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Abstract. If the function f is transcendental and meromorphic in the plane,
and either f has finitely many poles or its inverse function has a logarithmic

singularity over ∞, then the equation ż = f(z) has infinitely many trajectories

tending to infinity in finite increasing time. MSC 2010: 30D30.

1. Introduction

This paper concerns the differential equation

(1) ż =
dz

dt
= f(z),

in which the function f is meromorphic in a plane domain D: see, for example, [3, 4,
5, 7, 8, 9, 12] for fundamental results concerning such flows. A trajectory for (1) is a
path z(t) in D with z′(t) = f(z(t)) ∈ C for t in some maximal interval (α, β) ⊆ R.
The present paper is motivated by a result from [12] involving trajectories which tend
to infinity in finite increasing time, that is, which satisfy β ∈ R and limt→β− z(t) =∞.
King and Needham [12, Theorem 5] showed that if f has a pole at infinity of order at
least 2 then such trajectories always exist for (1) (see Section 2). It seems reasonable to
ask whether trajectories of this type must exist if f is transcendental and meromorphic
in the plane, and the following will be proved in Section 3.

Theorem 1.1. Let the function f be transcendental and meromorphic in the plane,
with finitely many poles. Then (1) has infinitely many pairwise disjoint trajectories
each tending to infinity in finite increasing time.

The proof of Theorem 1.1 is based on the Wiman-Valiron theory [10], which shows
that if f is as in the hypotheses then there exist small neighbourhoods on which f(z)
behaves like a constant multiple of a large power of z. In the simple example ż =
− exp(−z), all trajectories satisfy exp(z(t)) = exp(z(0)) − t and tend to infinity as t
increases, taking finite time to do so if and only if exp(z(0)) is real and positive.

For meromorphic functions with infinitely many poles the situation is in general
different. Let g be a transcendental entire function of order of growth ρ(g) < 1/2
and let f = −ig/g′ in (1). Then each trajectory has i log g(z(t)) = t + C, and
log |g(z(t))| = ImC, with C constant. Because ρ(g) < 1/2, the classical cosπρ
theorem [11] implies that min{|g(z)| : |z| = r} is unbounded as r → ∞, and so all
trajectories are bounded. In this example∞ is an asymptotic value of f , since estimates
for logarithmic derivatives from [6] imply that g′(z)/g(z) tends to 0 as z tends to infinity
outside a small exceptional set. However, Theorem 1.2 below will show that infinitely
many disjoint trajectories tending to infinity in finite increasing time must exist if f
satisfies the stronger condition that the inverse function has a logarithmic singularity
over ∞, which is defined as follows [1, 13].
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Let f be any transcendental meromorphic function in the plane, let M be real and
positive, and let U be a component of the set {z ∈ C : |f(z)| > M} with the following
property: for some z0 ∈ U with w0 = f(z0) ∈ C, a branch of the inverse function
z = f−1(w) is defined near w0, mapping w0 to z0, and admits unrestricted analytic
continuation in the annulus M < |w| < ∞. If v0 is chosen so that ev0 = w0 then a
function φ(v) = f−1(ev) may be defined on a neighbourhood of v0 and extends by the
monodromy theorem to an analytic function on the half-plane H given by Re v > logM .
Then, by a well known classification theorem [13, p.287], there are two possibilities.
First, if φ is not univalent on H then φ has period m2πi for some minimal positive
integer m and U contains precisely one pole z1 of f of multiplicity m, while z → z1 as
f(z) → ∞ with z ∈ U . On the other hand, if φ is univalent on H, then U contains
no poles of f , but U does contain a path tending to infinity on which f(z) tends to
infinity, and the inverse function log f of φ maps U univalently onto H. In this second
case the inverse function of f is said to have a logarithmic singularity over ∞, and U
is called a neighbourhood of the singularity [1].

Theorem 1.2. Let the function f be transcendental and meromorphic in the plane
such that its inverse function f−1 has a logarithmic singularity over ∞. Then for
each neighbourhood U of the singularity there exist infinitely many pairwise disjoint
trajectories of the flow (1), on each of which z(t) tends to infinity in finite increasing
time with z(t) ∈ U .

Examples to which Theorem 1.2 applies include f(z) = e−z
2

tan z: here ∞ is an
asymptotic value of f , but the finite critical and asymptotic values form a bounded set,
so that the two singularities of f−1 over ∞ are logarithmic. Theorem 1.2 follows from
the next result.

Theorem 1.3. Let f be a meromorphic function on a domain Ω ⊆ C such that
there exist a real number M > 0, a domain U ⊆ Ω and an analytic function
F : U → C with the property that f = eF on U and F maps U univalently onto the
half-plane H = {w ∈ C : Rew > logM}. Then (1) has infinitely many pairwise
disjoint trajectories z(t) on which z(t) tends in finite increasing time from within
U to the extended boundary ∂∞Ω of Ω.

Here the statement that a trajectory z(t) tends in finite increasing time from within
U to the extended boundary of Ω means that there exists T ∈ R with the following
property: to each compact set K0 ⊆ Ω corresponds t0 ∈ (−∞, T ) with z(t) ∈ U \K0

for t0 < t < T . To deduce Theorem 1.2 from Theorem 1.3 it is only necessary to take
Ω = C and U to be a neighbourhood of the logarithmic singularity of f−1 over ∞, so
that |z(t)| → +∞ as t→ T−.

2. Preliminaries

If the function f is meromorphic and non-constant on a domain D ⊆ C, and w ∈ D
with f(w) 6= ∞, then the trajectory of (1) through w is the path z(t) = ζw(t) ∈ D
with z(0) = w and z′(t) = f(z(t)) ∈ C for t in some maximal interval (α, β) ⊆ R. If
f(w) = 0 then ζw(t) = w for all t ∈ R. When f(w) 6= 0 the trajectory passes through
no zeros of f , and is either simple (that is, ζw(t) is injective on (α, β)) or periodic (in
which case (α, β) = R).

Some standard facts concerning (1) near poles of f will now be summarised: for
details, see [3, 7, 12]. If f(z) ∼ c(z − z0)−m as z → z0, for some c 6= 0 and m ≥ 0,
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then a conformal mapping w = φ(z) is defined near z0 by φ(z)m+1 =
∫ z
z0

1/f(u) du,

which gives (m + 1)wmẇ = 1 and wm+1(t) = wm+1(0) + t. The equation for w
has m+ 1 pairwise disjoint trajectories tending to 0 in increasing time, determined by
choosing wm+1(0) ∈ (−∞, 0) ⊆ R. Thus (1) has precisely m+ 1 trajectories tending
to z0 in increasing time (each taking finite time to do so).

If D contains an annulus R < |z| <∞ and f has a pole of order n ≥ 2 at infinity,
then setting w = 1/z gives ẇ = g(w) = −f(z)/z2, so that g has a pole of order n− 2
at w = 0 and (1) has n−1 trajectories tending to infinity in finite increasing time: this
proves the result of King and Needham [12] referred to in the introduction.

Theorem 1.1 requires the following lemma: a proof is included for completeness.

Lemma 2.1. Let the function f be meromorphic and non-constant on C. Let z(t)
be a trajectory of (1), with maximal interval of definition (a0, b0) ⊆ R, and assume
that b0 <∞. Then limt→b0− z(t) exists and is either ∞ or a pole of f .

Proof. Following [8], a point z0 ∈ C∪{∞} is called a limit point of z(t) as t→ b0−
if there exist sn ∈ (a0, b0) with sn → b0− and z(sn) → z0 as n → ∞. Suppose
that z0 ∈ C with f(z0) 6= 0,∞ is such a limit point. Writing u(t) = φ(z(t)), where
φ(z) =

∫ z
z0

1/f(s) ds, transforms (1) near z0 to u̇ = 1. Let ρ be small and positive

and let U = φ−1(B(0, 2ρ)) and V = φ−1(B(0, ρ)), with B(a, r) the open disc of
centre a and radius r. Then any trajectory of (1) which meets V must subsequently
travel from the boundary of V to that of U , taking time at least ρ to do so. Since
b0 is finite this implies that z(t)→ z0 as t→ b0−, and that the trajectory extends
beyond time t = b0, contrary to assumption. Thus any finite limit point z0 of z(t)
as t→ b0− has f(z0) ∈ {0,∞}.

It follows that if z0 ∈ C ∪ {∞} is a limit point of z(t) as t → b0−, then
limt→b0− z(t) = z0. If this is not the case then, with χ denoting the spherical
metric on the extended complex plane, there exists a small positive σ such that
f(z) 6= 0,∞ on X = {z ∈ C : χ(z, z0) = σ} and z(t) meets X infinitely often as
t → b0−. But this gives z′0 ∈ X such that z′0 is a limit point of z(t) as t → b0−,
and hence a contradiction.

It remains only to note that if z0 is a zero of f then it takes infinite time for
any trajectory of (1) to tend to z0. To see this, take C > 0 and m ∈ N such that
|f(z)| ≤ C|z − z0|m as z → z0. Let n be large and take any trajectory z(t) such
that |z(tn)− z0| = 2−n and |z(tn+1)− z0| = 2−n−1 and 2−n−1 ≤ |z(t)− z0| ≤ 2−n

for tn ≤ t ≤ tn+1. This yields

2−n−1 ≤ |z(tn+1)− z(tn)| =
∣∣∣∣∫ tn+1

tn

f(z(t)) dt

∣∣∣∣ ≤ (tn+1 − tn)C2−nm

and so tn+1 − tn ≥ C−12(m−1)n−1 ≥ 1/2C. �

The remainder of this section will be occupied with the proof of the following.

Proposition 2.1. Let the function f be transcendental and meromorphic in the
plane, and assume the existence of an unbounded set F1 ⊆ [1,∞) and a function
N(r) : F1 → [1,∞) with

(2) lim
r→∞,r∈F1

N(r) =∞,
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such that for each r ∈ F1 there exists zr with |zr| = r and f(zr) 6= 0 and

(3) f(z) = (1 + o(1))

(
z

zr

)N(r)

f(zr) on D(zr, 8),

as r →∞ in F1, where

(4) D(zr, L) =
{
zre

τ : max{|Re τ |, |Im τ |} ≤ LN(r)−5/8
}
.

Then for all sufficiently large r ∈ F1 there exist Q ≥ N(r)1/4 points Y1, . . . , YQ in
D(zr, 1), each with the property that the trajectory γj = ζYj

with ζYj
(0) = Yj of (1)

has maximal interval of definition (αYj
, βYj

), where

(5) βYj
≤ Pr =

2r

|f(zr)|(N(r)− 1) exp(N(r)1/4)
.

These trajectories γj are pairwise disjoint.

To prove Proposition 2.1, let r ∈ F1 be large, let N = N(r) and define wr by
wr = zr exp

(
4N−5/8

)
. Then (2), (3) and Cauchy’s estimate for derivatives yield

A(z) =
1

f(z)
=

(
z

wr

)−N
A(wr)(1 + µ(z)),

µ(z) = o(1), µ′(z) = o

(
N5/8

r

)
,(6)

uniformly for z in D(zr, 4). Again for z in D(zr, 4), set

Z = F (z) =
wrA(wr)

1−N
+

∫ z

wr

A(t) dt

=
wrA(wr)

1−N
+

∫ z

wr

(
t

wr

)−N
A(wr)(1 + µ(t)) dt,(7)

and let σz be the path from wr to z which consists of the radial segment from wr to
ẑ = wr|z/wr| followed by the shorter circular arc from ẑ to z. Then σz has length
O(rN−5/8) and |wr| ≥ |t| ≥ |z| on σz, so (6) and integration by parts along σz yield∫ z

wr

t−Nµ(t) dt = o

(
|z|1−N

N − 1

)
−
∫ z

wr

o

(
N5/8

r

)
t1−N

1−N
dt = o

(
|z|1−N

N − 1

)
.

Hence Z satisfies, still for z ∈ D(zr, 4), using (3) and (7),

Z = F (z) ∼ z1−NA(wr)

w−Nr (1−N)
∼ z1−NA(zr)

z−Nr (1−N)
,

|Z| ∼
∣∣∣z
r

∣∣∣1−N Tr, Tr =
r|A(zr)|
N − 1

,(8)

and

(9) logZ = (1−N) log
z

zr
+ log

zrA(zr)

1−N
+ o(1),

where log(z/zr) is chosen so as to vanish at zr, and log(zrA(zr)/(1 − N)) is the
principal value.
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Lemma 2.2. Any sub-trajectory Λ ⊆ D(zr, 4) of the flow (1) is a level curve on
which ImF (z) is constant and ReF (z) increases in increasing time. If Λ joins w0

to w1 then the time taken for the flow (1) to traverse Λ is∫ w1

w0

dt

dz
dz =

∫ w1

w0

1

f(z)
dz = F (w1)− F (w0).

Let Q = Qr be the largest positive integer not exceeding 2N1/4. Then provided
r ∈ F1 is large enough there exists a domain Ωr, the closure of which lies in D(zr, 1),
such that Y = logZ maps Ωr univalently onto the rectangle

Gr = {Y ∈ C : logSr < ReY < log Tr, 0 < ImY < 4Qπ},

Sr = Tr exp(−N1/4) =
Pr
2
,(10)

and Sr = o(Tr) as r →∞ with r ∈ F1. The boundary of Ωr contains a simple arc
Lr such that, as z describes the arc Lr once, the image w = Z = F (z) describes
2Q times the circle |w| = Sr, starting from w = Sr. Moreover, Ωr contains 2Q
pairwise disjoint simply connected domains V 1

r , . . . , V
2Q
r , each mapped univalently

by F onto {w ∈ C : Sr < |w| < Tr, 0 < argw < 2π}. These domains have the
following additional properties.

Let Vr be any one of the V jr . Then ∂Vr consists of the following: two simple arcs
Ir ⊆ Lr and Jr mapped by F onto the circles |w| = Sr and |w| = Tr respectively;
two sub-trajectories of (1) mapped by F onto the interval [Sr, Tr].

Proof. The first two assertions hold because writing Z = F (z) gives Ż = 1. The
existence of Ωr, Lr and the V jr follows from (8) and (9), which imply that logZ
is a univalent function of log z on D(zr, 7/2). In particular, Lr is the pre-image
under logZ of {logSr + iσ : 0 ≤ σ ≤ 4Qπ}. Finally, (2), (5), (6), (8) and (10) give
Pr = 2Sr = o(Tr). �

Assume henceforth that r ∈ F1 is so large that Lemma 2.2 gives Pr = 2Sr < Tr−Sr.
Choose some Vr = V jr and let Wr be the closure of Vr. The next lemma describes the
behaviour of the trajectory ζw(t) of (1) through ζw(0) = w ∈ Ir.

Lemma 2.3. Suppose that w ∈ Ir and ReF (w) ≥ 0. Then there exists tw ≥ Tr−Sr
such that ζw(t) ∈Wr \ (Jr ∪ Ir) for 0 < t < tw, while ζw(tw) ∈ Jr. If ReF (w) > 0
and t < 0 and |t| is small, then |F (ζw(t))| < Sr.

Similarly, if w ∈ Ir and ReF (w) ≤ 0, there exists tw ≤ Sr − Tr such that
ζw(t) ∈Wr \ (Jr ∪ Ir) for tw < t < 0, while ζw(tw) ∈ Jr. If ReF (w) < 0 and t > 0
is small, then |F (ζw(t))| < Sr. If w ∈ Ir and ReF (w) = 0, then ζw(t) travels from
w to Jr via Wr in both increasing and decreasing time.

Proof. Let w ∈ Ir and ReF (w) ≥ 0. Then |F (w)| = Sr and, for small positive t,
both of ReF (ζw(t)) and |F (ζw(t))| are increasing, while ImF (ζw(t)) is constant;
thus ζw(t) remains within Wr until it exits via Jr. The time taken to pass from w to
the first encounter with Jr, at W say, is F (W )−F (w) = |F (W )−F (w)| ≥ Tr−Sr.
The remaining assertions are proved similarly. �

Definition 2.1. For u ∈ C let u∗ denote the reflection of u across the imaginary
axis. A point w ∈ Ir will be called recurrent if ReF (w) < 0 and there exists
t′ > 0 such that: (i) ζw(t) is defined for 0 ≤ t ≤ t′ and w′ = ζw(t′) ∈ Ir; (ii)
F (w′) = F (w)∗; (iii) ζw(t) 6∈ Lr for 0 < t < t′; (iv) the Jordan curve Γw, formed
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from the arc of Ir joining w to w′ and the sub-trajectory ζw(t), 0 ≤ t ≤ t′, encloses
no zeros and no poles of f .

Since F is univalent on Vr, and maps Ir onto the circle |w| = Sr, with the end-
points of Ir mapped to Sr, it follows that for w,w′ ∈ Ir the equation F (w′) = F (w)∗

determines w′ uniquely from w, except when F (w) = −Sr. The next lemma follows
at once from Lemma 2.2 and Cauchy’s theorem applied to 1/f and Γw.

Lemma 2.4. If w ∈ Ir is recurrent then t′ ≤ |F (w′)− F (w)| ≤ 2Sr = Pr.

Lemma 2.5. If w ∈ Ir with ReF (w) < 0 and F (w) close to ±iSr, then w is
recurrent.

Proof. By the construction of Vr, the point w lies in a small neighbourhood Û of

some ŵ ∈ Ir with F (ŵ) = ±iSr and F univalent on Û . Hence, as ζ describes ζw in
increasing time, the image F (ζ) traverses the horizontal chord from F (w) to F (w)∗

and ζ remains within Û ; thus ζ returns to meet Lr at w′ ∈ Ir with F (w′) = F (w)∗.
Therefore w is recurrent. �

Lemma 2.5 implies that the set of recurrent w ∈ Ir is non-empty, and it follows from
the next lemma that, for all but at most two V jr , the absence of Yj as in the conclusion
of Proposition 2.1 forces all v ∈ Ir with ReF (v) < 0 to be recurrent.

Lemma 2.6. Let Vr = V jr be such that neither end-point of the arc Lr lies in Wr,
and assume that no y ∈ Ir is such that ReF (y) < 0 and ζy has maximal interval
of definition (αy, βy) with βy ≤ Pr = 2Sr. Then the following statements hold.
(a) Let w ∈ Ir be such that ReF (w) < 0 and there exists a sequence (wn) in Ir
for which wn → w as n → ∞ and each wn is recurrent. Then w is recurrent and
w′n → w′ as n→∞.
(b) All v ∈ Ir with ReF (v) < 0 are recurrent.

Proof. Let w be as in (a), and observe that F (w)∗ 6= F (w), since ReF (w) < 0,
and that ζw(t) 6∈ Lr for small positive t, by Lemma 2.3. By assumption, ζw has
maximal interval of definition (αw, βw) with βw > 2Sr.

Suppose first that there exists δ such that

(11) |ζw(t)− u| ≥ 2δ > 0 for all u ∈ Ir with F (u) = F (w)∗ and all t ∈ [0, 2Sr].

Note here that there exist at most two u ∈ Ir with F (u) = F (w)∗. Since wn → w
and wn is recurrent it follows that F (w′n) = F (wn)∗ → F (w)∗, and so w′n, for each
large n, is close to some u ∈ Ir with F (u) = F (w)∗. But (11) and continuous
dependence on starting conditions now imply that if n is large then

|ζwn
(t)− w′n| ≥ δ for 0 ≤ t ≤ 2Sr.

This contradicts the fact that Definition 2.1 and Lemma 2.4 give w′n = ζwn
(t′n),

where 0 < t′n ≤ 2Sr. Hence (11) cannot hold, and there exists a minimal s with

(12) 0 < s ≤ 2Sr, W = ζw(s) ∈ Lr,
because if this is not the case then (11) evidently holds for some choice of δ.

Suppose that ReF (W ) ≤ 0, and take k (possibly with k 6= j) such thatW ∈ ∂V kr .
Since s ≤ 2Sr < Tr − Sr, applying Lemma 2.3 to this V kr shows that w = ζw(0) =
ζW (−s ) 6∈ Lr, a contradiction.

Thus W = ζw(s) ∈ Lr and ReF (W ) is positive. Suppose that W 6∈ Ir or
F (W ) 6= F (w)∗, and take any u ∈ Ir with F (u) = F (w)∗. Then Lemma 2.3
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(applied possibly to a different V kr ) and the minimality of s in (12) give ζw(t) 6= u
for 0 ≤ t ≤ x = s+ Tr −Sr. Since x > 2Sr there must exist δ such that (11) holds,
which is impossible. This proves that W = ζw(s) ∈ Ir and F (W ) = F (w)∗, so that
w satisfies conditions (i) to (iii) of Definition 2.1, with t′ = s and w′ = W .

Now take any sequence (xn) in Ir with xn → w as n → ∞. The trajectory ζw
meets Lr non-tangentially at w and W , because |F (z)| = Sr on Lr and Z = F (z)

gives Ż = 1 locally. Take a small positive ρ and let n ∈ N be large. Then ζw(t)
does not meet Lr for ρ ≤ t ≤ s − ρ, by the minimality of s in (12), and nor does
ζxn(t), by continuous dependence on initial conditions. Moreover, for 0 ≤ t ≤ ρ, the
trajectory ζxn

(t) follows a level curve on which ImF is constant, from xn to ζxn
(ρ),

in which F (ζxn
(ρ)) = F (xn)+ρ. Furthermore, ζxn

(s−ρ) is close to ζw(s−ρ), which
satisfies F (ζw(s − ρ)) = F (W ) − ρ. Thus for t − s + ρ small and positive, ζxn

(t)
again follows a level curve of ImF , meeting Lr non-tangentially at some point x′′n
near to W , using the fact that W is not an end-point of Lr. Therefore ζxn follows
close to ζw and returns for the first time to Lr at x′′n.

Applying this argument with xn = wn shows that w′n = x′′n →W = w′, and that
if Γw is as in Definition 2.1 then, for large n, each point of Γwn

lies close to Γw.
Thus w also satisfies condition (iv), and is recurrent. This proves part (a).

To prove part (b), observe that Ir has relatively open subsets U+, U−, mapped
by argF (z) onto (π/2, π) and (−π,−π/2) respectively. Let U0 be one of U+, U−;

then Û0 = {w ∈ U0 : w is recurrent} 6= ∅, by Lemma 2.5. Suppose that U0 6= Û0.

Then there exists some v ∈ U0 which is a boundary point of Û0 relative to U0; thus
v ∈ Ir with ReF (v) < 0 and F (v) 6= −Sr and there are sequences wn → v, vn → v,
with wn, vn ∈ Ir, such that each wn is recurrent, while each vn is not. By (a), v
is recurrent. For large n the argument in the proof of (a), with xn = vn, w = v
and W = v′, shows that ζvn returns to meet Lr for the first time after leaving vn,
at some un = x′′n ∈ Ir close to v′, without looping around any zeros or poles of f .
But then Cauchy’s theorem gives Im (F (un) − F (vn)) = 0 and F (un) = F (vn)∗,
so that vn is recurrent, a contradiction. Hence all v ∈ Ir with ReF (v) < 0 and
F (v) 6= −Sr are recurrent, and the same holds when F (v) = −Sr, by part (a). �

Lemma 2.7. Let Vr = V jr be such that neither end-point of the arc Lr lies in Wr.
Then there exists y ∈ Ir such that ReF (y) < 0 and ζy has maximal interval of
definition (αy, βy) with βy ≤ Pr = 2Sr.

Proof. Assume that this is not the case, and consider the unique w ∈ Ir with
F (w) = −Sr. Then Lemma 2.6 shows that w is recurrent, and so w′ is one of the
two points u1, u2 on Ir with F (uj) = Sr; label these so that w′ = u1. Choose
a sequence vn ∈ Ir with vn → u2, vn 6= u2, and for large n choose the unique
wn ∈ Ir with F (wn) = F (vn)∗ → F (u2)∗ = −Sr. Thus wn → w,wn 6= w, and
wn is recurrent for large n, by Lemma 2.6. But this gives w′n = vn → u2 6= w′,
contradicting Lemma 2.6. �

It follows from Lemma 2.7 that, for large r ∈ F1, at least 2Q − 2 ≥ Q ≥ N1/4

of the domains V 1
r , . . . , V

2Q
r give rise to pairwise distinct Yj ∈ ∂V jr ∩ Lr such that

ReF (Yj) < 0 and ζYj
has maximal interval of definition (αYj

, βYj
), in which βYj

satisfies (5). Suppose that these trajectories are not pairwise disjoint. Then there exist
distinct j and k such that Yj = ζYk

(S) and Yk = ζYj
(−S) ∈ Lr for some S with

0 < S < Pr. But Lemma 2.3 shows that ζYj
(t) 6∈ Lr for Sr − Tr < t < 0, and

Tr − Sr > 2Sr = Pr, a contradiction. Proposition 2.1 is proved.
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3. Proof of Theorem 1.1

Let f be a transcendental meromorphic function in the plane with finitely many poles.
Write f = B/C, where B is a transcendental entire function and C is a polynomial,
having no zeros in common with B. The Wiman-Valiron theory [10] may now be
applied to B as follows. Starting from the Maclaurin series B(z) =

∑∞
k=0 bkz

k of B,
the central index N(r) = ν(r,B) is defined for r ≥ 0 to be the largest integer n such
that |bn|rn = maxk |bk|rk, and N(r) tends to infinity with r. For large r > 0 choose
zr with |zr| = r and |B(zr)| = M(r,B) = max{|B(z)| : |z| = r}. Then [10, Theorem
10] gives F1 ⊆ [1,∞) such that [1,∞) \ F1 has finite logarithmic measure and

f(z)

f(zr)
∼ B(z)

B(zr)
∼
(
z

zr

)N(r)

on D(zr, 8),

as r →∞ in F1, where D(zr, 8) is given by (4).
Now Lemma 2.1 and Proposition 2.1 give an arbitrarily large number of pairwise

disjoint trajectories for (1), each tending to infinity or a pole of f in finite increasing
time. But each of the finitely many poles of f has only finitely many trajectories tending
to it in increasing time (see Section 2). This proves Theorem 1.1.

It seems conceivable that the conclusion of Theorem 1.1 would remain true for
all meromorphic functions f in the plane such that the inverse function f−1 has a
direct transcendental singularity over ∞ [1]. This is a weaker hypothesis than those
of Theorems 1.1 and 1.2, and means that there exist M > 0 and a component U of
the set {z ∈ C : |f(z)| > M} which contains no poles of f , but does contain a path
tending to infinity on which f(z) tends to infinity. In this case, Theorems 2.1 and 2.2 of
[2] give F1 and N(r) such that (2) and (3) are satisfied, where |zr| = r, D(zr, 8) ⊆ U
and log r = o(log+ |f(zr)|) as r → ∞ in F1, while [1,∞) \ F1 has finite logarithmic
measure. Thus Proposition 2.1 may be applied, with Pr → 0 as r → ∞ in F1, by
(5), but in general it seems difficult to exclude the possibility that all the trajectories
ζYj

thereby obtained tend to poles of f . It is true, however, that if such a trajectory
does tend to a pole then it must exit U and subsequently enter another component
Ur of {z ∈ C : |f(z)| > M}, giving rise to an interval [t1, t2] ⊆ (0, βYj ) ⊆ (0, Pr) on
which |f(ζYj

(t))| ≤ M , with ζYj
(t1) ∈ ∂U and ζYj

(t2) ∈ ∂Ur. Hence the distance
from U to Ur is at most M(t2− t1) ≤MPr, which for large r ∈ F1 is extremely small.
Such a component Ur cannot exist if, for example, f(z) = g(z) tan z, where g is a
transcendental entire function which is bounded on the strip {z ∈ C : |Im z| ≤ T}, for
some T > 0; in this case f−1 has a direct transcendental singularity over ∞ and (1)
has infinitely many trajectories tending to infinity in finite increasing time.

4. Proof of Theorem 1.3

Let f , Ω, M , U , F and H be as in the hypotheses. It may be assumed that
M = 1: if this is not the case then (1) and Ω may be re-scaled by writing w = z/M
and ẇ = f(z)/M = g(w). Let z = φ(v) be the inverse function of F , mapping
H = {v ∈ C : Re v > 0} univalently onto U , and on H consider the flow

(13) φ′(v)v̇ = ev.

The essence of the proof lies in showing that, since φ′(v) varies relatively slowly on H,
there are trajectories for (13) in H which tend to infinity in finite time, and these are
mapped via z = φ(v) to trajectories of (1) which tend to the extended boundary of Ω.
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For v ∈ H the function

h(u) =
φ(v + uRe v)− φ(v)

φ′(v)Re v
= u+

∞∑
n=2

anu
n

is univalent for |u| < 1, so that Bieberbach’s theorem gives |h′′(0)| = 2|a2| ≤ 4 and

(14)

∣∣∣∣φ′′(v)

φ′(v)

∣∣∣∣ ≤ 4

Re v
and

∣∣∣∣log

(
φ′(s)

φ′(v)

)∣∣∣∣ ≤ C0R

Re v
for |s− v| < R <

Re v

2
,

where C0 is a positive absolute constant. Moreover, there exists C1 > 0 with

(15)

∫
[v,+∞)

e−t|φ′(t)| dt ≤ |φ
′(v)|
v4

∫
[v,+∞)

t4e−t dt ≤ C1e
−v|φ′(v)|

for v ∈ [1,+∞) ⊆ R. Therefore, for w ∈ H, Cauchy’s theorem and (15) lead to

D =

∫
[1,+∞)

e−tφ′(t) dt ∈ C,∫ w

1

e−tφ′(t) dt = D − ψ(w) = D −
∫ +∞

w

e−tφ′(t) dt.(16)

Here the integral from 1 to w is along any piecewise smooth contour in H, while that
from w to +∞ is eventually along an interval [Mw,+∞) with Mw ≥ 1, and ψ(w) is
analytic on H.

Let N1 and N2/N1 be large and positive, and for j = 1, 2 let Hj denote the convex
domain

Hj =
{
x+ iy : x > Nj , −x1/2j < y < x1/2j

}
⊆ H.

Let w lie in H1, and write

(17) x = Rew, s = x+
√
x.

Then (14), (15) and (17) imply that

φ′(w) ∼ φ′(x) ∼ φ′(s),∣∣∣∣∣
∫
[s,+∞)

e−tφ′(t) dt

∣∣∣∣∣ ≤ C1e
−s|φ′(s)| = o(|e−wφ′(x)|).(18)

Further, the integral over the line segment from w to s satisfies, by (14) and (17),

(19)

∫ s

w

e−tφ′(t) dt = φ′(x)

∫ s

w

e−t(1 + o(1)) dt = φ′(x)(e−w − e−s + η(w)),

in which parametrising with respect to ρ = Re t gives

|η(w)| =
∣∣∣∣∫ s

w

e−to(1) dt

∣∣∣∣ ≤ o(1)

∫ s

x

e−ρ dρ = o(e−x) = o(|e−w|).

Combining the last estimate with (14), (16), (17), (18) and (19) leads to

(20) ψ(w) ∼ e−wφ′(x), λ(w) = − logψ(w) = w +O(log |w|)
as w →∞ in H1. Since N2/N1 is large, (14), (20) and Cauchy’s estimate for derivatives
yield |λ′(w) − 1| < 1/2 on H2, which implies that λ(w) is univalent on H2. Let N3

and N4 be positive integers with N3/N2 and N4/N3 large. Then (20) shows that for
j = 0, . . . , N3 there exists a simple path Lj tending to infinity in H2 and mapped by
λ onto the path {j2πi + t : t ≥ N4}. Thus ψ = e−λ maps each Lj injectively onto
(0, h], where h = e−N4 > 0; moreover ψ(v)→ 0 and ev →∞ as v →∞ on Lj .
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Parametrise Lj ⊆ H2 ⊆ H by w = v(s), where −ψ(v(s)) = s for −h ≤ s < 0.
Thus

1 = −ψ′(v(s))
dv

ds
= e−v(s)φ′(v(s))

dv

ds
,

using (16), and so there exist N3 pairwise disjoint trajectories Lj in H of the flow (13),
on which v and ev tend to infinity as s→ 0− and so in finite increasing time.

Thus the flow (13) has infinitely many disjoint trajectories L in H, on each of which
v(t) and ev(t) tend to infinity in finite increasing time. Because φ is univalent, these
trajectories have disjoint images under φ in U . For each such trajectory L, write

z = φ(v), ż = φ′(v)v̇ = ev = eF (z) = f(z).

Thus f(z(t)) tends to infinity in finite increasing time along φ(L) ⊆ U , and it remains
only to show that z(t) tends to the extended boundary of Ω. Assume that this is not
the case: then there exists a sequence (vj) ⊆ L such that evj tends to infinity but
βj = φ(vj)→ β0 ∈ Ω as j →∞. Because f(βj) = evj →∞, it must be the case that
β0 is a pole of f in Ω. But then there exist a large positive M1 and a neighbourhood
U1 of β0 such that the closure of U1 lies in Ω and f maps U1 \ {β0} finite-valently
onto {w ∈ C : M1 < |w| < +∞}. For large j the line Re v = Re vj is mapped by
z = φ(v) onto a level curve Γ ⊆ U on which |f | is constant, and Γ passes through
βj ∈ U1 and so must lie wholly in U1. On the other hand, by the univalence of φ,
the level curve Γ contains infinitely many distinct points φ(vj + k2πi), k ∈ Z, each
satisfying f(φ(vj + k2πi)) = evj = f(βj). This proves Theorem 1.3.

Acknowledgement. The author thanks the referee for a very careful reading of the
manuscript and extremely helpful suggestions.
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