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Philanthotoxin-433 (PhTX-433) is a known potent inhibitor of 

ionotropic glutamate receptors and analogues have been synthesized 

to identify more potent and selective antagonists. Here, we report on 

the synthesis of four PhTXs with a cyclopropane moiety introduced 

into their polyamine chain, and on their inhibition of an AMPA receptor 

subtype by using two-electrode voltage-clamp on Xenopus oocytes 

expressing the GluA1flop subunit. All analogues were more potent 

than PhTX-343 with trans-cyclopropyl-PhTX-343 being the most 

potent (~28-fold) and cis-cyclopropyl-PhTX-343 least potent (~4-fold). 

Both cis- and trans-cyclopropyl-PhTX-444 had intermediate potency 

(both ~12-fold). Molecular modelling indicates that a cyclopropane 

moiety confers a favourable steric constraint to the polyamine part but 

this is compromised by a cis conformation due to enhanced 

intramolecular folding. Elongated PhTX-444 analogues alleviate this 

to some extent but optimal positioning of the amines is not permitted. 

 

Introduction 

Philanthotoxin-433 (PhTX-433, 1; the numerals indicate the 

number of methylene groups spacing the nitrogens in the 

polyamine moiety; Figure 1) is a toxin found naturally in the 

venom of the solitary wasp, Philanthus triangulum.[1,2] PhTX-433 

and many of its synthetic analogues have been shown to have 

non-competitive inhibitory effects at both ionotropic glutamate 

receptors and nicotinic acetylcholine receptors.[3-6] In that respect 

PhTXs are attractive molecules to investigate further given that 

both of these receptor types are accepted as valid drug targets 

for a variety of neurodegenerative and other disorders of the 

central nervous system.[7] The modular butyryl-tyrosyl-

thermospermine composition of 1 has allowed for efficient 

generation of many synthetic analogues demonstrating the 

importance of all of these structure segments.[4,6,8-11] PhTXs 1, 2 

and an array of other analogues have been shown to produce 

powerful voltage-dependent inhibition of α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPAR) currents 

suggesting a binding mode with the polyamine inserted deeply 

within the pore region of the ion channel.[3] This hypothesis is 

supported by the observation that AMPARs containing the GluA2 

subunit with arginine at the “Q/R” site in the selectivity filter of the 

pore exhibit drastically reduced inhibition by PhTX-343 and other 

polyamine-containing molecules.[12] 

In the last two decades advanced methodologies for solid-

phase synthesis (SPS) of polyamines have been developed,[13] 

however, no examples of SPS of cyclopropane-containing 

polyamine derivatives have been reported. The commonly used 

solution-phase method for obtaining polyamines displaying a 

cyclopropane moiety is alkylation of mesitylenesulfonamides with 

mesitylenesulfonates of cyclopropane diols, but this is not readily 

transferred into an SPS protocol due to the harsh conditions 

required for deprotonation of the sulfonamide and the risk of 

cross-linking the resin due to the bifunctional building block.[14] 

Cyclopropane-trans-1,2-dicarboxylic acid[15] may be readily 

obtained from the corresponding ethyl diester and the cis-

anhydride 3-oxabicyclo[3.1.0]hexane-2,4-dione was commercially 

available, and therefore, we chose an approach involving on-resin 

reduction of the diamide corresponding to the desired 4,4'-

dimethoxytrityl-protected polyamine.[16]  

In the present work we focus on incoporating 

unprecedented structural variations of the polyamine moiety 

present in both 1 and its well-studied close structural analogue, 

PhTX-343 (2), and examine how these influence the inhibitory 

effects of the resulting PhTX analogues on a specific subunit, 

GluA1flop, present in members of the AMPAR subdivision of the 

ionotropic glutamate receptor family. This subunit is characteristic 

of a calcium-permeable and polyamine-sensitive subtype of 

AMPARs, with the flop splice variant (a 38 amino acid region 

upstream of the fourth transmembrane region) being upregulated 

in place of the flip splice variant during early development to 

become dominating in adult CNS. Constraints were introduced in 

the central region of the polyamine moiety in an attempt to assess 

the importance of rigidity in this region. This was achieved by 

solid-phase synthesis incorporating cyclopropane moieties into 
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the polyamine chain to give trans- and cis-analogues with 3-4-3  

or 4-4-4 (i.e. PhTX-343- or PhTX-444-like) spacing between the 

nitrogens (3-6 = trans-343, trans-444, cis-343, cis-444, 

respectively; Figure 1). Analogues 2-6 were tested for inhibitory 

potency against homomeric rat GluA1flop AMPARs expressed in 

Xenopus oocytes by measurement of their reduction of currents 

evoked by stimulation with kainic acid (KA; 100 μM) by using a 

two-electrode voltage-clamp at a holding potential of –80 mV. 

Although KA is a weaker agonist of AMPARs it is often used 

instead of AMPA or L-Glu in these assays to avoid the problem of 

rapid receptor desensitization. 

 
Figure 1. Natural (1) and synthetic (2-6) target philanthotoxins (PhTXs). 

Results and Discussion 

Solid-phase synthesis of philanthotoxin analogues 

First, cyclopropane-trans-1,2-dicarboxylic acid diethyl ester (7) 

was converted into the corresponding pentafluorophenyl diester 8 

(Scheme 1) via alkaline hydrolysis and subsequent 

transesterification by using pentafluorophenyl trifluoroacetate–

pyridine (1:1) in DMF.[15,17] Building blocks 9a and 9b were 

obtained upon condensation of pentafluorophenyl diester 8 with 

one equivalent of the appropriate 2-(trimethylsilyl)ethoxycarbonyl 

(Teoc)-monoprotected diamine.[16b]   

In order to minimize cross-linking of the 2-chlorotrityl 

chloride resin, it was loaded with the appropriate Teoc-

monoprotected diamine (Scheme 2). A prolonged reaction time of 

two days enabled a cost-efficient use of these selectively 

protected diamines as only 10% excess was required. The 

resulting resin-bound diamines 10a/10b were then coupled with 

building blocks 9a/9b to give Teoc-protected diamide 

intermediates 11a/11b that were subjected to exchange of the N-

protecting group followed by borane reduction to yield the 4,4'-

dimethoxytrityl (Dmt)-protected polyamine intermediates 12a/12b. 

The thus formed secondary amino functionalities were Boc-

protected, and then the Dmt group on the terminal primary amine 

was removed under weakly acidic conditions to give selectively 

protected resin-bound polyamines 13a/13b. Successive acylation 

with the activated ester, Fmoc-Tyr(tBu)-OPfp, Fmoc deprotection, 

acylation with  pentafluorophenyl butanoate,[18] and cleavage from 

the linker afforded the crude trans-cyclopropane-containing target 

philanthotoxins that readily were pufied by reversed-phase 

preparative HPLC to give PhTXs 3 and 4 as the tris(TFA) salts.   

 

   

Scheme 1. Reagents and conditions: a) NaOH, H2O–EtOH; b) CF3COOPfp (2.5 

equiv), pyridine (2.5 equiv), DMF, 19 h; c) TeocNH(CH2)3NH2 or 

TeocNH(CH2)4NH2 (1 equiv), DIPEA (2 equiv), CH2Cl2, 19 h. DIPEA = 

diisopropylethylamine, Pfp = pentafluorophenyl, Teoc = 2-

(trimethylsilyl)ethoxycarbonyl.  

 

  

Scheme 2. Reagents and conditions: a) TeocNH(CH2)3NH2 or 

TeocNH(CH2)4NH2 (1.1 equiv), DIPEA (5 equiv), CH2Cl2, 2 days then CH2Cl2–

MeOH–DIPEA (85:15:5), 2 × 10 min; b) TBAF (3 equiv), DMF, 50 C, 1 h then 

room temperature for 3 h; c) Compound 9a or 9b (2 equiv), HODhBt (1 equiv), 

DIPEA (2 equiv), DMF, 16 h; d) TBAF (5 equiv), DMF, 55 C, 2 × 15 min; e) 

Dmt-Cl (6 equiv), DIPEA (6 equiv), CH2Cl2, 3.5 h then CH2Cl2–MeOH–DIPEA 

(85:15:5); f) 1M BH3
.THF (20 equiv), THF, reflux for 16 h; g) Boc2O (10 equiv), 

DIPEA (10 equiv), CH2Cl2, 16 h; h) 0.1M chloroacetic acid, CH2Cl2, 4 × 30 min; 

i) Fmoc-Tyr(tBu)-OPfp (3 equiv), HODhBt (1 equiv), DIPEA (3 equiv), DMF, 2 × 

16 h; j) 20% piperidine–DMF, 2 × 10 min; k) C3H7COOPfp (3 equiv), HODhBt (1 

equiv), DIPEA (3 equiv), DMF, 16 h; l) TFA–CH2Cl2 (1:1), 2 h. TBAF: 

tetrabutylammmonium fluoride; Dmt-Cl: 4,4'-dimethoxytrityl chloride; HODhBt: 

3-hydroxy-1,2,3,-benzotriazin-4(3H)-one. 
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SPS of the corresponding cis-cyclopropane-containing PhTXs 

also started from resin-bound diamines 10a/10b, but in this case 

these were acylated with the cis-anhydride 3-oxabicyclo[3.1.0]-

hexane-2,4-dione to give intermediate resins 14a/14b. Elongation 

with the respective Teoc-monoprotected diamines under 

DIC/HOBt amide coupling conditions followed by removal of the 

Teoc group furnished the unprotected diamides 15a/15b. 

Introduction of the Dmt-protecting group and subsequent borane 

reduction of the amide fuctionalities gave rise to resins 16a/16b 

that upon Boc-protection and Dmt removal afforded primary 

amines 17a/17b that were acylated and cleaved from the resin as 

described for the trans-analogues to yield PhTXs 5 and 6 as the 

corresponding tris(TFA) salts upon purification. 

 

 

Scheme 3. Reagents and conditions: a) 3-oxabicyclo[3.1.0]hexane-2,4-dione (4 

equiv), DIPEA (2 equiv), DMF, 16 h; b) TeocNH(CH2)mNH2 (m = 3 or 4; 4 equiv), 

HOBt (4 equiv), DIC (4 equiv), DMF, 16 h; c) TBAF (5 equiv), DMF, 55 C, 2 × 

15 min; d) Dmt-Cl (6 equiv), DIPEA (6 equiv), CH2Cl2, 3.5 h then CH2Cl2–

MeOH–DIPEA (85:15:5); e) 1M BH3
.THF (20 equiv), THF, reflux for 16 h; f) 

Boc2O (10 equiv), DIPEA (10 equiv), CH2Cl2, 16 h; g) 0.1M chloroacetic acid, 

CH2Cl2, 4 × 30 min; h) Fmoc-Tyr(tBu)-OPfp (3 equiv), HODhBt (1 equiv), DIPEA 

(3 equiv), DMF, 16 h; i) 20% piperidine–DMF, 2 × 10 min; j) C3H7COOPfp (3 

equiv), HODhBt (1 equiv), DIPEA (3 equiv), DMF, 16 h; k) TFA–CH2Cl2 (1:1), 2 

h.  

Receptor inhibition by philanthotoxins 

PhTX analogues 2-6 were all able to cause potent inhibition of 

currents evoked by exposure of oocytes to 100 μM KA (Figure 2) 

with their IC50 values given in Table 1. The present study is the 

first to report on PhTX-343 inhibition of homomeric rat GluA1flop 

channels while previous reports have focused on rat GluA1flip or 

AMPARs expressed from mRNA extracted from rat brain. We 

found that the IC50 for GluA1flop inhibition is similar to that for 

GluA1flip[12] but is about 10-fold higher than that observed for KA-

activated channels expressed from rat brain mRNA.[4,10] The 

subunit combination of the latter is not known, but presumably it 

contains other AMPAR subunits that may be more sensitive to 

PhTX 2. All of the cyclopropane-containing PhTX analogues (3-6) 

were significantly more potent inhibitors than 2, with the trans-

configured 3 being the most potent; nearly 30-fold more so than 

the corresponding straight-chain PhTX 2.  
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Figure 2. A) Current observed in response to exposure to 100 μM KA, and its 

inhibition following addition of 1 μM PhTX analogue 3 to an oocyte expressing 

GluA1flop at VH -80 mV. B) Concentration-inhibition curves for compounds 2-6 

in their inhibition of GluA1flop currents evoked by 100 μM KA. Points are 

mean % of control response ± SEM (n = 4-7 oocytes). IC50 values estimated 

from curve fits (Hill equation) are given in Table 1. 

 

Table 1. IC50 values for inhibition of 100 μM KA-evoked GluA1flop currents 

by PhTXs 2-6 and their relative potencies as compared to PhTX-343 (2). 

Compound IC50 ± SEM (μM) n (oocytes)[a] Relative potency[b] 

2 6.77 ± 1.41 6 1.0 

3 0.24 ± 0.04[c] 6 28.2 

4 0.54 ± 0.12[c] 7 12.5 

5 1.79 ± 0.50[d] 4 3.8 

6 0.57 ± 0.06[c] 6 11.9 

[a] Number of replicates each representing individual oocytes. [b] Ratio 

between IC50 values for PhTX 2 and each of the other PhTXs. [c] P < 0.0001 

(significance of difference by an extra sum of squares F-test compared to 2). 

[d] P < 0.001 (significance of difference by an extra sum of squares F-test 

compared to 2). 
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Modelling studies on philanthotoxins 

It is well known that the potency of a philanthotoxin analogue is 

influenced by changes in the length of the polyamine moiety as 

well as by the number and distribution of the positively charged 

amino groups as these factors determine the overall shape and 

electronic properties of the resulting molecule via intramolecular 

H-bonding.[3, 4, 19, 20]  

 

Figure 3. Structures of philanthotoxin analogues 2-6 visualizing the three 

general conformations that can be adopted: “head and tail” for 2 (A) and 3 (C), 

“semi-folded” for 4, 5 and 6 (D-F) and “folded” for 2 (B). G) A clearer view of H-

bonding (pink lines) between amide oxygens and amine hydrogens in 3 for an 

HT conformation and in 5 for a SF conformation. 

PhTX analogues can adopt three general low-energy 

structures, “head and tail” (HT; extended), “semi-folded” (SF) and 

“folded” (F) (as depicted in Figure 3), depending on whether H-

bonding involves the first, second, or third amino group, 

respectively. The HT structure is believed to be the most active at 

AMPARs due to previous observations showing that the mono-

cationic analogues are virtually inactive at AMPARs.[4,14] In terms 

of general shape mono-cationic analogues are “folded” because 

they do not possess a “tail” at all. Our modelling studies show that 

for all compounds the vast majority (99.8%) of low-energy 

conformations possessed at least one intramolecular H-bond. 

Ensembles of low-energy conformations obtained for the PhTX 

analogues studied contained all three types of structures (HT, SF 

and F) within 3 kcal mol-1 from the apparent energy minimum 

(0.5-1.0 kcal mol-1). To reveal the conformational preferences of 

the compounds we compared the relative numbers of 

conformations belonging to the different types within these 

ensembles. Compound 2 was found to be distributed as 85% HT 

(Figure 3A), 13% SF and 2% F (Figure 3B). This was unchanged 

for 3 so the additional hydrocarbon bulk, which in fact becomes 

part of the head group and relocating the tyrosyl group (Figure 

3C), appears to be responsible for the increased potency of 3. 

This is reminiscent of analogues where short hydrocarbon chains 

were introduced to the central section of the polyamine moiety 

resulting in more potent analogues at insect quisqualate sensitive 

ionotropic glutamate receptors.[9] The cis-analogue of 3 (i.e 

compound 5) was less potent as the cis arrangement caused the 

molecule to adopt a greater proportion of SF structure (44%) 

(Figure 3D) at the expense of HT (54%). The cause of this effect 

is that in the cis form both amino groups occur at the same side 

of the bulk and rigid cyclopropane ring. While the trans 

configuration dictates a rather large distance between amino 

groups (6.2 Å in the lowest-energy structure), the cis 

configuration results in a significantly smaller distance (4.6 Å). As 

a result, the probability that the second amino group is involved in 

intramolecular H-bonding (and thus the structure is semi-folded) 

is larger for the cis than the trans configuration (Figure 3G).  

PhTX analogues 4 and 6 showed intermediate potency 

between 3 and 5 since the additional carbon in the chain between 

the head group and the first amine functionality allowed for more 

flexibility and hence a higher proportion of SF structures (Figure 

3; E-F). The SF structures for these analogues are likely to be 

more active because of the longer chain between the second and 

terminal amine groups (giving it a more HT-like structure). 

Conclusion 

Introduction of a cyclopropane moiety between the first and 

second amino groups of PhTX-343 proved beneficial for AMPAR 

antagonism, but less so for the cis-analogue due to its greater 

tendency to become semi-folded as inferred by modeling studies. 

The positive (for trans-analogues) and negative (for cis-

analogues) effects of this structural alteration are to some extent 

obscured by the increased spacing of the amide and the first 

amine functionality as well as of the second and third amines, 

such that both PhTX-444 analogues display similar potency.  

Experimental Section 

General procedures. Unless otherwise stated, starting materials and 

solvents were purchased from commercial suppliers (H-Tyr(tBu)-OH 

from Novabiochem, reagents and solvents from Sigma-Aldrich, Fluka, 

or Lancaster) and used as received. CH2Cl2 was distilled from P2O5 

and stored over 4 Å molecular sieves. THF was distilled from 

Na/benzophenone immediately before use. 1H NMR and 13C NMR 

spectra were recorded at 400.14 MHz and 100.62 MHz, respectively, 

on a Bruker AMX 400 spectrometer, or at 300.06 MHz and 75.45 MHz, 

respectively, on a Varian Mercury Plus spectrometer, using CDCl3 or 

CD3OD as solvents and tetramethylsilane (TMS) as internal standard. 

Coupling constants (J values) are given in hertz (Hz), and 

multiplicities of 1H NMR signals are reported as follows: s, singlet; d, 

doublet; t, triplet; q, quartet; p, pentet, sx, sextet; m, mulitplet; br, 

broad. High-resolution mass spectrometry (HRMS) measurements 

were performed on a Bruker APEX Qe Fourier transform mass 

spectrometer equipped with a 9.4 tesla superconducting cryomagnet, 

and an external electrospray ion source (Apollo II source). The 

spectra were externally calibrated with an arginine cluster in positive 
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mode. The samples were dissolved in MeOH, introduced into the 

electrospray ion source using a syringe pump with a flow of 2 L/min. 

Solid-phase reactions were performed in Teflon filter vessels on a 

Scansys PLS 4 × 6 Organic Synthesizer equipped with a heating 

block. Preparative HPLC system consisted of an Agilent 1100 system 

with 2 preparative pump units, a UV detector, and a Phenomenex 

Luna C18(2) (5 m) column (25  2.12 cm). Linear elution gradients 

were composed by mixing solvent A (MeCN–H2O–TFA 5:95:0.1) and 

B (MeCN–H2O–TFA 95:5:0.1) at a flow rate of 20 mL/min. Analytical 

HPLC was performed on a Shimadzu system consisting of an SCL-

10A VP controller, an SIL-10AD VP autosampler, an LC-10AT VP 

pump, an SPD-M10A VP diode array detector, and a CTO-10AC VP 

column oven, using a Phenomenex Luna C18(2) (3) column (150  

4.6 mm). The HPLC system was controlled by Class VP 6 software; 

elution was performed with two different solvent systems (total flow of 

0.8 mL/minute). Solvent A = MeCN–H2O–TFA 10:90:0.1 and solvent 

B = MeCN–H2O–TFA 90:10:0.1; t = 0-5 min 0% B, t = 5-30 min 0-40% 

B, t = 30-35 min 40-100% B). The purities of target compounds 3-6 

were determined (from UV absorption integration at  = 215 nm) and 

were within the ranges 97-99%. 

Dipentafluorophenyl Cyclopropane-trans-1,2-dicarboxylate (8): 

Diethyl trans-1,2-cyclopropanedicarboxylate (7, 5.15 g, 27.7 mmol) 

was subjected to hydrolysis with NaOH (5.16 g, 4.66  27.7 mmol) in 

H2O–EtOH (2:1, 75 mL) for 4 h at room temperature. The reaction 

mixture was diluted with H2O (200 mL), and then washed with Et2O 

(100 mL), which was extracted back with H2O (50 mL). The combined 

aqueous phases were concentrated to dryness in vacuo. The residue 

was partially dissolved in EtOAc (100 mL), which then was filtered 

through a layer of Na2SO4. The filtrate was evaporated to give the 

crude diacid (2.98 g, 83%). The diacid (1.40 g, 10.8 mmol) was 

treated with CF3COOPfp (4.64 mL, 2.5  10.8 mmol) and pyridine 

(2.18 mL, 2.5  10.8 mmol) in dry DMF (15 mL) for 19 h under N2. 

The reaction mixture was diluted with EtOAc (250 mL), and then 

extracted successively with 0.1 M HCl (3  150 mL), saturated 

aqueous NaHCO3 (3  150 mL), and brine (150 mL). Upon drying 

(Na2SO4) the solvent was removed to give 8 (4.86 g, 98%). 1H NMR 

(300 MHz, CDCl3):  1.81 (t, J = 7.5 Hz, 2H), 2.65 (t, J = 7.5 Hz, 

2H); 13C NMR (75 MHz, CDCl3):  = 17.6, 22.3 (2C), 124.5, 137.7 

(2C), 139.7, 141.0 (2C), 167.0. Anal. calcd for C17H4F10O4: C 44.18, H 

0.87, found: C 44.31, H 0.58. 

Protected Monoamides (9a/9b) from Dipentafluorophenyl 

Cyclopropane-trans-1,2-carboxylate: The diPfp ester (1.78 g, 3.85 

mmol) was dissolved in dry CH2Cl2 (25 mL), and then the appropriate 

Teoc-monoprotected diamine (3.85 mmol) and DIPEA (1.34 mL, 2  

3.85 mmol) in dry CH2Cl2 (10 mL), were added. After 19 h, the 

reaction mixture was diluted with EtOAc (150 mL), and then washed 

with 0.1 M HCl–brine (3:1, 3 × 100 mL), H2O (100 ml), satd NaHCO3–

brine (3:1, 3 × 100 mL), and brine (75 mL). The organic layer was 

dried (Na2SO4) and concd. The residue was dissolved in CH2Cl2 (15 

mL) and loaded onto a VLC column (5.5 × 6 cm), which was eluted 

with hexane and then hexane–Me2CO 20:1 to 4:1. This afforded 9a 

(1.24 g, 65%) or 9b (1.10 g, 56%). 9a: 1H NMR (300 MHz, CDCl3):  

0.03 (s, 9H), 0.97 (br t, J = 8.5 Hz, 2H), 1.52 (ddd, J = 9.2, 5.5, 4.1 Hz, 

1H), 1.61-1.71 (br m, 3H), 2.20 (ddd, J = 9.2, 6.0, 3.9 Hz, 1H), 2.48 

(ddd, J = 9.1, 5.5, 3.9 Hz, 1H), 3.35 (m, 2H), 3.24 (m, 2H), 4.14 (br t, J 

= 8.5 Hz, 2H), 5.05 (br s, 1H), 6.84 (br s, 1H) ppm; 13C NMR (75 MHz, 

CDCl3):  –1.4, 16.2, 17.8, 20.3, 25.6, 30.1, 36.3, 37.5, 62.3, 157.5, 

168.7, 169.1 ppm. HRMS m/z [M+Na]+ calcd for C20H25F5N2NaO5Si: 

519.13451, found 519.13431. 9b: 1H NMR (300 MHz, CDCl3):  = 

0.02 (s, 9H), 0.96 (br t, J = 8.5 Hz, 2H), 1.51 (ddd, J = 9.0, 5.5, 3.9 Hz, 

1H), 1.56 (m, 4H), 1.77 (ddd, J = 9.0, 6.1, 3.9 Hz, 1H), 2.16 (ddd, J = 

9.0, 6.1, 3.9 Hz, 1H), 2.47 (ddd, J = 9.0, 5.5, 3.9 Hz, 1H), 3.32 (m, 2H), 

3.29 (m, 2H), 4.13 (br t, J = 8.5 Hz, 2H), 4.79 (br s, 1H), 6.43 (br s, 

1H) ppm; 13C NMR (75 MHz, CDCl3):  –1.4, 16.1, 17.9, 20.3, 25.5, 

26.5, 27.8, 39.7, 40.4, 63.1, 156.9, 168.7, 168.9 ppm. HRMS m/z 

[M+Na]+ calcd for C21H27F5N2NaO5Si: 533.15016, found 533.14995. 

Preparation of resin-bound diamines 10a/10b: N1-[2-

Trimethylsilyl)ethoxycarbonyl)]-1,3-propanediamine was prepared (in 

74% yield) as earlier reported for N1-[2-trimethylsilyl)ethoxycarbonyl)]-

1,4-butanediamine.[16b] 1H NMR (300 MHz, CDCl3):  = 0.02 (s, 9H), 

0.96 (t, J =  8.5 Hz, 2H), 1.67 (p, J =  6.6 Hz, 2H), 2.82 (t, J =  6.6 Hz, 

2H), 3.26 (m, 2H), 4.12 (br t, J =  8.5 Hz, 2H) ppm; 13C NMR (75 MHz, 

CDCl3):  = –1.2, 17.9, 38.8, 39.4, 62.9, 157.0 ppm. Trityl chloride 

resin (1.89 g, ~2.2 mmol/g) prewashed with 10% DIPEA–CH2Cl2 was 

added to a gently stirred solution of Teoc-monoprotected diamine (1.1 

× 4.16 mmol) and DIPEA (3.6 mL, 5 × 4.16 mmol) in dry CH2Cl2 (20 

mL). After 2 days, the resin was transferred to a 20 mL syringe, and 

then washed with CH2Cl2 (2 ×15 mL) and subsequently end-capped 

with CH2Cl2–MeOH–DIPEA (80:15:5, 15 mL, 2 × 10 min). The resin 

was then washed with CH2Cl2, MeOH, dry CH2Cl2 (each 3×), dried 

overnight (to give 2.52 g and 2.57 g, respectively of resin-bound 

Teoc-protected 1,3-propanediamine and 1,4-butanediamine, 

repectively). Then the Teoc groups were removed by treatment with 

TBAF (3 equiv) in dry DMF (45 mL; in a round-bottomed flask) at 50 

C for 1 h and then at room temperature for 3 h. The resins were then 

washed with CH2Cl2, MeOH, dry CH2Cl2 (each 3×), dried overnight (to 

give ~2.0 g, 10a/10b). The loadings were determined to be ~1.8 

mmol/g based on the mass gain and coupling with Fmoc-Gly-OH. 

SPS of Protected trans-Cyclopropane PhTX-Analogues: Resin-

bound diamines (10a/10b, 0.44 mmol) were swelled in dry DMF for 30 

min. The solvent was removed by suction, and the resin was treated 

with a cyclopropane building block (9a or 9b, 2 equiv), HODhBt (1 

equiv) and DIPEA (2 equiv) in dry DMF (10 mL/mmol resin). The 

mixture was shaken for 16 h at room temperature. The resin was 

drained and then washed with DMF, MeOH, CH2Cl2 and DMF (3 × 12 

mL/mmol resin with each solvent). The Teoc group was removed by 

treatment with TBAF (5 equiv) in DMF (7.5 mL/mmol resin) at 55 C 

for 15 min. Upon draining and wash with DMF, this deprotection step 

was repeated. The resin was drained and then washed with DMF, 

MeOH, and CH2Cl2 (3 ×). Dmt-Cl (6 equiv) in dry CH2Cl2 (9 mL/mmol 

resin) and DIPEA (6 equiv) were added to the resin. After 3.5 h, the 

resin was drained and washed with CH2Cl2, CH2Cl2–MeOH–DIPEA 

(80:15:5), DMF, CH2Cl2, and THF (each 3 ×). The resin was 

transferred to a 25 mL flask with a minimum of THF, and then 1M 

BH3∙THF in THF (20 equiv) was added. The flask was heated to reflux 

under N2 in an oil bath (70 C) for 16 h. The resin was transferred 

back to a teflon reactor using THF. Upon draining, the resin was 

washed with MeOH (3 ×). Then the resin was treated with piperidine 

(9 mL/mmol resin) at 60 C for 1.5 h. After washing with MeOH (12 

mL/mmol), this decomplexation procedure was repeated twice. The 

resin was treated with Boc2O (10 equiv) and DIPEA (10 equiv) in dry 

CH2Cl2 (6 mL/mmol resin) for 16 h followed by draining and wash with 

DMF, MeOH, DMF, and CH2Cl2 (each 3 ×). Dmt deprotection with 

0.1M ClAcOH in CH2Cl2 (14 mL/mmol resin) for 30 min followed by 

wash with CH2Cl2 was repeated three times. The resin was drained 

and washed with DMF, MeOH, CH2Cl2, and dry DMF (each 3 ×). The 

resulting resin was coupled with Fmoc-Tyr(tBu)-OPfp (3 equiv), 

HODhBt (1 equiv), and DIPEA (3 equiv) in dry DMF (7 mL/mmol 

resin) for 16 h. Upon draining, the resin was washed with DMF, 

MeOH, CH2Cl2, and dry DMF (each 3 ×). Coupling with Fmoc-

Tyr(tBu)-OPfp was repeated (due to a positive Kaiser test) using 

DMF–CH2Cl2 (3:1) as solvent. Fmoc deprotection with 20% 

piperidine–DMF (11 mL/mmol resin) for 10 min was repeated after a 

DMF wash. Upon draining, the resin was washed with DMF, MeOH, 

CH2Cl2, and dry DMF (each 3 ×). The resulting resin was treated with 

pentafluorophenyl butanoate (3 equiv), HODhBt (1 equiv), and DIPEA 

(3 equiv) in dry DMF (8 mL/mmol resin) for 16 h. Upon draining, the 

resin was washed with DMF, MeOH, and CH2Cl2 (each 3 ×). 

Cleavage of the product from the resin was performed with TFA–

CH2Cl2 (1:1, 9 mL/mmol resin) for 2 h. The filtrate was collected by 

suction, and the resin eluted further with CH2Cl2 and MeOH (each 2 × 

9 mL/mmol resin). The combined filtrates were concentrated, and the 

residue purified by preparative HPLC (>95% purity): 3 (46 mg) and 4 

(115 mg). 3: 1H NMR (300 MHz, methanol-d4):  0.85 (br t, J = 6.6 

Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H), 1.22 (m, 2H), 1.56 (sx, J = 7.4 Hz, 

2H), 1.81 (br p, J = 6.5 Hz, 2H), 2.10 (m, 2H), 2.18 (t, J = 7.4 Hz, 2H), 

2.82–3.30 (br m, 14H), 4.49*/4.50* (t, J = 7.7 Hz, 1H), 6.71 (d, J = 8.3 

Hz, 2H), 7.06 (d,  J = 8.3 Hz, 2H); 13C NMR (75 MHz, methanol-d4):  

= 10.8, 14.0, 15.5*,**, 15.6*, 20.3, 25.4, 27.5*/27.4*, 36.7, 37.8, 38.0, 
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38.6, 45.6, 46.0*/45.9*, 52.1, 52.2, 57.1, 116.2, 117.6, 128.7, 131.1, 

157.2, 162.1, 175.1*/175.0*, 176.0; *signals with half intensity (splitting 

due to presence of diastereomers); **two distinct close signals. HRMS 

m/z [M+H]+ calcd for C24H42N5O3: 448.32822, found 448.32830. 4: 1H 

NMR (300 MHz, methanol-d4):  = 0.84 (t, J = 7.4 Hz, 3H), 0.84 (obsc., 

2H), 1.22 (m, 2H), 1.53 (sx, J = 7.4 Hz, 2H), 1.42–1.66 (br m, 4H), 

1.67–1.85 (br m, 4H), 2.16 (t, J = 7.4 Hz, 2H), 2.79 (dd, J = 13.7 and 

8.5 Hz, 1H), 2.87–3.15 (br m, 13H), 4.52 (dd, J = 8.5 and 6.9 Hz, 1H), 

6.69 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H) ppm; 13C NMR (75 

MHz, methanol-d4):  = 11.0, 14.0, 15.4 (2C), 20.3, 24.2, 24.3, 25.6, 

27.3, 38.2, 38.7, 39.3, 40.0, 47.9, 48.2, 51.8, 52.0, 56.8, 116.1, 117.7, 

128.9, 131.1, 157.1, 162.4, 173.9, 175.8. HRMS m/z [M+H]+ calcd for 

C26H46N5O3: 476.35952, found 476.35956. 

SPS of Protected cis-Cyclopropane PhTX-Analogues: Resin-

bound diamines (10a/10b, 0.55 mmol) were swelled in dry DMF for 30 

min. The solvent was removed by suction, and a solution of 3-

oxabiclo[3.1.0]hexane-2,4-dione (4 equiv) and DIPEA (2 equiv) in dry 

DMF (7 mL/mmol resin) was added to the resin. After 16 h, the resin 

was drained and washed with DMF, MeOH, DMF, and dry CH2Cl2 

(each 3 × 12 mL/mmol resin). Then the resin was treated with Teoc-

monoprotected diamine (4 equiv), HOBt (4 equiv), and DIC (3 equiv) 

in dry DMF (8 mL/mmol resin) for 16 h. The resin was drained and 

washed with DMF, MeOH, DMF, and dry CH2Cl2 (each 3 ×). 

Successive Teoc deprotection, introduction of Dmt protecting groups, 

borane reduction/decomplexation, and Boc protection were performed 

as described above for trans-analogues. Upon draining and wash with 

DMF, MeOH, DMF, and CH2Cl2 (each 3 ×), Dmt groups were 

removed with 0.1M ClAcOH in CH2Cl2 (11 mL/mmol resin, 4 × 30 min). 

The resin was drained and washed with DMF, MeOH, CH2Cl2, and dry 

DMF (each 3 ×). The resulting resin was elongated with the Tyr 

residue, and subsequently terminated by introduction of the N-butyryl 

group as described above (using single couplings for 16 h). Cleavage 

of the product from the resin was performed with TFA–CH2Cl2 (1:1, 7 

mL/mmol resin) for 2 h. The crude products were purified by 

preparative HPLC (>95% purity): 5 (220 mg) and 6 (64 mg). 5: 1H 

NMR (300 MHz, methanol-d4):  = 0.56*/0.58* (q, J = 5.8 Hz, 1H), 

0.85*/0.86* (t, J = 7.5 Hz, 3H), 1.11 (m, 1H), 1.39 (m, 2H), 1.54*/1.56* 

(sx, J = 7.5 Hz, 2H), 1.82 (p, J = 6.6 Hz, 2H), 2.15–2.22 (br m, 4H), 

2.79–3.30 (br m, 14H), 4.39*/4.40* (t, J = 7.7 Hz, 1H), 6.72 (d, J = 8.4 

Hz, 2H), 7.06*/7.07* (d, J = 8.4 Hz, 2H) ppm; 13C NMR (75 MHz, 

methanol-d4):  = 10.2*/10.5*, 13.8*,**/13.9*, 14.0**, 20.3, 25.4, 27.4, 

36.7*/36.8*, 37.8, 38.0*,**, 38.6*,**, 45.7*,**/45.8*,**, 46.0*,**, 48.4 (2C), 

57.0*/57.2*, 116.1*/116.2*, 118.0, 128.8, 131.1*/131.2*, 157.2*,**, 162.9, 

174.9*/175.1*, 176.0*,** ppm; *signals with half intensity (splitting due to 

presence of diastereomers); **two distinct close signals. HRMS m/z 

[M+H]+ calcd for C24H42N5O3: 448.32822, found 448.32802. 6: 1H 

NMR (300 MHz, methanol-d4):  = 0.60 (q, J = 5.5 Hz, 1H), 0.85 (t, J = 

7.4 Hz, 3H), 1.12 (m, 1H), 1.39 (m, 2H), 1.45–1.68 (br m, 4H), 1.54 

(sx, J = 7.4 Hz, 2H), 1.77 (m, 4H), 2.16 (t, J = 7.4 Hz, 2H), 2.80 (dd, J 

= 13.7 and 8.5 Hz, 1H), 2.89–3.38 (br m, 13H),  4.42 (dd, J = 8.5 and 

6.9 Hz, 1H), 6.70 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H) ppm; 
13C NMR (75 MHz, methanol-d4):  = 10.6, 13.8**, 14.0, 20.3, 24.2, 

24.3, 25.6, 27.3, 38.2, 38.7, 39.3, 40.0, 48.0, 48.2, 48.3 (2C), 56.9, 

116.1, 118.0, 128.9, 131.1, 157.1, 162.7, 173.9, 175.9 ppm; **two 

distinct close signals. HRMS m/z [M+H]+ calcd for C26H46N5O3: 

476.35952, found 476.35936.  

AMPAR Inhibition Assay. A two-electrode voltage-clamp (TEVC) 

was used to record responses to 100 M KA of Xenopus laevis 

oocytes expressing AMPARs containing GluA1flop subunits. X. laevis 

oocytes were injected with cRNA encoding GluA1flop and incubated 

at 18 C for at least three days. Single oocytes were transferred to a 

perfusion bath and continuously washed with saline containing 96 mM 

NaCl, 2 mM  KCl, 2 mM CaCl2, 1 mM MgCl2 and 5 mM HEPES (pH 

adjusted 7.5 with NaOH). Microelectrodes were pulled from 

borosilicate glass capillaries (GC150TF-10, Harvard Apparatus) using 

a Sutter P-97 programmable puller and had resistances of ~0.5 MΩ 

when filled with 3.0 M KCl. The oocytes were voltage clamped at –80 

mV using an Axoclamp 2B (Axon Instruments) and output currents 

were transferred to a PC via a NI PCI-6221 A-D interface (National 

Instruments, UK) and WinEDR software (Dr John Dempster, 

University of Strathclyde, UK). Responses of AMPAR were elicited by 

perfusion of 100 M KA until a stable control current was obtained 

(60-90 s) then 2-6 were co-applied until a new plateau current was 

obtained (60-90 s). This was repeated for 2-6 concentrations in the 

range 10-9 – 10-5 M (+ 10-4 M for 2). Percent of control response was 

plotted against concentration of PhTX analogue and fit with a Hill 

equation to estimate the IC50. Analysis was performed using 

GraphPad Prism 6.  

Molecular Modelling. Calculations were performed by using ZMM 

(ZMM Software, Inc., Flamborough, Ontario, Canada). The non-

bonded interactions were calculated by using the AMBER force 

field[21] with a cut-off distance of 8 Å. The hydration energy was 

calculated by using the implicit solvent method.[22] Electrostatic 

interactions were calculated by using the distance-dependent 

dielectric function ε = 4r where (r) is the atom-atom distance. No 

specific energy terms were used for cation-π interactions, which were 

accounted for with partial negative charges at the aromatic 

carbons.[23] Bond lengths and valent angles were assigned standard 

values. Atomic charges at ligands were calculated by using the AM1 

method in the MOPAC program. For each ligand, 100 starting 

conformations were generated by randomizing torsion angle values. 

The Monte Carlo minimization (MCM) method[24] was used to optimize 

the structures. MCM of each model was performed until 600 

consecutive energy minimizations did not decrease the energy of the 

apparent global minimum. For statistical analysis, the 1000 lowest 

energy conformations were selected. 
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