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Abstract

The wave dissipation properties of layered periodic structures are modelled by FE as well as analytical approaches.

A linear oscillator incorporating a negative stiffness element and having exceptional energy dissipation properties is

exhibited and incorporated within the modelled structures. The structural dynamic stability of both the oscillator and

the modelled waveguides is discussed and ensured. The numerical results provide evidence of a drastic increase of

several orders of magnitude for the damping ratio of the flexural waves propagating within the structures.
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1. Introduction

The need of cost and mass efficient vibration isolation within the modern aerospace, automotive and civil industries

has been a particularly intense subject of research during the last decades. For the space industry it is crucial to prevent

damage to the payload and the spacecraft structures during launch. Aircraft structures are facing similar challenges

with the cabin interior noise levels being one of the major quality criteria for modern aircrafts, while in the automotive

industry there is also a growing interest to isolate the nuisance induced by the road surface roughness and the power-

train system from the passenger compartment.

The current perception is that damping is produced by physical mechanisms generating energy dissipation in an

oscillating system, such as friction, hysteresis, drag, hydraulic and electrical resistance, etc. The dominant engineering

practice for increasing structural damping is the usage of dissipative (mostly viscoelastic) materials [1, 2]. Current

dissipative materials are characterized by moderate to lowstiffness, which renders them unsuitable for demanding

load carrying applications [3]. Despite being of generallylow mass density, the volume of dissipative materials that

has to be used renders their application prohibitive for moving structures. Moreover it has been demonstrated [4, 5]

that within a layered structure the impact of the damping of asingle layer on the total damping factor of the structure

is proportional to the flexural stiffness of the layer (proportional to the deformation energy stored in the layer); thus
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suggesting that for composite structures comprising stiff, carbon fibre containing layers, the effect of the damping

factor of a viscoelastic layer will inevitably be alleviated.

However, possibilities towards achieving significant damping have been identified in materials comprising a neg-

ative stiffness phase [6, 7]. Quite interestingly, such a behavior is combined with high stiffness properties. The fact

that structures with negative stiffness perform satisfactorily in certain types of shock and vibration damping engineer-

ing applications has been studied for some time and a comprehensive review of such applications can be found in

[8]. The negative stiffness behavior is shown to result actually in special mechanical designs involving conventional

positive stiffness prestressed elastic mechanical elements, such as ’snap-through’ designs, or post-buckled beams.

Quite recently, the authors in [9, 10] have shown that inclusion of negative-stiffness phases within elastic compos-

ites can only induce an elevated stiffness in a dynamic sense. Periodic cellular structures have been also proposed

[11, 12, 13, 14, 15] with pronounced damping properties, combining high positive and negative stiffnesses. Although

the physical mechanisms that generate pronounced damping in cellular structures are not profoundly understood,

microbuckling or slip-stick phenomena [16, 17, 18] are among the possible explanations.

With regard to the design of engineering structures where vibration damping is achieved by the use of discrete

macroscopic elements, such as springs and dampers. It should be noted that the concept of introducing negative

stiffness elements (or ’anti-springs’) for vibration isolationhas a long history, being introduced in the pioneering

publication of [19] as well as in the milestone developments[20, 21]. A rich variety of designs has been proposed

for the realisation of negative spring configurations, incorporating various structural elements such as post-buckled

beams, plates, shells and precompressed springs, arrangedin appropriate geometrical configurations. Some interesting

designs are described in [22, 23, 24, 25, 26, 27]. The centralconcept of these approaches is to significantly reduce the

stiffness of the isolator and consequently of the natural frequency of the system even at almost zero levels [28]. In this

way, the transmissibility of the system for all operating frequencies above the natural frequency is reduced, resulting

to enhanced vibration isolation. An initial comprehensivereview of such designs can be found in [29]. Since then,

numerous other applications have been reported in a diversity of engineering domains, such as automotive suspensions

[30, 31, 32] or seismic isolation [33, 34]. From the fundamental design point of view, many interesting improvements

have been proposed, based on the non-linear properties of the elastic force of such designs [35, 36, 37, 38, 39].

However, all these designs suffer from their fundamental requirement for a drastic reduction of the stiffness of the

structure almost to negligible levels, limiting thus the static load capacity of such structures.

In this paper the design of a stable oscillator comprising negative stiffness elements is initially exhibited and results

on its dynamic response are presented. The results suggest aradical increase of the oscillator’s inherent damping ratio.

The suggested oscillator is then implemented in two structural configurations: i) An elastically supported continuous

beam structure which is analytically modelled and ii) A periodic layered beam structure which is modelled using

FE. The damping ratio for each wave type propagating within the two modelled configurations is computed. The

numerical results provide evidence of a drastic increase ofseveral orders of magnitude for the damping ratio of the

waves propagating within the structures when the suggestedconfiguration comprising negative stiffness inclusions is
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Figure 1: Left: A typical (reference) SDoF dynamic system consisting of a massm, a stiffnessκ0 and a dashpotη. The system exhibits a natural

frequencyω0 and a damping ratioζ0. Right: The proposed configuration, resulting from the reference SDOF system, after the proper redistribution

of the stiffness, the reallocation of the damping element and the addition of m2 as a result of introducing the negative stiffness mechanism. Both

systems have the same (static) stiffness under Eq.1.

implemented.

The paper is organized as follows: In Sec.2 a description is given for the design of the unit cell oscillator having

negative stiffness inclusions. In Sec.3 a continuous beam structure, supported by stiffness and dissipation elements

on an undeformable floor is modelled. The suggested unit celloscillator is then implemented in the system and the

damping ratio of the propagating flexural waves are computedand compared before and after the implementation of

the oscillator. In Sec.4 a periodic layered structure is modelled using FE and the characteristics of the propagating

acoustic waves are sought using periodic structure theory.Once again the suggested oscillator is incorporated within

the system and the results on the flexural wave dissipation properties are computed in Sec.5. Conclusions on the

presented work are eventually drawn in Sec.6.

2. The proposed configuration having a negative stiffness inclusion

The proposed configuration with a stable negative stiffness inclusionκc is introduced in Fig.1.

2.1. Dynamic analysis

It is actually a linear stable oscillator, designed in such away that it has a static stiffnessκ0 which is the same to

the one of the reference SDoF oscillator (also in Fig.1).

κs +
κeκc

κe + κc
= κ0 (1)

An additional massm2 is included in the modified oscillator to take into account for the additional weight implied

by the introduction of the negative stiffness mechanism. A variety of choices exists for realizing the negative stiff-
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ness, including post-buckled elements [40] and negative impedance piezoelectric circuits [41]. The two systems also

comprise the same damping element of coefficientη. The equations of motion for the DoFx, y of the modified system

illustrated in Fig.1 can be written as

m1ẍ + η(ẋ − ẏ) + κsx + κe(x − y) = f

m2ÿ + η(ẏ − ẋ) + κe(y − x) + κcy = 0

(2a)

(2b)

with f being the external excitation applied to the ’apparent’ DoFx. By introducing Eq.2b in 2a and applying a

Laplace transform the above system of equations can be expressed as

Y =
sη + κe

s2m2 + sη + κe + κc
X

X =
s2m2 + sη + κe + κc

(s2m1 + sη + κe + κs)(s2m2 + sη + κe + κc) − (sη + κe)2
F

(3a)

(3b)

which results in

Y =
sη + κe

b2s2 + b1s + b0
X

X =
s2m2 + sη + κe + κc

c4s4 + c3s3 + c2s2 + c1s + c0
F

(4a)

(4b)

with

b2 = m2

b1 = η

b0 = κe + κc

(5a)

(5b)

(5c)

and

c4 = m1m2

c3 = η(m1 + m2)

c2 = m1(κc + κe) + m2(κe + κs)

c1 = η(κc + κs)

c0 = κs(κe + κc) + κeκc

(6a)

(6b)

(6c)

(6d)

(6e)

The stability of the proposed configuration is subsequentlydiscussed.

2.2. Design of a stable oscillator

The authors in [42] have shown that lumped parameter oscillators with negative system inclusions can be stable.

By applying a Routh-Hurwitz stability criterion it is derived that the necessary and sufficient conditions for the stability

of the oscillator proposed in this work are
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b0 > 0⇔ m2 > 0

b1 > 0⇔ η > 0

b2 > 0⇔ κe + κc > 0

(7a)

(7b)

(7c)

as well as

c0 > 0⇔ κs(κe + κc) + κeκc > 0

c1 > 0⇔ η(κc + κs) > 0

c2 > 0⇔ m1(κc + κe) + m2(κe + κs) > 0

c3 > 0⇔ η(m1 + m2) > 0

c4 > 0⇔ m1m2 > 0

c3c2 > c4c1⇔ κcm2
1 + κem2

1 + κem2
2 + κsm

2
2 + 2κem1m2 > 0

c3c2c1 > c4c2
1 + c2

3c0⇔ η2(κcm1 − κsm2)2 > 0

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

It is evident that Eq.7a, 7b, 8d, 8e and 8g are a priori satisfied. Satisfaction of Eq.7c implies that Eq.8c should also be

valid. Moreover if Eq.8a is true, Eq.7c is also satisfied. Thestability conditions for the system are therefore acquired

by Eq.8a, 8b and 8f. Eq.8f can be expressed as

κc > −κe















1+

(

m2

m1

)2

+ 2
m2

m1















− κs

(

m2

m1

)2

(9)

However
(

1+
(

m2
m1

)2
+ 2m2

m1

)

> 1 and in view of the above it is implied that if Eq.8a holds thenEq.9 is also satisfied,

therefore static and dynamic stability for the oscillator is ensured by

κe + κc >

∣

∣

∣

∣

∣

κeκc

κs

∣

∣

∣

∣

∣

κs > −κc

(10a)

(10b)

The oscillator is designed so that an engineering tolerance(or safety margin)ε exists, prohibitingκc from reaching

its limit value that would induce neutral static stability,therefore

κs +
(1+ ε)κcκe

(1+ ε)κc + κe
= 0 (11)

It is also assumed that

κs = ακ0 (12)
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Figure 2: Comparison of the FRFVx/F for: the SDOF system (–), the modified oscillator withm2=0 (· · · ) and the modified oscillator with

m2=0.05m1 (- -). The design parameters of the system areε=5% andα=3.3 whileη=10%.

with α being the second design parameter. In view of Eq.1, 11 and 12 the stiffness elementsκs, κc andκe of the

proposed oscillator, are designed with relation toκ0 of the original system, by the following set of equations

κs = ακ0

κe = κ0
εα(α − 1)
1+ ε − αε

κc = −κ0
εα(α − 1)

1+ ε

(13a)

(13b)

(13c)

while simultaneously satisfying Eq.10 will ensure the stability of the system.

2.3. Numerical case study on the suggested oscillator design

The admittance Frequency Response Functions (FRF)Vx/F for the original SDOF system as well as for the

oscillator having negative stiffness inclusions are presented in Fig.2. The parametric values for the SDoF oscillator

are selected as:κ0 = 104 N/m, m = 10−3 kg andη=0.1. It is observed that when limm2 → 0+ the response of

the modified oscillator presents a significantly higher attenuation compared to the SDOF system and is reduced by a

factor of 25 close to the original natural frequencyω0 of the system. Beyond resonance, the response of the modified

oscillator asymptotically converges towards the one of theSDOF system. Whenm2 >0 two resonance frequencies

are observed for the modified system. The responseVx/F thus presents an antiresonance and is further reduced in the

vicinity of ω0 while it exhibits two local maxima at resonancesωn1, ωn2 with the later being due to the addition of the

massm2.

One of the most important design objectives for the oscillator is maximizing its damping characteristics. The

damping ratioζn of the modified system can be calculated as a function of the poles of the characteristic equation of

the system in Eq.4. The value ofζn for various values of the damping coefficientη of the dashpot element is shown in

Fig. 3 The results are given as the ratio ofζn to the damping ratio of the SDoF system
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Figure 3: The impact ofη on the damping ratio enhancementζn/ζ0 of the suggested oscillator withm2=0: ζ0=0.1 (· · · ), ζ0=0.01 (- -),ζ0=0.001 (–).

All computations conducted withε=5%.

ζ0 =
η

2
√

mκ0
(14)

It is observed that an optimalα value exists for anyη that maximizes the damping ratio of the system. As expected,

increasingη increasesζn; however this increase is not linear as with the SDoF system.Taking a look at the maximum

ζn values it is observed that increasingη by a factor of 100 will only increase the maximumζn by a factor of 4.

Comparing the maximumζn values toζ0 it is observed that forζ0 = 1% the damping ratio is amplified by a factor of

18, while forζ0 = 0.1% the damping ratio is increased by up to a factor of 100. It can therefore be concluded that an

impressive improvement of the damping capabilities takes place for the modified system; this improvement is greater

for lightly damped systems.

3. Wave dissipation within a continuous beam structure

The first configuration under consideration will be a beam connected to an undeformable body (floor) through

a stiffnessκ0 and a viscous damping elementη as illustrated in Fig.4. The beam is made of a material havinga

Young’s modulus equal toE and a mass per length ratio ratio equal toM, while its second moment of area (around

the bending neutral axis) is equal toI. Using the Euler-Bernoulli beam theory to model the structure (thus ignoring

shear deformation and rotational inertia effects) the equation of motion for an infinitesimal part of the structure can be

written as

EI
∂4w
∂x4
+ M
∂2w
∂t2
+ η
∂w
∂t
+ κ0w = 0 (15)

Assuming time harmonic wave motion within the infinite medium, the Bloch’s theorem [43] can be employed in

order to provide a generalized relation for the displacements as
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Figure 4: Illustration of an infinitesimal part of the considered beam. Top: The beam connected to the floor through a stiffnessκ0 and a damping

coefficientη. Bottom: The beam connected to the floor using the suggested mechanism withη equal to the precedent case,κs, κe positive stiffness

andκc negative stiffness elements.

w(x, t) = We−ikx+λt (16)

with W being the wave motion amplitude,x the longitudinal distance from the reference to the considered point on

the structure,k represents the wavenumber andλ is a complex frequency function permitting time induced wave

attenuation. In the absence of damping,λ = ±iω so that the usual form of Bloch’s theorem is recovered. In the

presence of damping the real part ofλ represents the attenuation of the wave in which case

λ(k) = −ξ(k)ω(k) ± iωd(k) (17)

with ξ the damping ratio of the considered wave type andωd the frequency at which the assumed wavenumber value

for the damped wave is occurring. Substituting Eq.16 into 15a second order polynomial expression is obtained forλ

is therefore obtained as

Mλ2 + ηλ + EIk4 + κ0 = 0 (18)

the solutions of which can provide the wavenumber dependentdamping ratios for the flexural wave propagating within

the considered system.

The ’beam on a floor’ system incorporating the suggested negative stiffness inclusions is also illustrated in Fig.4. It

should be stressed that the two systems presented in the figure are statically equivalent. The equations for the vertical

motion of the beamw and the internal DoFy can be written again using an Euler-Bernoulli approach as
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EI
∂4w
∂x4
+ M
∂2w
∂t2
+ η

(

∂w
∂t
−
∂y
∂t

)

+ κe(w − y) + κsw = 0

m2
∂2y
∂t2
+ η

(

∂y
∂t
− ∂w
∂t

)

+ κe(y − w) + κcy = 0

(19a)

(19b)

The Bloch’s theorem is engaged to provide a generalized relation for the displacements as

w(x, λ, t) = We−ikx+λt

y(x, λ, t) = Ye−ikx+λt

(20a)

(20b)

with W, Y being the wave motion amplitudes. Introducing Eq.20 into 19b can provide an expression for the relation

of W, Y as

m2λ
2Ye−ikx+λt + η(λYe−ikx+λt − λWe−ikx+λt) + κe(Ye−ikx+λt −We−ikx+λt) + κcYe−ikx+λt = 0⇒

⇒ Y =
κe + λη

m2λ2 + ηλ + κc + κe
W (21)

while by substituting Eq.21 into 19a a fourth order polynomial expression is obtained forλ as

Mm2λ
4 + (M + m2)ηλ3 + (EIm2k4 + Mκc + Mκe + κem2 + κsm2)λ2 +

+(EIk4 + κc + κs)ηλ + EIk4(κc + κe) + κcκe + κcκs + κeκs = 0 (22)

the solutions of which will provide the wavenumber dependent damping ratios for the waves propagating within the

configuration comprising negative stiffness inclusions atκc.

4. Wave dissipation within a periodic layered structure

The second configuration to be considered is a layered beam structure comprising two facesheets and a core

layer. In order to take into account for the impact of the coreshear deformation to the acoustic wave propagation

characteristics a periodic segment of the layered structure is modelled by FE. This would be rather complicated to

capture using analytical methods [44]. An additional advantage of FE techniques over analytical approaches is that

when it comes to modelling geometrically complex structures, the embedded FE 3D displacement functions ensure a

more generic way of capturing the entirety of the propagating waves. The mass, damping and stiffness matrices of the

segmentM , C andK are extracted using a conventional FE software. In the first design the core has a stiffness equal

to κ0 and a viscous damping element with a coefficientη in the vertical direction. When negative stiffness inclusions

are incorporated and in order for the two designs to be statically equivalent, the vertical stiffness of the core is altered

to κs (by altering its Young’s modulus in the vertical direction)and an additional periodic branch is added comprising
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Figure 5: Illustration of an infinitesimal part of the considered layered beam. Dashed line encloses the considered periodic segment. Top: The

structure with its facesheets connected to each other through a core having a longitudinal stiffness equal toκ0 and a damping coefficientη. Bottom:

The structure with its facesheets connected to each other through a core having a longitudinal stiffness equal toκs and the addition of the suggested

mechanism withη equal to the precedent case,κe positive stiffness andκc negative stiffness elements.
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the stiffness elementsκe, κc as well as the viscous damping device of coefficientη. Both designs are illustrated in

Fig.5.

As with the continuous beam structure, time harmonic wave propagation is considered within the layered beam in

thex direction implying

w(x, ω, t) = Wei(ωt−kx) (23)

A clarification on the equivalence of Eq.16 and Eq.23 is presented in what follows.

4.1. A note on the equivalence of the two Bloch’s theorem expressions

It is noted that Eq.23 assumes spatial wave dissipation in contrast to Eq.16 where time induced wave dissipation

was considered. However the two expressions are totally equivalent implying

ei(ωt−(kre+ikim)x) = e−ikre x+(λre+iλim)t (24)

Considering the wave propagation at a distance equal to one wavelengthµ from the reference point which will in-

evitably correspond to one periodT the above equivalence is expressed as

ei(ωT−(kre+ikim)µ) = e−ikreµ+(λre+iλim)T ⇒ ekimµ = eλreT (25)

thereforeλreT = kimµ, howeverµ = 2π/kre, T = 2π/ω andλre = −ξω therefore

ξ = −kim/kre (26)

for a direct comparison between the two approaches of dissipation modelling.

4.2. Wave propagation properties

The problem will be modelled by a wave and finite element approach (coupling FE to periodic structure theory)

as exhibited in [45]. The structure can be modelled using standard FE techniques and the Dynamic Stiffness Matrix

(DSM)

D = K − ω2M + iωC (27)

can be calculated for each considered frequency. The DSM is subsequently partitioned with regard to its left/right

sides and internal DoF as
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(28)
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with q the displacement andf the force vectors. By condensing the internal DoF the problem can be expressed as
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(29)

Assuming that no external forces are applied on the segment the displacement continuity and force equilibrium equa-

tions at the interface of two consecutive periodic segmentsr andr + 1 give

qr+1
L = qr

R

f r+1
L = −f r

R

(30)

Using Eqs.(29),(30) the relation of the displacements and forces of the left and right sides of the segment can be

written as



















qr+1
L

f r+1
L



















= T



















qr
L

f r
L



















(31)

and the expression of the symplectic [46] transfer matrixT can be written as

T =





















D11 D12

D21 D22





















(32)

with

D11 = −(DLR − DLID−1
II DIR)−1(DLL − DLID−1

II DIL)

D12 = (DLR − DLID−1
II DIR)−1

D21 = −DRL + DRID−1
II DIL + (DRR − DRID−1

II DIR)(DLR − DLID−1
II DIR)−1(DLL − DLID−1

II DIL)

D22 = −(DRR − DRID−1
II DIR)(DLR − DLID−1

II DIR)−1

(33)

Free wave propagation is described by the eigenproblem

γ



















qr
L

f r
L



















= T



















qr
L

f r
L



















(34)

whose solutionγ j is related to the complex values of the structural wavenumber k j by

k j = −
ln(γ j)

ilx
(35)

corresponding to wave typej, with lx being the length of the periodic segmentr. The real part ofk j indicates the

spatial frequency of the wave, while the imaginary part indicates spatial wave dissipation.
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4.3. Dynamic structural stability criterion

Including negative stiffness elements in the modelled configuration has the potential to induce structural dynamic

instabilities, [47] even if the included negative stiffness oscillator is stable when standing alone. For this reason the

computed solutions of the eigenproblem in Eq.34 have to be checked against stability criteria. Dynamic instability

implies the existence of waves for which the power flow transport occurs with an exponentially increasing amplitude.

The time–averaged energy crossing the junction between twoelements of the periodic waveguide is given [48] by

〈E〉 = 1
2

Re(f⊤R q̇R) =
1
2

Re(iωf⊤R qR) (36)

However due to the time harmonic motion assumption

qR = γqL

fR = −γfL

(37)

therefore the time–averaged energy can be written as

〈E〉 = 1
2

Re(−iωγ2f⊤L qL) (38)

For damped systems Im(k j) , 0 and for the waves propagating towards the positive values of x the following is

true

∣

∣

∣γ+j

∣

∣

∣ < 1 (39)

For positive–propagating waves the value of
〈

E j

〉

should be negative, suggesting that their amplitude would be de-

creasing towards the direction of propagation. Moreover,
〈

E j

〉

and Im(k j) should be of same signs, suggesting that the

power flow takes place towards the same direction as the decrease of the wave amplitude and implying the following

dynamic stability criterion

Im(k j)
〈

E j

〉

≥ 0 (40)

which should be true for every computed wave typej.

5. Numerical case studies

5.1. Continuous beam

A continuous ’beam on a floor’ as illustrated in Fig.4 is hereby considered withE=700 MPa,I = 10−5 m4 and

M=1 kg/m while κ0=107 N/m andη=0.1. The wavenumbers for the flexural waves propagating within the supported

beam are initially sought for the two configurations presented in Sec.3. Real values fork are injected into Eq.18, 22

and the corresponding complex values ofλ are computed. It is noted that a value ofε = 3% is used throughout the

calculations presented below.
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Figure 6: Wavenumberk as a function of frequency for the flexural wave propagating within the beam: No negative stiffness (–), With negative

stiffness inclusions (- -). Computations conducted withα=1.6,η=0.1

5.1.1. Results for m2 = 0

The results for the flexural wave propagating within the system whenm2 = 0 are exhibited in Fig.6. It can be

observed that the effect of the inclusion of the suggested configuration with regard to the wave phase and group

velocities is negligible throughout the considered frequency range. It is therefore evident that the two configurations

are both statically and dynamically equivalent. A frequency band gap is also observed for the flexural wave within the

0-500 Hz region.

The damping ratioξ for the flexural wave can be calculated through the real partsof λ. The results for the two

configurations are presented in Fig.7. An impressive increase of the damping ratio by over three orders of magnitude is

observed for the system having negative stiffness inclusions. Frequency dependence ofξ in this case is also observed

with ξ presenting a slight decrease for higher frequencies. On theother hand, for the original systemξ remains

constant with respect to frequency.

A parametric analysis with regard toη is subsequently conducted. The values of the damping ratiosfor three

different values ofη are presented in Fig.8. The damping coefficient is raised by an order of magnitude each time.

For the original system it is observed that the increase ofξ is fairly proportional to the increase ofη and no frequency

dependence is observed as expected. With regard to the modified system, it is observed thatξ will gradually decrease,

asymptotically converging towards the damping ratio of theoriginal system at high frequencies. For the modified

system,ξ also presents a trend to increase withη, however this increase is not proportional to the incrementof η.

This result is in accordance with the conclusions extractedfrom Fig.3. Once again, it is concluded that systems with

lower inherent damping coefficient see more pronounced increases in their wave damping ratio ξ in the presence of

the suggested oscillator.

All the above computations for the modified system were conducted using values forα that are optimal in terms of

maximizingξ. The question that directly arises is therefore how penalising would be the fact of not designing a system
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Figure 7: Damping ratioξ as a function of frequency for the flexural wave propagating within the beam: No negative stiffness (–), With negative

stiffness inclusions (- -). Computations conducted withα=1.6,η=0.1
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Figure 8: Damping ratioξ as a function of frequency for the flexural wave propagating within the beam. Results for the SDoF oscillator:η=0.01

(�), η=0.1 (◦), η=1 (⋄). Results for the mechanism having negative stiffness inclusions:η=0.01 andα=1.2 (· · · ), η=0.1 andα=1.6 (–),η=1 and

α=3 (- -).
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Figure 9: Damping ratioξ as a function of frequency for the flexural wave propagating within the beam forη=0.1. Result for no negative stiffness

(�). Results for the mechanism having negative stiffness inclusions:α=1.3 (- -),α=1.6 (–),α=2.5 (· · · ).

with an optimalα value. It is evident that for limα→ 1+ the system will converge towards the original configuration.

Results for a below-optimal and an above-optimal value ofα are presented in Fig.9. It is observed that for high values

of α the system will generally exhibit reducedξ values, while the frequency dependency ofξ is gradually alleviated.

For higher values ofα the resulting values ofξ will progressively be reduced and will converge towards theones

of the original system. For values ofα below the optimal, the damping ratio presents a radical decrease for higher

frequencies. For suboptimalα values however an increase ofξ is observed for very low frequencies.

5.1.2. Results for m2 > 0

Results form2 > 0 are subsequently sought in order to investigate the effect of the added mass on the wavenumber

and the damping ratio for the propagating waves. Three values form2 are introduced in the model

The results on the obtained values ofk are presented in Fig.10. The first observation is related to the introduction

of frequency band gaps due to the antiresonances induced by the designed oscillator. The frequency width of these

band gaps increases with an increasingm2, while frequency–wise the band gaps occur at the antiresonance frequencies

ωa imposed by the design of the oscillator; withωa decreasing proportionally to
√

m2.

The damping ratio of the propagating waves for various values of m2 is presented in Fig.11. A maximum value

for ξ is observed form2 >0. This maximum occurs at the antiresonance frequencyωa which varies in relation to the

design of the configuration as described above. It is observed that for certain values ofm2 the maximum value ofξ

can be even higher than the one form2 = 0. It is also shown that whenm2 >0, in the high frequency range the value of

ξ will converge towards the damping ratio of the SDoF oscillator. This convergence will be faster for systems having

a largerm2. It is interesting to note that when a high damping ratio is desired within a specified frequency band,ωa

can be tailored for maximisingξ within that frequency range.
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Figure 10: Wavenumberk as a function of frequency for the waves propagating within the beam. Result for no negative stiffness inclusions (�).

Results for various values ofm2: m2=0.3M (- -), m2=0.03M (–), m2=0.003M (· · · ). Computations conducted withα=3, η=0.1
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Figure 11: Damping ratioξ as a function of frequency for the waves propagating within the beam forη=0.1. Result for no negative stiffness (�)

and modified configuration withm2=0 (◦). Results for:m2=0.3M (- -), m2=0.03M (–), m2=0.003M (· · · ).
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Figure 12: Real part of the wavenumbers for each wave type propagating within the layered beam. P-wave type: No negative stiffness (�), With

negative stiffness inclusions (− · −). Torsional: No negative stiffness (◦), With negative stiffness inclusions (· · · ). Bending aroundz axis: No

negative stiffness (⋄), With negative stiffness inclusions (- -). Bending aroundw axis: No negative stiffness (△), With negative stiffness inclusions

(–).

5.2. Periodic layered beam

A layered beam is hereby modelled comprising two facesheetsand a core layer. The facesheets are made of an

isotropic material having a Young’s modulusE f=70 GPa, a Poisson’s ratiov f=0.3 and a mass density ofρ f=3000

kg/m3. The thickness of the facesheets is equal toh f=1 mm. The core has a thickness equal tohc=6 mm and is made

of a material havingEc=0.7 GPa,vc=0.2 andρc=50 kg/m3. The length of the period islx = 5mm while the width of

the beam is equal to 3 mm. It is noted that the parameter valuesε = 3% andα = 2 are used throughout the calculations

presented below for the modified structure.

The layered structure is modelled through standard FE approaches. MatricesK , M andC are computed and

postprocessed as described in Sec.4.2 in order to obtain theacoustic wave propagation properties. All computations

were conducted using the R2013a version of MATLABr.

5.2.1. Results for m2 = 0

The real part of the wavenumbers for the four wave types propagating within the layered structure whenm2 = 0

is exhibited in Fig.12. An pronounced correlation between the results for the initial and the modified structure can be

observed validating the assumption of the static equivalence of the two structures. For the out of plane flexural motion

around axisz discrepancies are observed between the two configurations for very low frequencies, which are due to

the impact of the high damping ratio of the flexural motion in this frequency range.

The ratio of the imaginary to the real part of the wavenumber for the flexural motion aroundz axis of the layered

beam is exhibited in Fig.13. The quantity is equivalent to the damping ratio of the waveξ. An inverse tendency is

observed for the two quantities. Whileξ is constantly increasing with respect to frequency for the initial system with
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Figure 13: Damping ratio of the predicted flexural motion around z axis of the layered beam: No negative stiffness (–), Modified with negative

stiffness inclusions (- -).
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Figure 14: Damping ratio of the predicted flexural motion of the modified layered beam aroundz axis: Withη=10 (· · · ), With η=1 (–), Withη=0.1

(- -)

an asymptotic tendency, the damping ratio for the modified structure presents a constant decrease. A radical increase

(more than six orders of magnitude) ofξ is observed in the very low frequency range, while at frequencies around 10

kHz this increase drops to approximately four orders of magnitude.

A parametric survey on the effect of the damping coefficientη on the damping ratio of the flexural motion around

z axis of the layered beam is presented in Fig.14. It seems thatlowering η will intensify the peak ofξ in the low

frequency range. For higher frequencies the damping ratio quickly settles down towards an asymptotic limit; that

is the damping ratio value of the unmodified structure. An effort on understanding the damping ratio frequency

dependence and optimising the design of the oscillator for targeted frequency bands is ongoing. On the other hand,

for an increasedη value the low frequency peak ofξ is suppressed. An increase of one order of magnitude forη induces

an approximately 550% increase of the damping ratio, confirming the conclusions drawn for the beam structure in

Sec.5.
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Figure 15: Damping ratio of the predicted flexural motion of the modified layered beam aroundz axis whenη=0.1: Withm2=0 (–), Withm2=0.3m f

(−−)

5.2.2. Results for m2 > 0

The values of the damping ratio for the flexural wave whenm2 > 0 are exhibited in Fig.15. The added lumped

mass is expressed as a function ofm f which stands for the total mass of the facesheets included within one period of

the modelled segment. The results present a maximum ofξ at the antiresonance frequency of the oscillator as was

the case for the continuous beam structure. In the higher frequency range the damping ratio asymptotically converges

towards the values obtained for the modified sandwich havingm2 = 0.

6. Conclusions

The main findings of the work are summarized as follows:

(i) The design of a configuration comprising negative stiffness elements was exhibited and implemented in con-

tinuous and periodic structures and the attenuation of the propagating waves was computed using analytical models

as well as a wave and finite element approach.

(ii) The structural stability of both the oscillator and themodelled waveguides was discussed and ensured. A

dynamic stability criterion for the waves propagating within the modelled structures was exhibited.

(iii) A radical increase of several orders of magnitude was exhibited for the damping ratio of the flexural waves

propagating within the modelled configurations having negative stiffness inclusions.

(iv) It was shown that the added mass implied by the adoption of the modified oscillator can be designed for

maximising the damping ratio of the system within a targetedfrequency range.

(v) It was demonstrated that the damping ratio increase due to the inclusion of the suggested mechanism will be

greater for lightly damped systems.

This work has shown how a lumped parameter oscillator can be used within periodic structures in order to enhance

their damping performance. The suggested oscillator has simultaneous high stiffness and damping properties and
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extends the existing concepts concerning single DoF negative stiffness and zero-stiffness oscillators. Future work will

focus on manufacturing and implementing the suggested configuration within continuous systems in order to compare

their performance to high damping/stiffness composite materials exhibited in recent bibliography.

References

[1] E. Rivin, Passive vibration isolation,AS ME Press New York, 2003.

[2] J. M. Kelly, D. Konstantinidis, Mechanics of rubber bearings for seismic and vibration isolation, John Wiley & Sons,2011.

[3] Y. Wang, M. Ludwigson, R. Lakes, Deformation of extreme viscoelastic metals and composites, Materials Science and Engineering: A 370

(2004) 41–9.

[4] P. Shorter, Wave propagation and damping in linear viscoelastic laminates, The Journal of the Acoustical Society ofAmerica 115 (2004)

1917–25.

[5] E. Manconi, B. R. Mace, Estimation of the loss factor of viscoelastic laminated panels from finite element analysis, Journal of Sound and

Vibration 329 (2010) 3928–39.

[6] R. Lakes, Extreme damping in composite materials with a negative stiffness phase, Physical Review Letters 86 (2001) 2897–8.

[7] T. Jaglinski, D. Kochmann, D. Stone, R. Lakes, Compositematerials with viscoelastic stiffness greater than diamond, Science 315 (2007)

620–2.

[8] R. Ibrahim, Recent advances in nonlinear passive vibration isolators, Journal of Sound and Vibration 314 (2008) 371–452.

[9] C. S. Wojnar, D. M. Kochmann, A negative-stiffness phase in elastic composites can produce stable extremeeffective dynamic but not static

stiffness, Philosophical Magazine 94 (2014) 532–55.

[10] C. S. Wojnar, D. M. Kochmann, Stability of extreme static and dynamic bulk moduli of an elastic two-phase composite due to a non-positive-

definite phase, physica status solidi (b) 251 (2014) 397–405.

[11] K. Virk, A. Monti, T. Trehard, M. Marsh, K. Hazra, K. Boba, C. Remillat, F. Scarpa, I. Farrow, SILICOMB PEEK Kirigami cellular structures:

mechanical response and energy dissipation through zero and negative stiffness, Smart Materials and Structures 22 (2013) 084014–.

[12] E. Baravelli, M. Ruzzene, Internally resonating lattices for bandgap generation and low-frequency vibration control, Journal of Sound and

Vibration 332 (2013) 6562–79.

[13] P. Michelis, V. Spitas, Numerical and experimental analysis of a triangular auxetic core made of CFR-PEEK using theDirectionally Rein-

forced Integrated Single-yarn (DIRIS) architecture, Composites Science and Technology 70 (2010) 1064–71.

[14] T. Klatt, M. R. Haberman, A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscalematerial model, Journal of

Applied Physics 114 (2013).

[15] E. Pasternak, A. V. Dyskin, G. Sevel, Chains of oscillators with negative stiffness elements, Journal of Sound and Vibration 333 (2014)

6676–87.

[16] R. Lakes, P. Rosakis, A. Ruina, Microbuckling instability in elastomeric cellular solids, Journal of Materials Science 28 (1993) 4667–72.

[17] V. Spitas, C. Spitas, P. Michelis, Modeling of the elastic damping response of a carbon nanotube–polymer nanocomposite in the stress-strain

domain using an elastic energy release approach based on stick-slip, Mechanics of Advanced Materials and Structures 20(2013) 791–800.

[18] L. Dong, R. Lakes, Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness, International

Journal of Solids and Structures 50 (2013) 2416–23.

[19] W. Molyneaux, Supports for vibration isolation, ARC/CP-322, Aeronautical Research Council, Great Britain, 1957.

[20] P. Alabuzhev, E. I. Rivin, Vibration protection and measuring systems with quasi-zero stiffness, CRC Press, 1989.

[21] D. L. Platus, Negative-stiffness-mechanism vibration isolation systems, In: SPIE’s International Symposium on Optical Science, Engineering,

and Instrumentation (1999) 98–105.

[22] J. Winterflood, D. Blair, B. Slagmolen, High performance vibration isolation using springs in euler column buckling mode, Physics Letters

A 300 (2002) 122–30.

21



[23] L. Virgin, R. Davis, Vibration isolation using buckledstruts, Journal of Sound and Vibration 260 (2003) 965–73.

[24] R. Plaut, J. Sidbury, L. Virgin, Analysis of buckled andpre-bent fixed-end columns used as vibration isolators, Journal of Sound and Vibration

283 (2005) 1216–28.

[25] L. Virgin, S. Santillan, R. Plaut, Vibration isolationusing extreme geometric nonlinearity, Journal of Sound andVibration 315 (2008) 721–31.

[26] R. DeSalvo, Passive, nonlinear, mechanical structures for seismic attenuation, Journal of Computational and Nonlinear Dynamics 2 (2007)

290–8.

[27] B. A. Fulcher, D. W. Shahan, M. R. Haberman, C. C. Seepersad, P. S. Wilson, Analytical and experimental investigation of buckled beams as

negative stiffness elements for passive vibration and shock isolation systems, Journal of Vibration and Acoustics 136 (2014).

[28] A. Carrella, M. Brennan, T. Waters, Static analysis of apassive vibration isolator with quasi-zero-stiffness characteristic, Journal of Sound

and Vibration 301 (2007) 678–89.

[29] H. Huang, C. Sun, G. Huang, On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science

47 (2009) 610–7.

[30] C.-M. Lee, V. Goverdovskiy, A. Temnikov, Design of springs with negative stiffness to improve vehicle driver vibration isolation, Journal of

Sound and Vibration 302 (2007) 865–74.

[31] T. D. Le, K. K. Ahn, A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat, Journal

of Sound and Vibration 330 (2011) 6311–35.

[32] C.-M. Lee, V. Goverdovskiy, A multi-stage high-speed railroad vibration isolation system with negative stiffness, Journal of Sound and

Vibration 331 (2012) 914–21.

[33] H. Iemura, M. H. Pradono, Advances in the development ofpseudo-negative-stiffness dampers for seismic response control, Structural

Control and Health Monitoring 16 (2009) 784–99.

[34] A. A. Sarlis, D. T. R. Pasala, M. Constantinou, A. Reinhorn, S. Nagarajaiah, D. Taylor, Negative stiffness device for seismic protection of

structures, Journal of Structural Engineering 139 (2012) 1124–33.

[35] C.-M. Lee, V. Goverdovskiy, S. Samoilenko, Predictionof non-chaotic motion of the elastic system with small stiffness, Journal of Sound

and Vibration 272 (2004) 643–55.

[36] A. Carrella, M. Brennan, T. Waters, V. Lopes Jr, Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-

stiffness, International Journal of Mechanical Sciences 55 (2012) 22–9.

[37] I. Kovacic, M. J. Brennan, T. P. Waters, A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic, Journal of Sound

and Vibration 315 (2008) 700–11.

[38] A. Shaw, S. Neild, D. Wagg, Dynamic analysis of high static low dynamic stiffness vibration isolation mounts, Journal of Sound Vibration

332 (2013) 1437–55.

[39] X. Huang, X. Liu, J. Sun, Z. Zhang, H. Hua, Vibration isolation characteristics of a nonlinear isolator using euler buckled beam as negative

stiffness corrector: A theoretical and experimental study, Journal of Sound and Vibration 333 (2014) 1132–48.

[40] B. Budiansky, Theory of buckling and post-buckling behavior of elastic structures, Advances in applied mechanics14 (1974) 1–65.

[41] S. Livet, M. Collet, M. Berthillier, P. Jean, J.-M. Cote, Structural multi-modal damping by optimizing shunted piezoelectric transducers,

European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique 20 (2011) 73–102.
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List of symbols

bi, ci Coefficienti of the characteristic equation

E Young’s modulus

〈E〉 Time averaged wave energy

f External force

I Second moment of area

l Length of the periodic segment

m, M Mass variables

s Laplace variable

w Apparent DoF

y Internal DoF

C Damping matrix

D Dynamic stiffness matrix

K Stiffness matrix

M Mass matrix

T Transfer matrix

q Displacement DoF vector

f Force vector

γ Transfer matrix eigenvalue

ε, α Design parameters of the oscillator

ζ Damping ratio of the oscillator’s motion

η Damping coefficient

κ0, κs, κe Positive stiffnesses

κc Negative stiffness

λ Complex frequency function

µ Wavelength

ξ Wave damping ratio

ω Angular frequency
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