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We present the first complete MCMC analysis of cosmological models with evolving cosmic
(super)string networks, using the Unconnected Segment Model in the unequal-time correlator for-
malism. For ordinary cosmic string networks, we derive joint constraints on ΛCDM and string
network parameters, namely the string tension Gµ, the loop-chopping efficiency cr and the string
wiggliness α. For cosmic superstrings, we obtain joint constraints on the fundamental string tension
GµF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra di-
mensions w. This constitutes the most comprehensive CMB analysis of ΛCDM cosmology + strings
to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained
using Planck2015 temperature and polarisation data, is Gµ < 1.1× 10−7 in relativistic units, while
for cosmic superstrings our constraint on the fundamental string tension after marginalising over gs,
cs and w is GµF < 2.8× 10−8.

I. INTRODUCTION

Cosmic strings are line-like concentrations of energy
that can arise as topological defects in theories of the
early Universe [1–5]. In particular, they form natu-
rally in models of hybrid inflation [6–12] in which the
inflationary phase ends with a second-order phase-
transition [7, 13–15]. Although they were originally
considered as an alternative candidate for providing
the seeds for structure formation in the Universe [16–
19], it is now understood that they cannot give rise
to the observed acoustic peak structure in the power
spectrum [20–24], but can play a subdominant role.
There are a wide range of potential observational sig-
natures of cosmic strings, for example line-like discon-
tinuities in the cosmic microwave background (CMB)
temperature anisotropy via the Kaiser-Stebbins ef-
fect [25, 26]. Thus, strings provide a powerful tool for
testing theories of the early Universe. Observations
have strongly constrained the contribution of cosmic
strings to the total CMB anisotropy [20, 27–32]. Cur-
rent data place a 2σ upper bound on the string ten-
sion of Gµ < 1.3× 10−7 for Nambu-Goto strings [33]
or Gµ < 2.7 × 10−7 for Abelian-Higgs strings [34],
which corresponds to ∼1% of the total temperature
anisotropy at ` = 10. G is the gravitational constant,
µ is the tension of the string and c = 1 in relativistic
units. Although this may seem insignificant, there is
still constraining power left in the data since strings
generate specific signatures in the primordial B-mode
polarisation spectrum [27, 35–40], which can now be
analysed with the Planck2015 polarisation [41] and
joint BICEP2 data [42].

Going beyond the simplest cosmic string models,
complex networks of multiple types of interacting su-
perstrings, each with a different tension, can also
be considered. Notably, interacting networks of fun-
damental F-strings, one dimensional D-branes (D-
strings) and bound (FD) states between F- and D-
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strings, collectively referred to as cosmic superstrings,
arise naturally in string theoretic inflation [7, 43, 44].
These networks are notably different to their sim-
pler, single-type string counterparts since the differ-
ent string types have intercommutation probabilities
that are not necessarily unity [44–50]. The interac-
tions among different string types are also much more
complex, as colliding strings can zip together or unzip,
producing heavier or lighter FD-string states carrying
different charges. These features affect CMB signa-
tures allowing us to obtain constraints on string the-
ory parameters such as the string coupling gs and the
fundamental string tension µF [51, 52].

In this paper we use the Planck2015 public data [41]
to perform the first full Markov chain Monte Carlo
(MCMC) analysis of ΛCDM models with cosmic
string or superstring networks. For “ordinary” cos-
mic string networks we work in the unconnected seg-
ment model (USM) framework and utilise our ana-
lytic method [53] for fast computation of the string
unequal-time correlator (UETC). This is used as a
source to compute CMB anisotropies and hence ob-
tain joint constraints on ΛCDM and the string net-
work parameters, including the tension Gµ, the loop
chopping efficiency cr and the wiggliness parameter
α. In the case of cosmic superstring networks we ex-
tend our method to deal with multiple network com-
ponents. The UETC approach is efficient, meaning
we can compute the superstring spectrum in much
less time than previous codes and obtain joint con-
straints on the fundamental string tension GµF, the
string coupling constant gs, the self-interaction coeffi-
cient cs, and the parameter w of [52], quantifying the
volume of compact extra dimensions.

In Sec. II we describe the UETC formalism ap-
plied to evolving Nambu-Goto string networks. In
Sec. III we summarise our modelling of cosmic su-
perstrings and the adaptation of our UETC method
to these multi-string component networks. In Sec. IV
we present the results of our MCMC analysis for cos-
mic string and superstring networks using Planck2015
CMB data. Our constraints on string network param-
eters and possible future directions are discussed in
Sec. V.
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II. UNEQUAL-TIME CORRELATOR

Unlike passive inflationary perturbations which are
set as initial conditions, metric perturbations from
cosmic string networks are actively sourced at all
times. To compute the string spectra the compo-
nents of the string network’s energy momentum ten-
sor must be used as sources in the linearised Einstein-
Boltzmann equations. The relevant quantity to cal-
culate is the unequal-time correlator (UETC), whose
dominant eigenmodes, found by diagonalising, can be
used as source functions, each individual mode being
coherent [19]. The UETC

〈Θµν(k, τ)Θ∗αβ(k, τ ′)〉 ≡ Cµν,αβ(k, τ, τ ′) (2.1)

determines all the two-point correlation functions such
as the CMB temperature C` and matter power spectra
P (k), defined as in [54]. Θµν(k, τ) is the string energy-
momentum tensor defined below.

A. String Energy-Momentum Tensor

Nambu-Goto strings are one-dimensional defects in
the zero-width limit. They provide a good descrip-
tion for long cosmic strings, whose correlation length
is many orders of magnitude larger than their width,
at least away from string intersections. A string mov-
ing in spacetime spans a two-dimensional surface, the
worldsheet xµ(σa), where the indices µ = 0, 1, 2, 3 la-
bel spacetime coordinates and a = 0, 1 are the in-
dices of coordinates on the worldsheet [55, 56]. The
worldsheet action is reparametrisation invariant and
a gauge can be chosen by imposing two conditions on
the spacetime coordinates xµ as functions of σa. In
an FRW background, a useful choice of gauge is such
that σ0 = τ , the conformal time, and x′ · ẋ = 0, where
˙ ≡ ∂/∂τ and ′ ≡ ∂/∂σ, relabelling σ1, which in this
gauge is a spacelike worldsheet coordinate, as σ. In
this gauge the Nambu-Goto string energy-momentum
tensor is

Θµν(y) =
1√
−g

∫
dτdσ

[
U

√
−x′2

ẋ2
ẋµẋν − T

√
− ẋ2

x′2
x′µx′ν

]
δ(4)(y − x(τ, σ)) . (2.2)

Here, U is the string energy per unit length and T is
the string tension. For Nambu-Goto strings on arbi-
trarily small scales, Lorentz invariance requires that
T = U = µ. However, if we coarse-grain the string,
then the integrated effect of small-scale structure is
to make the effective tension smaller than the energy
density. We can then include the effect of small-scale
wiggles on the string via a “string wiggliness” param-
eter α, such that

U = αµ and T =
µ

α
, (2.3)

satisfying UT = µ2.

The Fourier transform of the 00-component of the
energy-momentum tensor of a representative string
segment in a network is

Θ00(τ,k, χ) =
µα√

1− v2

sin(k · X̂ξτ/2)

k · X̂/2

× cos
(
k · x0 + k · ˙̂

Xvτ
)
, (2.4)

where v and ξ are the string network velocity and co-
moving correlation length, defined in Sec. II B below,
and x0 is the position of the string endpoint. The
string segment is parametrised by

x(σ, τ) = x0 + σX̂ + vτ
˙̂
X , (2.5)

with the string orientations and velocity orientations

X̂ =

sin θ cosφ
sin θ sinφ

cos θ

 , (2.6)

˙̂
X =

cos θ cosφ cosψ − sinφ sinψ
cos θ sinφ cosψ + cosφ sinψ

− sin θ cosψ

 . (2.7)

˙̂
X is transverse to X̂ such that X̂ · ˙̂

X = 0. Note
that the position of the string endpoint appears only
through a phase in the cosine factor in equation (2.4),
which we will denote as χ ≡ k ·x0. The other compo-
nents of the string energy-momentum tensor are given
by

Θij =

(
v2 ˙̂
Xi

˙̂
Xj −

1− v2

α2
X̂iX̂j

)
Θ00 , (2.8)

with i, j = 1, 2, 3. Choosing coordinates so that k

lies along the k̂3 axis, the scalar, vector and tensor
anisotropic stresses are given by

ΘS =
1

2
(2Θ33 −Θ11 −Θ22) , (2.9)

ΘV = Θ13 , (2.10)

ΘT = Θ12 . (2.11)

B. Velocity Dependent One-Scale Model

The velocity one-scale model (VOS) equations dic-
tate the values of the string network correlation length
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L, and the average velocity v, of string segments in the
network [57]. The correlation length L is the average
length of string segments which, for scaling networks
(that have a random walk structure), is also equal
to the average string separation. The network veloc-
ity v, is the root-mean-square (RMS) velocity of these
correlation-length-sized string segments averaged over
all (shorter) length scales. The macroscopic evolution
equations for these network parameters can be derived
from the Nambu-Goto action by applying a statistical
averaging procedure over the string worldsheet [58–
60]. Expressed in terms of the physical time t they
read:

L̇ = (1 + v2)L
ȧ

a
+
crv

2
, (2.12)

v̇ = (1− v2)

(
k̃

L
− 2v

ȧ

a

)
, (2.13)

where a(t) is the scale factor, ȧ(t)/a(t) is the Hubble
function and from now on ˙ ≡ d/dt, unlike in equa-
tion (2.2). The loop chopping efficiency parameter cr,

quantifies the energy loss due to loop production and k̃
provides a phenomenological description of the small-
scale structure on the string, which, for relativistic
strings, is given by

k̃ =
2
√

2

π

(
1− 8v6

1 + 8v6

)
. (2.14)

The correlation length can be written in comoving
units as ξτ = L/a. The VOS equations in comoving
units are

ξ′ =
1

τ

(
v2ξτ

a′

a
− ξ +

crv

2

)
, (2.15)

v′ = (1− v2)

(
k̃

ξτ
− 2v

a′

a

)
, (2.16)

where now ′ ≡ d/dτ unlike in equation (2.2). For
fixed expansion rate the scaling solutions, found by
the requirement ξ′ = 0 and v′ = 0, read

ξ =

√
k̃(k̃ + cr)(1− β)

4β
, (2.17)

v =

√
k̃(1− β)

β(k̃ + cr)
, (2.18)

where β is the physical time FRW expansion exponent
a(t) ∝ tβ and is equal to 1/2 and 2/3 in the radiation
and matter eras respectively. Note in the scaling so-
lutions of (2.18) the implicit velocity dependence of

k̃ through equation (2.14). Earlier implementations
of the cosmic defect CMB code CMBACT [61] used two
sets of values for the loop chopping efficiency and the
parameter k̃ in the scaling solutions (2.18) for the
radiation and matter eras. These values were then
interpolated between for the transition between the
radiation and matter eras. However, in the latest im-
plementation of the VOS equations in CMBACT4 [62],

the velocity dependence of k̃ is explicitly used and the
loop chopping efficiency is kept constant throughout
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FIG. 1. The evolution of the velocity v, and correlation
length ξ, for a range of cr = [10−2, 1.0]. The black dot-dot-
dash line indicates the correlations lengths and velocities
obtained when cr = 0.23. The greener area (lighter in
black and white) of the plot indicates larger values of cr
whilst the more purple region (darker in black and white)
shows smaller cr.

both epochs [60]. Here, we also adopt this approach:
at any particular τ , the values of ξ and v found us-
ing the VOS equations (2.15-2.16) are used for cal-
culating the UETC, keeping cr constant throughout
and explicitly accounting for the velocity dependence
(2.14) of k̃. In earlier versions of CMBACT the wiggli-
ness α, was also an evolving parameter, but it is now
kept constant in CMBACT4, which is the approach we
take here. The evolution of the network parameters
can be seen for a range of cr in Fig. 1 showing that
a wide range of correlation lengths and velocities are
available. Detailed comparison of the VOS model with
Nambu-Goto simulations of ordinary string networks
(i.e. single string type with unit intercommuting prob-
ability [63]) determine the loop chopping efficiency
to cr = 0.23 ± 0.04 [60], corresponding to the black
dot-dot-dashed curves in Fig. 1. Models of cosmic
superstrings generally have suppressed intercommu-
tation probabilities [45–48], which effectively reduces
cr and so they correspond to the purple region in the
figure. Such networks have relativistic RMS velocities
v ∼ 1/

√
2 and correlation lengths much smaller than

the horizon, corresponding to a much higher string
number density compared to ordinary string networks.
However, they also have smaller string tension so their
overall effect on the CMB can be small, consistent
with the data.

It should be noted that the RMS network velocity
used in the VOS model arises from a worldsheet av-
erage and is thus integrated over all (short) length
scales. Therefore, it provides an accurate measure
of the energy stored in a wiggly string segment, but
does not explicitly correspond to (and in fact is ex-
pected to be larger than) the coherent velocity on
correlation-length scales. Indeed, numerical simula-
tions of Nambu-Goto strings reveal a network veloc-



4

ity distribution with larger velocities at short scales,
implying that the RMS velocity is dominated by rel-
ativistic speeds at short distances. On length scales
of order the correlation length, coherent velocities as
low as vcoh ' 0.2 have been reported [64–67]. Other
network velocity measures (again containing informa-
tion from a range of length scales) in both Nambu-
Goto and Abelian-Higgs string simulations also tend
to be lower than the VOS RMS velocity, with veloc-
ities in the Abelian-Higgs model vAH ' 0.5, signif-
icanlty slower than in Nambu-Goto simulations [68–
70]. For further discussion about the impact of string
velocities on the UETC and the string power spectrum
see the end of Sec. II F.

C. Unconnected Segment Model

Simulations of evolving string networks are numer-
ically very expensive. Strings decay as 1/(ξτ)3, even-
tually reaching a scaling solution (ξ = constant) with
a number density of tens to hundreds of strings per
horizon volume. At early times, the box contains a
huge number of strings whose dynamics and inter-
actions have to be tracked at each time step. The
unconnected segment model (USM) [21, 61] dramati-
cally reduces the required computational resources by
approximating the string network as a collection of
correlation-length-sized segments, with the time evo-
lution of the correlation length and segment veloc-
ity described by the VOS equations. Moreover, the
model consolidates these string segments by collect-
ing all strings that decay between any two times, and
so fewer strings need to be tracked. The number of
strings that decay between any two conformal times
in a volume V , is

Nd(τi) = V [n(τi−1)− n(τi)] , (2.19)

where n(τ) is the number density of strings at confor-
mal time τ , given by n(τ) = C(τ)/(ξτ)3. In CMBACT,
the factor C(τ) is chosen so as to keep the number
of strings at any time proportional to 1/(ξτ)3. The
energy-momentum tensor for the string network is
then given by the sum over the total number of con-
solidated string segments K , with a factor accounting
for string decay

Θµν =

K∑
i=1

√
Nd(τi)Θ

i
µνT

off(τ, τi, Lf). (2.20)

The string decay factor T off(τ, τi, Lf) is a function in-
terpolating between 1 and 0 and is responsible for
turning off the contribution of the ith consolidated
segment after the time it has decayed. Its steepness
is controlled by a string decay parameter 0 < Lf ≤ 1,
as follows:

T off(τ, τi, Lf) =

 1 τ < Lfτi
1/2 + 1/4(y3 − 3y) Lfτi < τ < τi

0 τi < τ

(2.21)
where

y =
2 ln(Lfτi/τ)

ln(Lf)
− 1 . (2.22)

Thus, in the limit Lf → 1 the string decay fac-
tor T off(τ, τi, Lf) approaches a Heaviside function,
sharply switching off the contribution of the ith con-
solidated segment to the network energy-momentum
tensor for times τ > τi.

The Lf Parameter

Since the number of consolidated segments also sets
the number of decay epochs, a finite number of con-
solidated segments leads to discrete steps in the num-
ber density of strings. The string decay parameter Lf

was introduced to allow a fraction of the consolidated
strings to decay before the end of their respective de-
cay epoch, thus making the number density evolution
smoother. The function C(τ) was also introduced
to ensure that the number of strings at any confor-
mal time τ is kept proportional to (ξτ)−3. However,
one consequence of Lf < 1 is that it is possible that
Lfτi+1 < τi, meaning strings can start to decay earlier
than their respective epoch and the number density is
systematically lower.

In the CMBACT4 implementation we have found that
changing the number of consolidated segments from
200 to 10000 has very little impact on the string spec-
tra, as shown in Fig. 2. However, the amplitude of
the C` is dependent on the value of Lf . The change
is scale dependent, but can be as much as 30%, for
example near the peak of the scalar temperature sig-
nal. Previous analyses which have used the results
from CMBACT have overlooked this dependence. Al-
though not entirely degenerate with the amplitude of
C`, which scales proportional to (Gµ)2, it will clearly
have some affect on the inferred values of Gµ from
the USM. We compare this to our approach in the
following section.

Infinite Consolidated String Segments

We are able to accommodate a large number of seg-
ments analytically. As discussed in [53], the scaling
factor, that weights the UETC taking into account
string decay, has a particularly simple form when the
number of consolidated string segments tends to in-
finity, Lf → 1 and C(τ)→ 1. This is

f(τ1, τ2, ξ(τ1), ξ(τ2)) =

K∑
i=1

Nd(τi)T
off(τ1, τi, Lf)

× T off(τ2, τi, Lf),

= (ξ(Max[τ1, τ2])Max[τ1, τ2])−3.

= f
(
τMax, ξ(τMax)

)
(2.23)

An analytic expression for the scaling factor can also
be found for arbitrary Lf using the form of Toff quoted
in equation (2.21). However, it seems natural to con-
sider only the case Lf = 1 when the number of con-
solidated string segments is very large. In the infi-
nite limit the segments will decay at an infinite num-
ber of epochs which are infinitesimally separated, a
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FIG. 2. C` obtained from the string realisation code CMBACT4 with 200 and 10000 consolidated string segments for 2000
string realisations between the red solid and dashed lines and blue dotted and dotted-segment lines respectively. The
solid red and dotted blue lines at the top of each band indicate a value of Lf = 1 for 200 and 10000 segments, while the
red dotted and blue dotted-segment lines show Lf = 0.5. The top, middle and bottom rows show the scalar, vector and
tensor C` modes respectively. The first column contains the temperature (TT) C`, the second column has the EE mode
contribution, BB modes are in the third and the TE cross-correlation in the final column. We also plot the corresponding
spectra derived from our analytic USM method, shown in green dot-dot-dashed lines.

continuous limit in which the string number density
is smooth. We have shown that the number density
scales according to (ξτ)−3 with our approach. While
infinite consolidated segments may seem unphysical,
it is just a limit used to obtain the correct scaling rela-
tion. We obtain very similar results to CMBACT4 when
using between 200 to 10000 segments with Lf = 1.
The question of whether the observed resulting mod-
ification of scaling from early string decay obtained
when Lf < 1 is physical or not requires investigation.
Since we takE C(τ) = 1 we avoid considering different
scaling behaviour. Ultimately, the USM is a simplified
model which aims to match the UETC from simula-
tions by adjusting the network parameters. Overall
it has been shown to match Nambu-Goto simulations
well [71]. However, due to the correlation between the
inferred values for Gµ for a given Lf , this issue should

be considered more closely.

Since the number density scales according to (ξτ)−3

using our approach, we believe this to be reasonable
and will adopt this for the comparison to data.

D. Analytic Calculation of the Unequal-Time
Correlator

The UETC can be computed analytically [53] by
integrating over all string configurations (orientations
and positions) in the network. For the two point cor-
relator between Θ(τ1,k1, χ1) and Θ(τ2,k2, χ2) trans-
lational invariance implies k1 = −k2 = k and so
χ1 = −χ2 = χ. Considering that, due to equations
(2.4) and (2.8), Θ(τ,k, χ) is a symmetric function of
k the integral is

〈Θ(τ1,k)Θ(τ2,k)〉 =
2f(τMax, ξ(τMax))

16π3

∫ 2π

0

dφ

∫ 2π

0

dψ

∫ π

0

sin θdθ

∫ 2π

0

dχΘ(τ1,k, χ)Θ(τ2,k, χ). (2.24)

Without loss of generality k can be chosen to lie along

the k3-axis, such that k = kk̂3. Θ here represents each
of Θ00, ΘS, ΘV and ΘT of equations (2.9-2.11). The φ,
ψ and χ integrals can be done analytically in this case

leaving only the θ integral in terms of Bessel functions.
The UETC can then be written as the sum over six
integral identities

〈Θ(τ1, k)Θ(τ2, k)〉 =
f(τMax, ξ(τMax))µ2

k2
√

1− v(τ1)2
√

1− v(τ2)2

6∑
i=1

Ai[Ii(x−, %)− Ii(x+, %)], (2.25)

where % = k|v(τ1)τ1 − v(τ2)τ2| and x± = (x1 ± x2)/2
with x1,2 = kξ(τ1,2)τ1,2. Here x1,2 means x1 or x2

respectively. This extends the corresponding result
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of [53] in that ξ and v are now functions of τ in-
stead of being kept constant. This means that the
expressions of the amplitudes Ai, presented in Ta-
ble II, are now time-dependent. The integral identi-
ties (shown in Table I) remain the same. It should be
noted that I1(x, %) and I4(x, %) diverge but the com-
bination I1,4(x−, %)− I1,4(x+, %) is regular and, in the
limit where x1,2 � x2,1, has an analytic approxima-
tion given by

I1(x−, %)− I1(x+, %) =
πx1,2

2
J0(%), (2.26)

I4(x−, %)− I4(x+, %) =
πx1,2

2%
J1(%). (2.27)

In the small x1,2, limit the UETC can be written as

〈Θ(τ1, k)Θ(τ2, k)〉 =
f(τMax, ξ(τMax))µ2

k2
√

1− v(τ1)2
√

1− v(τ2)2
B,

(2.28)
and at equal times, when x1 = x2 = x and % = 0, the
equal-time correlator is given by

〈Θ(τ, k)Θ(τ, k)〉 =
f(τ, ξ(τ))µ2

k2(1− v(τ)2)
C. (2.29)

The form of B and C are similar to [53] but again de-
pend on the values of v and ξ at τ1 and τ2. These coef-
ficients have also been included in Table II. Thanks to
these analytic approximations, computational times
can be greatly reduced compared to the case where
the integral identities Ii are used for computation over
the whole range of kτ1, kτ2. The regions where these
approximations are valid are shown in Fig. 3, only the
white region is computationally intensive. It should
be noted that, because ξ is a function of time, the
shape of the approximated regions in Fig. 3 changes
for different values of k and so we must consider a
large number of k-modes when computing the UETC.
This is in contrast to [53], where the approximation
of constant ξ and v meant that the UETC was only a
function of the combinations kτ1 and kτ2.

Negative values of the UETC

It has been noted in [72] that there are negative
regions in the string UETC calculated analytically
through our formalism, which do not appear in the
Gaussian model for the string UETC used in [72].
These can be seen in Fig. 4.

There are two distinct types of regions with nega-
tive values of our UETC. First, regions with small kτ1
and large kτ2 (and vice versa), corresponding to the
top left and bottom right corners of Fig. 3 or Fig. 4:
in these regions the UETC should be zero, but small
negative (and positive) values can arise from the fi-
nite order truncation of the Bessel series expansions
of I1(x±, ρ) and I4(x±, ρ) in Eq. (2.25). These values
are spurious and can be thought of as noise arising
from the truncation. The order of truncation must
then be chosen such that this noise is at a tolerable

10 2 10 1 100 101

x1

x 2

10 2

10 1

100

101

FIG. 3. The regions of x = kτξ covered by analytic ap-
proximations. In green is the region when x1 � 1 and
x2 � 1, red when | log x1 − log x2| < ε and blue when
|x1 − x2| � 1. In the code the x1,2 � 1 region is set for
x1,2 < 0.2, ε = 0.001 for x1 ≈ x2 and |x1 − x2| > 10 for
x1,2 � x2,1.

level.

Second, in the regions off the diagonal with large
kτ1 ≈ kτ2 (corresponding to the top right corner
of Fig. 3 or Fig. 4) there is a ringing pattern with
successive positive and negative peaks that decay as
we move away from the diagonal. These oscillatory
patterns are a consequence of causality [21, 73, 74],
built into the USM: as the correlator must vanish at
superhorizon scales (in fact in the USM it vanishes
at scales larger than the correlation length, which is
smaller than the horizon), this introduces a sharp edge
in physical space that becomes oscillatory in Fourier
space. This oscillatory pattern therefore has a clear
physical origin, but in the USM it is somewhat ar-
tificially enhanced due to the fact that the model as-
sumes all string segments have the same length. If seg-
ments are instead given a length distribution peaking
at the network correlation length, the sharp edge is
smoothed and the oscillatory pattern gets suppressed.
Further, considering a segment velocity distribution
peaking near the network RMS velocity again sup-
presses these oscillations. The Gaussian model as-
sumes a wide Gaussian distribution of string lengths
(but also assigns non-zero values to the correlator at
superhorizon scales) so this causal oscillatory feature
is absent from the UETC in that model.

The suppression of oscillations in the UETC can
be seen in Fig. 5 where the blue solid line shows the
profile of the UETC across the diagonal as calculated
using the velocity and correlation lengths from VOS.
In red dot-dot-dash is the same profile when a Gaus-
sian distributed sample of velocities and correlation
lengths, peaking on the VOS values, are chosen. The
oscillatory features are mostly washed out but the first
trough remains a prominent feature. The off-diagonal
dip in the correlation functions that we find after con-
sidering a range of segment lengths and velocities has
also been observed in Abelian-Higgs simulations [69].
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It may also be related to the velocity anti-correlation
observed in Nambu-Goto simulations on correlation-
length scales and can be attributed to string intercom-
mutations [66].

E. Eigenmode Decomposition

The UETC is generally rescaled by a factor of√
τ1τ2, which, for ξ and v constant, makes it a function

of kτ1 and kτ2 only. This is not true in the present case
because now we are tracking the time-dependence of ξ
and v, so the UETC depends separately on k, τ1 and
τ2. However, it is still useful to introduce this rescaling
in order to facilitate direct comparison of the UETC
with previous results. This rescaled UETC can then
be discretised onto a logarithmic grid in kτ1 and kτ2
with n × n grid points and then diagonalised giving
the eigenvectors and eigenvalues [19]

(k2τ1τ2)γ
√
τ1τ2〈Θ(τ1, k)Θ(τ2, k)〉 =

N∑
i=1

λiui(kτ1)⊗ ui(kτ2). (2.30)

Due to the explicit dependence on k, this diagonalisa-
tion procedure has to be repeated for a large number
of k-modes, and the eigenvalues are k-dependent. This
significantly increases the computation time compared
to [53]. The extra factor (k2τ1τ2)γ is used for more
efficient reconstruction of the UETC when the eigen-
modes are truncated below n. The choice γ = 0.25
gives the best reconstruction on scales that give the
dominant contribution to the CMB anisotropies.

There is no correlation between the scalar, vector
and tensor modes and so the vector and tensor UETC
can be diagonalised independently. However, the den-
sity Θ00, and scalar anisotropic stress ΘS, are corre-
lated. The diagonalisation is done over a 2n× 2n grid
constructed from

〈Θ00(τ1, k)Θ00(τ2, k)〉 〈ΘS
00(τ1, k)ΘS

00(τ2, k)〉

〈ΘS
00(τ1, k)ΘS

00(τ2, k)〉 〈ΘS(τ1, k)ΘS(τ2, k)〉
,

(2.31)
where 〈ΘS

00(τ1, k)ΘS
00(τ2, k)〉 is the symmetric com-

bination of the cross-correlation between Θ00 and
ΘS. After diagonalisation, the first half of the eigen-
vectors refer to the density and the second to the
anisotropic stress. The diagonalisation creates orthog-
onal eigenvectors which are then used as source terms
in the CAMB [75] linear Einstein-Boltzmann code. The
C` are calculated using each individual eigenvector
ui(kτ)/(

√
τ(kτ)γ), as a source function Ci`, which can

be summed to give the total power spectra

C` =

n∑
i=1

λiC
i
`. (2.32)

By ordering λi from largest to smallest, the required
accuracy in the C` can be achieved by including rela-
tively few eigenmodes. This can be seen in the middle
row of Fig. 6 where there is only about 10% difference
between using all 512 eigenmodes of a 512× 512 grid
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FIG. 4. The UETC calculated at k = 0.05h/Mpc. The
plots show 00-component followed by the scalar, vec-
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FIG. 5. Profile of the UETC across the diagonal in the
oscillatory region with large kτ1 ≈ kτ2. The solid blue
line shows the amplitude of the UETC using the value of
the velocity and correlation length from the VOS equations
whilst the red dot-dot-dash lines has Gaussian distributed
velocities and correlation lengths about the VOS values.

compared to only using 32 eigenmodes when fixing the
value of Gµ. Also, it can be seen in the top row of
Fig. 6 that reducing the grid resolution reduces the
amplitude of the C`. A grid resolution of 128× 128 is
about 5% lower, on average, than using the 512× 512
grid but convergence times decrease drastically. It
should be noted that there is negligible difference be-
tween using a 512×512 and a 1024×1024 grid meaning
that the former is reliably giving the full C` contri-
bution. The bottom row shows what happens when
using more k values in the calculation. Wiggly fea-
tures arise from using too few k values and can be
removed at the expense of a much longer calculation.
Using these findings we can choose the optimal UETC
parameters to give good quality C` in a reasonable
amount of time. The resulting spectra obtained from
our analytical method are shown in Fig. 2 in green
dot-dot-dashed curves and agree well with USM string
realisations, especially in the limit of large numbers of
simulated segments.

F. Comparison of the String Power Spectrum

In Fig. 7 we compare our temperature power spec-
trum (scaled by Gµ in the upper subplot and nor-
malised at ` = 10) to that of CMBACT4 [61], Nambu-
Goto simulations [71], and Abelian-Higgs simula-
tions [69]. Both CMBACT4 and our method use the
same velocity dependent one-scale model parameters,
but CMBACT4 uses Lf = 0.5. The Nambu-Goto sim-
ulations are performed in an expanding background
from recombination to today, including Λ domina-
tion. Large loops are kept in the simulation and con-
tribute to the total energy-momentum tensor of the
network, but these simulations cannot resolve small-
scale physics near the string width and do not include
the effects of radiation backreaction. In contrast,
the Abelian-Higgs simulations can resolve small-scale
structure and radiative effects [76]. These, however,
have smaller dynamical range and cannot easily evolve

through the radiation-matter transition (so the UETC
is instead interpolated), but see recent progress in [76]
where the authors simulate through the transition.

Overall, when normalised at ` = 10, the four
spectra agree reasonably well. The USM variants
(CMBACT4 and our approach) both predict slightly
more power at the peak than either of the simula-
tions. The Nambu-Goto simulations predict more
power on very small scales, around twice as much
as the Abelian-Higgs model. It is well known that
Nambu-Goto calculations yield higher string densi-
ties than field theoretic ones, which will increase their
overall normalisation. The resulting constraints on
Gµ are therefore around a factor of 50% lower [33] as
can be inferred from the upper subplot in Fig. 7. The
USM variants are closer to the Nambu-Goto simula-
tions in this respect [71]. Within this paper we will
not consider using the analytic USM to mimic the
Abelian-Higgs spectra. As we have shown, there is
some additional uncertainty in the USM, as the nor-
malisation depends somewhat on the choice of Lf .

In summary, given the large differences in modelling
between the various approaches we find this compar-
ison encouraging, although more work is needed to
further delineate the differences. In particular, as dis-
cussed at the end of Sec. II B, the VOS RMS veloc-
ity is defined through a worldsheet integral over all
scales and receives a large contribution from relativis-
tic wiggles on the string. On the other hand, the USM
assumes straight segments moving at a given speed
and the small-scale structure on the segments is cap-
tured via a “renormalisation” of their tension. This
implies that the speed to be associated to the USM
segments must be lower than the VOS RMS veloc-
ity, and should correspond to the network velocity at
correlation length scales. Numerical simulations show
this to be significantly lower than the RMS speed.
This issue has not been examined before, partly be-
cause the calculated string spectra from different ap-
proaches can differ by up to a factor of two, and partly
because it can be offset by choosing a lower value for
the USM parameter Lf (see below). As quantitative
agreement between the different approaches is now be-
ing established, it is important to fully understand this
issue. To this end it will be important to extract the
network velocity distribution as a function of length
scale in both Nambu-Goto and Abelian-Higgs simula-
tions.

Plotted in Fig. 7 in purple dot-dot-dash is the C` ob-
tained when v = 0.4. As can be seen, the peak of the
velocity fixed C` has a very similar amplitude to the
Nambu-Goto simulation C` in dotted red, although
the simulations still have larger power at both lower
and higher `. This supports the idea that the dis-
crepancy in the amplitude of string spectra could be
related to different predictions/assumptions on string
velocity in the different approaches (cf. discussion at
the end of Sec. II B). Note that the parameter Lf in
the USM is somewhat degenerate with the string ve-
locity - for fixed v a lower Lf reduces the density of
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FIG. 7. Comparison of approaches to string modelling,
scaled by Gµ in the upper subplot and normalising the
temperature power spectrum at ` = 10 in the lower
subplot. We compare our approach (in solid blue) to
CMBACT4 [61], Nambu-Goto simulations [71], and Abelian-
Higgs simulations [69] (in dashed green, dotted red, dot-
dashed orange and the analytic USM with the velocity
fixed at v = 0.4 in dot-dot-dashed purple respectively).

strings by increasing the string decay rate, thus reduc-
ing the C` amplitude and matching simulations better
than using Lf = 1. In the absence of a more complete
quantitative understanding of the string velocity dis-
tribution - input required from string evolution sim-
ulations - our string spectra obtained from the USM
have a larger amplitude (see the solid blue line in the
upper subplot of Fig. 7). This leads to slightly tighter

constraints on cosmic strings than in numerical sim-
ulations. Marginalising over the network parameters
cr and α, partly takes care of the differences between
Lf = 0.5 and Lf = 1 in the USM since high cr re-
duces the velocity (as seen from equation (2.16) and
pictorially in Fig. 1).

III. COSMIC SUPERSTRINGS

A cosmic superstring network can be modelled
as a collection of string segments of different
types, each string type having its own tension and
self-intercommuting probability [44–50, 52, 77–79].
Strings of different types interact with each other via
“zipping” or “unzipping” leading to heavier or lighter
strings respectively, that are connected to the origi-
nal strings at trilinear Y-shaped junctions [80]. The
fundamental building blocks for these networks are
light (fundamental) F-strings and heavier (Dirichlet)
D-strings, with a tension hierarchy controlled by the
fundamental string coupling [80–82]. Heavier strings
arise as bound states between p F-strings and q D-
strings, where p,q are coprime. Given the funda-
mental string tension, the corresponding tensions of
these heavier (p, q)-strings are controlled mainly by
p,q and the value of the string coupling. These net-
works generally behave very differently than their or-
dinary cosmic string counterparts. They are typi-
cally characterised by small intercommutation prob-
abilities, thus leading to higher string number densi-
ties [44, 45, 49, 52]. The complex interactions present
imply that several string types with different tensions
and correlation lengths can simultaneously contribute
to the string network CMB spectra.

In scaling superstring networks, the string number
density is dominated by the lightest F-strings, fol-
lowed by D-strings and the first bound state, i.e. (1,1)-
strings. Heavier bound states are suppressed, so the
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number of string types considered in the model can be
truncated at a finite number. Following [52] we shall
describe the network by keeping seven distinct types
of strings:

1 F (1, 0),

2 D (0, 1),

3 FD (1, 1),

4 FFD (2, 1),

5 FDD (1, 2),

6 FFFD (3, 1),

7 FDDD (1, 3), (3.1)

...
...

...

where the last column describes the (p, q) charges of
the corresponding string type.

The large-scale dynamics is then modelled by seven
copies of the VOS equations, appropriately extended
to account for transfer of energy among the different
string types through zipping and unzipping interac-
tions [44, 50]. In each copy of the VOS equations de-
scribing a single string, say of type i, the self interac-
tion coefficient cr in equation (2.15) is replaced by the
corresponding self-interaction coefficient ci, and new
cross-interaction terms with coefficients dkij are added
to describe zipping and unzipping. The coefficients
ci, d

k
ij are controlled by the corresponding microphys-

ical intercommuting probabilities Pij [52], which can
be estimated [46, 48] from the corresponding string
theoretic amplitudes (and field theory approximations
in the case of non-perturbative interactions between
heavy strings [47]). They can be expressed as a prod-
uct of two pieces: one that is dependent on the vol-
ume of the compact extra dimensions Vij(w, gs), and
a quantum interaction piece Fij(v, θ, gs). Physically,
one can think of Vij as arising from string position
fluctuations around the minimum of a localising po-
tential well, giving rise to an effective volume seen by
each type of string. The heavier the string the smaller
the fluctuations are and so the smaller the value of
Vij [46]. The parameter w corresponds to the effec-
tive volume in the compact extra dimensions seen by
F-strings. gs is the fundamental string coupling and v
and θ are the relative velocity and angle of the incom-
ing strings. For a pair of strings colliding at an angle
θ, and relative speed v, the intercommuting probabil-
ity is

Pij(v, θ, w, gs) = Fij(v, θ, gs)Vij(w, gs). (3.2)

Details of how Fij and Vij are calculated can be
found in [52]. Since the network contains a large
number of individual strings with a range of veloci-
ties and orientations, the coefficients ci and dkij are
determined by the integral of Pij over a Gaussian
velocity distribution centred on the scaling network
velocities of each string type and over all angles.

This gives the average intercommuting probabilities
Pij(w, gs) ≡ Pij . Numerical simulations of single-type
Nambu-Goto strings with small intercommuting prob-
ability [49] suggest that the self-interaction coefficients
ci scale as:

ci = cs × P 1/3
ii , (3.3)

where cs is the standard self-interaction coefficient
in three dimensions corresponding to the value cr in
Sec. II B. This choice of cs implies a convenient nor-
malisation of the coefficients ci so that one recovers
the ordinary cosmic string value cr when Pii = 1.
This facilitates direct comparison with ordinary cos-
mic strings.

For cross-interactions between two strings of types
i and j (i 6= j), producing a segment of type k, there
is an additional factor arising from the kinematic con-
straints of Y-junction formation [83, 84] that we de-
note as Skij (i 6= j). This also arises as an integral over
relative velocities and string orientations [52, 85]:

Skij =
1

S

∫ 1

0

v2dv

∫ π/2

0

sin θdθ

×Θ(−f→
µ

(v, θ)) exp[(v − v̄ij)2/σ2
v ] (3.4)

where S is a normalisation factor [52], Θ(−f→
µ

(v, θ))

imposes the kinematic constraints [84] and σ2
v is the

variance of the velocity distribution peaked on the
relative scaling velocities v̄ij = (v2

i + v2
j )1/2 between

strings of type i and j. The cross-interaction coeffi-
cients are then given by

dkij = dij × Skij (3.5)

where dij = κ× P 1/3
ij . The overall normalisation κ is

the analogue of cs, but for cross-interactions. There
is no obvious choice for this phenomenological param-
eter, but it may be expected to be of order unity by
analogy to the ordinary self-interacting string result
for cr, obtained by numerical simulations. Strictly
speaking it should be treated as an extra parameter
for the model but, given the large computational re-
sources required in our MCMC analysis, we will set it
to unity in this work. Our analysis will still indirectly
capture the effects of changing this parameter as it
is somewhat degenerate with w. To see this, note

that dij is also proportional to P
1/3
ij which depends

weakly on w through the volume factor Vij(w, gs).
The leading effect of w is to change the relative ampli-
tude between self-interactions (FF interactions having
the strongest w dependence) and cross-interactions of
heavy strings, thus mimicking somewhat the effect of
varying κ relative to cs. As computational power im-
proves and our methodology is refined, κ should be
re-introduced as an additional MCMC parameter.

The modified VOS equations [50, 52], in comoving
units, are
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ξ′i =
1

2τ

[
2v2
i ξiτ

a′

a
− 2ξi + civi +

∑
a,b

(
dbiav̄iaξi`

b
ia

ξ2
a

− diabv̄abξ
3
i `
i
ab

2ξ2
aξ

2
b

)]
, (3.6)

v′ =
v2 − 1

τ

[
2viτ

a′

a
− ki
ξi
−
∑
a,b

biab
v̄ab
2vi

(µa + µb − µi)
µi

ξ2
i `
i
ab

ξ2
aξ

2
b

]
, (3.7)

where `iab is the average length of segments of type
i formed by the zipping/unzipping of string types a
and b at conformal time τ , and µi is the tension of the
ith string type. All string tensions can be expressed
in terms of the fundamental string tension µF, and in
flat spacetime [80–82] are given by:

µi =
µF

gs

√
p2
i g

2
s + q2

i , (3.8)

where pi and qi are the charges of string type i as
listed in (3.1). The coefficients biab appearing in the
velocity evolution equations (3.7) are related to en-
ergy conservation and allow for the energy saved from
zipping interactions to be redistributed as kinetic en-
ergy of the new segment (biab = diab) [50] or radiated
away (biab = 0) as in [44]. A more realistic model
should have a specific radiation mechanism so that
0 < biab < diab such that some of the energy is redis-
tributed whilst the rest is radiated away. However, for
cosmic superstring networks (for which dij are much
smaller than unity) this term has negligible impact on
the string scaling densities and velocities [52, 85], so
here we take biab = 0.

Once the velocities and correlation lengths of all
string types in the network are obtained by solv-
ing (3.6-3.7), their unequal-time correlators can be
calculated independently as laid out in Sec. II. Al-
though N > 3 string types are needed in order to
accurately construct the abundances of the domi-
nant three lighter strings (in this case seven string
types are used (3.1)), the resulting scaling densities
of the higher charged states with N > 3 are strongly
suppressed compared to the lighter F-, D- and FD-
strings [44, 50, 85]. This allows us to only consider
these first three states in the computation of CMB
signatures through our UETC analytic method. The
evolution of the network parameters for the three
lightest strings can be seen in Fig. 8 for cs = 0.23,
w = 1 and gs = 0.3.

Once the UETC of each of the three lighter strings
are calculated they can simply be summed to give
the total string UETC, since the individual segments
are uncorrelated in the USM. This can then be diag-
onalised and the eigenvectors and eigenmodes used as
sources for finding the contribution from cosmic super-
strings to the CMB anisotropy. We have checked that
our analytic UETC method reproduces the results of
Fig. 4 in [52], including the shift in the location of the
peak as we vary gs. We have found a slightly lower
amplitude in the B-mode spectrum that can be at-
tributed to the extra factor of 2 in the vector modes
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FIG. 8. The radiation and matter era evolution of the
velocity v, and correlation length ξ, for the F-string in
solid black, D-string in dot-dashed blue and FD-string in
dotted red. These results are obtained when gs = 0.3,
w = 1 and cs = 0.23.

that was present in CMBACT3 (which [52] was based on)
and has been corrected in CMBACT4 [86].

IV. STRING CONSTRAINTS

We obtain joint constraints on cosmic string net-
work and ΛCDM parameters using a modified version
of COSMOMC. To reduce computational time in our anal-
ysis we have tested two methods for deriving string
network constraints. In the first method, the string
C` are pre-calculated for a range of cr = [0.1, 1] and
α = [1, 10] at the Planck best fit values for the cos-
mological parameters, i.e. Ωbh

2, Ωch
2 and H0. These

C` are read into COSMOMC, interpolated at the MCMC
cr and α values and then scaled by (Gµ)2. This is
an extremely efficient way for obtaining network con-
straints since only the ΛCDM C` need to be calcu-
lated, while the interpolation takes very little time.
We have checked that the difference in the resulting
string C` when calculated at the upper and lower 3σ
bounds in Ωbh

2, Ωch
2 and H0 is ∼ 0.5% in the tem-

perature, E- and B-modes and no more than ∼ 10%
in the TE cross-correlation. This uncertainty in the
string C` is� 1% of the total C`. The C` for different
cr and α are plotted in Fig. 9. The different bands of
colour indicate the value of cr, solid red being the low-
est (cr = 0.1) then progressing through long-dashed
yellow, short-dashed green, dot-dashed blue and dot-
dash-dotted purple in steps of 0.2, up to cr = 0.9. The
upper (patterned) and lower (dot-patterned) edges of
the bands indicate α = 10 and α = 1 respectively.
From this it can be seen that the effect of α is to
change the amplitude of the C`, with lower α also
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flattening the small ` features (as best seen in the sec-
ond column and to a lesser extent in the third column
of Fig. 9). Increasing cr reduces the amplitude of the
C` and, as best seen in the third column of Fig. 9,
shifts the main peak towards slightly smaller `. In
the second method, which is computationally expen-
sive, we simply calculate the string and ΛCDM C` for
each (network) parameter value and compare to CMB
data.

The same process of pre-calculating string spectra
can be done for cosmic superstring networks in the
parameter ranges cs = [0.1, 1], gs = [0.01, 0.9] and
w = [0.001, 1]. The superstring C` can be seen in
Fig. 10, where same colours and patterns are used for
the steps in cs as in Fig. 9. The bands indicate val-
ues of w, with w = 10−3 corresponding to the solid-
patterned lines and w = 1 to the dotted version of the
same pattern. The rows indicate varying values of gs,
with gs = 0.01, gs = 0.1 and gs = 0.9 for the top,
middle and bottom rows respectively. The first point
to notice is that the C` amplitudes at low gs are much
greater than those at large gs. For large cs values there
is less difference between the greatest and smallest
values of w, especially at low gs, i.e. the purple dot-
dash-dotted lines in the top row of Fig. 10 overlap, but
are well separated in the bottom row. This is because
for large cs the cross-interaction terms dkij (which are
less dependent on w than the self-interaction terms
ci) play a more important role in setting the scaling
string number densities. For small values of cs, the ci
coefficients become smaller (while dkij are unaffected)
leading to small correlation lengths and so large string
number densities. The C` amplitudes are then af-
fected more strongly by ci, giving rise to a stronger
dependence on w.

The datasets used in the MCMC analysis come
from the Planck2015 mission [41], in particular:
Planck2015 TT+lowP: This contains the 100-GHz,
143-GHz, and 217-GHz binned half-mission TT cross-
spectra for ` = 30−2508 with CMB-cleaned 353-GHz
map, CO emission maps, and Planck catalogues for
the masks and 545-GHz maps for the dust residual
contamination template. It also uses the joint tem-
perature, E and B cross-spectra for ` = 2 − 29 with
E and B maps from the 70-GHz LFI full mission data
and foreground contamination determined by 30-GHz
LFI and 353-GHz HFI maps.
Planck2015 TT+Pol+lowP: This contains the
same data as Planck2015 TT+lowP but also uses the
TE and EE cross-spectra for ` = 30− 1996.
Planck2015 TT+Pol+lowP+BKPlanck: This
again contains all of the data used in Planck2015
TT+Pol+lowP but includes also the cross-frequency
spectra between BICEP2/Keck maps at 150 GHz and
Planck maps at 353 GHz including the B-mode spec-
tra at multipoles ` ∼ 50− 250.

We first consider our interpolation method, where
the C` are pre-calculated on a grid in cr and α (or
in the case of cosmic superstring networks cs, gs and
w), and then a spline interpolation used between grid

values. The results obtained from this method are
very quick and accurate due to our ability to use all
512 eigenmodes of the 512 × 512 grid for the UETC.
The constraints on network parameters derived from
this method are shown in Fig. 11. Gµ is implemented
into the MCMC analysis through a logarithmic prior
of [−10,−5] such that Gµ = 10[−10,−5].

There is no significant difference in our constraints
when using Planck2015 TT+lowP, or including EE
and TE or both EE and TE and BB results. The up-
per 2σ value for the tension is Gµ < 1.1 × 10−7 for
Planck2015 TT and is similarly Gµ < 9.6× 10−8 and
Gµ < 8.9 × 10−8 for Planck2015 TT+Pol+lowP and
Planck2015 TT+Pol+lowP+BKPlanck. These agree
well with the Gµ < 1.8 × 10−7 and Gµ < 1.3 × 10−7

from the Planck cosmological parameters analysis [33].
The slightly tighter constraints obtained here are due
to the amplitude of the C` not scaling with the value of
Lf , i.e. the C` are larger when Lf = 1 as assumed here,
while previous results were obtained from CMBACT with
Lf = 0.5. There is little difference between using the
Planck temperature data alone and including polari-
sation data as expected from [33]. As can be seen in
the other two columns of Fig. 11, cr and α are not con-
strained. There is a slight preference for higher values
of cr and lower values of α since both of these lead
to smaller C`. Features, such as the position of the
main peak or the pronounced lower ` peak make very
little difference to the overall constraints. There is a
very slight correlation between Gµ and cr and anti-
correlation between Gµ and α, as expected from the
C` seen in Fig. 9. A combination of high α and low
cr is mildly disfavoured. Further, by comparing the
constraints on Gµ and cr to their affect on the C` in
Fig. 9 there is a larger difference between changes at
small cr than changes at large cr. For this reason we
expect to see greater correlation between Gµ and cr
on a logarithmic scale from values cr � 1 to cr ≈ 0.1
than implied over our prior range.

Considering our direct calculation method, where
the string spectra are calculated every time along
with the C` from ΛCDM, the constraints are slightly
weaker. This is because there is a pay-off between the
resolution of the UETC and number of eigenmodes
used in the reconstruction and the time spent com-
puting the spectra. To efficiently calculate the con-
straints a grid resolution of 128 × 128 with 64 eigen-
modes has been used. As can be seen in Fig. 6 we
expect a reduction in power of about 10− 20% which
means the value of Gµ is allowed to be higher than
when the high resolution, full reconstruction interpo-
lation method is used. For Planck2015 TT+lowP this
is Gµ < 4.3× 10−7. The constraints on cr and α also
show a slight preference for lower cr and larger α, as
in our interpolation method.

For cosmic superstrings, GµF, gs and w are
marginalised over logarithmic priors, and cs over a
flat prior. Again all 512 eigenmodes of the 512× 512
grid for the UETC are used. The likelihood con-
tours obtained from our interpolation method can
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FIG. 9. The total C` (scalar+vector+tensor modes) for different values of cr and α. The red solid lines show cr = 0.1
and through yellow (long-dashed), green (short-dashed), blue (dot-dashed) and purple (dot-dash-dotted) for cr = 0.3,
cr = 0.5, cr = 0.7 and cr = 0.9. The upper (solid-patterned) lines indicate α = 10 whilst the lower (dotted versions of
the pattern) lines are for α = 1. This is shown for CTT` , CEE` , CBB` and CTE` in columns 1-4.
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FIG. 10. The total C` obtained from cosmic superstrings for different values of gs, cs and w. As with previous figures,
the first column shows the temperature auto-correlation C`, the second the EE, third the BB and the last column shows
the temperature, E-mode correlation C`. The three rows show gs values of 10−2, 10−1 and 0.9 from top to bottom. The
colouring and patterning system is the same as in Fig. 9 with red (solid), yellow (long-dashed), green (short-dashed),
blue (dot-dashed) and purple (dot-dash-dotted) lines indicating the values of cs from cs = 0.1 to 0.9 in steps of 0.2. The
width of the band of similar colour and pattern indicates the upper and lower w values with the dotted-patterned lines
defined by w = 10−3 and the solid-patterned lines by w = 1.

be found in Fig. 12. It can be seen that w and cs
are almost flat (columns 3 and 4), again with larger
values of cs favoured as this leads to smaller am-
plitude C`. As the string density grows with de-
creasing gs, the constraints on gs favour larger val-
ues, as seen in the second column. Note, however,
that the model is not reliable for large values of gs

as the perturbative expansion starts to break down
and the string interaction amplitudes used in ci and
dkij have large uncertainties. Finally, the first column
shows our constraints on the fundamental string ten-
sionGµF, which is much smaller than for ordinary cos-
mic strings. We find GµF < 2.8×10−8 for Planck2015
TT+lowP when marginalising over gs, cs and w, and
the same constraint for Planck2015 TT+Pol+lowP
and Planck2015 TT+Pol+lowP+BKPlanck.

Also in Fig. 12 we show the constraints when us-
ing the direct calculation method, where the string
spectra are calculated at every step in the Markov
chain. This is a much more intensive computation

and so a lower resolution grid and fewer eigenmodes
in the reconstruction had to be used. As for cosmic
strings the optimal balance between computing time
and accuracy suggested using a 128×128 grid with 64
eigenmodes. The constraints are thus slightly weaker,
with the main result GµF < 4.2 × 10−8. The results
from our two methods are in good agreement, justify-
ing the use of our interpolation method, and showing
that varying ΛCDM parameters within Planck priors
has little effect on the string constraints.

V. CONCLUSIONS

Currently, there are two main approaches to the de-
tection of cosmic strings. Firstly, since they actively
generate scalar, vector and tensor perturbations they
lead to signatures in the temperature, polarisation,
and non-Gaussian spectra of the CMB. Secondly, a
cosmic string network will emit gravitational waves,
primarily from loop decay. This leads to a stochas-
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tic background which can be constrained using pul-
sar timing, laser interferometry experiments such as
LIGO and eLISA, and also the CMB [87]. A tran-
sient gravitational wave signal is also expected from
cusps and kinks in the network [88]. The latter class
of tests has the potential to provide even stronger con-
straints on the string tension Gµ, but there are large
uncertainties in the loop size, which is fixed by grav-
itational back-reaction. Model dependence on grav-
itational waves from cosmic strings further makes it
difficult to determine signatures, for example, whilst
Nambu-Goto strings decay into loops, Abelian-Higgs
strings primarily decay into particles [88–90]. It is
therefore important to use a variety of complemen-
tary observational probes.

The first class of tests also suffer from uncertain-
ties, but these are less significant. The string UETC
can be obtained from simulations and used as source
functions in CMB codes, but simulations are numer-
ically expensive and suffer from issues in dynamical
range. An alternative approach is to model the string
network as an ensemble of segments using the USM.
Crucially, although the USM provides a simplified pic-
ture of the network, it is able to match simulations by
adjusting the free parameters of the model, namely
the correlation length, RMS velocity and string wig-

gliness.

In this paper we have significantly improved and
extended our previous work on string power spectra
from the USM:

1. We have analytically solved the UETC for an
evolving string network, whereas our previous
work was restricted to constant network param-
eters. The UETC itself can be computed in
under a minute. For the CMB power spec-
trum, although the time taken is increased due
to tracking a larger number of Fourier modes,
on a 3.1 GHz Intel Xeon CPU with 8 threads,
our code runs in ∼ 60 minutes. For comparison,
around 2000 network realisations are required
for CMBACT4 to achieve the same accuracy and
since this code is serial, the computation time is
∼ 30 hours.

2. We have extended the formalism to cosmic su-
perstring networks with multiple string types
and different network parameters. Here the
UETC can be computed for each string type
and added, since the segments are assumed to
be uncorrelated. The UETC calculation is much
quicker than the CMB line-of-sight integration,
so the total computation time is not significantly
increased over the single string case.
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3. For the first time we have been able to
marginalise over the string network parameters
when fitting to Planck2015 and joint Planck-
BICEP2 data. The data is consistent with
no strings for both the single and multi-string
case. Since other network parameters are un-
constrained when the tension is very small, it
is only possible to present joint constraints on
these with Gµ. In the superstring case, for ex-
ample, the constraint on the string coupling gs

is degenerate with GµF.

There are several possibilities to explore in future
work. Firstly, there are various ways in which the
USM could be improved. Superstring networks con-
tain Y-type junctions, but in the present formulation
these only impact the evolution of the network pa-
rameters. Since junctions are relatively rare in the
limit of large and small coupling, the USM is expected
to provide a sufficient description. However, in some

regimes the energy density of the network may not be
dominated by a single string type, and junctions may
become important. In this case the USM could be
modified to include a correlation between segments.
A further improvement is the inclusion of loops. The
decay of string segments in the USM should mimic the
energy loss in loops, but it is possible these may lead
to additional interesting signatures.

Given that Planck has largely exhausted the avail-
able signal in the temperature data, future string con-
straints from the CMB will be driven by polarisa-
tion and non-Gaussianity. The non-Gaussian signal
from post-recombination simulations has been used
to obtain constraints on Gµ [32], and attempts have
been made to compute the bi-spectrum analytically
using a Gaussian model for the string correlators [91].
It is also possible to compute the non-Gaussian sig-
nal using the USM which will, by design, include
physics from recombination and along the line-of-
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sight. This has already been demonstrated for the
CMB bi-spectrum [92] by performing many realisa-
tions of the network. It is possible to employ a simi-
lar analytic method used in this work to compute the
string bi- and tri-spectrum, which we would expect to
be significantly faster [93].

The detection of gravitational waves by LIGO is
particularly exciting for strings, and the next genera-
tion of ground and space based experiments can po-
tentially provide much stronger limits than those from
the CMB. However, these limits strongly depend on
modelling, for example, the loop, kink and cusp dis-
tribution. Further work is needed to understand these
and until then the CMB will continue to be an impor-
tant tool in the search for strings.
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I1(x, %) =
1

2

∫ π

0

dθ sin θ sec2 θ cos(x cos θ)J0(% sin θ) I4(x, %) =
1

2

∫ π

0

dθ sin θ sec2 θ cos(x cos θ)
J1(% sin θ)

% sin θ

=

∞∑
c=0

1

c!

%

(2c− 1)

(
− x2

2%

)2

jc−1(%) =
cosx

%2
−
∞∑
c=0

1

c!

1

(2c− 1)

(
− x2

2%

)2

jc−2(%)

I2(x, %) =
1

2

∫ π

0

dθ sin θ cos(x cos θ)J0(% sin θ) I5(x, %) =
1

2

∫ π

0

dθ sin θ cos(x cos θ)
J1(% sin θ)

% sin θ

=

(
sin
√
%2 + x2√

%2 + x2

)
=

1

%2

(
cosx− cos

√
%2 + x2

)

I3(x, %) =
1

2

∫ π

0

dθ sin3 θ cos(x cos θ)J0(% sin θ) I6(x, %) =
1

2

∫ π

0

dθ sin3 θ cos(x cos θ)
J1(% sin θ)

% sin θ

=

[
1 +

∂2

∂x2

](
sin
√
%2 + x2√

%2 + x2

)
= − 1

%2 + x2

[
1 +

1

x

∂

∂x

](
cos
√
%2 + x2

)
TABLE I. Integral identities for the UETC.
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〈Θ00(τ1, k)Θ00(τ2, k)〉 〈ΘS(τ1, k)ΘS(τ2, k)〉 〈ΘV(τ1, k)ΘV(τ2, k)〉 〈ΘT(τ1, k)ΘT(τ2, k)〉 〈ΘS
00(τ1, k)ΘS

00(τ2, k)〉

a1 2α2 1

2α2
0

1

4α2
1

b1 0 1− 1

2α2
0 − 1

4α2
−1

2
+ α2

c1 0
1

2α2
− 2 + 2α2 − 27α2

2%2
3α2

%2
1

4α2
− 3α2

4%2
0

a2 0
3

2α2
0 − 1

4α2
−3

b2 0 − 3

2α2
0

1

4α2

3

2
− 3α2

2

c2 0
3

2α2
− 3α2

2
+

27α2

2%2
−3α2

%2
− 1

4α2
+

3α2

4%2
+
α2

4
0

a3 0 − 9

2α2

1

α2
− 1

4α2
0

b3 0
9

2α2
− 9

2
1− 1

α2

1

4α2
− 1

4
0

c3 0 − 9

2α2
+ 9− 9α2

2

1

α2
− 2 + α2 − 1

4α2
+

1

2
− α2

4
0

a4 0 0 0 0 0

b4 0 −3

2
0

1

4
−3α2

2

c4 0 3− 6α2 +
27α2
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2
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3α2

2%2
0
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3

2
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4
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2
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%2
−α2 +

6α2

%2
1

2
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2%2
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9

2
−1

1

4
0

c6 0 −9 + 9α2 2− 2α2 −1

2
+
α2

2
0

B α2x1x2
x1x2
5α2

X
x1x2
15α2

X
x1x2
15α2

X 0

C Za Y Za + α2v(τ)4Zb Y Za + α2v(τ)4Zb Y Za + α2v(τ)4Zb [Y − v(τ)4(1− α2)]Za

za1 −2α2 − 2

α2

2

3α2

−2

3α2
−4

za2 2α2 1

2α2
− 9

α2x2
2

α2x2
1

4α2
− 1

2α2x2
1

za3 0 − 3

2α2x
+

9

α2x3
− 2

α2x3
1

4α2x
+

1

2α2x2
3

x

za4 2α2 1

2
0

1

4α2
1

zb1 0 −2 0 0 0

zb2 0
11

16
− 27

8x2
1

8
+

3

4x2
3

32
− 3

16x2
0

zb3 0
3

16x
+

27

8x3
1

8x
− 3

4x3
− 5

32x
+

3

16x3
0

zb4 0
11

16

1

8

3

32
0

TABLE II. Coefficients for the amplitude equations given by Ai = ai + bi(v(τ1)2 + v(τ2)2) + civ(τ1)2v(τ2)2. The small x

approximation and the ETC are expressed in terms of the functions X =

[
1−(v(τ1)2+v(τ2)2)

(
1−α

2

2

)
+v(τ1)2v(τ2)2(1−

α2 + α4)

]
, Y =

[
1− v(τ)2(2− α2) + v(τ)4(1− α2)

]
and Zj = zj1 + zj2 cosx+ zj3 sinx+ zj4xSi[x].
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