex 1 43 0 0.989
genotype x sex 1 43 0.53 0.472
genotype x age 1 42 3.52 0.0678
sex x age 1 42 1.81 0.186
genotype x age x sex 1 42 0.12 0.7289

body weight 1 42 6.2 0.0168

spontaneous % alternation genotype 1 43 0.06 0.8087

alternation age 1 43 0.18 0.6728
sex 1 43 0.23 0.6344
genotype x sex 1 43 0.16 0.6925
genotype x age 1 43 1.1 0.3003
sex x age 1 43 3.03 0.0887

genotype x age x sex 1 43 0.14 0.709

number of arms genotype 1 43 0.75 0.3908
entered age 1 43 2.04 0.1608

sex 1 43 0.03 0.8537
genotype x sex 1 43 0 0.9989
genotype x age 1 43 0.04 0.8375

sex x age 1 43 13.92 0.0006

genotype x age x sex 1 43 0.2 0.6548

open field total distance genotype 1 43 0.11 0.7395
moved age 1 43 17.76 0.0001

sex 1 43 0.35 0.5546
genotype x sex 1 43 2.41 0.1279
genotype x age 1 43 0.18 0.6761
sex x age 1 43 0.85 0.3628

genotype x age x sex 1 43 0.33 0.5679



% distance
moved

genotype 1 43 0.22 0.6377

in centre age 1 43 0.48 0.4899
sex 1 43 0 0.9948
genotype x sex 1 43 1.71 0.1978
genotype x age 1 43 0 0.9795
sex x age 1 43 0 0.9838

genotype x age x sex 1 43 0.48 0.4921

novel object

- habituation total exploration genotype 1 43 0 0.9721
time age 1 43 0.51 0.4827

sex 1 43 2.8 0.1018
genotype x sex 1 43 0.04 0.8494
genotype x age 1 43 0.47 0.5006
sex x age 1 43 2.07 0.1684
genotype x age x sex 1 43 0.95 0.3441

- location total exploration genotype 1 43 0.02 0.8796
time age 1 43 0.34 0.5667

sex 1 43 0.56 0.4596
genotype x sex 1 43 1.67 0.2032
genotype x age 1 43 0.1 0.758
sex x age 1 43 0.03 0.8581
genotype x age x sex 1 43 2.44 0.1393

preference index genotype 1 43 1.04 0.3131
age 1 43 3.28 0.0902

sex 1 43 0.02 0.8978

genotype x sex 1 43 0.88 0.3531

genotype x age 1 43 0.03 0.8613

sex x age 1 43 1.14 0.3031

genotype x age x sex 1 43 1.7 0.212

- discrimination total exploration genotype 1 43 0.19 0.6658
time age 1 43 2.07 0.1683

sex 1 43 4.64 0.0371
genotype x sex 1 43 0.55 0.4645
genotype x age 1 43 0.01 0.9069
sex x age 1 43 1.61 0.2218
genotype x age x sex 1 43 2.73 0.1168

preference index genotype 1 43 4.34 0.0435

age 1 43 0.55 0.5306

sex 1 43 0.4 0.4677

genotype x sex 1 43 0.97 0.3309

genotype x age 1 43 1.8 0.1975

sex x age 1 43 1.8 0.1974

genotype x age x sex 1 43 0.09 0.7665

accelerod latency to fall genotype 1 33 0.74 0.3947

(at 10 months) sex 1 33 0.46 0.5018



trial 8 272 38.6 < 0.0010
genotype x sex 1 33 0.18 0.671
genotype x trial 8 272 0.6 0.7747
sex x trial 8 272 1.81 0.0759
genotype x sex x
trial

8 272 2.02 0.0441

body weight 1 33 1.45 0.2379

accelerod latency to fall genotype 1 33 5.29 0.0279
(at 12 months) sex 1 33 8.26 0.007

trial 8 272 14.56 < 0.0010
genotype x sex 1 33 1.21 0.2792
genotype x trial 8 272 1.8 0.0769
sex x trial 8 272 1.72 0.0931
genotype x sex x trial 8 272 0.67 0.7214

body weight 1 33 2.76 0.106

accelerod performance genotype 1 34 0.57 0.4568
index age 1 33 10.8 0.0024

sex 1 34 1.57 0.2184
genotype x sex 1 34 2.94 0.0953

genotype x age 1 33 4.25 0.0472
sex x age 1 33 1.6 0.2142
body weight 1 33 0.59 0.4474

genotype x age x sex 1 33 0.08 0.7828

acoustic startle startle latency genotype 1 43 0.24 0.6289

response age 1 42 0.32 0.572
sex 1 43 0.07 0.7903
genotype x sex 1 43 0.51 0.4772
genotype x age 1 42 0.11 0.7457
sex x age 1 42 0.56 0.4566

genotype x age x sex 1 42 6.47 0.0147

body weight 1 42 0.41 0.5256

startle magnitude genotype 1 43 0.39 0.535

age 1 42 6.33 0.0158
sex 1 43 0.13 0.7166

genotype x sex 1 43 0.04 0.8434
genotype x age 1 42 0.14 0.7107
sex x age 1 42 2.15 0.1503
genotype x age x sex 1 42 0.06 0.8118

body weight 1 42 4.35 0.0432

% prepulse genotype 1 42 1.38 0.2475
inhibition sex 1 42 4.45 0.0409
(at 10 months) dB level 3 129 20.08 < 0.0010

genotype x sex 1 42 0.17 0.6845
genotype x dB level 3 129 0.22 0.885
sex x dB level 3 129 1.09 0.3557
genotype x sex x dB 3 129 1.26 0.2919



level

body weight 1 42 10.26 0.0026

% prepulse
inhibition

genotype 1 42 0.06 0.8075

(at 12 months) sex 1 42 3.8 0.0578

dB level 3 129 8.71 < 0.0010
genotype x sex 1 42 2.91 0.0953
genotype x dB level 3 129 0.75 0.5225
sex x dB level 3 129 0.67 0.5707
genotype x sex x dB
level

3 129 0.24 0.8707

body weight 1 42 4.24 0.0458

contextual fear time immobile genotype 1 43 0.67 0.4174

(at 12 months) (fear memory sex 1 43 5.32 0.0259
acquisition) shock 9 387 66.06 < 0.0010

genotype x sex 1 43 0.11 0.7441
genotype x shock 9 387 1.74 0.0785

sex x shock 9 387 3.64 0.0002
genotype x sex x
shock

9 387 1.34 0.2165

time immobile genotype 1 43 0 0.9894
(fear memory sex 1 43 1.97 0.1672

retention) genotype x sex 1 43 0.73 0.3981

time immobile genotype 1 43 0.09 0.7625
(fear memory sex 1 43 1.3 0.2599

extinction) genotype x sex 1 43 0 0.9522

extinction index genotype 1 43 0.44 0.5109
sex 1 43 0.6 0.4439

genotype x sex 1 43 3.2 0.0809

elevated plus-maze % Time spent in genotype 1 40 0.72 0.4018

(at 12 months) open arms sex 1 40 0.35 0.5547

genotype x sex 1 40 0.16 0.6955



Supplementary Table T2. AN(C)OVA results from body mass measurements and

behavioural and cognitive performances recorded in experiment 2 comprising

experimentally naïve FKBP52+/+ and FKBP52+/- mice at two-, twelve-, fifteen- and eighteen-

months-of-age. KEY: df degrees of freedom; R residuals.

TEST PARAMETER Effect df R F-value p-value

body mass mass genotype 1 151 0.37 0.5435

age 3 151 136.05 <0.0001
sex 1 151 29.11 <0.0001
genotype x age 3 151 1.19 0.3152
age x sex 3 151 1.96 0.1227
genotype x sex 1 151 0.04 0.8496

genotype x age x sex 3 151 0.49 0.6931

food burrowing % food genotype 1 150 0.51 0.4753

burrowed age 3 150 2.53 0.0594
sex 1 150 0.97 0.3258
genotype x age 3 150 2.01 0.1143
age x sex 3 150 2.43 0.0671
genotype x sex 1 150 2.03 0.1564
genotype x age x sex 3 150 1.01 0.3898

body weight 1 150 5.22 0.0238

spontaneous % alternation genotype 1 151 1.02 0.3133

alternation age 3 151 0.74 0.5322
sex 1 151 1.62 0.2054
genotype x age 3 151 0.24 0.8664
age x sex 3 151 0.82 0.4846
genotype x sex 1 151 1.01 0.3154

genotype x age x sex 3 151 1.41 0.2414

number of genotype 1 151 2.7 0.1026
arms entered age 3 151 15.7 <0.0001

sex 1 151 4.96 0.0275
genotype x age 3 151 2.99 0.033
age x sex 3 151 0.4 0.7563
genotype x sex 1 151 0.01 0.915

genotype x age x sex 3 151 0.72 0.5408

open field total distance genotype 1 151 1.81 0.18
moved age 3 151 13.78 <0.0001

sex 1 151 5.86 0.0167
genotype x age 3 151 1.44 0.2332

age x sex 3 151 4.47 0.0049
genotype x sex 1 151 0.19 0.3741

genotype x age x sex 3 151 0.11 0.9557

% distance genotype 1 151 0.96 0.3285
moved in age 3 151 9.46 <0.0001



centre sex 1 151 14.47 0.0002
genotype x age 3 151 0.86 0.4616
age x sex 3 151 2.14 0.0976
genotype x sex 1 151 1.97 0.1628

genotype x age x sex 3 151 0.38 0.7642

novel object

- habituation total genotype 1 140 0.59 0.4449
exploration age 3 140 0.46 0.7104
time sex 1 140 3.55 0.0617

genotype x age 3 140 0.07 0.9751
age x sex 3 140 0.19 0.9021

genotype x sex 1 140 0 0.9819

genotype x age x sex 3 140 1 0.3934

- location total genotype 1 142 1 0.3194
exploration age 3 142 0.08 0.9695
time sex 1 142 0.04 0.8466

genotype x age 3 142 1.33 0.2674
age x sex 3 142 0.86 0.4645
genotype x sex 1 142 3.61 0.0596
genotype x age x sex 3 142 0.14 0.9372

preference genotype 1 142 0.01 0.9428
index age 3 142 1.02 0.3858

sex 1 142 0.48 0.4885
genotype x age 3 142 2.03 0.1126
age x sex 3 142 0.17 0.9175
genotype x sex 1 142 0 0.984
genotype x age x sex 3 142 2.2 0.0907

- discrimination total genotype 1 132 1.57 0.2123
exploration age 3 132 0.26 0.8570
time sex 1 132 0.12 0.7322

genotype x age 3 132 0.52 0.6717

age x sex 3 132 2.84 0.0406
genotype x sex 1 132 0 0.9614
genotype x age x sex 3 132 0.42 0.7418

preference genotype 1 132 0.08 0.7785
index age 3 132 1.42 0.2412

sex 1 132 1.15 0.285
genotype x age 3 132 1.1 0.3537
age x sex 3 132 0.29 0.8327
genotype x sex 1 132 0 0.9703
genotype x age x sex 3 132 1.33 0.2662

accelerod latency to fall genotype 1 149 2.72 0.1009

age 3 149 2.98 0.0334
sex 1 149 1.76 0.1868

trial 8 1200 69.68 <0.0010
genotype x age 3 149 0.71 0.5495



age x sex 3 149 2.09 0.1045

age x trial 24 1200 5.22 <0.0010

genotype x sex 1 149 0.69 0.4092

genotype x trial 8 1200 1.81 0.0713

sex x trial 8 1200 2.42 0.0137
genotype x age x sex 3 149 0.81 0.491
genotype x age x
trial

24 1200 2.26 0.0005

age x sex x trial 24 1200 1.82 0.0089
genotype x sex x trial 8 1200 0.56 0.8077
genotype x age x sex
x trial

24 1200 1.16 0.2656

body weight 1 149 153.07 <0.0010

acoustic startle startle latency genotype 1 150 0.01 0.9317

response age 3 150 2.2 0.0899
sex 1 150 0.46 0.5002
genotype x age 3 150 0.08 0.9692
age x sex 3 150 0.84 0.4721
genotype x sex 1 150 0.1 0.7533
genotype x age x sex 3 150 0.72 0.5396

body weight 1 150 4.33 0.0391

startle genotype 1 150 0.93 0.3371
magnitude age 3 150 6.32 0.0005

sex 1 150 0.16 0.6933
genotype x age 3 150 0.24 0.8714
age x sex 3 150 0.21 0.8897
genotype x sex 1 150 0.04 0.8501
genotype x age x sex 3 150 0.36 0.7832

body weight 1 150 8 0.0053

% prepulse genotype 1 150 0.35 0.5567
inhibition age 3 150 6.39 0.0004

sex 1 150 0 0.9463

dB level 3 453 177.37 <0.0010
age x genotype 3 150 0.51 0.6787
age x sex 3 150 0.64 0.5917

age x dB level 9 453 4.41 <0.0010

genotype x sex 1 150 0.01 0.9214

genotype x dB level 3 453 0.82 0.4813
sex x dB level 3 453 0.64 0.5926
genotype x age x sex 3 150 2 0.1163
age x genotype x dB
level

9 453 1.44 0.1689

age x sex x dB level 9 453 1.12 0.3485
genotype x sex x dB
level

3 453 0.29 0.8304

age x genotype x sex 9 453 0.39 0.9416



x dB level

body weight 1 150 0.76 0.3833

contextual fear time immobile genotype 1 149 0.91 0.3422

conditioning (fear memory age 3 149 6.06 0.0006
acquisition) sex 1 149 6.7 0.0106

shock 9 1341 209.13 <0.0010
genotype x age 3 149 1.29 0.2812
age x sex 3 149 2.12 0.0997

age x shock 27 1341 2.33 0.0001

genotype x sex 1 149 0.64 0.4253

genotype x shock 9 1341 0.93 0.4934

sex x shock 9 1341 2.93 0.0019
genotype x age x sex 3 149 0.81 0.4898
genotype x age x
shock

27 1341 1.15 0.2702

age x sex x shock 27 1341 1.83 0.0058
genotype x sex x
shock

9 1341 0.73 0.6794

genotype x age x sex
x shock

27 1341 0.6 0.9464

time immobile genotype 1 148 0 0.9639
(fear memory age 3 148 1.59 0.1931

retention) sex 1 148 11.84 0.0008

genotype x age 3 148 1.49 0.219

age x sex 3 148 5.72 0.001

genotype x sex 1 148 0.33 0.5662

genotype x age x sex 3 148 0.59 0.625

time immobile genotype 1 148 1.02 0.3134

(fear Memory age 3 148 3.92 0.01

extinction) sex 1 148 21.3 < 0.0001
genotype x age 3 148 0.79 0.5037

age x sex 3 148 7.65 < 0.0001

genotype x sex 1 148 1.36 0.2447

genotype x age x sex 3 148 0.99 0.3977

extinction
index

genotype 1 148 1.54 0.2166

age 3 148 0.62 0.6057
sex 1 148 1 0.3194
genotype x age 3 148 1.64 0.1835
age x sex 3 148 0.68 0.5652
genotype x sex 1 148 0.46 0.4979

genotype x age x sex 3 148 0.28 0.8426

elevated plus-maze % time spent in genotype 1 147 0.28 0.5986
open arms age 3 147 7.89 < 0.0001

sex 1 147 5.61 0.0192
genotype x age 3 147 4.08 0.0081



age x sex 3 147 1.37 0.2546
genotype x sex 1 147 0.69 0.4084

genotype x age x sex 3 147 0.23 0.8788



3 Supplementary figures: age- and sex-related results; irrespective of the FKBP52

genotype

3.1 Food burrowing

Supplementary Figure S1. Percentage of food displaced by male and female FKBP52+/+,

FKBP52+/- and FKBP52-/- mice at different ages in three separate experiments. Irrespective of

sex and genotype, mice tended to displace less food from a jar with increasing age – from

two- to eighteen-months-of-age – in experiment 2 (age: F(3, 150) = 2.53, p = 0.0594; S1 B).

Food burrowing behaviour was unaltered by any of the experimental conditions, i.e. age, sex

or genotype, in the other two experiments (S1 A, C).

. KEY: M male, F female.



3.2 Spontaneous alternation – alternation rate



Supplementary Figure S2. Comparable alternation rates of male and female FKBP52+/+,

FKBP52+/- and FKBP52-/- mice in a Y-maze, at different ages in three separate experiments.

Most mouse groups alternated above the 50%-chance level, except ten-month-old male mice

in experiment 1 (S2 A), fifteen-month-old male mice in experiment 2 (S2 B) and twelve-

month-old female mice in experiment 3 (S2 C). No group alternated at less than 50%. KEY:

M male, F female; # p < 0.05, ## p < 0.01, ### p < 0.001 (one-sample t-test, comparison of

means to 50%).



3.3 Open field – relative distance in the centre

Supplementary Figure S3. The relative distance that male and female FKBP52+/+ and

FKBP52+/- mice covered in the centre of the open field arena declined from two- to eighteen-

months-of-age (age: F(3, 151) = 9.46, p < 0.0001) and varied with sex (sex: F(1, 151) = 14.47, p =

0.0002) in experiment 2 (S3 B). This variable was unaffected by the experimental conditions

in experiment 1 (S3 B). In experiment 3, male FKBP52+/- mice appeared to cover a greater,

whereas male FKBP52-/- mice seemed to cover a shorter distance in the centre of the open



field than male FKBP52+/+ mice (S3 C). This observation was not supported by the statistics

of data collected from experiment 1 or 2.

KEY: M male, F female.



3.4 Novel object habituation, location and discrimination

Supplementary Figure S4. Total exploration times of two objects did not differ between

genotypes across all three novel object trials when male and female FKBP52+/+, FKBP52+/-

and FKBP52-/- mice were tested at different ages in three separate experiments. The time the

mice spent exploring both objects within the habituation and location trials was not affected

by the experimental conditions in experiment 1 and 2 (S4 A, 4 B, 4 D and 4 E). The total

exploration time of both objects in the discrimination trial depended on sex alone in

experiment 1 (sex: F(1, 43) = 4.64, p = 0.0371; S4 C) and on sex in an age-dependent manner

in experiment 2 (sex x age: F(3, 132) = 2.84, p = 0.0406; S4 F); but sex differences did not

follow a coherent pattern. KEY: M male, F female.



Supplementary Figure S5. Whether mice preferred to explore an object at a new or familiar

location was unaltered by genotype, sex or age in experiment 1, 2 and 3 (S5 A, B and C,

respectively); covering FKBP52+/+, FKBP52+/- and FKBP52-/- mice from two- to eighteen-

months-of-age (S5 B) and including effects of repeated testing (S5 A). The lack of genotype-

related deficits may have arisen from poor FKBP52+/+ performance which can currently not

be explained as the testes were performed according to a previously validated protocol

(Scullion et al., 2009).KEY: M male, F female; # p < 0.05 (one-sample t-test, comparison of

means to 50 %).





3.5 Acoustic startle magnitude

Supplementary Figure S6. Startle magnitude values recorded during the prepulse inhibition

protocol in male and female FKBP52+/+, FKBP52+/- and FKBP52-/- mice at different ages in



three separate experiments. Startle magnitude decreased with age irrespective of genotype or

sex in experiment 1 (age: F(1, 42) = 6.33, p = 0.0158; S6 A) and 2 (age: F(3, 150) = 6.39, p =

0.0004; S6 B). KEY: M male, F female.



3.6 Prepulse inhibition
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Supplementary Figure S7. dB-level and age-dependent percentage prepulse inhibition in

response to prepulse levels of 68, 72, 80 and 90 decibels (dB) by male and female

FKBP52+/+, FKBP52+/- and FKBP52-/- mice at different ages in experiment 1 (S7A and D),

experiment 2 (S7B and E) and experiment 3 (S7 C and F). The inhibition of the acoustic

startle response increased with the dB levels applied during the prepulse in experiment 1 at

ten- (dB level: F(3, 129) = 20.08, p < 0.0010) and twelve-months-of-age (dB level: F(3, 129) =

8.71, p < 0.0010; S7 A); as in experiment 2 as function of age; whereby inhibition was

reduced in eighteen-month-old mice (dB level x age: F(9, 453) = 4.41, p < 0.0010; S7 B).



3.7 Contextual fear

acquisition,

retention and

extinction



Supplementary Figure S8. Immobility in response to 0.4 mA foot shocks in the cross-

sectional experiment 2 of two- (S8 A and E), twelve- (S8 B and F), fifteen- (S8 C and G)

and eighteen-month-old (S8 D and H) male and female FKBP52+/+ and FKBP52+/- mice.

Both genotypes became increasingly immobile with repeated shock exposure; indicating

robust acquisition of contextual fear. The increasing immobility was affected by sex and age

(sex x age x shock: F(27, 1341) = 1.83, p = 0.0058).
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Supplementary Figure S9. Immobility in response to 0.4 mA foot shocks in twelve-month-

old mice in experiment 1 (S9 A and C) and experiment 3 (S9 B and D)

All experimental groups became increasingly immobile with repeated shock exposure,

indicating successful acquisition of contextual fear. The increasing immobility was affected

by sex in experiment 1 (sex x shock: F(9, 387) = 3.64, p = 0.0002; S9 A and C).



Supplementary Figure S10. Levels of immobility in the retention (S10 A and D) and

extinction (S10 B and E) trials of the experiment 2, following the contextual fear acquisition

trial, in male and female FKBP52+/+ and FKBP52+/- mice of different ages. Immobility in the

contextual fear retention and extinction trials was altered by sex in an age-dependent manner

in experiment 2 (sex x age: F(3, 148) = 5.72, p = 0.0010 and sex x age: F(3, 148) = 7.65, p <

0.0001, respectively); which was due to twelve-month-old males that remained more

immobile than two- (p = 0.0131 and p = 0.0016, respectively) and eighteen-month-old (p =

0.0235 and p = 0.007, respectively) males; and which was due to females being less

immobile than males in the retention and extinction trial (p = 0.001 and p < 0.001,

respectively).



The extent of contextual fear memory extinction was unaffected by the experimental

conditions and no genotype-group showed successful extinction of contextual fear (indicated

by negative index values) consistently. KEY: # p < 0.05 (one-sample t-test, comparison of

means to 0).



Supplementary Figure S11. Comparable levels of immobility in retention (S11 A and D)

and extinction (S11 B and E) trials, following the contextual fear acquisition trial, in twelve-

month-old female and male FKBP52+/+, FKBP52+/- and FKBP52-/- mice from experiment 1

(S11 A, B and C) and experiment 3 (S11 D, E and F). Sex-related trends observed in

experiment 2 were not apparent in experiment 1 or 3. All groups of experiment 1 (S11 C) and

3 (S11 F) were unsuccessful in extinguishing contextual fear memory.
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