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Abstract:

Probabilistic analysis and numerical modelling techniques have been combined to analyse a deep

coal mine roadway. Using the Monte Carlo method, a correlation control algorithm and a FLAC 2D

finite difference model, a probability distribution of roof displacements has been calculated and

compared to a set of measurements from an actual mine roadway. The importance of correlation

between input parameters is also considered. The results show that the analysis performs relatively

well, but does tend to over predict the magnitude of displacements. Correlation between

parameters is shown to be very important, particularly between the three model stresses.
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1. Introduction

There are two types of uncertainty; aleatory and epistemic [1]. In the context of geomechanics,

aleatory uncertainty reflects underlying physical randomness and epistemic uncertainty a lack of

knowledge about material and geometries [2,3]. Each must be treated differently; for example, it is

possible to reduce epistemic uncertainty through field exploration or laboratory testing, in the sense

that more information about a property reduces our uncertainty in it. However, more information

will not reduce aleatory uncertainty [3]. This leads us to treating quantities in uncertainty analyses as

random variables; that is, the quantity does not take a fixed value, but may assume any of a number

of values, with it being impossible to know the true value until we observe it. Whitman [4] remarks

that almost every factor dealt with in engineering analyses is truly a random variable, with some

exhibiting more uncertainty than others.

Traditional design approaches are deterministic, where the lack of knowledge in the uncertainties is

accounted for by introducing a factor of safety [5]. Analyses, sometimes referred to as reliability

[5,6], probabilistic [7,8] or uncertainty [9,10], that try to account for the inherent variation in

material properties, and other factors, are becoming more popular as the desire to assure

satisfactory performance within the constraint of economy grows [5]. There are numerous

approaches available, ranging in complexity and accuracy, to achieve these results, but what they all

have in common is that they attempt to include the effects of property variability in a scientific way

by using statistical methods [8].

In these approaches, all the model parameter inputs, whether they are, for example, dimensions,

material properties, or stresses, are treated as random variables, expressed in the form of a

probability density function (PDF). The aim of the exercise then becomes to estimate the PDF of

some outcome, which is a function or dependent of the input random variables. It then becomes

possible to give a probability to a certain value of the outcome occurring, such as the probability of

failure, or more generally the probability of occurrence of an event.

One of the most widely used, and powerful, approaches to achieving this aim is the Monte Carlo

method. First developed by researchers working on the development of the hydrogen bomb [11],

the Monte Carlo method is now popular within fields ranging from finance to all manner of

engineering. Baecher and Christian [2] divide Monte Carlo methods into two broad areas of use;

firstly, the simulation of a process that is fundamentally stochastic, and secondly, problems that are

not inherently stochastic but can be solved by simulation with random variables, such as the definite

integration of a function. The work described in this paper falls into the first area.

In the field of geomechanics, Monte Carlo analyses are often combined with numerical modelling

techniques [10,12–17]. In this example of its use, the Monte Carlo analysis proceeds by solving a

numerical model where the input parameter values are selected at random from their

representative statistical distribution, thereby treating each parameter as a random variable. The

model is solved N times, where N may be in the hundreds or thousands, with the results usually

being presented in the form of their own statistical distribution [7,10,18,19]. Monte Carlo simulation

methods are primarily used in situations where there is uncertainty in the inputs and where the

calculated uncertainty of results accurately reflects the uncertainty of the input data [20].
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Despite finding widespread popularity in many research topics of geomechanics, such as slope

stability [13,21–24], tunnelling [25–27] and open pit mining [28–30], there are surprisingly few

examples of its application to deep coal mining [10,31]. Brown [32] states that uncertainty analysis

techniques, such as Monte Carlo, have found popularity in open pit mining over underground mining

due to “the fact that the geomechanics risks associated with a given underground mining project or

operation, including cases of deep and high stress mining, are likely to be more wide-ranging and

varied than those associated with bench, inter-ramp and overall slope stability in a given open pit

mine”. Canbulat [31] points to the difficulty in obtaining suitable and reliable distributions for the

potentially many input parameters that can be required in an analysis of an underground mine.

Some researchers have recognised the value of Monte Carlo analysis in the design and planning of

deep coal mines, especially given that the need to assure economic viability of mining operations is

at an all-time high. Lu et al. [10] and Canbulat [31] have both combined the Monte Carlo analysis

with numerical methods to aid in the design and planning of roadways serving longwall panels in a

coal mine. However, considering the significant variability encountered in deep coal mines, for

example within material properties [31,33] and stresses [34,35], there is certainly scope for

increased use and development.

Approaches often used to account for the variation in material properties include the single random

variable (SRV) and random field [2,8,36]. Of the two approaches SRV is the simplest as the material

properties are treated as random variables that do not vary across their region of definition [2], only

between each model run. In the random field approach the spatial variation of material properties is

taken into account through a spatial correlation structure, based on the spatial correlation length of

the material property. The spatial correlation length parameter describes the distance over which

material property values will be significantly correlated [21,23] and is currently not very well

documented [13,21].

As part of work being conducted on an ongoing EU Research Fund for Coal and Steel (RFCS) project,

a planning tool that will allow mining engineers to assess how much of a deep coal mine roadway

may need additional work to ensure stability and operational requirements is being developed. As

part of the same project, data regarding coal mine properties is being collected. This data was used

in this work to obtain reliable probability distributions of input parameters, therefore addressing the

issue raised by [31] and reducing the inherent epistemic uncertainty. The planning tool will use

Monte Carlo analysis with the SRV approach for modelling the variability of material properties, in

conjunction with numerical modelling, to provide a probability distribution of roof displacements. By

using this distribution, an engineer will be able to estimate the probability of displacements

exceeding a certain threshold level over the entire length of a mine roadway and to plan the mine

development accordingly.

This paper presents details of the development of this tool. Suitable methods of creating Monte

Carlo samples are identified and studied. The importance of considering the correlation between

cohesion and friction angle in a Mohr-Coulomb model is investigated, as well as between other

parameters that have not been considered before, these being the three stress components of the

numerical model.
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2. Sampling for the Monte Carlo analysis

Simplistically, any Monte Carlo analysis can be considered as an evaluation of the function =ܡ ,(ܠ)܎

where the function f is the model under study,ܠ�= ,ଶݔ,ଵݔ] … ] is a vector of model inputs (also

referred to as parameters or variables), each characterised by their own statistical distribution, and

=ܡ ,ଶݕ,ଵݕ] … ] is a vector of model predictions [9].

A sampling procedure must be chosen that generates samples from each input variable by randomly

selecting values from each of their respective statistical distributions. In this way, analysis inputs are

mapped to analysis results. Here, we consider two widely used sampling procedures; standard

random sampling (SRS) and Latin Hypercube sampling (LHS). In SRS, the samples are generated

independently from each PDF, with equal probability. The final sample takes the form

Equation 1

=௜ܠ ,௜ଶݔ,௜ଵݔൣ … =݅���,௜,௡௑൧ݔ, 1,2, … ,݊ ,ܵ

where nX is the number of input variables and nS is the desired number of samples. A drawback of

this method is that values can be sampled from any position on the PDF; therefore, particularly

important, low probability but high consequence values will possibly be missed [9].

To overcome this problem, in an easily implementable manner, McKay et al. [18] introduced the LHS

procedure. This method ensures that each of the input variables xi has all portions of its distribution

sampled from, by dividing each into nS strata of equal marginal probability 1/nS. nS samples are

taken from each xi by randomly selecting one value from each strata. The nS values from x1 are then

paired at random with the nS values from x2 and so forth until xnX.

To calculate the actual values from the statistical distribution of each input variable, the inverse

cumulative distribution function (CDF) method can be used [37]. Using this technique, a randomly

generated number ui, from the uniform distribution [0, 1], is entered into the equation of the Inverse

CDF of each variable, which calculates a value from the distribution. This is why suitable theoretical

PDFs for the variables are required, as the inverse CDF F-1(ui) can be easily found. Both SRS and LHS

use this method to generate the values, the only difference being that in SRS the current random

number can be generated from anywhere on the distribution [0, 1], whereas in LHS it must come

from the current strata. One of the most important factors for conducting good Monte Carlo

simulations is a mechanism that can produce long sequences of random numbers ui [37]. To achieve

this, a pseudorandom number generator is used. These generators are actually deterministic

algorithms and will therefore eventually produce repetition in the sequence of random numbers. To

prevent this affecting the analysis, they should possess a very long period relative to the number of

samples nS, where the period is the length of the sequence before repetition occurs.

A computer programme, written in the C++ language, has been developed to create samples for

Monte Carlo analysis. The programme can generate samples from numerous theoretical

distributions, using either the SRS or LHS procedure combined with the Inverse CDF method of

calculating values; in this work the LHS procedure is used. The Mersenne-Twister [38]

pseudorandom number generator is used in the programme to generate the required sequences of

random numbers. This algorithm is particularly well suited to Monte Carlo analyses due to its

extremely long period of 219937-1.
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3. Correlation in uncertainty analyses

A fact that is generally overlooked in the majority of geomechanics uncertainty analyses is that input

variables may be correlated. Ades and Lu [39] have written that if models are to deliver correct

assessments of uncertainty, then correlation between input variables must be taken into account. A

number of authors have considered this and investigated the effects of correlation, particularly

between cohesion c and friction angle φ in the Mohr-Coulomb model. 

It has been widely observed, and is now accepted, that due to the linearization of the Mohr-

Coulomb failure envelope, a negative correlation exists between c and φ for both soil and rock [40]. 

Measurements made on many different materials have shown this relationship [40–42]. The

coefficient of linear correlation gives a measure of the dependence of one random variable, x, on

another, y. Usually denoted as ρxy, the coefficient of linear correlation is calculated by:

Equation 2

௫௬ߩ =
(ݕ,ݔ)ݒ݋ܥ

௬ߪ௫ߪ

Where Cov is the covariance of x and y and σx and σy are their standard deviations. ρxy varies within [-

1,+1], where -1 shows a strict linear relation with negative slope and +1 a strict linear relation with

positive slope. Zero correlation coefficient implies that there is no linear association between x and

y, but it does not imply that they are not deterministically associated if the relationship is strongly

non-linear [2]. In other words, if x and y are known to be completely independent then it follows

that ρxy = 0, but if the measured value of correlation ρxy = 0, it does not necessarily follow that x and

y are going to be independent, if their relationship is a highly non-linear function [17].

The importance of considering the negative correlation between c and φ was recognised relatively 

early on in the development of uncertainty analyses for geomechanics problems. Yucemen et al. [41]

noted, in a probabilistic study of safety and design of earth slopes, that not including the negative

correlation between c and φ gives results which tend to be conservative. Further workers have 

corroborated this point of view [6,16,30,42].

Cherubini [42], in a reliability study of the bearing capacity of a foundation on a soil characterised by

effective cohesion c’ and friction angle φ’, found that higher reliability indexes were found when 

correlation between c’ and φ’ was negative, and that as the magnitude of the negative correlation 

increased so did the reliability index. Using the Monte Carlo analysis method coupled with limit

equilibrium slope stability analysis, Chiwaye and Stacey [30] found that the probability of failure of

an open pit mine rock slope increased from 0.3 to 0.4 as the correlation between cohesion and

friction angle ranged from -1.0 to 1.0. Li and Low [6] compared the behaviour of a circular tunnel in

rock under hydrostatic stress for negative and no correlation between cohesion and friction angle.

They found that as the negative correlation decreased from -1.0 to 0.0 the probability of failure

increased from 0.18 to 0.28. Fenton and Griffiths [16] studied the bearing capacity of a spatially

random ‘c – φ soil’. Using Monte Carlo analysis, in conjunction with random fields to represent the 

inherent spatial variability of a soil, they concluded that there was an effect of negative correlation

in c – φ but it was not significant, with the results being dominated by other factors, including the 

weakest path phenomenon [43].
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Despite the conclusion of Fenton and Griffiths [16] that the effect of correlation was not significant,

all the other reviewed works, where c and φ were treated as single random variables and not a 

random field, suggest that negative correlation between c and φ can have an important role to play 

in the performance of uncertainty analyses in a geomechanics context. Due to this, it was decided

that in this work the c - φ correlation should be considered, so as to evaluate its possible importance 

and effects. This was achieved by running two analyses, one that does not consider the correlation

and the second that does. Further to this, correlation between more model parameters was

identified and also included in the correlated Monte Carlo analysis.

3.1 Correlation Control

When a sample for a Monte Carlo analysis is initially created, whether using SRS or LHS, there are

two issues that should be addressed. Firstly, during sampling, an undesired correlation can be

introduced between random variables, and secondly, how to introduce prescribed statistical

correlations between pairs of variables [44].

Issue 1 can be of particular concern in very small samples where strong, undesired correlations can

be present as a result of the sampling process. Issue 2 arises when there are known correlations

between variables in the analysis that cannot be ignored. The question is how the sample can be

rearranged in such a way as to fulfil the two requirements of removing undesired correlation, but at

the same time introducing prescribed correlations [44].

The approach taken in this work was the use of an optimisation algorithm. The Simulated Annealing

(SA) type algorithm developed by Vorechovsky & Novak [44] can remove undesired and induce

required correlations in a Monte Carlo sample. The algorithm works by seeking to minimise an

objective function, which is a function of the correlation between all variables in the sample. The

function is minimised once the desired correlations between variables are achieved; interested

readers should refer to Vorechovsky and Novak [44] for a detailed description.

The correlation control algorithm was programmed into the C++ Monte Carlo sampling programme

developed for this work. It was then used to generate a correlated sample for use in a Monte Carlo

analysis which is described in Section 5.

4. Numerical model

To develop and validate the planning tool, a deep coal mine roadway at UK Coal’s Thoresby Colliery,

located in the north of the county of Nottinghamshire, in central England, was studied. It is one of

the last remaining deep coal mines in the UK from which data for model validation could be sourced.

Multiple seams have been mined at the colliery, including the Parkgate, Deep Soft, Top Hard and

High Hazels seams. The seams lie within the UK Coal Measures, characterised by sandstones,

siltstones and mudstones.

The data collected included mine geometry and dimensions, geological strata, support rules, stress

regimes and roof displacements measured from a panel roadway. The data obtained from the

Thoresby Colliery relates to panel DS4, which began production in January 2013, finishing in March

2014. The panel was approximately 2500 m in length and 350 m wide, with depth from surface
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varying between 715 and 760 m. Two roadways served the panel, running its entire length; the

loader gate and the supply gate, which both measured 6 m wide x 3.6 m high. Roof support was

provided by alternate rows of 8, 2.4 m long steel roof bolts at 1.2 m centres, with an additional 2

roof bolts between these rows. In this work, the supply gate was modelled and measurements of

roof displacement taken from site are used for validation purposes. Borehole logs, taken at the

Thoresby colliery, have been resolved into basic lithological units [45] which have been used in the

development of a numerical model of the roadway.

Using the available data, a FLAC 2D [46] numerical model of the supply gate roadway was created

(Figure 1). The chosen numerical model was a simple mechanical model, using the Mohr-Coulomb

failure criterion for the rock. Symmetry about the y-axis was used so as to reduce the required

model size by half. Fixed boundary conditions on the bottom and rollers to the sides were used, as

well as an applied stress to the top to represent the overburden of more than 700 metres (Figure

1a).

Steps were taken to minimise the required size of the model and to find the most efficient mesh, in

terms of run-time and model performance. This was achieved by running a worst case model (i.e.

one with low material properties and high in-situ stress), with steadily increasing boundary size and

decreasing mesh size until consistent displacements and stresses were achieved, showing that there

were no boundary or mesh size effects on the model output. Figure 1a and c show the final model

dimensions and finite difference mesh around the roadway, respectively. The zone size is the

smallest (0.25 x 0.25 m) around the roadway region, where the model strains will be the highest. At

the model boundaries the zone size is a maximum of 1.5 x 1.5 m. Also shown in Figure 1c is the

location of roof support installed in the model.

The simplicity of the model and mesh refinement were very important, as at the model development

stage it was not known whether hundreds or even thousands of numerical simulations would have

to be run in order to obtain good statistical distributions of predicted displacements.

Figure 1b shows the rock lithology around the roadway. In the initial model the nominal material

properties of each rock type were given values according to Table 1.The University of Nottingham

has carried out many laboratory tests on the rocks of the UK coal measures, collating all the data

into the Coal Measures Database (CMDB), which acted as an important resource for this work. In

Appendix B a statistical summary of this data is provided, showing mean, variance, minimum,

maximum and distribution fitting values for the elastic and strength properties of the rocks of the UK

coal measures. Having a source of data with a large number of samples means that the epistemic

uncertainty is reduced and confidence in the quality and accuracy of the analysis is increased. The

values presented in Table 1 represent the mean value of each material property from the CMDB.

Also shown is the correlation coefficient between cohesion and friction angle of mudstone; this

value is used in the Monte Carlo analyses which are described in Section 5. The CMDB is used further

in this work to establish the probability distributions required to run the Monte Carlo analysis.

Selection of these distributions is described in detail in Section 5.2.
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Strata Thickness: m Lithology E: GPa ν c: MPa φ: ° ρcφ 

L1 5.2 Siltstone 18.0 0.19 15.7 31 n/a
F 1.0 Seatearth 4.7 0.14 7.1 25 n/a
C 2.1 Coal 3.1 0.20 13.8 30 n/a
R 2.1 Mudstone 16.1 0.18 14.8 30 -0.29
L2 5.0 Siltstone 18.0 0.19 15.7 31 n/a

Table 1: Nominal material property values assigned to the geological strata of FLAC 2D numerical model (Figure 1).

Seams above and below the Deep Soft seam have been mined in the past, which has locally affected

the stresses within the Deep Soft seam. The Parkgate Seam, underlying the Deep Soft Seam by 40m,

was mined between 1985 and 1995 in the study area of the DS4 longwall panel. Due to the mining of

this seam, and subsequent redistribution of stresses, the stresses in the Deep Soft seam locally

deviate significantly from the expected in-situ values. In-situ measurements, MAP3D numerical

modelling of the Thoresby Colliery Deep Soft and Parkgate seam by Golder Associates and further

FLAC 3D numerical modelling has shown that prior to excavation of the DS4 roadway significant

variability in the stresses was present, with the vertical stresses ranging between 5 and 55 MPa.

Strong correlations between stress components in the FLAC 3D model were observed. The

correlation coefficients, from the FLAC 3D numerical modelling, between the vertical stress

component syy and the two horizontal stress components sxx and szz in the numerical model were:

syy – sxx = 0.850, syy – szz = 0.914 and sxx – szz = 0.971. These correlation coefficients show that

when high vertical stresses are present, it is highly probable that high horizontal stresses will also be

present. The repercussions for an uncertainty analysis of this observation are unknown, which

motivates the inclusion of this correlation between stresses to be included in the work described in

Section 5.

5. Experimental programme

The aim of the work presented in this paper was to develop a planning tool and to investigate the

importance of correlation when using uncertainty analysis techniques. Two analyses were run to

achieve this:-

1. LHS, with no correlation – LHSuncor

2. LHS, including correlation between cohesion and friction angle values, and between the

stresses syy, sxx and szz – LHScor

In LHScor, the correlations described above were used for syy - sxx, syy - szz, and sxx – szz, and the
correlation in
Table 1: Nominal material property values assigned to the geological strata of FLAC 2D numerical model (Figure 1).

for cohesion and friction angle of mudstone. Note that FLAC 2D notation was used here; syy is

vertical stress and sxx and szz are horizontal stresses, szz being out of plane.

5.1 Choosing parameters
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In each Monte Carlo analysis, seven parameters were considered; vertical stress syy, the two

horizontal stresses sxx and szz, Young’s modulus E, cohesion c and friction angle φ of the Mohr-

Coulomb model, and Geological Strength Index (GSI). These parameters were chosen following an

initial sensitivity analysis of the Thoresby colliery roadway numerical model. The parameters tested

in these analyses were Young’s modulus, Poisson’s ratio, cohesion, friction angle, GSI, density,

vertical stress, stress ratio, roadway width and roadway height. The effect of varying each of these

parameters, over their whole range, on the magnitude of central roof displacements of the roadway

was considered. The results of the sensitivity analyses are provided in Appendix A.

Including the three stress components as random variables was considered to be very important.

Due to the observed in-situ variation and the results of the sensitivity analyses it was believed that

only by considering the stress components could proper distributions of displacements be

calculated.

5.2 Probability distributions

Theoretical probability density functions for each parameter are required to employ the Monte Carlo

method. Accurately fitting a PDF to the parameters is perhaps the most important factor influencing

the quality of any Monte Carlo analysis. Therefore, a suitably rigorous method should be chosen so

that confidence in this can be had. PDFs are mathematical functions that approximate the actual

probability distribution of a random variable [2], therefore they do not provide exact probabilities of

certain outcomes.

Distribution fitting can be carried out using a set of statistical tests known as goodness-of-fit tests,

such as Kolmogorov-Smirnov or Anderson-Darling. These tests compare the observed values in a set

of data to values expected in a given model (in this case the theoretical distribution), using the

discrepancy between values to calculate a statistic that tells the user whether the theoretical

distribution is a good fit for the data.

Goodness-of-fit tests have been carried out on each of the seven model parameters. Table 2

summarises the identified distributions and fitting values for the parameters which can be fit using a

continuous distribution.

5.2.1 Probability distributions for strength and stiffness parameters

The statistical tests revealed that c and φ could both be fit with a normal distribution. By using the 

normal distribution it would be possible that in some circumstances negative values could be

sampled, which would be meaningless in the context of this work. To avoid this problem, the

lognormal [36] or beta [47] distribution are frequently used. The lognormal distribution is bounded

byݔ�> 0, where the fitting parameters are the mean and standard deviation of the underlying

normally distributed random variable ln X. The beta distribution is bounded by�ܽ ≤ ≥ݔ ,ܾ where a

and b are the minimum and maximum values of the variable in question. The fitting parameters of

the beta distribution, defined over the range [a, b] are given by α and β. These parameters can be 

obtained when the mean, standard deviation, minimum and maximum values of the variable are

known. Harr [47] provides extensive detail on the derivation of these parameters and uses of beta

distributions.
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The lognormal and beta distributions were tested for c, φ and E. For all variables it was decided that

the beta distribution did not provide a good enough fit to the majority of the data. For example,

Figure 3 shows a histogram of cohesion values for mudstone extracted from the CMDB; plotted on

the same figure are the theoretical beta and lognormal PDFs. For the majority of the data the

lognormal distribution provides a much better fit to the laboratory data. The sensitivity analysis

showed that for c, φ and E, the lower values were much more influential; therefore it was deemed

that distributions that best fit the lower range of these parameter values were more appropriate.

5.2.2 Probability distribution for GSI

GSI has been defined on a normal distribution, which is justified by considering that it is determined

from visual observation and is consequently affected by the subjective judgement of the geologist

[12,48]. Hoek [48] therefore suggests that a range of values will be more appropriate than a single

‘exact’ value, with a standard deviation of 2.5, but possibly more in complex geological

environments where 2.5 may be too optimistic.

GSI values for the coal measure rocks located at the Thoresby colliery have been suggested [45,49],

with values ranging from 49 to 85 for mudstone identified. By selecting the middle of this range, 67,

as the mean of a normal distribution with standard deviation of 5 the distribution shown in Figure 5

is produced, covering the range of suggested values. This is quite a conservative approach, but

reflects the uncertainty in the GSI parameter that arises in its subjective evaluation in such a

complex situation as a deep coal mine.

Parameter Distribution Fitting parameters Plot

E Gamma Shape = 6.212 Rate = 0.385 GPa Figure 2

c Lognormal Mean = 2.594 MPa SD = 0.492 MPa Figure 3

φ Lognormal Mean = 3.374° SD = 0.207° Figure 4 

GSI Normal Mean = 67 SD = 5 Figure 5

Table 2: Identified distribution and fitting parameters for those parameters able to be fit with a continuous distribution.

5.2.3 Probability distributions for the stress components

Suitable theoretical, continuous distributions for the stresses have not been found. Figure 3 shows

the PDF of syy taken from the Thoresby Colliery FLAC 3D model; similar PDFs were observed for sxx

and szz. It is impossible to fit a theoretical model to this distribution; therefore another approach

must be taken so that LHS with the inverse CDF method may be applied to the variable, ensuring

consistency.

5.3 Sampling, correlation control and analysis monitoring

It is still possible to use LHS with the inverse CDF method for the stress variables, but they cannot be

taken as continuous. A possible solution is to discretise the distribution, which would allow LHS to

still be applied as it is for the continuous variables [37]. Figure 6 shows the discretisation of syy, split

into strata of 2 MPa compared to the PDF. From this, the probability of each strata value occurring

can be determined, the probabilities then being used to generate the samples.
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Table 3 shows how this would be achieved if the distribution was split into strata of 10 MPa. For

each strata the probability is calculated, then the cumulative probability. To generate sample values,

the randomly generated number, from the uniform distribution [0, 1], is compared to the cumulative

probabilities. For example, if the drawn random number is 0.5, the value will be taken from the 10 –

20 strata; if 0.99 it would be taken from the 50 – 60 strata.

syy: MPa Probability Cumulative probability

0 - 10 0.0675 0.0675

10 - 20 0.8313 0.8988

20 - 30 0.0767 0.9755

30 - 40 0.0061 0.9816

40 - 50 0.0061 0.9877

50 - 60 0.0123 1.0000

60 - 70 0.0000 1.0000

Table 3: Discretisation of syy into 10 MPa strata. The cumulative probabilities are used to generate the samples.

2000 samples (meaning a potential of 2000 model runs) are created for each analysis. The variables

E, c, φ and GSI are sampled with LHS, in conjunction with the Inverse CDF method, whereas the 

stresses, syy, sxx and szz are all discretised into 0.5 MPa strata and then sampled using LHS with the

discretisation method.

In LHScor, the correlation control algorithm is applied to the sample, with the target correlations

shown in Table 4. These correlations are entered into the C++ sampling program, from which the

target correlation matrix is formed, with correlations of 0.0 for all other parameter pairs.

Table 4 shows the initial and final correlation coefficients between the variable pairs with prescribed

correlation, before and after the algorithm was applied. Between all other variable pairs the

algorithm acted to remove undesired correlation. Initial correlations between these pairs ranged

from -0.079 to 0.064, which could have adversely affected the analysis. Once the algorithm was

applied, correlations were reduced to between -0.0002 and 0.0009, with the majority being in the

order of between 10-5 and10-7.

Variable pair Initial correlation Target correlation Final correlation

Cohesion – Friction angle -0.080 -0.29 -0.29

syy – sxx -0.011 0.850 0.850

syy – szz 0.064 0.914 0.914

sxx – szz -0.033 0.971 0.971

Table 4: Correlation coefficient between chosen variable pairs, before and after the correlation control algorithm was
applied.
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Figure 7a and b show 2000 samples of cohesion – friction angle before (ρ = 0.004) and after (ρ = -

0.29) the application of the correlation control algorithm. The samples do appear to be similar but

there is a noticeably more negative trend in the correlated sample which, as well as actual

measurements of correlation coefficient, shows that the correlation control algorithm was

successful.

Each analysis, LHSuncor and LHScor, was set up so that a total of 2000 models could be run.

However, it was possible to monitor the results and other measures of quality throughout the runs,

so that if decided, analyses could be stopped when the desired accuracy of results was reached.

These measures were monitored by using accumulators ଵܵ and ଶܵ [37]. ଵܵ is the accumulation of

each model’s output of roof displacements ,௜ݕ such that the present estimate of the mean value of

displacements is given by ଵܵ ܰ⁄ , where N is the current number of completed model runs. The ଶܵ

accumulator sums the value of each ௜ݕ
ଶ and is used to calculate the relative error, ܴ =

ඥ ଶܵ ଵܵ
ଶ⁄ − 1 ܰ⁄ , where R gives a measure of the statistical precision of the estimated mean value.

5.4 Measured displacements

Figure 8 shows the measured roof displacements obtained from UK Coal’s Thoresby Colliery in DS4

longwall panel’s supply gate. The measurements were made by dual height tell-tales

(extensometers), installed at 20 m intervals along the roadway roof at the same time as the

installation of the roof bolt support. The two anchor heights of the dual height tell-tales was such

that one measured roof movement within the 2.4m roof bolted height and the other roof movement

up to 5.0m into the roof; a detailed description of the installation and operation of the tell-tales can

be found in [50]. Therefore the plot in Figure 6 shows the total movement, obtained by summing

the two values measured by the separate anchors. Note that at some locations along the roadway

the measured movement is equal to zero. All values were measured once the roadway was

completely excavated.

The results of the two Monte Carlo analyses, LHSuncor and LHScor, will be compared to these

central roof displacements. The observed displacements will give a good idea of how well the

analyses perform in matching the magnitudes and distribution of the displacements. In the

numerical model, central roof displacements were recorded for two separate stages; the first from

the beginning of excavation until the installation of roof support and the second from the

installation of support until the numerical model reached equilibrium.

The reason for taking this approach is explained by considering the longitudinal displacement profile

(LDP) of the roadway. The LDP is the graphical representation of displacements that occur along the

axis of an unsupported excavation [51]. The LDP shows that a point within the rock mass, initially

well ahead of the advancing roadway face, will have already experienced up to a third of its total

displacement once coincident with the face [52]; this quantity is known as the pre-deformation [53].

Numerous equations exist that are used to estimate the LDP of radial displacements for circular

tunnels [51,53,54], although they have also been used to estimate the LDP of an almost square

tunnel [55].

Figure 9 shows a possible LDP for the Thoresby Colliery roadway, depicting the profile of central roof

displacements in relation to the location of the face. Shown in relation to this is the installation of

the support and tell-tales. When installation takes place, the roof will already have displaced by dins,
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which is greater than the pre-deformation d0, showing that when the tell-tales are installed it is

possible that at least 31% of total displacement, dmax, will already have occurred [51]. The

displacement measured by the tell-tales is therefore dmax – dins. Therefore, to ensure that the

numerical model provides suitable comparison the displacements were split into two stages. In

Section 6, all presented analysis displacements are those measured after the installation of support

in the numerical model, the second stage.

6. Results

The measurements of central roof displacement, recorded for each model run in the analyses

LHSuncor and LHScor, are presented in the form of cumulative distribution functions (CDF) in Figure

10a and b; both are compared to the measured values from the Thoresby roadway (Figure 8). The

result statistics are summarised in Table 5. By looking at these plots and the statistics, it is possible

to quickly judge the relative performance of each analysis. Overall, analysis LHScor has better

matched the measured behaviour, especially in terms of the magnitude of displacements. In LHScor,

the maximum values of displacement are 56 mm, comparing more favourably to the observed

maximum of 53 mm than the LHSuncor results where they are 80 mm.

Both analyses, when compared to the measured values, overestimate the mean slightly, LHSuncor

more so. This is not surprising when looking at the CDFs. The near majority of measured

displacements (approx. 50%) are actually zero, whereas in both LHScor and LHSuncor, 50% of the

calculated displacements are up to 13mm. Overall, it can be said that the LHSuncor results are

slightly more conservative than LHScor considering the maximum displacements and mean value,

which, based on the literature, is to be expected.

Statistic Measured LHSuncor LHScor

Mean: mm 5.5 8.7 8.3

Standard deviation: mm - 6.8 4.1

Minimum: mm 0.0 1.4 1.6

Maximum: mm 53.0 80.3 56.4

Relative error R - 0.01747 0.01104

Table 5: Selected statistics of each Monte Carlo analysis after 2000 model runs, compared to the measured results.

At lower values of central roof displacements, the CDFs from the two analyses are very similar,

overlapping for displacements less than 15 mm. This suggests that correlation between variables

was only influential in affecting the magnitude of higher displacements. Figure 11 goes some way to

confirming this, by presenting ranked, from highest to lowest, central roof displacements against a

log10 scale. The plot shows that it is only within the top 100 greatest displacements where there is a

noticeable difference between the correlated and uncorrelated analyses, and the top 50 where this

difference is significant.

6.1 Judging the quality of the analyses
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To have confidence in the results it is important to carry out a post analysis of certain statistics

generated during the runs. The evolution of the mean value of each set of roof displacements was

recorded, as well as the relative error, using the methods described in Section 5.3. The statistical law

of large numbers states that as the size of the sample increases, the mean should tend to a constant

value. Therefore it is expected that as the number of model runs increases the mean of the central

roof displacements will tend to a constant value.

Figure 12 shows the trend of the mean of the central roof displacements as the number of model

runs progresses towards 2000 for LHSuncor and LHScor. There is a clear tendency towards a

constant value in both analyses. This trend suggests that the analyses have been successful; telling

us that the parameter values have been well sampled from their distributions and that the number

of model runs was more than adequate to obtain good mean values.

The relative error R gives a measure of the statistical precision of the mean value. Dunn and Shultis

[37] suggest that a good result should have�ܴ ≤ 0.05. Table 5 confirms that both analyses have a

value of R well below this threshold, suggesting that confidence can be had in the accuracy of the

estimated mean value from each analysis. The slightly higher value for LHSuncor suggests that there

is more variance in these results which is confirmed by the values of standard deviation.

7. Discussion

As expected from studying the literature, the analysis not including correlation between parameters

was conservative in its results. The maximum displacements in LHSuncor were significantly higher

than the maximum values obtained in LHScor and the mean value of displacement was also higher.

Due to suggestions and findings of other authors, it was thought that these observations would be

due to the included correlation between c and φ in the Mohr-Coulomb model. It is suggested here 

that by including negative correlation between these two parameters, on average, higher values of φ 

will have been paired with lower values of c in LHScor, effectively lessening the effects of low

cohesion.

To investigate this, the relationship between the parameters and the calculated central roof

displacements is considered. This has been achieved by calculating another set of correlations from

the results, between each parameter and the calculated central roof displacements. If including

negative correlation between c and φ in the analysis does affect the results, noticeably different 

correlation coefficients could be expected.

Table 6 presents the correlation coefficient (CC) and 95% confidence interval (CI) of those correlation

coefficients, between each parameter and the calculated values of central roof displacements in

each analysis. The difference between the correlation coefficients of c-Displacement and φ-

Displacement from LHSuncor to LHScor is negligible. The c-Displacement correlation coefficient is

essentially the same and the φ-Displacement correlation coefficient has changed marginally. The

confidence intervals also show overlap between the two analyses.
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LHSuncor LHScor
Variable CC 95% CI Variable CC 95% CI

syy 0.906 0.898 0.914 syy 0.979 0.977 0.981
sxx -0.140 -0.183 -0.097 sxx 0.767 0.748 0.784
szz 0.017 -0.027 0.061 szz 0.841 0.828 0.853
c -0.028 -0.072 0.016 c -0.029 -0.073 0.015
φ 0.004 -0.040 0.048 φ -0.018 -0.062 0.026
E -0.016 -0.060 0.028 E -0.056 -0.100 -0.012

GSI -0.029 -0.073 0.015 GSI -0.038 -0.082 0.006

Table 6: Correlation coefficients and 95% confidence intervals between each model parameter and central roof
displacements for LHSuncor and LHScor.

Due to the seemingly negligible effect of including c – φ negative correlation in the analysis, it seems 

likely that there were some other factors influencing the results. Table 6 shows that there is a large

difference between the CCs for the stresses between LHSuncor and LHScor. In LHSuncor the

correlation between sxx and szz and the total central roof displacements is low, whereas in LHScor

they are very strongly positive. This observation suggests that the correlation between the three

stresses has affected the results of LHScor.

Figure 13 shows the values of vertical (syy) and horizontal (sxx) stress pairs that resulted in the top

50 largest roof displacements in the LHSuncor and LHScor analyses. There are clearly different values

and relationships of the two stresses in each analysis. The spread of sxx is much greater in LHSuncor,

whereas in LHScor the magnitude of sxx is centred on 25 MPa. Due to the correlation between

stresses in LHScor, higher values of sxx are more likely to be paired with higher values of syy. This is

supported by the calculated correlation coefficients for syy-sxx from Figure 13, which are 0.308 for

LHSuncor and 0.791 for LHScor. Therefore, it seems that the higher values of sxx in LHScor will lessen

the effect of high syy values, which is plausible since the effect is to lessen the magnitude of

deviatoric stress within the rock, resulting in fewer occurrences of yield, thereby reducing

displacements. It is likely that this effect would not exist if horizontal stresses exceeded the vertical;

Lawrence [56] has shown that roadways where horizontal stress exceeds vertical stress can be the

worst case in terms of the magnitude of roof instability.

Magnitudes of stress and confining stress also explain the observations made in Figure 11, which

showed that there was no difference in the magnitude of displacements between LHSuncor and

LHScor below the top 100 displacements. These lower values of displacement occur when the

vertical stress is also low, meaning that high confining stress is not particularly necessary to lessen

the effects.

There is still the issue that both analyses have overestimated the magnitude of displacements. Both

analyses have over predicted the mean value and maximum value of displacement, LHSuncor more

so. This is most likely due to how the running of the model relates to the reality of the roadway

excavation and the definition of the statistical distributions. In Section 5.4 the steps taken to ensure

that the modelled displacements best matched the measured displacements were described.
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Despite the best efforts to match the actual situation of excavation and installation of the tell-tales

there will still be some discrepancy in the numerical model, which is difficult to avoid, particularly in

this simple 2D numerical model. Regarding the statistical distributions, it is noted that the GSI

distribution was a conservative estimate due to being based on limited observations and would

therefore tend to produce larger displacements. This is not negated by the higher values of GSI (i.e. >

mean value) as the initial sensitivity analysis showed that the relationship between GSI and roof

displacements is not a linear decrease, but is constant once GSI increases above the mean value (see

results in Appendix A).

8. Summary

In this paper, a method for predicting the likely distribution of roof displacements occurring in a

deep coal mine roadway has been developed. Two different approaches were taken, each applying

the Monte Carlo uncertainty analysis method in differing ways. The first analysis used Latin

Hypercube sampling with seven uncorrelated input parameters, the second used the same seven

parameters but with correlation included between c – φ in the Mohr-Coulomb model and between 

stress components.

From the literature, it was expected that the correlation between c – φ could be of major 

importance, leading to less conservative results. However, the analysis showed that it actually did

not influence the magnitude of displacements. The correlation between the stress components

proved to be much more important. By including the strong positive correlation between horizontal

and vertical stresses in the correlated analysis, higher values of horizontal stress are more likely to

be paired with higher values of vertical stress. This acts to lessen the effects of high vertical stress,

by increasing the confining stress.

From these results it is clear that including correlation between the stress components is important

to obtain reliable results, particularly from this kind of uncertainty analysis where the aim is to

calculate the probability of certain low probability events occurring. If the aim was to simply

calculate the mean value then its inclusion, depending on the desired accuracy, may not be as vital.

The importance of c – φ negative correlation is much less clear; the correlation coefficients 

presented in Table 6 indicate that there was no effect on the analysis. The importance of c – φ 

correlation from the literature is inconclusive; more research into this area is required before

making any suggestions beyond what have already been made.

Proper definition of the parameter distributions is critical to achieving good results in these types of

uncertainty analyses. Lack of access to sufficient quantities of good quality data is a major obstacle

which could prevent the use of these methods completely. Availability of a large database of historic

laboratory test results meant that confidence in the material property distributions could be had in

this work, which subsequently reduced the inherent epistemic uncertainty and gave confidence in

the accuracy of results.

In terms of the planning tool development, the results have proved promising, but show that

improvements should be made to ensure the tool is reliable. Only seven model parameters have

been used, and by including more parameters and identifying more correlations, the performance of

the tool could be improved. Although the approach is relatively time and computationally expensive,
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it is certainly viable at the planning stage of mine development; with a modern computer good

results can be obtained in around one day of model run-time.
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Appendix A

Table A.1 shows the results of the initial sensitivity analysis performed to establish the most

important parameters to include in the Monte Carlo analysis. Analyses were carried out on the

Young’s modulus E, Poisson’s ratio ν, cohesion c, friction angle φ, GSI, density γ, vertical stress syy,

stress ratio K, roadway width and roadway height.

For each parameter the minimum and maximum displacement and the displacement at the mean

value of the parameter are shown. In the range row for each parameter, the values represent the

corresponding parameter value for that displacement; for example the Young’s modulus results

show that as the value of E decreases the displacements increase.

Table A.1: Results of the initial sensitivity analysis used to choose the relevant parameters for the Monte Carlo analyses.

Parameter Values shown Minimum Mean Maximum

E
Displacement: mm 11 13 55

Range: GPa 44.4 16.1 2.8

ν 
Displacement: mm 15 16 16

Range 0.32 0.18 0.06

c
Displacement: mm 15 15 20

Range: MPa 29.7 14.8 2.1

φ 
Displacement: mm 15 17 30

Range: degrees 50 30 14

GSI
Displacement: mm 28 35 69

Range 85 67 49

γ 
Displacement: mm 14 15 15

Range: kg/m3 2400 2570 2800

syy
Displacement: mm 4 30 55

Range: MPa 5.0 32.5 60.0

K
Displacement: mm 20 25 51

Range 0.5 2.25 4.0

Width
Displacement: mm 16 17 17

Range: m 6.0 6.3 6.6
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Height
Displacement: mm 14 15 15

Range: m 4.0 3.8 3.6

Appendix B

Table B.1 and B.2 show the statistical parameters for the material properties of the rocks of the UK

coal measures, from the CMDB. The selected statistical parameters are the mean μ, standard 

deviation σ, coefficient of variation COV and the minimum and maximum values. 

Table B.1: Statistical parameters for the material properties Young’s modulus and Poisson’s ratio of the UK coal measure
rocks, from the CMDB.

Rock type
Young’s modulus: GPa Poisson’s ratio

μ σ COV Min Max μ σ COV Min Max

Coal 3.07 0.98 0.32 1.1 7.7 0.20 0.01 0.05 0.19 0.21
Mudstone 16.1 6.5 0.40 2.8 44.4 0.18 0.07 0.39 0.06 0.32
Sandstone 18.1 11.3 0.62 4.8 71.7 0.19 0.07 0.37 0.06 0.48
Siltstone 18.0 7.5 0.42 4.8 57.9 0.19 0.05 0.26 0.10 0.35
Seatearth 4.7 2.0 0.43 1.1 9.3 0.14 0.13 0.93 0.05 0.32

Table B.2: Statistical parameters for the material properties cohesion and friction angle of the UK coal measure rocks,
from the CMDB.

Rock type
Cohesion: MPa Friction angle: degrees

μ σ COV Min Max μ σ COV Min Max

Coal 13.8 4.7 0.34 7.8 18.1 30 7 0.23 22 40
Mudstone 14.8 6.0 0.41 2.1 29.7 30 6 0.20 14 50
Sandstone 13.7 6.7 0.49 1.7 29.2 38 7 0.18 25 61
Siltstone 15.7 7.7 0.49 2.5 41.6 31 7 0.23 16 49
Seatearth 7.1 1.9 0.27 4.4 8.5 25 6 0.24 20 35

Table B.3 and B.4 show the best fit probability distributions for the material properties of the rocks

of the UK coal measures, from the CMDB. Distributions have not been provided where the sample

size was too small to carry out a reliable fitting process.

For each distribution there are two fitting parameters, FP1 and FP2. For each distribution type these

are; beta (FP1 = alpha, FP2 = beta), lognormal (FP1 = mean, FP2 = standard deviation), gamma (FP1 =

shape, FP2 = rate) and Weibull (FP1 = shape, FP2 = scale).

Table B.3: Best fit probability distributions for the Young’s modulus and Poisson’s ratio of the UK coal measure rocks,
from the CMDB.

Rock type
Young’s modulus Poisson’s ratio

Distribution FP1 FP2 Distribution FP1 FP2

Coal - - - - - -
Mudstone Gamma 6.212 0.385 Beta 0.121 0.308
Sandstone Lognormal 2.727 0.581 Beta 1.072 3.622
Siltstone Gamma 6.087 0.338 Beta 0.714 2.046
Seatearth Weibull 2.58 5.26 - - -
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Table B.4: Best fit probability distributions for the cohesion and friction angle of the UK coal measure rocks, from the
CMDB.

Rock type
Cohesion Friction angle

Distribution FP1 FP2 Distribution FP1 FP2

Coal - - - - - -
Mudstone Lognormal 2.594 0.492 Lognormal 2.594 0.492
Sandstone Weibull 2.2 15.5 Lognormal 3.626 0.168
Siltstone Weibull 2.19 17.77 Gamma 20.055 0.649
Seatearth - - - - - -
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Figure captions

Figure 1: Diagrams of the Thoresby colliery FLAC 2D numerical model, showing; (a) dimensions and

boundary conditions, (b) geological strata surrounding the roadway and (c) the mesh around the

roadway, with location of roadway support.

Figure 2: Beta and gamma probability density functions fit to a histogram of the Young’s modulus

data from the CMDB. The gamma distribution was chosen for this property.

Figure 3: Beta and lognormal probability density functions fit to a histogram of the cohesion data

from the CMDB. The lognormal distribution was chosen for this property.

Figure 4: Beta and lognormal probability density functions fit to a histogram of the friction angle

data from the CMDB. The lognormal distribution was chosen for this property.

Figure 5: Normal distribution with mean = 67 and standard deviation = 5 chosen for the GSI variable.

Figure 6: Histogram and PDF of vertical stresses, representing how the continuous distribution may

be discretised such that the LHS method can still be applied. The plot shows that the majority of

stress values are in the range 10 – 20 MPa, with smaller peaks around 40 and 50 MPa, which

represent in-situ stresses above the ribs of the previously mined areas in the Parkgate seam.

Figure 7: (a) Uncorrelated sample of cohesion - friction angle used in LHSuncor, where ρcφ = 0.005.

(b) Correlated sample of cohesion – friction angle used in LHScor, where ρcφ = -0.29.

Figure 8: Measured roof displacements in the Thoresby Colliery Deep Soft seam supply gate serving

longwall panel DS4. Measure mark 0 m represents the entrance of the roadway; therefore

excavation progressed in the direction 0 m to 2500 m.

Figure 9: Possible LDP for the Thoresby colliery roadway. The equation for d0 is that of Carranza-

Torres and Fairhurst [51].

Figure 10: CDF of central roof displacements for (a) LHSuncor and (b) LHScor, compared to the

measured values from the Thoresby Colliery.

Figure 11: Ranked total central roof displacements for both analyses on log10 scale.

Figure 12: Trend of the sample mean of central roof displacements for LHSuncor and LHScor.

Figure 13: Vertical (syy) and horizontal (sxx) stress pairs of the top fifty greatest total central roof

displacements for LHSuncor and LHScor.
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Figure 1: Diagrams of the Thoresby colliery FLAC 2D numerical model, showing; (a) dimensions and

boundary conditions, (b) geological strata surrounding the roadway and (c) the mesh around the

roadway, with location of roadway support.

Figure 2: Beta and gamma probability density functions fit to a histogram of the Young’s modulus

data from the CMDB. The gamma distribution was chosen for this property.
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Figure 3: Beta and lognormal probability density functions fit to a histogram of the cohesion data

from the CMDB. The lognormal distribution was chosen for this property.

Figure 4: Beta and lognormal probability density functions fit to a histogram of the friction angle

data from the CMDB. The lognormal distribution was chosen for this property.
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Figure 5: Normal distribution with mean = 67 and standard deviation = 5 chosen for the GSI variable.

Figure 6: Histogram and PDF of vertical stresses, representing how the continuous distribution may

be discretised such that the LHS method can still be applied. The plot shows that the majority of

stress values are in the range 10 – 20 MPa, with smaller peaks around 40 and 50 MPa, which

represent in-situ stresses above the ribs of the previously mined areas in the Parkgate seam.
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Figure 7: (a) Uncorrelated sample of cohesion - friction angle used in LHSuncor, where ρcφ = 0.005.

(b) Correlated sample of cohesion – friction angle used in LHScor, where ρcφ = -0.29.
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Figure 8: Measured roof displacements in the Thoresby Colliery Deep Soft seam supply gate serving

longwall panel DS4. Measure mark 0 m represents the entrance of the roadway; therefore

excavation progressed in the direction 0 m to 2500 m.

Figure 9: Possible LDP for the Thoresby colliery roadway. The equation for d0 is that of Carranza-

Torres and Fairhurst [51].
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Figure 10: CDF of central roof displacements for (a) LHSuncor and (b) LHScor, compared to the

measured values from the Thoresby Colliery.
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Figure 11: Ranked total central roof displacements for both analyses on log10 scale.

Figure 12: Trend of the sample mean of central roof displacements for LHSuncor and LHScor.
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Figure 13: Vertical (syy) and horizontal (sxx) stress pairs of the top fifty greatest total central roof

displacements for LHSuncor and LHScor.


